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UNIVERSITY OF VIRGINIA

Abstract
Charles E. Brown Department of Electrical Engineering

Masters of Science

by Emmanuel Oluwadurotimi Denloye-Ito

In this thesis, we develop a technique for object localization in an up-link optical

wireless system for, most generally, indoor applications. In contrast to other works

(e.g. [1]), wherein the authors exploit measures such as the line of sight peak

power (LOS), the second power peak of the channel’s impulse response, and the

delay between these aforementioned measures to localize an actively transmitting

object, we instead localize a passively sensed object via a hitherto, to the best

of our knowledge, novel methodology. We employ a device from a relatively new

research sub-field of computational mathematics called topological data analysis

(TDA). In particular, we employ a methodological framework called persistent

homology(PH), which in short, is useful for identifying topological structure, by

identifying “holes” within a data-set at several scales of analysis. In particular,

we utilize the “holes” identified by PH to provide a count of the number objects

in an optical wireless system. In general, PH can provide an overall assessment

of the global structure and connectivity of a data-set. PH is also useful because,

in addition to the simple aforementioned qualitative guide, it can be utilized,

given certain permitting conditions, to localize and potentially provide a complete

geometric description of objects in an indoor application while obviating the need

for potentially expensive explicit shape models of various objects within a room. In

summary, this thesis introduces a methodology for object localization, enumeration

and description in an up-link wireless optical system for indoor applications with

the aid of PH. We demonstrate the viability of our approach through several

standard simulations and assess the implications of their outcomes for determining

the character of a path for future work.

http://www.virginia.edu
https://engineering.virginia.edu/departments/electrical-and-computer-engineering
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Chapter 1

Introduction

1.0.1 Opening Remarks

In this document, we present an up-link optical wireless passive object/obstacle

localization system for indoor applications. There is a high demand nowadays for

localization services in many applications like robotics, unmanned aerial vehicles,

Internet of Things (IoT) applications and self-driving cars. In this thesis, our

analysis focuses upon passive object localization. When we use the term passive

as in aforementioned case, we are referring to situations wherein a robot, for ex-

ample, is attempting to create an “image” or map of an environment, in a similar

manner that may be utilized in sonar, from a set of measurements. While a GPS

service may have robust localization capabilities in outdoor applications, its oft

poor coverage in indoor environments, as well as its poor accuracy indoors, pro-

vides a strong impetus towards crafting a robust indoor localization system by

innovatively using GPS services or capabilities or utilizing another technology and

service. More importantly, at least for our purposes, GPS would not be the best

choice for passive object localization in indoor environments. In this thesis, we

address this problem by introducing a new optical wireless-based technique that

uses particular features of an infrared IR up-link channel impulse response for

1



Introduction 2

object localization. At a certain level of analysis, we are simply “photographing”

a room filled with static, immobile objects. A map, produced by the collection of

“photographs”, could be employed in a variety of scenarios where human interven-

tion would either be costly or impossible. For example, consider manufacturing

companies that might want to automate a process that would build a map of their

inventory stored in a warehouse, whose objects might be geometrically intricate,

and spread across a large and structurally complex room.

1.0.2 Motivation: Visible Light Communications

As already mentioned in the opening paragraph, indoor positioning system, irre-

spective of the supporting technology, is of great interest in situations whereby

passive sensing of the environment is the most achievable means of localizing and

characterizing objects in an indoor environment. Though GPS works very well for

situations such as map services for mobile phones, navigation for cars/ships and

planes, GPS performance can be severely degraded in indoor environments and

more importantly GPS requires active objects in order to provide and perform

localization service(s).

There have been a number of approaches for active localization ([4], [5], [6],

[7], [8], [9]) based on wireless technologies such as, but not limited to: WLAN,

RFID, cellular, UWB, Bluetooth. Whilst these methods can deliver positioning

accuracies from tens of centimeters to several meters, they still suffer from the

interference issues that can arise when signals within the radio-wave portion of

the electromagnetic spectrum are utilized for communication-based purposes. For

example, radio-wave signals can interfere or disable certain kinds of medical devices

and also congest the limited bandwidth available to wireless devices which are

constrained by their design to use the portion of the electromagnetic spectrum
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that they must share with the other similarly operating (at least in their usage of

the currently available bandwidth) devices.

However, in contrast to these techniques for active localization, we also con-

sider the approaches that are similar, at least in their ultimate goal, to ours.

(RADAR or LIDAR).

Visible Light Communications (VLC) is considered an attractive solution for

indoor positioning systems because this burgeoning technology offers certain key

advantages over its competition. In summary, VLC is, essentially, a technology for

providing communication services over a medium composed of modulated optical

wave-forms. In particular, these modulated optical wave-forms are sent via light

emitting diodes, fluorescent fixtures or other lighting fixtures capable of propagat-

ing the desired modulated optical wave-form. Firstly, VLC is less costly to setup

since there is a broad set of lighting sources (fluorescent lamps, light emitting

diodes, etc.) that can switch fast enough to send coded messages. This cost is

even more appealing when one considers that with these available light sources,

such VLC systems typically expend only a little more energy than what would

be consumed if the light was used for its commonplace, pedestrian purpose. This

is important, as it implies that the cost and burden of a typical VLC system de-

ployment and maintenance may be manageable to bear. Secondly, VLC systems

typically do not introduce any of the interference effects commonly encountered

with radio-wave transmissions heretofore mentioned. This makes VLC an ap-

pealing option in locations where radio-wave signals are either strictly prohibited

or highly undesirable. Finally, for reasons most relevant to the topic at hand, a

VLC system typically comes with a promise to provide better positioning accuracy

(typically measured in centimeters, or millimeters) than its competing technologies

due to less signal degradation from multi-path effects and interference from other

wireless devices. This effect is rather pronounced when one considers the mani-

fold sources of multi-path fading and interference that can exist in a sufficiently
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confined space, such as a generic 5 meter by 5 meter by 3 meter room.

1.0.3 Motivation: Localization via Visible Light Commu-

nications

Up until to this point, we have merely mentioned a few reasons for using VLC

for positioning. We would like to extend the analysis and make, at the very least,

a contribution that will put localization and efforts towards object description

towards the fore of the conversation. An initial attempt at determining shape and

geometric configuration of objects might use an explicit model for modeling each

object. It could argued that using an explicit geometric model might be useful

and faster in certain cases. However, with the aid of tools from topological data

analysis TDA, we have found that it is possible to conduct an analysis of shape

without an explicit model for each shape. In topology, one essential notion that

under-grids its analysis is the concept of a homeomorphism. A homeomorphism,

in simple terms, entails an equivalence between topological spaces (a sphere, for

instance) that is determined by a bi-continuous function between the two. We shall

describe this further in a later section. However, what is important to remember

at this point, is that it is possible to have an analysis without an explicit model

and TDA provides a vehicle for this analysis.

1.0.4 Scope of this Thesis: Objectives and Contribution

In this thesis, we explore how topological data analysis tools can be applied to

problems in VLC, particularly in indoor applications. Over the development of

this thesis, we briefly touch upon how these methodologies can be utilized in a more

generalized context. This generalized context, which will be established with the



Introduction 5

aid of concepts and methodologies from topological data analysis, will hopefully

give some insight into the following hypotheses:

1. To what extent can tools borne from research pursuits in topological data

analysis TDA be used to discover the geometric attributes of “object(s)/obstruction(s)”

from infrared data?

2. Following, the above point, qualitatively explore how the algorithm utilized

can be adapted/extended to reconstruct the actual shape of an “object/ob-

struction”.

3. As mentioned in the opening paragraph of this section, we consider how our

current application of topological data analysis may inform future research

endeavors; either in VLC and other areas such as image processing/machine

learning.

These items broadly outline the overarching themes we hope this document’s

reader will appreciate whilst consuming this document. Although, at first en-

counter, a connection between VLC and TDA may seem tenuous, we shall allay

this concern in due time.

In this thesis, we have three essential objectives:

1. We demonstrate that topological data analysis can be effectively used to

solve an important problem in the burgeoning and active field of research

called Visible Light Communications VLC.

2. We discuss and evaluate the utility of our positioning algorithm in a VLC

system.

3. We discuss viable extensions of our current algorithm and consider the pos-

sible future directions someone could extend the current work.



Chapter 2

Topology and Homology

Background

2.1 Opening Remarks

In this section, we review the essential theoretical concepts from topology in ad-

dition to some of the practical adaptations of these concepts. To clarify, in the

latter part of this section, we are not reviewing existing applications of topology

based upon similar methodologies as employed in this document. Instead, we are

simply reviewing the necessary practical, or engineering-based, solutions that even

a recently “green” practitioner would need to know.

2.2 Topological Data Analysis (TDA)

We suggest that the insights provided by topological data analysis are difficult to

emulate with other methods. We first begin by remarking upon certain notions

most prevalent and important in any discussion about topology. An extremely

thorough review of these concepts can be found in these text(s) [10], [11].

6
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2.3 Basic Introduction to Topology

In a generic sense, topology is the study of particular mathematical structures,

hereafter referred to as topological spaces, the invariant properties of these spaces

and the maps over and between these abstract objects. A topological space is

defined by two primal objects, a set X and a topology T over that set. A topology

T , to be precise, is a collection of subsets of X , oft referred to as open subsets.

Any given collection T will be characterized in the following ways:

(1) X and ∅ are open.

(2) The union of any family of open subsets is open.

(3) The intersection of any finite family of open subsets is open.

Though this definition/properties may seem uninspiring at this point, it is

important to keep this essential construction in mind when we discuss the more

pertinent aspects of topology such as simplicial complexes, homology and most

saliently, persistent homology. In addition, we have forgone discussions about

other topological concepts, however we shall introduce them if and when deemed

necessary.

The most venerated invariant in topology is the homeomorphism. A homeo-

morphism essentially is a bi-continuous map between topological spaces. A simple

example of this phenomenon is the popular homeomorphism between a mug and

a donut. This example is particularly illustrative because it is easy to visualize

how modifications of either object by particular deformations can be applied to

obtain the other object. To aid in the visualization, we added a (Figure 2.1) few

snapshots of the process that would ”convert” a mug into a donut. These de-

formations, by consequence of the bi-continuity of a homeomorphism (technically

this would be require some additional assumptions about the underlying homeo-

morphism, namely that this infinitely differentiable map (C∞ between topological



Topology and Homology Background 8

manifolds), prevents any sort of tearing or self intersections of either object. An

interesting consequence of just considering this particularly simple example is that

both objects, in a sense, represent the same underlying ”abstract” mathematical

structure. Though topology is a vast field in which other important invariants are

considered, a homeomorphism is without a doubt, one of the most fundamental

types of maps between any two topological spaces.

Given this seemingly austere description of a topological space, it may not

seem immediately obvious how these ideas connect to the sort seen in analysis

typically conducted in image processing or computer vision. However, such a

hesitation to weave ”old” and well-worn mathematical ideas without utilizing an

evidentiary based approach would be ill-advised.

Even though we described what a topological space is and its essential building

blocks, the given description does not really provide compelling motivation for

applications. And although homeomorphisms between topological spaces can help

to motivate that some plausible topology of some set, in some qualitative sense,

codifies its ”shape”, there are some important considerations left unanswered.

First, how do we establish that a homeomorphism exists between non-contrived

topological spaces. Now, on the face of it, embarking upon such a venture would be

difficult. Attempting to discover a precise homeomorphism would require having

perfect knowledge of both topological spaces and also knowledge of how to build

a map between them. It is easier to make such an arrangement with contrived

(a) (b) (c) (d) (e)

Figure 2.1: A depiction of the process of a ”mug” topologically morph-
ing into a ”donut”. Courtesy of https://en.wikipedia.org/wiki/User:

LucasVB/Gallery.

https://en.wikipedia.org/wiki/User:LucasVB/Gallery
https://en.wikipedia.org/wiki/User:LucasVB/Gallery


Topology and Homology Background 9

examples, but when dealing with real data-sets, our hopes are likely to be dashed.

Fortunately, there are finite approximations to topological spaces (under a specific

sets of conditions) which are amenable to computation. More importantly, these

finite approximations also are imbued with a related topological invariant, called

homology. Homology, as it turns out, is invariant over homeomorphisms and can

be calculated by a computer. We shall delve more into homology in the coming

section.

2.4 Simplicial Complexes, Homology, Persistent

Homology

In this section, we describe the relevant aspects of algebraic topology that will

be important within our work. For a more thorough description of the concepts

described and more, please consult [10].

2.4.1 Simplicial Complexes

We shall now describe what a simplicial complex is as well as its essential building

blocks. A simplicial complex is a set K, together with a collection S of subsets

of K called simplices such that for all v ∈ K, {v} ∈ S and if τ ⊆ σ ∈ S then

τ ∈ S. We call the sets {v} the vertices of K. When it is clear from context

what S is, we refer to set K as a complex. We say σ ∈ S is a k simplex of

dimension k if |σ| = k + 1. If τ ⊆ σ, τ is a face of σ, and σ is a coface of

τ . An orientation of a k-simplex σ , σ = {v0, . . . , vk}, is an equivalence class of

orderings of the vertices of σ, where (v0, . . . , vk) ∼ (vτ(0), . . . , vτ(k)) are deemed

equivalent if the sign of τ is 1. With this basic machinery, it is not a stretch to see

that low-dimensional k-simplicies, when 0 ≤ k ≤ 3, are vertices, edges, triangles,
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and tetrahedron. Exemplar drawings of the last one to three simplicies (edges,

triangles, tetrahedrons) can be found in Figure 2.2.

v0 v1

(a) 1-simplex

v0 v1

(b) 1-simplex’s faces

v0 v1

v2

(c) 2-simplex

v0

v0

v1

v1

v2 v2

(d) 2-simplex’s faces

v0

v1

v2

v3

(e) 3-simplex

v0 v1

v2

v0 v1

v3

v0 v2

v3

v1 v2

v3

(f) 3-simplex’s faces

Figure 2.2: Some simple simplicies and their faces.

2.4.2 Chain Complexes

With the definitions of a simplex and simplicial complex given, we now turn our

attention to a consequent construction, a chain group [11]. A chain group Ck is

a set that has elements which are called k-chains. These elements are defined as

the finite formal sum of k-dimensional simplicies in the following way:

∑
α

kασα (2.1)

where kα ∈ Z and α is an index over simplicies. This formal sum can be thought of

as a collection of k-simplicies with integer multiplicities encoded by the coefficients
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kα. Alternatively, the chain group Ck is also the free abelian group on oriented

k-simplicies.

The boundary operator, δk : Ck → Ck−1 maps k-chains to the sum of (k −

1)-dimensional faces of its k-cells, which is necessarily a (k−1)-chain. The bound-

ary operator is a homomorphism that acts linearly on a chain c. A homomor-

phism is a structure-preserving map across two identical algebraic structures. It

can essentially be likened to other structure-preserving maps like isomorphisms or

homeomorphisms that have been alluded to earlier in this document.

For a given simplex σ = [v0, . . . , vk], we have:

δkσ =
∑
i

(−1)i
[
v0, v1, . . . , v̂i, . . . , vk

]
(2.2)

where v̂i indicates that the term vi is missing from the sequence defining that

simplex. A given term in 2.2, [v0, v1, . . . , v̂i, . . . , vk], is referred to as the boundary

of [v0, v1, . . . , vk] . We show some examples of how to construct a boundary of a

simplex below in Figure 2.3 1.

Repeated applications of the boundary operator 2.2 connect chain groups in

the following way:

· · · → Ck+1
δk+1−−→ Ck

δk−→ · · · (2.3)

The kernel and image of a boundary operator are called the cycle, Zk = kerδk,

and the boundary, Bk = imδk+1, groups. An important property of the boundary

operator is a quite intuitive one, namely that the boundary of a boundary is

always empty. This can be formally stated in terms of the boundary operator

as δk ◦ δk+1 = 0. This is readily apparent by also applying 2.2 twice to some

1This diagram is very similar to the one found on pg.105 of [11]. Although this diagram was
recreated from scratch, we feel it is necessary to give credit to the original author/creator.
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v0
- +

v1 δ[v0, v1] = [v1]− [v0]

v0 v1

v2

δ[v0, v1, v2] = [v1, v2]−
[v0, v2] + [v0, v1]

v0

v1

v2

v3

δ[v0, v1, v2, v3] =
[v1, v2, v3]−
[v0, v2, v3]+
[v0, v1, v3]+
[v0, v1, v2]

Figure 2.3: Applications of equation 2.2 upon the simplicies from Figure 2.2.

simplex σ. Since its proof, courtesy of [11], is rather short, we include it here for

completeness.

Theorem 1. The composition of δk : Ck → Ck−1 and δk−1 : Ck−1 → Ck−2 is zero.

Proof. Given some σ ∈ Ck, which can be expressed as
[
v0, . . . , vk

]
, we have δk(σ) =∑

i(−1)i
[
v0, v1, . . . , v̂i, . . . , vk

]
. When we apply δk−1 to δk(σ), we have

δk−1δk = ∑
j<i

(−1)i(−1)j
[
v0, v1, . . . , v̂j, . . . , v̂i, . . . , vk

]
+

∑
j>i

(−1)i(−1)j−1
[
v0, v1, . . . , v̂i, . . . , v̂j, . . . , vk

]

These summations cancel because after switching i and j in the second sum, the

terms in latter become the negative of the terms in the first.

Consequently, it is possible to note that

Bk ⊆ Zk ⊆ Ck. (2.4)



Topology and Homology Background 13

This relationship will be especially important when we discuss homology. Please

note, that the boundary operator will necessarily be the null map whenever the

dimension of Ck demands that it be the empty set (k = 0).

2.4.3 Homology

The kth homology group Hk = Zk/Bk is of interest because of the previous set

inclusions determined by (2.4). As has been already stated, for any boundary

homomorphism, we have δk ◦ δk+1 = 0. Therefore, for any p-chain in Bk, these

chains, hereafter referred to as boundary chains, form a subgroup of the cycle

group Zk. Once we take the quotient of Zk by Bk, we discover that its elements

are classes of homologous cycles. These classes of cycles are defined as c + Bk =

{c + b | b ∈ BK}. One can visualize the relationship between the groups Zk,

Bk and Ck as:

C3 C2

Z2

B2

C1

Z1

B1

C0 = Z0

B0

∅ ∅

Z3 = B3

∅ ∅ ∅ ∅

Figure 2.4: Chain, cycle, boundary groups and their images under the bound-
ary operators. Courtesy of [2].

In general, the kth Betti number is the rank of Hk, which is.

rank Hk = rank Zk − rank Bk
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Alternatively, for the group Hk, if we assume that the coefficients for the chains

come from some field F , then in general we have

Hk = F ⊕ F ⊕ . . .⊕ F

= F βk

where ⊕ is the direct sum. Then it is true that Hk is a vector space over F and its

rank is βk. The rank of these groups are typically called Betti numbers, and for a

Hk, βk is called the kth Betti number. For any simplicial complex X representing

some topological space, we write Hk(X) and βk(X) for the kth homology group and

kth Betti number. These values are defined for any integer k, but if the dimension

of the underlying topological space X is n, then the only possibly interesting

homology groups are defined for values of k such that 0 ≤ k ≤ n. Consequently,

for values of k outside of this range Hk is the empty set and βk = 0.

When a topological space, typically a topological manifold, can be described

by some simplicial complex, homology is a useful algebraic tool used to discover

particular algebraic properties (its homology groups and their Betti numbers).

The Betti numbers of the homology groups counts the number of k-dimensional

holes and these holes effectively correspond to actual voids within a topological

space. For a more thorough explanation of homology, please consult either [10] or

[11].

2.4.4 Persistent Homology

Persistent homology enables an investigator to incorporate certain measurements

in the description of topological features. In particular, persistent homology en-

ables her to analyze the evolution of homological features (their ”births” and
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”deaths”) within a data set analyzed over several scales appropriate for a given

set of measurements.

Before we embark on a full explanation, we first describe the concept of per-

sistence for single variable functions (We tersely reproduce the explanation given

in [12]). Let us consider some smooth function f : R→ R. As a brief reminder, a

smooth function is generally a function that is differentiable up to any order e.g.

the exponential function ex. An x is a critical point and f(x) is a critical value of

f whenever d
dx

[f(x)] = 0. Whenever d2

d2x
[f(x)] 6= 0 at a critical point, we label that

critical point as non-degenerate. We further constrain the quality of f by requiring

that it only have non-degenerate critical points with distinct critical values. Thus,

each critical point is either a local minimum or a local maximum. Now consider

the sublevel sets

Rt = f−1(−∞, t].

It is readily observable that as we increase t from −∞, the connectivity of Rt,

remains the same except when we pass a critical value. At local minimums, a new

component is added to the sublevel set and at a local maximum two components

merge into one.

These critical points are paired in the following manner: When a local min-

imum appears, then that representative local minimum represents a new compo-

nent. However, when a local maximum appears, we merge two already existing

components by pairing the found maximum with the higher (or younger) of the

two local minima on either side of the maximum (provided they exist of course).

Consequently, the other minimum represents the effective component from the

merger.

When x and y are paired in the aforementioned manner, we define the pair’s

persistence as f(y)− f(x). We can use a persistence diagram to code persistence

by mapping each pair to a point (f(x), f(y)) such that the coordinates are the
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corresponding critical points of the function f . Within the diagram, points that

are above half space specified by x1 = x2. Persistence, as put forth, can be visibly

seen as the vertical distance to the diagonal of the half space x1 = x2.

Given this definition of persistence for single variable functions, we now present

an analogous definition for simplicial complexes. Given a simplicial complex K,

we now consider a nested sequence of sub-complexes, whereby a sub-complex is a

subset of simplicies is closed under the face relation, referred to as a filtration of

K. This filtration can be written as:

∅ ⊆ K0 ⊆ K1 ⊆ · · ·Km = K. (2.5)

The sub-complexes are like the sublevel sets encountered before. In particular, for

our application, the “sublevel” sets that we form from our data-sets unveil the data

at gradually increasing scales. A homology class α is born at Ki if it is not found

in the image of the inclusion map Ki−1 ⊆ Ki. This can be further extended by

observing that if α is born at Ki, it dies entering Kj if the image of the inclusion

map Ki−1 ⊆ Kj−1 does not contain the image of α but the image of the inclusion

map Ki−1 ⊆ Kj does. The persistence of α can be written as j − i. Given this

scenario, we can consider the number of p-dimensional homology classes that are

born at or before Ki and are still alive at Kj. These necessarily includes classes

that never die through the filtration. The number just referenced is the rank of

the map between homology groups:

fp : Hp(Ki)→ Hp(Kj). (2.6)

So, in essence persistent homology is tracing how homology classes “survive”

through different portions of the filtration through maps such as fp. We can go

back to regular homology by fixing the entire filtration at a single point, of course.
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However, the primary difference is that we are defining maps between compatible

homology groups in different simplicial complexes.

2.5 Simplicial Complex Formation/Generation

There are a number of different methods for generating simplicial complexes extant

in the literature. In this section, we review several of the methodologies used and

provide a cost benefit analysis of each method in terms of their applicability and

efficiency.

2.5.1 Cech Complex

Given a point set X in some metric space and equipped with a parameter ε > 0,

the Cech complex [13], Kε is defined as the simplicial complex whose simplicies are

formed as follows. For every subset S ⊂ X of points, categorize S as simplicial,

if for every ε
2

ball formed about each point in S, there are a non-zero number of

intersections. The number of balls that have non-trivial intersection is the dimen-

sion of the complex S. This definition obviously satisfies the standard definition

of a simplicial complex because any set S
′ ⊂ S is clearly also a simplex.

An obvious question that arises from such a construction is if there are condi-

tions that make it ”equivalent” to the underlying topological space X. Fortunately,

it can be shown by the Nerve Theorem[11] that when the homotopy types, an-

other topological invariant, of X and Cε are the same then, homology is unable to

distinguish between these two. Unfortunately this renders a persistent homologi-

cal analysis from being carried out. We deem it necessary to discuss the complex

because this construction type could be deemed by someone unaware as a straight-

forward way to build a simplicial complex. In addition to an inability to perform a
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persistent homological analysis, this particular construction is also computation-

ally expensive. In fact, the computing time for the entire complex is generally

exponential! This explosive asymptotic computational resource usage precludes

analysis of any worthwhile data-set that may contain even just a thousand points

(a small figure for most worthwhile data-sets). We shall need to consider other

simplicial complex generation methods.

2.5.2 Vietoris Rips Complex

The Vietoris Rips [14] complex is developed in a similar fashion as the Cech com-

plex, except that instead of adding a k simplex only when there are k common

intersections between balls of radius ε (> 0) as before, we only consider pairwise

intersections between such balls. We denote this complex as V Rε.

Even though being fairly straightforward, do our previous concerns about

topological relevancy still hold? We observe that for all ε > 0, the following holds

Cε ⊂ V Rε ⊂ C2ε (2.7)

However, despite the reduction in the number of intersections needed to be

evaluated during the simplex’s construction, attempting to compute the Vietoris

complex when the number of points in a data-set exceeds a certain practical thresh-

old is computationally expensive. In particular, we have, over the course of using

the tool, determined that for the number of points (on the order 104 to 106)

typically found in the data-sets of this thesis, the computational time becomes

prohibitively expensive.
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2.5.3 Witness Complexes

The last and most appealing simplicial complex construction algorithm we discuss

is the witness complex. In light of the sheer amount of memory that the other

simplicial complex construction algorithms would require, it is quite fortunate

that there exists this simplicial complex construction method. The simplest and

most straightforward description, the simplicial complex is based upon a subset of

landmark points of the data-set. Interestingly enough, no other input parameters

are required. The remaining points are ”witnesses” to the landmark points chosen

as members of simplicies in a prescribed manner. We start by designating a

distance matrix D, that is n × N matrix of non-negative entries, where n is the

number of landmark points and N is the number of points. This matrix, as its

namesake implies, contains the euclidean distance between ith landmark point

(1 ≤ i ≤ n), where the landmark point set is denoted by L, and the jth point

(1 ≤ j ≤ N) in the entire data-set, denoted by X. The witness complex W∞(D),

with vertex set {1, 2, . . . , n} is given as: Each i that satisfies these conditions is

1. An edge between points a and b exists in W∞(D) if there exists a data point
i ≤ i ≤ N such that D(a, i) and D(b, i) are the smallest entries in the ith

column of D.

2. Consider that there exists some p-simplex σ = [a0a1 . . . ap], whose faces all
belong to W∞(D). Then σ belongs to the W∞(D) iff a data point 1 ≤ i ≤ N
exists such that D(a0, i), D(a1, i), . . . , D(ap, i) are the smallest p + 1 entries
in the ith column of D.

Figure 2.5: Procedure for building a witness complex

called a ”witness” to the existence of σ.

Choosing the landmarks is another matter that is necessary to discuss. There

are two main methods for choosing landmarks, random or maxmin. Since the for-

mer is easy to grasp, we shall explain the latter. Maxmin is an inductive procedure

that begins by selecting some landmark point l1 ∈ Z randomly. By induction, if
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the set l1, l2, . . . , li−1 have been chosen, then we choose li ∈ Z{l1, l2, . . . , li−1} as

the data point that maximizes the function

→ minD(z, l1), D(z, l2), . . . , D(z, li1) (2.8)

where D is the ambient or assumed metric. This process is iterated until the

desired, as given by some criteria, number of landmark points have been chosen.

This simple procedure is striking because the landmarks it finds usually provide a

good ”cover” of the data-set. However, it should be noted that whilst this selection

process is fast due its inherent greediness, we have seen that in some instances,

this process does not capture the best landmarks. We shall demonstrate this by

asking the reader to consider the following situation.

Let there be two hollow 2-spheres of equal radius, r > 0 units, whose centers

are d > 0 units apart. For fixed r, the variation of the numerator of the ratio

d

r
will produce scenarios where either the spheres are totally separate and do not

intersect one another or the spheres overlap. It should be noted that within this

small example, we have two sampling processes for points upon the hollow sphere.

For simplicity, we sample, with uniform distributions, the θ and φ angles of each

sphere. Instead, we could also linearly sample these two angles. Irrespective of the

sampling procedure, we find that it is rather straightforward to get the “expected”

answer for the persistent Betti numbers, i.e. the number of “holes” (where “holes”

is intuitively interpreted), when the two spheres are well separated, in other words

d

r
� r. However, when the two spheres are not well separated,

d

r
≈ 1 or

d

r
< 1,

there are two possibilities to consider here. Either the spheres are almost touching

or the spheres overlap one another and produce a 2-dimensional void within the

overlap. Though it may seem straightforward to deduce the Betti numbers of

the simplicial complex (via the witness complex), it turns out that this is not

so simple. Depending on the landmark selection, we could get vastly different

landmark point sets and consequently, the resulting homology groups may not
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reflect the underlying data-set. This is especially true when the landmark point

selection process is random. This unexpected result provides the groundwork and

inspiration for the application of persistent homology to particular problems we

discuss later in this document.



Chapter 3

Methodology & Results

3.1 Opening Remarks

This chapter contains the essential details of our experiments to determine the vi-

ability of utilizing persistent homology for passive object localization. Specifically,

we first discuss the simulations we have constructed to test the efficacy of using

persistent homology to perform localization in a standard VLC application set-

ting. We follow a similar protocol as found in other established works([3],[4] and

[1]). We should clarify that when we say we follow a similar protocol, we do so by

replicating some essential elements of their methodologies. Before we discuss our

results, we now give a short description of the experiments we seek to carry out.

In summary, we are simulating a scenario where there are multiple transmitting

nodes (that use LEDs) in a standard office room and that there multiple receivers

on the ceiling. We trace these rays and sample their trajectories to collect a dense

set of points. It is the analysis of these collected points via PH that may allow us

to ascertain the location of passive objects (a chair or another piece of furniture

e.g.) in the room.

22



Methodology and Results 23

Before we delve any further, here is a listing of our parameters can be found

in Table 3.1. An explanation of each parameter is produced here. For each trans-

mitter, we simulate its height in the room, up-link wavelength, and LED transmit

power. Each of these parameters have a rather straightforward definition. We also

include transmitter grid resolution as a way to specify the number of transmitters

in the room. For the receivers on the ceiling, we simulate the receiving surface

area of the photo-detector, as it readily apparent that there is finite amount of

area that can receive incoming radiation for each receiver. Also, we must consider

that the receiver can also receive incoming radiation over a certain range of an-

gles. This is specified by the half angle. We also vary the number and location of

receivers in the room. Each receiver has the same parameters that have already

been mentioned (height, surface area, field of view). Given the specification of

the transmitter and receiver parameters, we must also specify the room’s dimen-

sions. We choose a fairly standard size in all of our experiments, as this models a

standard office room. Of course, there are rooms of varying and interesting size,

but we postulate this room type (the office setting) is more commonly found than

an indoor stadium or conference room. Within our experiments, we vary the ray

sampling rate, the number of objects and their shape type. In regards to the last

parameter, we keep the shape cylindrical in all our of experiments. However, we

should say that other shape types are also of interest. We could choose to pursue

that line of investigation in future work.

Our tests include different types and numbers of objects that we hypothesize

that our method is capable of positioning and localizing to a application-dependent

and satisfactory degree. In order to utilize persistent homology, in a similar spirit

to other applications of persistent homology evident in the literature ([15],[16],[17],

[18]), we first must build a point cloud from the available measurements we have

between the photo-detectors on the ceiling and the transmitters on the ground (see

Figure 3.4). An example of a point could generated during our experiments is given
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here. While we expand upon this setup in a later section, we remark here that we

Figure 3.1: Infrared Ray Samples based upon Figure 3.2

make a simplifying assumption of minimal multi-path fading and interference that

would be consequent of the signal emanations from the infrared transmitter(s)

in the experiment. With this simplifying assumption, we trace a ray emanating

from a transmitter and determine whether, given the obstructions/objects in the

room, it reaches one of the Q photo-detectors on the ceiling. If this ray does

reach a photo-detector, in other words, if there exists a LOS path from one of the

transmitters to at least of the photo-detectors on the ceiling, then several points
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(of course, not including the last) along this ray are sampled and collected in the

aforementioned point cloud. It should be noted that the points collected in this

process are necessarily mostly not points on the object. On the contrary, the

points by consequence of the sampling process are necessarily not on the surface

or inside the objects (provided that innards should be noteworthy).

A rather straightforward deduction of this process shows that regardless of

the object placed in the room, if the transmitters are only placed on the ground,

then the point cloud will necessarily exclude points on the top(s) of an object and

less importantly, but worthy of consideration, exclude points contained in certain

cavities along an object’s “torso”.

This unfortunate circumstance can be remedied by placing transmitters on

several levels above the floor. A staggered layout of the levels is desirable as

it ensures that the same point in the room is either never sampled twice along

different rays or at the very least minimally re-sampled. However, re-sampling a

point more than once may be not totally undesirable. Even though we do not

consider this potential complication in this thesis, consider that we also were to

consider an object’s specularity.

In all of our experiments, instead of collecting data from one transmitter on

the ground, we are collecting data from a densely and deterministically laid grid of

transmitters on the ground. By having many transmitters, we can collect several

pieces of data. We can predict, given we have a reasonable formulation/descrip-

tion of the channel, the received signal strength for each photo-detector (see the

examples in Figure 3.2 and Figure 3.3). The plots serve as important important

visual aid for a number of reasons. Firstly, the collection of these plots essentially

give the viewer a quick overview of the light that each photo-detector is capable

of receiving. Consequently, when we later build the point cloud and draw con-

clusions about the calculated persistent homology and what it may mean, we can
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Figure 3.2: Received Signal Strength of Line of Sight Rays for Four Photo
Detectors and One Object

refer back to these diagrams to understand later results. This can be seen, even at

this stage, because the point cloud we later build is effectively an amalgamation

of these plots, and the density of points in the point cloud is directly a function of

plots like these. For instance, consider this point cloud (Figure 3.4). This point

cloud, in particular, is a function of Figure 3.2. It can be readily observed that

near the center of this diagram, the vacancy left behind is not quite as cylindrical

as would have been expected.

Within this diagram, for q ∈ {1, Q}, PDq is an individual photo-detector,

S(t) is an infrared transmitter, and vq(θ, t) is the channel impulse responses mea-

sured at each PDq. Currently, at this part of the analysis we do not integrate

the information from a hypothesized or estimated channel model into our sim-

ulations and consideration. We also do not erroneously make the assumption

that such information is unimportant; however, an integration based upon a well-

informed evaluation of the channel model could aid in other object-localization

related tasks. Instead, we trace the trajectories of rays emanating from transmit-

ting LEDs placed about the room (near the ground) and make enough simplify-

ing assumptions about the propagation of these rays, namely we do not consider
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Figure 3.3: Received Signal Strength of Line of Sight Rays for Six Photo
Detectors and Two Objects

reflections and constructive/destructive interference nor the effect of the room’s

properties upon the propagation and reflection of each ray. We primarily do this

because of the small size of the room and because of the general properties of light

rays in such an environment. Given the dimensions, we assume that second order

effects (as discussed above) can be ignored given the strong power of the light

beam across the dimensions of the room.

We shall enumerate the objects we test and discuss why, at this juncture, these

objects are reasonable approximations for the more difficult objects we could pos-

sibly simulate, i.e. a complete description of a human body or room furniture.

Within our experiments, the objects that we place within the room are cylinders,

and cylinders with differing radial profiles. The last category is important to in-

clude because we have stated before that topology, when used to describe common

shapes in a particular “abstract” form, should produce equivalent qualitative and



Methodology and Results 28

VLC Access Point

Pulse 
Generator

 

 

Indoor Localization Algorithm

Feature Extraction and Sensor Fusion

  

IR Transmitter

Figure 3.4: System configuration for visible light communication up-link sys-
tem and the impulse responses based on it. Courtesy of [3].

quantitative (with the aid of persistent homology) descriptions. We also include

an elliptical cylinder and a “squeezed” cylinder as possible shapes to test:

Elliptical
cylinder

x = r cos(θ)

y = ± b
a

√
a2 − x2

z = z

r = r0

θ ∈ {0, 2π}

“Squeezed”
cylinder

x = x

y = y

z = z

r = r0

r
′
=
√
x2 + y2

[(z − µ)2 + ψ

(r0 + ψ)2

]
θ ∈ {0, 2π}
x

′
= r

′
cos(θ)

y
′
= r

′
sin(θ)

µ ∈ R - cylinder midpoint

ψ ∈ R - a “push” parameter
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Figure 3.5: Elongated/“Elliptical” Cylinder

Figure 3.6: “Squeezed” Cylinder

We have produced Figures (Figure 3.5 and Figure 3.6) of an elliptical and

“squeezed” cylinder. Following this, we detail the parameters we employ in the

topological data analysis. Specifically, earlier in the document, we discussed the

different types of simplicial complex constructions available for analysis. In our

experiments, we utilize the witness complex, introduced in [19], because whilst this

simplicial complex generally does a good job of not generating an exponentially

large number of simplicies to process (unlike its counterparts discussed before),
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the loss of detail inherent in the complex’s construction is tolerable because of the

smart landmark point selection as discussed in an earlier section.

Accordingly, we look at different types of grid and ray samplings and their

effect on the computational complexity of building and deriving persistent homol-

ogy calculations. We remark upon the trade-offs between the ability to localize

objects and the resolutions of the constructed data-sets. We also consider that it

is worth mentioning that there have been theoretically sound efforts to actually lo-

calize basis chain elements of a homology group in a data-set [20]. We are inspired

by their work, but we must remark that our primary goal within this document

is to localize with simple set of coordinates (its center point e.g.) whereas they

are trying to find a localized basis of the homology group. Though the goals are

similar, they are clearly distinct. We foresee that using localized homology bases

could be useful for other tasks such as shape description.

3.2 Experiment Design & Setup

Our experimental setup is inspired by the methodology of [3]. However we depart

from their contributions, by not utilizing fingerprints based upon on the line of

sight (LOS) peak power of the impulse response and the delay between LOS. In

spite of our differences, let us first highlight the similarities.

The visible light communication system we consider for analysis is essentially

a simulation of a typical indoor office space. There are white LED fixtures fixed

on strategic locations across the ceiling that transmit down-link data to their

targets. There are also infrared transmitters that transmit up-link signals to the

aforementioned photo detector (PDs) on the ceiling. This scenario is depicted in

Figure 3.4. The qth PD is fixed on the ceiling at position
(
x(q), y(q), z(q)

)
, where

q ∈ {1, . . . , Q} and is facing downwards. We also model objects in the rooms



Methodology and Results 31

by keeping account of object’s boundary coordinates. An object’s coordinates

are marked as
(
x(φ), y(φ), z(φ)

)
where φ ∈ {1, . . . , NΦ} and NΦ is the number of

objects in the room that we wish. For the sake of simplicity, we are making rather

substantial assumptions about the how an infrared signals will interact with an

object within the room. In particular, we do not specify whether the object in

question has a matte finish, is translucent or has some other distinctive quality

which would markedly affect an infrared signal’s refractory nature. We assume

that an object will affect a PD’s ability to detect the trajectory of infrared ray

from certain positions within the room. This simple assumption permits us to

simply consider which rays actually “reach” the PDs on the ceiling. Given that

we simulate each ray path by tracing a straight line between its start and end

points, we are ale to sample the rays Nr times along the vector from the point of

origin of the infrared signal to the qth PD on the ceiling.

3.2.1 Simulation Parameters

In table 3.1, we list the basic set of simulation parameters to create the synthetic

data-sets used within this work. We vary the room’s parameters and the object

parameters (shape, number and position). We also vary the number of objects

within the room and their geometries. In particular, we vary the number of objects

in our experiments from one to three, and we also list their locations for each test.

3.2.2 Effectiveness Metric(s)

We evaluate the effectiveness of the algorithm by assessing the size of by com-

paring the size and “center of mass” of each the bases of the 1st homology group

found along the filtration. The first homology group corresponds to closed loops

found within the data-set that persist across a significant portion of the filtration.
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Transmitter Parameters Value
Height 0.85 m

Up-link wavelength 950 nm
Transmitter Grid Resolution (same along each x, y, z axis) 0.25m

LED transmit power, PT 10 mW
Receiver Parameters Value

Surface area of the Photo-Detector, APD 1 cm× 1 cm
Height 3 m

Photo-Detector Field of view (Half Angle) 70°
Photo-Detector 1 location (150 cm, 150 cm, 300 cm)
Photo-Detector 2 location (350 cm, 150 cm, 300 cm)
Photo-Detector 3 location (150 cm, 350 cm, 300 cm)
Photo-Detector 4 location (350 cm, 350 cm, 300 cm)

Room Parameters Value
Room size (width × height × height) 5 × 5 × 3 m3

Miscellaneous Parameters Value
Ray Sampling Rate {5,10,20. . . 100}

Object Number {1. . . 4}
Object Shape Types {cylinder,

elliptical cylinder 3.5,
“squeezed” cylinder 3.6}

(object parameters
specified when necessary)

Table 3.1: Simulation Parameters of Ray Tracing Channel Model

In our case, our filtration is built by building sets of simplicial complexes, each

parameterized by the a parameter that corresponds to the nearness of a point to

its neighbors. When this parameter is low, points tend to be grouped by them-

selves. As this parameter is increased, a “persisting” grouping of the data set

begins to emerge, until eventually all points are part of a single group. We seek

to find loops within that “persisting” portion of the filtration as that signifies a

meaningful portion of the data set.

We also evaluate the accuracy of this loop by evaluating a measure similar in

construction and spirit to the Dice similarity coefficient [21]. The Dice coefficient is

typically employed in image segmentation algorithms to evaluate the effectiveness
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of a segmentation algorithm relative to some ground truth. Its formulation is:

Dice(A,B) = 2
|A ∩B|
|A ∪B|

(3.1)

where A,B are some subsets of an image, and | · | is the cardinality of a set (for

an image, this is typically the effective area or number of pixels of a connected

region). It should be clear from this definition that whenever A = B, then the

Dice coefficient will attain its maximal value of 1. In contrast, when A ∩ B = ∅,

the measure will clearly attain its minimal value of 0. Depending upon the type

of chain we assess, there can be some ambiguity in determining the ground truth.

This is more clearly seen to be the case when using 1-chains, as 1-chains are

essentially closed single parameter curves (contours). However, we’ve found that

in our experiments, that the variability in the contour’s orientation about the

z-axis is generally not a major cause for concern.

We wish to show that even with a naive application of PH, we can quantita-

tively assess about the connectivity of the underlying space of sampled rays in our

simulation.

3.3 Results

Now we show the results of several simulations that we have run. As stated, we

show the accuracy of the localization method under a variety of circumstances.

We measure this with respect to the capabilities of our chosen algorithm.

There are several important parameters we focus upon to support the ar-

gument that persistent homology is a capable tool for localizing objects in our

simulation. We assess the transmitter resolution, in other words, the number of

transmitters we employ in our experiments that lay very near to the ground (as

a reminder, their height is ’85 cm). Generally, we noticed that after a certain
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Experiment # # of Object Average
Objects Parameters Maximum

Minimum
Dice

Coefficient
1 1 Cylinder - Radius = 1m Average = 0.5062

Center = (2.5m, 2.5m) Maximum = 0.73195
Height = 2m Minimum = 0.35393

2 1 Cylinder - Radius = 0.5m Average = 0.43022
Center = (2.5m, 2.5m) Maximum = 0.70946

Height = 2m Minimum = 0
3 1 Cylinder - Radius = 0.1m Average = (Not Applicable)

Center = (2.5m, 2.5m) Maximum = (Not Applicable)
Height = 0.75m Minimum = (Not Applicable)

4 1 Cylinder - Radius = 0.1m Average = (Not Applicable)
Center = (2.5m, 2.5m) Maximum = (Not Applicable)

Height = 0.5m Minimum = (Not Applicable)

Table 3.2: Single Object Results: Each over 5 trials and Transmitter Res-
olution of 0.1m. Here we are varying the object’s size and assuming the pa-

rameters from Table 3.1.

threshold, there are diminishing returns in terms of localization capability and

accuracy. Secondly, we vary the number of photo-detectors on the ceiling. For a

single object of a sufficiently large size, four well placed photo-detectors is gener-

ally adequate. However, once we increase the number of objects in the room, we

observe that now the “receiver resolution”, by this we mean to say the relative

placement of them upon the ceiling, starts to become an important factor. In

all of our experiments, we utilize the witness complex because it is an efficient

yet accurate simplicial complex type to build and derive its persistent homology.

All of the code was compiled/run in Octave 4.4.0 and Java 8. In particular, the

persistent homology portions is from a popular Java library called Javaplex [22]

which also offers other topology related codes.

Based on these parameters, we showcase what can happen when the object

size, object location, number of photo-detectors, and number of objects and photo-

detectors vary. We also show which resolutions are sufficient for an accurate anal-

ysis in either the single or multi object scenarios.
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We also include a diagram of persistent1 for the first case in Table 3.2 to

showcase what PH actually detects. This is shown in the form of what’s called a

Persistent bar-code interval diagram in the literature[23]. Reading these bar-codes

is actually rather straightforward. For each dimension that we measure persistent

homology, we include a diagram. The purpose of the x-axis of each diagram is to

parameterize the filtration. The y-axis is simply incidental and does not actually

measure anything. It is just there simply because there can multiple homology

classes at a given dimension and it is easier to separate them along the y-axis.

The length of each line, hereafter bar-code, is a visualization of the persistence

of a homology class. In each diagram featured in this document, an extra upper

dimension is always included as a sanity check.

3.3.1 Parameter Exploration

We run several experiments, as aforementioned, to show the effects of varying the

important parameters highlighted above.

3.3.1.1 Object Size & Location

In this section, we analyze how effective our algorithm is at localizing a single

object in the room. Most importantly, we show what happens as we vary the

size and location of a single cylinder. When we look at the results contained

within Table 3.2, we see that the radius of the cylinder has a more or less inferred

effect upon the quality of the recovered 1-chains. Although, 0.1m resolution is a

rather modest transmitter resolution to use (a tenth of meter is about the width

of standard mug), we see that if the object has a large enough radius and height

(as in the first two rows), then we are able to extract 1-chains that at the very

least surround the cylinder (see Figure 3.8). We also get other seemingly spurious

1A persistent diagram does connote something else within the literature.
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1-chains. Those 1-chains are a manifestation of the fact that not all 1-chains are

necessarily detected at all filtration values. This sort of occurrence is natural, of

course. Consider, if the ray sampling resolution were more fine . Although, we

do not show an example, if the ray sampling resolution were instead sufficiently

coarse, then the distances between a set of values at z = z0 and at z = z1 would be

large enough such that simplicies would not form across these planes. As a result,

there might be lots of chains which never survive the entire filtration. Worse yet,

they might actually survive the entire filtration value but not actually indicate

anything substantial. Remedying this issues is fairly straightforward, simply set

various resolutions such that the witness complex is “forced” to see clumps forming

over adjacent z-levels at even low filtration values.

Despite a resolution of a tenth of a meter, which already seems quite high, is

it possible to achieve even better Dice coefficient values? Looking at the persistent

diagrams and their accompanying 1-chains surrounding each cylinder (Figure 3.7,

Figure 3.8, Figure 3.9, Figure 3.10, Figure 3.11, ), there is a clear relationship

between the necessary amount of transmitter resolution and the object size. If the

goal is to simply localize the cylinder, then modest resolution values are sufficient.

However, if localization of an object also entails discovering a model which clearly

articulates an object’s geometrical complexity, then a finer resolution may be more

appropriate. This is outside the scope of this thesis and may be further expounded

upon in a subsequent document.

It is encouraging and validating that there is a nice correspondence between

Figure 3.7 and Figure 3.8. If we focus on the second diagram ,of the persistent bar-

codes, from the left, we notice that there are three line intervals (bar-codes) and

correspondingly there are three prominent 1-chains (loops) in the accompanying

figure. This shows us that it is possible to localize objects with a straightforward

application of persistent homology.
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Notice that the last two rows of Table 3.2 are void of any Dice values. This

is purposefully left there to indicate that objects of sufficiently small height and

size (radius) can be missed by our setup. This can be remedied by employing

photo-detectors that are placed at other locations about the room other than the

ceiling. For instance, photo-detectors, can be placed along the other side walls of

a room. Additionally, we can also consider placing transmitters at other z-levels

besides the ground. As an alternative to photo-detector replacement, these objects

can also be discovered by increasing the ray sampling resolution. In either case, it

is clear that there are limits to the degree of accuracy one can obtain.

Figure 3.7: Persistent bar-codes for of the trials of the first row of Table 3.2
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Figure 3.8: The 1-chains corresponding to the persistent bar-codes of Fig-
ure 3.7

Figure 3.9: Persistent bar-codes for of the trials of the second row of Table 3.2
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Figure 3.10: The actual chains corresponding to the persistent bar-codes of
Figure 3.9

Figure 3.11: Persistent bar-codes for the trials of the third row of Table 3.2
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3.3.1.2 Multiple Objects

Experiment # # Object Average
of Objects Parameters Maximum

Minimum
Dice
Coefficient

4 2 Cylinder - Radius = 0.75m Average
Centers {0.14347 0.39995}

{(1m, 2.5m), (4m, 2.5m)} Maximum
Heights {0.71734 0.71905}
{2m, 2m} Minimum

{0 0}
5 3 Cylinder - Radius = 0.75m Average

Centers {0 0.29428 0.12717}
{(1m, 2.5m), Maximum
(2.5m, 2.5m), {0 1.03895 0.31792}
(4m, 2.5m)} Minimum

Heights {0 0 0}
{2m, 2m, 2m}

Table 3.3: Multiple Object Results: Each over 5 trials and Transmitter
Resolution of 0.1m. In this table, we vary the number of objects.

In this section, we analyze our localization algorithm’s efficacy when there

are multiple objects in the room. In particular, we place several cylinders, that

is three, four, or five, in the room and observe. For all of these experiments, we

keep the number of photo-detectors on the ceiling at a low number of six. We

derive a very similar table, Table 3.3, as compared to Table 3.2, however, instead

of varying the size of each object, we simply pick a standard size for each object

and then vary the number of photo-detectors. We also choose the same resolution

as last time. We deemed this to be sufficient because in the previous section, we

had varied size and it was rather apparent that decreasing the size of the object

led to better localization. In the interest of time, we focused on the easier path of

analyzing the efficacy of persistent homology at detecting multiple objects in one of

the the simpler cases. Also, there is another difference between this Table 3.3 and

Table 3.2. When you look at the last column, the average/maximum/minimum

coefficient are sets instead of singletons. Each member of the set corresponds to
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the result for each object. Consequently, the size of the corresponding set for the

second row of Table 3.3 has two members while the last has three.

Even though we the sample size here is rather row (there are only two rows

in Table 3.3), each instance was averaged over 5 trials. The essential difference

between both sets of trials is the number of objects and the distance between

them. Consequently, we seek to observe the relationship of inter-object separation

on distinguishing and localizing each object. We found, fortunately, in each case,

all objects were distinguished. This can be readily verified by looking at the

surrounding 1-chains in Figure 3.13 and Figure 3.15. However, the appearance of

the 1-chains in each of the preceding diagrams is of note. In addition, the persistent

bar-codes (Figure 3.12 and Figure 3.14) also suggest something revealing.

Figure 3.12: Persistent bar-codes for the trials of the first row of Table 3.3

The appearance of the 1-chains are generally unremarkable, save for their

approximate location. However, in all of the previous cases, these chains were

generally situated below the top of the cylinder. In Figure 3.15, we can see some

of the chains have strange configurations, which could suggest that the underlying

simplicial complex may either have points with undesirable locations or that these

particular points’ inclusion in the homology calculation is dominates over points
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unjustly. If you refer back to the Figure 3.1, we note that there are few points near

the top of cylinder (there is a faint cross near the center). Although, the 1-chains

are generally correct, this observation about the formation of the point cloud is

something that should be kept in mind for future work.

Figure 3.13: The 1-chains corresponding to the persistent bar-codes of Fig-
ure 3.12

Figure 3.14: Persistent bar-codes for the trials of the second row of Table 3.3
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Figure 3.15: The 1-chains corresponding to the persistent bar-codes of Fig-
ure 3.12
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3.3.1.3 Photo-Detector Number

Experiment # # # Object Average
of of Parameters Minimum

Objects Photo- Maximum
Detectors Dice

Coefficient

6 3 4 Height = 2m Average
Radius = 0.5m {0 0.00020482 0}
Center = (2.5m,2.5m) Minimum

{0 0 0}
Maximum
{0 0.00614445 0}

7 3 6 Height = 2m Average
Radius = 0.5m {0.045443 0.29956 0.14119}
Center = (2.5m,2.5m) Minimum

{0 0 0}
Maximum
{0.31937 0.88652 0.32339}

8 3 8 Height = 2m Average
Radius = 0.5m {0.094684 0.26289 0.11911}
Center = (2.5m,2.5m) Minimum

{ 0 0 0}
Maximum
{0.93186 0.89957 1.0767}

Table 3.4: Varying Number of Photo-Detectors: All at a Transmitter Resolu-
tion 0.25m, over 3 trials

In this section, we analyze our localization algorithm’s efficacy when more than

four photo detectors placed upon the room ceiling. We demonstrate this with

multiple objects at sufficient resolution, in similar situations as in the previous

sections. Just like in Table 3.3, Table 3.4, the last column contains sets instead of

single items for the same reason as discussed in the previous section. In this section,

we do not display the cylinder with the accompanying 1-chains simply because we

wish to only include as many figures as necessary. Since the localization accuracy,

as given by the correlated low values of the dice coefficients for each respective

object, is sufficiently high, we do not produce the diagrams.

What is important about the results is that there can be diminishing results
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with an increasing number of photo-detectors. Whilst this may seem to be a dead-

end, we note that in these experiments that we only place photo-detectors on the

ceiling. In a realistic scenario (an actual office room), there would be no reason

that there would not be led lights placed almost anywhere in the room. Given

this observation, we should consider, in future work, placing photo-detectors in

varying locations in some optimal matter. The selection of an objective function

to place these photo-detectors would be an interesting venture to explore; possibly

with tools from machine learning.

In each of the persistent bar-codes produced for these experiments, we do

observe that in the third diagram from the left (dimension 2), there are lots of non-

persistent components. This is unsurprising, given that increasing the number of

photo-detectors necessarily produces more data points. As such, there is a spread

of variable-density zones along certain paths in the data-set, and this necessarily

produces spurious components in the persistent bar-code diagrams.

Figure 3.16: Persistent bar-codes for the trials of the first row of 3.4
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Figure 3.17: Persistent bar-codes for the trials of the second row of 3.4

Figure 3.18: Persistent bar-codes for the trials of the second row of 3.4
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3.3.1.4 Grid Resolution and Chain Identification

Experiment # # Transmitter Object Average
of Objects Resolution Parameters Minimum

Maximum
Dice

Coefficient

9 1 0.75m Height = 2m Average
Radius = 1m 0.5062

Center = (2.5m,2.5m) Minimum
0.35393

Maximum
0.73195

10 1 0.5 m Height = 2 m Average
Radius = 1 m 0.43022

Center = (2.5m,2.5m) Minimum
0

Maximum
0.70946

11 1 0.25 m Height = 2 m Average
Radius = 1 NA

Center = (2.5m,2.5m) Minimum
NA

Maximum
NA

12 1 0.1 m Height = 2 m Averge
Radius = 1 m NA

Center = (2.5m,2.5m) Minimum
NA

Maximum
NA

13 1 0.05 m Height = 2 m Average
Radius = 1 m NA

Center = (2.5m,2.5m) Minimum
NA

Maximum
NA

Table 3.5: Various Transmitter Resolutions

In this section, we consider the effect of changing the resolution from very

coarse values to fine values. It is possible, without actually looking at the num-

ber of chains drawn out in their geometric form, to determine that the chosen

transmitter resolution is appropriate for discovering out anything of value in the

room. We have compiled the persistent bar-codes of each scenario in the rows of
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Table 3.5. What becomes clear as one goes through the Figures 3.19, 3.20, 3.21,

3.22 and 3.23 is that increasing the resolution has a dramatic effect upon the

number of chains discovered and each chain’s persistence. In an earlier part of

this document, we had commented about how the simplicies “clump” together

under different resolutions, and these bar-codes show the evolution of the simpli-

cial complexes over different resolutions. These set of diagrams show compelling

evidence that the simplicial complex is sensitive to the “clumpiness” of the data

and the practitioner needs to be acutely aware of this phenomenon.

We also include some results that give the positioning error of the 1-chain. We

compute this by comparing the centroid of the 1-chain against the centroid of the

cylinder. Due to some numerical/computational issues, we report these results for

a particular set of resolutions.

Experiment # # Transmitter Object Inter-centroid
of Objects Resolution Parameters distance

14 1 0.75m Height = 2m 0.46470 m
Radius = 1m

Center = (2.5m,2.5m)

15 1 0.1m Height = 2m 0.48861 m
Radius = 1m

Center = (2.5m,2.5m)

16 1 0.15m Height = 2m 0.15374 m
Radius = 1m

Center = (2.5m,2.5m)

17 1 0.175m Height = 2m 0.20327 m
Radius = 1m

Center = (2.5m,2.5m)

Table 3.6: Transmitter Resolutions versus inter-centroid distance.

Fortunately, this small result in Table 3.6, though lacking in some regards,

does illustrate concretely that increasing the resolution is associated with better

localization of the object in question. As the the resolution drops, there is accord-

ingly also a corresponding drop in inter-centroid distance as would be expected.
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Figure 3.19: Persistent bar-codes for the trials of the first row of 3.5

Figure 3.20: Persistent bar-codes for the trials of the second row of 3.5

3.3.2 Discussion

What should be clear from these graphs and results is that it is possible to perform

localization with the aid of persistent homology. Since it is capable of detecting

equivalence classes of cycles, the analysis entailed only requires a sufficiently in-

formative rendering of the phenomenon in question. However, as demonstrated

by the Dice coefficient, there are some issues with the cycles detected. Since we
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Figure 3.21: Persistent bar-codes for the trials of the third row of 3.5

Figure 3.22: Persistent bar-codes for the trials of the fourth row of 3.5

are finding equivalence classes of cycles, it is rather difficult to guarantee that we

get the tightest cycle possible to cover each “hole” (each “hole” here is a repre-

sentation of the passively detected object). To recall, each hole in the experiment

is supposed to represent the presence of an object. There are two main strate-

gies that immediately come to mind for addressing the tightness of the retrieved

contours. First, we can increase the number of samples, either by increasing the
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Figure 3.23: Persistent bar-codes for the trials of the fourth row of Figure 3.5

transmitter resolution, by increasing the ray sampling resolution or thirdly by in-

creasing the number of photo-detectors. Although, the computational cost of each

these options can be high, at the very least, the last of these options is something

that can be achieved in an actual VLC scenario.



Chapter 4

Future Work & Conclusion

4.1 Concluding Remarks

In this thesis, we have studied the utility and usefulness of persistent homology for

localization problems in visible light communications networks. This problem is

important as localization is an important building block for “higher level analysis”

that could be considered. We also show that a naive application of persistent

homology, though useful, needs to be extended/improved upon to provide the

best localization results. We envision that our work forms a sturdy scaffold for

future researchers to build upon.

4.2 Future Work

Given our results and the subsequent discussion sections, we envision that it may

be possible to refine our methods for more than just object localization/position-

ing. We could consider how to perform object tracking or how to build a model

for determining an object’s shape that we detect. These efforts would be useful

52
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for more involved projects based in Visible Light Communications. If it were pos-

sible to determine the likely shape of an object bathed in the light rays of a VLC

network, then there could be potential security applications.
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