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Abstract

The rise of technology in recent decades has led to an increased interest in the field

of Computer Science particularly from young students. This has caused educators to

include more technology-based courses in their curriculum. In some counties across

the United States, programming courses are now included in the standard offering

in primary, secondary, and high schools. One recurring problem for educators, par-

ticularly those teaching programming courses, is the process of guiding students in

the right direction (i.e towards a solution to a problem) [34]. The faculty to student

ratio in most classrooms makes it challenging for educators to constantly be present

for each student and personally guide them through problems, thus creating a need

for an automatic guidance system, or hint generation framework.

One of the most common methods for solving problems such as hint generation

which has a defined space in which there is a discrete set of valid actions, and the

solution(s) are known ahead of time is known as Reinforcement Learning [39]. In this

work I aim to prove that one block-based programming framework, Tunescope devel-

oped at the University of Virginia [8] can be modeled as a Reinforcement Learning

problem, and therefore prove programming frameworks themselves can be modeled

in such a way they can be solved programmatically. I continue to solve this problem

using a particular type of Reinforcement Learning called Deep Reinforcement Learn-

ing (DRL). By solving the problem using DRL, I demonstrate (1) the hint generation

problem can be solved programmatically and (2) the solution itself is scalable enough

to be applied to other more complex problems.
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Chapter 1

Introduction

The exponential development of technology in the 21st century has given rise to

a technical revolution which has completely transformed modern society. The advent

of the internet, smart phones, laptops, and the like have rendered the modern world

entirely unrecognizable from what it was just a quarter century ago. At the epicenter

of this technological revolution sits a group of experts in STEM (Science, Technology,

Engineering, and Math). The continued growth of technology, however, lies primarily

in the hands of the current generation of experts, and perhaps more importantly the

current generation of educators worldwide. It is up to them to excite and educate

their pupils about the technological revolution, and the opportunities within in to

ensure its continued prosperity.

In furtherance of these aims, researchers from the University of California Berkeley

have developed a programming language called Snap! designed to make the field of

Computer Science more accessible to students [30]. Snap! is a block-based program-

ming language designed to largely black-box the syntactic subtleties associated with

software development thus making it easier for novices to focus on other important

programming principles like semantics and logic. Recently, a research team at the

University of Virginia has adapted the Snap! programming language in a project

called Tunescope [8] which allows elementary-aged students to use Snap! to create

art and music.

One particularly novel element of the Tunescope framework is the hint generation
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feature which students can use to help them work through problems. Hint generation

allows students to receive autonomous feedback that can help them reach a correct

implementation for a given problem. Presently, this is done via a reinforcement

learning framework known as Q-learning developed in 1989 by Christopher Watkins

[41]. Q-learning stores a large table (often referred to as a Q-table) which represents

the most optimal action from each state in the state-space (i.e the best possible move

from each position). The Q-function then takes the current state as input and checks

the Q-table for the corresponding optimal action.

In the Tunescope framework, the state-space can be understood to be the set of

all possible combinations of code blocks, and the action-space can be understood to

be all possible actions a student can take (i.e adding/removing a block, changing

a parameter, etc). Currently, Q-learning has proven to be sufficient in generating

hints to assist students in drawing a square, though its effectiveness does not reach

beyond a single use-case. This is because it was added to the Tunescope system as a

proof-of-concept with no intention of full-scale autonomous hint generation.

1.1 Problem Statement

In an environment where the state and action spaces are rather small, standard Q-

learning is sufficient to predict the next best action for an agent to take. In particular,

when the state and action spaces can reasonably be enumerated, Q-learning is very

effective. For this reason, generating hints to solve basic problems in Tunescope can

reasonably leverage a standard Q-learning approach [22]. One of the weaknesses of

Q-learning however, comes from its lack of scalability. A table based representation of

the state and action spaces quickly becomes infeasible as the number of possible states

and actions increase, thus rendering the Q-function nearly impossible to compute for

large state or action spaces. One solution proposed to combat this problem is known

as Deep Q-learning, which employs a neural network known as Deep Q-Network to

approximate the Q-function rather than the table based representation employed by

standard Q-learning [10].
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Since the Tunescope framework theoretically has both an infinite state-space as

well as an infinite action-space, Q-learning is entirely insufficient to compute the Q-

function for all possible inputs from students. This shortcoming of Q-learning presents

a need for a more robust solution to the hint generation problem in Tunescope. The

discovery of such an approach would allow for the deprecation of the standard Q-

learning approach currently used in favor of a more complex and scalable solution.

1.2 Research Objective

In this work I aim to prove two concepts. The first is that the Tunescope frame-

work itself can be adapted and modeled to fit into a reinforcement learning space.

Although this has already been proven for the current hint generation Q-learning

approach, the environment needs to be represented in a more robust way to allow for

the application of a more complex algorithm like Deep Reinforcement Learning.

The second and more important concept I aim to prove is that Deep Reinforce-

ment Learning as a framework is a sufficient solution to the hint generation problem.

Though I will constrain the problem space in a few key ways, proving Deep Re-

inforcement Learning can be applicable to this problem is important in laying the

groundwork for later removing these constraints. In this work I focus primarily on

small, simple tasks which can be accomplished in Tunescope, but argue that Deep

Reinforcement Learning can be still be applied in for solving more complex problems

in the future without significant refactoring; this is a property inherited from the

scalability of neural networks. This is an important property of Deep Reinforcement

Learning and a significant advantage over the standard Q-learning approach to hint

generation.

1.3 Thesis Structure

My work is organized as follows. Chapter 2 details relevant background infor-

mation for understanding my work, specifically outlining Artificial Neural Networks
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and Reinforcement Learning. In chapter 3 I survey related work in the fields on Hint

Generation and Deep Reinforcement Learning. Chapters 4 and 5 describe the method

I employ for setting up and solving the problem as well as the results attained from

applying the algorithm to solve the hint generation problem. I conclude with chapter

6 in which I describe the findings from my work and suggest some potential future

explorations.
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Chapter 2

Background

In this section I outline the outline the relationship between reinforcement learning

and deep learning. I will first introduce the fundamental principles of Artificial Neu-

ral Networks and how they can be extended to create powerful deep neural networks.

I then introduce reinforcement learning with an emphasis on a popular model-free

algorithm known as Q-learning. Finally, I introduce the concept of Deep Reinforce-

ment Learning which leverages deep neural networks to improve the performance of

Q-learning over large state-action spaces.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs), the foundation of deep learning, were origi-

nally inspired by the structure of the human brain (i.e biological neural networks).

The human brain contains over 100 billion neurons. Each neuron receives a set of

inputs from other neurons, it then processes the set of inputs and produces a single

output (this is generally called "firing") which it sends to a set of neurons it is con-

nected to. The artificial neuron behaves in a very similar way; receiving input from

a set of other artificial neurons, processing the input, and forwarding it on to a set of

other artificial neurons which it is connected to.
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Figure 2-1: Biological vs Artificial Neuron

Figure 2-2 illustrates the similarities between a biological and an artificial neuron

used in deep learning. In a biological neural network, neurons are connected via

synapses which pass the signal from one neuron onto the rest of the network, whereas

in artificial neural networks, these signals are passed as inputs, generally a multi-

dimensional vector. In biological neural networks, neurons can receive millions of

different signals and produce a wide range of signals to send to neighboring neurons in

the network, each leading to indistinguishable micro-decisions. Conversely, in artificial

neural networks, the processing done by each neuron can be expressed concretely as

a weighted sum with some bias term passed through a nonlinear activation function.

The output of an artificial neuron can thus be written in the following way.

𝑦𝑖 = 𝑓(𝑏+
𝑛∑︁

𝜃𝑖𝑥𝑖) (2.1)

2.1.1 Training Process

In equation 2.1, the weight parameters 𝜃 are found through an iterative training

process (the learning process) where small updates to the weights help to better

approximate 𝑦. The process of finding the optimal values of 𝜃 to approximate 𝑦 such

that it is close to 𝑦 (the ground truth vector) is what is referred as the training process

for neural networks.

The most basic neural network is called a multi-layer-perceptron (MLP) and con-

sists of one of more layers of fully connected neurons. The network is said to be fully
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connected since each neuron (or node) in layer 𝑖 is connected to each neuron in layers

𝑖−1 and 𝑖+1. Fully connected networks will also contain an input layer which accept

a set of inputs, and an output layer which returns the approximation of the known

output 𝑦. Each layer which is not the input or output layer is called a hidden layer; a

neural network with more than one hidden layer is said to be a deep neural network.

Figure 2-2: Fully Connected Neural Networks

Training a neural network can be broken down into four steps (1) Feed forward

(2) Loss calculation (3) Back propagation (4) Parameter update. In the first step

(Feed forward), a signal is passed from the input layer through each hidden layer and

the network produces some prediction based on the signal(s) of the output layer.

In the Loss calculation step, immediately after the feed-forward step, 𝐿(𝜃) is

calculated by comparing the predicted value 𝑦 to the known value 𝑦. Though there

are a variety of loss functions, I have used the Mean-Squared-Error (MSE) in my

work to compute 𝐿(𝜃), or the vector distance between 𝑦 and 𝑦. The objective is to

minimize 𝐿(𝜃) such that it is close to 0.

𝐿(𝜃) = 𝑀𝑆𝐸(𝑦, 𝑦) =

∑︀𝑛
𝑖=1(𝑦

𝑇 − 𝑦)2

𝑛
(2.2)

The third step, and perhaps the most pivotal step in the training of a neural

network is known as the back-propagation step. The back propagation algorithm was

introduced in 1995 by Rumelhart et al [32] and leverages the chain rule to perform
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gradient descent which effectively computes the error contributions coming from each

node in the previous layer. This can be understood to the be the partial derivative

of the loss 𝐿 with respect to 𝜃𝑖, 𝜕𝐿
𝜕𝜃𝑖

. This value is then passed backwards through

all hidden layers based on the error computed from the loss function immediately

proceeding the feed forward step.

The final step of the training process is the parameter update of the weight matrix

𝜃. The update process considers the gradients from the previous step and attempts to

adjust each weight in 𝜃 accordingly in the opposite direction of the gradients in order

to minimize the loss produced by any given node in the network. The parameter 𝛼

controls the learning rate, or the amount to change the weights in 𝜃 based on the

loss. A larger value of 𝛼 will thus result in a more aggressive weight update, whereas

a smaller update will have the inverse effect. A larger value for 𝛼 may cause the

weights to approach the local optimum for the loss faster, but risks overshooting

this inflection point. Conversely, a smaller value for 𝛼 may guarantee that the local

optimum is reached, but could take an infinite amount of time. The weight matrix

at each layer can be written as follows.

𝜃𝑖+1 = 𝜃𝑖 + 𝛼O𝜃𝑖𝐿(𝜃𝑖) (2.3)

Activation Functions

Activation functions are ultimately what allow neural networks to approximate

nonlinear functions because they allow each node at each layer to learn non-linear

transformations. Without them, the output of each layer would simply be an addi-

tion and a dot product and would prevent the network from learning any nonlinear

function. This is because stacking any number of linear expressions will always result

in a linear expression. There are a few different activation functions (i.e sigmoid, tanh,

ReLU, softmax, etc), but for the purposes of this work I used the ReLU activation

function detailed here.

𝑟𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.4)
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The ReLU activation function eliminates the exploding/vanishing gradient prob-

lems [27] by forcing the derivatives computed during the back propagation step to

be large and constant when they are greater than 0, leading to a more meaningful

weight update of 𝜃. Figure 2-4 illustrates the ReLU activation function.

Figure 2-3: ReLU Activation Function

2.2 Reinforcement Learning

Reinforcement learning is a method used to teach an agent the optimal decision to

make in an unknown environment in order to maximize some numerical reward. The

objective of the agent is to make a series of decisions which alter the current state

of the environment in order to solve a task. Reinforcement Learning differs from

typical machine learning in that it learns from its own actions (and reward signals)

rather than the analysis of data. Since the objective is to find an optimal policy,

reinforcement learning is often modeled as a Markov Decision Process (MDP).
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Figure 2-4: Markov Decision Process

2.2.1 Markov Decision Process

The Markov Decision Process as illustrated above is a stochastic mathematical

model which can be used in the decision making process for a given state-action

space. In the Markov Decision Process, an agent is given the current state 𝑆 of the

environment, chooses some action 𝐴𝑡 based on its current policy moving it to the next

state 𝑠𝑡+1, and receives some reward 𝑅𝑡 for doing so. Markov Decision Processes are

defined by 5 elements: < 𝑆,𝐴, 𝜋,𝑅, 𝛾 >, where

• 𝑠𝑡 ∈ 𝑆 is the current state of the set of all states

• 𝑎𝑡 ∈ 𝐴(𝑠𝑡) is the action chosen from all actions available from state 𝑠𝑡

• 𝑃𝑎(𝑠𝑡, 𝑠𝑡+1) is the probability of selecting a given action 𝑎𝑡 from the current state

𝑠𝑡 which results in transitioning to the next state, 𝑠𝑡+1

• 𝑅𝑡 is the expected reward from choosing action 𝑎𝑡 from state 𝑠𝑡 and transitioning

to state 𝑠𝑡+1

• 𝛾 is the discount factor which changes the value of the reward based on impor-

tance

The goal of the Markov Decision Process is to determine the optimal set of actions

(generally called the optimal policy) which maximizes the sum of (discounted) rewards

from any state 𝑠𝑡 ∈ 𝑆. An optimal policy can then be defined as 𝑎𝑡 = 𝜋(𝑠𝑡) such that

the agent receives the maximum possible discounted reward 𝐺. This can be expressed

by the following equation.
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𝐺𝑡 =
∞∑︁
𝑖=𝑡

𝛾𝑖 *𝑅(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1), 𝑎𝑖 = 𝜋(𝑠𝑖) (2.5)

2.2.2 Exploration vs Exploitation

During the learning process, the agent can use one of two strategies at each step:

• Exploration - The agent can choose an action at random, allowing it to visit

new states and potentially discover a more optimal policy.

• Exploitation - The agent can use its existing knowledge (the known policy at

the current step) and choose its action accordingly.

The optimal behavior for the agent is to explore when it is not certain that its

policy is optimal (i.e early on during the learning process), and exploit when it is

confident that the known policy is close to the optimal policy for every state 𝑠𝑡 ∈ 𝑆.

If the agent were to exclusively explore, it may never achieve a high reward because

it may never improve its policy; conversely if the agent were to exclusively exploit its

known policy, it may get stuck in its current policy and never reach the optimal one.

The optimal behavior then, is some balance between exploration in exploitation where

the agent sometimes chooses to explore the environment at random, and sometimes

chooses to exploit its known policy.

The most common method of striking this balance is by following an epsilon

greedy (𝜖-greedy) policy. In an 𝜖-greedy policy, a parameter 𝜖 is set (0 ≤ 𝜖 ≤ 1) which

represents the probability with which the agent will explore its environment (i.e make

a random choice). For each time the agent chooses an action, there is a probability

of 𝜖 that its action will be random (exploratory), and a probability of 1 − 𝜖 that it

will follow its known policy (exploitative).

𝑎𝑡 =

⎧⎪⎨⎪⎩rand(a𝑡) rand(0,1) ≤ 𝜖

𝜋(𝑠𝑡) otherwise

Higher values of 𝜖 will result in the agent exploring its environment more (thus
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a lower probability in acting optimally), while lower values will result in the agent

following its known policy more, thereby reducing the chance the agent will explore

new (potentially more optimal) policies. Generally, 𝜖 is chosen as a higher value at the

start of the learning process (i.e 𝜖 = 0.99), and is decreased over time; 𝑡→∞, 𝜖→ 0.

The rate at which this value is decreased is called the Epsilon decay rate. This

approach results in the agent exploring more at the beginning, when its policy is far

from optimal, and exploiting its known policy with a higher probability as it learns

more about its environment.

2.2.3 Value-Based Learning

Value-based learning is a method of learning directly from values associated with

taking a particular action 𝑎𝑡 at a given state 𝑠𝑡 in order to maximize the reward

which can be achieved from that state 𝐺𝑡. A value function, then 𝑉 𝜋(𝑠𝑡) can then

be understood to be the expected reward 𝐺𝑡 under policy 𝜋 from state 𝑠𝑡 on-wards

following the policy 𝜋. This can be defined by the Bellman equation.

𝑉 𝜋(𝑠) =
∑︁
𝑎∈𝐴

𝜋(𝑎|𝑠)
∑︁

𝑠𝑡+1∈𝑆

𝑃 (𝑠𝑡+1|𝑎) * [𝑅(𝑠, 𝑎, 𝑠𝑡+1) * 𝛾(𝑉 𝜋(𝑠𝑡+1))] (2.6)

It follows, then, that the value of choosing action 𝑎𝑡 from state 𝑠𝑡, or 𝑄(𝑆𝑡, 𝑎𝑡) can

be expressed by the Bellman equation as the return 𝐺𝑡 from choosing action 𝑎𝑡 from

state 𝑠𝑡.

𝑄𝜋(𝑠, 𝑎) =
∑︁

𝑠𝑡+1∈𝑆

𝑃 (𝑠𝑡+1|𝑠, 𝑎)[𝑅(𝑠, 𝑎, 𝑠𝑡+1)]+𝛾[
∑︁

𝑎𝑡+1∈𝐴

𝜋(𝑎𝑡+1|𝑠𝑡+1)𝑄
𝜋(𝑠𝑡+1|𝑎𝑡+1)] (2.7)

The objective of value-based learning, then is to learn the value of all states 𝑠𝑡 ∈ 𝑆

for actions 𝑎𝑡 ∈ 𝐴, thus allowing us to derive an optimal policy 𝜋* from the Q function

such that the value of state 𝑠𝑡 is greater than or equal to the value of the same state

𝑠𝑡 under any other policy 𝜋′ for all states in 𝑆. Thus the objective of value-based

learning, ∀𝑠 ∈ 𝑆, 𝜋′ is to find 𝑉 𝜋*(𝑠) such that

12



𝑉 𝜋*(𝑠) = 𝑉 *(𝑠) ≥ 𝑉 𝜋 ′(𝑠) (2.8)

2.2.4 Q-Learning

Q-learning, also known as the Temporal Difference (TD) method is value-based

algorithm originally introduced in 1989 by Christopher Watkins [41] which iteratively

updates its value function based on the bellman equation to improve the behavior

of an agent until its policy converges to a local optimum. Q-learning is particularly

useful for finding an optimal policy in discrete action spaces such as gridworlds. Q-

values are state action pairs Q(s,a) which represent the value of taking a particular

action 𝑎𝑡 from a state 𝑠𝑡 stored in a structure called a Q-table. As an agent moves

from state to state by taking actions, the state action pairs are updated according to

the following equation.

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼(𝑅 + 𝛾𝑚
𝑎
𝑎𝑥(𝑄(𝑠′, 𝑎′)−𝑄(𝑠, 𝑎)) (2.9)

In equation 1, 𝑅 represents the reward for taking an action 𝑎 from state 𝑠, 𝛼

represents the learning rate, 𝛾 represents the discount factor, and 𝑚𝑎𝑥(𝑄(𝑠𝑡+1, 𝑎𝑡+1))

represents the action 𝑎𝑡+1 which maximizes the reward from the next state 𝑠′.

The objective of Q-learning is to iteratively update the Q function parameters

𝜃 based on experience such that the mean squared error (𝛿) between the estimated

Q-value and the actual Q-value approaches 0. The Q-table is then updated at every

step with equation 2.5 until the the difference between the estimated Q-value and the

real Q-value is sufficiently close to 0. The optimization process for the Q function

parameters can then be understood to be as follows.
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𝜃𝑖+1 = 𝜃𝑖 + 𝜃Δ𝑖 (2.10)

The standard Q-Learning algorithm is shown below.

Algorithm 1 Q-learning
Input:Agent Q-table 𝑄, n-step update 𝑛, exploration rate, 𝜖, learning
rate 𝛼, discount factor 𝛾
Initialize Q(s,a) to 0 ∀ a ∈ A
for each episode do

𝑠 ← 𝑠0
while s not in terminal state do
Choose action 𝑎, receive reward 𝑟, move to state 𝑠′

𝑎′* ← 𝑚𝑎𝑥𝑎(𝑄(𝑠′, 𝑎))
𝛿 ← 𝑄(𝑠, 𝑎)− 𝑟 −𝑄(𝑠′, 𝑎′*)
𝑄← 𝑄− 𝛼 * 𝛿
𝑠← 𝑠′

end while
end for

2.2.5 Deep Reinforcement Learning

The Q-learning algorithm described in section 2.2.4, though effective has several

significant disadvantages. Namely, values need to be stored in some sort of table or

data structure. This is particularly disadvantageous in terms of its applicability in the

real world. Most real-world problems have vast state and action spaces which cannot

be enumerated. For example, a self-driving car determining what speed to drive,

what direction to swerve at to avoid an accident, etc. cannot be neatly encoded into

a table.

The most popular way to overcome such drawbacks is to replace the table with a

function which can approximate the best action to choose based on the current state.

Though this may not be as accurate and deterministic as using a table-lookup, this

is much more scalable to larger state and action spaces. Deep neural networks (as

described in section 2.1) are particularly good at approximating non-linear functions

to reveal hidden relationships between relevant features and optimal actions. Re-

placing the Q-table with a neural network to approximate optimal actions based on
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the perceived environment is known as Deep Reinforcement Learning, and the neural

network used to approximate the value function is called a Deep Q-Network.
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Chapter 3

Related Work

My work can be best understood as the cross section between two fields; Hint

Generation, and Deep Reinforcement Learning. My work will focus specifically on

the Deep Reinforcement Learning aspect of this cross section, though it will inherently

enhance hint generation method for the Tunescope platform. My literature is thus

divided into two sections in order to understand the current state-of-the-artt hint

generation techniques and deep reinforcement learning frameworks.

3.1 Hint Generation

The autonomous generation of hints to assist struggling students is not a necessary

part of programming environments given that not all students will struggle with

any given task. Some studies have even argued that help-seeking environments can

potentially hinder students’ abilities to learn [1]. Others, however, have shown that

meaningful assistance can be an extremely effective learning strategy [34]. I argue

that the integration of a hint generation system has the potential to greatly enhance

the learning process, particularly for struggling students on whom we’d ordinarily like

to focus most of our attention, and defer to education experts as to whether or not

to include the hint generation in learning platforms.

Though significant work has been done in data-driven autonomous hint generation

[19, 29], none of these methods employ deep reinforcement learning. Instead, most
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of the work in the field of hint generation relies largely on graphically representing

students’ actions over time [23, 28, 38]. One common problem across almost all hint

generation frameworks is the timing of hints [31]; specifically should the students be

offered a hint proactively, or should the system wait until the students asks for a hint.

To address the problem presented by the both the timing of hint generation (which

can be understood to be a continuous action space) as well as the innumerable state

and action spaces of the Tunescope framework, I argue that Deep Reinforcement

Learning is an ideal strategy for autonomous hint generation.

The innumerable state and action spaces of Tunescope and programming as a

whole require a powerful hint generation approach such as Deep Reinforcement Learn-

ing. Although I will defer to future work to solve the timing of hint generation, a

Deep Neural Network is a powerful tool which has been shown to have the capability

of solving problems with continuous action spaces [20]; such findings could be adapted

to solve the hint generation timing problem in the future.

The use of Deep Reinforcement Learning in conjunction with autonomous hint

generation has not yet been explored based on the current literature, thus making

the cross-section as a a part of a learning framework such as Tunescope an entirely

unexplored field.

3.2 Deep Reinforcement Learning

Reinforcement learning can be loosely defined as the training of an agent in a

specified in environment to take certain actions based on its current state [39]. Re-

inforcement learning has been proven to be successful in elementary tasks such as

navigating finite action spaces such as mazes, basic card games like blackjack, and

simple tasks like controlling traffic lights [3, 15, 16]. Standard reinforcement learn-

ing, however, has proven to be ineffective in environments with large or continuous

state/action spaces [15]. This shortcoming in conjunction with the recent success of

neural networks has resulted in the rise of a technique known as deep reinforcement

learning which employs a neural network in place of the Q-table in order to combat
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these issues [4].

Deep reinforcement learning has proven its ability to outperform humans at basic

tasks such as simply defined board games and action spaces with high-dimension

inputs [4, 24, 25], as well as its proficiency in continuous action spaces such as vehicular

control and the operation of robots [2, 40]. Deep reinforcement learning is therefore

a reasonable solution to the problem faced by the current implementation of hint

generation in the Tunescope framework.

Since students are able to choose any configuration of code blocks, where each

configuration is considered a separate state, Tunescope can be understood as an

environment with an infinite state space. Similarly, a student can choose any code

block to be their next state where the choice of each different code block could be

considered a distinct action, creating an infinite action space. By leveraging a Deep Q-

Network, the hint generation problem (or predicting the next best move for a student

to make) is theoretically possible because of their ability to handle such environments.

Deep reinforcement learning has not been employed in the process of hint gen-

eration for programming environments largely because block-based software devel-

opment is fairly uncommon. Most Integrated Development Environments (IDEs)

instead act similar to text editors in which programmers type individual characters

thus relying on natural language processing techniques for tasks like hint genera-

tion. In these environments, it would be more useful to employ a Recurrent Neural

Network (RNN) or perhaps a Generative Adversarial Network (GAN) to perform

text generation which can understood to be semantically similar to hint generation

[5, 6, 11, 13, 14, 18, 21, 33]. The volume of research into text generation has led to

successful exploration into the idea of code generation [9, 17], though these systems

have not been adapted to provide hints to students and are instead published as

proof-concepts.

One of the most prominent works done in the field of deep reinforcement learning

was published in 2016 by DeepMind which discusses mastering the game of Go [35]

using an engine called AlphaGo. The problem space explored in this paper has several

similarities to the problem space I explore here. In particular, the game of Go features
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complex state and action spaces which, though finite, are so vast they are regarded

as infinite and thus impossible to enumerate in a Q-table. The AlphaGo framework

employs a deep neural network and tree search algorithm to predict what the next

best move is for a player to make that maximizes their probability of winning the

game. In 2016, AlphaGo played against the best human Go player in the world and

was able to win 4 of the 5 matches, marking the first time an engine was able to

surpass human proficiency in the game of Go.

The core principles of this introduced by the AlphaGo are likely to serve as the

foundation for the future of artificial intelligence, however the implementation of the

engine is proprietary and cannot be directly applied to my work here. Moreover, the

engine itself was designed to master the game of go, and adapting or re-purposing the

engine for the hint generation problem would be very complex and out of the scope

of this work. Though the complexity and depth of the implementation of AlphaGo

renders it out of scope for this work, the fundamental principles that it introduces

can be useful to us in solving the hint generation problem.

The Tunescope framework, unlike most IDEs is a block-based programming en-

vironment and thus does not rely on the same principles as natural language text

generation techniques. As a result, there are no published techniques which detail

hint generation for block-based programming environments. Since code blocks sim-

plify the state and action spaces (relative to natural language spaces), the use of

deep reinforcement learning will be sufficient to understand the current state of the

environment and predict the best action to take given the current state. This process

can be understood as provide meaningful feedback (hints) to students, ultimately

enhancing the overall learning process for novice programmers.

20



Chapter 4

Method

In this section, I begin by describing the ways I have constrained the problem to

make it feasible for a proof of concept in section 4.1. I then continue by describing

my approach to solving the problem using deep reinforcement learning in section 4.2,

and finally introduce the environment I use to represent the Tunescope framework as

a reinforcement learning problem in section 4.3.

4.1 Constraints

To demonstrate the effectiveness of my solution, I have constrained the problem

in several ways. I have constrained it purely to prove that the the employment of

deep reinforcement learning is sufficient to solve the hint generation problem, and

note that removing these constraints to scale the solution would not be tremendously

difficult. The constraints I’ve set to frame the problem are enumerated below.

1. The goal states will be a finite and static set of solutions; I have chosen 4

different solutions and encoded them concretely them as goal states.

2. The problem space will contain only 5 different blocks; these blocks are pen-up,

pen-down, move (always forward), turn (cardinal directions), and a loop block.

3. When a student inserts a code block, the parameter associated with that block

(i.e how many degrees to turn) is restricted to a binary choice (either correct
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or incorrect)

4. The agent is only given a finite number of steps; I have chosen to give the agent

100 steps to reach the goal state.

My rationale for each of these constraints is as follows. The first constraint on the

goal states allows there to be a particular goal state or set of goal states the agent

is approaching. Since I are simulating an environment in which students can write

code, it is possible to imagine an infinite number of possible goal states that could

still result in a correct solution. One approach could have been to make an API

call to Tunescope on every iteration to determine correctness, however that would

have significantly increased the training time required as well as the applicability of

the solution at scale. Additionally, the agent can approach this goal state using a

standard reward function (i.e -1 per step and +20 for reaching the goal state). The

alternative to this would have been to use some sort of distance function to calculate

the distance the current position is from the goal state. Though this is possible, and

perhaps would result in faster convergence, I demonstrate that a naïve approach of

concretely encoded goal states still results in convergence.

The second constraint I choose allows for a significantly reduced action space while

maintaining a relatively complex state space. Although there are only five distinct

code blocks, it is possible to achieve many different goal states. Although I have

chosen to make the set of goal states a correctly drawn square, it is trivial to draw

the parallels between solving this problem and other similar problems. This reduces

the problem of adapting the solution I have devised here to solve other problems to

the redefinition of a finite list of goal states and potentially increasing the number of

actions the agent can choose from.

The third constraint I have placed on this problem is on the correctness of the

parameter associated with any given block. In Tunescope, block parameters are a

continuous space, this means students are able to choose any real number in the

parameter space for any given block - for example turn 4000 degrees, or loop for

1, 000, 000 iterations. I have removed this for simplicity sake and instead only allowed
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students to choose between correct (in the goal state) and incorrect (not in the goal

state) for their parameter value. The parameter is considered correct if it appears

anywhere in the goal state with the associated code block.

The fourth and final constraint I have placed on the problem is on the number

of steps the agent can take in a given episode. This constraint is placed on all

reinforcement learning problems since allowing the agent to take an infinite number

of steps will necessarily result in convergence. Proving that an agent can converge

on an optimal policy with a constrained number of steps per episode is sufficient

for a proof of concept of convergence. I have chosen to constrain the agent to 100

steps for two reasons. The first is that the goal states are not overly complex, so the

optimal policy should be found rather quickly. The second is that the agent is meant

to simulate a student as they write code in the Tunescope framework. Typically, we

would expect a student to solve this problem in fewer than 100 steps; it follows, then,

that the agent should be constrained by a similar number of steps.

4.2 Approach

Ultimately the problem of hint generation can be reduced to the problem of pre-

dicting the next most optimal move from the current position. This is very similar

to the way a GPS works to direct users to their destination. Based on the current

position of the user, the GPS calculates the most optimal route a user could take

in order to reach their destination. This parallel can be drawn by interpreting the

destination of the GPS problem to be the goal state of the hint generation problem,

and the optimal route of the GPS problem to be the order in which a student places

blocks into the environment. In essence, the next turn of a driver using a GPS can

be understoof to be the next hint to generate for students.

The GPS problem is extremely similar to a problem designed and solved by Ope-

nAI using one of their gym environments. In particular, they propose the Taxi prob-

lem in which the taxi (agent) is taxed with locating a passenger in a gridworld, picking

them up, driving to the passenger’s desired destination, and dropping them off [26].
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Since this problem has a relatively small state-space (the agent is constrained to an

𝑛𝑥𝑛 gridworld) and a very small action-space (the agent is only able to move up,

down, left, and right), standard Q-learning has proven to be a sufficient approach to

solving the problem [12].

Adapting the taxi problem to support a more complex state-space, in particular

one which is not constrained by an 𝑛𝑥𝑛 gridworld, but rather a 𝑑-dimensional plane,

creates a need to employ a Deep Reinforcement Learning framework to solve the

problem. Solving the problem of arriving at a particular state in a 𝑑𝑥𝑑 plane given a

discrete set of actions is roughly the same problems as a places code blocks in a given

order to reach a particular goal state in Tunescope since students are given a discrete

set of actions (code blocks to place), and a goal state on a 𝑑𝑥𝑑 plane (configuration

of those code blocks which represents a the solution).

4.3 Environment

In this section, I introduce the environment I use to prove the effectiveness of using

Deep Reinforcement Learning for hint generation in Tunescope. The environment I

describe here is a modification of the taxi environment developed by OpenAI as a

part of Gym [7]. For a full description of the taxi environment from OpenAI see

Appendix A.

The taxi environment, as previously described, is an 𝑛𝑥𝑛 plane, where a taxi

(agent) is able to perform 6 actions (4 cardinal direction moves, pick up, drop off).

In the environment I designed here, I instead give the agent a greater number of

actions. The actions are enumerated in Appendix A. Note the parameter column is

always 1 (correct) for actions which do not have parameters associated with them such

as the Pen-up/Pen-down actions. Note that the action space cannot be concretely

enumerated since the possibilities created by swapping two blocks will grow as the

number of occupied spaces increase. The five blocks have been encoded with numerical

values 0-4 corresponding to pen-up, pen-down, move, rotate, and loop respectively.

The neural network architecture I found to be most optimal for maximizing the
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reward an agent sees is an input layer with 24 nodes, followed by 8 hidden layers 40, 50,

75, 75, 50, 40, 24, 16, and a final output layer of size 𝑎𝑐𝑡𝑖𝑜𝑛𝑠, which for the purposes

of these experiments is 8. After the two hidden layers with the greatest number of

nodes I also included a dropout layer with a value of 0.2 to prevent overfitting [37]. As

described in section 2.1.1, I chose a ReLU action function at each layer. The network

architecture is shown in the figures below.

Figure 4-1: Model Summary

An episode begins with a blank board, which I have chosen to represent as a vector

of dimension 𝑑𝑥2 initialized to −1 to denote available/unused spots the student can

place code blocks in. In practice, 0 ≤ 𝑑 ≤ ∞, since students could in theory use an
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Figure 4-2: Network Architecture
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infinite number of code blocks to reach the goal state, though I have constrained this

number to 50 distinct code blocks for the purposes of my experiments.

On each iteration, the agent chooses an action between 0 and 8 which represents

a single step in an episode. The action an agent is able to choose at each step is

dependent on the state that it is currently in. This prevents the agent from doing

things like attempting to remove a code block from an empty board, or attempting to

insert a pen-up block when the pen is already up. After each step, a reward is given

by calculating the euclidean distance from each block to the corresponding block in

each of the goal states. Each block is assigned a score on every step based on which

of the goal states the agent-inserted block is closest to. The algorithm for this is

detailed below. For a list of actions possible from each state see Appendix A.

Algorithm 2 Tunescope Environment - Training
1: Input:Current State 𝑠𝑖, exploration rate, 𝜖, learning rate 𝛼, Deep Q-

Network 𝑄, goal states 𝐺
2: Initialize all weights in 𝑄*(𝑆) to random values
3: for each step do
4: 𝑠𝑖 ← 𝑠0
5: while s not in goal states do
6: determine valid state transitions 𝐴(𝑠𝑖) from 𝑠𝑖
7: choose 𝑝 at random s.t. 0 ≤ 𝑝 ≤ 1
8: if 𝑝 ≤ 𝜖 then
9: choose action 𝑎𝑖 from 𝐴(𝑠𝑖) at random

10: else
11: choose action 𝑎𝑖 from 𝑚𝑎𝑥𝑎𝑄

*(𝜑(𝑠𝑖), 𝑎𝑖𝜃)
12: end if
13: take action 𝑎𝑖, move to state 𝑠′

14: receive reward 𝑟 s.t. ‖r‖ = (s′,G) * −1
15: Update 𝑄 with 𝑎𝑖, 𝑠′, 𝛼, 𝑟
16: 𝜖 = 𝜖 * 0.95
17: 𝑠← 𝑠′

18: end while
19: end for

The above algorithm differs from the standard Deep Q-Network algorithm in two

main ways. The first is on line 6; this is the line in which the valid state transitions are

identified based on the current state. Although there is always some determination

of valid state transitions, the particular method I employ here is designed specifically
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for the Tunescope environment as seen in Appendix A. In particular, I determine the

current state the agent is in by encoding the state to be one of 7 possible states. Once

the state is determined, the set of actions is considered alongside the output of the

model or random action chosen depending on the value of epsilon to determine which

action the agent will choose at each step.

The second way the algorithm I have proposed here differs from standard Deep

Q-Learning is in line 14 where the reward for each step is calculated. In my algorithm,

the reward function is determined by the Euclidean distance between the next state

𝑠𝑡+1 and the set of goal states 𝐺. Specifically, the minimum of the euclidean distances

between the agent’s current state and all goal states in order to encourage the agent

to approach the nearest possible goal state. The reward is then multiplied by −1 to

negatively reward the agent for moving further from the goal state(s).
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Chapter 5

Experiments

In this section I enumerate four experiments I explore to determine the effective-

ness of a Deep Q-Network to predict the next best code block for a student to insert in

order to ultimately reach their goal of completing an assignment. Sections 5.1 and 5.2

serve as Proof-of-Concept experiments, whereas the following two sections describe

two variations in which the agent is attempting to draw a square and approaching

multiple goal states. These experiments demonstrates the effectiveness of leveraging a

Deep Q-Network to effectively choose the next best code block to insert to eventually

reach a goal. In particular, this experiment is meant to demonstrate the effectiveness

of such a technique in practice in a classroom-like setting. Below are the parameters

which remained constant throughout all four experiments.

Parameter Value
Learning Rate (𝛼) 0.001

Max Exploration Rate (𝜖𝑚𝑎𝑥) 0.99
Min Exploration Rate (𝜖𝑚𝑖𝑛) 0.05

Exploration Decay Rate 0.95
Training Episodes 50,000

Maximum Steps/Episode 100

Table 5.1: Experimental Constants

The parameters in the table above are further detailed here.

• Learning Rate - The rate at which the weight parameters of the neural network
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are updated (see section 2.1.1)

• Max Exploration Rate - The maximum probability the agent will make a ran-

dom decision

• Min Exploration Rate - The minimum probability the agent will make a random

decision

• Exploration Decay Rate - The rate at which the agent decreases its probability

to make a random decision (see Algorithm 2, line 16 and section 2.2.2)

• Training Episodes - The number of times the agent begins from an empty knowl-

edge base and attempts to approach the goal state(s)

• Maximum Steps/Episode - The number of attempts the agent to reach the goal

state in a given episode (see section 4.1, constraint No. 4)

I have selected the maximum/minimum exploration rate, exploration decay rate,

and maximum steps/episode from widely accepted values that are commonly used in

Reinforcement Learning problems. Common values for learning rate in deep learning

are often factors of 10 [36]; I found the a learning rate of 0.001 to be more effective

in terms of convergence speed and final configuration distance than either 0.01 or

0.0001. Lastly, I found the agent frequently converged on a distance of 0 after around

30,000 episodes, though sometimes found as high as 45,000 episodes were needed. For

this reason I selected 50,000 training episodes to sufficiently train the agent past the

point of convergence.

5.1 Reach Single Goal State

In this experiment, I encode a random (strictly valid) goal state for the agent to

attempt to reach. The purpose of this experiment is purely a proof-of-concept to

demonstrate that the Tunescope environment can be effectively modeled, and that

the naïve approach to estimating the next best code block to insert is insufficient in
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solving the problem. For the proof-of-concept experiment I encode a goal state which

used all of the available blocks thus to encourage the agent to add blocks as much as

possible rather than to converge on an empty board.

5.1.1 Results of Reaching Single Goal State

Below I have included a table with the results from training a naïve agent to

converge on a single goal state.

Start Distance From Goal State 75.0
Naïve Distance Over Episode 7500

Aggregate Distance Over Episode 7500
Distance From Nearest Goal State on Final Configuration 75

Table 5.2: Reach Single Goal State

It is clear from the result of this experiment that the agent does not learn to

converge on the goal state at all. In fact, the agent appears to learn that its starting

state is the most optimal state, and thus converges on making no changes from where

it began. The agent decides, on average that the best option for it to choose at every

episode results in a distance of 75 from the goal state - the same distance from the

goal state as its start state. Over the course of 100 episodes, the agent makes this

same decision all 100 times. Thus this method is entirely insufficient to train an agent

to reach the goal state and ultimately solving the problem of hint generation.

5.2 Reach Set of Goal States

In this experiment, I encode a set of random (strictly valid) goal states for the

agent to attempt to reach. This experiment is theoretically more optimal than the

experiment described in section 5.1 because the agent is now able to approach a set of

goal states rather than a singular point in 𝑑-dimensional space. In this experiment I

encode 2 goal states; one goal state is identical to the one described in section 5.1, and

the other is a slightly more sparse goal state which is analogous to drawing 4 separate
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triangles. Both goal states are designed to encourage the agent to add code blocks

to the start state rather than remain close to an empty board in order to effectively

observe the agent’s learning patterns.

5.2.1 Results of Reaching Set of Goal States

Below I have included a table with the results from training an agent to converge

on a set of goal states.

Start Distance From Goal States 75.0, 151.66
Naïve Distance Over Episode 7500

Aggregate Distance Over Episode 2317.0
Distance From Nearest Goal State on Final Configuration 0

Table 5.3: Reach Set of Goal States

From the results shown in table 5.3, it is clear that the agent does in fact choose a

better action on average than the naïve approach of converging on an empty board.

Here, the agent instead converges on a total distance of only 231.7 per episode, or

distance of only 2.31 at every step from the goal state. The agent also converges on a

distance of 0 from a goal state - this means the agent’s state-space configuration at the

end of the episode is exactly equal to that of a goal state. This is significantly better

than the results observed in section 5.1 where the agent is on average 75 units from

the nearest goal state. The results from this experiment confirm that leveraging a

Deep Q-Network to predict the next code block to be inserted is an effective approach

and thus sufficiently solves the hint generation problem.

5.3 Drawing Multiple Types of Squares

In this experiment, the agent is meant to approach three potential goal states.

The first goal state represents the optimal way to draw a square in Tunescope. This

entails inserting a loop block, followed by a pen-down block, then move/rotate blocks

(with correct parameters), and a pen-up block. The second potential goal state is
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the same as the first goal state, though it has 4 "no-op"s in it in which insert a pen-

down and pen-up block on back-to-back code blocks. Though this does not add any

functionality to the code, it increases the amount of blocks in the goal state, further

encouraging the agent to insert blocks rather than to converge on an empty board as

the optimally close state to minimize penalty. The third and final goal state is the

"hard-coded" approach to drawing a square in which the student uses no loop blocks,

and only uses repeated move and rotate blocks in order to draw a square. Though

this is not an optimal way to solve the problem, this goal state simulates one way

novice programmers may choose to complete the task.

5.3.1 Results of Reaching Multiple Goal States (Drawing Square)

Below I have included a table with the results from training an agent to converge

on multiple goal states encoded to draw a square.

Start Distance From Goal States 16.46, 47.93, 78.76
Aggregate Distance Over Episode 784.7

Distance From Nearest Goal State on Final Configuration 0

Table 5.4: Reach Set of Goal States (Squares)

From table 5.4, the agent concludes each episode with an average distance of 78.47

from the nearest goal state. The agent also converges on a distance of 0 from a goal

state - this means the agent’s state-space configuration at the end of the episode is

exactly equal to that of a goal state. The results of this experiment suggest that

leveraging a Deep Q-Network to approach multiple realistic goal states results in

the agent reaching a state which is very close to a goal state. These results further

illustrate the effectiveness of the algorithm to generate hints for students learning to

insert code blocks in Tunescope.
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5.4 Drawing Square With Adjusted State Space

In this experiment, I use the same three goal states as described in section 5.3.1 but

instead change the size of the state space. In particular, I use a state space in which

the student is only able to insert a maximum of 25 blocks, and another state space

where the student can use up to 100 blocks instead of the 50 blocks in the previous

three experiments. This experiment is designed to demonstrate the effectiveness of the

algorithm at difference size state spaces to understand the complexity of Tunescope

problems which this approach can be applied to.

5.4.1 Results of Reaching Multiple Goal States (Adjusted State

Space)

Below I have included a table with the results from training an agent to converge

on multiple goal states with different size state spaces. Note that I compare the agent

trained with a 25 and 100-block state spaces to the agent trained with 50-block state

spaces on the same goal states as found above in experiment 5.3.

Start Distance From Goal States - 25 blocks 164.6
Start Distance From Goal States - 50 blocks 164.6
Start Distance From Goal States - 100 blocks 164.6

Distance From Nearest Goal State on Final Configuration - 25 blocks 0
Distance From Nearest Goal State on Final Configuration - 50 blocks 0
Distance From Nearest Goal State on Final Configuration - 100 blocks 0

Table 5.5: Reach Set of Goal States (Adjusted State Space)

The results in table 5.5 indicate that the agent actually converges on the same

distance from the goal state, and reaches a final distance of 0 from a goal state in

its final configuration regardless of the number of blocks available to it in the state

space. In fact, it appears that the agent converges on the same number as it did in

the previous experiment. This is likely because changes the state space to include

on 25 blocks or as many as 100 blocks actually does not impact the encoding of the

goal optimal goal state. The length of the goal states themselves remained at 5, 10, 15
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respectively, thus the blocks between the greatest length goal state (15) and the total

state space (25, 50, 100) actually remained constant (at 0). The results here suggest

that the total amount of states available to the student does not impact convergence

as long as it remains greater than the length of the goal states.
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Chapter 6

Conclusion

This work has proven two important concepts. The first is that the Tunescope

environment can effectively be modeled as a reinforcement learning problem. By

constraining the environment in several key ways, the Tunescope block coding en-

vironment can indeed be encoded into a gridworld-like environment. Although this

encoding serves no real purpose in a vacuum, proving that it is possible to create such

an abstract a mapping between the Tunescope framework and a grid-world is vital

to being able to apply powerful techniques such as Deep Reinforcement Learning to

solve the complex problem of hint generation in the learning environment.

The second and more relevant concept is the effectiveness of Deep Reinforcement

Learning to solve the problem of hint generation in the Tunescope Framework. The

empirical observations demonstrate two key components that together prove the va-

lidity of the algorithm. The first is that the algorithm approaches a realistic goal state

and converges on a state which is very close to one goal state even in 𝑑-dimensional

space (section 5.4). The second is the effectiveness of the algorithm at different state

spaces (section 5.5). The lack of degradation in the algorithm at different size state

spaces indicates the Deep Q-Networks will be a sufficiently scalable solution to apply

to the Tunescope framework evan as the state space is adjusted to suit more or less

complex problems.

Together these two concepts have proven the effectiveness of Deep Reinforcement

Learning in training an agent to reach a desired goal state in a Tunescope-like environ-

37



ment. Since the process of reaching the goal state can be equated to taking a series of

actions (i.e inserting or removing blocks), it is reasonable to conclude that suggesting

each step the agent takes to the student would optimally guide them towards a goal

state, thus effectively generating hints.

6.1 Limitations

There are a few significant limitations in solving the problem of hint generation in

Tunescope which I describe here. One limitation comes from the parameter extrapo-

lation to the binary case. This becomes particularly clear when considering cases in

which two different parameters may actually be identical. For example, the current

configuration considers a rotate block to have a parameter either 1 or 0 (correct or

incorrect); in practice this may mean rotating 90 degrees to the right, or it could

also mean rotating 270 degrees to the left. In practice, a student could choose either

of these and it would be correct, but the current environment would only have the

capability of capturing one of them as correct, and the other as incorrect.

Another limitation of the current approach is the concretely encoded goal states.

This significantly limits the agents ability to learn a wider range of solutions for a

given problem. The agent is instead constrained to learn only how to generate hints

to reach a set of solutions, and will not learn other (potentially correct) solutions,

and therefore not be effective in guiding students closer to a goal state if they begin

to approach such a state.

The last limitation of the current approach comes from the use of Deep Reinforce-

ment Learning to solve the problem in practice. In particular, the agent’s training

distribution is different from the offline testing distribution. During the training pro-

cess, the agent chooses the next best state based on what will generate the best

long-term reward. This is different from what will be seen in practice because the

agent is only able to suggest a single step (rather than a full path). The agent there-

fore assumes during training that given the step it takes, a very particular set of steps

will be taken thereafter (and eventually generate the maximum reward), whereas in
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practice since it is only able to suggest one step, the path the student takes on future

steps will not necessarily generate the maximum reward. Therefore, the suggested

hint will not necessarily always be optimal.

6.2 Feasibility in Tunescope

A few of the limitations described in the previous section impact the feasibility of

adapting this approach in Tunescope. Since Tunescope is intended to be used as an

out-of-the-box solution for novice programmers, it is difficult to know any information

ahead of time. In particular, it is difficult to have a known solution set. Although a

group of instructors may be able to devise a set of known solutions, it would be very

hard (even impossible) to have an exhaustive list of all solutions to a given problem.

This degrades the quality of the hint generation framework itself because it would

have a difficult time guiding a student to a potentially nearby goal state if is had not

been encoded ahead of time.

Another similar issue arises from the type of problems students often encounter

when using Tunescope. Empirical data from students’ use of Tunescope in the class-

room has revealed that students actually have a harder time in Tunescope when it

comes to its applications to the arts (i.e Music) rather than solving problems such

as drawing a square. This is problematic because with such problems there is no

concrete goal state; for example if students are asked to create any valid song. In this

problem, since any valid song (i.e follows a particular set of rules) would be consid-

ered correct, the goal space is truly infinite, and encoding any set of goal states may

actual hinder students’ creativity by guiding them to a "correct" solution due to its

specificity.

In order to effectively add this solution to Tunescope in practice, then, these prob-

lems would need to be solved. Specifically, there would need to be some mechanism

which is able to define a valid goal state rather than encoding them concretely before

training the Deep Q-Network. A "valid" goal space could be understood to be a

definition of what is considered correct for a given problem, or a rubric. This would
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overcome the primary hurdle preventing this approach to hint generation from being

utilized in Tunescope because educators would be able to loosely define what is con-

sidered correct, and the agent would learn how to guide students towards a valid goal

state which adheres to the rubric rather than guiding them to concretely encoded

states.

6.3 Future Work

Although this work has demonstrated two concepts which illustrate the effective-

ness of leveraging deep reinforcement learning to generate hints, I have left several

aspects to future work. One such aspect is the exploration of larger action spaces.

For all of the experiments I conducted I here I used a consistent number of blocks

(or actions) for the agent to choose from. Increasing the size of the action space and

exploring the interaction between its size and the size of the state space would be

a tremendous addition to the work done here. I also constrained the agent to only

use binary parameters, and removed the ability for the agent to choose parameters

along a continuous axis (i.e rotate correct, or incorrect amount instead of rotate 1-359

degrees). This would also increase the action space tremendously, but fell outside the

scope of this work. Both of these are fairly straightforward adaptations to make to

the work done here, but may require some re-architecting of the neural network.

The final aspect which I have deferred to future work pertains to the goal state

definitions. In my experiments, the goal states must be known ahead of time in order

to help the agent approach some optimal position in 𝑑-dimensional space. Though

this isn’t optimal since all possible goal states cannot be encoded ahead of time.

Ideally, the set of goal states is dynamically computed such that the set of reachable

goal states is a function of the current configuration. This is a much more challenging

adaption to make to the work done here, though would make a great topic for future

exploration.
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Appendix A

A.1 OpenAI Taxi Environment

The environment I built is based off of the OpenAI Taxi environment written in

Python using the gym framework. The gym framework is an open source Python

library designed for building and testing reinforcement learning algorithms. The taxi

environment was built as a grid-world where the agent can only move in four cardinal

directions and the state space is an 𝑛𝑥𝑛 grid.

Figure A-1: Taxi Environment built with OpenAI Gym
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A.2 Action Space

Encoding Action Parameters

1 Insert (Pen-up) 1
2 Insert (Pen-down) 1
3 Insert (Move) 1, 0
4 Insert (Rotate) 1, 0
5 Insert (Loop) 1, 0
6 Remove block
7 Swap block1, block2
8 Change Parameter 1

Table A.1: Action Space

A.3 Valid State Transitions

Board State Possible Actions

Empty Board 1,2,3,4,5
1 block, no parameter 1,2,3,4,5,6

1 block, parameter 1,2,3,4,5,6,8
2 or more blocks, no parameters 1,2,3,4,5,6,7
2 or more blocks, parameter(s) 1,2,3,4,5,6,7,8

Full Board, no parameters 6,7
Full Board, parameter(s) 6,7,8

Table A.2: State Transitions
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