




Abstract

The growing deployment of OpenFlow/SDN networks makes it increasingly possible to

leverage network multicast services. This work proposes a novel cross-layer Multicast-Push

Unicast-Pull (MPUP) architecture that includes functionality in the application, transport

and link layers to offer users a reliable file-stream distribution service to multiple subscribers.

In addition, for the transport layer, a reliable multicast protocol named File Multicast

Transport Protocol (FMTP) was designed and implemented.

A prototype implementation of the MPUP architecture, which includes FMTP, was

realized in a new version of Local Data Manager (LDM), LDM7, a software program that

has been in use since 1994 for real-time meteorology data distribution. LDM6, the currently

deployed version, uses application-layer multicast (ALM).

Experiments were run on the GENI infrastructure to compare LDM7 and LDM6. The

two main findings are (i) LDM7 can be run at a higher sending rate than LDM6 allowing for

improved performance (lower file-delivery latency), and (ii) to achieve the same performance,

LDM7 uses significantly lower bandwidth and compute capacity. A three-fold improvement

in performance improvement was possible with LDM7, and a bandwidth reduction from 350

Mbps to 21.4 Mbps was observed with 24 receivers.
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Chapter 1

Introduction

1.1 Problem statement

There is a need in various domains to distribute file streams reliably to multiple receivers. A

file stream is defined as a series of files of potentially varying sizes that arrive at random

time intervals. Application-Layer Multicast (ALM) is commonly used for distributing data

reliably to multiple receivers. For example, an application called Local Data Manager

(LDM) [1], used to distribute near real-time meteorological data to multiple organizations,

is an ALM solution.

While ALM is easier to deploy than network multicast solutions such as IP multicast,

ALM consumes more network bandwidth and compute capacity at the sending hosts. For

example, the University Corporation for Atmospheric Research (UCAR) uses LDM in a

project called Internet Data Distribution (IDD) [2] to distribute 30 different types of file-

streams, e.g., radar data and satellite data. UCAR receives 20 GB/hr from various input

sources but transmits 1 TB/hr from its sending compute cluster because each file in each of

multiple file-streams is repeated as many times as the number of subscribers. As the data

volume and the number of subscribers in such data distribution projects grow, there is an

increasing need to find solutions that scale the required resources (bandwidth and CPU

capacity) more gradually.

Network multicast solutions have the advantage of requiring lower bandwidth and compute

capacity because a sending host can transmit a single copy of a file in the form of packets,

1



1.2 Proposed solution and contributions 2

while a switch/router somewhere within the network can make multiple copies of the packets,

and transmit these copied packets on to multiple ports. IP multicast has been the only

network multicast solution available on Wide-Area Networks (WANs). However, distributed

routing protocols, e.g., MSDP [3], which are used to spread reachability information for

IP-multicast Class-D addresses, are complex [4], and have been difficult to deploy.

What has changed recently is the introduction of a new networking paradigm in the

form of OpenFlow and Software Defined Networks (SDN) [5]. This paradigm promotes a

more centralized approach in which a single SDN controller engages in control-plane commu-

nications with network switches using protocols such as OpenFlow. Inter-domain control

protocols are being developed for SDN controllers in two different domains (autonomous

systems) to communicate and jointly configure inter-domain paths [6]. This new paradigm

could potentially be leveraged to create control-plane mechanisms for configuring flow-table

entries within switches to realize multicast trees. User data can then be transferred from one

sender to multiple receivers via such network multicast trees. The term OpenFlow Multicast

(OFM) [7] has been used to describe this new network multicast solution.

This work addresses the problem of what functionality is required at the transport and

application layers to leverage network multicast solutions such as OFM for reliable file-stream

distribution to multiple receivers.

1.2 Proposed solution and contributions

We propose a cross-layer Multicast-Push Unicast-Pull (MPUP) architecture that defines

functions at three layers: (i) link layer, (ii) transport layer, and (iii) application layer. It

combines (i) a multicast-push function at the transport layer, (ii) a unicast-pull function at

the transport and application layers, and (iii) rate-guaranteed link-layer network multicast.

The proposed work uses a cross-layer design to offer a high-performance solution for

reliable file-stream distribution to multiple receivers by leveraging new network services on

OpenFlow/SDN networks. This solution has the ability to offer customers a solution in which

bandwidth and compute capacity can be lowered while still achieving the same performance.

Alternatively, for the same bandwidth and compute capacity, higher file-delivery performance
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(lower latency) is possible with the MPUP solution. For receivers who do not have access to

the new OpenFlow/SDN network services, the sender can continue using the ALM solution

for file-stream delivery. Therefore, the MPUP solution can be slowly expanded to cover an

increasing number of receivers as the OpenFlow/SDN network services spread in availability.

Key contributions of this proposed work are as follows:

1. A File Multicast Transport Protocol (FMTP) that provides reliable multicast file

delivery.

2. A cross-layer MPUP architecture for reliable file-stream distribution to multiple

receivers.

3. A prototype implementation of the MPUP architecture called LDM7.

4. An experimental comparison of the performance and resource requirements of LDM6,

which is an ALM implementation, with LDM7.

This work was reported in one publication [8].

1.3 Thesis layout

This thesis is organized into 5 chapters. Chapter 2 describes a cross-layer Multicast-Push

Unicast-Pull (MPUP) architecture as a solution to a file-stream distribution problem. The

proposed solution is compared experimentally with the existing solution. Results show that

our solution offers better scalability, but requires the deployment of SDNs that support

multipoint service. Chapter 3 describes a few enhancements to the MPUP architecture and

additional evaluation metrics. Chapter 4 describes the File Multicast Transport Protocol

(FMTP) in detail. Chapter 5 summarizes this work and lists future work items.



Chapter 2

A Cross-Layer Multicast-Push

Unicast-Pull (MPUP) Architecture

for Reliable File-Stream

Distribution

2.1 Introduction

This chapter describes a cross-layer multicast-push unicast-pull (MPUP) solution for reliable

file-stream distribution. This cross-layer solution includes the application layer, transport

layer and link layer. It makes use of an emergent technology, OpenFlow Multicast (OFM),

to save bandwidth and compute resources at the file-stream sender. A system model for

MPUP defines parameters for each layer, and output metrics for evaluation. A prototype of

the MPUP solution was implemented and named as LDM7, which was then compared with

UCAR’s current Application Layer Multicast (ALM) solution, LDM6. Experimental results

showed that LDM7 can save significant sender bandwidth because it requires a constant

bandwidth that is independent of the number of receivers, while the bandwidth required

by LDM6 is proportional to the number of receivers. LDM7 also saves CPU resources on

the sender when compared with LDM6. As the number of receivers increases, LDM6 will

4
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Figure 2.1: Multicast Push Unicast Pull (MPUP) Architecture

be limited by the bandwidth of the sender access link. However, LDM7 can send data at a

higher rate as it feeds a single multipoint VLAN. With a higher sending rate, LDM7 can

deliver file-streams with a higher throughput, or correspondingly lower latency. The work

presented in this chapter was published in an IEEE conference [8] for all relevant papers.

Section 2.2 describes the cross-layer MPUP architecture. Section 2.3 describes a system

model for the MPUP architecture, and defines metrics for performance evaluation of MPUP

implementations. Section 2.4 describes our prototype implementation of LDM7. Section 2.5

describes our experiments for a comparative evaluation of LDM6 (as a representative ALM

solution) with LDM7 (a representative MPUP solution). Related work is reviewed in

Section 2.6. Finally, key conclusions are provided in Section 2.7.

2.2 Cross-Layer MPUP architecture

Fig. 2.1 illustrates the cross-layer Multicast-Push Unicast-Pull (MPUP) architecture. The

main systems in this architecture are the sender, multiple receivers, network switches, and

an SDN controller. This solution assumes the availability of a rate-guaranteed multicast

network service supported by the network switches and SDN controller. As shown in Fig. 2.1,

a file queue is used to receive a stream of files from outside. A sender application reads
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and distributes files from the file queue to multiple receivers. The sender application has

three modules: Control Module (CM), Multicast-Push Module (MPM), and a Unicast-Pull

Module (UPM).

The sender CM collects subscription requests for a file-stream from receiver CMs. The

sender CM has knowledge of the traffic characteristics of the file-stream, based on which, it

can select an appropriate rate rvn for the multipoint virtual network. Endpoint identifiers

and the computed rate rvn are sent in a request message by the sender CM to the SDN

controller as shown in Fig. 2.1. The SDN controller computes the multicast tree topology

based on the specified endpoints, and sends control-plane messages (e.g., OpenFlow) to the

switches to configure the multipoint virtual network. The SDN controller also sends the

rate parameter rvn to the switches.

Switches can be configured to offer multicast service on different fields of the packet

header. One example is the Ethernet IEEE 802.1Q VLAN ID. A switch can replicate

frames incoming on a particular port with a particular VLAN ID, translate the VLAN ID

in each frame replica to a potentially different value for each outgoing port (as per the

forwarding-table entry), and then forward the corresponding frame replica to each outgoing

port. Other header fields such as Destination IP address and MultiProtocol Label Switching

(MPLS) label field could also be used to realize the multipoint virtual network. The rate

parameter is used to configure QoS mechanisms such as traffic policing on ingress ports, and

scheduling/shaping on egress ports.

The sender application’s Multicast-Push Module (MPM) uses File Multicast Transport

Protocol (FMTP) [9] to provide reliable multicast service over the multipoint virtual network.

FMTP is a protocol in which a file is divided into blocks that are sent over a multicast

network tree from the sender to the receivers. FMTP uses the services of UDP and Circuit

TCP (CTCP) as shown in Fig. 2.1. FMTP uses UDP datagrams to send its data blocks to

an IP-multicast Class-D address, which is configured at the sender and all receivers. Even if

the multipoint virtual network is realized at Layer-2, the IP layer is used at the endpoints

for ease-of-programming with sockets. The rate of the virtual network could be lower than

the sender Network Interface Card (NIC) rate, in which case traffic control is required in

the Ethernet layer to limit sending rate as shown in Fig. 2.1. The FMTP blocks carried
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within UDP/IP datagrams are rate limited by the traffic control module so as not to exceed

the virtual network rate rvn.

Even though the multipoint virtual network is rate-guaranteed, which means packets

should not be dropped in switch buffers, bit errors and receive-buffer overflows can occur

leading to dropped packets. Dropped FMTP blocks are identified from the Block Sequence

Number field carried in FMTP headers since the multipoint virtual network is assumed

to guarantee in-sequence delivery. A receiving FMTP can thus send a retransmission

request for an errored/dropped FMTP block upon receiving an out-of-sequence block. A

CTCP connection is used for sending these requests, and receiving retransmissions of

errored/dropped FMTP blocks. CTCP is a variant of TCP in which congestion control is

disabled as it is designed for use over rate-guaranteed circuits [10]. Thus, using unicast

CTCP connections, an FMTP sender offers FMTP receivers the opportunity to request and

receive retransmissions of individual blocks within a file.

For performance reasons, FMTP limits the duration for which it serves retransmissions

of lost/errored packets to individual receivers. Without such a limit, an FMTP sender

could expend CPU cycles serving a few receivers with high packet-loss rates, while adversely

affecting the multicast delivery of new files. Given that this MPUP solution is designed for

file-streams, the tradeoff between file-delivery latency and successful file-delivery ratio needs

to be considered in the design. To handle this tradeoff, FMTP uses a sender timeout factor

fsnd to set a maximum retransmission period τsnd(n) for each file n, given by

τsnd(n) = max(fsnd ∗ Sn/rmc, max
1≤i≤m

RTTi) (2.1)

where Sn is the size of file n, rmc is the rate used for multicasting FMTP blocks in UDP/IP

datagrams, RTTi is the Round-Trip Time of receiver i, and m is the number of receivers. A

round-trip time is needed for the last data block to reach all receivers and for a receiver that

missed this data block to send a block retransmission request to the sender. In wide-area

networks, RTT could be higher (e.g., tens of ms) than the the first term in (2.1) if files are

small and sending rates are high. A receiver’s requests for blocks of a file with an expired

τsnd(n) will be rejected by the sender.
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The role of the Unicast Pull Module (UPM) (see Fig. 2.1) is to handle cases when an

FMTP receiver is unable to deliver a whole file to the application. Upon receiving a rejection

for retransmission requests for blocks of a file, the FMTP receiver will drop all successfully

received blocks of the file and notify the application of a dropped file. The UPM at the

receiver will send a “pull” request for the dropped file to the UPM at the sender. The latter

sends the dropped file over a separate (unicast) CTCP connection to the receiver.

One final aspect of FMTP is that a receive-side timer was added as part of this work.

It was not present in the original FMTP specification [9]. This timer is required because

retransmission requests will not be generated fast enough if all blocks at the end of a file

are dropped, and there is a large silence period to the next file. FMTP uses a Begin-of-File

(BOF) block and End-of-File (EOF) block, both of which are also multicast. Upon receiving

a BOF, a receiver timeout value τrcv(n) is computed for file n using a factor frcv as follows:

τrcv(n) = frcv × Sn/rmc (2.2)

If EOF for file n is not received within τrcv(n) of its BOF arrival, the FMTP receiver will

generate retransmission requests for all missing data blocks. The presence of a File Identifier

(File ID) in each FMTP block header, which is incremented by 1 for each file in a file stream,

allows FMTP receivers to detect complete loss of a file, and to notify the application UPM.

RTT does not appear in (2.2) because the timeout interval is between the reception of BOF

and reception of EOF. The receiver timeout factor frcv should be an integer value greater

than 1 so that if individual packets are caught in switch buffers behind other packets, the

receiver avoids sending premature retransmission requests. Furthermore, fsnd should be set

to a value larger than frcv so that the receiver’s block retransmission requests for a file reach

the sender before the sender timer corresponding to the file times out.

In summary, MPUP requires a rate-guaranteed multipoint virtual network interconnecting

the sender and all receivers, a multicast FMTP/UDP/IP session running over this multipoint

virtual network, and 2m CTCP connections. The Multicast Push Module (MPM) of the

application uses the multicast FMTP/UDP/IP session. The first set of m CTCP connections

are used by FMTP to handle dropped blocks within files, while the second set ofm CTCP
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Table 2.1: Model Parameters

Parameter Symbol

File-stream F

No. of receivers m

Round Trip Time RTTi
Packet loss rate pi
Base rate r

Virtual network rate rvn
Sender multicast (mc) rate rmc

Sender unicast (uc) rate ruc
Sender traffic-control mc buffer size bmc

Sender traffic-control uc buffer size buc
Receiver UDP buffer size brcv
Sender CTCP congestion window fcwnd

FMTP sender timeout factor fsnd
FMTP receiver timeout factor frcv
Sender file queue size qsnd
Sender limit on # files in file queue nsnd

connections are shared by the Unicast Pull Module (UPM) and Control Module (CM) of

the application. Pull requests for files and retransmissions of complete files are sent between

UPMs, while file-stream subscription requests are sent between CMs.

2.3 System model and metrics

Section 2.3.1 describes a model for MPUP systems. Section 2.3.2 describes metrics used to

characterize the performance of an MPUP system.

2.3.1 System model

Table 2.1 lists the parameters of an MPUP system model. The file-stream arrival process F

is represented by the notation (tn, Sn), where the file inter-arrival times tn could be unevenly

spaced [11], and file sizes Sn could vary.

The number of receivers m is 2 or more since MPUP is used for multicast. The network

path from a sender to a receiver i is characterized by three properties: RTT, packet loss rate

and virtual-network rate, denoted by {RTTi, pi, rvn}, 1 ≤ i ≤ m. Since the virtual-network

rate rvn is the same for all receivers, it is not indexed by i. Before explaining rvn, we explain
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the term base rate r used in Table 2.1. The rates used for LDM7 and LDM6 experiments

are multiplicative factors of this base rate.

The traffic-control module within the sender Ethernet layer will be configured to rate limit

multicast packets to a rate rmc, and unicast packets to a rate, ruc, such that ruc ≤ rvn− rmc.

Since the application could send bursts of packets at rates higher thanrmc and ruc, buffers

of size bmc and buc should be allocated in the traffic-control module to absorb the bursts.

The receiver UDP buffer size brcv should be made large enough to hold packets if the

rate at which the application removes packets from the UDP buffer is lower than the packet

arrival rate.

The next parameter listed in Table 2.1, the sender CTCP congestion window fcwnd is

held at a fixed value that is slightly larger than Bandwidth-Delay Product (BDP) on the

path with the highest RTT so that the sender can keep sending packets without waiting for

acknowledgments. The next two parameters, FMTP sender timeout factor fsnd and FMTP

receiver timeout factor frcv, were explained in Section 2.2.

At the application layer, the sender file-queue size qsnd should be large enough to absorb

bursts in the file-stream given the fixed sending rate at the lowest layer. An application

could also limit the number of files nsnd in the file queue.

2.3.2 Metrics

Four metrics are defined: throughput, FMTP file delivery ratio (FFDR), sender NIC

bandwidth usage and sender CPU utilization.

Throughput A seemingly simple measure to evaluate our multicast service is latency,

which is the time taken for a receiver to fully receive a file, if successful. This latency measure-

ment would include the time for the original multicast and for FMTP block retransmissions

if any were needed. However, latency depends on file size.

Therefore, a better measure is per-file throughput, which is defined as file size divided

by latency. But averaging per-file throughput values across a set of files effectively gives an

equal weight for the throughput values of all files in the set irrespective of their sizes. This

could result in scenarios in which the average throughput is misleading.
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A better representative metric is to compute file-set throughput at each receiver by

summing file sizes over a set of file indices and summing corresponding latencies, and dividing

these two sums. Then an averaging operation is performed to compute the average file-set

throughput values across all receivers. This average metric is referred to as throughput, and

defined as follows:

Γ(I1,I2) =
1

m

i=m∑
i=1

∑
j∈Zi

Sj∑
j∈Zi

Dij
(2.3)

where indices I1 and I2 are chosen such that
∑k=(I2−1)

k=I1
Sk < G and

∑k=I2
k=I1

Sk ≥ G, where

G is the aggregate file-set (group) size, Zi is the subset of files within file-set (I1, I2) that

were successfully received at receiver i, and Dij is the latency incurred for the delivery of

file j at receiver i. Latency should be measured from the time instant when the application

provides a file to the FMTP layer at the sender to the time instant when the receiver sends a

final acknowledgment of the file to the sender confirming that the whole file was successfully

received. Since these two time instants are logged at different hosts, e.g., Network Time

Protocol (NTP), is required to determine latency.

File indices are used to characterize (average file-set) throughput on a rolling basis since

the file-arrival process F is a time series.

A fixed time interval is not used as is commonly done for time series because there could

be variability in the file arrival process from one time interval to another if the selected

interval is too small. We also considered using a fixed number of files in each file-set. But

for the reasons cited earlier, the interpretation of mean throughput could be wrong if the

total size of files varies from one file-set to the next. Therefore, we chose to use aggregate

file-set size as the defining parameter for computing rolling throughput values while allowing

the time intervals and number of files to vary between file-sets.

FMTP File Delivery Ratio (FFDR) The metric FFDR is a measure of the success of

file delivery by FMTP from a single sender to multiple receivers. A file j is said to have

been delivered successfully to receiver i by FMTP if all blocks of file j were received by

receiver i either via multicast or via the CTCP connection between the FMTP layers at the
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sender and receiver. The presence of the application-layer UPM ensures successful delivery

of all files to all receivers as long as receivers request files within the specified duration for

which files are served by the UPM. However, this FFDR metric captures the extent to which

FMTP is successful in delivering files without the application-layer UPM. FFDR is defined

as follows:

Λ(I1,I2) =
1

m

i=m∑
i=1

|Zi|
N(I1,I2)

(2.4)

where N(I1,I2) is the number of files sent by the multicast sender with indices in the range

(I1, I2). Thus FFDR is an average metric, with the averaging done across the ratios computed

for all receivers.

Sender NIC bandwidth usage This metric offers a measure of how much traffic is

generated by the sender to support file multicasts and retransmissions. It is defined as

follows:

Θ(t1, t2) =
B(t2)− B(t1)

(t2 − t1)
(2.5)

where t1, t2 are time instants, and B is a counter that tracks the number of bytes transmitted

out by the sender NIC. The difference in the counter values at t2 and at t1 yields the number

of bytes sent in the interval (t1, t2).

Sender CPU utilization The ratio of the aggregate share of CPU time used by the

sender-side processes (MPM, UFM and CM, as described in Section 2.2) within a time

interval (t1, t2) to the total CPU time available in the interval (t1, t2), expressed as a

percentage, is sender CPU utilization, Φ(t1, t2).

2.4 Prototype implementation

This section describes an implementation of the cross-layer MPUP architecture. Specifically,

a new version of the Local Data Manager (LDM) application used for real-time meteorology

data distribution was implemented. The new version is LDM7. The currently used version
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LDM6 uses unicast TCP connections from the sender to each receiver. In other words,

LDM6 is an ALM solution.

Three terms used in LDM are introduced here for usage in the rest of the paper: (i)

“product” is synonymous with “file,” (ii) “Product-Queue (PQ)” describes the file queue of

the MPUP architecture (see Fig. 2.1), and (iii) “feedtype” is used to describe a file-stream.

To implement LDM7, the following modifications were made to LDM6: (i) added the

interface to FMTP for reliable multicast (LDM7 is the application layer of the MPUP

architecture of Fig. 2.1), (ii) modified the PQ component to support access to the product-

queue from multiple threads, and (iii) added the UPM module of the MPUP architecture to

allow a receiver to request a single product from the sender.

The FMTP design and implementation described in our prior work [9] was the first

version of FMTP, FMTPv1. Modifications were required in FMTPv1 to support LDM7.

Therefore, a new version FMTPv2 was implemented. It includes the following changes:

(i) the addition of a receive-side timer, whose purpose was described in Section 2.2, (ii)

modification of the FMTP Application Programming Interface (API) at the sender to allow

for FMTP to serve block retransmissions for a product directly from the PQ without creating

its own local copy of the product, (iii) elimination of one user-space copy within LDM at

the receiver, and (iv) improved support for delivery of file-streams. Further details on the

FMTPv2 implementation are provided in Chapter 4.

In addition to coding FMTPv2 and LDM7, for testing purposes, a utility called pq insert

was created to emulate the real-world generation of data-products, both in terms of their

creation-times and their sizes. First the notifyme utility was executed on a local host to

collect IDD feedtype metadata (product creation-times and sizes). This utility connects

to a UCAR LDM server and obtains the creation times (time instant when a product was

injected into the IDD system) and product size for live feedtypes. The received metadata

was stored in log files at the local host. The pq insert utility reads these existing LDM log

files, and uses the metadata size for each product to create a file filled with random bits

(dummy data), which is then added to the PQ at the creation time for the product.

The pq insert utility emulates LDM data-product ingesters, which receive data from

radar sites or other such installations. These ingesters then create data products and insert
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these products into the PQ. The PQ is a memory-mapped structure that is shared by all

processes of an LDM process group. Linux signals such as SIGCONT are used by the ingesters

to notify the LDM process group when a new data product has been inserted into the PQ.

The upstream LDM7 server receives the signal and then reads the product from the PQ and

calls the SendProduct library function of FMTP to initiate multicast.

2.5 Evaluation and analysis

Section 2.5.1 describes the experimental testbed. Section 2.5.2 describes the input parameter

values used in our experiments and the experimental workflow. Section 2.5.3 describes an

experiment to determine an appropriate value to use for aggregate file-set size G, which

is required for throughput computation (see Section 2.3.2). The second metric, FMTP

File Delivery Ratio (FFDR) (see Section 2.3.2) is the focus of the experiment described in

Section 2.5.4. Section 2.5.5 compares LDM6 and LDM7 throughput and finds an operating

point at which LDM6 and LDM7 achieve the same average throughput for use in the

next experiment, which compares resource requirements between LDM6 and LDM7. This

comparison is described in Section 2.5.6.

2.5.1 Experimental setup

GENI [12], an NSF supported network testbed, was used to run all the experiments. Users

are offered an interface to request slices, each of which consists of one or more virtual

machines (VMs) that are interconnected by rate-specified VLANs. For our experiments,

we created a slice consisting of VMs at five different racks located at (i) Wayne State

University (WSU), Detroit, MI, (ii) StarLight (SL), Chicago, IL, (iii) Oakland Scientific

Facility (OSF), Berkeley, CA, (iv) University of Massachussetts (UMass), Amherst, MA,

and (v) University of Houston (UH), Houston, TX. The number of VMs at each rack was

varied in our experiments to change the number of receivers in our multicast experiments.

While the machines had different characteristics at the various racks, we provide an example

of the type of resources used in these experiments. One of our VMs was assigned 2 cores

(out of the 20 cores of an Intel Xeon E5-2660v2 processor in the physical machine), 6 GB
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RAM (out of 96 GB RAM in the physical machine), and 50 GB disk space (out of a large

disk array on the physical machine). The physical machine had a 40 Gbps network interface

card. A multipoint VLAN was stitched between the top-of-rack switches at these five racks,

and the rate of the VLAN was set to 1 Gbps. In other words, rvn was 1 Gbps.

The software used in our experiments consists of: (i) LDM6, (ii) LDM7, (iii) Linux

traffic-control (tc) utility to control sending rate, (iv) Linux iptables to inject artificial

packet losses, (v) Linux sar utility of the sysstat package to measure bandwidth usage,

(vi) Linux ps to measure CPU utilization, (v) Python scripts to parse LDM log files for

throughput and FFDR, and to parse log files created by the sar and ps programs for

bandwidth usage and CPU utilization, respectively, and (vi) R programs to create graphs.

2.5.2 Experiment execution

Experiments were run to measure the performance and resource requirements of (i) LDM7:

MPUP implementation, and (ii) LDM6: ALM implementation. We first explain how values

were chosen for the input parameters, and then explain the experimental workflow.

Table 2.2 shows values used for the parameters in our experiment. The reader is referred

to Table 2.1 for interpretations of the symbols.

Table 2.2: Values for input parameters

Symbol Value

F NGRID 06/15/15 00:00-01:00

m {4, · · · , 24}
RTTi {36, 41, 50, 90} ms

pi {0, 1} %

r {10, · · · , 60} Mbps

rvn ≥ rmc + ruc (LDM7) and ≥ m× r (LDM6)

rmc r

ruc r

bmc 600 MB

buc 600 MB

brcv bmc

fcwnd 1.2× ruc × (max1≤i≤mRTTi)

fsnd 5000

frcv 20

qsnd 5 GB

nsnd 35000
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A data analysis of five IDD feedtypes showed that both file inter-arrival times and file

sizes have long-tailed right-skewed distributions [13]. Of the analyzed feedtypes, we chose

NGRID as a representative file-stream with which to compare LDM7 and LDM6 performance

and resource requirements. Specifically, we collected metadata for 7 hours (12 AM to 7 AM)

of the NGRID feedtype on June 15, 2015. As described in Section 2.4, the real metadata

collected for the NGRID feedtype was used as input to the pq insert program to create

dummy data products with the corresponding creation times and sizes.

The number of receivers was varied from 4 to 24 in steps of 4. One VM on a UMass

server was used as the upstream LDM server (sender) and the VMs at the remaining four

sites were used for the downstream LDM servers (receivers). If the total number of receivers

m used in an experiment was four, one VM was used in each rack. Correspondingly for

m = 24, six VMs were used in each rack. The RTT values from a UMass VM to VMs in

WSU, SL, UH, and OSF, were, as indicated in Table 2.2, 36, 41, 50, and 90 ms, respectively.

To compare the performance of LDM6 and LDM7 under lossy conditions, random artificial

packet drops were injected at all receivers using Linux iptables using the loss rates specified

in Table 2.2.

The Linux tc utility was used for the traffic control module shown in Fig. 2.1. A

combination Hierarchical Token Bucket (HTB) and Bytes First In First Out (BFIFO)

queueing disciplines of tc were used for LDM7, while Token Bucket Filter (TBF) was used

for LDM6. For LDM7, two queues were needed for multicast and retransmissions, and hence

HTB was used. The UDP datagrams were directed to one queue, while packets from all 2m

CTCP connections were directed to the second queue. Borrowing of bandwidth between the

queues was disabled because FMTP does not implement flow control, and therefore a high

sending rate could overwhelm the UDP buffer at the receivers.

Analysis of the NGRID feedtype metadata in our prior work [13] showed that a sending

rate of 10 Mbps and a sending buffer size of 300 MB was sufficient to meet a specified

throughput value. Therefore, we used 10 Mbps as a starting value for rmc, but doubled the

buffer size bmc to 600 MB to ensure that no packets were dropped by the tc buffer at the

sender. A dropped packet at the sender will require retransmissions for all the receivers,

and is hence avoided. The rate rmc was set as the HTB rate and ceil parameters for both
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queues, while the 600 MB buffer size was set in the BFIFO parameter. The same values

were used for rate ruc and buffer size buc with a rough estimation that if loss rate was 1%

and there were 100 receivers, on average, all blocks of all files would be retransmitted once.

For LDM6, the TBF parameters were set as follows: rate = m× r, burst = 50 KB, and

limit = m × 2 × r × (max1≤i≤mRTTi) [14]. All 2m CTCP connections from the sender

to the m receivers were directed to the same queue, whose size is given by the limit TBF

parameter minus the burst (token-bucket) size. Even for the high r rate of 60 Mbps, when

m = 24, the TBF limit value is only 32.4 MB, since the maximum RTT is 90 ms. Compare

this 32.4 MB value with the 600 MB value used for the tc queues for LDM7. The difference

is because UDP and TCP react differently to a full Ethernet-layer tc queue. Experiments

showed that in the case of UDP, if the tc queue is full, packets are simply dropped, whereas

TCP will block and hold the packets in its own buffer. Furthermore, if FMTP tries writing

to a TCP socket with a full TCP buffer, FMTP will be blocked. Therefore, in LDM6,

queueing delays occur only in the PQ, but in LDM7, queueing delays also occur in the tc

queue. Through experimentation, we found that 600 MB was sufficient to ensure 0 dropped

packets by the sender tc module for the NGRID 1-hour feedtype used.

The UDP buffer size brcv at the receiver was also set to 600 MB for LDM7. This large

value was chosen to limit packet losses due to flow-control problems at the receiver. With

this choice, there were no packet drops at any of the receivers in the experiments in which

no artificial packet losses were injected.

The fixed congestion window (fcwnd) parameter of CTCP was set to 20% more than

the maximum bandwidth-delay product to ensure continuous sending of segments without

waiting for an acknowledgment. The same fcwnd value is applied to all (system-wide) CTCP

sockets since this value is set in Linux sysctl. The Linux setsockopt function can be used

to set (possibly different) per-socket values for fcwnd, but this requires modification of the

application code.

Values for the two FMTP time-out factors, fsnd and frcv, were selected as follows. The

receiver factor frcv was set to 20 with the expectation that even if many packets from other

flows become interspersed between two packets of a given product, a multiplicative factor

of 20 applied to the product transmission delay is sufficient for delivery of all blocks of a
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product. The sender time-out factor fsnd was selected after some experimentation. To avoid

packet loss at the sender tc queue, fsnd was chosen to be the large value of 5000.

The LDM PQ has two parameters: qsnd and nsnd, which represent the maximum size of

the PQ in bytes, and the maximum number of files that can be stored in the PQ. If a newly

arriving file causes either of these limits to be exceeded, one or more of the oldest files will

be deleted to make space for the new file. We selected the values for these parameters to

hold approximately 1-hour of the NGRID file-stream.

The experimental workflow consists of four steps: (i) upload LDM6 and LDM7 software,

and configuration files (for tc, FMTP, CTCP, and LDM), to the remote GENI VMs from

a local host, (ii) run the software and monitoring tools on the GENI VMs, (iii) download

collected logs from the GENI VMs to a local host, and (iv) run the log parsers to extract

performance measures. A script was used for automated execution of this workflow. The

monitoring tools, sar for bandwidth usage, and ps for CPU utilization, run as a Linux

cron job that is executed every min while the LDM processes are running. The log files

include bandwidth logs, CPU logs, and LDM logs. The log parsers extract the four metrics:

throughput, FFDR, bandwidth usage, and CPU utilization.

2.5.3 Experiment 1: Determine file-set size for throughput metric

Section 2.3.2 defined a metric called throughput on file-sets rather than single files. Per-

receiver file-set throughput was defined as the effective rate at which files within a file-set of

size G were received. The purpose of Experiment 1 is to determine an appropriate size for

G.

An LDM7 run was executed to send products whose sizes and creation times were

extracted from 7 hours of the NGRID feedtype1. A single receiver was used in this run.

Specifically, the data was sent by LDM7 from a UMass host to an SL host. No artificial

losses were injected. The rate rmc was set to 100 Mbps.

The throughput metric was computed using (2.3) for different values of G, starting from

1 MB. The side-by-side boxplots in Fig. 2.2 shows the throughput variability across file-sets

1For only this experiment, we used a 7-hour clip of the NGRID feedtype, specifically 00:00-07:00 on June
15, 2015, while for all other experiments only the first hour data was used as listed in Table 2.2.
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Figure 2.2: Impact of Aggregate File-Set (Group) Size G on Throughput

(groups) for each setting of G. When G was 1 MB, there were 17631 groups within the 7-hour

input file-stream. For larger values of G, the total number of groups decreases because the

aggregate size of all files in the 7-hour file-stream is fixed (31.5 GB). When G = 200 MB,

there were only 150 groups. While the median throughput did not change much for different

values of G, the Inter-Quartile Range (IQR) decreased as G increased. For example, IQR

was 3.02 Mbps when G was 1 MB, while it dropped to 1.73 Mbps for aG value of 200 MB.

Ideally, the selected group size should have a small IQR; however, the number of groups

drops as G increases, which then limits the number of computed throughput values within

a single run of the experiment. With a G value of 200 MB, the number of groups in the

1-hour file-stream used in the remaining experiments, was 27, which is still large enough

for averaging operations. Therefore, we chose G = 200 MB as a good compromise between

these two opposing factors.

2.5.4 Experiment 2: FMTP File Delivery Ratio (FFDR)

FFDR is a metric that only applies to LDM7. In this experiment, LDM7 was executed with

8 and 16 receivers, using a base rate r of 20 Mbps. With the default setting for fsnd of

5000, when no artificial packet drops were injected at the receivers, FFDR was 100% in all
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Figure 2.3: FMTP File Delivery Ratio (FFDR) for LDM7

our experiments. However, when artificial packet drops were injected at receivers, FFDR

dropped below 100%, which means receivers will need to seek retransmissions of files from

the UPM in the sending application.

Fig. 2.3 shows when packet loss rate was set to 1%, FFDR was 88.7% and 75.9% when

the number of receivers was 8 and 16, respectively.

2.5.5 Experiment 3: Throughput measurement

The goals of this experiment were two-fold: (i) compare throughput of LDM6 and LDM7,

(ii) find a suitable value for the base rate r to achieve the same throughput with LDM6 and

LDM7 so as to enable a fair comparison of resource requirements. The main parameter that

was varied in this experiment was the base rate r.

This experiment used four base configurations: (i) LDM7 with 8 receivers, (ii) LDM7

with 16 receivers, (iii) LDM6 with 8 receivers, and (iv) LDM6 with 16 receivers, with two

variants: lossless and lossy, for a total of 16 configurations. In the lossless variant, no

artificial packet drops were injected in these runs, while in the lossy variant, 1% random

packet loss was injected at all receivers. For each of these 8 configurations, 6 runs were

executed corresponding to base rate settings from 10 Mbps to 60 Mbps, for a total of 48
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Figure 2.4: Impact of tc rate limiting on throughput under lossless/lossy conditions; m:
number of receivers

runs. For each of these 48 runs, throughput values were obtained for each of the 27 file-sets

of size 200 MB in the 1-hour file-stream. The average throughput across the 27 file-sets was

computed for each setting and plotted against the base rate r in Fig. 2.4.

Towards meeting our first goal of comparing LDM6 and LDM7 throughput, Fig. 2.4

shows that LDM7 is able to take better advantage of higher rates than LDM6. This is
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because LDM6 needs to create copies of each product and send each copy individually to

each receiver, while LDM7 sends out a single file-stream to all receivers.

When the base rate is 60 Mbps, and the number of receivers is 16, the total TBF tc

rate (m× r; see Section 2.5.2) is 960 Mbps for LDM6. Recall the 1 Gbps limit for rvn in our

GENI experimental slice as mentioned in Section 2.5.1. On the other hand, with LDM7, the

sender multicast rate rmc, which is equal to the base rate r, could be increased to values

above 60 Mbps. But already at the base rate setting of 60 Mbps, average throughput is

three-fold better for LDM7 than LDM6 as see in Fig. 2.4a. Increasing the base rate further

yielded an average throughput of 75 Mbps, which is a ten-fold increase. This observation

becomes important in applications that require a low file-delivery latency. ALM solutions

can only support relatively low rates per receiver because of file-stream replication. The

higher the number of receivers, the smaller the bandwidth available for any single receiver,

which in turn adversely affects file-delivery latency. On the other hand, LDM7 can use a

significantly higher-rate virtual network to deliver files with lower latency.

Our second goal was to find an appropriate setting of parameters at which LDM6 and

LDM7 achieve the same average throughput for use in our resource-requirements comparison

experiment. Fig. 2.4 shows that the 20 Mbps base-rate setting is a good choice as it yields

the same throughput for LDM6 and LDM7 under both lossless and lossy conditions.

2.5.6 Experiment 4: Resource requirements comparison

LDM6 and LDM7 were executed with several combinations of parameter settings. The

number of receivers was varied from 4 to 24 as described in Section 2.5.2. The same lossless

and lossy settings described in Section 2.5.5 were used in these experiments.

Three sets of results are shown: (i) per-min comparison of bandwidth usage by LDM6 and

LDM7, (ii) time-averaged bandwidth comparison between LDM6 and LDM7 as a function of

the number of receivers, and (iii) time-averaged CPU utilization as a function of the number

of receivers.

Fig. 2.5 shows the per-min bandwidth usage on the sender NIC as a function of time,

and the aggregate size of all products created in each min. LDM6 uses more bandwidth than

LDM7 as seen in the top graph of Fig. 2.5. This is simply because LDM6 is sending eight
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Figure 2.5: Experimental settings: m = 8 receivers, lossless setting

copies of each product, while LDM7 is sending only a single copy of each product along with

a few block retransmissions. A second observation is that bandwidth usage for both LDM6

and LDM7 drops between mins 25 and 40. This drop is explained in lower graph of Fig. 2.5,

which shows that the NGRID traffic pattern had smaller aggregate per-min size of products

between these mins than in other time intervals. Having shown this per-min variation in

bandwidth usage, we can now use the time-averaged bandwidth in the next figure.

Fig. 2.6a shows a time-averaged bandwidth comparison between LDM6 and LDM7 as a

function of the number of receivers. Since LDM6 needs to sendm copies of all products, it

consumes more bandwidth than LDM7, and further the difference in bandwidth requirement

between LDM6 and LDM7 increases with the number of receivers. For LDM7, bandwidth

usage is almost independent of the number of receivers and is about 12.4 Mbps and 21.4

Mbps for the 0% and 1% cases settings, respectively. While the multicast rate rmc is 20

Mbps, because of silence periods between products, and smaller product sizes in some mins

as seen in Fig. 2.5, the time-averaged bandwidth usage is less than rmc. Data analysis of

the 1-hour NGRID file-stream shows that while the third-quartile for file inter-arrival time

is 34 ms, the 90% is 297 ms, and 1% of files arrive more than 1.8 sec after their predecessors.

In other words, there are gaps between file arrivals, which explains why the NIC was not
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Figure 2.6: Resource utilization; r = 20 Mbps; (LDM version, loss rate) are shown for each
plot

used all the time even at the low rate setting of 20 Mbps. Finally, we observe that LDM6

bandwidth usage increases linearly, reaching 350 Mbps for 24 receivers. NGRID is just

one of 30 feedtypes distributed by the IDD project, and the number of subscribers, which

is currently 240, is growing. Therefore the total bandwidth required on the UCAR WAN

access link for the IDD project is already high, and growing. Use of LDM7 will offer a
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significant reduction in the access-link bandwidth and cluster needed to support real-time

data distribution.

Figs. 2.6b plots time-averaged sender CPU utilization for LDM6 and LDM7 as a function

of number of receivers. Under both lossless and lossy settings, LDM6 enjoys lower sender

CPU utilization when the number of receivers,m, is 4. This is because FMTP runs in user

space, which incurs more CPU cycles than CTCP used by LDM6, which runs in the kernel.

However, with larger numbers of receivers, CPU utilization increases rapidly for LDM6,

while it stays almost flat for LDM7. This is because there is a separate upstream LDM

process corresponding to each receiver in LDM6. While LDM7 also requires one sender

process per receiver, these sender processes just handle retransmission requests and hence

do not consume much CPU time. Thus, the total CPU utilization for LDM6 is an almost

linear function of m, while for LDM7, CPU utilization is almost independent of m. In the

lossy setting, higher CPU time is needed for both LDM6 and LDM7. Since the random

packet drops were injected at all receivers, the additional CPU time needed at the sender

increased linearly with the number of receivers.

In summary, it is clear that LDM7 requires fewer bandwidth and CPU resources than

LDM6, with the resource savings increasing almost linearly with the number of receivers.

2.6 Related work

A Software Defined Network Aware Pub/Sub (SAPS) solution that uses a hybrid approach

with both Application Layer Multicast (ALM) and OpenFlow based multicast (OFM) was

proposed for IoT/M2M and other applications [7]. The messages sent to OFM use UDP,

while ALM messages use TCP. Message latency and the total number of messages exchanged

were the parameters of interest. Our work addresses reliability aspects in FMTP and in the

UPM module of the application to guarantee delivery of files.

Another recent solution called Rateless Code based Reliable Multicast (RCRM) [15]

protocol builds on Data Distribution Service (DDS), which uses the Publish-Subscribe model.

RCRM removes the use of heartbeats in DDS, and instead uses ACKs that are sent after

many received messages are decoded. It relies on a form of FEC coding for reliability. In
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contrast, FMTP does not use coding as it is designed for smaller numbers of receivers (in the

hundreds); instead it uses negative acknowledgments to obtain retransmissions on unicast

connections.

There are two IETF reliable multicast solutions: NACK-Oriented Reliable Multicast

(NORM) [16] and Asynchronous Layered Coding (ALC) [17]. NORM is an NACK-based

reliable multicast protocol that uses multicast in the first transmission attempt, and then

either multicast or unicast for retransmitting lost packets. NORM is designed for IP-

multicast, and since IP networks do not offer rate guarantees, NORM includes a rate-based

congestion control mechanism. FMTP avoids data-plane congestion control by using SDN

controllers to configure a rate-guaranteed multipoint VLAN.

Asynchronous Layered Coding (ALC) [17] is a massively scalable reliable content delivery

protocol. The data is sent on multiple channels at different rates, and encoded with FEC

for reliability. Receivers can obtain packets from multiple channels. There are no positive or

negative ACKs from receivers. Hence this solution scales to a million receivers. FLUTE [18]

is a protocol for unidirectional delivery of files to multiple receivers. It is built on ALC and

is therefore massively scalable. FMTP is designed for scenarios with hundreds of receivers,

not millions of receivers, and hence it avoids the overhead of sending to multiple channels

and FEC.

We already compared LDM7, an implementation of our MPUP architecture to an ALM

implementation, LDM6. However, there are other ALM approaches such as P2P, an example

of which is Bit Torrent [19]. For file-streams carrying new data, P2P solutions are not ideal

as they require multiple downloads before all receivers can receive all blocks. If latency

is a consideration, a network multicast solution such as our MPUP architecture is more

suitable.

2.7 Conclusions

This paper proposed and evaluated a cross-layer multicast-push unicast-pull (MPUP) archi-

tecture for reliable file-stream distribution. The architecture combines a rate-guaranteed

multipoint virtual network service, a reliable File Multicast Transport Protocol (FMTP)
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that uses a multicast-push with UDP and unicast-pull with Circuit TCP (CTCP), and an

application-layer unicast-pull module. A new version of the Local Data Manager (LDM)

application, LDM7, was implemented based on the MPUP architecture. LDM6, the current

version, uses application-layer multicast to send near real-time file-streams of meteorol-

ogy data to 240 institutional subscribers. LDM7 and LDM6 performance and resource

requirements were compared in an experimental evaluation. First, LDM7 achieves higher

throughput (lower latency) in file delivery when compared to LDM6 since the sending rate

can be higher for LDM7. Second, for a given sending rate, at which both LDM7 and LDM6

yield the same throughput performance, the sender NIC bandwidth usage and sender CPU

utilization for LDM6 increase linearly with the number of receivers in the multicast group,

while both metrics stay almost constant for LDM7. For example, with 24 receivers, to serve

a particular filestream, LDM6 needed 350 Mbps, while LDM7 needed only 12.4 Mbps in a

lossless setting and 21.4 Mbps in a lossy setting.



Chapter 3

Enhanced MPUP Architecture

3.1 Introduction

Three enhancements were made to the MPUP solution described in Chapter 2. First, the

maximum retransmission period (τsnd(n)), as defined in Equation (2.1), used by the FMTP

sender was re-defined. Second, the value setting of the sender traffic-control multicast buffer

size, bmc (see Table 2.1), was re-visited. Third, we studied the impact of increasing the

sender multicast rate rmc (see Table 2.1) on LDM7 throughput towards selecting appropriate

value. These three enhancements are described in sections 3.2, 3.3 and 3.4. Section 3.2 also

describes experimental results presenting the three metrics (throughput, FFDR and resource

utilization) defined in Chapter 2. Section 3.5 defines new metrics and presents results of the

new metrics. Section 3.6 concludes the chapter.

3.2 New maximum retransmission period design

In this section, after describing our reasons for revisiting the maximum retransmission period

definition, we propose a new method for selecting this period. To evaluate the new design,

we ran experiments using the same 1-hour NGRID traffic that was used in the experiments

presented in Chapter 2. Our experimental evaluation shows that the FFDR is better than

under the previous design, and throughput and resource utilization were largely unaffected.

28
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3.2.1 Problem statement

In Chapter 2, section 2.2, we defined the FMTP parameter maximum retransmission period

τsnd(n) for file n. This parameter limits the duration for which an FMTP sender serves

retransmission requests for file n. With this limit, an FMTP sender prevents receivers with

high packet loss rates from adversly affecting the multicast throughput of other receivers.

The specific definition of τsnd(n) in equation (2.1) was formulated on an assumption that file

transmission delay will dominate the total delay. Instead we found that propagation delay

and sending-host queueing delay were the dominant factors. The impact of this incorrect

assumption is described below.

Fig. 2.3 shows that even if fsnd is large, e.g., 5000, FFDR is not 100% when packet

loss rate is non-zero. LDM7 log files showed that a majority of unsuccessful files, i.e., files

that were not fully delivered because of sender-side retransmission period timeout, were

small-sized. For example, if fsnd = 5000 and rmc = 20 Mbps, the retransmission period for

the smallest observed file, which had a size of 0.06 KB [13], would have been set to 0.12

second. This retransmission period is so small that the sender-side timer could have expired

even when the file was still queued in the sender tc buffer because RTT could be high (e.g.,

maximum RTT was 90 ms in our 5-rack GENI slice). If this happens, none of the receivers

would have received this file, which would result in a significant number of retransmissions.

On the other hand, τsnd(n) for the largest file, which had a size of 23.7 MB [13], would

have been set to 13.17 hours. However, LDM7 guarantees to hold each file in its product

queue for only one hour. This could cause a problem when τsnd(n) is greater than one

hour because FMTP does not hold a copy of the file in its memory space; rather it serves

retransmission requests by reading blocks of files directly from the product queue. If τsnd(n)

is larger than one hour for any file, the FMTP sender could be performing book keeping

operations (waiting for retransmission requests) for files that have already been removed

by LDM7 from the product queue. Therefore, application constraints should be considered

when deciding the FMTP maximum retransmission period.

In summary, the above example illustrates our motivation for re-designing the method

for computing the FMTP-sender maximum retransmission period.
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3.2.2 Design alternatives

Two alternatives were considered: file-dependent solution, and file-independent solution.

In both solutions, an exponentially weighted moving average (EWMA) scheme is used to

dynamically adjust the value of the timer. As the file-independent solution is simpler of the

two alternatives, following Occam’s razor, we chose this solution for implementation.

File-dependent solution: An analysis on the time incurred for file delivery showed

that a significant component of the delay was buffering delay at the sending host. This

delay is incurred because the product arrival process is bursty, and there are some time

intervals in which a sudden burst of products could cause LDM7/FTMP to deliver data at

a rate higher than the tc rate. In such instances, FMTP packets will get held up in the

tc-layer buffer awaiting transmission. This queueing delay should be considered in setting

the maximum retransmission period, τsnd(n).

Considering the several protocol layers shown in Fig. 2.1, the file delivery-time can be

characterized as:

dtotal(n) = dstacks + dtc(n) + dtrans(n) + max
1≤i≤m

(2× propi + queuei(n)) + dstackr

+ max
1≤i≤m

retxi(n)

(3.1)

where dstacks and dstackr represent the delays of the network stack in the sender and the

receiver, respectively, dtc(n) is the tc-layer buffering delay incurred by file n, dtrans(n) is

the transmission delay of file n, propi is the propagation delay to receiver i, queuei(n) is the

cumulative queueing delays incurred by all the packets of the file on the path from the sender

to receiver i, and m is the number of receivers, and retxi(n) is the total delay incurred in

serving retransmissions, if any, to receiver i for file n. The reason the propagation delay

propi is multiplied by 2 is because the acknowledgment of successful file reception needs

to arrive at the sender before the maximum retransmission period timer expires. Other

delays such as transmission delay are neglected as acknowledgment packets are small. Since

processor clock speeds are typically in the GHz range, if the tc sending rate is set in the

Mbps range, the network-stack processing delays, dstacks and dstackr can be neglected. The
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delivery-time model simplifies to:

dtotal(n) = dtc(n) + dtrans(n) + max
1≤i≤m

(2× propi + queuei) + retxi(n)

=
Sn
rmc

+ dvariant(n)

(3.2)

since the transmission delay dtrans(n) can be computed for each file by the sender from

the file size Sn, and the sender multicast rate rmc, and dvariant(n) represents the variable

portion of the total delay. While propi will not change, it is difficult to isolate this value,

and is hence included along with all other variable components in dvariant(n).

To set the maximum retransmission period, the sender needs to estimate dvariant(n),

but herein lies a challenge. The EWMA scheme strives to store minimal data about each

file, and therefore typically stores just an average value, which is updated based on each

new measurement. But in this context, each measurement provides a dtotal(n), which is

a function of file size Sn. As the FMTP sender knows the starting time point (tstart(n))

at which file n was transmitted, and the ending time point (tend(n)) at which the sender

receives the last confirmation of successful reception of all blocks of file n. The time interval

tend(n)− tstart(n) offers the FMTP sender a measurement for dtotal(n). Next, the FMTP

sender can subtract out the transmission delay Sn/rmc for file n to obtain dvariant(n). But

this dvariant(n) cannot be used directly in the EWMA average estimation as it depends upon

file size. Therefore, we propose to divide this delay dvariant(n) by the file size expressed

in packets (assuming maximum sized packets) to normalize this measure before applying

EWMA.

An average value of per-packet variable delay is denoted EstDelay. Upon the successful

acknowledgement of a file, EstDelay is updated as follows:

EstDelay = 0.875× EstDelay′ + 0.125× dvariant
Sn/P

(3.3)
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where EstDelay′ is the current average value, and P is packet size. Further, we define

DevDelay as:

DevDelay = 0.75×DevDelay′ + 0.25× |dvariant
Sn/P

− EstDelay| (3.4)

where DevDelay′ is an estimate of the current deviation. In the above formulations, the

0.875/0.125 and 0.75/0.25 weights are recommended based on the successful use of these

values for retransmission timeout computation by a TCP sender [20].

The maximum retransmission period for file i by:

τsnd(n) = dtotal(n) = EstDelay × (Sn/P ) + 4×DevDelay × (Sn/P ) + Sn/rmc, (3.5)

per (3.2). In other words, the EWMA approach is applied on the variable portion of the

delay normalized to file size expressed in packets, and the transmission delay of the file is

added to this variable portion.

File-independent solution: Typically, each protocol layer sets its own parameters to

achieve its objectives. For example, in order to achieve reliable data delivery, TCP selects

its own retransmission timeout value for its segments. However, in our FMTP design, as

described in Chapter 2, section 2.4, for performance reasons, the FMTP sender does not

create its own local copy of a product. Instead, it serves blocks of data, for the original

multicast as well as for retransmission, directly from the product queue held by the LDM7

application. Given this design choice, the time duration for which LDM7 guarantees storage

for a product in its product queue becomes a critical determinant of the FMTP maximum

retransmission period. Therefore, in this file-independent solution, the application, e.g.,

LDM7, provides a single value for the maximum retransmission period for all files:

τsnd(n) = c (3.6)

While the application, e.g., LDM7, necessarily needs to dictate a maximum value for this

FMTP timer (given the use of this approach whereby FMTP serves files directly from
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a memory-mapped structure held in application space), layers below FMTP and path

characteristics dictate a minimum timer value. For example, LDM7 guarantees that files will

be held in its product queue for 1 hour, which sets the maximum value for the timer. On

the other hand, RTT, queueing delays, tc-layer buffering delays, packet loss rates (which

determine the time for retransmissions) should be considered to determine the minimum

value for the timer as shown in (3.1). As the lower-layers-dictated timer value could be

larger than the application-dictated timer value, a wholistic approach is required to setting

this timer value. Such a solution is proposed below.

The solution is to deploy an external application management system that collects

LDM7 log files from the sender, and parses these log files at fixed intervals (e.g., one hour)

to determine what would have been an ideal value for the file-independent single value c

shown in (3.6). The ideal value is simply the maximum dtotal(n) across all files sent in the

past interval. In other words, a post-facto analysis is proposed to determine the ideal for

already transmitted files in a given environment (which includes the file-arrival process, set

of receivers and the network paths). This computed ideal value is then used in an EWMA

scheme to update a running average value that is then used as a prediction for the ideal

value for the files that are to be transmitted in the next interval. This predicted ideal value

is then set as c for the FMTP sender to use for all files transmitted in the next interval.

This method is represented as follows

c =
7

8
× c′ + 1

8
× cideal, (3.7)

where c′ is the c value used in the past interval, cideal is the ideal value that should have

been used in the past interval, and c is the new value computed for use in the next interval.

This process is repeated at the end of each time interval.

As an example, we parsed the sender-side log file created when the 1-hour NGRID

feedtype traffic trace was sent to multiple receivers on the 5-rack GENI slice, and cideal was

found to be 2 mins. In other words, every file was delivered to all receivers in less than

2 mins. Had the FMTP sender maximum retransmission period been sent to 2 min, no

receiver would have received a rejection to its request for block retransmissions for any file
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in the 1-hour trace. A smaller value for the maximum retransmission timer period is better

than the default 1-hour value required by the LDM7 application because the FMTP layer

needs to maintain its per-file per-receiver state information for the duration of the maximum

retransmission timer.

Given our argument in favor of simplicity, we chose to implement the file-independent

solution. This solution is evaluated on the same 5-rack GENI slice using the same 1-hour

NGRID traffic trace as used in the experiments described in Chapter 2. The next three

sub-sections present the same three output metrics used in Chapter 2, FFDR, throughput,

and resource requirements.

3.2.3 FFDR measurement

An experiment was executed with m = 16, rmc = 20 Mbps and p = 1%. The LDM7 sender

logs the start timestamp tstart(n) for each file n (time at which the file was inserted into the

PQ) and the end timestamp tend(n) for file n (time at which the sender receives the last

confirmation of successful reception of all blocks of file n). From these timestamps, dtotal(n)

was computed as tend(n) − tstart(n) for each file n. Analysis of the measured values of

dtotal(n) for all files in the 1-hour trace revealed that cideal was 2 mins. for this experimental

setting and this traffic trace. We refer to dtotal(n) as the delivery-time for file n.

In order to study the impact of loss rate, we conducted another run with m = 16, r = 20

Mbps and p = 2%. Fig. 3.1 shows a histogram of dtotal(n) for the whole trace for both

settings of the artifically injected packet loss rates 1% and 2%.

Most of the files required a delivery-time of a few seconds while some of them needed

over 100 seconds. The maximum delivery-times in the p = 1% run and p = 2% run were

113.3 seconds and 113.5 seconds, respectively. We can draw two conclusions from Fig. 3.1.

First, the impact of loss rate on delivery-time is not significant even when packet loss rate

was 2%. Second, the FMTP-sender maximum retransmission period timer c could have been

set to 2 minutes for this environment and traffic trace.

With conclusion 2, we set the maximum retransmission period to 2 minutes, and executed

the experiment without changing any of the other parameters except the packet loss rate p,

which was varied from 0% to 2% in steps of 0.5%. Fig. 3.2 shows that our new solution for
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Figure 3.2: FFDR with new τsnd(n) design

setting the maximum retransmission period could achieve 100% FFDR, if the environment

does not suffer from significant variations. In other words, if the new c value computed in

each interval is close to the cideal value, even a small value of the maximum retransmission

period such as 2 mins is sufficient. Recall that in the previous design, the file-dependent
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timer τsnd(n) would have been 13.17 hours for the largest sized file given the other parameter

settings. For all the following experiments, we use the 2-min timer value as the environment

and traffic trace was unchanged.

3.2.4 Throughput measurement

A set of experiments were executed to: (i) compare the throughput of LDM6 and LDM7, (ii)

find a suitable value for the base rate r to achieve a close throughput for fair comparison.

In this set of experiments, throughput was measured for both lossless and lossy conditions.

In the lossy case, the artificially injected packet loss rate was set to 1%. The base rate r

was varied from 10 Mbps to 60 Mbps, and for each setting of r, two values, 8 and 16 were

used for the number of receivers m. Each run used the same 1-hour NGRID feedtype.

Throughput results for LDM7 with the new design for the maximum retransmission

period are similar to the results presented in Chapter 2 under the old design. Fig. 3.3 shows

the average throughput for LDM6 and LDM7 in the lossless and lossy settings. Regardless

of the number of receivers, LDM7 achieved better throughput than LDM6. In the lossless

setting, when base rate r was set to 60 Mbps, LDM7 achieved an average throughput of 22

Mbps while LDM6 achieved only 7 Mbps, which is roughly one-third of the LDM7 value.

In addition, Fig. 3.3 shows that r = 20 Mbps is still a fair choice for comparing the

resource requirements of LDM6 and LDM7 as the throughput is roughly equal.

3.2.5 Resource requirements

LDM6 and LDM7 were executed with several combinations of parameter settings. The

number of receivers m was varied from 4 to 24. The same lossless and lossy settings (0% and

1%) were used in these experiments. Fig. 3.4a shows a time-averaged bandwidth comparison

between LDM6 and LDM7 as a function of the number of receivers. These results also

do not show a significant difference when compared to the results presented in Chapter 2

inspite of the change in the maximum retransmission period. Since LDM6 needs to send m

copies of all products, it consumes more bandwidth than LDM7, and further the difference

in bandwidth requirement between LDM6 and LDM7 increases with the number of receivers.

For LDM7, bandwidth usage is almost independent of the number of receivers, and is 12 and
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Figure 3.3: Impact of tc rate limiting on throughput under lossless/lossy conditions; m:
number of receivers

18 Mbps for the 0% and 1% cases settings, respectively. LDM6 bandwidth usage increases

linearly, reaching 364 Mbps for 24 receivers. Thus, LDM7 offers a significant reduction in

the access-link bandwidth needed to support real-time data distribution.

Figs. 3.4b plots time-averaged sender CPU utilization for LDM6 and LDM7 as a function

of number of receivers. These results also do not show a significant difference when compared



3.2 New maximum retransmission period design 38

4 8 12 16 20 24

0
10

0
20

0
30

0

Number of Receivers

Ba
nd

w
id

th
 (M

bp
s)

LDM6, 0%

LDM6, 1%

LDM7, 1% LDM7, 0%

(a) Time-averaged sender NIC bandwidth usage

4 8 12 16 20 24

0
1

2
3

4
5

6

Number of Receivers

C
PU

 U
til

iz
at

io
n 

(%
) LDM6, 1%

LDM7, 1% LDM6, 0%

LDM7, 0%

(b) Time-averaged sender CPU utilization

Figure 3.4: Resource utilization; r = 20 Mbps; (LDM version, loss rate) are shown for each
plot

to the results presented in Chapter 2. The explanation for the graphs is the same as that

provided for Fig. 2.6, Chapter 2.

Overall, the new sender maximum retransmission period design does not impact the

advantages of LDM7 over LDM6 in bandwidth and CPU requirements.



3.3 Sender tc-layer buffer size revisit 39

3.3 Sender tc-layer buffer size revisit

In Chapter 2, Section 2.5.2, we noted that there was a significant difference in the size

of the tc-layer buffer size needed for LDM6/CTCP (only 32.4 MB) vs. the size needed

for LDM7/FMTP/UDP (600 MB). In this section, we describe our in-depth study of this

difference to determine whether a smaller-sized buffer could be used for LDM7/FMTP/UDP.

Section 3.3.1 describes a set of experiments to compare the tc-layer buffer size needed by

LDM6/CTCP and by LDM7/FMTP/UDP. Also, this section describes a set of experiments

to determine the minimum tc-layer buffer size needed for LDM7/FMTP/UDP as a function

of the sender multicast rate. The results of the experiments presented in Section 3.3.1 show

that larger sized buffers are needed for LDM7/FMTP/UDP when compared to LDM6/CTCP,

but the reasons for this difference are unknown. Section 3.3.2 describes an experimental

study conducted to understand these differences. To remove application-layer differences

(i.e., differences between LDM6 and LDM7 could influence results), we used a common

application iperf3 to study differences in three transport-layer protocols, TCP, CTCP and

UDP. Finally, Section 3.3.3 translates the findings from Section 3.3.2 into answers to our

question of why LDM7/FMTP/UDP needs a larger tc-layer buffer than LDM6/CTCP.

3.3.1 Experiments to determine minimum tc-layer buffer size

for LDM7/FMTP/UDP

We first conducted a set of four experiments to study the impact of tc-layer buffer size

before undertaking a systematic experimental study to determine the minimum tc-layer

buffer size needed for LDM7/FMTP/UDP for different values of the sender multicast rate,

rmc. For all experiments, we used the same 5-rack GENI slice used in the experiments

described in Chapter 2, Section 2.5.1, and the same 1-hour NGRID data was used to create

the input file-stream. The number of receivers, m, was 16, the sender multicast rate, rmc,

was 20 Mbps, and no artificial packet losses were injected. The maximum RTT, as shown in

Table 2.2 of Chapter 2, Section 2.5.2, was 90ms.

In experiment 1, we ran LDM6/CTCP with the TBF tc rate set to r×m = 20×16 = 320

Mbps, and the limit parameter set to 2×BDP ×m = (2× 20× 0.09× 16)/8 = 7.2 MB.
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The -s (or -stats or -statistics) option can be used with tc to obtain statistics on the

number of packets dropped by the tc layer. With these settings of the TBF and CTCP

parameters, no packets were dropped. In experiment 2, LDM7/FMTP/UDP was executed

with the multicast HTB class rate set to 20 Mbps, and the corresponding BFIFO buffer size

set to 7.2 MB as in experiment 1. In this run, tc statistics reported that 623019 packets were

dropped. In experiment 3, LDM7/FMTP/UDP was executed again, but with the BFIFO

buffer size corresponding to the multicast HTB class increased to 300 MB, as was done in

the experiments described in Chapter 2, Section 2.5.2. In this run, tc statistics showed

zero dropped packets. Finally, in experiment 4, the the BFIFO buffer size was decreased

to 200 MB, and LDM7/FMTP/UDP was executed. Packet drops were again observed

at the tc-layer (tc statistics showed 48354 dropped packets). In summary, these four

experiments confirmed that the tc-layer buffer size used with LDM6/CTCP was insufficient

for LDM7/FMTP/UDP. It appears that for this particular experimental setting, a 300-MB

tc-layer buffer is needed for LDM7, which is consistent with a number that was estimated

for the NGRID feedtype, using an analytical approach, in our prior work [13].

Next, we conducted a systematical experimental study of LDM7/FMTP/UDP/tc behav-

ior by varying the sender multicast rate, rmc, and lowering the tc-layer buffer size for each

setting of rmc until the dropped-packet rate reported in tc statistics reached 0. Fig. 3.5

shows that the required buffer size dropped from 300 MB to 20 MB as the sender multicast

rate, rmc, was increased from 20 Mbps to 500 Mbps.

The next section addresses the question of why LDM7/FMTP/UDP needs a larger

buffer than LDM6/CTCP. But before answering this question, we point out that the tc-

layer buffer size needed for LDM6/CTCP increases linearly with the number of receivers

m, which is not the case for the tc-layer buffer needed for the multicast HTB class for

LDM7/FMTP/UDP. The tc-layer buffer size needed for the retransmission traffic HTB

class for LDM7/FMTP/UDP grows with m but at a much lower rate since packet loss rate

is typically small, e.g., if there are 100 receivers and the packet loss rate is 1%, the tc-layer

buffer size for the retransmission traffic HTB class is only twice BDP.
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Figure 3.5: Minimum loss-free tc buffer size required for various multicast rates

3.3.2 Comparison of TCP, CTCP and UDP behavior in response to a full

tc buffer using a common application iperf3

Appendix A describes the part of the Linux implementation of the network stack, which

relates to how TCP, CTCP and UDP behave when the operation to enqueue a packet to the

tc buffer fails due to a lack of space. The function that calls tc-layer enqueue function is an

IP-layer function, but this IP-layer function merely passes through the return status from

the enqueue function to the calling transport-layer function. The differences in behavior of

the three transport-layer protocols lie in the manner in which the calling transport-layer

function reacts to a failed enqueue attempt.

Irrespective of the calling transport-layer function, if there is no space in the tc-layer

buffer, the function responsible for enqueueing the packet will simply drop the packet, and

send back a failed response to the calling function. A TCP sender will react to a failed-

enqueue response by entering the CWR state, and halving the congestion window (cwnd). A

UDP sender will not react to the failed-response status because UDP does not offer reliable

transport service. With CTCP, the sender also ignores the failed-response status. This is

because CTCP assumes that the underlying network offers a rate-guaranteed path, and

therefore packet losses occur only due to bit errors, not buffer overflows. CTCP makes no
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Figure 3.6: Experiment 1 with TCP Reno

attempt to reduce its effective sending rate (e.g., by dropping its cwnd) when a packet is

dropped by the tc layer. Therefore, with CTCP, it is important to ensure that the tc buffer

size is at least as large as its cwnd.

The above description of how TCP, CTCP and UDP work is based on an analysis of the

source code. Next, we verify the accuracy of this description through four experiments. In

all four experiments, iperf3 was executed on a two-node GENI slice with different transport

protocols and TBF was used as the tc-layer queueing discipline. The transport protocols

used were as follows: Experiment 1: TCP Reno, Experiments 2 and 3: CTCP, Experiment

4: UDP. In all experiments, the iperf3 flow was executed for 30 seconds, with a sending

rate of 80 Mbps. The tc TBF rate was set at 20 Mbps and the burst parameter was set

to 50 KB. The RTT between the iperf3 sender and receiver was 1 ms.

In Experiment 1, the TBF limit parameter was set to 200 KB. Fig. 3.6 shows the
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Figure 3.7: Experiment 2 with CTCP and no retransmission

iperf3 sender log. The growth in cwnd can be observed in this log. Further, the log shows

that 4 packets were dropped. Other than the packet drop in the first second, the remaining

three packet drops occurred just as cwnd value reached the tc-layer buffer size (as set by

TBF limit parameter) of 200 KB. Alll 4 packets were dropped by the tc layer at the sender,

as verified by tc statistics. After each packet drop, cwnd was halved. This experiment

validates our two key observations from an analysis of the source code that if the tc-layer

enqueue function fails due to a lack of buffer space, (i) the packet will be dropped , and

(ii) TCP sender will enter the CWR state, and reduce cwnd by a factor of 2. Further, the

experiment shows that since the TCP sender sets its size of outstanding bytes to a maximum

of two parameters: cwnd and receiver’s advertised flow window, as long as this size is smaller

than the TBF limit parameter, no packets are dropped by the tc layer. But if TCP is

configured correctly for high-BDP paths, its cwnd could grow to values larger than the
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Figure 3.8: Experiment 3 with CTCP and retransmission

tc-layer buffer size causing packet drops at the sender itself.

In Experiment 2, the TBF limit parameter was set to 600 MB to avoid packet drops.

CTCP was initialized with its bandwidth parameter set to 20 Mbps to match the TBF rate

setting, and its fcwnd parameter was set to 400 packets. Fig. 3.7 shows that cwnd in CTCP

was fixed at 707 KB as expected. Since the tc-layer buffer size, at 600 MB, is larger than

the total amount of data sent, 69.2 MB, there was no chance for packet drops at the tc-layer.

The tc statistics verified that no packets were dropped by the tc-layer.

In Experiment 3, TBF limit parameter was lowered to 200 KB for the purpose of

observing packet drops. The CTCP bandwidth parameter remained unchanged but the

fcwnd parameter was set to 300 packets. With Ethernet’s Maximum Transmission Unit

(MTU) size of 1500 B, the fcwnd parameter was effectively 450 KB. As this size is larger than

the 200-KB tc-layer buffer size (as set by the TBF limit parameter), packet drops were
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Figure 3.9: Experiment 4 with UDP

expected. Fig. 3.8 shows that retransmissions occurred throughput the run. This finding is

consistent with our source-code analysis. Recall CTCP does not make any alterations to its

cwnd when it receives a failed-response status from the tc-layer function (when the latter is

unable to enqueue a packet due to lack of buffer space). Therefore, the CTCP function keeps

sending packets, through the IP layer, down to the tc-layer, which in turn keeps dropping

packets, and causing retransmissions. In total, there were 6424 retransmissions as seen in

Fig. 3.8. The conclusion is that with CTCP it is critical to make the TBF limit parameter

as large as the CTCP fcwnd parameter.

Finally, UDP behavior was tested in Experiment 4. The TBF limit parameter was

still set at 200 KB. While the 80-Mbps sending rate specified as a run-time argument in the

iperf3 send command was not relevant in the first three experiments because TCP/CTCP

sending rate is largely controlled by cwnd, the iperf3 sending rate is relevant for UDP.

Given the mismatch between iperf3 passing data down to the UDP layer at 80 Mbps,

and the tc-layer transmitting packets at only 20 Mbps, packet drops are inevitable. For
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a UDP flow, packet losses can only be observed in the iperf3 receiver log, not the sender

log, because UDP does not support retransmissions. Therefore, unlike for the first three

experiments in which the iperf3 sender log was shown, for experiment 4, the receiver log is

shown in Fig. 3.9. The per-sec number of dropped packets was roughly constant across the

whole flow. As iperf3 was sending data constantly at 80 Mbps to the UDP layer, which was

then passing it down through the IP layer to thetc layer, the drop rate is almost constant.

This experiment verifies our source-code findings that the UDP transmit function does not

react to failed-response status from the lower layers, but instead keeps sending packets at

the rate dictated by the application even if packets are being dropped by the tc layer.

In summary, the source-code analysis and four experiments revealed how tc interacts

with TCP Reno, CTCP and UDP. These experiments helped us better understand tc

queueing, TCP CWR state, and the Linux kernel network stack.

3.3.3 Explanation for the tc-layer buffer size required for

LDM7/FMTP/UDP

This section translates the findings from the iperf3 experiments described in Section 3.3.2

into answers to our question of why LDM7/FMTP/UDP needs a larger tc-layer buffer

than LDM6/CTCP. As learned from the iperf3 experiments, in CTCP, cwnd limits the

rate at which packets are sent, through the IP-layer, to the tc-layer for enqueueing before

transmission. If the tc-layer buffer size, which is controlled by the TBF limit parameter, is

set to 2×BDP ×m, and the CTCP fcwnd parameter is set to 1.2×BDP , as indicated in

Table 2.2 of Chapter 2, Section 2.5.2, where BDP is computed using the largest RTT among

all receivers, then the total size of enqueued packets from all m CTCP connections (one

connection per receiver) will not exceed the tc-layer buffer size. Therefore, no packets will

be dropped by the tc layer.

To verify this relationship between the CTCP fcwnd parameter and the TBF limit pa-

rameter, we conducted two experiments with LDM6/CTCP. In Experiment 1, LDM6/CTCP

was run with one sender and one receiver. The TBF rate parameter was set to 20 Mbps

and the limit parameter was set to 450 KB. The CTCP parameter fcwnd was set to 120
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packets (which is equivalent to 180 KB). The tc statistics verified that no packets were

dropped by the tc layer.

In Experiment 2, LDM6/CTCP was run with one sending host and m = 16 receivers. In

other words, there were 16 CTCP connections, one to each receiver, from the single sending

host. The TBF queueing discipline was used at the tc layer, with its rate parameter set to

320 Mbps and limit parameter set to 7.2 MB. Packets from all 16 CTCP connections were

sent to the same TBF queue. The CTCP parameter fcwnd was set to 400 packets (which is

equivalent to 720 KB). Since the CTCP parameters apply to each of the 16 connections, the

total size of packets sent down to the tc layer is 16 × 720 KB, which is 11.52 MB. Since

this number is larger than the tc-layer buffer size (as the limit parameter was set to 7.2

MB), packets were dropped by the tc-layer. The tc statistics showed that 8147175 packets

were dropped. These results are consitent with our findings from the iperf3 experiments

that cwnd is the key determinant of tc-layer buffer size. In summary, for LDM6/CTCP,

as long as the CTCP fcwnd parameter is set to 1.2 × BDP , and the tc-layer buffer size

is set to 2×BDP ×m via the TBF limit parameter, with the delay component of BDP

corresponding to the highest RTT from among all receivers, there will be no packet drops at

the tc layer.

On the other hand, UDP has no parameter comparable to cwnd to limit the number of

packets passed down to the tc layer. The only way to avoid packet drops at the tc layer is

to compute the minimum loss-free buffer size required to hold packets from data products

passed down by LDM7/FMTP to the UDP layer for each setting of the sender multicast

rate (multicast HTB class rate rmc). As an example, for a 1-hour segment of the NGRID

feedtype, the required minimum loss-free tc-layer buffer size, bmc, is plotted as a function of

rmc in Fig. 3.5. This required buffer size will depend upon the feedtype characteristics, as

demonstrated in prior work [13]. Since the product inter-arrival times and product sizes do

change from day-to-day, an exponentially weighted moving average (EWMA) algorithm was

proposed to modify rmc and bmc on a day-by-day basis [13]. Therefore while packet drops

at the tc layer are not completely avoidable, the drop rate can be kept low by using this

algorithm to size the tc-layer buffer.
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3.4 Impact of sender multicast rate on LDM7 throughput

In section 2.5.5, Chapter 2, we compared the throughput measurement of LDM6 and LDM7.

Fig. 2.4 shows that the throughput plots of LDM7 flattened out as the base rate r increased.

Section 2.5.5 also recommended the use of a high base rate r in order to leverage the

advantages of LDM7 and achieve low latency. An extra run with r = 800 Mbps executed on

the 5-rack slice yielded an average throughput of only 75 Mbps, even without artificially

injected packet losses. Our expectation was that multicast packets would be sent unhindered

at the VLAN rate of 800 Mbps, and hence we expected a throughput close to this rate.

Therefore, the purpose of the work described in this section is to explain this interesting

finding.

We found that there are three factors that impact throughput: RTT, tc buffering delays,

and processing delays. When the VLAN rate rmc is high, e.g., 8 Gbps, transmission delays

drop, as do tc buffering delays. On low-RTT paths, processing delays become the dominant

factor. The impact of RTT is explored in Sections 3.4.1, the impact of tc buffering delays is

presented in Section 3.4.2, and the impact of processing delays is presented in Section 3.4.3.

3.4.1 Impact of RTT on LDM7 throughput

The experiments described in Chapter 2 were executed on a 5-rack GENI slice, in which

the RTTs from hosts on the sender rack to the four receiver racks varied (the RTT values

were 36, 41, 50, and 90ms, to the four receiver racks). Hence, we hypothesized that the

throughput experienced by files delivered to the highest-RTT receivers could be pulling

down the average throughput values.

For better control of RTT, we ran a new experiment with only one sender and one

receiver, both located in the same rack. Different RTT values were emulated on the path by

artificially adding a delay to each packet with the tc netem module.

Two sets of experiments were executed with the base rate r set to 20 Mbps and 500

Mbps. In each set of experiments, five representative RTT values were used, 1 ms, 10 ms, 20

ms, 50 ms, and 100 ms. The sender tc multicast buffer (bmc) size was set to 600 MB. The

new maximum retransmission period design was applied with c set to 2 minutes.
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Figure 3.10: Throughput for r = 20 and r = 500 Mbps

From the log files generated in the experiments, the average throughput across all

aggregates (groups of files) were computed and plotted against RTT as shown in Fig. 3.10.

When RTT = 1 ms, the r = 20 Mbps plot shows a throughput value of 0 .54 Mbps. When

RTT was increased to 100 ms, this throughput dropped to 0.496 Mbps. The r = 500 Mbps

plot shows a more significant drop from 161.73 Mbps to 4.49 Mbps. But even operating

when RTT is just 1 ms, which means RTT should not have a major impact, with a base

rate r of 500 Mbps, LDM7 could only achieve a throughput of 161.73 Mbps.

Two conclusions can be drawn from these results. First, when the base rater (which is

the rate of the multipoint VLAN) is low, there is some other dominant factor determining

throughput, not RTT. But when the base rate is higher, RTT plays a significant role in

lowering throughput. Second, RTT alone does not explain why throughput is not equal to,

or even close to, the VLAN rate. There is some other factor.

3.4.2 Impact of the sender tc buffering delay on throughput

We developed a script to parse the LDM7 receiver log file and extracted the elapsed latency

for each file, which is the time taken to deliver a file completely from the sender to the

receiver. For each data product (file), the LDM7 receiver log file shows the time at which the
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Table 3.1: Evidence of sender tc buffer buildup; r = 20 Mbps, p = 0%, RTT = 0.2 ms

File creation-time reception-completion-time size latency throughput
(No.) (HHMMSS.ms) (HHMMSS.ms) (B) (ms) (Mbps)

0 230119.375 230119.408 90654 32.98 21.97

1 230119.577 230119.610 91495 33.53 21.83

2 230119.591 230119.631 50421 39.62 10.18

product was completely received by FMTP and logged by one of the LDM7 processes at the

receiver (which we call reception-completion-time), as well as the time at which the product

was created, which means the time instant when it was inserted into the product queue

at the upstream LDM7 server (which we call creation-time). The product creation-time is

sent as part of the metadata associated with each data product [21]. Thus, this sender-side

timestamp is obtained for each product by the receiver, and saved in the log file. The

difference between these two time values in each log entry is the latency. The Network Time

Protocol (NTP) was used to synchronize clocks of all hosts running LDM7.

To check whether there is tc buffering delay, we analyzed the LDM7 receiver logs.

Table 3.1 shows the creation-time, reception-completion-time and size for three selected

products, which were obtained from the receiver log. The latency value was computed

by taking the difference between the reception-completion-time and creation-time. The

throughput value was obtained by dividing the product size by latency.

The throughput values computed for files 0 and 1 are 21.97 and 21.83 Mbps, respectively,

which are slightly higher than the VLAN rate of 20 Mbps. Since the tc-rate shaping at

the sender is accurate, the files would have been multicast only at 20 Mbps, and therefore,

theoretically, the throughput cannot be higher than 20 Mbps. Our best explanation for these

higher throughput values is a lack of perfect clock synchronization. But more relevant to

the focus of this sub-section, we can assert that files 0 and 1 did not experience tc buffering

delays.

Next, consider whether file-2 packets experienced tc buffering delays. To determine when

the time instant at which the sender can transmit file 2, consider when file 1 transmission

ended. The instant when file transmission ended is 230119.577 + 91495 × 8/20000000 =

230119.613. File 2 creation-time, as reported in Table 3.1, is 230119.591. Therefore, file
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Figure 3.11: Throughput under different rmc; p = 0%, RTT=0.2 ms

1 would have been still under transmission, when file 2 was inserted into the product

queue. File 2 transmission could only have begun at 230119.613, which is the time instant

when file 1 transmission ended. File 2 transmission would have ended at 230119.613 +

50421× 8/20000000 = 230119.633. The difference between file-2 reception-completion-time

230119.631, and 230119.633 is only 2 ms, which could be attributed to processing delays

and/or lack of perfect clock synchronization. This analysis shows that file-2 latency shown

in Table 3.1 consists primarily of transmission delay (20.2 ms) and tc buffering delay (19.45

ms). The buffering delay was computed by subtracting the transmission delay, 20.2 ms, from

the latency, 39.62 ms. In summary, file-2 packets did experience tc buffering delays causing

the throughput to drop from the ideal value of 20 Mbps (VLAN rate) to 10.18 Mbps.

3.4.3 Impact of other delay components on throughput

On a 0.2-ms RTT path, we wanted to test the hypothesis that increasing the VLAN rate

could reduce the tc buffering delay to close to 0, and consequently, allow for throughput

values to be close to the VLAN rate. For this experiment, a slice was created between two

hosts in one ExoGENI rack with 10 Gbps NICs. The RTT was 0.2 ms. Fig. 3.12 shows

throughput vs. VLAN rate varied from 500 Mbps to 8 Gbps. To our surprise, the average
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Table 3.2: Example latencies for five products; r = 8 Gbps, p = 0%, RTT = 0.2 ms

File creation-time reception-completion-time size latency throughput
(No.) (HHMMSS.µs) (HHMMSS.µs) (KB) (ms) (Mbps)

0 181005.809918 181005.812516 90.654 2.598 279.15

1 181006.011918 181006.014427 91.495 2.509 291.73

2 181006.025918 181006.027633 50.421 1.715 235.20

throughput was still low, reaching only 350 Mbps when the VLAN rate was 8 Gbps.

To understand this result, we consider the three products shown in Table 3.2. The

transmission delay of file 0 is 90.7 µs. The one-way propagation delay is 100 µs (since RTT

is 0.2ms). Therefore, we expected the latency to be just 190.7 µs, but the actual latency was

2.598 ms. As the packets of this file could not have experienced tc-buffering delays, this

extra delay of 2.407 ms could be due to processing delays in the networking protocol layers,

FTMP, UDP, IP, and tc, or due to lack of perfect clock synchronization.

A similar analysis of file 1 latency is as follows. The transmission delay of file 1 is 91.5

µs, and hence the ideal latency should be 191.5 µs, but the actual latency is 2.509 ms, which

explains the low throughput of 291.73 Mbps even though the VLAN rate was set to 8 Gbps.

File 1 ended its transmission at 181006.011918 + 91.495×8/8000000 = 181006.012009, which

was earlier than the time when File 2 was created. This computation shows that file-2

packets would not have experienced any tc buffering delay (file-1 packets did not suffer from

tc buffering delays either because file-0 was fully transmitted before file-1 was inserted into

the product queue).

Finally, we computed ideal latency, which is defined to be transmission delay plus one-way

propagation delay, which is Sn/rmc + RTT/2 for file n. The real latency is computed as

described above. Fig. 3.12 shows these delays for the first 200 files of the 1-hour NGRID

trace under two settings of the VLAN rate 500 Mbps and 8 Gbps. The difference between

the real latency and the ideal latency was higher with the 500-Mbps VLAN-rate setting

than with the 8-Gbps setting. This could be due to processing delays, or due to tc-buffering

delays in the 500-Mbps setting. Further in-depth studies, which measure processing times of

networking software, are required to determine whether processing delays could become the

dominant factor in high-speed networks.
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Figure 3.12: Ideal latency vs. actual latency for individual files; rmc is 500 Mbps or 8 Gbps;
p = 0%, RTT=0.2 ms

Fig. 3.13 illustrates the pipelining effect between the various components of latency.

On a low-rate VLAN, we expect transmission delay to dominate on paths with small

propagation delays, e.g., in datacenter networks. The packet processing delays are effectively

hidden behind the transmission delays. This model explains the latency results described in

Section 3.4.2. For example, the latencies of file 0 and file 1 in the 20-Mbps VLAN-rate setting,

shown in Table 3.1, were completely determined by transmission delays. On the other hand,

the file-0 latency in the 8-Gbps VLAN-rate setting, shown in Table 3.2 was determined by

processing delays, and/or clock synchronization delays (NTP clock synchronization in LANs

is known to have accuracy in the order of 1 ms [22]).

3.5 New metrics

This section describes two new metrics for the characterization of an MPUP system. Section

3.5.1 defines a metric called file latency and presents results comparing LDM6 and LDM7

on this metric. Section 3.5.2 defines a metric called block retransmission ratio and presents

experimental results for this metric.
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Figure 3.13: The pipelining effect of packetization; small propagation delay assumed (e.g.,
datacenter networks

3.5.1 File latency

Most of the IDD feedtypes have a requirement for near-real-time product delivery. Since the

IDD feedtypes mostly carry weather data, the value of the data products decreases with

time. The throughput metric defined in Chapter 2 was per file-set rather than per file. Our

reasons for this using this average file-set throughput metric were provided in Chapter 2. In

this section, we compare the latency distribution obtained when using LDM6 vs. LDM7.

The LDM7 receiver log files generated in the experiments described in Section 2.5.5 were

reused for this study. For each data product, the receiver log file shows the time at which

the product was completely received by FMTP and logged by one of the LDM7 processes at

the receiver, as well as the time at which the product was created, which means the time

instant when it was inserted into the product queue at the upstream LDM7 server. The

difference between these two time values in each log entry is the file latency. The Network

Time Protocol (NTP) was used to synchronize clocks of all hosts running LDM. The latency

distributions are almost identical for the four nodes in each of the receiver sites of the 5-rack

GENI slice used in the experiments. Therefore, we arbitrarily pick one node in each receiver

site, and parse the corresponding receiver log to obtain latency.

Fig. 3.14 shows the latency distributions for both LDM6 and LDM7. The upper row

shows the latency histograms of four different sites when running LDM6. The lower row

shows the latency histograms of the same four nodes when running LDM7. The latency

distribution with LDM7 is similar for receivers at different sites.



3.5 New metrics 55

LDM6 (OSF)

Latency (s)

F
re

qu
en

cy

0 20 40 60 80 120

0
40

00
80

00

LDM6 (UH)

Latency (s)

F
re

qu
en

cy

0 20 40 60 80 120

0
40

00
10

00
0

LDM6 (WSU)

Latency (s)

F
re

qu
en

cy

0 20 40 60 80 120

0
10

00
0

20
00

0 LDM6 (SL)

Latency (s)

F
re

qu
en

cy

0 20 40 60 80 120

0
50

00
15

00
0

LDM7 (OSF)

Latency (s)

F
re

qu
en

cy

0 20 40 60 80 120

0
50

00
15

00
0 LDM7 (UH)

Latency (s)
F

re
qu

en
cy

0 20 40 60 80 120

0
50

00
15

00
0 LDM7 (WSU)

Latency (s)

F
re

qu
en

cy

0 20 40 60 80 120

0
50

00
15

00
0 LDM7 (SL)

Latency (s)

F
re

qu
en

cy

0 20 40 60 80 120

0
50

00
15

00
0

Figure 3.14: Latency distribution: m = 16, r = 20 Mbps
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Figure 3.15: Latency distribution: m = 16, r = 60 Mbps

Except for the OSF receivers (the OSF rack receivers had the highest RTT of 90ms from

the sender), LDM6 outperformed LDM7 for receivers in all other sites when r was set to

20 Mbps. The (average latency, maximum latency) for LDM6 in the WSU, SL, and UH

receivers were (3.6 sec, 37.3 sec), (6.1 sec, 56.3 sec), and (11.6 sec, 93.4 sec), respectively.

The different latency values can be explained by the sequential serving of TCP segments to

each receiver by the sending host. Since the RTT values are 36, 41, and 50 ms, for WSU,

SL and UH receivers, respectively, the latency values are correspondingly smallest for the

WSU receivers and largest for the UH receivers in a comparison across these three racks.

For LDM7, the average latency was approximately the same at 12.7 sec, and the maximum

latency was approximately 112.9 sec for receivers at all four sites, since all receivers are

served at the same time. The differences in RTT between receivers at the four sites does not
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play an important role with LDM7 because the RTT is incurred only once for each product,

and RTT is in ms, while the buffering delays at the sending host increase the average and

maximum latency values to sec. LDM6 achieved an average latency and maximum latency

of 55.2 sec and 315.4 sec in OSF receivers, which are higher than the LDM7 values.

Our reasons for setting the base rate r to 20 Mbps, as stated in Chapter 2, was that at

this setting LDM6 and LDM7 achieved the same average throughput, which then allowed for

a comparison of resource requirements. But, since LDM7 requires only a single multipoint

VLAN for the base muticast, the rate of this VLAN can be higher. Using the 60 Mbps

setting for r, we computed the latency distribution, which is shown in Fig. 3.15. With this

setting, the average latency in OSF (the worst case) was 0.7 sec for LDM6 and 0.16 sec

for LDM7. The maximum latency in OSF was 19.6 sec for LDM6 and 7.6 sec for LDM7.

The average latency and maximum latency of LDM7 were both better than for LDM6 for

receivers at other sites too.

3.5.2 Block retransmission ratio

The FMTP File Delivery Ratio (FFDR) is a useful metric, and helped us determine the

impact of the sender-side maximum retransmission period. Correspondingly, to determine

the impact of the receiver timeout factor frcv, we found FFDR to be insufficient, and found

that we needed a metric. If frcv is too small, the receiver timeout value τrcv(n) for file

n, as defined in Section 2.2, will be correspondingly small, which could lead to premature

retransmission requests. On the other hand, if it is too large, then the FMTP receiver could

wait too long and miss the time window during which the sender accepts retransmission

requests and serves them. A metric suitable for determining a suitable value for frcv was

found to be block retransmission ratio (BRR) is defined as follows:

Φij =
Rxij
Txij

(3.8)

where i is the index for each receiver, and j is the index for each aggregate group of files,

Rxij is the number of retransmitted blocks required by receiver i for the files in group

j, and Txij is the total number of blocks including the multicast blocks and the blocks
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Table 3.3: Experiment A to F for BRR study

Experiment frcv p (%)

A 5 0%

B 10 0%

C 10 1%

D 10 5%

E 20 5%

F 40 5%
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Figure 3.16: Block retransmission ratio per aggregate group; different colors used

retransmitted to receiver i by the sender for the files in group i. Since some files are fairly

small, it was deemed better to see aggregate groups of files rather than single files in the

definition of this metric.

Six experiments were conducted between two GENI hosts on the same rack (one sender

and one receiver) with the base rate r set to 40 Mbps, and sending host buffer size bmc set

to 600 MB. The RTT between sender and receiver was 1 ms. Artificial packet losses were

injected at random at the receiver with probability p. Table 3.3 shows the frcv setting and

the p values used in the six experiments.

Fig. 3.16 shows six plots corresponding to experiments A through F. The y-axis

corresponds to the block retransmission ratio in percentage, and x-axis is the aggregate

group index j. There is a significant difference in BRR values between the plots corresponding

to experiments A and B. It appears that when frcv = 5 (Experiment A setting), the receiver
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Figure 3.18: Block retransmission ratio with the patched log parser; different colors used

timer times out prematurely and sends requests for block retransmissions when none were

needed. When frcv was increased to 10 (Experiment B setting), the BRR dropped to 0%,

which suggests that for this environment, where the path consists of a single switch and

there is no interfering traffic, an frcv value of 10 is sufficient.

To explore this point further, we conducted another experiment, in which a third host

was added to the experiment to generate an interfering flow during an ongoing LDM7

file-stream distribution. An iperf3 server was executed to create the interfering flow by
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sending data from the third host to an iperf3 client on the host running the LDM7 receiver.

In other words, the link from the top-of-the-rack switch to the host that was executing

both the LDM7 receiver and the iperf3 client carried both LDM7 and iperf3 traffic. If

iperf3 packets get interspersed between the LDM7 multicast packets, then an frcv of 10

could be insufficient to ensure a low BRR. Since the receive-side timer is a product of frcv

and the file transmission delay, if some of the LDM7 packets have to wait in the switch

buffer behind iperf3 packets, then the factor frcv needs to be larger than if there was no

interfering traffic. Fig. 3.17 shows the results. The frcv10 plot is a flat line at 0%, which

corresponds to Experiment B in Fig. 3.16, (without background traffic). Plot frcv10 bg

shows that BRR increased to over 20% in the presence of the background traffic (iperf3

flow). This example illustrates the need for online monitoring of the performance of an

LDM7 deployment, and dynamic adjustment of the frcv factor, just as we recommended the

use of an EWMA scheme for setting the fixed sender-side maximum retransmission period

in Section 3.2. The BRR metric is well suited to determine an appropriate value for the

frcv factor based on the path and traffic conditions of the particular LDM7 deployment. An

independent measure of packet loss rate on the path is required because only a BRR value

higher than the packet loss rate is indicative of the need to increase frcv. In the experiment

described with background traffic, it is possible that some of the BRR increase to 20% was

attributable to actual packet losses, but some portion of it is likely due to dispersion of the

LDM7 multicast packets because of intervening iperf3 packets. When FMTP is run in

verbose mode, it records requests for retransmissions of dropped End-of-Products (EOPs),

which are indicative of receive timeout. The number of such requests could be saved in an

FMTP log file, which would then allow for a separation of the effects of packet loss rate vs.

premature receive timeouts on BRR.

Returning back to our analysis of the plots shown in Fig. 3.16, next consider the differences

between the BRR values for Experiments B, C, and D. These experiments were run with no

background traffic, which means the frcv setting of 10 was sufficient to ensure zero BRR

when there was no artificially injected packet losses (experiment B). To study whether BRR

was reflective of packet loss rate, we injected packet losses by setting p to 1% and 5% in

experiments C and D, respectively, as shown in Table 3.3. To our surprise, BRR was higher
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than p, sometimes reaching over 10% in experiment D, when p was only 5%.

An explanation for this observation is as follows. Analysis of the LDM7 receiver logs

showed that the higher BRR values were caused by missing BOPs. If a BOP is dropped,

the whole file needs to be retransmitted. Thus, even when the injected loss rate was only

5%, some of the packets dropped were BOPs, which led to retransmissions of all blocks of

the files with dropped BOPs. We changed the method used for computing BRR by only

considering files for which the BOP was not dropped. The log parser that parsed the receiver

log files was thus patched with this fix. Fig. 3.18 shows the BRR for experiment F using the

“old” and “new” log parsers. The BRR in the new plot does not exceed the artificial packet

loss injection rate p, which was 5%. This fix, was simply to the log parser, and hence does

not affect how the MPUP system works. It just improves the definition of BRR to more

accurately reflect path loss rates.

Finally, we discuss the plots corresponding to experiments E and F in Fig. 3.16. These

experiments were executed to study the relationship between injected packet loss rate p

and frcv, if any. As Table 3.3 shows, frcv was set to 20 and 40 in experiments E and F,

respectively. Thus, results from experiments D, E and F, can be compared as in all three

experiments, the injected packet loss rate p was held constant at 5%. The BRR is roughly

the same for all three experiments, and therefore a consideration of path packet loss rate is

not required while selecting the factor frcv.

In summary, the BRR proved to be a useful metric. Three observations were made

using this metric. First, the receive-side timeout factor frcv should be dynamically changed

based on observed values of the BRR metric because a higher value of frcv is needed if

there is interfering traffic. In other words, if an increase is observed in BRR, frcv should be

increased as it could indicate premature retransmission requests, though it could also indicate

packet losses. Second, we observed that the BRR metric definition should not include block

retransmissions triggered by a dropped BOP since the inclusion of these transmissions could

be misleading as the BRR would be inflated. Third, we found that packet loss rate does not

affect the choice of frcv.
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3.6 Conclusions

Three aspects were studied in the work described in this chapter. First, we redefined

the FMTP-sender maximum retransmission period, modified the FMTP code, and ran

experiments to test the performance of LDM7 with this modified FMTP code. We found

that a dynamically updated, but file-independent, timer value was sufficient to achieve 100%

FMTP File Delivery Ration (FFDR). This solution is simple, and yet effective. Second,

the sender tc-layer buffer size value chosen in the experiments described in Chapter 2 was

revisited to understand why the LDM7 solution required a much larger buffer than the LDM6

solution. The difference arose because LDM6 uses CTCP, which includes the standard TCP

code that limit sthe number of outstanding segments to be the smaller of the congestion

window and receive window, and hence restricts the number of segments passed down to the

lower layers, while LDM7 uses UDP, which has no such limiting variable. Third, the impact

of several factors on LDM7 latency were studied. We found that when propagation delay is

negligible and VLAN rate is relatively low, transmission delay and sender tc buffering delay

are the two main components of latency, while processing delay increases in importance

when the VLAN rate is high. Finally, two metrics, file latency and block retransmission

ratio, were defined and used to characterize the MPUP system. The block retransmission

ratio proved to be a good metric for sizing the receiver FMTP timeout factor.



Chapter 4

File Multicast Transport Protocol

(FMTP)

4.1 Introduction

The File Multicast Transport Protocol (FMTP) is a reliable multicast transport protocol

designed to support the distribution of file-streams to multiple receivers over rate-guaranteed

multipoint virtual networks. FMTP requires the lower layers to support packet multicasting

(though this multicast service could be unreliable), and to support a reliable unicast service.

FMTP segments files into blocks, and passes the blocks to the lower layers of the network

protocol stack for multicasting to all receivers. Since FMTP does not require the multicast

service offered by the lower layers to be reliable, FMTP assumes that not all blocks will be

multicast successfully to all receivers, and hence accepts requests for block retransmissions

from individual receivers, and serves these retransmissions using the reliable unicast service

of the lower layers.

FMTP does not have built-in congestion control or flow control. Since FMTP is designed

for use over rate-guaranteed virtual networks, FMTP does not adjust its sending rate

dynamically, i.e., it does not have congestion-control mechanisms such as those found in TCP.

To use FMTP, external controllers are required to set up the rate-guaranteed multipoint

virtual network, and to configure the Linux traffic-control tc utility at the sender to send

62
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packets at the rate of the virtual network. These setup operations will prevent switch buffer

overflows on paths to all receivers and hence FMTP does not require data-plane congestion

control.

The rate selected for the multipoint virtual network should be provided to all receivers,

which are then expected to schedule their FMTP applications in a manner that avoids

receive-buffer overflows. With this assumption, FMTP does not implement any flow-control

mechanisms such as TCP’s window control. With multiple receivers, feedback on window

size is difficult to manage at the sender. Furthermore, slowing down the multicast because

of one or two slow receivers is unfair to the multicast group.

Without flow-control, packets can be dropped due to temporary CPU workload increases

at receiving hosts. Therefore, FTMP’s error control mechanism in which the sender receives

NACKs for individual blocks of files from individual receivers, and serves them using the

reliable unicast service of the network, is required.

Finally, FMTP allows receivers to dynamically join and leave a multicast group during

the transmission of file-streams. The FMTP tracks the number of receivers, and awaits

acknowledgment of file reception from all receivers, though the wait time is limited by a

timer. Without such a timer, the throughput of file delivery could suffer because of one or

more slow receivers.

Section 4.2 introduces the basic aspects of FMTP. Section 4.3 describes the packet

structure and message formats in FMTP. Section 4.4 explains the protocol operation from

the perspectives of both sender and receiver. Section 4.5 explains the implementation details

of FMTP. Section 4.6 reviews related work. Section 4.7 concludes the chapter.

4.2 Protocol overview

When an FMTP application is started at a sending host, the application initiates an FMTP

sender. Similarly, when its counterpart FMTP application is started at one or more receiving

hosts, FMTP receivers are initiated at these hosts. As part of an initialization phase, each

FMTP sender and all FTMP receivers configure the lower layers of their network stacks

to send/receive multicast packets. Also, the lower layers of the network stack should be
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configured by each receiver to send retransmission requests for lost/dropped blocks of files

over a reliable unicast service to the FMTP sender, and to receive the retransmitted blocks.

The sender should also configure its lower layers for reliable unicast service to each receiver.

The file-stream distribution procedure starts by the application providing an FMTP

sender a pointer to a file (also called product) in the application memory space. Associated

with each product is metadata about the product, which is also created by the application.

The FMTP sender places the product size (which is part of the metadata), and the rest of

the metadata, in a special FMTP packet named Begin-of-Product (BOP) message, and sends

the BOP to all receivers via the multicast service. Next, the FMTP sender divides the file

into small blocks, each of which fits into a single packet based on the maximum packet-length

constraints of the lower layers. The FMTP sender adds a header to each FMTP packet (each

carrying a data block), and sends these to the lower layers for multicasting to all receivers.

When all the data packets have been passed down to the lower layers, FMTP creates an

End-of-Product (EOP) message, and passes it to the lower layers for multicasting.

Upon receiving a BOP, each FMTP receiver passes the product size and metadata

carried in the BOP to its application. If the application decides that it wants to receive this

product, it responds to the FMTP receiver by sending it a user-space memory location for

the product. All the following data packets are directly moved into the user-space memory

location to avoid an extra copy. The FMTP receiver checks each FMTP packet header

and detects missing blocks. If a missing data block is detected, the FMTP receiver sends

a retransmission request back to the FMTP sender via the reliable unicast service. The

FMTP sender retransmits the requested data block via the reliable unicast service to just

the requesting receiver.

A sender-side maximum retransmission period is set for each file after the BOP is sent.

When this period ends (the associated timer expires), the FMTP sender stops serving

all pending retransmission requests and sends back rejections. On the FMTP receiver

side, a receive timer is set for each file when its BOP is received. If the timer expires

before the reception of the corresponding EOP, the FMTP receiver immediately requests

retransmissions for all missing blocks and the EOP for that file.

An FMTP receiving application can join a multicast group at any time. As part of its
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initialization procedure, the FMTP receiver notifies the FMTP sender while establishing

the reliable unicast service. The FMTP sender updates its list of connected receivers, and

commits to serve the new receiver if retransmissions are requested. The FMTP receiver

starts listening for multicast blocks, and discarding blocks until it receives a BOP. The

FMTP receiver sends the product size and metadata in this received BOP to its application.

If the application approves reception of the product and provides the FMTP receiver a

user-space memory location for the product, the FMTP receiver starts saving file blocks, and

continues listening for more files in the file-stream. Similarly, an FMTP receiving application

can leave a multicast group any time. The FMTP sender receives notification (through

termination of the reliable unicast service), and can then update its list of receivers, and

notify the FMTP sending application.

4.3 Packet structure and message formats

4.3.1 FMTP packet structure

There are two types of FMTP packets: data packets and control packets. Data packets are

used to carry payload for multicast and retransmission. Control packets are used to carry

metadata for a new file, block retransmission requests, or notification of successful reception

for a file. Both data packets and control packets have the same packet header structure.

An FMTP packet consists of an FMTP header and payload. For some control packets,

the payload part is empty. Fig. 4.1 shows the packet structure.

The prodindex field is a 32-bit unsigned value indicating the file index in the file-stream.

The first file in a file-stream starts with prodindex = 0. For each new file, the prodindex field

of the FMTP packets associated with the file is incremented by 1. After 232−1 = 4294967295

files, the prodindex loops back to 0.

The seqnum field is a 32-bit unsigned value indicating the sequence number of a packet

within a file. As in TCP, the seqnum indicates the total number of bytes sent for that product

in previous packets. If an FMTP packet is dropped/errored, the FMTP receiver can detect

the loss by inspecting the sequence number in the packet header. The seqnum increments

by the number of bytes contained in the previous packet. For example, when a new file is
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Figure 4.1: FMTP packet structure

sent, the first data packet of the file contains seqnum = 0 in its FMTP header. The next

packet contains seqnum = seqnum′ + payloadlen′ in its FMTP header, where seqnum′ is

the sequence number in the previous packet header, and payloadlen′ is the payload length

of the previous packet. An assumption made about seqnum is that a file seldom exceeds 4

GB. For files larger than 4 GB, the application should divide them into smaller file chunks,

and send each chunk as a separate file.

The payloadlen field is a 16-bit unsigned value representing the length of the payload

(data) section in the FMTP packet. For example, if TCP/IP is used for the reliable unicast

service, the maximum payloadlen can only be 1500− 20− 20− 12 = 1448 bytes because

Ethernet Maximum Transmission Unit is 1500B, IP header is 20B, TCP header is 20B, and

the FMTP header is 12B. If correspondingly a UDP socket is used for the multicast packets,

the UDP header is only 8 bytes, which is less than the 12B needed for the TCP header. But

the FMTP sender limits the payload size to 1448B to allow for retransmission requests to

correspond to single multicast packets. As control packets have no payload,, the payloadlen

field is simply set to 0.

The flags field is a 16-bit unsigned value represents the message type of the packet.

Fig. 4.2 shows the currently defined values for the flag field.

The payload field contains the a block of a file. In some control messages such as EOP,

the payload field is empty.
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4.3.2 FMTP message formats

Each of the messages listed in Fig. 4.2 are described in this section.

+------------------------------+-----------+

| Flag | Value |

+------------------------------+-----------+

| FMTP_BOP | 0x0001 |

| FMTP_EOP | 0x0002 |

| FMTP_MEM_DATA | 0x0004 |

| FMTP_RETX_REQ | 0x0008 |

| FMTP_RETX_REJ | 0x0010 |

| FMTP_RETX_END | 0x0020 |

| FMTP_RETX_DATA | 0x0040 |

| FMTP_BOP_REQ | 0x0080 |

| FMTP_RETX_BOP | 0x0100 |

| FMTP_EOP_REQ | 0x0200 |

| FMTP_RETX_EOP | 0x0400 |

+------------------------------+-----------+

Figure 4.2: FMTP message types

FMTP BOP message is sent by the FMTP sender via the multicast service to notify all

receivers that blocks of a new file will soon follow. The payload of the FMTP BOP message

contains the file size, metadata and the size of the metadata, all three of which are provided

by the application to the FMTP sender. Fig. 4.3 illustrates the message format of the

payload part of FMTP BOP. The prodsize field contains the file (product) size. It is a 32-bit

unsigned value. The metasize field contains the size of the following metadata field. For

example, the LDM7 application includes a 16-byte MD5 signature as the metadata for its

products, and hence metasize is 16 bytes. Currently, FMTP places a limit on the size

of metadata since it sends each FMTP BOP message in a single packet. But this constraint

can be relaxed in future releases of FMTP. To construct an FMTP BOP message, the FMTP

sender sets the prodindex field in the FMTP header to a corresponding file index (previous

prodindex + 1). Then it sets the seqnum field to 0, the payloadlen field to the length of

the payload, and the flags field to 0x0001.

FMTP EOP message is sent by the FMTP sender via the multicast service to notify all

receivers that all blocks of the file have been sent. If an FMTP receiver does not receive

this message before the timer for that file expires (the receiver starts a timer for each file
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0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| prodsize |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| metasize | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |

| metadata |

| ... |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 4.3: FMTP BOP message format

upon reception of the FMTP BOP), the FMTP receiver sends an FMTP EOP REQ message to

the sender requesting retransmission of the EOP, but over the unicast reliable service. An

FMTP EOP message only contains an FMTP header, i.e., the payload is empty. The FMTP

sender constructs an FMTP EOP message by (i) setting the prodindex field to a corresponding

file index; (ii) setting the seqnum field and the payloadlen field to 0; and (iii) setting the

flags field to 0x0002.

FMTP MEM DATA message carries a data block of the file. This message is only sent from an

FMTP sender to FMTP receivers using the multicast service. The FMTP sender constructs

an FMTP MEM DATA message by (i) setting the prodindex field to a corresponding file index;

(ii) setting the seqnum field to a corresponding value (number of bytes already sent); (iii)

setting the payloadlen field to the number of data bytes being carried in the message;

and (iv) setting the flags field to 0x0004. The FMTP sender fills the payload of all

FMTP MEM DATA messages to the maximum extent allowed by the lower layers, except for the

last FMTP MEM DATA message, which carries the remaining few bytes.

One FMTP RETX REQ message is sent by an FMTP receiver to the FMTP sender for each

block of data for which the receiver requires retransmissions. These messages are sent over

the unicast reliable service of the lower layers. The number of FMTP RETX REQ messages sent

depends upon the size of missing data. The FMTP receiver determines the total number

of lost bytes, and divides this number by the maximum-allowed size for the payload of

each FMTP FMTP MEM DATA message, and then issues one FMTP RETX REQ message for each

requested FMTP MEM DATA message. The size of the last segment could be smaller than the

maximum-allowed size for the payload of FMTP FMTP MEM DATA messages. The FMTP
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receiver uses the prodindex field to identify the file, the seqnum field to identify the missing

block within that file, and the payloadlen field according to the size of the FMTP MEM DATA

message being requested. The flags field is set to 0x0008 instead. There is no payload in

this FMTP RETX REQ message.

FMTP RETX REJ message is sent by the FMTP sender to an FMTP receiver upon receipt of

an FMTP RETX REQ message from the receiver that arrived after the maximum retransmission

period associated with the file ended at the FMTP sender. In an FMTP RETX REJ message,

the prodindex field is set to the same value as in the corresponding FMTP RETX REQ message.

Since this message is designed to reject all the following FMTP RETX REQ messages for a file

from the requesting FMTP receiver, the FMTP sender does not need to precisely indicate

which request is being rejected. Hence, both the seqnum and the payloadlen fields are set

to 0. The flags field is set to 0x0010. There is no payload in this FMTP RETX REJ message.

An FMTP RETX REJ message may not only be triggered by maximum retransmission period

timeout, but also by an invalid FMTP RETX REQ message (e.g., non-existing prodindex value

or non-existing seqnum value).

FMTP RETX END message is sent by an FMTP receiver to an FMTP sender via the unicast

reliable service to indicate that it has received all blocks of the file through multicast or

through retransmissions. If the FMTP receiver received all multicast blocks successfully, an

FMTP RETX END message is sent to the FMTP sender right after the FMTP EOP message arrives

at the FMTP receiver. Otherwise, the FMTP receiver sends an FMTP RETX END message

to the FMTP sender after all the missing blocks are recovered through retransmissions. If

an FMTP RETX REQ message from a receiver is rejected by the FMTP sender, the FMTP

receiver will not send a FMTP RETX END message to the sender. Upon receiving FMTP RETX END

messages from all receivers, the FMTP sender correspondingly turns off the timer for the

maximum retransmission period of the file, and notifies the application that the file is now

released back to the control of the application. In an FMTP RETX END message, prodindex

field is set to the file index that the FMTP receiver is acknowledging. Both the seqnum

field and the payloadlen field are set to 0. The flags field is set to 0x0020. This message

FMTP RETX END contains no payload.

FMTP RETX DATA message carries the retransmitted data block that is requested by an
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FMTP receiver. This message is only sent from an FMTP sender to an FMTP receiver via

the reliable unicast service. The message format is identical to theFMTP MEM DATA message

except that it is sent via the reliable unicast service instead of via the multicast service, and

the flags field is set to 0x0040.

FMTP BOP REQ message requests the retransmission of an FMTP BOP message. This message

is only sent from an FMTP receiver to an FMTP sender via the reliable unicast service.

An FMTP receiver detects a missing FMTP BOP if it receives an FMTP MEM DATA message or

FMTP EOP message for a particular prodindex without having received a preceding FMTP BOP

message with the same prodindex. Therefore, it issues an FMTP BOP REQ message to the

FMTP sender with the expected prodindex. If an FMTP BOP is missing for a file, the FMTP

receiver cannot write data blocks received for that file into application memory space because

the application would not have had an opportunity to allocate memory space and pass

the memory location down to the FMTP receiver. Therefore all data blocks received via

multicast while the FMTP receiver awaits the retransmitted FMTP BOP message are simply

dropped by the FMTP receiver. The seqnum field and the payloadlen field are set to 0 and

the flags field is set to 0x0080. No payload is contained in this FMTP BOP REQ message.

FMTP RETX BOP message carries the retransmitted FMTP BOP message. This message is

only sent from an FMTP sender to an FMTP receiver via the reliable unicast service. The

FMTP sender retransmits the FMTP BOP message that is requested by an FMTP receiver

and replaces the flags field in the FMTP BOP message with 0x0100. Thus, this message is of

the same format as the FMTP BOP message.

FMTP EOP REQ message requests the retransmission of an FMTP EOP message. This message

is only sent from an FMTP receiver to an FMTP sender via the reliable unicast service.

An FMTP receiver issues this request when it detects loss of an FMTP EOP message when

the receiver timer for the file times out, or it receives an FMTP message with a higher

prodindex for the next product. In the FMTP EOP REQ message, the prodindex field is set

to the expected file index. The seqnum field and the payloadlen field are both set to 0 and

the flags field is set to 0x0200. No payload is contained in this FMTP EOP REQ message.

FMTP RETX EOP message carries the retransmitted FMTP EOP message. This message is

only sent from an FMTP sender to an FMTP receiver via the reliable unicast service. Upon
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receiving an FMTP RETX EOP message, the FMTP sender retransmits the FMTP EOP message

with specified prodindex after replacing the flags field in the FMTP EOP message with

0x0400. Thus, this message has the same format as the FMTP EOP message.

4.4 Protocol operation

This section describes the detailed interactions of the FMTP sender and FMTP receivers

participating in the same multicast group. A synopsis of the protocol operation is as follows:

1. An FMTP sending application instantiates an FMTP sender, which then uses the

lower-layer protocols to configure the multicast service, and waits for the FMTP

receivers to request connections for the reliable unicast service.

2. An FMTP receiving application instantiates an FMTP receiver, which then configures

itself for multicast reception, and issues requests to the FMTP sender to establish a

connection for reliable unicast service.

3. The FMTP sending application passes information about a file-stream to the FMTP

sender. For each file (product), the FMTP sender sends an FMTP BOP message to the

multicast group. Upon receiving the FMTP BOP message, the FMTP receiver extracts

information contained in the BOP and notifies its receiving application. If the receiving

application wants to receive the product, it provides a memory location in response to

the FMTP receiver.

4. The FMTP sender sends one FMTP MEM DATA message corresponding to each block of

the file to the multicast group. Simultaneously, the FMTP sender receives and handles

retransmission request messages, (FMTP RETX REQ, FMTP RETX BOP and FMTP RETX EOP).

FMTP receivers receive the arriving FMTP MEM DATA messages and identify missing

messages, if any. If a missing message is detected, the FMTP receiver issues an

FMTP RETX REQ message immediately.

5. The FMTP sender sends an FMTP EOP message to the multicast group when all blocks

of a file have been multicast. It simultaneously waits for FMTP RETX END messages
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from all FMTP receivers. If the maximum retransmission period times out for the file,

or all receivers have sent in FMTP RETX END messages for the file, the FMTP sender

releases the file back to the application.

6. The FMTP sender and receivers repeat the above file multicast and block retransmission

steps for the next file in the file-stream.

4.4.1 Underlying protocol layers

As stated earlier, FMTP assumes the availability of a potentially unreliable multicast service

and a reliable unicast service from the underlying protocol layers. The FMTP protocol

operation in the rest of this section assumes that multicast service is provided by OpenFlow

switches at Layer 2 (L2) in which Ethernet frames are replicated and forwarded based on

OpenFlow table entries. Providers such as Internet2 now offer dynamic L2 path services.

Our research group deployed a multi-domain SDN on which a rate-guaranteed L2 paths

were provisioned [23]. Further, our research group provisioned a multipoint VLAN across

this multipoint SDN [24].

At the end hosts, a UDP/IP socket is used for sending/receiving the FMTP packets

to/from the L2 multipoint VLAN. Sockets offer an easy-to-use programming API, and hence

FMTP uses UDP sockets for the multicast service. The UDP header is only examined at

the end hosts, as is typically done even with unicast applications. The IP layer is examined

only at the end hosts since packet forwarding is based strictly on the VLAN ID carried in

the IEEE 802.1q header at all the switches between the sender and the receivers. In other

words, there is no Layer-3 (IP-layer) packet forwarding on the paths between the sender and

receivers.

IP offers additional value besides the easy-to-use socket API. IP multicast addresses are

translated by the kernel into multicast Ethernet MAC addresses through a fixed mapping

procedure. The most-significant three bytes of the multicast Ethernet MAC address are

fixed (0x01:00:5e), the first bit of the fourth byte is set to 0, and the remaining 23 bits are

copied from the least-significant 23 bits of the IP address. The most-significant 4 bits of all

multicast IP addresses are 1110. The next five bits of the IP address are ignored, which
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leaves the remaining 23 bits that are used in the mapping. This automatic mapping is useful

as it allows the Ethernet NICs/drivers of all receivers to be configured to accept Ethernet

frames whose destination MAC address matches the multicast MAC address. As soon as an

application, or in our case the FMTP receiver, opens a UDP/IP socket with a multicast

IP address, one that has 1110 in the most-significant 4 bits, the Ethernet NIC/driver is

configured to accept frames with the corresponding multicast MAC address. It is for these

two reasons, ease of programming and support for multicast addresses, that the IP layer is

used on top of the L2 multipoint VLAN.

A TCP/IP socket is created using the unicast IP addresses of the sender/receiver VLANs

used in the end-to-end multipoint VLAN. In other words, the retransmission requests and

block retransmissions are sent over the same VLAN as the multicast packets, but because

block retransmissions are addressed to the unicast IP address of the retransmission-requesting

receiver, no other receiver will accept those frames.

In summary, the lower layers, TCP, UDP, IP and Ethernet/VLAN, jointly offer both the

(unreliable) multicast and reliable unicast services required by FMTP. In the description of

the FMTP protocol operation in this section, we assume these lower-layer protocols.

4.4.2 FMTP sender initialization

The FMTP upstream application instantiates an FMTP sender using multiple configuration

parameters. These parameters include multicast IP address, UDP port number, unicast IP

address of the interface to which multicast packets are directed within the sending host,

Time-to-Live (TTL) to multicast packets, an unicast IP address for the TCP connection, a

TCP port number, and an initial product index.

With the multicast IP address and UDP port number specified, the FMTP sender opens

a UDP socket. This action causes the kernel to configure the Ethernet NIC/driver to accept

frames with the multicast MAC address derived from the multicast IP address. Using Linux

setsockopt, with the IP MULTICAST IF option, the unicast IP address of the interface to

which multicast packets are sent is added to the UDP socket. The step makes it possible

for the IP layer of the sending host to determine the interface to which packets destined

to the multicast IP address should be directed. With this action, no special IP routing
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table entry needs to be added at the sender for the multicast IP address. Usually, there is a

default interface for multicast IP addresses, but if the multipoint VLAN was configured on

a different Ethernet interface, then this action of setting an interface for the correct routing

of IP packets addressed to the multicast group is required.

The unicast IP address of the interface to which multicast packets are sent should be the

address of the VLAN configured at the sending host. As part of setting up the end-to-end

multipoint VLAN, Linux vconfig command is executed with a particular VLAN ID to

create this virtual interface at the sending host NIC. A similar action is required at the

receivers. In addition, Linux ifconfig command is executed at the end hosts to set a

private unicast IP address for the newly created VLAN at the sender and receivers. The

subnet IDs of the private unicast IP addresses and subnet masks assigned to all hosts on

the multipoint VLAN should be the same. Thus, the FMTP applications should learn the

private unicast IP addresses of the VLANs at the sender and receivers and pass these values

to the FMTP senders/receivers during instantiation.

Linux setsockopt has another option called IP MULTICAST TTL. Time-To-Live (TTL)

is required in IP multicast networks where packet multicasting is done at the IP layer in IP

routers. Since IP routing tables could have loops (because of the use of distributed routing

protocols), a TTL field is needed. As multipoint Ethernet VLANs are provisioned by a

centralized SDN controller, there should be no packet forwarding loops in the tables, and

hence TTL is not needed in the Ethernet or 802.1Q headers. While FMTP was designed

from the start to run over rate-guaranteed multipoint VLANs, we allowed for the case

that it may be deployed on IP multicast networks. This is not a recommended option

because (a) varying levels of congestion on paths to different receivers could adversely

impact throughput (because of a lack of an admission control procedure that is necessary for

configuring rate-guaranteed multipoint VLANs), and (b) as FMTP does not have congestion

control, an aggressive sender could overwhelm other flows.

The next part of initialization is the creation of one TCP connection between the

FMTP sender and each FMTP receiver. The FMTP sender opens a TCP socket with the

application-provided IP address for the TCP connection and TCP port number. The IP

address provided for the TCP connection could be the same as the unicast interface IP
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address provided for the transmission of multicast packets. But, for the sake of generality,

these two unicast IP addresses were allowed to be different. The FMTP sender listens on the

TCP socket, and responds to TCP connection requests from FMTP receivers. The FMTP

sender maintains and dynamically updates a list of FMTP receivers in the multicast group.

The last parameter set by the application during FMTP sender instantiation is the

initial product index. The default value of the initial product index is 0. But if this value

is non-zero, the FMTP sender simply uses this application-provided value in the FMTP

header prodindex field for all blocks of the first product. Allowing the application to specify

a non-zero value is useful to the application in case the application needs to terminate an

FMTP sender instance during a file-stream distribution, and restart a new FMTP sender

instance later. When the new FMTP sender instance is started, it can be passed the index

of the next product to serve. This initial product index, if specified, is used for the single

file-stream served by an FMTP sender. There is no file-stream index because each FMTP

sender handles only one file-stream.

4.4.3 FMTP receiver initialization

At each receiving host, an FMTP downstream application, which is counterpart to the FMTP

upstream application that instantiates the FMTP sender at the sending host, instantiates

an FMTP receiver. The parameters that are specified in this FMTP-receiver instantiation

include multicast IP address, UDP port number, unicast IP address of the interface on

which multicast packets are received, an IP address for the TCP connection, and a TCP

port number. The multicast IP address and UDP port number are the same values used by

the FMTP upstream application. The unicast IP address of the interface on which multicast

packets are received is that of the VLAN configured in the receiving host, which is part of

the end-to-end multipoint VLAN as described in Sec 4.4.2. A reverse path filter may be

required on receiving hosts to allow through packets destined to the multicast IP address

and the unicast IP address of the VLAN. The IP address for the TCP connection, and TCP

port number correspond to those of the FMTP sender. These parameters are used by the

FMTP receiver to initiate the setup of a TCP connection to the FMTP sender. The TCP

connection is used as a reliable channel for retransmissions.
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4.4.4 File multicast and retransmissions

Sender actions The application uses the FMTP sender API call SendProduct to send

products in a single file-stream. The application can do so at any point after it instantiates

an FMTP sender. This event happens asynchronously relative to when FMTP receivers send

requests to the FMTP sender for TCP connections (which effectively places receivers into

the multicast group). The SendProduct function minimally requires a pointer to memory

location where the product is stored and the product size. Optional parameters include

metadata size and a pointer to the location of the metadata associated with a product.

The FMTP sender constructs an FMTP BOP message as described in Section 4.3. Before

describing the contents of the FMTP BOP message payload, consider the fields of the FMTP

packet header.

The prodindex field in the FMTP packet header is set to the default value of 0, or

the initial product index, which was provided by the application during instantiation of

the FMTP sender. This prodindex field in all FMTP packets is what makes FMTP a

transport protocol for serving file-streams, not just individual files. The presence of the

prodindex field in all FMTP packets allows an FMTP sender to simultaneously multicast a

product, while serving retransmissions for previously multicast products. The prodindex

field allows an FMTP receiver to detect a completely missing file, which could happen if the

FMTP BOP, all FMTP MEM DATA messages carrying the blocks of the file, and the FMTP EOP are

all dropped/errored. Finally, if the FMTP EOP of one file and the FMTP BOP of the next file

are both lost, data blocks of the second file will not be mistakenly aggregated with data

blocks of the first file since the prodindex will be different. Values of the other fields of the

FMTP header of FMTP BOP were described in Section 4.3.

The FMTP BOP payload carries the product size, specified by the application in the

SendProduct API call, in the prodsize field. If the application provides the optional

parameters, metadata size and a pointer to the location of the metadata associated with

a product, in the SendProduct API call, these values are carried in the metasize and

metadata fields of the FMTP BOP payload.

We explain why the FMTP BOP is even necessary in FMTP, and the reasons for the fields
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carried in its payload using an example application, LDM. The LDM6 version uses TCP,

and there is no equivalent of the FMTP BOP message. Instead the TCP connection transports

the metadata and the data of each product. The metadata includes an MD5 checksum of

the product, and serves both as a signature and as a product name. When the product

appears at an LDM6 receiver TCP socket, LDM6 copies the product from kernel space into

a temporary location in user space, extracts the MD5 checksum, and uses it as a product

name to check whether the product is already in the product queue (PQ). If the product is

not present in the PQ, then LDM6 allocates memory for the new product in the PQ, and

then LDM6 copies the product data from the temporary location into the newly created

memory within the PQ. Therefore, there are two copies of the product: (i) from kernel-space

TCP-buffer to the temporary user-space location, and (ii) from the temporary user-space

location to the assigned location within the PQ. This solution reduces the number of copies

within user-space by 1.

As LDM was a driving application for our design of FMTP, we designed the FMTP BOP

to carry metadata on behalf of the application to allow for performance optimizations, such

as the reduction in the number of data copies. Exactly how this is done is explained below

in the description of the receive-side operation.

After sending the FMTP BOP message to the UDP socket for multicasting, the FMTP

sender reads data blocks of the product directly from the location of the product held in

the application’s user-space memory. The FMTP sender chooses a maximum block size as

permitted by the lower-layer protocols. Each block is multicast via the UDP socket in an

FMTP MEM DATA message. An FMTP EOP message is also multicast via the UDP socket. After

sending the FMTP EOP message for a file, the FMTP sender sets a timer corresponding to the

maximum retransmission period for that file.

While performing the file multicast or soon after, the FMTP sender may receive

FMTP BOP REQ or FMTP RETX REQ for one or more data blocks from any receiver. These

messages will be received over the TCP connections. The FMTP sender responds to

an FMTP BOP REQ with an FMTP RETX BOP, and responds to each FMTP RETX REQ with an

FMTP RETX DATA message. An FMTP sender may also receive an FMTP EOP REQ from any

receiver for a file that is currently being multicast (premature receive-side timers can cause
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an FMTP receiver to send this message even before the FMTP sender has sent the FMTP EOP

message for a file), or for a file whose multicast phase is complete. In eitehr case, the

FMTP sender will send an FMTP RETX BOP message to the requesting receiver via its TCP

connection.

After the multicast phase for a file, the FMTP sender awaits an FMTP RETX END message

from each receiver, which is an acknowledgment of complete reception of a file. The FMTP

sender maintains a table of such acknowledgments for each product. When the FMTP

sender receives this acknowledgment message from all receivers for a file (recall that the

FMTP sender maintains a list of receivers based on requests for TCP connections), or the

retransmission period for the file ends, the FMTP sender notifies the application that it no

longer needs access to the file. At this point, the application is free to release the memory in

which the file was held for use by another product.

The FMTP sender then waits for the next SendProduct call from the application.

The SendProduct call for another file could arrive while the FMTP sender is still serving

retransmissions or waiting for the FMTP RETX END messages from all receivers. Thus, file

multicasting through the UDP socket co-exists with retransmissions on the TCP connections.

If while waiting for the next SendProduct, the FMTP sender receives an FMTP RETX REQ

for a block of a file that has already been released to the application, the FMTP sender

sends an FMTP RETX REJ message to the receiver.

Receiver actions The FMTP receiver actions begin upon receiving an FMTP BOP message

for a file on its multicast (UDP) socket. The FMTP receiver extracts the prodindex of

the file, and checks it against a variable that contains the most-recent prodindex received

through the multicast socket. If the prodindex of the new file does not exceed the most-

recent prodindex by 1, the FMTP receiver construes that one or more files were fully lost,

and hence sends FMTP BOP REQ messages for the missing files. Upon receiving FMTP RETX BOP

(or FMTP BOP) messages, the FMTP receiver will start reception of data blocks for the

new files. A newly starting FMTP receiver will not have a valid entry in the most-recent

prodindex variable, and hence will accept an FMTP BOP with any prodindex.
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Next, the FMTP receiver starts a timer for the product, which was described in Sec-

tion 2.2 of Chapter 2, to enable detection of lost FMTP EOP messages, and then the FMTP

receiver sends the prodsize, metasize, and metadata extracted from the FMTP RETX BOP

(or FMTP BOP) payload up to its FMTP downstream application. The application in turn

processes these values internally, and returns a response back to the FMTP receiver providing

it a memory location into which the product data should be stored, or instructing it to drop

the product.

If the FMTP receiver is instructed to drop the product, it simply drops all received

FMTP MEM DATA messages carrying blocks of the product and the FMTP EOP message. If,

on the other hand, the FMTP receiver is provided a memory location, as a confirmation

that the FMTP downstream application wants to receive the product, the FMTP receiver

saves the prodsize from the FMTP BOP message, processes every received FMTP MEM DATA

message for the product. Two variables associated with the file are created/updated to

store the seqnum and payloadlen from the FMTP header of each FMTP MEM DATA message.

Using these numbers, the FMTP receiver can detect missing blocks and send FMTP RETX REQ

messages to the FMTP sender.

If an FMTP MEM DATA is received for a file with a missing FMTP BOP, the message is

dropped because the FMTP receiver would not have had an opportunity to notify the FMTP

downstream application to allocate a memory location into which the data blocks can be

written.

Comparing the total number of received bytes with the saved prodsize, the FMTP

receiver can detect successful reception of the whole file. Moreover, the FMTP receiver

will receive an FMTP EOP message for the file. If one or more blocks at the end of the file

were dropped/errored, the arrival of the FMTP EOP message is used to trigger FMTP RETX REQ

messages for these missing blocks. Upon receiving the corresponding FMTP RETX DATA

messages, the FMTP receiver writes the payload into the appropriate application memory

space.

If the receive-side timer for the file expires before the arrival of the FMTP EOP message,

the FMTP receiver sends an FMTP EOP REQ message along with FMTP RETX REQ messages

for missing data blocks, if any. Upon the reception of FMTP RETX DATA messages, if any,
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the FMTP receiver writes the payload data into the appropriate application memory space.

Upon the reception of FMTP RETX EOP, the FMTP receiver changes the status of the product,

and awaits retransmitted blocks if any are still pending.

If all blocks were successfully received, either through the original multicast, or through

retransmissions, the FMTP receiver issues the FMTP RETX END message to the FMTP sender.

The FMTP receiver notifies the application of successful reception of the file using prodindex

to identify the file.

The FMTP receiver may receive an FMTP RETX REJ message, in which case the file was

not completely received. In this case, the FMTP receiver notifies the application of failed

reception for the file using prodindex to identify the file.

The FMTP receiver is designed to support concurrent file reception. In other words,

an FMTP receiver could receive FMTP BOP messages for other products while still serving a

previous product. The FMTP receiver maintains per-file variables and hence can handle

multiple file receptions simultaneously.

If an FMTP receiver receives an FMTP MEM DATA message whose prodindex is not in the

set of products under current reception (which would happen if FMTP BOP message for that

product was missing), the FMTP receiver sends an FMTP BOP REQ for that product to the

sender.

4.4.5 Transmission and retransmission timeout mechanisms

The FMTP sender maintains a per-file timer to limit the maximum retransmission period for

the file. The timer prevents an FMTP sender from spending too much of its compute/network

capacity serving a few receivers with high packet loss rates as this could adversely affect the

multicast delivery of new files. This maximum retransmission period could be file-dependent

or file-independent based upon the sizes of files and the rate of the underlying multipoint

VLAN. If transmission delays dominate, then a file-dependent solution is required, but if

the propagation delay is the dominant factor, then a file-independent timer is sufficient.

In experiments conducted with LDM7 for an IDD feedtype, we found the file-independent

solution to be sufficient, as described in Chapter 3. We recommended the use of a dynamic

system in which a controller carries out a post-facto analysis to determine the ideal timeout
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value that should have been used based on product creation times and product release

times logged at the LDM7 sender for already transmitted files in a specified time interval.

This computed ideal value is then used in an EWMA scheme to update a running average

value in order to compute a new maximum retransmission period for the files that are to be

transmitted in the next interval. This new value is then used for all files transmitted in the

next interval. This method is represented as follows

c =
7

8
× c′ + 1

8
× cideal, (4.1)

where c′ is the c value used in the past interval, cideal is the ideal value that should have

been used in the past interval, and c is the new value computed for use in the next interval.

This process is repeated at the end of each time interval. We used 7
8 and 1

8 as is currently

used in the TCP retransmission timeout algorithm.

On the FMTP receiver side, there is a timer to monitor per-file receiving period (τrcv(n))

for each file n. This timer is an estimate of the amount of time required for an FMTP

receiver to receive the whole file after it has received the first message. Upon receiving an

FMTP BOP message for a file n, the FMTP receiver computes τrcv(n) using a factor frcv as

follows:

τrcv(n) = frcv ∗ Sn/rmc (4.2)

This timer is required to generate a retransmission request if the FMTP EOP message is missing

for a file. The file receive-timeout factor frcv should be an integer value greater than 1 so that

if individual packets are caught in switch buffers behind other packets, the FMTP receiver

avoids sending premature retransmission requests. Chapter 3 described our experiments

with this factor for LDM7/FMTP.

4.5 Implementation

We have implemented FMTP with C/C++. It was developed for Linux/Unix systems. The

FMTP code has been tested on the following mainstream OS distributions: Ubuntu LTS



4.5 Implementation 82

12.04+, CentOS 5+, Mac OSX 10.9+, and FreeBSD 9+. The latest source code can be

found in UCAR’s github repository [25]. This code contains the following: (i) sending-side

program, (ii) receiving-side program, (iii) a test application with sending- and receiving-sides,

(iv) wireshark packet dissector, and (v) doxygen-style documentation.

Thread Model After the sending-side multicast thread completes its initialization

phase, it spawns two additional threads: a timer thread, and a coordinator thread. The

multicast thread is responsible for multicasting products, and the timer thread is responsible

for maintaining a timer for each product. The coordinator thread is a supervisor that accepts

incoming TCP connections and forks a new retransmission thread for each receiver. The new

retransmission thread is responsible for handling retransmission requests from the associated

receiver. Therefore, on the sending side, there will be 3 + N threads eventually, where

N is the number of receivers. The receiving-side main thread will fork into four threads:

a multicast handler thread, a retransmission handler thread, a retransmission requester

thread and a timer thread. The multicast thread is responsible for FMTP messages received

via multicast. The retransmission thread is responsible for handling retransmitted blocks

received on the unicast (TCP) connection. The retransmission requester thread is responsible

for parsing internal messages, and constructing and sending corresponding retransmission

request messages. The timer thread maintains the receive-side timer for each product.

Timed Queue and Message Queue Queues are key data structures in the implemen-

tation. Two types of queues are used: timed queues and message queues. Timed queue is

an unordered queue that does not guarantee first-in first-out (FIFO) services. The sequence

with which queued entries depart this queue depends upon the timeout period associated

with each entry. One timer is entered in this queue for each product. A timed queue is

needed at the sender and at each receiver. When the shortest timer expires, actions are

executed for the corresponding product. For example, if a receive-side timer expires for

a product, and the product EOP has not been received, the FMTP receiver will send an

FMTP EOP REQ message to the FMTP sender.

Message queue is a common FIFO queue, which is used for inter-thread communications.

The receiving-side multicast thread and retransmission requester thread are two separate

threads, which implies the execution of these two threads is asynchronous. The multicast
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thread needs to send information identifying missing blocks so that the requester thread

can send retransmission requests for these blocks. A message queue is used for this purpose.

The requester thread keeps querying the message queue for new requests. It either retrieves

the oldest request and continues to process, or blocks on an empty queue.

Retransmission Metadata Retransmission Metadata (RetxMeta) is an auxiliary data

structure maintained per product on the sending side. It helps the retransmission thread

locate particular blocks for which retransmissions are requested. When the application

passes a pointer to the memory location of a product to the FMTP sender, the FMTP sender

formats a new RetxMeta, and inserts this structure into a RetxMeta-List. Before the timer

expires, all retransmission threads have access to this list. If a request for a block of the

product is received, the retransmission thread searches the RetxMeta-List, and extracts the

corresponding RetxMeta. This data structure contains a pointer to the memory location of

the product. The retransmission thread accesses the block by offsetting the product pointer

with the sequence number parsed from the FMTP header of the FMTP RETX REQ message.

Also, the RetxMeta for a product holds a list of outstanding receivers that have not yet

sent in their FMTP RETX END messages for that product. When an FMTP RETX END message

is received by a retransmission thread from its corresponding receiver, the retransmission

thread removes the receiver from the list of receivers maintained for that product in the

RetxMeta. When a retransmission thread finds that its receiver is the last one to send a

FMTP RETX END message for a product, that retransmission thread erases the RetxMeta for

that product from the RetxMeta-List, and clears the corresponding timer.

Per-product Bitmap We have implemented a per-product bitmap to track data blocks

of a product at the FMTP receiver. A per-product bitmap is a data structure that contains

as many bits as number of blocks in a product. When a data block arrives, the FMTP

receiver calculates the block index based on sequence number and payload length, and

then uses the index to locate the bit and sets it to true. The arrival of the EOP for the

product invokes an integrity check on the bitmap. A bit remaining false denotes a lost

data block. The bitmap thus provides the receiver a second method to identify losses, and

issue retransmission requests. The first method is the use of seqnum to identify lost blocks

since in-sequence arrival is guaranteed on a provisioned multipoint VLAN.
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Integration with LDM7 An important goal of this FMTP development effort was to

integrate it with LDM6 to create LDM7 for improved distribution of meteorological data in

UCAR’s IDD project. We integrated FMTP into LDM7 as a pluggable module in addition

to the original network library so that LDM7 can decide whether to use our (multicast)

FMTP solution, or unicast TCP connections.

Function overloading was used in our C++ implementation for the SendProduct call

to allow applications to specify a required minimal set of parameters (pointer to memory

location where the product is stored and the product size), as well as optional parameters

(metadata size and a pointer to the location of the metadata associated with the product),

as was required by LDM7. In Section 4.4, we described how the upstream LDM7 server uses

the optional fields and sends information to its downstream LDM7 servers in theFMTP BOP

message.

4.6 Related work

The Scalable Reliable Multicast (SRM) [26] protocol is based on a principle of receiver-based

reliability, which means each receiver is individually responsible for detecting losses and

recovering lost data. In FMTP also, each receiver is responsible for detecting losses and

sending retransmission requests, but the FMTP sender does maintain a list of receivers and

expects a final acknowledgment from all receivers for each file. While this feature makes the

FMTP solution less scalable than the SRM approach in which sender does not perform such

receiver tracking, FMTP requires this tracking in order to support its API that was designed

to avoid one memory copy (for high-performance implementations). The FMTP sender needs

to know when all receivers have received the file so that it can release its hold on that file

and allow the application to reclaim that memory location. Second, in SRM, each receiver

periodically multicasts its highest received sequence number of the data block that it has

received. All listening receivers use this information to identify their own lost blocks, e.g., if

a receiver’s highest received sequence number is smaller than the value multicast by another

receiver, the first receiver deduces that it needs to request retransmissions. FMTP uses a

different method for loss detection, which is through the transmission of EOPs and receiver
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timeouts. Third, SRM receivers multicast repair requests and retransmissions to the whole

group in order to suppress duplicate requests from other receivers. If a receiver missed a

packet, it is able to retrieve the retransmission from another close-by receiver without having

to request it from the original sender. A receiver waits for a random period before sending

out a repair request to leverage retransmissions from other repair requests for the same

missing data. A disadvantage is that this random backoff time interval adds to file-delivery

latency. For a stream of small files, it could cause a throughput drop. FMTP concurrently

recovers missing blocks even during the multicast, which somewhat hides propagation delay

to the sender. The FMTP solution has only one sender, which does have the drawback of

propagation delay in wide-area deployments. On the other hand, only FMTP receivers need

to be executed at the receiving hosts.

As discussed in Section 2.6, coding-based reliable multicast schemes, such as ALC and

FLUTE, can provide reliable data delivery without positive or negative acknowledgments

from receivers to the sender. Another coding-based reliable multicast scheme [27] proposed

a layered design in which each layer provides a different degree of redundancy. Each receiver

can choose different encoding levels based on its QoS requirements, and the quality of the

path from the sender to the receiver. Receivers enduring poor network quality can use a

layer with higher redundancy to achieve the required reliability. This idea of differentiating

good service quality from poor service quality is useful to increase group performance. Such

coding based methods waste bandwidth and compute cycles in return for high scalability,

and are hence typically used in applications with millions of users. Since FMTP is designed

to serve multicast groups with just hundreds of receivers, we chose to use retransmission

based schemes rather than coding.

A multicast-based replication for Hadoop HDFS [28] [29] is proposed to reduce the

network traffic caused by HDFS write operations. A congestion-controlled reliable multicast

socket (CCRMSocket) is developed to replace the native pipelined replication method.

CCRMSocket uses IP multicast with the TCP acknowledgment mechanism to provide

reliable multicast service. This work demonstrates the application of reliable multicast in

data center-networks. FMTP could also be used in data-center applications.
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4.7 Conclusions

A new reliable multicast transport protocol, named FMTP, was designed and implemented

to serve real-time scientific file-stream distribution. This protocol relies on the network

offering a packet multicast service. Our FMTP implementation uses a UDP socket to send

message blocks to the network multicast service, and unicast per-receiver TCP connections

to retransmit missing message blocks from the sender. Multicast and retransmissions are

handled by FMTP simultaneously. The FMTP receiver uses a file-associated bitmap to track

message blocks. The FMTP receiver also has a per-file receive timeout (τrcv(n)) to detect

losses of one-or-more message blocks at the end of a file, and missing End-of-Product (EOP)

messages. The FMTP sender has a maximum retransmission period for each file to limit the

resources consumed for retransmissions. FMTP is designed to be used over rate-guaranteed

multipoint virtual networks and hence it does not have built-in congestion control or flow

control. FMTP can operate in lossy networks and yet save compute and network resources

when compared to the application-layer multicast solution.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we presented our work towards solving a wide-area real-time scientific data-

distribution problem. We developed a cross-layer Multicast-Push Unicast-Pull (MPUP)

architecture that defines functions at three layers: (i) link layer, (ii) transport layer, and

(iii) application layer. It combines (i) a multicast-push function at the transport layer, (ii)

a unicast-pull at the transport and application layers, and (iii) rate-guaranteed link-layer

network multicast. We also developed a new reliable multicast transport protocol called

File Multicast Transport Protocol (FMTP). Next, we integrated FMTP into an application,

Local Data Manager (LDM), to create LDM version 7, as an example realization of the

MPUP architecture. Finally, we executed LDM7 on the NSF-sponsored GENI testbed and

compared in performance on throughput, latency, and resource requirements (bandwidth

and CPU usage) with LDM version 6, which is an application-layer multicast solution.

LDM6 runs on the IP-routed network, while LDM7 requires an underlying Software Defined

Network across which rate-guaranteed multipoint virtual networks can be provisioned.

LDM7 can be gradually introduced to users who are already using LDM6 to various

file-stream subscriptions. For receivers who do not have access to the new OpenFlow/SDN

network services, the sender can continue using the LDM6 ALM solution, even as LDM7

servers concurrently offer the same file-streams via multipoint VLANs to those subscribers

who have connectivity to an SDN. LDM7 usage can be slowly expanded to cover an increasing

87
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number of receivers as the OpenFlow/SDN network services spread in availability.

5.2 Future work

Future work items include the following: (i) security-enhanced FMTP, and (ii) integration

of LDM7 control module with a client to send dynamic requests to an SDN controller for

the setup, modification, and release of underlying multipoint VLANs.

A weakness in multicast is security. With IP multicast, any host can join a multicast

group as there is no explicit setup phase. If a malicious host joins the multicast group,

it can start spoofing data, and perform other types of attacks. While multipoint VLANs

require a setup phase, during which users can be authenticated, if one of these hosts are

compromised after authentication, the compromised host can be used to inject spoofed data

onto the multipoint VLAN. Even if firewall filters are set to prevent a receiver from receiving

packets from any host other than the legitimate multicast application sender, source address

spoofing is possible. To mitigate this threat, security enhancements are needed in both the

control-plane and data-plane. One potential solution is to use IPsec for authentication and

encryption, if confidentiality is required, to each data-plane packet. To reduce one memory

copy on the receive side, in LDM7, received message blocks are written directly into the

product queue. This features exposes a potential vulnerability for stack smashing and code

injection attacks. To defend against such attacks, all FMTP receivers should verify the

signature of a received message block as well as the identity of the sender. This requires a

modification to FMTP.

The MPUP architecture allows receivers to dynamically join and leave a multicast group.

The SDN controller should therefore take action to change the topology of the multipoint

VLAN. For a new receiver to join the VLAN, the SDN controller needs to update flow

tables in the switches to provision a new segment (potentially with policing and scheduling)

in the multipoint VLAN. Similarly, when a receiver drops subscription to a feedtype, the

SDN controller needs to release the portion of the multipoint VLAN to this receiver. All

these actions are only performed when the SDN controller is notified by the sending LDM7.
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The sending LDM7 translates incoming subscriptions from receivers and notifies the SDN

controller via a message interface.



Appendices
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Appendix A

Linux kernel implementation of the

network stack

In the Linux network stack, to transmit a packet, the IP layer calls the function

dev queue xmit(), whose source code is part of the file net/core/dev.c. This function

queues the sk buff data structure, which holds the packet, in the ring buffer of the hardware

device. If a tc queueing discipline is configured, the dev queue xmit() function invokes

the virtual method qdisc→enqueue. The function dev queue xmit() returns a status

indicating whether the enqueue function was successful or not. If the enqueue function

was not successful, e.g., due to a lack of buffer space, the packet will be dropped. In other

words, the function in the tc layer neither blocks the calling function (in other words, by

waiting for buffer space to free up), nor does it just notify the calling function that there is

insufficient space. Instead, it simply drops the packet if there is no buffer space.

Tracing the code to understand how the return status from the enqueue func-

tion is handled by the transport layer, we found that the responsible function to be

tcp transmit skb(). The return status from the tc layer is propagated up to this TCP

function tcp transmit skb() as err. Only when err is zero, indicating NET XMIT SUCCESS,

will tcp transmit skb() return control to its calling function directly. For all other values

of err, the TCP sender enters a Congestion Window Reduced (CWR) state by executing the

tcp enter cwr() function. In this function, the TCP sender halves the congestion window
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to reduce the sending rate.

In contrast, in CTCP, since the congestion-control code has been removed, the CTCP

sender will not enter the CWR state or take any action even when the err value is non-zero.

The function ctcp cong avoid() in the file tcp ctcp.c is called when the sender receives

an ACK. It is the core function that controls the size of the congestion window, cwnd, and

correspondingly the maximum number of outstanding (unacknowledged) segments. For

every ACK received, if an RTT measurement was ongoing for the corresponding segment,

the ctcp cong avoid() function checks if the newly measured RTT value is lower than

the current RTT. If so, a new cwnd is computed based on the new BDP using the scale

factor (which is another configurable parameter in CTCP). If the newly measured RTT

value is higher than the current RTT, cwnd remains unchanged. The TCP sending function

tcp transmit skb(), which is common to Standard TCP and CTCP, computes the minimum

of two parameters: cwnd and the receiver’s flow window, to determine the number of packets

to send to the tc buffer.

In UDP, function udp send skb(), whose source code is is part of the file

net/ipv4/udp.c, invokes the IP-layer function ip send skb(), which in turn invokes

dev queue xmit(). Unlike TCP, the UDP-function function udp send skb() does not ,

in any way, react to the returning status err from the dev queue xmit() function.

In summary, both CTCP and UDP are similar in their lack of reaction to a dropped

packet by the tc layer, when its buffer is full. Standard TCP is the only transport layer

protocol that reduces its congestion window if a packet is dropped by the tc layer.
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