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Abstract 

 

SMART E-COMMERCE PERSONALIZATION USING CUSTOMIZED 

ALGORITHMS 

By Liliya Ivanova McLean (Besaleva) 

 

Submitted to the University of Virginia Department of Computer Science in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in 

Computer Science. 

Applications for machine learning algorithms can be observed in numerous places in our 

modern lives. From medical diagnosis predictions to smarter ways of shopping online, big fast 

data is streaming in and being utilized constantly. Unfortunately, unusual instances of data, 

called imbalanced data, are still being ignored at large because of the inadequacies of 

analytical methods that are designed to handle homogenized data sets and to “smooth out” 

outliers. Consequently, rare use cases of significant importance remain neglected and lead to 

high-cost loses or even tragedies. In the past decade, a myriad of approaches handling this 

problem that range from data modifications to alterations of existing algorithms have 

appeared with varying success. Yet, the majority of them have major drawbacks when applied 

to different application domains because of the non-uniform nature of the applicable data. 

Within the vast domain of e-commerce, we are proposing an innovative approach for 

handling imbalanced data, which is a hybrid meta-classification method that will consist of a 

mixed solution of multimodal data formats and algorithmic adaptations for an optimal 

balance between prediction accuracy, sensitivity and specificity for multiclass imbalanced 

datasets. Our solution will be divided into two main phases serving different purposes. In 

phase one, we will classify the outliers with less accuracy for faster, more urgent situations, 



 

 8 

which require immediate predictions that can withstand possible errors in the classification. 

In phase two, we will do a deeper analysis of the results and aim at precisely identifying high-

cost multiclass imbalanced data with larger impact. The goal of this work is to provide a 

solution that improves the data usability, classification accuracy and resulting costs of 

analyzing massive data sets in e-commerce.  
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LEGEND 

Chapter 1 introduces the issue of big data in e-commerce and how real life situations 

often lead to imbalanced use cases with a single or multiple sets of underrepresented data 

points. Section 1.1 describes the background of this dissertation and in particular it gives 

examples of e-commerce use cases, states the problem to which we are proposing a solution 

and lists our contributions. Section 1.2 reviews in detail scientific approaches to handling 

imbalanced data based on both major groups of alterations – algorithm generation and data 

modifications.  

Chapter 2 presents a comprehensive review of classic and modern algorithms and data 

manipulation approaches to handling imbalanced data. Section 2.1 focuses on sampling-

based methods covering both categories of under and over-sampling. Section 2.2 talks about 

cost-based methods in cost-sensitive SVM, decision trees and neural networks. Section 2.3 

reviews active learning-based methods which is a semi-supervised approach for interactively 

querying the user. Next, in section 2.4, kernel-based methods are discussed. Finally, in section 

2.5 we present the problem of multiclass imbalance problems.  

Chapter 3 reviews bagging and boosting meta-algorithmic techniques which pool 

decisions from multiple classifiers. In section 3.1, standard bagging and boosting 

methodologies are discussed with examples of basic bagging and boosting algorithms. In 

contrast, sections 3.2 and 3.3 provide information about online and cost-sensitive advanced 

bagging and boosting techniques, such as AdaBoost (Adaptive Boosting Algorithm), 

UnderOverBagging and SMOTEBagging algorithms.   

Chapter 4 discusses our solution approach, as well as some of the e-commerce specific 

challenges that are unique to this work. In this chapter, there is a strong focus on cost-

sensitive offline and online solutions due to the particular usability of this approach within 

commercial applications.  

Chapter 5 addresses the experimental setup and data utilized within this work. In 
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addition, here we are more deeply considering modern computational environments and 

provide justification for our chosen systems design. 

Chapter 6 focuses on the achieved results for minority and majority classes. Section 6.1 

discusses multiclass minority classes, while Section 6.2 is about multiclass majority classes. 

And finally, we unify both use cases in Section 6.3 where we review our success measures 

and achieved advancements. 

Chapter 7 summarizes all discoveries of this work and sharpens the focus on the current 

achievements and areas of opportunities. And it finally concludes with a prediction of 

upcoming machine learning trends in e-commerce, as well as a reflection on probable future 

development of the current work.  
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Chapter1  
1. Introduction 

 

Modern e-commerce has transformed from a one-size-fits-all experience into a tightly 

knit network of peer-reviewed, social media-shareable, trends-obsessed, customer-centric 

platforms for highly personalized shopping and selling.  

Shoppers have begun expecting a ‘smart’ experience from their preferred online 

merchandisers that accurately represents social events and in-session behavior. Because 

mishandled e-commerce opportunities can cause significant financial losses to large 

businesses, we are exploring how to better personalize the shopping experience using 

machine learning (ML) techniques.  

Example: Shopping. Ms. Jones is a regular in-store shopper at her favorite home 

improvements store BigBox. She often goes there to find little accent pieces for home 

decoration or supplies necessary for updating and fixing something in her house. Recently, 

BigBox extended its online catalogue to include items beyond its in-store assortment, so Ms. 

Jones decides to begin using their digital business as well. There she searches for throw 

pillows and matching sofa sets because she would like to update the look of her living room. 

In her search results for “throw pillows” in the BigBox website, the search ranking algorithm 

first returns throw pillows of different shades of turquoise with geometric patterns because 

in her previous in-store shopping trips, Ms. Jones has purchased paint and other decoration 

elements which would match very nicely with these colors and patterns. On the item pages 

of the items returned from Ms. Jones’ search query, there are recommendations for other 
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decoration pieces, including sofa sets, which would be complimentary to the item at which 

she is currently looking. Finally, during her checkout process, additional matching items are 

recommended which, when purchased with the items in her cart, provide additional savings. 

Example: Apparel Avatar. Ms. Brown loves shopping for apparel online because of the 

convenience it provides--but she does not feel confident that each item she selects will fit her 

well because she cannot try it on as she does in a physical store. Fortunately, the big retail 

store ClothesForAll has a new invention that helps people like Ms. Brown. In the store, there 

is a walk-through full body scanner, similar to the scanners at airports, which makes a 360-

degree scan of Ms. Jones' body. Based on that scan, a unique online avatar representing Ms. 

Jones' measurements is created and linked to her store account. After using that avatar for a 

few shopping occasions, she begins to see two main changes in her shopping experience. 

First, when searching for a specific clothing article, she is first shown available clothing in her 

size that best suits her body type, and then other items follow. That change occurs because 

the store's website uses machine learning algorithms which, based on Ms. Brown’s profile 

information, customize her search results. Second, when looking at a piece of clothing, she 

can choose to see it on her avatar, and therefore know what it would look like on her body. 

Additionally, based on the avatar measurements, personalized advertisements are 

automatically generated and shown. 

Example: Medical Prognosis. “Welcome back, Ms. White, the doctor is now going to 

explain what she sees in your last set of images and suggest some strategies.”  Ms. White 

puts on an Oculus Rift head-mounted display that allows her to see the same 3D images as 

her doctor. 

Dr. Black welcomes Ms. White and begins.  “These three white dots you see are small 

cancers on your liver.  We have used Machine Learning algorithms to analyze six thousand 

cases of liver cancer recorded over the past ten years, and so first we use that capability to 

predict, based upon past experience, what happens if these cancers go untreated.”  The video 

begins and the white dots grow dramatically in size until they wrap themselves around the 

spinal cord.  

Dr. Black continues. “Now let’s see what happens if we treat them with surgery.  You can 

see that the dots disappear on the liver but more form in the lungs.  These are new cancers 
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accidentally spread by the surgery itself.  So now let’s look at the combination of surgery and 

chemotherapy.  The dots disappear from the liver, appear in the lung, and then disappear 

from the lung.  This third choice is our recommendation based upon our computerized 

analysis of your specific situation.” 

Example: Target. Finally, a great real-life example for the power of machine learning-

driven personalization is what the major retailer – Target has been doing for years. Target is 

famous in the retail industry for having employed statisticians and data scientists to use 

purchase behavior to identify shoppers who were pregnant and then market to them. 

Presumably, those statisticians and data scientists used data from Target’s baby registry 

system to identify pregnancy-driven buying patterns. These patterns were then used to write 

algorithms that could identify pregnant shoppers and offer discounts or coupons that were 

likely to make that shopper more loyal to Target. 

In contrast, a machine learning system would have taken a different approach. Rather 

than explicitly be designed to identify a pregnant shopper, it would have identified those 

patterns by itself based on common attributes and characteristics of the shoppers. 

While there are certainly limitations, machine learning has the potential to optimize and 

automate common e-commerce systems, but it still has a long way to go before being able to 

handle all real-life limitations, such as insufficient or imbalance data. 

 

1.1Problem Statement 

Mass customization, the ability to create a highly-personalized experience for millions of 

individuals, is enabled by Machine Learning.  ML applications have grown exponentially in 

accuracy, speed and applicability over the past five years. A major reason for this burgeoning 

interest in ML studies is the ever-growing volume and velocity of data captured at a 

significantly lower cost since the invention of cloud computing and the availability of cheaper 

computational power. We see applications of data classification and prediction techniques in 

virtually every aspect of our lives, including real-time areas such as shopper profiling, virtual 
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reality gaming, financial decision-making, fraud detection, medical prognosis, disaster 

control, pattern recognition, and national intelligence and security scenarios. 

The core functionality necessary for developing these improved experiences is the ability 

to correctly classify and utilize copious amounts of data, in both real-time and offline settings 

in a cost-sensitive fashion. This data can originate from various sources and have different 

formatting, modality, consistency, frequency and reliability characteristics. Additionally, the 

velocity of data acquisition and increased performance demands are introducing new 

restrictions on the ML algorithms.  

Generally speaking, the concept of classification includes decision-making in any context. 

However, the quality of the ML is limited by the quality of the training data. Consequently, 

the development of automated classification systems that replace handcrafted features with 

automatically selected appropriate feature sets for representation of big data is desirable 

and, if carefully engineered, will increase the accuracy of our predictions. Such systems solve 

some of the problems present in older studies such as the removal of subjectivity that comes 

from humans, and the increased computational capacity of the machines versus a manual 

approach. 

When solving a set of classification problems to achieve optimal results we have to know 

the structure of the data which we will be processing. This is especially imperative in 

situations where the data set is not evenly distributed and a lot of data entries not belonging 

to the majority class obstruct the clarity of the results. One of the often overlooked but very 

significant problems in this field is the improper classification of imbalanced data [1]. 

Imbalanced data sets are a special classification problem where the class distribution is not 

uniform among the classes. Such data are considered imbalanced, even though it might be 

the most accurate representation of a real-life application because of the random nature of 

irregularly occurring events. Typically, they are composed of two classes: the majority 

(negative) class and the minority (positive) class [2].  From a learning perspective, imbalanced 

classes are of most interest when the number of outliers is small (which in turn makes 

classification exponentially more difficult). Conventional learning algorithms in machine 
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learning and data mining typically do not work well for imbalanced class problems since their 

objective is to minimize the overall error rate, which implicitly treats all misclassification costs 

equally. As a result, these algorithms may produce trivial results, typically classifying all test 

examples as negative. Additionally, it is often the case that the positive (minority) class is the 

one of greater interest. In such situations, a common mistake amongst classic classification 

techniques occurs while trying to minimize the percentage of erroneous class label 

predictions. In many case, there is an assumed equality of all miscellaneous errors. And yet, 

real-life practice has proven that some false classifications have far higher implications, hence 

higher cost, than other.  

For example, a cancer patient normally treated with chemotherapy may nevertheless be 

in a 1-in-10,000 situation in which an autoimmune disease contraindicates that approach. 

Consider a high-traffic transit station, such as a big international airport when the algorithm 

predicts a false negative (e.g., traveler is believed not to carry a bomb when in fact he does). 

Even if the chance for that false negative is one in a million, the wrong labeling could lead to 

terrible consequences. Unfortunately, the standard learning approximation requires 

balanced training sets (i.e., positive and negative classes) because they are much easier to 

simulate and acquire. Therefore, only the majority of balanced data (referred to in the ML 

world as a negative class) is classified, while the imbalanced data (i.e., positive class) remains 

difficult to classify, and therefore largely ignored in scientific studies. 

For this reason, the class imbalance problem has often been formulized within the cost-

sensitive learning framework. The class imbalance problem gets more challenging in the 

context of learning from data streams, which unfortunately is required in many practical 

classification problems. For example, in e-commerce, customer dynamic features-based 

personalization data analysis [3], one challenge is that a customer’s intent to convert (i.e., 

purchase) on a specific product is relatively rare. When comparing browsing activities (e.g., 

price/brand/quality comparisons or inspirational browsing), and the cost of missing a possible 

conversion is much higher than detecting. Meanwhile, in the online retail scenario, a 

customer’s dynamic features data is usually collected incrementally over time, and the intent 
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detection system must respond to the signals in real time. Even though the entire data can 

be received from the start and the classifier can be trained in batch mode, it is still favorable 

if the model can adapt online to new data. Such data may come from the same subject but 

from a different time, or even from different subjects (e.g., similar customers). This is because 

the size of the entire data set can be too large to fit in memory or to train a classifier all at 

once. Moreover, since the positive examples (conversions) are relatively rare, each of them 

can convey very important information. However, in the batch learning scenario, the trained 

classifier is static and is not updated in the testing phase. Therefore, this problem should also 

be formulated within the incremental learning framework. The main challenge of such a 

problem is how to perform well even with very few positive examples at the early stage of 

model building, and perform better as more examples are available, motivating us to develop 

effective incremental learning algorithms dealing with class imbalance problem. 

In this work, we are examining cost-sensitive anomaly detection classification algorithms 

that can be applied to in-house and third-party multimodal content to identify those that 

have been wrongly grouped and wrongly ranked. We also examine how they affect the 

unique customer experience by influencing the behavioral prediction models powering e-

commerce personalization. With this solution, we are looking to achieve optimal balance 

between prediction accuracy, sensitivity and specificity for multiclass imbalanced datasets. 

For that reason, we are employing three meta-algorithmic approaches that combine several 

machine learning techniques into one predictive model to decrease the variance (bagging), 

decrease the bias (boosting) or improve the predictive force (stacking alias ensemble). 

Every algorithm consists of two steps: 

1. Producing a distribution of simple ML models on subsets of the original data. 

2. Combining the distribution into one "aggregated" model. 

We are going to use the following three meta-models for optimizing our data classification 

balance: 
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1. Bagging (Bootstrap Aggregation) is a way to decrease the variance of your 

prediction by generating additional data for training from your original dataset 

using combinations with repetitions to produce multisets of the same cardinality/size as your 

original data. By increasing the size of your training set you cannot improve the model’s 

predictive force, but you can decrease the variance, narrowly tuning the prediction to 

expected outcome. 

2. Boosting is a two-step approach, where one first uses subsets of the original data 

to produce a series of average performance models and then "boosts" their performance by 

combining them together using a cost function (such as majority vote). Unlike bagging, in 

classical boosting the subset creation is not random and depends upon the performance of 

the previous models: every new subset contains the elements that were (likely to be) 

misclassified by previous models. 

3. Stacking is similar to boosting: you could also apply several models to your original 

data. The difference here is, however, that you do not have just an empirical formula for your 

weight function. Instead, you introduce a meta-level and use another model to estimate the 

input together with outputs of every model to estimate the weights or, in other words, to 

determine which models perform well and which model performs badly given these input 

data. 

 

 

Our main contributions can be summarized as follows. 

1. We demonstrate an online cost-sensitive ensemble learning framework, which 

generalizes a batch of widely used variance-decreasing bagging and bias- decreasing 

boosting-based cost-sensitive learning algorithms into its online version. With that we are 

enabling more accurate personalization experiences across the vast domain of e-commerce. 

http://en.wikipedia.org/wiki/Combinations
http://en.wikipedia.org/wiki/Multiset
http://www.cs.princeton.edu/courses/archive/spr08/cos424/readings/Schapire2003.pdf
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2. We analyze the consistency between the proposed algorithms and their batch mode 

counterparts, showing that under certain conditions, as the number of examples approaches 

infinity, the models generated by online cost-sensitive ensemble learning algorithms 

converge to that of batch cost-sensitive ensembles.  

3. Three separate research areas (imbalanced data classification, cost-sensitive learning 

and incremental learning are bridged together in this paper to form an innovative, cost-

effective, multimodal and multiclass classification technique that improves upon current 

state-of-the-art classifiers for imbalanced data. As meta-learning techniques, the proposed 

framework can convert any existing cost-insensitive online learning algorithm into cost-

sensitive one. 

4. With some straightforward modifications, the proposed algorithms can also deal with 

the concept drift problem in non-stationary environments. 

The performance of the proposed real time cost-sensitive ensemble algorithms is 

evaluated on private, large, online retailer data sets, and a comprehensive comparison study 

of online and batch cost-sensitive ensemble learning algorithms is presented.  

 

 

 

1.2 Handling imbalanced data 

There are many recent studies on the topic of how to handle imbalanced data, and they 

range from data modifications to alterations of existing algorithms. On the other hand, many 

methods for learning from data streams are also available in the literature on 

incremental/online learning. Although these two issues have been extensively studied 

independently in the past decades, the research on simultaneously solving both problems is 

limited. 
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In this work, incremental learning is referred to as the general technique of learning from 

data streams, and online learning is characterized as responding immediately to a new 

instance and then discarding it. Except for SMOTE-based online learning algorithms, the 

positive examples are stored to create synthetic samples.  

In addition, while imbalanced data has traditionally been studied as a two-class data 

classification problem (where there is one imbalanced class and one balanced class), in 

modern research a new understanding of the complexity of this problem has come into view. 

We now know that more often than not in real life applications, we have to deal with 

multiclass classification where more than a single class might be imbalanced in its own right. 

With that knowledge in mind, we have reviewed current state-of-the-art solutions and have 

proposed a multimodal and multiclass handling solution for the advancement of modern 

imbalanced data use cases within the application domain of e-commerce.  

A) Data modifications 

At the data level, there are several possible tactics to combat imbalanced data. 

Traditionally, the first natural approach is the collection of more data when possible. By 

expanding the data, more entries of the initially underrepresented type could appear, or even 

brand new data classes could be introduced, and to present a completely different modeling 

problem or a more even set with relatively similar class weights.  

If access to more data is not possible, the next most common action is to change the 

performance metrics used to measure and showcase the classification quality. Typically, the 

standard metric used to determine the quality of a classifier is accuracy (number of correct 

classifications out of the examined set). But when we use only accuracy that could be very 

misleading with highly imbalanced classes because even with every entry classified as part of 

the majority class, the accuracy would come out as very high (100% minus the percentage of 

imbalanced entries). For a set of 1000 entries with 990 of them belonging to class A and 10 

to class B, the accuracy of a standard classifier would be 99.9% which is deceivingly high and 

could lead to costly consequences. This problem is called an “accuracy paradox.” A simple 
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way to uncover the underlying data classes and not succumb for the accuracy paradox is to 

use confusion matrixes. A confusion matrix is the breakdown of predictions into a table 

showing correct predictions (the diagonal) and the types of incorrect predictions made (what 

classes incorrect predictions were assigned).  

 Predicted Positive Predicted Negative 

Actually Positive True Positive False Positive 

Actually Negative False Negative True Negative 

Table 1. Truth Table Confusion Matrix 
 

Additionally, we can look at the precision (a measure of the classifier’s exactness) and 

recall (a measure of the classifier’s completeness) of the classification. 

 

      and  

 

A further step is to employ Fmeasure (Fscore) which is the weighted average of precision 

and recall.  This metric is a good criterion if recall is regarded more important than precision. 

 

 

These metrics come in handy in situations with highly skewed class balance as in the 

following example: 

In a clinical study 286 women who are breast cancer survivors are examined. The data set 

used to identify their condition contains 9 attributes describing whether breast cancer 
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recurred within 5 years. Of the 286 women, 201 did not suffer a recurrence of breast cancer, 

whereas cancer did recur in the remaining 85. 

We can use confusion matrixes to illustrate the possible naïve classification alternatives. 

Table 2 is indicative of a situation where we assume there were no recurrences of cancer, 

while table 3 shows the opposite situation – all 286 women were assumed to have recurring 

cancer within 5 years. 

 

 Predicted Recurrence Predicted No Recurrence 

Actual Recurrence 0 0 

Actual No Recurrence 85 201 

 85 201 

 

 

 

 

 Predicted Recurrence Predicted No Recurrence 

Actual Recurrence 85 201 

Actual No Recurrence 0 0 

 85 201 

Table 2. “Assume No Recurrences” Confusion 
Matrix 

 

Table 3. “Assume All Recurrences” 
Confusion Matrix 
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Finally, let’s assume the existence of another more valuable classifier, classifier XYZ, which 

correctly predicts 10 recurrence events, as well as 188 no recurrence events. 

 Predicted Recurrence Predicted No Recurrence 

Actual Recurrence 10 13 

Actual No Recurrence 75 188 

 85 201 

 

Let  

TP = true positives, 

TN = true negatives, 

PP = predicted positives, and 

PN = predicted negatives. 

Then accuracy is calculated as (TP + TN)/(PP + PN) and for all these use cases is: 

• Assume No Recurrence model: accuracy = (0+201)/(85+201) = 0.703 

• Assume All Recurrences model: accuracy = (85+0)/(85+201) = 0.297 

• XYZ model: accuracy = (10+188)/(85+201) = 0.692 

 

Precision is calculated as (TP/(TP + FN) = TP/PP) and results in: 

• Assume No Recurrence model: precision = 0/(0+0) = 0 

• Assume All Recurrences model: precision = 85/(85+201) = 0.30 

• XYZ model: precision = 10/(10+13) = 0.43 

Table 4. Classifier XYZ Confusion 
Matrix  
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Recall is calculated as (TN/(TN + FP) = TN / PN) and yields: 

• Assume No Recurrence model: recall = 0/(0+85) = 0 

• Assume All Recurrences model: recall = 85/(85+0) = 1 

• XYZ model: recall = 10/(10+75) = 0.12 

And the Fmeasure is calculated as (2*((precision*recall)/(precision + recall)) which results 

in: 

• Assume No Recurrence model: Fmeasure = 2*((0*0)/0+0) = 0 

• Assume All Recurrences model: Fmeasure = 2*((0.3*1)/0.3+1) = 0.46 

• XYZ model: Fmeasure = 2*((0.43*12)/0.43+12) = 0.1 

 

These results suggest that even though the Assume No Recurrence model has the highest 

accuracy, both the Assume All Recurrences and XYZ models are stronger prediction models, 

as they outperform the Assume No Recurrences model in every way. 

Alternatively, another very popular measurement for imbalanced datasets are Receiver 

Operator Characteristics (ROC) and Precision-Recall (PR) curves. Like precision and recall, 

accuracy is divided into sensitivity and specificity and models can be chosen based on the 

balance thresholds of these values.  

Both the ROC and PR curves visualize (see Figures 1, 2) the performance of the classifier 

over its entire operating range. The most widely used measure is the area under the curve 

(AUC). When dealing with highly skewed datasets there is a deep connection between ROC 

space and PR space because if a curve dominates in ROC space, it also dominates in PR space. 

Together they increase the confidence of prediction significantly. 
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The AUC can be used to compare the performance of two or more classifiers.  Considering 

the AUC, we could make a comparison between a single selected threshold and the classifier’s 

performance at that point or even the overall performance of one classifier versus another. 

 

  

 

 

 

 

 

 

 

 

Fig 1. Example of ROC Curve Visualization 
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If the collection of more data, a change of measurements and a change of performance 

metrics still does not help, a more effective approach is to create a balanced set of classes by 

various forms of data re-sampling. You could add copies of instances from the under-

represented class called over-sampling (or more formally, sampling with replacement), or you 

could delete instances from the over-represented class, called under-sampling. Some more 

comprehensive types of re-sampling include random with replacement, random under-

sampling, directed over-sampling, directed under-sampling (both types of direct sampling are 

characterized by a non-random sample selection), over-sampling with informed generation 

of new samples, and combinations of the above techniques.  

And finally, there are even more sophisticated data manipulation solutions via generation 

of synthetic samples. One factor about these approaches is that we could take into 

consideration misclassification costs when designing the algorithms such that the 

Fig 2. Example of Precision-Recall Curve Visualization 
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misclassification cost of positive samples is higher than that of negative ones.  A standard way 

to generate cost-sensitive synthetic samples is to analyze the original data set for common 

features of the data points with similar error costs and then to randomly sample the 

attributes from instances in the minority class. Such an approach can also be regarded as a 

class of meta-learning techniques which can convert cost-insensitive algorithms into cost-

sensitive ones without modifying them. One advantage of this category of approaches is that 

it is independent of specific classifiers and therefore it is applicable to any existing cost-

insensitive learning algorithm.  

As part of this approach, there are systematic algorithms that could be used to generate 

synthetic samples. The most popular of such algorithms is called SMOTE (Synthetic Minority 

Oversampling Technique). It works by creating synthetic samples from the minor class instead 

of creating copies. The algorithm selects two or more similar instances (using a distance 

measure) and perturbs an instance of one attribute at a time by a random amount within the 

difference to the neighboring instances. This sampling technique can be further incorporated 

with ensemble learning algorithms [4] and has received much attention recently due to its 

better performance on imbalanced data sets [5].  

Ensemble-based techniques for class imbalance problem inherit the good properties of 

ensemble learning algorithms, improving the generation ability of learning algorithms via bias 

or/and variance reduction, as well as achieving cost sensitivity by sampling techniques. In 

addition, traditional ensemble learning algorithms themselves have sampling step in each 

iteration. Therefore, little extra learning cost is added when embedding the re-sampling step 

to rebalance the data set. As for learning from data streams, which is of interest to us due to 

e-commerce big fast data (BFD), some algorithms are naturally incremental, or can be easily 

extended to incremental algorithms, including k-NN, naive Bayes classifier, binary linear 

discriminant analysis (LDA), quadratic discriminant analysis (QDA), and so on. 

B) Algorithm modifications 
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At the algorithmic level, solutions include adjusting the costs of the various classes to 

smooth out the class imbalance, adjusting the probabilistic estimate at the tree leaf (when 

working with decision trees), adjusting the decision threshold, and recognition-based (i.e., 

learning from one class) rather than discrimination-based (two class) learning. 

 One of the more interesting, highly sought after and useful algorithmic optimizations 

currently is responsible for the transition from manual selection of sets of features to an 

automatic generation via high-level abstractions with multiple processing layers, and it is 

called deep learning. Traditional data pipelines for e-commerce products use image 

processing feature descriptors (e.g. SIFT – Scale Invariant Feature Transform and HoG – 

Histogram of Oriented Gradients) dependent on manual selection of classification features to 

represent the characteristics of the objects. Even though they have demonstrated their 

representational power on a variety of visual search tasks, they are still unable to carry high-

level concepts of objects. To address this problem, in recent years researchers proposed a 

neural network based deep learning architecture named Convolutional Neural Networks 

(CNNs). 

In addition, the incremental/online versions of more sophisticated algorithms have been 

proposed in the literature, including but not limited to decision trees [6], random forests [7], 

[8] , multi-class LDA [9], [10], logistic regression [11], support vector machines [12], [13], and 

other kernel methods [14], [15]. Besides the base learning algorithms, the online versions of 

ensemble learning techniques, bagging and boosting, were also derived in [16] by 

approximating binominal distribution using a Poisson distribution. 

In this work, we are employing the use of deep learning techniques, such as deep neural 

networks (DNN), convolutional neural networks (CNN), deep belief networks (DBN) and 

more, to enhance the performance of our innovative e-commerce-specific over-sampling 

technique that we call Over-sampling via Arbitrary Features Allocation (OAFA) and we 

describe in chapter IV – Approach and E-Commerce-Specific Challenges. The combination of 

our unique highly customized re-sampling algorithm with visual processing deep hierarchical 
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learning techniques creates a powerhouse methodology for accurate prediction of 

imbalanced multimodal e-commerce data. 
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2. Literature Review 

 

This section presents a comprehensive review of renowned and modern methods in the 

field of imbalanced data discovery and classification which could be applied as solutions 

within the world of e-commerce for optimized information categorization. We are later going 

to use these innovative approaches as a base for performance comparison to our 

customizable methodology in terms of prediction accuracy, sensitivity and specificity within 

the application domain of online business. 

  

 

 

 

 

2.1 Sampling-Based Methods 

Significant work has been done to handle the imbalanced learning problem, and it can be 

categorized into four categories: sampling-based methods (this section), cost-based methods 

(section 2.2), active learning-based methods (section 2.3) and kernel-based methods (section 

2.4). Figure 3 shows these categories. All these methods attempt to resolve the imbalanced 

learning problem with various levels of efficiency based on the application domain within 

which they are utilized. 

 Fig. 3. Methods in Imbalanced Learning 

 



 

 30 

In imbalanced learning sampling methods, the size of the classes is altered, i.e. it may increase 

the number of samples or it may reduce the samples. The method in which the number of 

samples get reduced is called –under-sampling, while the method which increases the 

number of samples is called over-sampling [17]. Figure 4 represents a hierarchy of sampling 

methods. 

 

 

 

 

 

 

 

 

 

 

 

A) Under-sampling 

Under-sampling methods reduces the number of samples from the majority class in order 

to create a balance between the majority and minority classes. When majority class samples 

are reduced randomly it is called random under-sampling. When samples are reduced on the 

basis of some statistical knowledge, then it is called informed under-sampling. The main 

drawback of random under-sampling is that it may miss some important concepts from the 

Fig 4. Taxonomy for Sampling-Based Methods 
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majority class as it randomly removes the samples [18]. To overcome this problem many 

researchers propose various informed under sampling techniques as follows: 

▪ EasyEnsemble 

In the EasyEnsemble method, a majority class is divided into several subsets and the size 

of each subset is equal to the size of a minority class. Then for each subset, it develops a 

classifier using the whole minority class and the majority class subset. Results generated from 

all the classifiers are combined to get the final decision. To develop a classifier AdaBoost (a 

meta-algorithm for algorithmic performance optimizations) is used. The EasyEnsemble 

approach is shown in Figure 5. Because EasyEnsemble uses independent random sampling 

with replacement, it can be considered as an unsupervised learning algorithm [19]. 

 

 

 

 

 

 

▪ BalanceCascade 

This method follows the supervised learning approach [20]. The BalanceCascade method 

works by forming a subset of majority class which contains a number of samples equal to the 

number of minority class sample. When classifier C1 is trained using the majority class subset 

and the whole minority class, the samples from a majority subset which are correctly 

classified are removed. This newly generated sampled set of majority class is given as an input 

to classifier C2. The same procedure is iterated until a final classifier is reached. At every 

Fig 5. EasyEnsemble Approach 
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classifier, the size of the majority subset gets reduced. In BalanceCascade there is a sequential 

dependency between classifiers. BalanceCascade differs from EasyEnsemble as it removes 

true majority samples in order to reduce redundancy. 

▪ k-NN-based methods 

To achieve under-sampling, a k-NN based approach has been invented that deals with 

imbalance data distribution. This k-NN based approach includes four different methods, 

namely NearMiss-1, NearMiss-2, NearMiss-3 and most distant method [21] In the NearMiss-

1 method, majority samples whose average distances to three closest minority samples are 

the smallest are selected for the under-sampling. The NearMiss-2 method selects majority 

samples that are close to all minority samples. This method selects the samples based on 

their average distances to three farthest minority samples. The NearMiss-3 method 

guarantees every minority sample is surrounded by some majority samples. This method 

selects a given number of closest majority samples for each minority sample. In the Most-

Distant method, majority samples whose average distances to three closest minority samples 

are the farthest are selected for the under-sampling. On the basis of experimental results 

researchers have suggested that NearMiss-2 methods performed well as compared to other 

methods. 

 

▪ One-sided Selection method 

This is another type of informed under-sampling method in which only the most 

representative majority samples are kept and the remaining samples are removed from the 

class [22] In order to choose the most representative samples, OSS first chooses one sample 

x randomly from the majority class. Then taking minority samples and x as a training set OSS 

uses the k-NN algorithm for classification of the remaining samples of majority class. After 

that, the correctly classified samples are removed from the majority class in order to 

eliminate redundancy. Therefore, the majority class will contain only incorrectly classified 
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samples and x. At the end, OSS removes borderline and noisy samples using data cleaning 

techniques. 

To start the under-sampling process OSS selects only one majority sample randomly. 

Hence, the overall result will be dependent on that sample. Also, OSS does not consider the 

existence of sub-concepts within a majority class. To overcome this problem a novel method 

has been proposed called ClusterOSS. In this method, using clustering methods like k-means, 

clusters of majority classes are formed. Then samples located near the center of the cluster 

are selected for an under-sampling process. 

There are two main differences between OSS and ClusterOSS. OSS uses only one majority 

sample to start under-sampling process, while ClusterOSS uses multiple samples. Another 

difference is that OSS starts under-sampling randomly, while in a ClusterOSS the number and 

instances of samples is decided in advance [23]. Experimental results suggest that the 

combination of ClusterOSS with random under-sampling will give better results. 

 

B) Over-sampling 

Over-sampling methods add the samples to the original imbalanced data set. There are 

two types of over-sampling: random over-sampling and synthetic over-sampling. In random 

over-sampling minority samples are randomly replicated, but this may lead to an over-fitting 

problem. In the synthetic over-sampling method, synthetic samples are generated from 

minority samples. There are various over-sampling methods described in the literature. They 

are as follows: 

▪ SMOTE 

N.V. Chawla et al. proposed a powerful method called Synthetic Minority Over-sampling 

Technique (SMOTE) which has shown great success in many applications [24]. Initially for 

each minority sample k-nearest neighbors are determined. Then a synthetic sample is 
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generated along the line segment joining minority sample and its nearest neighbor. Firstly, 

SMOTE takes the difference between minority sample and its nearest neighbor. This 

difference is then multiplied by a random number between 0 and 1, and added to original 

minority sample. In this way a synthetic sample is generated. SMOTE generates an equal 

number of synthetic samples for each minority sample. 

To handle the imbalanced learning problem in big data a novel approach (called the 

Enhanced SMOTE algorithm) has been proposed. This algorithm works in two steps. In the 

first step, original data set is decomposed into subsets of binary classes using Binarization 

techniques such as OVA (over-versus-all) and OVO (one-versus-one). Then for each binary 

class SMOTE is applied. Random Forest is used to classify the data [25]. 

▪ Borderline-SMOTE 

As SMOTE generates synthetic samples for each minority sample it may lead to over 

generalization [26]. The main objective of Borderline-SMOTE is to identify minority samples 

located near the decision boundary. Then these samples are used further for over-sampling. 

This method focuses on borderline samples because classifier may misclassify them. For this 

use case, H. Han et al. proposed two methods -  borderline-SMOTE1 and borderline-SMOTE2 

[27]. Both methods give better results on TP rate and F-value as compared to classic SMOTE. 

▪ ADASYN 

Haibo He and E.A. Garcia proposed a novel approach Adaptive Synthetic Sampling 

(ADASYN) to handle imbalanced data sets. In synthetic sample generation process, there is 

no need to consider all minority samples as there may be problem of overlapping [28] 

ADASYN uses the weighted distribution of minority samples. It assigns weight to a minority 

sample depending on the importance of the minority sample. Samples which are difficult to 

classify get higher weight than others. More samples are generated for the sample having a 

higher weight. ADASYN can be integrated with an ensemble based learning algorithm to get 

optimized results. 
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▪ RAMOBoost 

Ranked Minority Over-sampling in Boosting (RAMOBoost) is a technique which 

systematically generates synthetic samples depending on sampling weights. It adjusts these 

weights of minority samples according to their distribution. This method works in two stages. 

In the first stage the decision boundary is shifted towards the samples which are difficult to 

learn from both majority and minority classes. In the second stage a ranked sampling 

probability distribution is used to generate synthetic samples. If RAMOBoost adopts 

techniques used in SMOTE-N method, then it can handle datasets having nominal features 

[29] 

▪ MWMOTE 

Existing synthetic over-sampling methods may have some insufficiencies and 

inappropriateness in many scenarios [30] In order to overcome these problems, a new 

method has been proposed called Majority Weighted Minority Oversampling Technique 

(MWMOTE). This method works in three steps. In the first step, the samples from the minority 

class which are difficult to learn and which contain more information are selected. In the 

second step, a selection weight is assigned to those selected samples. Most important 

samples get higher weight. In the last step, using selection weights this algorithm generates 

synthetic samples from selected minority samples. Many over-sampling methods use k-NN-

based approach for sample generation process, but MWMOTE uses a clustering approach 

which gives better results than previous approaches. MWMOTE attempts to improve the 

sample selection and sample generation process very efficiently. In future MWMOTE can be 

extended for multiclass imbalances. 

 

2.2 Cost-Based Methods 

As sampling-based methods try to remove or add samples to balance between majority 

and minority classes, cost-based methods use a cost matrix in dealing with imbalanced 
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learning. This type of algorithm directly modifies the traditional algorithms to achieve cost 

sensitivity by taking different misclassification costs into consideration when designing the 

algorithms such that the misclassification cost of positive examples is higher than that of 

negative ones.  

Cost matrix represents the cost associated with each misclassification. If any minority 

sample gets misclassified in a majority class, then its cost will be higher than misclassification 

of a majority class sample [31]  

The goal of a classifier is to minimize the cost instead of classification error, and therefore the 

classification algorithms will bias towards the small class. For example, cost-sensitive SVM 

can be derived by kernel modification [32], biased penalty [33], or loss function modification 

[34]. For decision tree, the cost sensitivity can be introduced by probabilistic estimate 

calibration [35] or using different pruning methods [36] When dealing with decision trees, 

cost-sensitive methods can move the decision threshold, can apply pruning schemes based 

on cost-sensitivity or can consider cost-sensitivity in the spilt criterion [37]. For building cost-

sensitive decision trees with missing values, a new splitting criterion has been proposed [38] 

which is based on tradeoffs between different cost units and the classification ability. 

 

To introduce cost-sensitivity in neural networks, the output of the neural network must be 

cost-sensitive. The error minimization function should be adapted to get the expected cost. 

Based on cost-sensitivity some modifications should be applied to probabilistic estimate [39] 

To handle the multiclass imbalance problem, a new method based on an ensemble of cost-

sensitive neural network has been proposed [40]. This new method optimizes the 

misclassification cost using evolutionary search technique. 

 

2.3 Active Learning-Based Methods 

In semi-supervised learning, there can be pool of data with labeled, as well as unlabeled, 

samples. To label the samples manually could be very expensive. To improve the classification 
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accuracy, active learning methods focus on acquiring labels for those unlabeled data samples. 

The active learner chooses the unlabeled samples which are closer to a decision boundary 

and with highest uncertainty. In the traditional approach, there exists a human annotator 

(oracle) who gives labels to unlabeled samples when the learner queries for labels. There are 

three main categories of this traditional approach: 1) pool-based active learning [41], stream-

based active learning [42] and query construction based active learning [43] Another strategy 

is proposed for remote sensing image classification [44] in which a classifier assigns a rank to 

each unlabeled sample, and samples that are more important are selected. These selected 

samples are then labeled manually. A novel method is proposed to deal with noisy labels [45] 

There are two procedures used in this method, label integration and sample selection. In a 

label integration process, to get labels from multiple noisy labels a positive label threshold 

algorithm (PLAT) is used. Using the sample selection strategies, learning performance of PLAT 

can be improved. 

 

 

 

2.4 Kernel-Based Methods 

Along with sampling based methods and cost-sensitive methods, many researchers have 

worked on kernel based methods in order to deal with imbalanced data sets. In “A Kernel-

based Sampling to Train SVM with Imbalanced Data Set” [46] a new over-sampling strategy 

based on kernel function has been proposed to train a support vector machine (SVM). First, 

it generates a synthetic sample from minority samples similar to SMOTE, then a pre-image of 

each synthetic sample is identified, and all these pre-images collectively append to the 

original minority set. To overcome the problem of generalization due to various over-

sampling methods a novel approach of quasi-linear SVM and assembled SMOTE has been 

proposed [47] In this approach, using a minimum spanning tree, data is divided into a number 

of local linear partitions so that they are linearly separable. Then synthetic samples are 
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generated using assembled SMOTE. Finally, using a quasi-linear kernel function SVM classifies 

data efficiently. 

 

2.5 Multiclass imbalance problem 

In this work, we are focusing on developing a real-life data classification when heavily 

imbalanced data sets are in use. For a successful solution of this problem we first need to 

identify the types of data that we will be analyzing as defined by e-commerce constrains. 

Advancements in wireless communication techniques and the popularity of mobile devices 

(e.g., mobile phone, tablets, smart watches) contribute to a new aspect of online shopping: 

mobile commerce. This is a form of e-commerce done via native mobile apps and mobile 

browsers. While in 2014 mobile commerce shopping was still lagging traditional desktop 

shopping, in 2015 began the trend of mobile-first, and in 2016 for many large retailers, mobile 

traffic became their predominant channel and helped in acquiring their biggest number of 

new customers [48]  Consequently, in our work we investigate and design technologies which 

can handle the different aspects of data clustering and categorization based on its origin (e.g., 

mobile commerce or traditional desktop commerce). One of the specifics of mobile 

commerce is the superior accuracy of localization data from GPS (e.g., within 15 feet) versus 

localization data from IP address (within 25 miles). As seen in our previous research of 

medical crowdsourcing-powered mobile applications, streaming data coming from varying 

locations and networks has to be clustered differently due to discrepancies in format [49]. 

Although this situation is often initially perceived as a two-class imbalance data classification 

(where there is one imbalanced class and one balanced class), it is actually a multiclass one.  

A number of solutions have been proposed at the data and algorithm level to deal with 

class imbalance, the efforts of most major classification techniques so far are focused on two-

class imbalance problems in the literature. Most existing imbalance learning techniques are 

only designed for and tested in two-class scenarios. They have been shown to be less effective 

or even cause a negative effect in dealing with multiclass tasks. Some methods are not 

directly applicable. Among limited solutions for multiclass imbalance problems, most 
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attention in the literature was devoted to class decomposition—converting a multiclass 

problem into a set of two-class sub-problems. Given a c-class problem (c > 2), a common 

decomposing scheme is to choose one class labeled as positive and to merge the others 

labeled as negative for forming a sub-problem. Each class becomes the positive class once, 

and thus, c binary classifiers are produced to give a final decision (known as one-against-all 

(OAA) or one-versus-others (OVO). However, it aggravates imbalanced distributions, and 

combining results from classifiers learned from different sub-problems can cause potential 

classification errors. It is desirable to develop a more effective and efficient method to handle 

multiclass imbalance problems. 

Most existing solutions for multiclass imbalance problems use class decomposition 

schemes to handle multiclass and work with two-class imbalance techniques to handle each 

imbalanced binary subtask. For example, protein fold classification is a typical multiclass 

imbalance problem. Tan et al. used both OAA and OAO schemes to break down this problem 

and then built rule-based learners to improve the coverage of minority class examples. OAA 

and OAO are the two most popular schemes of class decomposition in the literature. Zhao et 

al. [50] used OAA to handle multiclass and under-sampling and SMOTE techniques to 

overcome the imbalance issue. Liao [51] investigated a variety of over-sampling and under-

sampling techniques used with OAA for a geo tagging flaw classification problem. Chen et al. 

[52] proposed an algorithm using OAA to deal with multiclass and then applied some 

advanced sampling methods that decompose each binary problem further so as to rebalance 

the data. Fernandez [53] integrated OAO and SMOTE in their algorithm. Instead of applying 

data level methods, the algorithm developed by Alejo et al. [54] made the error function of 

neural networks cost-sensitive by incorporating the imbalance rates between classes to 

emphasize minority classes, after decomposing the problem through OAA. Generally 

speaking, class decomposition simplifies the problem. However, each individual classifier is 

trained without full data knowledge. It can cause classification ambiguity or uncovered data 

regions with respect to each type of decomposition. 
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Chapter3  
3. Review of Bagging and Boosting Techniques 

In this chapter, we briefly review the standard bagging and boosting algorithms, as well 

as their online versions and cost-sensitive versions, which motivate the proposed online cost-

sensitive ensemble framework.  

 

3.1 Standard bagging and boosting  

In recent years, ensemble learning algorithms have been the topic of much theoretical 

and experimental research. These algorithms provide methods for invoking a learning 

algorithm (the base learning algorithm) multiple times and for combining the resulting 
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hypotheses into an ensemble hypothesis (e.g., via a majority vote). Ensemble learning 

algorithms work by combining the outputs of multiple base learners. The basic idea here is to 

improve the generalization ability of individual classifiers by training them on different data 

sets, which is motivated by bias-variance trade-off [55]. The goal in using an ensemble of 

hypotheses is to be superior in some sense to the individual hypothesis generated by the base 

algorithm on the training instances. Averaging the outputs of base models tends to cancel the 

variance component or/and reduce the bias. On the other hand, to achieve good 

performance, the diversity, which is usually introduced by presenting different training data 

to different base models among classifiers, is an important characteristic [56]. Different 

approaches to averaging base models and obtaining desired diversity distinguish different 

ensemble methods. Two representative techniques among them are Bagging and Boosting 

(AdaBoost) [57]. 

Given a data set S = {(x1, y1), . . . ,(xN , yN )} of size N, where xn ∈ X, yn ∈ Y = {0, 1}, M 

base models hm, bagging constructs M classifiers with bootstrap replicas {Sm} of S, where 

Sm is obtained by drawing examples from the original data set S with replacement, usually 

having the same number of examples as S. The diversity among the classifiers is introduced 

by independently constructing different subsets of the original data set. After constructing 

ensembles, the prediction of the class of a new example is given by majority voting. The 

pseudo-code of Bagging is shown in Alg. 1. 
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AdaBoost is another widely-used ensemble learning algorithm. Unlike bagging, which 

treats all examples equally, AdaBoost focuses more on difficult examples. In particular, 

Adaboost sequentially constructs a series of base learners in such a way that examples that 

are misclassified by the current base learner hm are given more weight in the training set for 

the following learner hm+1, whereas the correctly classified examples are given less weight. 

More specifically, the weights of all examples are initially equal, and then examples 

misclassified by hm are given half the total weight for the following learner hm+1, and the 

correctly classified examples are given the remaining half of the total weights. The pseudo-

code of AdaBoost is shown in Alg. 2. 

It should be emphasized that by using the update rule in step 6 of Alg. 2, the normalization 

step is avoided. That is, the summation of Dm+1 will remain one after each update without 

normalization, which is crucial to designing the online boosting algorithm [58] and the 

proposed online cost-sensitive boosting algorithms, since the normalization factor is 

unavailable during the online learning process. After update, the reweighted examples can 

be either directly used to train the next base learner, or first resampled according to the 

weights and then the unweighted samples are used to train the base learner. In this work, all 

boosting techniques are implemented by resampling. The reasons are three-fold: First, 

sampling-based boosting algorithms are consistent with bagging techniques. Second, they are 

also consistent with their online counterparts introduced later, which simulate sampling with 

replacement by using a Poisson distribution. Finally, reweighting on the training set is not 

applicable to all learning algorithms. 
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3.2 Online Bagging and Boosting 

The framework of online ensemble learning algorithms [59] is inspired by the observation 

that the binomial distribution Binomial(p,N) can be approximated by a Poisson distribution 

Poisson(λ) with λ = Np as N → ∞, where the probability of success p in the binomial 

distribution is equivalent to D(n) in bagging and boosting algorithms. For example, since D(n) 

= 
𝟏

𝑵
 for all examples of bagging algorithms, the uniform sampling with replacement of bagging 

algorithms can be approximated by Poisson (1). For online boosting, λ can be computed by 

tracking the total weights of correctly classified and misclassified examples for each base 

learner (𝝀𝒎
𝑺𝑪, 𝝀𝒎

𝑺𝑾). The online bagging and boosting algorithms are described in Alg. 3 and 

Alg. 4 respectively. 
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3.3 Cost-sensitive Bagging and Boosting 

Cost-sensitive ensemble learning is a meta-technology that takes different 

misclassification costs into consideration via biased resampling/re-weighting methods before 

each iteration of bagging and boosting. As a result, cost-sensitive ensemble learning 
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algorithms can turn any cost-insensitive classifier into a cost-sensitive one with little extra 

learning cost, while preserving the good properties of standard ensemble learning 

algorithms. The main difference between these techniques lies in the choice of resampling 

mechanism. From this point, we briefly review the two most popular cost-sensitive ensemble 

learning algorithms, namely UnderOverBagging and SMOTEBagging [60]. One of the 

contributions of this work is the derivation of their online extensions from a purely static 

format. Given an imbalanced data set of N+ minority class S+ and N− majority class S−, one 

straightforward approach to implement bagging-based ensemble learning algorithms is to 

under-sample the majority class or over-sample the minority class, which gives UnderBagging 

and OverBagging respectively. UnderOverBagging is a uniform approach combining both 

UnderBagging and OverBagging. In addition, the resampling rate (a%) can be also varied over 

the bagging iterations, which further boosts the diversity among the base learners. Alg. 5 

shows the pseudo-code of UnderOverBagging, from which it can be observed that the 

sampling method is gradually switched from under-sampling the majority class to over-

sampling the minority class. The number of training examples for the first base learner is 

lower than the final one.  
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In SMOTEBagging [61] (Alg. 6), the negative class is sampled with replacement at rate 

100% (i.e., N negative examples are generated). 

 

 

   

 

 

 

At the same time, CN+ positive examples are generated for each base learner, among 

which a% of them are created by resampling and the rest of the examples are created by the 

synthetic minority oversampling technique (SMOTE) shown in Alg. 7. The main idea of SMOTE 

is to generate more new synthetic examples by interpolating the positive examples. As a 

result, all of the base learners are trained on a more balanced and diverse data set.  

 

 

 

 

 

 

 

 

The diversity is further boosted by varying a% so that the ratios of bootstrap replicates 

and synthetic examples generated by SMOTE varies over the bagging iterations. 
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Chapter4  
4. Approach and e-Commerce-Specific Challenges 

 

4.1Design Solution 

As part of our investigation of reviewing current best practices and cutting edge 

methodologies, we concluded that for our e-commerce solution we need to find an 

innovative way of handling multi-modal imbalanced data in order to cover the complex 

domain of e-commerce. In addition, the imbalance problem becomes even more challenging 

in the context of learning from data streams, rather than from a static data set. In many 
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practical situations, we do not have the luxury of having a fully available data set in the 

beginning of the training and learning period for an algorithm, so we needed a solution which 

can be adaptable to the amount of data available at any given time. Consequently, we 

focused on designing an adaptable cost-sensitive ensemble classifier which can generalize a 

number of batch cost-sensitive algorithms applicable to multimodal data to their online 

streaming versions. Our solution needed to be implementable, reliable and accurate, and can 

be extended to other application domains with minor modifications. Due to the low 

implementation cost and high opportunity for result visualization and applicability within 

multiclass classification, we designed an ensemble classification algorithm using a custom 

over-sampling technique together with K-means and combined it with random under-

sampling to offset any overfitting.  

4.2 K-OAFA 

It is known that SMOTE has two definitive weaknesses. First, the algorithm treats all 

insertion locations in the same way. Second, it blurs the boundaries of the majority and the 

minority classes. In order to overcome these downfalls, we developed an algorithm that 

inserts data items in the regional distribution and does not insert data items at the 

boundaries.  

Our new over-sampling algorithm consists of three steps during which we combine 

synthetically generated minority classes based on feature-selection over-sampling and K-

means supplemented over-sampling. We call this method K-means Over-sampling via 

Arbitrary Features Allocation (K-OAFA). 

In the first step, which we call Over-sampling via Arbitrary Features Allocation (OAFA), we 

generate artificial instances for minority classes by allocating arbitrarily chosen features of 

the existing minority class to a new minority class.  

In the second step, we return to the original data set to apply the K-means algorithm 

together with SMOTE. This is done to prevent interpolation generalization by first performing 

the clustering operation before the interpolation, and then performing the interpolation in 
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the clustering region. Consequently, the interpolation data is on the connection between the 

cluster core and the original data point. In this step, for the minority class, we first use the K-

means algorithm for the clustering operation. After the cluster operation, the fixed K clusters 

are formed and the core of each cluster is recorded. The interpolation operation is performed 

for each cluster sample. The original sample point is then interpolated by the cluster center, 

which is used as the original sample point. The specific steps we followed are:  

 

 

 

Step 1. Find the center of the minority class samples.  

Step 2. Create a new minority class. The new synthetic samples are created as 

𝑝𝑗 = 𝑥 + 𝑟𝑎𝑛𝑑 (0,1) ∗ (𝑋𝑐 −  𝑥), 𝑗 = 1,2 … 𝑁, 

where rand (0, 1) represents a random number in the interval (0, 1), 𝑝𝑗 represents new 

synthetic samples, 𝑥  represents the minority class, and 𝑋𝑐  represents the center of the 

minority class.  

Step 3. Replace the minority class of the original dataset with the new minority class.  

In the third step, we combine the minority classes generated by OAFA and SMOTE K-

means to maintain the arbitrary nature of the minority class features. Then the new dataset 

is put into the original dataset to get the final sample. Consequently, our solution does not 

require the distance metric on the feature space, which is hard to define when it is a mixture 

of numerical and categorical variables. Additionally, using classic visualization techniques on 

the dataset, all the imbalanced data points with similar features reveal themselves by 

overlapping on the image map. Therefore, this combination method increases the 
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performance of a classification rule especially when the features are independently affecting 

the response. 

 

4.3 Imbalance e-commerce Ensemble Algorithm (ICE-A) 

Ensemble classification learning is a machine learning technique. It uses a simple 

classification algorithm to get a number of different base classifiers that are combined in 

some way to receive a strong classifier. Through our research experiments we have 

discovered that in the field of e-commerce an effective way of achieving data class 

equilibrium in multiclass classifications is the addition of under-sampling. Therefore, after 

applying K-OAFA, we also carried out random under-sampling to form multiple weak 

classifiers. This method does not require additional memory for intermediate results storage. 

Finally, the multiple weak classifiers were integrated to form the final strong classifier. The 

algorithm description of Ensemble K-OAFA and Random Under-sampling is shown in Table 4 

and consists of 5 distinct steps. We call this algorithm Imbalance e-Commerce Ensemble 

Algorithm (ICE-A). 

Compared with existing imbalanced data classification methods, our ICE-A method uses 

the K-OAFA over-sampling technique to increase the size of the minority class and adjust the 

balance degree of the imbalanced dataset, to balance the data distribution. Under the 

condition of keeping the distribution of the whole dataset, the under-sampling is used to 

reduce the training data and reduce the size of the dataset, to reduce the training time of the 

model and improve the classification efficiency of the algorithm. At the same time, our 

algorithm trains the weak classifier in each iteration process and uses the ensemble learning 

method boosting technology to combine the classifier. According to the classification results, 

the samples are given new weights to generate multiple weak classifiers, and the final output 

results are then obtained by the weight of the weak classifier. Therefore, the algorithm could 

improve the classification efficiency and increase the classification accuracy of the minority 

class. 



 

 51 

 

 

 

 



 

 52 

 

Input:  

Dataset: D =  {(x1, y1), (x2, y2), … , (xn, yn)};  

Base classifier: C;  

Over-sampling rate: M;  

Under-sampling rate: N; 

Output: Strong classifier: F(x); 

Process：  

Step 1: The weights of the samples were initialized: W(i)  =  1/n  

Step 2: The minority class P (Positive class) was sampled by K-OAFA to form a balanced data at rate M.  

Step 3: The whole dataset was under-sampled randomly at rate N under the condition of keeping the data 

distribution. The dataset D was formed and its weight distribution was W. 

Step 4: for k = 1 to K 

1) Train weak classifier according to the training dataset D and its weight distribution W, and calculate the 
weak hypothesis ht: X ×  Y −>  [0, 1]  

2) Calculate the pseudo-loss of h t: 

 

3) Calculate the weight update parameters:  

 

 

4) Update weight distribution Wt: 

  

5) Normalization processing:  

 

 

Step 5: The final classifier obtained by K weighted voting: 

 

 

Table 5. Ensemble K-OAFA and Random Undersampling Algorithm (ICE-A) 
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4.4 Online cost-sensitive ICE-A (ICE-ABoost) 

   This section addresses the problem of online cost-sensitive learning using ensembles. 

Offline learning algorithms take as input a set of training instances and output a hypothesis. 

In contrast, online learning algorithms take as input a single labelled training instance as well 

as a hypothesis and output an updated hypothesis. Thus, given a sequence of training 

instances an online algorithm will produce a sequence of hypotheses. Online learning 

algorithms are designed to reuse the previous hypothesis in various ways, allowing them to 

reduce update times to meet the constraints of online learning problems—these constraints 

are typically much tighter than for offline problems. The advantages of this hypothesis reuse 

are even more significant in an ensemble learning algorithm, since offline ensemble 

construction can be very expensive. To our knowledge, all previous empirical evaluations of 

ensemble methods have taken place in offline learning settings. In this dissertation, we 

investigate online variants of ensemble learning algorithms and demonstrate online 

performance gains similar to those seen in the previous offline evaluations. We also ensure 

that our online variants have efficient implementations that might be applied to online 

learning problems with significant resource constraints, such as large-scale e-commerce. 

Without this restriction, an offline algorithm can be used directly in the online setting at 

substantial resource cost.  

We distinguish between sequential-generation and parallel-generation ensemble 

approaches, and give reasons to focus on parallel generation in this research. We then 

describe a generic online ensemble algorithm that allows for parallel generation. We show a 

boosting-style instantiation of this algorithm that we have implemented called online ICE-

ABoost.  
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A)  Offline Ensemble Generation via Boosting  

Boosting is an ensemble method that has received much attention and has been shown 

in several studies to outperform another popular ensemble method, bagging, in a number of 

offline domains [62]. We assume here that the base learning algorithms take into account a 

weight associated with each training instance, and attempts to return a learned hypothesis 

that is cost-sensitive and minimizes the weighted classification error. Some of the most 

commonly used boosting algorithms for offline problems generate hypotheses sequentially 

as follows. The first hypothesis is the result of presenting the set of training instances, all with 

weights of 1, to the base learning algorithm. Now assume the algorithm has already 

generated T–1 hypotheses. Weights are then assigned to the training instances such that 

larger weights are associated with instances that the previous hypotheses performed poorly 

on (the “hard” instances). These weighted instances are then given to the base learning 

algorithm which outputs the Tth hypothesis. Boosting algorithms differ mainly in the ways 

weights are assigned to instances and the ways hypotheses are combined. The AdaBoost 

algorithm and the boost by majority algorithm [Freund, 1995] have been proven to be 

boosting algorithm in the theoretical sense. AdaBoost and ICE-A have been empirically 

compared and exhibit similar performance. 

 

B)  Online Ensemble Generation via Boosting 

 There are several avenues that could be explored when designing an online ensemble 

algorithm. A naive approach is to maintain a dataset of all observed instances and to invoke 

an offline algorithm to produce an ensemble from scratch when a new instance arrives. This 

approach is often impractical both in terms of space and update time for online settings with 

resource constraints. To help alleviate the space problem we could limit the size of the 

dataset by only storing and utilizing the most recent or most important instances. However, 

the resulting update time is still often impractical, particularly for boosting methods—when 

the training set used by a boosting algorithm is altered we potentially need to recalculate 
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weights and invoke the base learning algorithm for each of the T hypotheses from scratch. 

We propose an online ensemble algorithm that takes a parallel-generation approach, which 

means it generates and updates the ensemble members simultaneously. We say the 

algorithm takes a multiple-update approach if it updates more than one ensemble member 

for each training instance encountered, whereas a sequential approach only updates one 

member at a time until the completion of the generation of the previous member. 

One reason for choosing a multiple-update parallel-generation approach is that the 

offline methods of boosting and bagging both have the property that a single training instance 

can contribute to the training of many ensemble members—we believe that achieving this 

property in the online setting is essential to obtaining rapid convergence to the desired target 

concept; this is particularly important in the presence of imbalanced data. Our empirical 

results described on Chapter 6 - Results provide evidence that our parallel-generation 

multiple-update ensembles converge more quickly than a sequential approach would. 

Sequential-generation algorithms also suffer additionally in the presence of imbalanced data 

because at any time most ensemble members are never going to be updated again—this 

patently requires adapting such algorithms with some kind of restart mechanism. Sequential 

methods also require a difficult-to-design method for determining when to stop updating an 

ensemble member in favor of starting on another member. To address these problems, we 

considered in this dissertation only algorithms taking the parallel-generation multiple update 

approach. We note that this approach interacts well with our motivating application in that 

multiple updates can easily be carried out simultaneously on a highly parallel implementation 

platforms. 
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Table 6: Generic depiction of ICE-Aboost multiple-update online 
learning algorithm.  

 

Above is the pseudo-code and graphical depiction of the online ensemble update 

procedure. The graphical depiction illustrates the following sequence of update events: 1) 

The training instance I is given to the base learners h1, . . ., hT and to the instance weight 

calculation unit. 2) The base learners provide their prediction h1(x),..., hT(x) of the class of 

the training instance to the instance weight calculation unit. 3) The instance weight 

calculation unit gives each base-learner an instance weight. 4) Finally, the base learners 

update their models according to the weight. 
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Table 6 shows the generic ICE-A multiple-update algorithm we use. The algorithm outputs 

an updated ensemble, taking as input an ensemble, a training instance, an online learning 

algorithm, and two functions Update-Vote() and Weight(). The function Update-Vote() is used 

to update the (v1,...,vT) vector of ensemble member voting weights (typically based on how 

each member performs on the new instance). The function Weight() is used for each 

ensemble member ht to assign a weight wt to the new instance for use in updating ht. For 

each hypothesis ht the algorithm performs the following steps: 

• First, in line 2, a new scalar voting weight vt is computed by the function Update-

Vote(). For example, if Update-Vote() always returns the number one, the ensemble 

prediction will simply be the majority vote.  

• In line 3, a scalar instance weight wt is computed by Weight(). For example, in boosting 

Weight() would typically be a function of the number of mistakes made by previous 

hypotheses on the current instance, whereas in bagging Weight() would not depend 

on the ensemble members.  

• Finally, in line 4, ht is updated by Learn() using the training instance with the computed 

weight wt. After each hypothesis and voting weight in the ensemble is updated in this 

manner (possibly in parallel), the resulting ensemble is returned.  

The immediate research value is that ICE-A uses a memoryless instance of an ensemble 

algorithm, which results in an ensemble that outperforms single hypotheses in classification 

accuracy.  
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Chapter5  
5. Experimental Setup 

 

For the classification method of balanced data, the classification accuracy is commonly 

used as an evaluation index. However, this evaluation index is the same for the cost of error 

classification of all kinds of samples, so the evaluation index is not reasonable in the 

imbalanced dataset. Typically, in imbalanced datasets, the positive class (Positive) represents 

a minority class, and the negative class (Negative) represents the majority class. The 

evaluation index of imbalanced data is generally based on the confusion matrix (see Table 7). 

Category Actual Positive Class Actual Negative Class 

Experimental Positive Class True Positive False Negative 

Experimental Negative Class False Positive True Negative 

 

Table 7. Confusion Matrix 

 

The precision of reaction represents the ratio between the actual positive samples, and 

all experimental class samples. 
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The recall, also known as specificity, represents the ratio between the actual true positive 

samples, which are classified as positive, and all the experimental positive class. 

 

 

Recall, Precision and Fmeasure are the evaluation criteria for the positive class (minority 

class). In general, the Fmeasure is used as the evaluation criterion for the classification of 

imbalanced datasets. 

Fmeasure 

 

Gmean is based on the correct classification rate of the minority class and the 

classification accuracy of the majority class, and it is usually used as a measure of the overall 

classification performance of the imbalanced dataset 

 

    Gmean 

 

Here, Fmeasure and Gmean were selected as the evaluation criteria to evaluate the 

performance of the algorithm on the imbalanced dataset. 

 

5.1 Experimental Data  
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The experiment was carried out on a private large online retailer data sets as part of the 

authors’ occupation and the proposed algorithms were compared with the most popular and 

prevalent existing algorithm, such as SVM, SMOTE and AdaBoost to make an effectiveness 

assessment. 

In order to evaluate the ensemble K-OAFA algorithm for imbalanced data, 5 datasets, 

larger than five hundred thousand entries each, were selected to carry out the experiment 

shown in Table 8. Here we refer to specific characteristics of the customer shopping behavior 

and identifying features as attributes. Examples of attributes are name, age, preference for 

certain brands, categories, times of the year and many more. 

 Each set was divided into subsets of 10 to 100 and 100 to 1000 entries per set for 

experimental purposes. Sets Reco1 and Reco2 represented data used for delivering customer 

item recommendations, while sets P13N1, P13N2 and P13N3 were data representing 

customer segments (e.g. shoppers between 30-40 years of age with no children, etc.) and 

customer features (e.g. preferred shopping category, income bracket, frequency of 

purchases, etc.) used for personalized shopping experiences (e.g., replenishable lists, 

greetings, special discounts). In the selected datasets, the number of minority class samples 

and majority class samples is not balanced. 
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Table 8. Experimental Datasets 

In order to cancel the orders of magnitude difference between the dimensions of data 

and avoid a large prediction error caused by differences in input and output, a data 

normalization function was used here.  

The experiment was carried out 100 times for two-class minority sets, and the average 

value was taken as the final result. The experimental results are shown in Table 9 and Table 

10.  

 

 

 

 

 

     

     

     

     

     

Dataset 
Number of 

Data Samples 

Number in 

Minority Class 

Proportion of Data in 

Minority Class (%) 

Number of 

attributes 

Recos1 654,229 51,265 7.8% 115 

Recos2 839,992 72,235 8.6% 203 

P13N1 1,203,845 88,543 7.4% 344 

P13N2 1,182,387 103,456 8.7% 120 

P13N3 563,911 42,642 7.6% 319 
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Dataset Classification Algorithm 

SVM SMOTE AdaBoost K-OAFA 

Recos1 0.510 0.697 0.531 0.763 

Recos2 0.534 0.815 0.681 0.829 

P13N1 0.634 0.628 0.634 0.652 

P13N2 0.456 0.521 0.491 0.683 

P13N3 0.732 0.894 0.864 0.934 

 

Table 9. Experimental Result (Fmeasure) 

 

Table 8 shows the Fmeasure comparison of the 4 algorithms in the five datasets. Table 10 

shows the Gmean comparison of the four algorithms in the five datasets. As we can see from 

the Table 9 and Table 10, the SVM was used to classify the imbalanced datasets directly; 

Fmeasure and Gmean were relatively low. That was because it did not balance the 

imbalanced dataset. We can also see that the SMOTE algorithm has been carried out to 

balance the partial dataset, so Fmeasure and Gmean have been improved significantly. 

As shown in Table 9 and Table 10, the AdaBoost used a number of classifiers for 

integration; the classification rate was higher than that of the SVM. However, the 

improvement was not very obvious in some data because the imbalance of the dataset was 

not handled. For example, in the P13N2 dataset the improvement of values of Fmeasure and 

Gmean was not very obvious. 
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Dataset Classification Algorithm 

SVM SMOTE AdaBoost K-OAFA 

Recos1 0.654 0.722 0.735 0.791 

Recos2 0.731 0.851 0.901 0.917 

P13N1 0.682 0.693 0.687 0.704 

P13N2 0.535 0.635 0.546 0.702 

P13N3 0.908 0.949 0.928 0.962 

 

Table 10. Experimental Result (Gmean) 

 

Because ICE-A utilized our K-OAFA algorithm to balance the imbalanced dataset and used 

the integrated technology to strengthen the classifier, therefore it resulted in having a better 

classification rate, and the Fmeasure and Gmean were higher than in the other algorithms. 

At the same time, compared with AdaBoost, the modeling time of ICE-A was reduced from 

93.5s to 26.7s, as observed in the low-cost cloud heterogeneous computation environment 

used for these experiments. That happened because ICE-A performed under-sampling for the 

balanced dataset, reducing the size of the sample set and shortening the running time.  

5.2 Computation Environment 

Computational solutions range from cloud-based computing (e.g. Google Cloud, AWS) to 

an emerging revolution in high-speed, low-cost heterogeneous computational environments. 

Understanding how large-scale dynamic systems operate requires the integration of the 

many layers of customer-originating streaming information that high-throughput 

technologies are generating. 
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As an example, the amount of data from in-session behavior-based online experience 

personalization could collectively approach the petabyte scale for the raw information alone. 

The situation will soon be exacerbated by third-generation sequencing technologies that will 

enable us to scan entire clickstream data flow for massive businesses and other application 

areas in just minutes, and for less than US$100 [63]. To this should be added data from 

imaging technologies and other high-dimensional sensing methods. Although processing 

individual data dimensions is complex, the true challenge is in integrating the multiple 

sources of data. Mining such large high-dimensional data sets poses several hurdles for 

storage and analysis. Among the most pressing challenges are: data transfer, access control 

and management; standardization of data formats; and accurate modelling of clickstream 

systems by integrating data from multiple dimensions. 

Solutions to integrating the new generation of large-scale data sets require approaches 

akin to those used in physics, climatology and other quantitative disciplines that have 

mastered the collection of large data sets. Cloud computing and heterogeneous 

computational environments are relatively recent inventions that address many of the 

limitations relating to data transfer, access control, data management, standardization of 

data formats and advanced model building. 
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Fig. 6. Cluster, cloud, grid and heterogeneous computing 

hardware and software stacks 

In order to understand the optimizations introduced via modern heterogeneous systems, 

we first need to fully understand their architecture [Fig. 6]. The hardware and software stacks 

comprise the different layers of a computational environment. At the lowest level of the stack 

is the physical structure that houses the hardware, with networking infrastructure coming 

next, followed by the physical computers or servers. Sitting on top of the physical hardware 

is the virtualization layer, and the operating system lies on top of that. Finally, there are the 

software infrastructure and application layers. The different types of computing can be 

differentiated by which of these layers are under the user’s direct control (solid line) and 

which levels are provided by others, for example, the cloud provider and grid volunteer 

(dashed lines). Cloud and grid services are best suited for applications with loosely coupled, 

or coarse-grained, parallelism. Heterogeneous systems include specialized hardware 

accelerators, such as graphics processing units (GPUs). These accelerators are optimized for 

massive tightly coupled, or fine-grained, parallelism. However, the software that runs on 
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these accelerators differs from its general-purpose processor (GPP) counterparts, and often 

must be specifically written for a particular accelerator. MPI stands for message passing 

interface. 

Compared to general purpose processors (GPPs), heterogeneous systems can deliver a 

tenfold increase or greater in peak arithmetic throughput for a few hundred US dollars. Cloud 

computing, on the other hand can make large-scale computational clusters readily available 

on a pay-as-you-need basis. But both approaches have trade-offs that result from trying to 

optimize for peak performance (heterogeneous systems) or low-cost and flexibility (cloud 

computing). It is important that we understand the advantages and disadvantages of these 

different computational platforms and the problems to which they are best suited. See Table 

11. 

Large-scale 

Computing 

Platform 

Computing Architectures Advantages Disadvantages Example Applications 

Cluster 

computing 

Multiple computers linked 

together, typically through a fast-

local area network, that effectively 

function as a single computer 

Cost-effective way 

to realize 

supercomputer 

performance 

Requires a 

dedicated, 

specialized facility, 

hardware, system 

administrators and 

IT support 

Parallel Data Mining Agents 

Bayesian network 

reconstruction 

Supervised and 

unsupervised learning 

Cloud 

computing 

Computing capability that abstracts 

the underlying hardware 

architectures (for example, servers, 

storage and networking), enabling 

convenient, on-demand network 

access to a shared pool of 

computing resources that can be 

readily provisioned and released 

(NIST Technical Report) 

The virtualization 

technology used 

results in extreme 

flexibility; good for 

one-off HPC tasks, 

for which persistent 

resources are not 

necessary 

Privacy concerns; 

less control over 

processes; 

bandwidth is limited 

as large data sets 

need to be moved to 

the cloud before 

processing 

Searching sequence 

databases 

Aligning raw sequencing 

reads to previously 

recognized data patterns 

Detection of data outliers 

Most applications running 

on a cluster can be 

transferred to a cloud 

Grid computing 

A combination of loosely coupled 

networked computers from 

different administrative centers 

that work together on common 

computational tasks. Typified by 

Ability to enlist 

large-scale 

computational 

resources at low or 

no cost (large-scale 

Big data transfers 

are difficult or 

impossible; minimal 

control over 

underlying 

Distributed supercomputing 

High throughput computing 
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volunteer computing efforts (such 

as Folding@Home), which 

‘scavenge’ spare computational 

cycles from volunteers’ computers 

volunteer-based 

efforts) 

hardware, including 

availability 

On-demand 

computing 

Heterogeneous 

computing 

Computers that integrate 

specialized accelerators — for 

example, GPUs or reconfigurable 

logic (FPGAs) — alongside GPPs 

Cluster-scale 

computing for a 

fraction of the cost 

of a cluster; 

optimized for 

computationally 

intensive fine-

grained parallelism; 

local control of data 

and processes 

Significant expertise 

and programmer 

time required to 

implement 

applications; not 

generally available in 

cluster- and cloud-

based services 

Bayesian network learning 

Running computationally 

heavy deep neural networks 

(DNN), convolutional neural 

networks (CNN), deep belief 

networks (DBN) classifier 

jobs 

 

Table 11. Advantages and disadvantages to computation 

architecture formats 

 

Due to the combined computationally-intense parallelism capabilities and the relatively 

low cost and accessibility of cloud heterogeneous computation, we have selected to use a 

Google cloud-based environment for running all of our experiments for this work. Specifically, 

we used the powerful modeling framework TensorFlow, real-time streaming framework 

Storm and distributed data base Couchbase. All of these tools existed on Google Cloud 

Platform.  
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Chapter6 
6. Results 

In this chapter, we review the results from the experiments performed with the 

aforementioned subsets between 10-100 and 100-1000 for all 5 datasets Reco1, Reco2, 

P13N1, P13N2 and P13N3. These analyses have the purpose of representing e-commerce use 

cases where certain data attributes belong to the majority (95% or more of the class entries) 

or to the minority (less than 5% of the class entries) class. By understanding the performance 

of our classifiers against best-in-class techniques, we are able to prove their superior 

applicability for the recognition of imbalanced multiclass data points. These techniques are 

then to be used in the classification of data points representing customer behavior patterns, 

which are the foundation of serving relevant personalized content. 

 

We have divided the outcomes of our experiments into multiclass minority and majority 

class examples, and have outlined the most important aspects of their correlation and 

performance analysis. We are using 5 performance measures – subset origin, recall, precision, 

Fmeasure and Gmean, and are testing the performance of the state-of-art SMOTE, against 

our new methods K-OAFA and ICE-A.  

 

 

 

6.1 Multiclass Minority Cases 
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In this section, we are conducting analysis and performance pattern recognition on 

multiclass minority cases. The number of minority classes is varied from 1 to 20, as that 

provides significant depth and can be used in DNNs. The impact of multi-minority on the 

performance of over-sampling and under-sampling techniques is illustrated and analyzed in 

depth. 

A) Correlation Analysis:  

Five performance measures and three ensemble training methods (e.g., SMOTE, K-OAFA, 

and ICE-A) permit 15 pairwise correlations with respect to the number of minority classes. 

They show whether multi-minority degrades the classification performance of the three 

ensemble training methods and which performance aspects are affected. The three single-

class measures are recorded for the minority class that joins all the training sessions from 1 

to 20. Table 12 summarizes the correlation coefficients for “10–100” and “100–1000” data 

groups. 

All pairs present very strong negative correlations on both groups of small and large data 

sets. It implies a strong monotonic decreasing relationship between the measures and the 

number of minority classes. All of them are decreasing as more minority classes are added into 

the training data, regardless of the size of the training data and whether resampling is 

applied. In other words, multi-minority reduces the performance of these ensembles 

consistently, and data resampling seems not to be helpful.  Next, we will investigate the 

performance degradation caused by multi-minority classes from the level of every single 

class. 
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Correlation 

10-100 Recall Precision Fmeasure Gmean 

SMOTE -89 -94 -91 -97 

K-OAFA -88 -93 -91 -98 

ICE-A -93 -93 -93 -99 

100-1000 Recall Precision Fmeasure Gmean 

SMOTE -99 -99 -100 -100 

K-OAFA -99 -99 -99 -100 

ICE-A -99 -99 -100 -100 

 

 

 

 

 

 

 

 

 

 

 

Table 12.  Rank correlation coefficients (in percent) between the 
number of majority classes and four performance measures in three 
ensemble methods on “10-100” and “100-1000” data sets. Recall, 

precision, and Fmeasure are calculated for minority class 
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Fig 7.  Single-class performance patterns among classes in multi-minority cases of 

“10–100” (x-axis: number of minority classes; y-axis: performance output). (a) Recall: 

SMOTE. (b) Recall: K-OAFA. (c) Recall: ICE-A. (d) Precision: SMOTE. (e) Precision: K-

OAFA. (f) Precision: ICE-A. (g) Fmeasure: SMOTE. (h) Fmeasure: K-OAFA. (i) Fmeasure: 

ICE-A. 
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B) Performance Pattern Analysis:  

We now focus on the “10–100” group of data sets and illustrate the changing tendencies 

of single-class measures for all classes as the class number increases. In Fig. 7, the presented 

pattern reveals detailed information about how the classification performance of each class 

is affected and the differences among ensemble methods and evaluated measures. All of the 

following pattern plots are scaled in the same range. 

As seen in Fig. 7, every class’s performance is decreasing. No evidence shows which class 

suffers from more performance degradation than other classes. The classification gets equally 

difficult on all classes. For each class, corresponding to one curve in the plot, the measure 

value drops faster at the first few steps, when the number of minority classes is approximately 

smaller than 10. As it gets larger, the rate of reduction slows down. 

Among the three performance measures, the drop of precision [Fig. 8(d) and (e)] is more 

severe than that of recall [Fig. 7(a) and (b)] in SMOTE and K-OAFA. Precision is the main cause 

of the decrease in Fmeasure. The reason is that multi-minority increases the risk of predicting 

an example into a wrong class. As to recall, it seems that the difficulty of recognizing examples 

within each class is less affected by multi-minority as compared to precision because the 

proportion of each class of data in the whole data set is hardly changed by adding a small 

class. In ICE-A, each class is reduced to have a small size. Adding minority classes changes the 

proportion of each class significantly. It explains why ICE-A’s recall [Fig. 7(c)] presents higher 

sensitivity to multi-minority than the recall produced by SMOTE and K-OAFA [Fig. 7(a) and (b)]. 

Among the three ensemble methods, SMOTE and K-OAFA have similar performance 

patterns, where the majority class obtains higher recall and Fmeasure than the minority 

classes, but lower precision values. Over-sampling does not alleviate the multiclass problem. 

Although over-sampling increases the quantity of minority class examples to make every class 

have the same size, the class distribution in data space is still imbalanced, which is dominated 

by the majority class. In ICE-A, undersampling counteracts the performance differences 

among classes. During the first few steps, ICE-A presents better recall and Fmeasure on 
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minority classes [Fig. 7(c) and (i)] than SMOTE and K-OAFA [Fig. 7(a), (b), (g), and (h)]. From 

this point of view, it seems that using undersampling might be a better choice. However, its 

advantage is weakened as more minority classes join the training. When the class number 

reaches 20, three ensemble algorithms have very similar minority-class performance.  The 

reason could be that undersampling explicitly empties some space for recognizing minority 

classes by removing examples from the majority class region. When there is only one minority 

class, a classifier is very likely to assign the space to this class. When there are many minority 

classes, they have to share the same space. Hence, the effect of undersampling is reduced. 

Undersampling seems to be more sensitive to multi-minority. For this consideration, it would 

be better to expand the classification area for each minority class, instead of shrinking   the 

majority class. To achieve this goal, advanced techniques are necessary to improve the 

classification generalization over minority classes. 

Finally, it should be noted that SMOTE and K-OAFA return similar results when plotted 

out [Fig. 7(a), (b), (d), (e), (g) and (h)] due to the similar nature of their approach via over-

sampling. The difference, not visible in these graphs, remains within the maintained 

knowledge of minority class boundaries existent in K-OAFA and not in SMOTE.  

 

6.2 Multiclass Majority Cases 

We proceed with the same analyses for the multi-majority data “10–100” and “100–

1000.” The number of majority classes is varied from 1 to 20. The impact of multi-majority is 

studied here. 

A) Correlation Analysis:  

Table 13 summarizes the correlation coefficients. Single-class performance measures are 

recorded for the only minority class of each data set. Similar to the multi-minority cases, 

strong negative correlations between five performance measures and the number of majority 

classes are observed in both groups of small and large data sets, which indicate a monotone 
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decreasing relationship. All three ensemble training methods suffer from performance 

reduction caused by “multi-majority.” 

 

10-100 Recall Precision F-measure G-mean 

SMOTE -79 -85 -92 -97 

K-OAFA -84 -86 -92 -97 

ICE-A -92 -94 -95 -99 

100-1000 Recall Precision F-measure G-mean 

SMOTE -100 -96 -100 -100 

K-OAFA -100 -93 -99 -100 

ICE-A -99 -99 -100 -100 

 

 

 

 

B) Performance Pattern Analysis:  

To gain more insight, we focus on the “10–100” group of data sets and present the changing 

tendencies of single-class measures for each class along with the increase of the number of 

majority classes in Fig. 8. All plots are in the same axis scale. 

Among the classes in each plot, adding majority classes makes the recognition of 

examples of each class [i.e., recall presented in Fig. 8(a)–(c)] equally difficult. In SMOTE and 

K-OAFA, minority-class precision drops faster than that of the majority classes [Fig. 8(d) and 

Table 13. Rank correlation coefficients (in percent) between the 

number of majority classes and four performance measures in three 
ensemble methods on “10-100” and “100-1000” data sets. Recall, 
precision, and Fmeasure are calculated for minority class. 



 

 75 

(e)] because the large quantity of new majority class examples overwhelms the minority class 

even more. Minority class examples are more likely to be misclassified than before compared 

to majority class examples. 

All performance measures present a drastic decrease. Especially in recall plots of SMOTE 

and K-OAFA [Fig. 8(a) and (b)], more and more majority class examples take the recognition 

rate of the minority class down to nearly 0. For every existing majority class, adding more 

majority classes can make it appear to be in minority. Therefore, the recall of majority classes 

also shows a fast drop. 

Among the three ensemble methods, ICE-A produces better minority-class Fmeasure than 

SMOTE and K-OAFA, but the recall of majority classes is sacrificed greatly. It causes the 

concern that using undersampling will lose too much data information when multiple 

majority classes exist and can lead to severe performance reduction in majority classes. 
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Fig 8 (Cont.). Single-class performance patterns among classes in 
multi-majority cases of “10–100” (x-axis: number of minority classes; 
y-axis: performance output). (a) Recall: SMOTE. (b) Recall: K-OAFA. 
(c) Recall: ICE-A. (d) Precision: SMOTE. (e) Precision: K-OAFA. (f) 

Precision: ICE-A. (g) F-measure: SMOTE. (h) F-measure: K-OAFA. (i) F-
measure: ICE-A 

 

Based on all of the observations in this section, we make the following conclusion: 1) As 

no new information is introduced into the minority class to facilitate the classification in 

SMOTE and K-OAFA, overfitting minority-class regions happens with low recall and high 

precision values when compared with those measures obtained from the majority classes. 

Over-sampling does not help for both multi-minority and multi-majority cases. 2) ICE-A 

performs the same under multi-minority and multi-majority cases due to undersampling. In 

the multi-minority case, ICE-A can be sensitive to the class number; in the multi-majority case, 

there is an elevated risk of sacrificing too much majority-class performance. 3) Between 

multi-minority and multi-majority, the multi-majority case seems to be more difficult than 

the multi-minority case. SMOTE and K-OAFA present much worse minority-class performance 

in Fig. 7(g) and (h) compared to Fig. 8(g) and (h). This is because adding majority class 

examples aggravates the imbalanced situation. 4) Between balanced and imbalanced data, 

multiclass leads to performance degradation in both scenarios. We believe that learning 

imbalanced data is much harder than learning balanced one, for the performance difference 
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between the types of classes shown in the performance pattern analysis and the particular 

performance requirement for minority classes, which would not happen in the balanced case. 

Therefore, because of different learning objectives and varying e-commerce use cases, 

different treatments should be considered.  

 

6.3 Success measure 

As this work is focused on advancing modern e-commerce imbalanced data-driven 

personalization, we have assigned our measures of success in accordance with what they 

represent in real-life online shopping. An important aspect of the applicability of our 

proposed methods is their cost efficiency, precision of prediction and human-friendly 

visualization capabilities for the easier utilization by professional data scientists.  

For both K-OAFA and ICE-A, we have proven are two online and offline learning algorithms 

which either meet or beat the best-known algorithms for multiclass majority and minority 

use cases in terms of precision, and recall resulting in more plentiful and relevant item 

recommendations and personalization experiences. 

 In addition, as described in Chapter 4 – Approach and e-Commerce Specific Challenges, 

ICE-A is an online cost-effective method which reuses previous hypothesis resulting in 

reduced update times to meet the tight constraints of online learning problems. The 

advantages of hypothesis reuse are furthermore evident in ensemble algorithms due to the 

prohibitive cost associated with offline ensemble construction.  

 Consequently, one of the biggest advantages of ICE-A over other classifiers with similar 

application areas is the simple for implementation approach of data nodes visualization, 

faster results (an average improvement of 65 seconds) and pattern detection. This approach 

is not data class size dependent and could accommodate vast use cases, which, in the case of 

real life e-Commerce applications, is of vital importance. That allows the quick and intuitive 

detection of meaningful imbalanced entries, whereas other approaches require complex for 
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implementation analysis techniques. By performing our calculations via ICE_A with a velocity 

of 55 seconds for 1M data points, and 2 minutes for SMOTE, we are now presenting a solution 

which has a potential to improve business revenue by millions of dollars with its faster 

reaction time.  

Industry studies have shown that customers bounce off of retail websites on average after 68 

seconds if they cannot find their desired items. This creates a need for fast-responding model 

training solutions reflecting the latest customer signals in production.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 79 

CHAPTER7 
7. Conclusion 

 In this chapter, we analyze the outcome of our proposed solution for an improved 

classifier with an application domain within e-commerce. Based on the improved over-

sampling algorithm and integration technology, we proposed an integrated classification 

algorithm for imbalanced data. First, the traditional SMOTE algorithm was improved to K-

OAFA, reducing the defects of the SMOTE algorithm. Then, combined with the classifier 

ensemble technology, an integrated classification algorithm for imbalanced data named ICE-

A was proposed. In ICE-A, K-OAFA was used to conduct over-sampling, and random under-

sampling was carried out to reduce the problem scale and form a new dataset. In the new 

dataset, a number of weak classifiers were trained to generate, and integration techniques 

were used to integrate several weak classifiers to form the final strong classifier. The 

experiment was carried out on private large online retailer datasets, Fmeasure and Gmean 

were used as the evaluation indexes to evaluate the proposed algorithm. Consequently, the 

experiment results have proven the effectiveness of the new algorithm in dealing with multi-

modal commerce data. 

 

7.1 E-commerce advancements 

 Online retail personalization and item recommendations are possible via a complex 

system of algorithms supporting unique experiences throughout the customer shopping 
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journey. User behavior–based robust classifiers utilizing deep learning intent predictions are 

pivotal tools for modern customer segmentation and customization [64].  Contemporary 

research has shown that extracting features from high dimensional data during the pre-train 

phase improves prediction accuracy and precision, and results in higher integrity of 

personalization relevance [65]. As an added layer of complexity, in recent years, a multitude 

of personalization channels have emerged ranging from direct in website (via video, audio, 

banners, concept extraction, shipping cost and delivery times estimations, targeted 

merchandising, customized search results, and many more), to smart Customer Relationship 

Management (CRM) platforms in the form of personalized trigger and batch emails, as well 

as item recommendations in house and on social media. Therefore, modern solutions need 

to be adaptable to multi-modal data demands. Our hybrid ICE-A classifier follows the same 

model, and has shown substantial improvements over traditional classification techniques in 

working with multi-modal data. 

 

7.2 Machine learning trends in e-commerce 

 In recent year, numerous personalization-associated trends are emerging across all of 

e-commerce and are quickly becoming the standard which most users are trained to expect. 

In this section, we review the current trends in e-commerce which require machine learning-

driven performance to be scalable and cost-effective for actual application.  

 

A) Smart chatbots 

Good customer service often requires a conversation which is why chat works so well in 

e-commerce. When a shopper submits a question via chat, a customer service representative 

can answer and guide the shopper to a solution. Similarly, when a shopper posts a question 

or complaint on social media sites (e.g., Facebook, Twitter) a quick and helpful response 

makes a world of difference in that shopper’s experience. Yet, all size businesses may find it 
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challenging to staff and maintain a team of customer service representatives large enough to 

monitor all chat and social media.  

This is where one of the latest trends in personalized customer experiences has emerged 

in the form of intelligent, learning chatbots that can manage basic customer service questions 

and learn how to help customers in ways that are specific to a particular online store. These 

chatbots are able to take care of on-site chat sessions or social media tweets and posts. 

Currently, many third-party companies are developing and offering learning chatbot 

solutions that even small online merchants can afford. 

 

B) Product search 

 Personalized search results are still in an initial state of being designed as a regular 

customer experience but due to their wide-spread popularity and the omnipresence of 

product searching in retail, they are quickly gaining traction. As part of personalized search 

based on data science techniques, companies focus on intelligent ranking based on previous 

customer behavior patterns, query understanding and expansion, related queries 

(recommendations for other similar searches to the one you have just executed that might 

render you a better result), de-duping, image recognition and understanding, concept 

extraction, sentiment and trend analysis and entity recognition (i.e., customer identity 

stitching).  

 

 

 

C) Targeted marketing 
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 Product recommendations are among the most powerful form of on-site merchandising 

for online retailers. Learning product recommendation systems promise to dramatically 

improve conversion rates and customer satisfaction, but in order to continue improving their 

performance with the growing expectations of shoppers, these recommendations need to be 

targeted at the level of the specific customer rather than on general trends level. 

Current product recommendation systems generally use a particular product’s popularity 

to decide how and when to recommend it. But machine-learning recommendation systems 

may take a shopper’s particular buying habits into consideration or compare product 

attributes like matching colors or “looks” to recommend. The system may even predict which 

recommendation will be the most likely to generate incremental sales. 

 

D) Optimized pricing 

In the near future, online retailers may be able to use learning algorithms to analyze and 

understand pricing trends, product demand, and customer behavior to determine the just-

right price for a particular item, to maximize profit or achieve other ecommerce business 

goals. 

Too often, online sellers become involved in a margin-slashing price war with 

competitors, particularly on marketplaces. But a learning price-management system may 

help retailers find the best price for each item it carries. 

 

 

E) Fraud detection and prevention 

For financial reasons, fraud detection and prevention tends to be more of an issue for 

relatively large ecommerce businesses than for small or even mid-sized retailers. Small 
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ecommerce business may not experience enough fraud to make it worthwhile to purchase 

fraud detection software. 

If applicable to employ a fraud prevention solution, you can expect machine-learning 

solutions to become popular. These systems will look for fraud patterns in a particular e-

commerce business’s customer base. The key advantage is that a learning system will be 

almost unique to its e-commerce retailer. It will be looking at the trends that predict fraud in 

a very specific way. Ultimately, this could make the system much better at predicting fraud 

relative to a particular e-commerce business. 

 

F) Improved business decisions 

Machine learning algorithms may also contribute to ecommerce decision-making, 

including any of the following operations. 

• Predicting product demand. 

• Supply and demand analysis and forecast 

• Wallet management and funding source optimization 

• Various scheduling and optimal resource allocation 

• Classifying products and identifying keywords. 

• Managing marketing campaigns. 

• Estimating shipping and packing costs. 

• Improving customer segmentation. 

In conclusion, we can say that due to the complex behavioral patterns associated with 

some of these applications, likely the future of machine learning in e-commerce will utilize 
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various deep learning techniques, such as deep neural networks (DNN) and recurrent neural 

networks (RNN). These classification methodologies allow for building multi-level learning 

networks which can predict undetectable in a scalable way by common human-powered logic 

patterns and future actions. 

 

7.3 Future work 

 In this work, we focused on detection and understanding of customer behavior-based 

attributes as displayed in the shoppers’ online retail journey. With this we are solving 

problems associated with personalized content and experiences for newly or previously 

acquired customers through various channels. This leaves us agnostic to use cases further 

removed from the individual customer around imbalanced data associated with traffic trends 

identification. Said trends could serve as an indicator to shifts in shopping preferences in 

omnichannel businesses (shopping in store vs. shopping online), brand popularity changes, 

micro and macroeconomics state, and many other market-level predictions.  

 One of the contemporary trends in traffic identification is data gravitation-based 

classification. Yet, just like in attribute detection and classification, imbalanced data is not yet 

well-handled in monitoring of the activities of internet applications despite its frequent 

occurrence. As this is a problem which is rarely considered by the research community at 

large, we feel it could be a good opportunity for expansion of this work. Specifically, we would 

be focusing on e-commerce-specific trends detection based on in-demand market research. 
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