
Nonlinear Inverse Reinforcement Learning for Human

Performance Enhancing Feedback

A Thesis

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Master of Science (Systems and Information Engineering)

by

Mark Rucker

December 2018

Abstract

Many of the today’s most wicked problems are rooted in human behavior: whether it is

distributing professional skills, managing chronic health conditions or responsibly sharing a

common resource. Previous generations have dealt with such challenges through methods

such as market forces, natural consequences and governmental policies. In this paper we

propose a new, potential approach. We hypothesize that Inverse Reinforcement Learning can

learn multifaceted, nonlinear reward functions which can drive predictable behavior change.

To test this theory we create a stochastic, online control task and modify the task rewards

according to IRL. A quasi-experimental design with a pre and post test, 4 treatment levels

(plus a control group) and 400 participants per group (n≈2000) suggests that IRL rewards

can cause behavior changes in a predictable manner.

iii

Contents

Contents iv

1 Introduction 1

2 Literature 2

2.1 Human Behavior Change and Learning . 2

2.2 Inverse Reinforcement Learning . 3

3 Preliminaries 4

4 Algorithms 5

4.1 Inverse Reinforcement Learning . 5

4.1.1 Kernel-Projection Algorithm . 5

4.1.2 KPIRL Performance Comparisons . 7

4.2 Reinforcement Learning . 10

4.2.1 Kernel-Lookup Approximation Algorithm 10

4.2.2 KLA Performance Comparisons . 16

5 Experiment 18

5.1 Hypothesis . 18

5.2 Design . 19

5.3 Dependent Variable . 19

iv

5.4 Game . 20

5.4.1 Stochasticity . 20

5.4.2 Framing . 21

5.4.3 Directions . 21

5.5 Treatment . 22

5.5.1 Experts . 22

5.5.2 Rewards . 23

5.5.3 Delivery . 24

5.6 Analysis . 25

5.6.1 Blocking Variables . 25

5.6.2 Hypothesis Tests . 26

5.6.3 Alternative Explanations . 29

6 Application 30

6.1 MDP Model . 30

6.1.1 Raw Observations . 31

6.1.2 State Space . 31

6.1.3 State Features . 31

6.1.4 Expert Trajectories . 32

6.1.5 Action Space . 32

6.1.6 Transition Probabilities . 32

6.1.7 Reward and Value Basii Functions 33

6.1.8 Value Function Structure . 33

6.2 Communicating the Reward Function . 34

6.2.1 Transform to Increase Understanding 34

6.2.2 Smooth to Improve Understanding 36

v

6.2.3 Forecast to improve understanding 37

7 Conclusion 38

Appendices 40

A Full Data Tables 41

Bibliography 43

vi

Introduction

Spare the rod, spoil the child. The impact of environmental feedback on human behavior

has long been understood at an intuitive level. However, it wasn’t until the pioneering work

of Thorndike and Pavolov in the late 19th century, that such intuition was formulated as a

scientific system of knowledge. Fast forward more than a century, and much of the current

state of the art in machine learning and robotics draws inspiration from Thorndike’s and

Pavlov’s theories in an area of research known as Reinforcement Learning (RL).

In the classic research of Thorndike and Pavlov, environmental signals were known. The

question then was how did these signals effect behavior. Similarly, within the machine learning

community, RL also assumes the environmental feedback signal is known (referred to as the

reward signal). The challenge is to learn optimal behavior via repeated interactions with an

environment and its reward signal.

Recently, researchers have started to turn the field of RL on its head. Instead of assuming a

reward signal is known, and the behavior is unknown, these researchers assume the behavior

is known and its reward signal is unknown. This approach is known as Inverse Reinforcement

Learning (IRL), and a number of novel applications have been found for it (listed in more

detail below).

This paper seeks to show the efficacy of one more novel IRL application. We hypothesize

that if one uses IRL to learn the reward function of an individual who is good at performing

a task, then one could communicate this reward to a new individual and that individual’s

performance would increase. Likewise, if the reward of a poor performer is communicated,

then performance should decrease.

1

To test this hypothesis a quasi-experiment is conducted with pre- and post-obesrvations

of performance, four treatments and a control. Performance is measured with a stochastic

pointing game. The results of the experiment show that an IRL reward can in fact improve

human performance.

Section 2 provides a very cursory literature review of research related to this experiment.

Section 3 covers a number of technical terms and formulations for individuals unfamiliar with

RL or IRL. Section 4 describes the IRL and RL algorithm developed for the experiment.

Section 5 outlines the experiment and its results. Section 6 details the specific models and

techniques used to interact with participants. And Section 7 gives a brief discussion of the

implications of this research along with future research questions.

Literature

2.1 Human Behavior Change and Learning

The literature concerned with reward driven human behavior change is large. In the course

of this research a number of inspirations are found in disparate areas such as motor learning,

health behavior change, and behavioral economics.

Research in the motor learning community has found that concurrent visual feedback can

improve performance for complex tasks[1]. In this community, a complex task can be defined

as one which is “ecologically valid” outside of a lab [2]. Other work suggests that an important

component of motor skill learning is model based operant conditioning – which is similar

to the IRL paradigm [3]. This suggests that environmental signals can aid human learning

(though this community does not refer to these signals as rewards).

Similarly, experiments in the field of behavioral health have shown that properly structured

2

financial incentives can improve health outcomes [4, 5]. Though the ability of these incentives

to create sustained change has yet to be decided [6]. Once again, this field shows that

environmental feedback can alter human behavior, but the feedback is often quite simple,

and usually financial.

Finally, rational choice theory has long been used as an assumption in economic models. The

idea of rational choice is fairly simple, an individual, when given a choice between a benefit

or a cost, will always choose the benefit [7]. Unfortunately, this elegant theory, while not

believed to be entirely wrong, has been shown lacking many times [8–10].

Despite the clear differences between motor learning, behavioral health and economics, we feel

these fields share a common thread. That is, they all provide evidence that an appropriately

motivated individual, with good information, will in general, perform better. Perhaps the

most pure example of this is, that we found, was [11]. In this study the researchers were able

to use human designed feedback, learned from human experts, to improve the performance of

future participants.

2.2 Inverse Reinforcement Learning

Apart from the experimental design for this study, and its place within the larger research

community, we also relied on considerable work from the IRL community. IRL originally

grew out of the robotics community, where researchers were interested in teaching robots to

perform tasks at a human level of proficiency [12].

One of the first major success for this technique was autonomous aerobatics [13]. And since

then a number of pioneering articles have been published: predict human vehicle routes [14],

measure cultural preferences in negotiations [15], support cooperation between humans and

robots [16], construct an agent based model from data [17] and infer an airplane pilot’s intent

3

based on flight history [18].

Preliminaries

There are an number of technical definitions used within the RL and IRL communities.

Perhaps most important is the Markov decision process (MDP). An MDP is a mathematical

model of a stochastic process involving an agent that is able to make choices to alter the

outcomes.

Formally, an MDP is defined as a five-tuple <S,A, P,R, γ> where S is a set of states, A is a

set of actions, P is a set of PMF’s indexed by (S,A), R is a reward function R : S 7→ R and

γ ∈ [0, 1] is a discount factor.

Using the MDP formalism, RL algorithms assume the reward, R, is known and that a policy

of behavior, π : S 7→ A, needs to be solved for. An optimal policy, π∗, is defined as one that

maximizes the expression E[
∑∞

t=0 γ
tR(st)|π∗, P] ∀ s0 ∈ S.

The expression that an optimal policy maximizes is called the value function and is often

written recursively in algebraic form as V ∗(s) = R(s) + γE[V ∗(s′)|π∗, P]. This form is known

as the Bellman equation.

Using the MDP formalism For IRL, one assume the policy of behavior is known, πE and the

reward function that makes this optimal is learned (i.e., V (s|πE, R) ≥ V (s|π,R) ∀ s ∈ S, π ∈

Π).

Perfect knowledge of πE is often not possible. Therefore, most IRL algorithms rely on what

is referred to as expert trajectories. An expert trajectory is a sequence of states created by

an individual following πE. These trajectories are denoted as SE and are indexed by {m, t},

4

where m is the trajectory index and t is the time-step within trajectory m.

Algorithms

4.1 Inverse Reinforcement Learning

4.1.1 Kernel-Projection Algorithm

The Kernel-Projection IRL algorithm (KPIRL) learns an R from SE. KPIRL is a non-linear

extension to the linear algorithm, Projection IRL (PIRL) in [19]. The PIRL algorithm has

strong theoretical guarantees for convergence rate and arbitrary closeness around the expert

feature expectation (4.6). KPIRL maintains these guarantees.

KPIRL begins by assuming access to a basii map for each state defined as any function where

φ : S 7→ Rk (4.1)

This mapping is arbitrary and is chosen to fit the problem (See section 6.1.7 for ours). Using

the mapping φ, a value known as “feature expectation” is defined for every possible π as:

µ(π) = Es0∼D[
∞∑
t=0

γtφ(st)|π] ∈ Rk (4.2)

An estimate of the expert’s “feature expectation”, µ̂E, is calculated from trajectories, SE.

µ̂E =
1

M

M∑
m=1

T∑
t=0

γtφ
(
SE{m,t}

)
≈ µ(πE) (4.3)

5

This value, µ̂E, is KPIRL’s convergence point. That is, KPIRL finds a set of reward functions,

R, whose optimal policies, Π∗R, can be combined to produce a policy whose feature expectation

is arbitrarily close to µ̂E.

To extend PIRL to non-linear reward functions equation 4.1 is factored in the following way:

φ(s) = ΦT ej(s) (4.4)

Here, Φ is an R|S|×|k| matrix whose rows correspond to [φ(s1)T , φ(s2)T , ..., φ(sn)T], j maps

each state to its index (e.g., j(s1) = 1) and ej is the jth column vector in the I|S| identity

matrix. With this factorization equations 4.2 and 4.3 become:

µ(π) = ΦTEs0∼D[
∞∑
t=0

γtej(st)|π] ∈ Rk (4.5)

µ̂E = ΦT 1

M

M∑
m=1

∞∑
t=0

γtej(SE{m,t}) (4.6)

For notational convenience the rightmost expression in 4.5 and 4.6 is broken out as:

F (π) = Es0∼D[
∞∑
t=0

γtej(st)|π] ∈ Rk (4.7)

F̂E =
1

M

M∑
m=1

T∑
t=0

γtej(SE{m,t}) (4.8)

An intuitive interpretation of F is that it as represents the discounted expected visitation

rate for each state in the MDP when following π. Without discounting, this would simply be

the steady state of the Markov chain induced by the policy.

6

Using the factorization in 4.4 the equations in section 3.1 of [19] are rewritten as:

µ̄(i−1) = Φ ∗ F̄ (i−1)

F̄ (i−1) = F̄ (i−2) +
(µ(i−1) − µ̄(i−2))T (µE − µ̄(i−2))

(µ(i−1) − µ̄(i−2))T (µ(i−1) − µ̄(i−2))
(F (i−1) − F̄ (i−2))

= F̄ (i−2) +
(Φ ∗ F (i−1) − Φ ∗ F̄ (i−2))T (Φ ∗ FE − Φ ∗ F̄ (i−2))

(Φ ∗ F (i−1) − Φ ∗ F̄ (i−2))T (Φ ∗ F (i−1) − Φ ∗ F̄ (i−2))
(F (i−1) − F̄ (i−2))

= F̄ (i−2) +
(F (i−1) − F̄ (i−2))T (ΦTΦ)(FE − F̄ (i−2))

(F (i−1) − F̄ (i−2))T (ΦTΦ)(F (i−1) − F̄ (i−2))
(F (i−1) − F̄ (i−2))

w(i) = µE − µ̄(i−1)

= Φ ∗ (FE − F̄ (i−1))

R(i)(s) = (w(i))Tφ(s) (4.9)

= (FE − F̄ (i−1))T ∗ (ΦTΦ) ∗ ej(s)

t(i) = ||µE − µ̄(i− 1)|| (4.10)

=
√

(FE)T (ΦTΦ)(FE) + (F̄ (i−1))T (ΦTΦ)(F̄ (i−1))− 2 ∗ (FE)T (ΦTΦ)(F̄ (i−1))

In this rewrite Φ only occurs as a transpose of itself. This makes it possible to implicitly map

the reward basii into a high-dimension space with the kernel trick. The kernel trick replaces

the inner product in (ΦTΦ)ij = 〈Φi,Φj〉 with an alternative function. For the experiment

below the Gaussian kernel is used: (ΦTΦ)ij = exp(
−||Φi−Φj ||2

2σ2).

Apart from these mathematical transformations the original PIRL algorithm remains un-

changed. For convenience, the remaining steps of KPIRL algorithm are provided in algorithm

1.

4.1.2 KPIRL Performance Comparisons

Among existing non-linear IRL algorithms there are three notable standouts [20], [21] and

[22]. Many consider GPIRL ([20]) to be the current state of the art and we benchmark

7

Algorithm 1 Kernel-Projection IRL (KPIRL)

1: initialize ε←arbitrary, π(0) ←arbitrary, µ(0) ← µ(π(0)), i = 1 . defined in (4.5)
2: loop
3: compute t(i) . defined in (4.10)
4: compute R(i)(·) . defined in (4.9)
5: if t(i) < ε then
6: terminate
7: Solve for π(i) using R(i) . see Algorithm 2
8: µ(i) ← µ(π(i)) . defined in (4.5)
9: i← i+ 1

Figure 4.1: Reward for states are indicated by shading (i.e. white indicates high reward and
black indicates low reward) while the arrows indicate the optimal policy when following the
reward.

against it (as well as PIRL for reference).

To benchmark KPIRL a gridworld environment from the IRL-Toolkit is used (the IRL-Toolkit

is a MATLAB environment created by Levine, which he has made freely available). The

gridworld has |S| = n2 states with 5 actions in each state (up, down, left, right and stay). All

action transitions are deterministic. (see Figure 4.1 for an 81 state example of a gridlworld

along with the results of several IRL algorithms).

States in this gridworld are assigned reward basii with non-linear relationships to the states’

reward. Using this environment ten random random rewards are generated, along with

expert trajectories. The performance of each algorithm is calculated in terms of speed (i.e.,

total runtime) and accuracy (i.e., what percent of the optimal value did the learned reward

capture).

8

Figure 4.2: The percent of value lost when following the learned reward instead of the true
reward.

In terms of accuracy, no matter the size of the state space or the number of expert trajectories,

GPIRL is always the most accurate (see figure 4.2). KPIRL is a close second, typically about

5% behind GPIRL. And the linear algorithm, PIRL, is the least accurate (which is expected

since the reward was a non-linear function of the basii).

In terms of speed, KPIRL and PIRL are the clear winners (figure 4.3). The runtime for both

remained near zero for all state space sizes and number of expert trajectories. For GPIRL

on the other hand, runtime increased nearly exponentially. For example, GPIRL took ten

seconds to complete for one hundred states with one hundred trajectories and nine minutes

to complete (a 54 times increase) for nine-hundred states with one hundred trajectories (a 9

times increase).

In the end, when dealing with large amounts of data and large state spaces, KPIRL seemes

to be the better algorithm. It sacrifices a small amount accuracy for exponential gains in

speed. On the other hand, when working with small amounts of data where accuracy is very

important GPIRL seems to be the better algorithm.

9

Figure 4.3: Runtimes for PIRL[19], KPIRL and GPIRL[20].

4.2 Reinforcement Learning

4.2.1 Kernel-Lookup Approximation Algorithm

The Kernel-Lookup Approximation algorithm (KLA) is an approximate RL algorithm that

learns π from R. For the experiment, KLA is used as a part of KPIRL (c.f. line 7 in KPIRL).

The KLA algorithm borrows heavily from the work of Powell (most notably, Approximate

Dynamic Programming: Solving the Curse of Dimensionality [23]), and readers who would

like to learn more are encouraged to read his text.

There are a number of existing approximate RL algorithms. Four of the more well known are

Dyna-Q [24], Least-Squares Policy Iteration (LSPI) [25], Kernel-based Least Squares Policy

Iteration (KLSPI) [26] and Kernel Smoothing [27].

In testing, none of these algorithms solved the experimental MDP well enough for KPIRL to

work. This was due, in large part, to KPIRL’s iterative maximum margin search through the

reward space. This search means that, on each iteration, a new reward must be solved for,

and that this reward is often arbitrary and considerably different from the reward function of

the previous iteration.

10

To deal with the reward search challenge of KPIRL, KLA is designed to be:

• Efficient - to iterate through rewards in acceptable time

• Approximate - to handle a large transition and state space

• Low-Bias - to handle reward functions with few assumptions

The KLA algorithm most closely follows in the footsteps of Dyna-Q. KLA is more of an

architecture than an algorithm. No rigorous performance guarantees are provided with KLA.

And yet it performs very well in the comparison to LSPI and KLSPI shown in section 4.2.2.

KLA combines best practices from research in model-free learning (post-decision state),

function approximations (Unbiased observations), exploration/exploitation and optimal

learning (Value Function Updates). Each of these elements, along with the algorithm itself in

2 are explained in more detail below.

Post-Decision State

In traditional model-based RL techniques an optimal value function works in tandem with

transition probabilities to determine the best action. This can be seen in the Bellman

optimality equation where max a is determined by Ps,a and V ∗:

V ∗(s) = R(s) + γmax
a∈A
{E[V ∗(s′)|Ps,a]}

A well known solution to this dependency in the RL literature is to learn a Q-function

rather than a value function. With a Q-function, choosing max a becomes a deterministic

optimization problem:

Q∗(s, a) = E[V ∗(s′)|Ps,a]

V ∗(s) = R(s) + γmax
a∈A
{Q∗(s, a)}

11

Algorithm 2 Kernel-Lookup Approximation (KLA)

initialize InitStates
initialize N,M, T,W
initialize n← 1
initialize V

{1}
a (sa)←arbitrary

5: while n ≤ N do
if n mod 4 = 1 then

OnPolicyDist← InitStates

m← 1
while m ≤M do

10: t ← 1
s{t} ← random{OnPolicyDist}
while t ≤ (T +W − 1) do

if t = 1 then
a← arg max{V {n}a (postDecision(s{t}, a)) + 2 ∗ SE(postDecision(s{t}, a))}

15: else
a← arg max{V {n}a (postDecision(s{t}, a))}

s
{t}
a ← postDecision(s, a)

s{t} ← preDecision(s
{t}
a)

r{t} ← R(s{t})
20: t ← t+ 1

m← m+ 1

OnPolicyDist← OnPolicyDist plus all s{1...(T+W−1)}

set v{1...W} ← 0
set t← (T +W − 1)

25: while t ≥ 1 do
w ← W
while w ≥ 1 do

v(w) ← v{w} + γ(t−1)r{t−w}

w ← w − 1

30: t← t− 1

w ← 1
while w ≤ W do

OBS ← OBS smoothed with (s
{w}
a , v{w}) using BAKF

SE ← SE from BAKF
35: w ← w + 1

V
{n+1}
a ← low-bias function approximation using OBS
n ← n+ 1

12

Unfortunately, this change can also reduce the learning efficiency since |S| × |A| function

values need to be learned instead of just |S|. With this in mind Powell recommends the

post-decision state in [23]. The idea of the post-decision state is simple, assume there is some

state that exists after an action is selected, but before transitioning to the new state, and

learn the value of this state.

To think in terms of Q-learning, the post-decision state is the “pseudo-state” of (s, a). That is,

the state where one is in state s and has selected to take action a, but nothing has happened

yet. In some MDP models this is the best one can do. In others though, the structure of

the problem allows for a post-decision state with a lower dimension than the Q-learning

approach, leading to a much more efficient use of information while still having the benefits

of Q-learning.

In algorithm 2 the post-decision state (and its associated value) is differentiated from the

traditional pre-decision state with subscripts (i.e., sa and Va). With this notation the

Optimality equation becomes:

V ∗a (sa) = E [V ∗(s′)|Ps,a]

V ∗(s) = R(s) + γmax
a′∈A
{V ∗a (s′a′)}

This approach has one further utility worth noting. By isolating the expectation it becomes

possible to estimate the value of Va via repeated sampling. This opens the door to simulation

based approaches (e.g., line 18) with smoothing of observations (e.g. line 33) instead of fully

realizing the MDP’s P , an impossibility for the experiment’s MDP.

Finally, it should be noted, the same efficiency gain can still be achieved with the Q-function

approach so long as one is using basis functions for approximation. In this case one simply

needs to define the basis functions for a state action pair as the post-decision state basii. When

13

one isn’t using basis functions, (e.g., a lookup table algorithm), then only the post-decision

state formulation still achieves greater efficiency in data.

Unbiased Value Observations

A common practice in the RL literature is to use previous estimates of a value function to

update a new estimate of that value function. Sutton and Barto refer to this practice as

bootstrapping [28]. In its simplest form this can be seen with the following iterative update:

Vi(st) = R(st) + γmax
a∈A
{E [Vi−1(st+1)|Ps,a]} (4.11)

Using this update form, the bootstrap estimates (i.e., Vi−1) introduce bias into the new

estimates (i.e., Vi). This occurs because the value of V is non-stationary. Under certain

conditions it can be proven that V will still converge to its true value despite this bias (c.f.,

value iteration [23, 28]).

In general though, this cannot be proven, especially with approximate methods. Even so,

bootstrapping still seems to be quite common, and some experimentalists report that it often

works better than alternative methods [28].

One indisputable advantage that bootstrapping offers is speed. The above formulation (4.11)

would only require a single time step into the future, st+1 before an update can occur for a

five-step value function. An unbiased estimate of the same function would require all five

steps:

Vi(st) = R(st) + γR(st+1) + γ2R(st+2) + ...+ γ5R(st+5)

In KLA, despite the speed gains and anecdotal evidence, bootstrap methods seem to always

perform worse than non-bootstrapped methods in the tests done as a part of this research.

14

We hypothesize that this is due to the low-bias value function having too much sensitivity to

observational bias.

A small change the KLA introduces to counteract the extra processing time of unbiased

observations is parameter W . This parameter determines how many steps after T to take.

Each step after T can be used to calculate an additional T step unbiased estimate.

Exploration vs Exploitation

One area where KLA doesn’t deviate substantially from existing work is in exploration vs.

exploitation. KLA uses an off-policy approach to select which actions to evaluate. This can

be seen on line 13. To choose the first action, an estimate of the standard error (SE) produces

an upper confidence bound. (The standard error is naturally calculated as part of BAKF

smoothing on line 33 and can thus be re-used).

In addition, evaluation states are sampled according to an approximation of the on-policy

distribution (lines 11 and 22). Because updates to the value function can alter the on-policy

distribution over time, this approximation is re-initialized every 4 iterations (line 6).

Value Function Updates

A final challenge, common to approximate RL algorithms, is how much to update the value

function approximation each iteration. This decision is often more clear when using a lookup

table algorithm (e.g., α in V (s) = (1 − α)V (s) + αv̂), but it is still present in function

approximation methods as well.

KLA uses Powell’s Bias Adjust Kalman Filter (BAKF) [23] to determine α. BAKF tracks

the standard error and bias for all current estimates to determine a confidence level. When

there is high confidence in the current estimate α is reduced so the current estimate has more

weight than the new observation. When there is low confidence α is increased to favor the

new observation.

15

BAKF (and by extension KLA) maintains separate estimates for each distinct representation

of basii functions. In this way, the basii functions form a pseudo state space and their

estimates are updated using methods similar to table lookup algorithms.

On each KLA iteration, BAKF smoothing results in a single estimate for every unique set of

basii functions that has been observed thus far. These pairs of basii function representations

and their estimates are then used to fit the value function approximation on each iteration.

4.2.2 KLA Performance Comparisons

To benchmark the KLA algorithm’s performance, it is compared to LSPI and KLSPI. The

MDP model used in these tests is the experimental game model detailed in 6.1. This model

has |S| ≈ 1089.

In tuning LSPI, a number of feature transformations are explored with LSPI. The best

performance for LSPI is achieved with a full second order polynomial. An RBF transform,

an RBF transform plus full second order polynomial and a full third order polynomial did

not perform as well as the second order polynomial.

In order to tune KLSPI a number of performance enhancements were made to the original

algorithm to improve run time. The ALD threshold parameter is set optimally via a number

of tests as well as setting optimal sizes for the sample observations.

For the first test (figure 4.4) 230 random rewards are generated. The initial state distribution

is set to three randomly selected states. With only three states in the initial state distribution,

these algorithms perform in some ways like a priority sweep.

For the second test (figure 4.4) 172 random rewards are generated. The initial state distribution

is set to 20 randomly selected states. Notice that in this second test LSPI outperforms KLSPI.

With a larger initial state distribution, KLSPI seems to have too much variance to fit its

approximate value function well.

16

Figure 4.4: Performance comparison of KLSPI, LSPI and KLA with |D| = 3.

Figure 4.5: Performance comparison of KLSPI, LSPI and KLA with |D| = 20.

Finally, the last test (figure 4.6) is the same as the second test, but the KLA algorithm iterates

100 times instead of 30. This allows a more in-depth exploration of KLA’s convergence point.

Unfortunately, without ground truth there is no way to know if KLA has found a global or

local optimal.

What makes these three tests most interesting is that all three are using the exact same MDP

and value basii. Under these conditions KLA clearly outperforms. However, the original use

case for LSPI and KLSPI was one where the reward is known. Knowing the reward makes it

possible to design better value basii, and in these use cases they may outperform KLA.

17

Figure 4.6: Performance comparison of KLSPI, LSPI, KLA for 30 and 100 iterations with
|D| = 20.

Finally, because it seemes like LSPI and KLSPI get stuck in a local optimal fairly early in

their approximations, efforts were made to encourage them to search more. None of these

efforts improved their performance in any way. In fact, many times it made it worse.

Experiment

5.1 Hypothesis

The experiment tests two hypothesis are tested using a one-tailed Wilcoxon rank-sum test.

The Wilcoxon test is selected over Welch’s t-test due to deviations from normality in the

dependent variable.

H1 Study participants who are shown a reward function learned from a high performer will

perform better than a similar control group with a significance of α = .05

H2 Study participants who are shown a reward function learned from a low performer will

perform worse than a similar control group with a significance of α = .05

18

Figure 5.1: The experimental design for the control and treatment groups

5.2 Design

A quasi-experimental design with eight blocking variables, four treatments and a control is

used. For each group, two observations are made of the dependent variable (“performance”),

once before and once after treatment (design shown in figure 5.1).

5.3 Dependent Variable

To measure “performance” (the dependent variable) participants play a game where they

are awarded points for accomplishing goals. Participant’s are told to earn as many points as

they can within a time limit.

In the final analysis, performance is measured by the number of goals accomplished rather

than the number of points earned.

Participants play the game twice to measure changes in performance. If the treatment

is effective, participants in the treatment group should accomplish more goals (or fewer

respective of the treatment) than the control group on the second play.

19

Figure 5.2: The left image shows a pre-treatment game in progress. The right image shows
a post-treatment game. The colors you see here are accurate. The game was entirely in
grayscale.

5.4 Game

The game is a continuous, stochastic pointing game (see figure 5.2). During the game targets

appear randomly within the field of play. To earn points a player must simply pass their

cursor over the top of a target. For all groups, targets are always the same size and always

remain on screen for exactly one second before disappearing.

5.4.1 Stochasticity

Targets in the game appear according to a Poisson process with λ = 1
200

targets per millisecond.

This means that at any given time (after one second has passed) there will be an average of

5 targets on the screen (figure 6.3 left) with an average of 75 appearing over the course of the

entire game (figure 6.3 right).

The stochastic engine that drives the game is the Math.random JavaScript API. For all major

web browsers this is a pseudo-random number generator. This means there are no restrictions

on the distribution of the random numbers — so long as they are uniform between 0 and 1.

Most importantly, this means that tight clusters of targets can occur, increasing variance in

the dependent variable.

20

Figure 5.3: The distribution of targets at an instant in time (left) and over the course of the
entire game (right)

5.4.2 Framing

When describing the task to participants the language of “games” and “points” is used (rather

than task and goals) in an effort to encourage participant engagement and align mental

models with the idea of rewards.

5.4.3 Directions

All participants are given identical directions: regardless of their group. These directions are

shown in figure 5.4. The direction screens are displayed to participants one at a time from

left to right (with each point screen showing just before its respective game begins).

21

Figure 5.4: The three direction screens. These screens are identical for all participants
regardless if their control/treatment group.

5.5 Treatment

Participants within treatment groups are shown a reward function learned from two selected

participants in the control group (i.e., “experts” in IRL terms). The experts were selected

based on their performance. One expert to represent a high performer (H1) and one to

represent a low performer (H2).

5.5.1 Experts

The summary statistics for the two selected experts can be seen in table 5.1. Expert “EH” is

the high performer with 64 and 58 touches, and expert “EL” is the low performer with 20

and 21 touches.

Table 5.1: Expert Statistics

ID Gender Age Input First Game 1 Touches Game 2 Touches

EH Male 25-34 Mouse Yes 64 58
EL Male 25-34 Mouse Yes 20 21

22

5.5.2 Rewards

For each selected expert two reward functions are learned. Two functions are learned because

the IRL algorithm produces slightly different rewards each time it runs, and there is no

dominant way to select a best reward. The feature expectations for the experts (c.f., equation

4.3) and the two learned rewards associated with each expert are given in table 5.2.

The learned rewards can be differentiated according to two criteria: behavior match and goal

match. Rewards with a strong behavior match result in policies that move like the human

expert (e.g. similar velocity or location preferences), but may or may not achieve equal goal

performance (i.e., touching as many targets as the expert in a single play). Similarly, rewards

with a high goal match may touch the same number of targets as the expert, but in a very

different way.

Table 5.2: Feature expectations calculated from expert trajectories and their IRL generated
reward functions. (RCT : expectation learned by KLA for “true” reward; SEH :“good” expert-
trajectories; RHH :reward one from µHE; RHL:reward two from µHE; SEL:“bad” expert-
trajectories; RLH :Reward one from µLE; RLL:Reward two from µLE.)

Behavior Features Goal Features
Source X-Loc Y-Loc Velocity Acceleration Direction Not Touching

RCT 0.0132 1.5261 1.3745 1.3078 -2.8490 16.9471

SEH 2.0093 1.4241 1.1993 0.6614 -0.6871 22.4824
RHH 2.6119 2.0059 1.3469 1.1690 1.9244 18.9064
RHL 2.4042 1.8073 1.2613 0.6936 -1.1199 25.2415

SEL 1.7452 1.1804 0.7979 0.4558 2.2178 24.8904
RLH 2.6265 1.7592 1.3417 1.2178 -1.4283 19.4081
RLL 1.7136 2.5636 1.1956 0.6215 -1.1634 25.5276

According to this differentiation we assign the following labels to our learned rewards:

• RHH - reward generates behavior matching high performer with high goal achievement

• RHL - reward generates behavior matching high performer with low goal achievement

• RLH - reward generates behavior matching low performer with high goal achievement

• RLL - reward generates behavior matching low performer with high goal achievement

23

In addition to these rewards the “true reward” (or “control reward”) is defined as RCT (i.e.,

each target is worth one point, the same way performance is actually measured):

• RCT - reward for control/true performance measurement (all targets worth 1 point)

5.5.3 Delivery

When a treatment is applied to a group the treatment reward function alters target point

values in the second game. This alteration is displayed as a variable amount of fill for each

target. The more filled in a target is the more points it is worth. An image of this alteration

can be seen on the right side of figure 5.2 as well as a complete description of all game

variations and their rewards in table 5.3.

Table 5.3: The five game variations, their rewards and the hypothesis they are used to test

ID Points Description Hypothesis

GCT RCT Targets are worth 1 point each Control Group
GHH RHH Targets are worth 0 - 2 points (H1) Increased Performance
GHL RHL Targets are worth 0 - 2 points (H1) Increased Performance
GLH RLH Targets are worth 0 - 2 points (H2) Decreased Performance
GLL RLL Targets are worth 0 - 2 points (H2) Decreased Performance

Using the notation in table 5.3, figure 5.1 is updated to the more meaningful figure 5.5.

Figure 5.5: The experimental design in terms of game variations

24

5.6 Analysis

Analysis begins with an abbreviated summary of important blocking variables. (The complete

list can be found in the appendix in table A.1 along with the summary statistics).

Table 5.4: Statistics for all trials by treatment

Variable Level CT HH HL LH LL Total

First
Y 324 307 344 359 432 1766
N 66 77 53 82 117 395

Gender
M 213 180 212 224 257 1086
F 177 204 184 216 291 1072

Age

18-24 44 57 55 50 85 291
25-34 198 168 173 238 259 1036
35-44 92 81 92 89 118 472
45-54 33 48 42 36 56 215
55+ 23 30 35 28 31 147

Machine

Desktop 138 104 128 174 174 718
Laptop 222 222 240 235 317 1236
Tablet 7 16 7 6 12 48
Smartphone 23 42 22 26 46 159

Input

Mouse 268 196 263 302 344 1373
Touchpad 78 125 90 98 133 524
Touchscreen 39 61 38 38 68 244
Other 5 2 6 3 4 20

5.6.1 Blocking Variables

Among the blocking variables there is a high degree of variance in the “first” and “input”

variables. These blocks are therefore broken out for separate analysis on their treatment

effects.

It can be seen that when performance is separated on the “first” block, treatment effects

tend to move in opposite directions (see figure 5.6). First time participants generally perform

better on game 2 than game 1 while second time participants tend to get worse. Based on

this we decide to simply look at first time players.

25

Figure 5.6: A Summary of effect size when blocking on first time and input device.

In terms of input device a similar pattern can be seen in figure 5.6. Individuals using either

a mouse or touchpad tend to improve while individuals on touchscreens tend to get worse.

Using a similar logic as above, touchscreen is excluded for the time being from analysis as

well.

With just mice and touchpads the decision is made to block one more time. This is done

because mouse data appears at this point to have more statistical power than the touchpad

(i.e., a larger effect size and more observations), and the overall effect size already appears to

be quite small.

The summary statistics for the selected block (i.e., first time participants using a mouse) is

given in table 5.5 with the full summary in A.2.

5.6.2 Hypothesis Tests

With the block selected the normality assumption for each group is tested before performing

a t-test (see figure 5.7). The groups appear to vary a moderate amount from normality at

26

Table 5.5: Statistics for all trials blocked on First=Y and Input=Mouse

Stat Level CT HH HL LH LL Total

Gender
M 133 80 132 140 138 623
F 89 76 92 96 128 481

Age

18-24 23 18 29 21 29 120
25-34 117 59 102 131 122 531
35-44 47 39 49 44 61 240
45-54 18 24 29 21 34 126
55+ 17 16 15 20 20 88

Game 1

0-10 7 6 6 10 10 39
10-20 29 15 29 41 40 154
20-30 92 51 73 72 98 386
30-40 44 38 57 54 66 259
40-50 22 18 29 28 32 129
50+ 28 28 30 32 20 138

Game 2

0-10 4 3 3 11 9 30
10-20 30 16 23 30 44 143
20-30 80 50 78 76 108 392
30-40 52 38 56 54 52 252
40-50 25 19 32 31 27 134
50+ 31 30 32 35 26 154

Total Count 222 156 224 237 266 1105

the tails. Therefore a Wilcoxon rank-sum test is performed since it doesn’t assume normally

distributed observations.

The two hypothesis are tested using the four treatments. Because each hypothesis has two

treatments the Holm-Bonferonni adjustment is made to α. After the adjustment the null

hypothesis for H1 is rejected. This suggests that showing participants the reward of a high

performer can increase performance over the control. Before we can say for sure though a

alternative explanations are analayzed. The results for all tests are given in table 5.6 along

with the associated Cohen’s d.

One interesting phenomenon is RLH , which far from decreasing performance as hypothesized

actually increases performance from game 1 to game 2. This seems to suggest that matching

goal features with a reward function (in this high case touches) is almost equally important

27

Figure 5.7: Q-Q plots against a normal distribution to test the normality assumption of
t-tests.

to matching behavior (i.e. average velocity, location preferences, etc.). While matching both,

as RHH did, is best.

For all other input types, we fail to reject the null hypothesis. However, looking at the

effects there do appear to be patterns. For touchpads, RHH and RHL do seem to increase

performance more than any other reward though not enough to be significant. The number of

touchpad observations though is substantially smaller than mice, so this isn’t too surprising.

Table 5.6: Results of hypothesis tests for first time participants using a mouse

Hypothesis Reward P-value Cohen’s d

H1 RHH 0.047 0.200
H1 RHL 0.085 0.116
H2 RLH 0.717 0.064
H2 RLL 0.140 -0.158

28

Figure 5.8: The change in median performance across all treatments.

For touchscreens, there is another interesting pattern. All rewards substantially decrease

performance except the control (see figure 5.8). This seems to suggest that while targeted

rewards can improve performance, these rewards don’t generalize nearly as well as the true

feedback signal.

5.6.3 Alternative Explanations

Finally, alternative explanations for the significant result are examined and can be ruled out.

The largest threat to validity, in this experiment, are between-group differences. The first

test to check this threat is a Kruskal-Wallis test performed on all game 1 touch counts. The

p-value for this test is 0.125 which means we fail to reject the null-hypothesis that the groups

were different in pre-treatment performance.

The second check for differences in groups are in the blocking variables. The biggest difference

29

seen here is the gender ratio (c.f. table 5.5). However, because this difference is seen in both

high and low rewards (i.e., RHH and RLL), which had effects in opposite directions, this too

is ruled out.

No other between group differences can be seen in the data leading us to make the claim that

showing participants RHH did, in fact, cause performance to increase over RCT for individuals

using a mouse and taking the test for the first time.

Application

To improve human performance using the method in this paper four criteria must be met:

1. The task of interest must be modelled as an MDP

2. Observations must be collected from human experts

3. A reward function must be learned from the observations

4. The learned reward function must be communicated meaningfully

While these criteria aren’t easily satisfied neither are they, in our experience, overly restrictive.

With careful thought and planning this approach should be applicable to many problems.

This section provides more detail on the work to meet criteria 1 and 4.

6.1 MDP Model

As mentioned in the preliminaries, the traditional definition of an MDP is a five-tuple

<S,A, P,R, γ>. The description of the MDP begins with the observational data and moves

from there through the entire MDP definition. This approach is taken because many

30

applications can begin with existing observations. These observations can then be leveraged

to feed directly into the design.

6.1.1 Raw Observations

The observations for each participant are collected in two sets. The first set contains 450

observation for game 1 and the second set contains 450 observations for game 2 (i.e., 450

equals 30 observations a second for 15 seconds). Each observation contains the x, y coordinate

of the cursor, the width and height of the browser window, the radius of the targets and,

for each target on the screen, the target’s x, y coordinates as well as its age in milliseconds.

Because there could be a variable number of targets on the screen at any time each observation

vector is of variable length.

6.1.2 State Space

From these observations the state is created. The model for the game defines a state as an

observation vector plus the cursor’s x, y coordinates from the three previous observations.

Assuming a browser window size of 3000 × 1000 (a reasonable assumption), this gives

(3000 × 1000)4 = 8.1 ∗ 1024 states from cursor movements alone. Adding in the potential

number of targets (up to 12, see distributions above for more detail), their ages
(

1000
12

)
and

their locations
(

3000×1000
12

)
, the state space of the game’s model was approximately 1089.

6.1.3 State Features

With the state space defined state features are selected. The features for the game model

are defined as cursor x, y, ẋ, ẏ, ẍ, ÿ,
...
x ,

...
y plus browser width, height and target x, y and age

for each target on screen. The only change from states to features are the derivatives. This

feature representation is selected because it is easier to map from this representation to the

basii functions used in the reward and value function approximations (i.e., equation 4.1 for

KPIRL and sa for KLA).

31

6.1.4 Expert Trajectories

Next the expert trajectories SE are determined. To create SE the 450 observations from

game one are used as a starting point. From these observations the first and last 30 are

removed (in order to reduce potential noise). Finally, a sliding window of size 10 with a step

size of 1 splits the remaining observations into 380 expert trajectories. This gives M = 380,

T = 10 and |SE| = 380× 10. (Other methods to turn a single long observation into several

trajectories were tested, but none seemed to work as well as this method).

6.1.5 Action Space

The action space, A, is where approximations are first introduced into the model. In terms

of the game task, an action is simply moving the cursor to a specific location. The MDP

model only has between 100 to 400 actions available at any given state (this is respective of

how close the current state is to the edge). Compare this to the approximately 500× 500

pixels a participant could realistically move to in a single time step. This means the choice of

only having 20× 20 = 400 actions is a considerable simplification. Still, this is sufficient

6.1.6 Transition Probabilities

In the MDP model, once an action is taken, two transitions occur. The first transition is

the the post-decision state transition. This transition contains all the deterministic changes

to the state. In the game’s MDP model this includes cursor features (x, y, ẋ, ẏ, ẍ, ÿ,
...
x ,

...
y),

target age and if a target is removed from the state (i.e. it becomes older than 1 second).

The second transition, the pre-decision state transition, includes all the stochastic elements

of the state transition. In this model this is simply if a targets appear, and if so, where it

appears.

32

6.1.7 Reward and Value Basii Functions

The final components to define, which are only necessary in order to use the KPIRL and

KLA algorithms, are the basii functions for the reward and value functions. There is nothing

that says these two sets must have the same basii.

The reward and value basii are defined as follows (where T (s) = 1a target is touched in s):

φR(s) =

T (s) ∗X-Location(s)

T (s) ∗ Y -Location(s)

T (s) ∗ V elocity-Magnitude(s)

T (s) ∗ V elocity-Direction(s)

T (s) ∗ Acceleration-Magnitude(s)

|T (s)− 1|

φV (s) =

X-Location-Level(s)

Y -Location-Level(s)

X-V elocity-Level(s)

Y -V elocity-Level(s)

X-Acceleration-Level(s)

Y -Acceleration-Level(s)

Touch-Count(s)

Closer-Count(s)

6.1.8 Value Function Structure

Finally, there is one last structure included in the game model that concerns the non-linear

transformations made to the IRL algorithm. One way to think of the Gaussian kernel,

described in the KPIRL algorithm, is that it learns a reward in terms of basii similarities.

Given that, it made sense for the following relationship to be true.

33

C = ||φR(s1)− φR(s2)||

∀s1 ∈ {s|s ∈ S and T (s) = 1}

∀s2 ∈ {s|s ∈ S and T (s) = 0}

Where C is an arbitrary constant. The simplest way to think of this is all states that are

touching a target are equidistant from all states that aren’t touching a target. Or, in other

words, are equally similar/dissimilar.

6.2 Communicating the Reward Function

This section briefly details the thought process for designing reward feedback. This study,

unfortunately, was unable to vary any of this design to test how each component may

have contributed. What this section provides is primarily conjecture and an aid for future

researches who may want to replicate this research.

The raw reward returned by the IRL function is quite uninterpretable. Figure 6.1 shows two

histograms of the raw reward values for RLL and RHH . Notice the incredibly small differences

between reward values (both have a range of about .03), the relatively even split between

positive and negative values, and long tails in both.

6.2.1 Transform to Increase Understanding

An underlying assumption in IRL is that the learned reward function results in the desired

policy only if the agent who follows it is perfect and rational. This of course isn’t the case

with human decision making, so a few transformations are made to the reward in order to

increase the likelihood an individual will respond correctly and rationally.

The first transformation makes it more clear which targets are worth touching and which

34

Figure 6.1: The distribution of reward values for a reward function learned from a person
who performed very poorly, RLL, (left) and very well, RHH , (right) at the experimental task.
It should be noted this is not a probabilistic distribution. The dashed line is the mean for
each distribution.

aren’t (i.e., encourage correct response to rewards). All states in the state space where a

target isn’t touched have the same reward value. This “no-touch” reward value is interpreted

as a minimum threshold for action. That is, if any particular target is less rewarding than the

no-touch state, then it isn’t worth the effort to touch, since one would receive more reward

for not touching.

In order to make this threshold-to-act more clear a translation is applied to the reward

function to make the threshold equal to 0. With this transformation all targets not worth

touching (according to the reward function) now have a negative reward value, while all

targets worth touching (again, according to the reward function) have a positive reward value

(see figure 6.2).

The next transformation encourages rational behavior. It has been shown that people exhibit

an aversion to loss [29]. To avoid people performing poorly due to this aversion, all states

with reward less than 0 are set to 0. Up to this point, the transformations have preserved

35

Figure 6.2: The distribution here is the one learned from the high performer (right side of
figure 6.1). Notice the distribution is the same, the only change is the differentiation point is
at 0 in the right figure.

the optimal policy of the reward. With this transformation, the reward no longer generates

the same behavior when followed by a computer.

The final transformation is to increase the information bandwidth. All reward values in the

top 3 percentile are all set equal to the smallest value in the top 3 percentile. This reduces

the overall range of the reward values leaving more bandwidth to differentiate between close

rewards. The final reward distribution can be seen for the worst and best reward functions

in figure 6.3.

6.2.2 Smooth to Improve Understanding

Because of the needs of computational tractability in such a large state space, the reward

function is initially discrete. While, in general, states near one another tend to have similar

reward values, this is not always the case. When drastic changes in reward value occur quickly

it gives the feeling of randomness and lack of control.

For this reason smoothing techniques are used when showing reward values to participants.

36

Figure 6.3: The final shape of the worst, LL, (left) and best, HH, (right) reward functions.

This has two advantages: one, the discrete reward function appears to change more continu-

ously (feeling much more natural) and two, the reward values change more slowly, allowing

time to learn which behaviors lead to high rewards and which to low rewards. Reward values

are smoothed into the existing value according to the following formula (with r̂ representing

the instantaneous reward value at the time of the update):

R = (1− α)R + αr̂, α =
5

18
(6.1)

6.2.3 Forecast to improve understanding

The final design decision to communicate reward is to display the projected future reward

rather than the reward according to the current cursor state. That is, the reward shown for

a given target is as close as possible to the reward the person would receive if they chose to

stop whatever they are doing and touch the target. To do this two things are done.

First, the third derivative is left out of reward calculations. The third derivative can change

37

dramatically from time step to time step, making it much harder to project. This happens

because it places more weight on fewer states which the participant doesn’t have immediate

control over (i.e.,
...
x4 = x4 − 3x3 + 3x2 − x1).

Second, when calculating the projected r̂ for a target, the direction component is calculated

using the direction from the cursor to the target, regardless of the direction the cursor is

traveling in. This is in direct contrast to how reward is calculated when a target is touched.

When a target is touched reward is calculated according to the movement direction rather

than location direction.

For the game model the approach was quite simple. For more complex, real world applications

this would likely need to be more complicated, and without this component it would likely be

much more difficult for people to know how their choices might impact their expected reward.

Conclusion

The observed effect size is small but statistically significant. The importance of this work,

however, is not its effect size but in showing that rewards can be shaped and communicated

to humans in such a way as to predictably alter.

Furthermore, this approach seems to have the potential for very general applicability to many

human centered problems. This is demonstrated by how well it aligns with the research in

other fields showing that environmental feedback can alter human performance for many

different purposes (as referenced in the literature review).

Considerable work within the field of behavioral psychology has shown that relatively simple

rewards (environmental feedback signals) can change behavior. Far less work has been done

to examine how these rewards can be shaped to derive complex changes. This experiment,

the author believes, begins to show how that path could be advanced.

38

In future work the author hopes to examine how this technique can be used to train a

computer assistant for humans, as well as partner with an applied researcher in psychology

to conduct a more rigorous analysis of the impact of this modelling technique on human

behavior.

39

Appendices

40

Full Data Tables

Table A.1: Statistics for all trials by treatment

Stat Level CT HH HL LH LL Total

First Y/N 324/66 307/77 344/53 359/82 432/117 1766/395

Gender
M 213 180 212 224 257 1086
F 177 204 184 216 291 1072

Age

18-24 44 57 55 50 85 291
25-34 198 168 173 238 259 1036
35-44 92 81 92 89 118 472
45-54 33 48 42 36 56 215
55+ 23 30 35 28 31 147

Machine

Desktop 138 104 128 174 174 718
Laptop 222 222 240 235 317 1236
Other 30 58 29 32 58 207

Input

Mouse 268 196 263 302 344 1373
Touchpad 78 125 90 98 133 524
Touchscreen 39 61 38 38 68 244
Other 5 2 6 3 4 20

Browser

Chrome 317 296 327 380 450 1770
Firefox 38 45 42 34 47 206
Safari 18 26 10 16 29 99
Other 17 17 18 11 23 86

Game 1

0-10 8 12 9 14 16 59
10-20 57 52 58 77 82 326
20-30 152 130 141 142 181 746
30-40 84 90 101 98 146 519
40-50 44 55 46 60 68 273
50+ 45 45 42 50 56 238

Game 2

0-10 7 8 5 18 14 52
10-20 49 58 59 58 83 307
20-30 135 126 137 152 203 753
30-40 98 95 98 110 120 521
40-50 55 49 54 50 76 284
50+ 46 48 44 53 53 244

41

Table A.2: Statistics for all trials blocked on First=Y and Input=Mouse

Stat Level CT HH HL LH LL Total

Gender
M 133 80 132 140 138 623
F 89 76 92 96 128 481

Age

18-24 23 18 29 21 29 120
25-34 117 59 102 131 122 531
35-44 47 39 49 44 61 240
45-54 18 24 29 21 34 126
55+ 17 16 15 20 20 88

Machine
Desktop 112 82 104 134 129 561
Laptop 110 73 120 101 137 541
Tablet 0 1 0 2 0 3

Browser

Chrome 186 124 191 209 225 935
Firefox 23 25 21 19 31 119
Safari 2 1 1 2 1 7
Edge 4 4 6 2 5 21
Other 7 2 5 5 4 23

Game 1

0-10 7 6 6 10 10 39
10-20 29 15 29 41 40 154
20-30 92 51 73 72 98 386
30-40 44 38 57 54 66 259
40-50 22 18 29 28 32 129
50+ 28 28 30 32 20 138

Game 2

0-10 4 3 3 11 9 30
10-20 30 16 23 30 44 143
20-30 80 50 78 76 108 392
30-40 52 38 56 54 52 252
40-50 25 19 32 31 27 134
50+ 31 30 32 35 26 154

Total Count 222 156 224 237 266 1105

42

Bibliography

[1] Roland Sigrist, Georg Rauter, Robert Riener, and Peter Wolf. Augmented visual,
auditory, haptic, and multimodal feedback in motor learning: a review. Psychonomic
bulletin & review, 20(1):21–53, 2013.

[2] Gabriele Wulf and Charles H Shea. Principles derived from the study of simple skills do
not generalize to complex skill learning. Psychonomic bulletin & review, 9(2):185–211,
2002.

[3] John W Krakauer and Pietro Mazzoni. Human sensorimotor learning: adaptation, skill,
and beyond. Current opinion in neurobiology, 21(4):636–644, 2011.

[4] Kevin G Volpp, Leslie K John, Andrea B Troxel, Laurie Norton, Jennifer Fassbender,
and George Loewenstein. Financial incentive–based approaches for weight loss: a
randomized trial. Jama, 300(22):2631–2637, 2008.

[5] Kim Sutherland, Jon B Christianson, and Sheila Leatherman. Impact of targeted
financial incentives on personal health behavior. Medical Care Research and Review,
65(6 suppl):36S–78S, 2008.

[6] Theresa M Marteau, Richard E Ashcroft, and Adam Oliver. Using financial incentives
to achieve healthy behaviour. Bmj, 338:b1415, 2009.

[7] Gary S Becker. The economic approach to human behavior. University of Chicago press,
2013.

[8] Amos Tversky and Daniel Kahneman. Advances in prospect theory: Cumulative
representation of uncertainty. Journal of Risk and uncertainty, 5(4):297–323, 1992.

[9] Herbert A Simon. A behavioral model of rational choice. The quarterly journal of
economics, 69(1):99–118, 1955.

[10] John Scott. Rational choice theory. Understanding contemporary society: Theories of
the present, 129, 2000.

[11] Gabriele Wulf, Charles H Shea, and Sabine Matschiner. Frequent feedback enhances
complex motor skill learning. Journal of motor behavior, 30(2):180–192, 1998.

[12] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In
Icml, pages 663–670, 2000.

43

[13] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y Ng. An application of
reinforcement learning to aerobatic helicopter flight. In Advances in neural information
processing systems, pages 1–8, 2007.

[14] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In AAAI, volume 8, pages 1433–1438. Chicago,
IL, USA, 2008.

[15] Elnaz Nouri, Kallirroi Georgila, and David Traum. A cultural decision-making model
for negotiation based on inverse reinforcement learning. In Proceedings of the Annual
Meeting of the Cognitive Science Society, 2012.

[16] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative
inverse reinforcement learning. In Advances in neural information processing systems,
pages 3909–3917, 2016.

[17] Kamwoo Lee, Mark Rucker, William T Scherer, Peter A Beling, Matthew S Gerber,
and Hyojung Kang. Agent-based model construction using inverse reinforcement
learning. In Simulation Conference (WSC), 2017 Winter, pages 1264–1275. IEEE,
2017.

[18] Nobuhiro Yokoyama. Inference of aircraft intent via inverse optimal control including
second-order optimality condition. In AIAA Guidance, Navigation, and Control
Conference, page 1254, 2017.

[19] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first international conference on Machine learn-
ing, page 1. ACM, 2004.

[20] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement
learning with gaussian processes. In Advances in Neural Information Processing
Systems, pages 19–27, 2011.

[21] Qifeng Qiao and Peter A Beling. Inverse reinforcement learning with gaussian process.
In American Control Conference (ACC), 2011, pages 113–118. IEEE, 2011.

[22] Jaedeug Choi and Kee-Eung Kim. Bayesian nonparametric feature construction for
inverse reinforcement learning. In IJCAI, pages 1287–1293, 2013.

[23] Warren B Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, 2nd Edition. John Wiley & Sons, 2011.

[24] Richard S Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In Machine Learning Proceedings 1990, pages
216–224. Elsevier, 1990.

[25] Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. Journal of
machine learning research, 4(Dec):1107–1149, 2003.

44

[26] Xin Xu, Dewen Hu, and Xicheng Lu. Kernel-based least squares policy iteration for
reinforcement learning. IEEE Transactions on Neural Networks, 18(4):973–992, 2007.

[27] Jun Ma and Warren B Powell. Convergence analysis of kernel-based on-policy ap-
proximate policy iteration algorithms for markov decision processes with continuous,
multidimensional states and actions. Submitted to IEEE Transactions on Automatic
Control, 2010.

[28] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction.
MIT press, 1998.

[29] Amos Tversky and Daniel Kahneman. Loss aversion in riskless choice: A reference-
dependent model. The quarterly journal of economics, 106(4):1039–1061, 1991.

[30] Frances K McSweeney and Eric S Murphy. The Wiley Blackwell handbook of operant
and classical conditioning. John Wiley & Sons, 2014.

[31] Brian Ziebart, Anind Dey, and J Andrew Bagnell. Probabilistic pointing target pre-
diction via inverse optimal control. In Proceedings of the 2012 ACM international
conference on Intelligent User Interfaces, pages 1–10. ACM, 2012.

[32] Kamwoo Lee, Sinan Ulkuatam, Peter Beling, William Scherer, et al. Generating
synthetic bitcoin transactions and predicting market price movement via inverse rein-
forcement learning and agent-based modeling. Journal of Artificial Societies and Social
Simulation, 21(3):1–5, 2018.

[33] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforce-
ment learning. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 182–189, 2011.

[34] Thomas D Cook, Donald Thomas Campbell, and William Shadish. Experimental and
quasi-experimental designs for generalized causal inference. Houghton Mifflin Boston,
2002.

[35] Chi-Tsong Chen. Linear system theory and design. Oxford University Press, Inc., 1998.

[36] A Nedić and Dimitri P Bertsekas. Least squares policy evaluation algorithms with
linear function approximation. Discrete Event Dynamic Systems, 13(1-2):79–110, 2003.

[37] Rosemary Garris, Robert Ahlers, and James E Driskell. Games, motivation, and
learning: A research and practice model. Simulation & gaming, 33(4):441–467, 2002.

[38] Juho Hamari, Jonna Koivisto, and Harri Sarsa. Does gamification work?–a literature re-
view of empirical studies on gamification. In 2014 47th Hawaii international conference
on system sciences (HICSS), pages 3025–3034. IEEE, 2014.

[39] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

45

