
Thesis Project Portfolio

Developer Efficiency: How Operational Tools Streamline Software Engineering

(Technical Report)

Closing the Gap Between Engineering Education and Engineering Practice: An Anaylsis
with Respect to Computer Science & How Trade Schools Could Be Looked to for the

Solution

(STS Research Paper)

An Undergraduate Thesis

Presented to the Faculty of the School of Engineering and Applied Science

8QLYHUVLW\�RI�9LUJLQLD���&KDUORWWHVYLOOH��9LUJLQLD

In Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Rohit Batra

Spring, 2022

Department of Computer Science

Table of Contents

Sociotechnical Synthesis

Developer Efficiency: How Operational Tools Streamline Software Engineering

Closing the Gap Between Engineering Education and Engineering Practice: An Analysis with
Respect to Computer Science & How Trade Schools Could Be Looked to for the Solution

Prospectus

Sociotechnical Synthesis

An Analysis of Computer Science Education and its Applicability in the Workplace

 The STS topic I chose to explore and the technical project are related in the sense that the

STS topic dives into the educational aspect of what an average computer science student

experiences during their time at university while the technical project dives into what that same

student would experience in a professional workplace environment. The STS topic is a

discussion of the gaps between what is expected from professional engineers and what is taught

to engineering students in university with a specific focus on computer science. The technical

topic discusses a specific project experience at a large software company (Amazon) which

showcases how the skills which are learned in a computer science degree program are applied in

the workplace and the impact which they can have when applied correctly. Although the projects

are not directly related, they both discuss relevant aspects of the pursuit of a computer science

degree with the intention of going into industry.

 In my STS research, I researched and discussed the gap between a typical engineering

education and what is expected of engineers in the workplace and how to address this gap. My

research focused specifically on Computer Science and the degrees translation to the work of a

software engineer as one of the fields which a computer science enters upon graduating. The

research discussed this in two specific aspects: what is the gap exactly and what specific actions

can be taken to close it. The result of my research yielded concrete suggestions which could be

implemented in the common engineering education to better prepare engineering students to

enter the workplace.

 The technical portion of my thesis discussed a specific project experience and goes into

how software is developed at a large company, how software is debugged at a large company,

and how software developers have impact at a large company. Specifically, it discusses an

operational tool which was developed as an intern project with the intention of improving

developer efficiency. It goes into depth on how the tool was developed, and how it would save

WKH�WHDPV¶�GHYHORSHUV�KRXUV�RI�WLPH�GHbugging, therefore streamlining their software engineering

pipeline.

 Completing both aspects of the thesis research simultaneously allowed me to learn a lot

about what it means to get a computer science education at an engineering school and how it

translates into industry. The STS research portion of the thesis allowed me to gain a better

understanding of how computer science curriculums attempt to adequately prepare students to

become engineers who practice engineering with ethics in mind, whereas the technical portion of

the thesis allowed for me to reflect on an experience in which I acted as an engineer with

autonomy and look at the implications of what I had learned in said curriculum. The thesis as a

whole showcases not only the ethical and social responsibility which an engineer has as a student

but also the ethical and social responsibility which they carry into the workplace as they enter

industry.

Developer Efficiency: How Operational Tools Streamline Software Engineering

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia � Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Rohit Batra

Spring, 2022

Technical Project Team Members

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Daniel Graham, Department of Computer Science

Developer Efficiency: How Operational Tools Streamline Software Engineering

CS 4991 Capstone Report, 2022

Rohit Batra
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
rb4jx@virginia.edu

Abstract
Developers are expensive, so companies need their
time used in the most efficient manner possible. A
constant problem in the field of software engineering
is making the process of software engineering as
efficient as possible for the developers. At Amazon, I
utilized the agile method, Python, and some proprietary
AWS tools to develop a solution for streamlining the
debugging process for developers. The outcome of my
work was a useful tool which turned a manual process
into an automated one and allowed the developers on
my team to save significant amounts of time debugging
tickets and even debug multiple tickets simultaneously.
Furthermore, the tool developed could be expanded on
for future use cases such as adding additional ticket
types or expanding the breadth or depth of information
which it retrieves.

1 Introduction
Debugging is a time consuming and challenging
process which requires serious time and effort from
developers. It is often a process with no clear timeline.
Developers are forced to spend countless hours in
search of the bug with no end in sight. Developers hate
debugging, and companies hate it because it wastes the
time of their expensive developers. Debugging is a
process companies attempt to streamline to make it as
efficient as possible. This was my task at Amazon. My
team would receive tickets from the customers of the
AWS Certificate Authorities and have to debug them.
My task was to automate this process.

2 Related Works

Manifesto for Agile Software Development. [Online].
Available:
The Agile Manifesto (Manifesto) contains a brief
description of the ideology behind the Agile
development process. This was the process used for
development at Amazon.

Metz (2015) discusses the foundation and success of
GitHub ± arguably the most useful tool for software
engineers today. This showcases what type of tools are
useful for software engineers and how they contribute
to making the profession more efficient. It also
demonstrates process and product similar to my project
at Amazon.

3 Project Design
The process prior to my tools was something like this:
Ticket comes in from customer -> developer looks at
ticket-> developer manually gathers relevant
information and finds relevant code -> developer
searches relevant code for some time -> developer
finds problematic code and patches it -> developer
marks ticket as solved. The set of tools which I
developed streamlined this process and now it looks
more like this: Ticket comes in from customer ->
developer looks at ticket-> developer runs automation
tools with ticket number -> tools deliver all relevant
information about this customer, their accounts, and
the services which they are running to the developer -
> developer searches relevant code for some time ->
developer finds problematic code and patches it ->
developer marks ticket as solved. It is largely still a
similar process; however, one of the manual steps

which involved hours of developer labor was
eliminated resulting in a net increase in productivity for
the team.

4. Results
The newly-designed tool allowed for a workflow
which normally took hours of tedious work to be
completed in a matter of minutes and without the
attention or focus of the developer. Moreover, this had
a twofold effect as it allowed the developers to focus
on more pressing issues while the tool would do the
debugging automatically; they simply have to look at
the output when the tool was finished.

5. Conclusion
Although only one set of tools was developed for one
specific team of a large corporation over the course of
my internship, the work which I did and the
groundwork which was laid down will serve as the
foundation for future developer tools for not only my
team but other teams at Amazon as well. In the long
run, improving developer efficiency will save the
company millions of dollars as well as saving the
developers many headaches and hours of frustration.
This also showcases that not all work at a company is
always about the customer. Making sure that the
employees are satisfied is highly important as well.

6. Future Work
Using the foundation built, the team will continue to
develop more Python based tools to continue
improving developer efficiency. Specifically, my
team will continue adding more ticket types to allow
for the toolset to diagnose and debug additional types
of customer issues efficiently. In a broader context,
the Python foundation built could be shared with
other teams at Amazon to allow them to improve their
debugging processes in similar ways.

References

&��0HW]��³+RZ�JLWKXE conquered Google, Microsoft,
DQG� HYHU\RQH� HOVH�´� :LUHG�� ��-Mar-2015. [Online].
Available: https://www.wired.com/2015/03/github-
conquered-google-microsoft-everyone-else/.
[Accessed: 14-Mar-2022].

Manifesto for Agile Software Development. [Online].
Available:

https://agilemanifesto.org/iso/en/manifesto.html.
[Accessed: 03-Apr-2022].

Closing the Gap Between Engineering Education and Engineering Practice: An Analysis
with Respect to Computer Science & How Trade Schools Could Be Looked to for the

Solution

A Research Paper submitted to the Department of Engineering and Society

Presented to the Faculty of the School of Engineering and Applied Science

8QLYHUVLW\�RI�9LUJLQLD���&KDUORWWHVYLOOH��9LUJLQLD

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Rohit Batra

Spring 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Kathryn A. Neeley, Associate Professor of STS, Department of Engineering and Society

 1

STS Research Paper

Software engineering as a profession has been growing exponentially in the past few

decades with the advent and rise of consumer technology. Specifically, the Bureau of Labor

Statistics predicts a 22% growth rate in the industry from 2019 to 2029 which is much greater

WKDQ�WKH�QDWLRQDO�DYHUDJH�IRU�DOO�RFFXSDWLRQV�RI�����³&DUHHU�DQG�VDODU\�RI�6RIWZDUH�(QJLQHHU´�

ComputerScience.org). The products of this growing field affect the day-to-day lives of almost

every individual in the world. Unfortunately, software engineering curricula currently in place

were adopted at a time when many industries rooted in computer science such as social media

did not exist.

The destabilizing condition which makes this issue so important at this time is increasing

use of commercial software along with the lack of sufficiently educated engineers resulting in

inefficient, insecure, and insufficient software products. The research backing this up is clear and

abundant.

Schilling points this out specifically in her research with a statement on how the

traditional lecture format used in the computer science curriculums is inadequate. She even cites

prior research done from 1996, further indicating that this is a destabilizing condition; it has been

more than two decades, yet the educational format is still an issue and does not produce

sufficiently WDOHQWHG�HQJLQHHUV��³:KLOH�VRPH�SURJUHVV�KDV�EHHQ�DFKLHYHG��FRPSXWHU�VFLHQFH��&6��

teaching is still mainly based on the traditional lecture format (Van Gorp and Grissom 2001).

Renkl, Mandl, and Gruber (1996) have pointed out that this educational approach often results in

µLQHUW¶�NQRZOHGJH�WKDW�LV�QRW�XVHG�IRU�SUREOHP�VROYLQJ�DQG�FRQFUHWH�SURIHVVLRQDO�SUDFWLFH�´�

(Schilling and Klamma, 367)

 2

Moreover, Garousi discusses the addition of software engineering programs as programs

separate from computer science with the intention to prepare students for industry. However, he

discusses how these programs are still inadequate and exhibit the same disparity between

WUDGLWLRQDO�FRPSXWHU�VFLHQFH�FXUULFXOXPV�DQG�KRZ�WKH\�PDS�WR�LQGXVWU\��³0DQ\�VRIWZDUH�

engineering (SE) university programs have evolved from computer science programs and still

focus on theoretical and technical computer science topics as well as mathematical foundations.

This emphasis seems to cause a discrepancy between the skills learned from an SE university

HGXFDWLRQ�DQG�WKRVH�QHHGHG�LQ�6(�HPSOR\PHQW��,Q�WKH�FRPPXQLW\��VRPH�EHOLHYH�WKDW�µ7KH�

software engineering shortage is noW�D�ODFN�RI�LQGLYLGXDOV�FDOOLQJ�WKHPVHOYHV�µHQJLQHHUV�¶�WKH�

shortage is one of quality²a lack of well-studied, experienced engineers with a formal and deep

XQGHUVWDQGLQJ�RI�VRIWZDUH�HQJLQHHULQJ�¶´��Garousi, 68)

Both of these articles of research describe the clearly present disparity and the issues it

causes in industry. Another example of how this disparity affects the industry can be seen very

clearly in the case of unethical artificial intelligence and machine learning systems. A sufficient

supply of ethical, talented, and properly-educated engineers who methodically develop software

could have prevented many of the issues with artificial intelligence and machine learning and

also other software systems. Though, this is just one specific example with respect to computer

science.

This disparity has the ability to affect every engineering field and the daily lives of every

person who utilizes technology if it is allowed to propagate. It is a fundamental issue about

engineering education ± ³7R�FRQWLQXH�WR�DGequately serve the stakeholders of engineering

education, it is imperative that engineering programs evolve. Educators must take a look not only

at what is being taught, but also at how it is being taught. It is clearly demonstrated by VWXGHQW¶V�

 3

perception of having sound professional design skills, contrasted with the evident unfulfilled

needs and wants of industry that there is a significant disconnect between stakeholders. A

structured program to enhance learning in the identified areas of need must be implemented in

order to achieve acceptable outcomes in HQJLQHHULQJ�HGXFDWLRQ�´��0D\�DQG�6WURQJ�

Based off of the research done on the current state of the computer science curriculum

and software engineering industry, a new understanding has been developed which encourages

the undergraduate computer science degree to more closely align with industry expectations ± at

least Bachelor of Science degrees. Specifically, the engineering school at UVA has the core

PLVVLRQ�RI�³2XU�PLVVLRQ�LV�WR�PDNH�WKH�ZRUOG�D�EHWWer place by creating and disseminating

NQRZOHGJH�DQG�E\�SUHSDULQJ�HQJLQHHULQJ�OHDGHUV�WR�VROYH�JOREDO�FKDOOHQJHV�´��2XU�0LVVLRQ��7KLV�

mission would be better achieved by aligning the degree program in the engineering school to

equip students to enter industry as opposed to preparing them for careers in academia.

Based on this new understanding, measures to shorten the gap between an engineering

education and industry requirements should be taken, and engineering education should be

reevaluated with its differences from a traditional liberal arts education and curriculum being

brought to the forefront as elements which should be changed it.

What is the Gap: disparity between Engineering Education & Engineering Practice with respect

to Computer Science

Over the years as the engineering industry has experienced rapid growth, the disparity

between what engineers need to know for the job and what engineers come out of school

knowing has become increasingly apparent. Conde discusses this in depth in his paper regarding

EULGJLQJ�WKH�JDS�EHWZHHQ�DFDGHPLD�DQG�LQGXVWU\��³5HFHQW�JUDGXDWHV�RIWHQ�IDLO�WR�PHHW�LQGXVWU\�

H[SHFWDWLRQV�ZKHQ�WKH\�ILUVW�HQWHU�WKH�ZRUNIRUFH�´��&RQGH��³$OWKRXJK�PDQ\�FRXUVHV�LQ�FRPSXWHU�

 4

science and software engineering require students to work on practical assignments, these are

XVXDOO\�WR\�SURMHFWV�WKDW�GR�QRW�FRPH�FORVH�WR�UHDO�SURIHVVLRQDO�GHYHORSPHQWV�´��&RQGH��%RWK�RI�

these quotes from the paper illustrate how apparent the disparity is currently. This portion of the

paper will discuss this issue in specific as it relates to the disparity between a traditional

Computer Science education and what the Software Engineering industry demands of Computer

Science graduates who enter industry.

One of the main differences which I experienced personally during an internship is the

focus on theory in the educational environment and the lack of adequate exposure to applicable

workplace practices. There are a plethora of courses available on theoretical concepts, however,

if a student wants to learn about relevant and modern day software engineering practices, there

are only a handful of courses available at most universities if any. This needs to change in the

computer science curriculum, and in other engineering curriculums in which there could be a

similar lack of focus on industry practices.

 Another key difference between a typical computer science curriculum and software

engineering is the speed and manner in which projects are completed. In the academic

environment, projects or assignments typically have one strict deadline and must be submitted in

full at that deadline. This differs from the common practice in industry where things are done in

an Agile way. The Agile methodology is a practice which was put into place in the software

engineering industry in which software is developed in a periodical and cyclic way.

 5

Figure 1. Illustration & description of Agile methodology which is currently the industry

standard of software development (What is agile methodology?).

Here is a brief description of the Agile methodology by the software development

consulting firm, Nvisia.

Agile is not as much a methodology as it is a set of values, ideals and goals.

Scrum and kanban are implementations of agile. Both practices are implemented

differently while having the same foundation, the Agile Manifesto. They have specific,

measurable and quantifiable procedures and processes. Both share the goal of breaking

down projects into smaller chunks and focusing on continuous testing. The number one

performance gain of agile is preventing rework. Applying either process in your company

will help you spot deficiencies sooner and allow you the clarity to fix any problems that

arise during the process, rather than at the end of the project. Being most effective, while

adding business value, should be the end goal.

 6

 This is one example of what engineering graduates are forced to learn on the job at a

rapid pace with high stress with the current curriculums in place. Situations like this can be

easily avoided with structured changes to the curriculum and the addition of courses which teach

students about industry practices. Making it so that young graduates are forced to enter the

workplace and quickly learn the industry standards in high pressure situations is simply not a

good idea when it can be easily avoided.

 This also relates to the previous difference regarding the focus on theory. Students should

leave an engineering education ± specifically a computer science education ± with an

understanding of the methods of development in industry and not only a theoretical

understanding.

For reference, the typical Computer Science curriculum looks a little something like this.

 7

Figure 2. Undergraduate Computer Science curriculum for student at University of Virginia

(Bachelor).

 As seen from the figure, there is only one course in which students may learn industry

practices at the University of Virginia ± CS 3240. Moreover, this is common for the majority of

undergraduate computer science curriculums nationwide. This is simply not ideal for a degree

program in which an overwhelming majority of graduates go directly into industry. Although

there is an argument for the fact that the university has an obligation to provide a breadth of

education as opposed to catering to specifications like a trade school would do, there is more that

universities can do to better prepare graduates for industry without wavering on this core

mission.

 However, this is not all the responsibility of the universities. In order to be accredited and

have respected degree programs, universities are forced to meet ABET accreditation standards.

This puts universities in a bind even if they do want to increase exposure to industry practices in

their curriculums. The current ABET standards for computer science curriculum are as follows:

5. Curriculum

The curriculum requirements specify topics, but do not prescribe specific courses.

These requirements are:

Computer science: At least 40 semester credit hours (or equivalent) that must include:

1. Substantial coverage of algorithms and complexity, computer science theory,

concepts of programming languages, and software development.

2. Substantial coverage of at least one general-purpose programming language.

 8

3. Exposure to computer architecture and organization, information management,

networking and communication, operating systems, and parallel and distributed

computing.

4. The study of computing-based systems at varying levels of abstraction.

5. A major project that requires integration and application of knowledge and

skills acquired in earlier course work.-

Mathematics: At least 15 semester credit hours (or equivalent) that must include discrete

mathematics and must have mathematical rigor at least equivalent to introductory

calculus. The additional mathematics might include course work in areas such as

calculus, linear algebra, numerical methods, probability, statistics, or number theory.

At least six semester credit hours (or equivalent) in natural science course work intended

for science and engineering majors. This course work must develop an understanding of

the scientific method and must include laboratory work.

As you can see, there is a heavy emphasis on theoretical coursework, and little to no

emphasis on coursework which could prepare students for industry practices. Because of this,

this issue cannot be solved on a university-to-university level, it must be solved on a national

level with changes to the ABET accreditation standards and ideals on what is an acceptable

computer science education.

Bridging the Gap: Changing Engineering Education with A Multilevel Perspective

The multilevel perspective on sustainable transitions presented by Geels is the most

useful in analyzing and discovering a solution to the sociotechnical issue of the gap between an

engineering education and the engineering workplace. The non-linear transitional models which

this model suggests applies to changing an engineering education because this process is one

 9

which is non-linear as well. Furthermore, this model is multifaceted in the way it approaches the

problem which is extremely useful. This is a brief description of the model and its core ideas

from its paper by Geels:

The multi-level perspective (MLP) is a middle-range theory that conceptualizes

overall dynamic patterns in socio-technical transitions.1 The analytical framework

combines concepts from evolutionary economics (trajectories, regimes, niches,

speciation, path dependence, routines), science and technology studies (sense making,

social networks, innovation as a social process shaped by broader societal contexts),

structuration theory and neo-LQVWLWXWLRQDO�WKHRU\��UXOHV�DQG�LQVWLWXWLRQV�DV�µGHHS�

VWUXFWXUHV¶�RQ�ZKLFK�NQRZOHGJHDEOH�DFWRUV�GUDZ�LQ�WKHLU�DFWLRQV��GXDOLW\�RI�VWUXFWXUH��L�H��

VWUXFWXUHV�DUH�ERWK�FRQWH[W�DQG�RXWFRPH�RI�DFWLRQV��µUXOHV�RI�WKH�JDPH¶�WKDW�VWUXFWXUH�

actions). These theoretical micro-assumptions have been articulated elsewhere (Geels,

2004; Geels and Schot, 2007, 2010).

This perspective allows for educators to look at the transition as a fluid process and

implement changes in a corresponding way. Educators do not need to change the national

curriculum standards at once, however, courses can be added and changes can be made over time

in an iterative way. This will also give educators, students, and employers the opportunity to

adapt over time as they will not have to adjust to an entirely new curriculum standard at once.

Furthermore, viewing the transition with respect to the three analytical levels of the Multilevel

perspective allows for educators to make stable changes. Educators can focus on the more stable

levels first and continue to make more changes and advance the transition as these stable changes

are implemented and accepted as the new standard.

 10

However, this multi-level perspective is of no use if educators do not know what should

be changed. There are a number of things which contribute to a successful software engineering

culture, and these are the aspects which should be added to the Computer Science curriculum so

that it better prepares students.

One of the key foundations of a healthy software engineering culture is teamwork ±

simply because of the way in which scalable software is produced. Teamwork is paramount

because a majority of large-scale software products are the result of divided labor between teams

in which team members specialize in certain areas. This is widely recognized in the industry and

is one of the reasons why the agile methodology is so prominent. Teamwork is one of the key

elements of the Agile methodology. It specifically encourages elements of teamwork such as

transparency with the team ± ³7KHUH�VKRXOG�EH�WUDQVSDUHQF\�RI�ZRUN�VR�WKDW�HDFK�PHPEHU�LV�

UHVSRQVLEOH�IRU�D�SRUWLRQ�RI�WKH�ZRUN�DQG�NQRZ�WKH�UHVSRQVLELOLWLHV�RI�WKHLU�WHDP�PHPEHUV�´�

(What is agile methodology?)

 This is also one of the key aspects which needs to be changed in the computer science

curriculum. There is a lack of courses in which students in which a work place is simulated and

students can experience how software is produced in the professional industry. Moreover, there

is a lack of emphasis on software quality in the computer science curriculum. In industry, quality

is paramount ± a company cannot deliver a faulty or buggy product under any circumstances.

.DUO�:LHJHUV��D�SURIHVVLRQDO�FRQVXOWDQW��VWDWHV�WKLV�DV�ZHOO�ZKHQ�KH�VWDWHV�³4XDOLW\�LV�WKH�WRS�

priority; long-terP�SURGXFWLYLW\�LV�D�QDWXUDO�FRQVHTXHQFH�RI�KLJK�TXDOLW\�´��:LHJHUV��7KLV�PXVW�

be addressed in the Computer Science education. Students go through the majority of their

engineering education without a focus on quality but rather a focus on completion, specifically,

completion before a deadline. Sylvia Stuurman, a computer science professor in the Netherlands,

 11

discusses this in her research paper ± Research plan: Software Quality in Education. She

specifically discusses how it is the result of a lack of enthusiasm.

Lack of enthusiasm for software quality On the one hand, students find it difficult,

or perhaps boring, to pay attention to software quality. Testing their code is tedious;

VWXGHQWV�ZRUN�WRZDUGV�D�UHVXOW�DQG�DUH�KDSS\�ZKHQ�WKHLU�SURJUDP�VHHPV�WR�µZRUN¶��,W

seems superfluous to pay much attention to a good design, and to maintainable code.

)LQGLQJ�ZD\V�WR�VWLPXODWH�VWXGHQWV¶�HQWKXVLDVP�IRU�VRIWZDUH�TXDOLW\�LV�RQH�RI�WKH�JRDOV

of our research. (Stuurman, 2)

Although deadlines do exist in the real world, there are often expectations which are not as

concrete as those which students experience in the academic environment. Courses which

address this gap should be added to the curriculum. For example, courses in which students

develop a semester long project which could be published in some manner should be encouraged

and emphasized as a part of Computer Science curriculums at a larger scale. One such course

offered at the University of Virginia is CS 4720 ± Mobile App Development, and from personal

experience, this was one of the most practical classes in the undergraduate computer science

curriculum.

Wiegers also states that continuous education and measuring productivity are key

foundations of a healthy software engineering culture (Wiegers). These are also foundations

which are not found in the traditional Computer Science curriculum. These foundations require a

level of self-sufficiency and independence which does not get developed with the curriculums

currently in place. Courses which encourage self-sufficiency and independence in this fashion

should be added to the curriculum. For example, classes in which students are given a large

 12

project to complete but little guidance could not only better reflect industry practices but

encourage the removal of handholding at an early stage to ensure that students are ready to

contribute independently when they arrive in industry.

Now that the gap has been analyzed and what needs to be changed has been cemented,

the question of what the best way to bridge the gap is must be addressed.

A Radical Proposal for Change: A Trade School Approach

As stated earlier, a computer science education which aligns more closes with industry

expectations for software engineers would better achieve the goal of an engineering degree ±

enabling students to become successful engineers who will be technical problem solvers. Some

research even suggested very drastic measures to achieve this such encourage computer science

to be a trade profession or allowing the university to offer a degree specifically in software

engineering. Specifically, the Wall Street Journal believes computer programming is a trade

profession ± ³&RPSXWHU�SURJUDPPLQJ��LQ�RWKHU�ZRUGV��KDV�EHFRPH�D�WUDGH��/LNH�QXUVLQJ�RU�

welding, it's something in which a person can develop at least a basic proficiency within weeks

or months. And once budding coders learn enough to get their first jobs, they get onto the same

path to upward mobility offered to their in-GHPDQG��KLJKO\�SDLG�SHHUV�´��3UHVV�

Although this is a very unconventional suggestion for a university, there are some

benefits which would warrant its consideration. Namely, employability. Trade school professions

have always been held in high regard with respect to employability due to the fact that graduates

exit the school with useful, immediately applicable skills. This has not always been the case with

college degrees.

However, this radical suggestion is not possible in its entirety, so more feasible or partial

solutions must be analyzed. This research suggests that some aspects of a typical trade school

 13

education be implemented into the engineering degree programs for computer science, and that

they be implemented in the manner described in the Outline for Changes section.

This deliverable is an outline of how the computer science curriculum can be changed to

better map to industry standards and practices and allow for engineering graduates with

computer science to be better prepared to enter the workforce and offer an immediate

contribution. These are the changes which should be made to engineering curriculums

nationwide.

Outline for Changes

1. Add more specified coursework

a. Examples for Computer Science Degree

i. Agile Methodology

ii. Proof Of Concept to Production (Pipeline Course)

iii. Producing Software at Scale ± An exercise in team-based

development

2. Add more hands-on coursework with less professor involvement. Allow students

to learn on their own.

3. Introduce coursework which focuses on the development of soft skills (Garousi

6).

4. Add more project-based courses as this is how work is commonly done in

industry. Little to no work is truly done individually (Garousi 6) (Conde 6).

5. Add coursework in which students can learn from people in industry and not just

from professors.

 14

6. Allow students to have more freedom in their curriculum and the coursework

which they take. Make curricula less rigid.

7. Offer more specifications in the curriculum and tracks for students.

a. Examples for Computer Science

i. Cybersecurity

ii. Web Development

iii. Information Systems

iv. Artificial Intelligence

Conclusion

This research digs into the question of why the gap between engineering education and

engineering practice has become so large, and what measures can be taken to address it. It goes

into the specifics of this issue as it relates to the traditional computer science curriculum, its

mapping to the software engineering industry, and how it can be solved at universities.

Specifically, this research generated a new understanding of how computer science can

be taught in university settings which would allow it to better track into industry while still

allowing for universities to achieve their fundamental mission of providing students with a deep,

theoretical knowledge of the subject. The new understanding was generated based upon prior

research done on the computer science curriculum and software engineering industry and a

unique look into how trade schools operate with the fundamental intent of providing graduates

with opportunities for immediate employment. This research looked at what elements of a trade

school education could be translated into the university environment successfully without

comprising the mission of universities.

 15

This new understanding was the basis for the deliverable of this research ± the outline for

change ± discussed in the previous section. The outline provides numerous clear, action items

which universities could implement that would significantly lessen the gap between what

knowledge computer science students graduate with in comparison to what they are expected to

know entering the software engineering industry. The outline also only suggests changes which

would not change the parts of the curricXOXP�ZKLFK�DFKLHYH�WKH�XQLYHUVLW\¶V�FRUH�PLVVLRQ�RI�

providing students with deep, theoretical knowledge. It simply suggests the incorporation of

some aspects of a trade school education along with other suggestions ± based on research into

the computer science curriculum and software engineering industry ± that would allow the

curriculum to better prepare students for industry.

Although this research had a specific focus on computer science, much of the research

done and proposals suggested can be translated to other fields in engineering in which there are

similar disparities between industry and education. Using this research as a template, researchers

can look to close the gap between engineering education and engineering practice on a grander

scale and allow for engineers to graduate and better achieve their goals of producing meaningful

change using their technical abilities.

 16

References

$NWHU��6���0F&DUWK\��*���6DMLE��6���0LFKDHO��.���'ZLYHGL��<��.���'¶$PEUD��-���	�6KHQ��.��1��

(2021). Algorithmic bias in data-driven innovation in the age of ai. International Journal

of Information Management, 60, 102387.

https://doi.org/10.1016/j.ijinfomgt.2021.102387

Bachelor of Science in Computer Science (BSCS ...

https://engineering.virginia.edu/sites/default/files/common/departments/computer-

science/files/2-%20BSCS%20Info%20and%20Curriculum%202017%20ws.pdf.

Boer, R. de. (2019, September 17). Understanding the role of AI bias in Healthcare. Artificial

Intelligence in Healthcare & Radiology. Retrieved November 1, 2021, from

https://www.quantib.com/blog/understanding-the-role-of-ai-bias-in-healthcare.

Brendel, A. B., Mirbabaie, M., Lembcke, T.-B., & Hofeditz, L. (2021). Ethical Management of

Artificial Intelligence. Sustainability, 13(4), 1974. https://doi.org/10.3390/su13041974

³&DUHHU�DQG�6DODU\�RI�6RIWZDUH�(QJLQHHU�´�&RGH�D�1HZ�&DUHHU�_�&RPSXWHU6FLHQFH�RUJ��21 Mar.

2022, https://www.computerscience.org/software-engineering/careers/software-

engineer/career-and-salary-outlook/.

Conde, JavLHU��HW�DO��³%ULGJLQJ�WKH�*DS�EHWZHHQ�$FDGHPLD�DQG�,QGXVWU\�WKURXJK�6WXGHQWV¶�

Contributions to the FIWARE European Open-6RXUFH�,QLWLDWLYH��$�3LORW�6WXG\�´�

Electronics, vol. 10, no. 13, June 2021, p. 1523. Crossref,

https://doi.org/10.3390/electronics10131523.

Chao, C. (2019). Ethics Issues in Artificial Intelligence. 2019 International Conference on

Technologies and Applications of Artificial Intelligence (TAAI), 1-6.

https://doi.org/10.1016/j.ijinfomgt.2021.102387
https://engineering.virginia.edu/sites/default/files/common/departments/computer-science/files/2-%20BSCS%20Info%20and%20Curriculum%202017%20ws.pdf
https://engineering.virginia.edu/sites/default/files/common/departments/computer-science/files/2-%20BSCS%20Info%20and%20Curriculum%202017%20ws.pdf
https://www.quantib.com/blog/understanding-the-role-of-ai-bias-in-healthcare
https://doi.org/10.3390/su13041974
https://www.computerscience.org/software-engineering/careers/software-engineer/career-and-salary-outlook/
https://www.computerscience.org/software-engineering/careers/software-engineer/career-and-salary-outlook/

 17

*DURXVL��9DKLG��HW�DO��³&ORVLQJ�WKH�*DS�EHWZHHQ�6RIWZDUH�(QJLQHHULQJ�(GXFDWLRQ�DQG�,QGXVWUial

1HHGV�´�,(((�6RIWZDUH��YRO������QR�����������SS����±77.,

https://doi.org/10.1109/ms.2018.2880823.

Geels, F.W. 2011. The multi-level perspective on sustainability transitions: Responses to seven

criticisms. Environmental Innovation and Societal Transitions. 1, 1 (2011), 24±40.

Home: https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-

computing-programs-2021-2022/. Accessed: 2022-03-23.

Johnson, G.M. (2020). Algorithmic bias: on the implicit biases of social technology. Synthese,

198, 9941-9961.

Kose, U., & Vasant, P.M. (2017). Fading intelligence theory: A theory on keeping artificial

intelligence safety for the future. 2017 International Artificial Intelligence and Data

Processing Symposium (IDAP), 1-5.

Köse, U. (2018). Are We Safe Enough in the Future of Artificial Intelligence? A Discussion on

Machine Ethics and Artificial Intelligence Safety. BRAIN. Broad Research In Artificial

Intelligence And Neuroscience, 9(2), pp. 184-197.

Li, X., & Zhang, T. (2017). An exploration on artificial intelligence application: From security,

privacy and ethic perspective. 2017 IEEE 2nd International Conference on Cloud

Computing and Big Data Analysis (ICCCBDA), 416-420.

0D\��(OL]DEHWK��DQG�'DYLG�6��6WURQJ��³,V�(QJLQHHULQJ�(GXFDWLRQ�'HOLYHULQg What Industry

5HTXLUHV�´�3URFHHGLQJV�RI�WKH�&DQDGLDQ�(QJLQHHULQJ�(GXFDWLRQ�$VVRFLDWLRQ��&(($���

2011, https://doi.org/10.24908/pceea.v0i0.3849.

 ³2XU�0LVVLRQ��9LVLRQ�DQG�&RUH�9DOXHV�´�8QLYHUVLW\�RI�9LUJLQLD�6FKRRO�RI�(QJLQHHULQJ�DQG�

Applied Science, 9 Nov. 2021, https://engineering.virginia.edu/about/mission-

 18

vision#:~:text=Our%20mission%20is%20to%20make,leaders%20to%20solve%20global

%20challenges.

Ostrowski, D. (2018). Artificial Intelligence with Big Data. 2018 First International Conference

on Artificial Intelligence for Industries (AI4I), 125-126.

3UHVV��,//8675$7,21��$VVRFLDWHG��³&RPSXWHU�3URJUDPPLQJ�,V�D�7UDGH��/HW
V�$FW�OLNH�,W�´�7KH�

Wall Street Journal, Dow Jones & Company, 4 Aug. 2014,

https://www.wsj.com/articles/computer-programming-is-a-trade-lets-act-like-it-

1407109947.

Rogozea, L. (2009). Towards ethical aspects on artificial intelligence. Smith, J. (2019).

COMPUTATIONAL THINKING WITHOUT ALGORITHMIC BIAS. ICERI2019

Proceedings.

6FKLOOLQJ��-DQ��DQG�5DOI�.ODPPD��³7KH�'LIILFXOW�%ULGJH�EHWZHHQ�8Qiversity and Industry: A Case

6WXG\�LQ�&RPSXWHU�6FLHQFH�7HDFKLQJ�´�$VVHVVPHQW�	DPS��(YDOXDWLRQ�LQ�+LJKHU�

Education, vol. 35, no. 4, 2010, pp. 367±380.,

https://doi.org/10.1080/02602930902795893.

StuXUPDQ��6\OYLD��HW�DO��³5HVHDUFK�3ODQ��6RIWZDUH�4XDOLW\�LQ�(GXFDWLRQ�´�

https://research.sylviastuurman.nl/.

Sun, W., Nasraoui, O., & Shafto, P. (2020). Evolution and impact of bias in human and machine

learning algorithm interaction. PLOS ONE, 15(8).

https://doi.org/10.1371/journal.pone.0235502

:LHJHUV��.DUO��³%XLOGLQJ�D�+HDOWK\�6RIWZDUH�(QJLQHHULQJ�&XOWXUH�´�0HGLXP��7KH�6WDUWXS�����

Sept. 2021, https://medium.com/swlh/building-a-healthy-software-engineering-culture-

59183b93389d.

https://doi.org/10.1080/02602930902795893
https://doi.org/10.1371/journal.pone.0235502
https://medium.com/swlh/building-a-healthy-software-engineering-culture-59183b93389d
https://medium.com/swlh/building-a-healthy-software-engineering-culture-59183b93389d

 19

³:KDW�,V�$JLOH�0HWKRGRORJ\"�%HQHILWV�RI�8VLQJ�$JLOH�´�1YLVLD��

https://www.nvisia.com/insights/agile-methodology.

https://www.nvisia.com/insights/agile-methodology

The Case for Ethical Artificial intelligence with Minimal Bias

Closing the Gap between Engineering Education and Engineering Practice

A Thesis Prospectus
In STS 4500
Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia
In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By
Rohit Batra

November 1, 2021

On my honor as a University student, I have neither given nor received unauthorized aid
on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISORS

Kathryn A. Neeley, Department of Engineering and Society

Daniel Graham, Department of Computer Science

The issues with Artificial Intelligence and their sources:

Bias is defined as a prejudice or tendency to believe towards or against something in a

way which is often unfair. With the vast amounts of different opinions and social cultures present

LQ�WRGD\¶V�ZRUOG��LW�LV�Whe case that bias is unavoidable and something which must be dealt with,

and biases have been handled over time as our cultures continue to develop and advance socially.

However, with the advancement of technology and development of intelligence systems ±

systems designed to mimic human intelligence ± it has also become inevitable that biases will

develop in those intelligent systems. These biases present in the intelligent systems have been

coined algorithmic biases, and they contribute and lead to the creation of unethical systems of

artificial intelligence.

Though, these biases are a major problem going forward in the development of artificial

intelligence and machine learning systems, there are also other problems which have mistakenly

been grouped together into this issue of bias. Some of these issues are a lack of privacy and

security regarding user data and a misunderstanding of what these systems do from the point of

view of the general public.

 However, in contrast to the social systems humans have in place to keep these biases in

check, these intelligent systems being developed currently have no systems in place to regulate

the biases which they may form, and this could present a dangerous threat if it continues to

progress without regulations and checks in place. With the rise of consumer technology and

collection of consumer data, along with the advancement of artificial intelligence, this presents

an especially dire concern which must be addressed. A failure to take action and bring attention

to this issue will result in dangerous biases developing in systems of artificial intelligence, and

they will fail to serve their desired purpose of aiding society. A portion of this paper will discuss

potential solutions to this issue involving implementing standardized, methodical ways to

develop artificial intelligence and collect user data in a way such that limits biases from forming

in the first place, and also discussing ways to eliminate the biases already present in the large

scale artificial intelligence systems in place today.

 Another portion of this paper will discuss the main source of these issues: the growing

disparity between an engineering education and engineering practice. In this paper, Engineering

Practice will be defined as the ongoing and fruitful pursuit of technical knowledge for the

betterment of society as a whole. The technical portion of this paper will discuss this definition

of engineering practice, and it will also dive into a more specific subset of engineering practice

and engineering education which is software engineering and computer science and how they

differ in ways which they should not.

Looking at Bias, Security, and Privacy in Relation to the Growing Use of Consumer Data

for Artificial Intelligence and Machine Learning:

 Capitalistic companies have one primary motive: to make a profit. Generally, in well-

regulated industries, these companies can be kept in check and be forced to act ethically despite

it not always being in the best interest of trying to make a profit. However, with the rapid pace of

innovation in the technology industry, regulation has failed to keep up, and this has allowed for

the key players in the industry to pursue profit in ways which do not keep the consumers' safety

in mind. The key companies in the industry such as Google and Facebook have had full reign

over what they can produce. Although a lack of pace in terms of regulation keeping up has been

an issue in other industries as well, the destabilizing condition when it comes to artificial

intelligence and machine learning which makes this issue so dire is the growing use of these

products in consumer settings and the massive potential for harm which they have in such

settings.

 Specifically, a key socio-technical issue which has resulted from this lack of regulation is

a conflict between users and companies when it comes to the collection of their data (Brendel 5).

Most consumers are unaware of the fact that their data is being collected in mass and being used

to develop artificial intelligence systems which may operate in unethical ways. This has resulted

in an immense distrust between most consumers and the large technology companies who are

creating these artificial intelligence systems. Consumers have no idea what their data is being

used for, how their privacy is being invaded, or even where their data is going and the security of

it.

Moreover, due to the lack of regulation, companies have no incentive to filter or even

check the user data which they are collecting. This has led to a system in which the companies

collected biased data and use the biased data to develop systems of artificial intelligence which

leads to AIs with unethical biases. It is fairly evident that this is a cyclic system, and without

intervention, algorithmic biases will only continue to worsen.

Source & Cyclic Nature of Algorithmic Bias

 This figure provides a clear illustration showing the flaw in the current system (Sun).

 Although these issues do not pose an imminent threat as of right now, there is much

evidence to showcase that if companies continue to operate and develop AIs in such respects,

they have the potential to be very dangerous. As they continue to advance and do more and

become more intelligent, the inherent biases which they have will only get more dangerous as

there will be more avenues for them to be acted upon (Brendel 1). At the current moment, AI

cannot and does not do all that much, but many of these companies have wide-eyed aspirations

for the AIs which they are working on, so it is paramount that a systematic way to develop AIs

without biases and AIs which can reason about any biases which they do develop is put into

place.

&RYHUDJH�%LDV�DQG�LWV¶�DIIHFWV�LQ�WKH�UHDO�ZRUOG

 This figure provides a more specific example and shows a specific consequence of

algorithm bias in the healthcare industry (Boer).

 My research will attempt to resolve these issues from a sociotechnical standpoint by

outlining a way in which trust can be established between companies and consumers regarding

the collection of their data and a way in which data can be collected and filtered such that it

prevents biased AIs from developing in the first place. My research will also look at a

comparison of solutions involving minimizing bias, solutions involving eliminating bias, and

solutions involving compensating for bias and try to determine which is the most effective.

Furthermore, one of the key causes of this issue in the first place is a lack of ethical and

sufficiently educated engineers. The deliverable of my STS research will be a comparison of the

different solutions and their efficiencies and efficacies regarding achieving ethical artificial

intelligence and machine learning. Moreover, if the average engineer at one of the companies

developing these systems was able to reason about the negative outcomes more thoughtfully,

they would be able to prevent many of these issues in the first place. However, due to the

disparity between an engineering education and what is required in the workplace, this check has

failed in recent times. The technical portion of my paper will address this further.

The Disparity Between Computer Science (Engineering Education) and Software

Engineering (Engineering Practice) ± Bridging the Gap:

 Over the years as the engineering industry has experience rapid growth, the disparity

between what engineers need to know for the job and what engineers come out of school

knowing has becoming increasingly apparent. This portion of the paper will discuss this issue in

specific as it relates to the disparity between a traditional Computer Science education and what

the Software Engineering industry demands of Computer Science graduates who enter industry.

The destabilizing condition which makes this issue so important at this time is increasing

use of commercial software along with the lack of sufficiently educated engineers resulting in

inefficient, insecure, and insufficient software products. This can be seen very clearly in the case

described earlier of unethical artificial intelligence and machine learning systems. A sufficient

supply of ethical, talented, and properly-educated engineers who methodically develop software

could have prevented many of the issues described.

However, that is only one case in which the disparity is evident, and it is not the root

cause of the issue. In my experience, there are a few key differences which I believe, if

corrected, would be beneficial to the software industry as a whole. Though, all of these

differences will involve a reevaluation of what the purpose of an engineering education is and

how it differs from the purpose of a traditional liberal arts education.

One of the main differences which I experienced personally with my internship

experience is the focus on theory in the educational environment and the lack of adequate

exposure to applicable workplace practices. There are a plethora of courses available on

theoretical concepts, however, if a student wants to learn about relevant and modern day

software engineering practices, there are only a handful of courses available. I believe this needs

to change in the engineering curriculum. Students should be able to enter the industry with a

sufficient understanding of what will be required of them to be a valuable employee for the

company from day 1. I experienced this personally in my internship in the software engineering

industry when I was given no hand-holding with many of the tools which are used in the

industry-standard today such as Git ± I had to learn all of these things on the fly as I was

completing my project which I thought was very difficult. I believe that if this change can be

implemented into many of the engineering curriculums, it will benefit engineers who are looking

to enter industry as they will be more well-equipped for what will be required of them.

Another key difference between a typical computer science curriculum and software

engineering is the speed and way in which projects are completed. In the academic environment,

projects or assignments typically have one strict deadline and must be submitted in full at that

deadline. This differs from the common practice in industry where things are done in an Agile

way. The Agile methodology is a practice which was put into place in the software engineering

industry in which software is developed in a periodical and cyclic way. In my personal

experience, it was difficult to adapt to this method coming from the academic environment

where I was able to commonly crank out assignments rapidly when the due date was

approaching. With the Agile method, I had to learn how to build software in a feature by feature

manner in a way such that it could be constantly and consistently iterated on.

Both of these differences are things which should be addressed in the Computer Science

curriculum to sufficiently prepare graduates to enter industry, however, they also showcase the

larger problem as a whole ± how an engineering education does not sufficiently prepare

graduates for industry. I will attempt to address this problem with my technical research.

My technical research will involve researching the origins of engineering education,

reevaluating its applicability in toGD\¶V�ZRUOG��DQG�FRPLQJ�XS�ZLWK�D�GHWHUPLQLVWLF�ZD\�LQ�ZKLFK�

engineering educations can be improved worldwide to better prepare graduates who are looking

to enter industry. My deliverable will be an outline of key changes which can be implemented to

engineering curriculums at a large scale that will allow for graduates to be better prepared to

enter industry.

Looking at Solutions:

 In an attempt to solve these issues, my research will have two key deliverables. The

anticipated deliverable of my technical work will be an outline which contains key changes

which can be implemented to standard engineering educations which are in place today that will

allow for engineers to be better suited to enter the workforce and industry. The anticipated

deliverable of my sociotechnical research will be an outline of how trust can be established

between consumers and companies regarding data collection, and also a comparison of different

solutions regarding the removal of bias from artificial intelligence and machine learning. These

solutions will allow engineers to come away with a better understanding of the societal impact of

the work which they are doing ± both positive and negative aspects ± and also a better

understanding of what they can do from a technical aspect to prevent the negative societal

impacts of their work. The deliverables will allow for educational professionals to look at some

changes which they could make to engineering curriculums which would benefit engineering

practice as a whole, and they will also allow for engineers to learn a better way of going about

the development of AIs and collection of user data which will in turn prevent unethical and

biased AIs from coming about.

References

Akter, S., McCarthy, G., Sajib, S., Michael, K., 'ZLYHGL��<��.���'¶$PEUD��-���	�6KHQ��.��1�

(2021). Algorithmic bias in data-driven innovation in the age of ai. International Journal

of Information Management, 60, 102387.

https://doi.org/10.1016/j.ijinfomgt.2021.102387

Boer, R. de. (2019, September 17). Understanding the role of AI bias in Healthcare. Artificial

Intelligence in Healthcare & Radiology. Retrieved November 1, 2021, from

https://www.quantib.com/blog/understanding-the-role-of-ai-bias-in-healthcare.

Brendel, A. B., Mirbabaie, M., Lembcke, T.-B., & Hofeditz, L. (2021). Ethical Management of

Artificial Intelligence. Sustainability, 13(4), 1974. https://doi.org/10.3390/su13041974

Chao, C. (2019). Ethics Issues in Artificial Intelligence. 2019 International Conference on

Technologies and Applications of Artificial Intelligence (TAAI), 1-6.

Johnson, G.M. (2020). Algorithmic bias: on the implicit biases of social technology. Synthese,

198, 9941-9961.

Kose, U., & Vasant, P.M. (2017). Fading intelligence theory: A theory on keeping artificial

intelligence safety for the future. 2017 International Artificial Intelligence and Data

Processing Symposium (IDAP), 1-5.

Köse, U. (2018). Are We Safe Enough in the Future of Artificial Intelligence? A Discussion on

Machine Ethics and Artificial Intelligence Safety. BRAIN. Broad Research In Artificial

Intelligence And Neuroscience, 9(2), pp. 184-197.

Li, X., & Zhang, T. (2017). An exploration on artificial intelligence application: From security,

https://doi.org/10.1016/j.ijinfomgt.2021.102387
https://www.quantib.com/blog/understanding-the-role-of-ai-bias-in-healthcare
https://doi.org/10.3390/su13041974

privacy and ethic perspective. 2017 IEEE 2nd International Conference on Cloud

Computing and Big Data Analysis (ICCCBDA), 416-420.

Ostrowski, D. (2018). Artificial Intelligence with Big Data. 2018 First International Conference

on Artificial Intelligence for Industries (AI4I), 125-126.

Rogozea, L. (2009). Towards ethical aspects on artificial intelligence.

Smith, J. (2019). COMPUTATIONAL THINKING WITHOUT ALGORITHMIC BIAS.

ICERI2019 Proceedings.

Sun, W., Nasraoui, O., & Shafto, P. (2020). Evolution and impact of bias in human and machine

learning algorithm interaction. PLOS ONE, 15(8).

https://doi.org/10.1371/journal.pone.0235502

