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Abstract 

Coronary artery disease (CAD) is a major public health concern. According to a report from the AHA 

in 2020, an estimated 18.2 million adult Americans have CAD1. CAD is responsible for 1 in every 7 deaths in 

the United States2. Cardiac magnetic resonance (CMR) quantitative myocardial first-pass perfusion imaging is 

a non-invasive and non-ionizing technique for diagnosing CAD which provides an accurate assessment of 

myocardial ischemia and a comprehensive evaluation of myocardial function and infarction3–6. 

Despite multiple potential advantages of CMR perfusion imaging, current clinically available 

techniques have limited in-plane spatial resolution (~2-3 mm) and incomplete heart coverage, which impede the 

assessment of transmural perfusion differences and underestimate the extent of ischemia. Furthermore, motion-

induced dark-rim artifacts can significantly reduce image quality and limit evaluation of the sub-endocardium, 

which is most sensitive to myocardial ischemia7. Recently, studies from our lab have demonstrated CMR 

quantitative spiral perfusion techniques for both interleaved single-slice (SS) and simultaneous multi-slice (SMS) 

acquisitions enabling whole-heart coverage (6-8 slices) with high spatial resolution (2×2 mm2)8,9. Our lab has 

developed novel motion-compensated compressed-sensing (CS) L1-SPIRiT reconstruction techniques, that 

correct for breathing motion and enable free-breathing acquisition8. Sampling efficiency can also be improved 

by using outer-volume suppression (OVS) technique to achieve a reduced field-of-view (rFOV) so that the 

sampling in k-space can be coarser10. We have previously applied an OVS technique for single-shot spiral 

perfusion imaging and demonstrated that it produced superior image quality as compared with full-FOV 

acquisitions11. We have also developed a quantification pipeline for spiral perfusion imaging to quantify 

myocardial blood flow and myocardial perfusion reserve (MPR). High diagnostic accuracy of the proposed 

techniques has been demonstrated12–14. 

With higher spatial resolution, there is an increased ability to detect transmural perfusion differences 

between the epicardium and the endocardium, which could improve the ability to detecting obstructive CAD as 

demonstrated in prior studies15–18. Additionally, one significant barrier to clinical translation of these techniques 

is the need for off-line reconstruction and quantification which currently takes hours to complete, and thus cannot 

provide data to physician in a clinically acceptable time frame. Considering that greater than 10 million stress 
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tests are performed in the US alone, improvements in the accuracy of non-invasive assessment of CAD could 

significantly reduce health care costs resulting from incorrect diagnoses. In this dissertation, we propose to 

develop advanced rapid and high-resolution imaging techniques for first-pass myocardial perfusion with whole-

heart coverage. 

Specific Aim #1 is to develop high spatial resolution spiral first-pass myocardial perfusion imaging 

with whole-heart coverage at 3 T. (a) Optimize spiral perfusion pulse sequences for both SS and SMS 

acquisitions with or without OVS to address the higher undersampling factors required to achieve 1.25×1.25 

mm2 spatial resolution with high temporal resolution and whole-heart coverage. (b) Optimize the motion-

compensated L1-SPIRiT image reconstruction technique and develop the motion-compensated SMS-Slice-L1-

SPIRiT reconstruction technique that incorporates through-plane kernels for spiral SMS imaging that could 

reduce the slice leakage and improve image quality. (c) Evaluate image quality of the proposed technique in both 

healthy volunteers and patients undergoing clinically ordered CMR studies. 

Specific Aim #2 is to develop DEep learning-based rapid Spiral Image REconstruction (DESIRE) for 

high-resolution spiral first-pass myocardial perfusion imaging for both 3 T and 1.5 T. (a) Develop a DEep 

learning-based rapid Spiral Image REconstruction technique (DESIRE) for high-resolution spiral first-pass 

myocardial perfusion imaging for both SS and SMS MB=2 acquisitions with whole-heart coverage. (b) Assess 

the image reconstruction network performance with varying factors including data type, convolutional units, etc. 

(c) Validate the proposed technique in both healthy volunteers and patients as compared to the CS-based L1-

SPIRiT reconstructions. 

Specific Aim #3 is to develop quantitative perfusion imaging with Cartesian acquisition and compare 

it to spiral perfusion imaging. (a) Develop the 2D and SMS Cartesian perfusion sequence with Poisson-disc 

acquisition pattern along k-t dimension. (b) Apply the k-t based image reconstruction technique for this Cartesian 

acquisition. (c) Develop the deep learning-based rapid image reconstruction techniques for Cartesian 2D and 

SMS perfusion imaging. (d) Validate the proposed technique in both healthy volunteers and patients. 
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Chapter 1: Introduction 

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modality that provides excellent 

soft tissue contrast without using ionizing radiation. MRI can also be sensitive to many specific biological 

parameters, and it has been widely applied on many areas including measuring brain oxygen saturation level 

changes due to neurological activity, measuring the blood flow velocities, and measuring the temperature and 

metabolism activities. 

Since its invention more than forty years ago, significant research has been focused on improving its 

imaging speed and quality. Over the decades, fast imaging techniques such as non-Cartesian imaging, 

simultaneous multi-slice (SMS) imaging, accelerated imaging techniques such as parallel imaging (PI) and 

compressed sensing (CS) have been developed. Recently, deep learning techniques are also being developed to 

advance the image reconstruction and post processing of MRI. 

Coronary artery disease (CAD) is the presence of atherosclerotic plaques in the coronary arteries, and 

it is the most common type of heart disease in the United States (US). As the main death cause in the US, it is 

responsible for 1 in 7 deaths2. MRI, which is non-invasive and non-ionizing, can be utilized to diagnose CAD. 

Specifically, cardiac magnetic resonance (CMR) quantitative myocardial first-pass perfusion imaging is an 

emerging valuable tool to diagnose CAD. 

With the development of research over decades, the CMR perfusion imaging technique is able to provide 

an accurate assessment of myocardial ischemia and a comprehensive evaluation of myocardial function and 

infarction3–6. However, current clinically available techniques have limited in-plane spatial resolution (~2-3 mm) 

and incomplete heart coverage, which impede the assessment of transmural perfusion differences and 

underestimate the extent of ischemia. Furthermore, motion-induced dark-rim artifacts can significantly reduce 

image quality and limit evaluation of the sub-endocardium, which is most sensitive to myocardial ischemia7. 

Recent studies from our lab have demonstrated CMR quantitative spiral perfusion techniques for both single-

slice (SS) and SMS acquisitions enabling whole-heart coverage (6-8 slices) with high spatial resolution (2×2 

mm2)8,9. Also, our lab has developed novel motion-compensated CS L1-SPIRiT reconstruction techniques, that 
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correct for breathing motion and enable free-breathing acquisition8. Sampling efficiency can also be improved 

by using outer-volume suppression (OVS) technique to achieve a reduced field-of-view (rFOV) so that the 

sampling in k-space can be coarser10. We have previously applied an OVS technique for single-shot spiral 

perfusion imaging and demonstrated that it produced superior image quality as compared with full-FOV 

acquisitions11. We have also developed a quantification pipeline for spiral perfusion imaging to quantify 

myocardial blood flow and myocardial perfusion reserve (MPR). High diagnostic accuracy of the proposed 

techniques has been demonstrated12–14. 

With higher spatial resolution, there is an increased ability to detect transmural perfusion differences 

between the epicardium and the endocardium, which could improve the ability to detecting obstructive CAD as 

demonstrated in prior studies15–18. Additionally, one significant barrier to clinical translation of these techniques 

is the need for off-line reconstruction and quantification which currently takes hours to complete, and thus cannot 

provide data to physician in a clinically acceptable time frame. Considering that greater than 10 million stress 

tests are performed in the US alone, improvements in the accuracy of non-invasive assessment of CAD could 

significantly reduce health care costs resulting from incorrect diagnoses. 

This thesis aims to develop fast and high-resolution imaging techniques for CMR first-pass myocardial 

perfusion with whole-heart coverage, and it is organized as follows: 

Chapter 2: provides a background of MRI, CAD, imaging modalities used to diagnose CAD, and how 

CMR first-pass myocardial perfusion imaging can be utilized to diagnose CAD. Specifically, spiral imaging, 

accelerated imaging techniques including PI and CS, SMS imaging, CMR imaging protocols, CAD and its 

diagnosis will be covered. Additionally, to motivate Chapter 4, deep learning-based image reconstruction is also 

illustrated. 

In Chapter 3:, the high-resolution spiral perfusion imaging technique at 3 T is described. The proposed 

method utilized fast imaging techniques including SMS and/or OVS to provide high-resolution (1.25×1.25 mm2) 

imaging with adequate signal-to-noise (SNR). Detailed descriptions of pulse sequences, reconstruction methods 
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and post processing are illustrated. Specifically, for SMS imaging, a newly proposed CS-based image 

reconstruction method (i.e., spiral SMS-Slice-L1-SPIRiT) is described. 

In Chapter 4:, a DEep learning-based technique for Spiral perfusion Image Reconstruction (DESIRE) 

is described. The proposed technique aims to overcome the long off-line reconstruction times and provide a 

clinically acceptable rapid image reconstruction time (<1s inference time for a dynamic image series at each 

slice location) for both SS and SMS spiral perfusion imaging. The proposed technique was applied to high 

resolution spiral perfusion imaging at 3 T and extended to spiral perfusion imaging at 1.5 T as well. 

In Chapter 6:, a high-resolution Cartesian perfusion imaging at 3 T with deep learning-based rapid image 

reconstruction technique is proposed. As Cartesian perfusion techniques are most commonly deployed clinically, 

we also sought to evaluate the proposed CS, SMS, and deep-learning techniques for Cartesian high-resolution 

perfusion imaging for both single slice and SMS acquisitions with an MB factor of 2 using a 2D Poisson-Disc 

incoherent sampling pattern along temporal dimension. 

Chapter 6: summarizes the work of this dissertation and discusses several potential future directions 

including the deep learning-based rapid quantification analysis for spiral perfusion imaging, deep learning-based 

rapid spiral cine image reconstruction and analysis, 𝑇1 mapping with deep learning-based reconstruction and an 

on-line implementation of the proposed deep learning techniques, etc.  
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Chapter 2: Background 

The chapter aims to provide the readers with the relevant background about this thesis. Firstly, a brief 

introduction to MRI hardware and image acquisition will be described. To motivate following chapters, spiral 

imaging, accelerated imaging techniques including PI and CS, SMS imaging, and deep learning-based image 

reconstruction will be illustrated. CAD and the CMR quantitative myocardial first-pass perfusion imaging will 

be described to understand how MRI can be utilized to diagnose CAD. To better understand the innovation of 

this thesis, a brief overview of our lab’s previous work on spiral perfusion imaging is also covered. 

2.1 Magnetic Resonance Imaging 

Medical imaging modalities, such as X-ray, Ultrasound, CT, MRI, Positron Emission Tomography 

(PET) and Single Proton Emission Computed Tomography (SPECT), are non-invasive and able to detect 

anatomical or functional information from the human body. This information can help doctors determine a 

specific diagnosis and determine an appropriate treatment plan. 

Unlike other medical imaging modalities, MRI provides images with superior soft tissue contrast 

without ionizing radiation. Additionally, flexible imaging planes provided by MRI improves visualization of 

certain structures. Most importantly, MRI can be made to be sensitive to various physical and physiological 

related tissue properties, which could potentially be more sensitive and specific to the disease status, providing 

the possibilities of quantitative diagnosis19. Since its invention in 1973, MRI has become an important clinical 

diagnostic tool targeting many prevalent human diseases including stroke, cardiovascular disease, cancer, liver 

diseases, arthritis, etc. 

2.1.1 Imaging Hardware 

The key components of MRI are the interactions of the magnetization with three types of magnetic fields 

and the ability to measure these interactions. As noted by its name, magnetic fields are of importance for MRI. 

There are three types of magnetic fields utilized in MRI. 
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The Static 𝑩𝟎 Field 

Atoms with an odd number of protons or neutrons possess a nuclear spin angular momentum. 

Qualitatively, these nuclei can be visualized as spinning, charged spheres that give rise to a small magnetic 

moment. In the human body, which consists largely of water, hydrogen nuclei possess this spin behavior, and 

are the signal sources for conventional MR imaging. For different parts of body, hydrogen concentration and the 

local water environment differ. For example, the gray and white matter in the brain have different hydrogen 

concentration and local water environment, providing tremendously valuable soft tissue contrast for imaging20. 

In the absence of an external magnetic field, magnetic moments in the body are randomly oriented. In 

MRI, a static main magnetic field, denoted as 𝐵0, is always applied. There are two notable effects after applying 

a strong static magnetic field - 𝐵0. Firstly, a small fraction of the magnetic moments will align with the applied 

field. Secondly, once excited, the magnetic moments will process at the Larmor frequency. This frequency, 𝜔, 

is proportional to the applied field strength, i.e., 𝜔 = 𝛾𝐵0, where 𝛾 is the gyromagnetic ratio which is a constant 

for a given nucleus. For 𝐻1
1  which is the main signal source in human body, the 𝛾 is 42.58 𝑀𝐻𝑧/𝑇, which leads 

to a 𝜔 of 127.74 𝑀𝐻𝑧 and 63.87 𝑀𝐻𝑧 for 3 T and 1.5 T magnetic fields, respectively. 

 

Figure 2-1. The layout of the magnetic fields in MRI. Adapted from nationalmaglab.org. 

This static field points along the longitudinal direction and its strength determines the net magnetization 

and the resonance frequency as described above. Also, it is worth noting that the field homogeneity is very 

https://nationalmaglab.org/education/magnet-academy/learn-the-basics/stories/mri-a-guided-tour
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important for MR imaging. Inhomogeneity often results in image distortion artifacts. In most clinical scanners 

the field is generated using a superconducting magnet though some systems use permanent magnets or 

electromagnets. Across the MR industry, most scanners are 1.5 T or 3 T, however there are varying strengths 

below 1.5 T and more recently, up to 7 T. For CMR imaging, it is usually conducted at 1.5 T and 3 T scanners. 

Recently, research regarding low field imaging at 0.55 T is becoming popular due to their favorable physical 

properties, reduced costs, and increased accessibility to patients with implants21. 

Transverse Radiofrequency 𝑩𝟏 Field 

MRI can be considered as a two-phase experiment – excitation phase and acquisition phase. The 

excitation phase involves exciting magnetic moments away from their minimum energy state, and a 𝐵1 field is 

used to excite the magnetization from equilibrium by tipping it from the longitudinal direction to the transverse 

plane to produce a detectable signal. During the subsequent acquisition phase, the signal is detected via induction, 

encoded, and collected as the spins relax back to the minimum energy state20. 

During the excitation phase, a radiofrequency (RF) magnetic pulse 𝐵1, produced by coils tuned to the 

resonant frequency of the magnetic moment (i.e., Larmor frequency), is applied in the 𝑥‐ 𝑦 (transverse) plane22. 

This pulse will create a torque that rotates the magnetic moments away from their minimum energy state. More 

importantly, this pulse is programmable, and engineers can modify the pulse sequences to manipulate the states 

of spins, resulting in different imaging possibilities such as images with different contrast. 

During the acquisition phase, for 2D imaging, Faraday’s law of induction predicts the generation of an 

electromotive force (EMF) in properly oriented RF receiver coils because the spinning of the magnetic moments 

exists in transverse plane (i.e., 𝑥‐ 𝑦 plane). Thus, it is only the transverse component of the magnetization that 

contributes to the signal acquired23. In this way, this voltage is indeed the MR signal that is used for imaging, 

and the received signal is the cumulative contribution from all excited magnetization in the volume. It is also 

worth noting that, for many applications, the same set of coils are employed for both RF pulse transmission and 

data collection20. 
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Spatial Encoding Gradients 

With only the homogeneous 𝐵0 field present, the system does not contain any spatial information. The 

spatial distribution information comes from three additional fields that vary spatially, which is shown in the 

signal equation in the next section. 

Three gradient coils, 𝐺𝑥, 𝐺𝑦 and 𝐺𝑧 create a linear variation in the longitudinal magnetic field strength 

as a function of spatial position. For example, when 𝐺𝑥 is applied, the magnetic field will vary with position 𝑥: 

𝐵(𝑥)  =  𝐵0 + 𝐺𝑥𝑥. As a result, the resonance frequency of the magnetization will vary proportional to the 

gradient field. 

2.1.2 Image Acquisition 

The design of MRI acquisition methods is mainly about the development of the gradient waveforms that 

drive the MR system. These waveforms, along with the associated RF pulses used to produce the magnetization, 

are called a pulse sequence, which determine the way that MR scanner acquires images24. 

For 2D imaging, since the spatial localization is required only in the 𝑥 and 𝑦 directions, the received 

time signal from an excited plane can be expressed as23: 

 𝑠(𝑡) = ∫
𝑥

 ∫
𝑦

 𝑚(𝑥, 𝑦)𝑒−𝑖2𝜋[𝑘𝑥(𝑡)𝑥+𝑘𝑦(𝑡)𝑦] 𝑑𝑥𝑑𝑦 [2-1] 

where 𝑘𝑥(𝑡) =
𝛾

2𝜋
∫ 𝐺𝑥(𝜏)𝑑𝜏

𝑡

0
 and 𝑘𝑦(𝑡) =

𝛾

2𝜋
∫ 𝐺𝑦(𝜏)𝑑𝜏

𝑡

0
 are the time integrals of the gradient waveforms, and 

𝑚(𝑥, 𝑦) is the transvers nuclear magnetization distribution of interest. Ultimately, we wish to reconstruct an 

image 𝐼(𝑥, 𝑦) that most closely approximates 𝑚(𝑥, 𝑦). In general, 𝑚(𝑥, 𝑦) is a function of the nuclear magnetic 

resonance parameters 𝜌(𝑥, 𝑦) (density), 𝑇1(𝑥, 𝑦) (also known as the spin-lattice relaxation time, is a measure of 

how quickly the net magnetization vector recovers to its ground state in the direction of 𝐵0) and 𝑇2(𝑥, 𝑦) (also 

known as spin-spin relaxation time, refers to the progressive dephasing of spinning dipoles resulting in decay in 

the magnetization in the transverse plane). 



14 

 

 

Unlike optical imaging, the raw data collected by MRI scanner is the spatial frequency information 

rather than the image itself. The acquired MR signal fits the nature of Fourier transform (FT), and a Fourier 

transform relationship exists between the image space and the MR data space, usually referred to as k-space as 

illustrated in Figure 2-2. If the k-space data is collected following the Nyquist-Shannon sampling rule, the 

acquisition is referred to as a “fully-sampled” acquisition. In the fully sampled case, specified by the desired 

spatial resolution and the size of the field of view (FOV), a certain amount of data is distributed in the k-space 

with a certain density. If higher spatial resolution or larger FOV is desired without compromising the other 

imaging protocols, more k-space data must be collected, which leads to an increased acquisition time. 

 

Figure 2-2. The Fourier relationship between k-space and MR image. Example shows a short-axis cardiac image. 

In principle, a complete MR image can be reconstructed from a single acquisition by inverse Fourier 

transform using the k-space trajectory that covers the whole region of k-space. This is commonly done in 

applications such as brain imaging. However, for most applications like CMR imaging, this results in inadequate 

image resolution and excessive image artifacts since the data acquisition window is usually limited in each 

heartbeat. Also, the gradient system performance limitation such as the maximum gradient amplitude and the 

maximum slew rate (defined as the rate of change of the gradient) of the scanner, physiological constraints such 

as peripheral nerve stimulation (PNS) and specific absorption rate (SAR) from the patients limit the speed at 

which k-space can be traversed25. These effects could limit the total number of samples per acquisition. As a 
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result, most MR imaging methods use a sequence of acquisitions to acquire different segments of k-space. The 

data from this sequence of acquisitions is then used to reconstruct an image. 

2.1.3 k-space Sampling 

Before generation of the MR signal, k-space is just an array of blank cells awaiting the arrival of data. 

Although there is no direct correspondence between the location of a cell in k-space and location of a pixel in 

the image, different parts of k-space do correspond topologically to spatial frequencies in the MR image. Data 

near the center of k-space, where the energy of an image is mostly concentrated, corresponds to low spatial 

frequencies (i.e., general shapes and contours) while the data from the periphery corresponds to high-spatial 

frequencies (i.e., edges, details)25. 

As shown in equation [5-1[5-1, the integral of the 𝐺𝑥(𝑡) and 𝐺𝑦(𝑡) gradient waveforms are 𝑘𝑥(𝑡) and 

𝑘𝑦(𝑡) that determine which k-space point to fill in at each time point, resulting the trajectory in k-space. The 

encoding direction along 𝐺𝑥(𝑡) is usually called the frequency encoding direction, while the encoding direction 

along 𝐺𝑦(𝑡) is usually called the phase encoding direction. There is considerable freedom in designing the k-

space trajectory for each acquisition. Common 2D sampling trajectories are illustrated in Figure 2-3. 

 

Figure 2-3. Common 2D sampling trajectories. From left to right: Cartesian 2D, radial, and spiral. 

The classic way to sample the k-space is to acquire data using straight lines from a Cartesian grid, which 

is termed as ‘Cartesian sampling’. Most pulse sequences used in clinical imaging today are Cartesian sampling. 

With the Fourier transform relationship between k-space and image space, the reconstruction from Cartesian 

acquisitions is simply the inverse Fourier Transform. More importantly, Cartesian sampling can be robust to 
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many sources of system imperfections such as gradient imperfections19,25. Furthermore, when acquiring data at 

each line, the current hardware techniques allow the scanner to perform oversampling in the direction of phase 

encoding without affecting the total acquisition time. This oversampling in one direction can prevent the aliasing 

if the object is larger than FOV in that sampling direction. 

The sampling of k-space can also be conducted using a non-Cartesian approach. Since the energy of an 

image is mostly concentrated around the k-space center, non-Cartesian trajectories can be designed as variable 

density, where the center of the k-space is sampled more often than the outer part of the k-space. This variable 

density sampling maintains a relatively high sampling efficiency and makes the dataset more robust against 

motion/flow artifacts and undersampling artifacts19. Among all the non-Cartesian trajectories that have been 

used in MR imaging, radial and spiral trajectories are the two most common trajectories. 

The radial trajectory can be considered as rotated Cartesian lines, and it is inherently variable density 

because each line samples the center of the k-space. The first MR imaging proposed in 1973 utilized the radial 

sampling trajectory and Fourier central slice theorem to reconstruct the image26. This sampling pattern is 

valuable for clinical applications that require high temporal resolution such as cardiac imaging, time-resolved 

angiography, and perfusion imaging19. 

Compared to the radial trajectory, the spiral trajectory has a higher sampling efficiency and a larger 

flexibility in designing variable sampling density in k-space. The variable density is commonly designed as a 

linearly or quadratically decreasing function of the radius of the spiral arms. The first spiral images were 

published by Ahn et al27. Then, the spiral trajectory was proposed to increase the spatial and/or temporal 

resolution of coronary artery imaging and fluoroscopy28,29. It has also been used to reduce spatial side lobes in 

chemical shift imaging30 and to improve the spatial-temporal resolution for cardiac imaging such as cine 

imaging31, 𝑇1 mapping32 and perfusion imaging8,9,11,33,34. 

Non-Cartesian sampling approaches have many advantages over Cartesian acquisition methods such as 

reduced acquisition time, insensitivity to motion artifacts and undersampling artifacts. More importantly, the 

variable-density-sampled non-Cartesian trajectory can be designed in a way that can give rise to relatively 
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incoherent undersampling artifacts19, which is one of the three requirements for the compressed sensing 

algorithm introduced later. For this reason, the variable density sampling trajectory such as radial and spiral 

trajectory facilitates the application of compressed sensing in MR imaging to significantly reduce the scan time. 

However, non-Cartesian sampling also has disadvantages. Firstly, additional data gridding and density 

compensation are usually required to reconstruct images, which makes reconstruction more challenging and time 

consuming. Moreover, non-Cartesian trajectories are also sensitive to magnetic field inhomogeneity, gradient 

delays, signal decay and other source of the imperfections19. In Chapter 3:, a CS-based image reconstruction 

algorithm for spiral perfusion imaging is presented, which takes around an hour for an image series with fifty 

dynamic images at a slice location. 

There are other non-Cartesian trajectories such as the PROPELLER trajectory35 , rosette trajectory36, 

3D cone imaging37, FLORET38, Yarnball39, Seiffert spirals40, SPARKLING41, etc. Each non-Cartesian trajectory 

has specific properties that can be exploited to improve certain imaging applications. 

2.1.4 Accelerated Imaging Techniques 

Since the invention of MRI more than 40 years ago, the speed of MRI has improved dramatically while 

achieving high image quality. Specifically, for CMR imaging, fast imaging techniques are required to capture 

the relevant physiological changes such as cardiac motion, blood flow, or perfusion. 

In addition to improved MRI hardware systems, much of the speed is due to the application of efficient 

sampling strategies and data can be undersampled even below the Nyquist limit and un-sampled data could be 

recovered using the relationships brought by coil redundancy. This technique, termed as “parallel imaging (PI)”, 

can be conducted either at k-space or the reconstructed image space. Since the late 1990s, PI techniques such as 

SMASH42, SENSE43, GRAPPA44 and SPIRiT45 have been proposed to accelerate the imaging speed. Over the 

past three decades, parallel MRI has evolved rapidly, and it is implemented on most clinical MR scanners in use 

today. 

Compressed sensing (CS), unlike PI, implicitly compresses the data within the data acquisition process 

by obtaining fewer incoherent measurements. Images can be accurately reconstructed from these measurements 
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using non-linear reconstruction algorithms. The way data are acquired in MRI is compatible with the CS theory. 

The practical result of CS in the context of MRI is that MR images require much less data for reconstruction. 

Parallel Imaging 

Parallel imaging and conventional non-accelerated imaging share the common features of multiple 

receiver coils but process the received signal in a different way. In conventional MRI, we can combine data from 

each surface coil to produce a composite image of the brain at full FOV. This arrangement may provide improved 

SNR and spatial resolution compared to that obtainable from a single large head coil but produces no gain in 

speed. 

To shorten the imaging time, the number of phase encoding lines in PI is reduced. For speed to be 

doubled at constant resolution, only half of the lines of k-space are acquired. This strategy, however, violates the 

Nyquist sampling theorem and results in an insufficient number of spatial frequencies collected to adequately 

represent the imaged object, which leads to a reduced FOV, and aliasing (“wrapping-around” artifacts) is seen 

in the reconstructed image. The fundamental of PI is to “unfold” this “wrapping-around” artifacts using spatial 

information about the coils, and this can be conducted in both image space and k-space25. 

Parallel imaging techniques generally fall into two categories: those were reconstruction takes place in 

the image domain requiring an unfolding or inversion procedure and those that take place in k-space where 

calculation of missing data is performed prior to reconstruction. 

The typical PI conducted in the image domain is SENSitivity Encoding (SENSE)43. As shown in Figure 

2-4, during the pre-scan calibration step the scanner has calculated point-by-point sensitivities for each surface 

coil. For an MR signal arising from point 𝐴 in the patient, the sensitivities of coils 1 and 2 for detecting that 

signal will be denoted 𝑆1𝐴 and 𝑆2𝐴, respectively25. Similarly, the coil sensitivities for any other point 𝐵 are also 

known and will be denoted 𝑆1𝐵 and 𝑆2𝐵. 
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Figure 2-4. Illustration of the SENSE reconstruction method for a cardiac short-axis image with an undersampling 

factor of 2. 

When the data from each coil are reconstructed into images, “wrapping-around” artifact is present. Due 

to the insufficient sampling in the k-space. Each pixel (𝑃) in the 
1

2
-FOV images has a signal that is the sum of 

contributions from two points (𝐴 and 𝐵) in the subject. Denoting these pixel values from coils 1 and 2 by 𝑃1 and 

𝑃2, we have: 

 {
𝑃1 = 𝐴𝑆1𝐴 + 𝐵𝑆1𝐵

𝑃2 = 𝐴𝑆2𝐴 + 𝐵𝑆2𝐵
 

[2-2] 

Since the 𝑃1 , 𝑃2  and 𝑆1 , 𝑆2  are all known, the true signals (𝐴 and 𝐵) can be calculated by simple 

algebraic methods for solving 2 simultaneous equations with 2 unknowns. In the MR scanner, a similar process 

is performed for all data points in the image using a matrix inversion technique, but the idea is the same. 

On the other hand, k-space PI techniques operate on signal data within the complex frequency domain 

before it has been transformed into an image. The typical k-space based PI method is GeneRalized 

Autocalibrating Partially Parallel Acquisitions (GRAPPA)44. As shown in Figure 2-5, known data from the 
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autocalibration region (fully sampled k-space center) are used to calculate weighting factors for each coil. These 

weighting factors reflect how each coil distorts, smears, and displaces spatial frequencies within the full FOV k-

space data. Missing k-space points are estimated in an iterative fashion using these global weighting factors 

combined with local known data for each small region (usually referred to a kernel). Note that weighting factors 

and known data from all coils are used to estimate missing data for each coil. 

 

Figure 2-5. Illustration of the GRAPPA. Adapted from Questions and Answers in MRI Website. 

Notwithstanding these subtle distinctions, SENSE and GRAPPA are largely interchangeable for nearly 

all applications. The PI technique can also be applied on non-Cartesian imaging by tailoring the kernel shape for 

non-Cartesian GRAPPA46 or formulating the reconstruction problem as a general inverse problem with self-

consistency and/or data consistency45,47. 

Kernel-based iterative reconstruction method-SPIRiT45 could further extend the reconstruction to a 

more generalized fashion not limited to Cartesian acquisition: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

||𝐴𝑥 − 𝑦||2
2 + 𝜆||(𝐺 − 𝐼)𝑥||2

2 [2-3] 

where 𝑥 is the image(s) to be reconstructed, 𝑦 is the acquired k-space data, 𝐴 is the operator that maps the image 

data to the k-space data which can be Fourier transform or NUFFT48 operator for non-Cartesian acquisitions, 𝐺  

https://mriquestions.com/what-is-k-space.html#:~:text=k%2Dspace%20is%20an%20array,directly%20from%20the%20MR%20signal.
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is the SPIRiT operator matrix obtained from the calibration, and 𝜆 is the parameter balances the data fidelity 

term (first term) and self-consistency term (second term). The beauty in this formulation is that the calibration 

consistency is always applied to a Cartesian space, even though the acquired data may be non-Cartesian. The 

treatment of non-Cartesian sampling appears only in the data consistency term. This algorithm could be solved 

efficiently by iterative descent methods such as steepest descent or the much more efficient conjugate gradient 

algorithm. It is also worth noting that the SPIRiT operator could be performed on both image space and k-space, 

and the algorithm could be further extended with the sparsity term as described in the following section. 

Compressed Sensing 

Compressed sensing (CS) refers to a group of methods for accelerated MR data acquisition based on 

semi-random, incomplete sampling of k-space. The CS theory was introduced to MR imaging around 2007 by 

Lustig et al49 and has had a high impact to the field since then. To date, it is the most cited paper in the leading 

MRI technical journal Magnetic Resonance in Medicine (MRM). Using CS, unlike the other conventional fast 

imaging techniques such as parallel imaging, a high acceleration rate can be achieved with little or no cost of 

image quality. 

The CS theory is based on the fact that most natural images, including medical images, present 

redundant information which can be utilized to decrease the number of measurements without sacrificing the 

reconstruction quality. The CS approach requires that: (a) the desired image have a sparse representation in a 

known transform domain (i.e., is compressible), (b) the aliasing artifacts due to k-space undersampling be 

incoherent (noise like) in that transform domain, (c) a nonlinear reconstruction be used to enforce both sparsity 

of the image representation and consistency with the acquired data24. The data redundancy is represented as the 

concept of “sparsity” in the CS theory, which defines that a sparse data has a small amount of non-zero-value 

entries. A transform of the data can be used to “sparsify” the data, namely that transforming the data into certain 

domain, referred as the “sparsity domain”, where it presents sparsity. The transform is referred as the “sparsity 

transform”. The image reconstruction process to generate a final image is an iterative optimization process, and 
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it can be considered as a “denoising” process49. However, the utilization of CS-based reconstruction algorithm 

usually requires a relatively long reconstruction time and sometimes requires off-line processing. 

A CS-based general reconstruction problem can be formulated as: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

||𝐴𝑥 − 𝑦||2
2 + 𝜆||𝛹𝑥||1 [2-4] 

where 𝑥 is the image(s) to be reconstructed, 𝑦 is the acquired k-space data, 𝐴 is the operator that maps the image 

data to the k-space data, 𝛹  is the sparsifying operator on the image space, and 𝜆 is the parameter balances the 

data fidelity term (first term) and sparsity transform term (second term). 

Both the PI and CS reconstruction can be written as the optimization problem, providing the opportunity 

to combine these two techniques together to achieve higher acceleration for perfusion imaging by exploring the 

sparsity of dynamic images from multiple coils. For image-space PI, the coil sensitivity information can be 

incorporated into 𝐴, while for k-space PI a separate term can be incorporated denoting the self-consistency, 

leading to the development of L1-SPIRiT50. In this dissertation, we will reconstruct images using the L1-SPIRiT 

technique which is a combination of PI and CS. 

2.1.5 Deep learning-based MR Image Reconstruction 

Image acquisition can be significantly shortened with fast and advanced imaging techniques such as PI, 

CS and SMS. However, these advanced image reconstruction techniques rely on iterative algorithms such as 

non-linear conjugate gradient to recover the images which is time-consuming. As such, these reconstructions are 

typically performed off-line and do not provide rapid feedback to CMR technicians and physicians. Moreover, 

for the CS-based image reconstruction algorithm, the need for parameter tuning can be problematic. 

Thus, a faster image reconstruction technique instead of an iterative reconstruction, is essential to 

facilitate clinical translation especially for non-Cartesian imaging. Recently, convolutional neural networks 

(CNN) have been playing an important role for image denoising tasks in computer vision field. As for advanced 

CS-based MR image reconstruction, the reconstruction process could be considered as a denoising process where 
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non-linear iterative process is involved. CNN, which has the non-linear mapping property, could be inherently 

deployed for CS-based MR image reconstruction. 

As shown in Figure 2-6, with a pre-trained network, image reconstruction process is the feedforwarding 

process, which can be usually accomplished within a second, so that immediate feedbacks could be provided to 

doctors. Moreover, using deep CNN for CMR image reconstruction not only boosts reconstruction speed and 

simplifies parameter tuning, but also maintains high image quality. For non-Cartesian image reconstruction such 

as spiral imaging where the gridding processing is involved that further slows the reconstruction, the demand of 

fast reconstruction is more demanding. To date, recent advances in CMR image reconstruction using CNN51–64 

have been proposed, but most of the works were based on Cartesian imaging and the application of deep learning 

reconstruction for CMR spiral imaging and SMS imaging have been limited. 

 

Figure 2-6. The deep learning-based image reconstruction and processing workflow. A 3D U-Net based image 

reconstruction network is shown. 

The training for MR image reconstruction network can happen in image space and/or k-space. A 

straightforward data-driven network training process in image space is shown in Figure 2-6, which is supervised 
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learning, and the reference images are the CS-based image reconstructions. During the training process, the 

network parameters are updated with chain rule, to learn the mapping function from the undersampled images 

to the CS reconstructions. Ultimately, the network aims to generate results as close as the reference which could 

be reconstructions using CS or fully sampled images if possible. Therefore, this training can be considered as a 

regression process by minimizing the loss between network outputs and reference images. 

Alternatively, unrolled networks55,58,65–67 which decompose the iterative denoising and optimization 

process involved in CS reconstruction, take data fidelity as show in in Equation [2-4] into consideration, leading 

to the development of physics-driven image reconstruction. However, enforcing data fidelity is time consuming 

and memory consuming, which could be more severe for non-Cartesian imaging. The network could also be pre-

trained and data fidelity is enforced only in the inference stage instead of the training stage68. 

Except for training a large denoising network, the efficacy of nonlinearity for CNN could be utilized to 

calibrate the GRAPPA kernels, resulting in a better image reconstruction performance69. This GRAPPA-based 

kernels could be further extended to calibrate through-plane kernels for SMS imaging70. 

2.1.6 Simultaneous Multi-slice Imaging 

Simultaneous Multi-Slice (SMS) imaging employs complex RF-pulses together with parallel imaging 

coil arrays to acquire several sections along the 𝑧 axis simultaneously, leading to a significant reduction in image 

acquisition time. To take advantage of parallel imaging acceleration, SMS imaging uses coil encoding together 

with either gradient or RF encoding to resolve data along the slice-select (𝑧) axis. 

A slice selective complex 𝑅𝐹 pulse can be described as the product of two functions71: 

 𝑅𝐹(𝑡) = 𝐴(𝑡) × 𝑃(𝑡) [2-5] 

where 𝐴(𝑡)  is the standard complex 𝑅𝐹  waveform that in conjunction with the slice selective gradient 

determines the slice profile (e.g., a 𝑠𝑖𝑛𝑐  or hyperbolic secant), and 𝑃(𝑡) is an additional phase modulation 

function that determines the slice position (Δ𝜔) and its phase (𝜙) at TE=0 according to: 
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 𝑃(𝑡) = 𝑒𝑖Δ𝜔𝑡+𝜙 [2-6] 

The simplest way to obtain SMS excitation is to sum multiple RF waveforms with different 𝑃(𝑡) resulting in a 

multiband pulse that excites the desired slices in the presence of a common slice selective gradient. 𝑁 arbitrary 

waveforms at arbitrary slice positions can be added up by complex summation to form a multiband pulse, as 

long as each pulse individually is consistent with the chosen slice selection gradient: 

 𝑅𝐹𝑀𝐵(𝑡) = 𝐴(𝑡) × ∑ 𝑒𝑖Δ𝜔𝑛𝑡+𝜙𝑛

𝑁

 
[2-7] 

Design of SMS imaging pulses can also be challenging. As the number of simultaneous slices increases, 

the peak amplitude of the RF amplifier may be exceeded, and total pulse power may surpass specific absorption 

rate (SAR) limitations71. 

As shown in Figure 2-7, with single-slice acquisition, it is hard to achieve whole-heart coverage 

acquisition when the R-R interval in each heartbeat is short due to the increased heart rate. However, two or 

more slices could be acquired simultaneously by applying the phase modulation on the specific spiral interleaves 

used in SMS imaging. Typical phase modulation patterns are Hadamard72 and CAIPIRINHA73. 
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Figure 2-7. The single-slice and SMS acquisition. The Hadamard phase modulation pattern is applied on the 

specific spiral arms for SMS imaging with an acceleration factor of 2. 

Unlike standard PI acceleration techniques, SMS acceleration results in little to no penalty in SNR. This 

is because neither the echo train length, number of phase-encoding steps, nor number of k-space samples has 

been reduced as occurs in conventional PI acceleration methods. Eddy currents due to rapid gradient switching 

may still create Nyquist-like ghosts that affect SMS images. Another artifact resulting in decreased imaging 

quality in SMS imaging is known as residual aliasing or slice leakage. 



27 

 

 

 

Figure 2-8. The SMS spiral perfusion imaging with an acceleration factor of 2 (i.e., two slices are acquired at the 

same time). 

To recover image content at each slice location, phase demodulation and blocking the slice leakage from 

the interfering slice are necessary74. As illustrated in Figure 2-8, the phase-modulated image is the acquired data, 

and the image reconstruction is to recover the image content at each slice location with the slice leakage from 

the interfering slice as little as possible. However, with large amount of data rapidly acquired for cardiac dynamic 

imaging such as perfusion imaging, computation demand is high and image reconstruction time could be long. 

2.1.7 Cardiac Magnetic Resonance Imaging Techniques 

MRI provides excellent soft tissue contrast with no ionizing radiation exposure, which makes it well 

suited for cardiac imaging. Tremendous efforts have been made and have proven that CMR imaging can provide 

accurate assessment of cardiac morphology, function, perfusion, and myocardial viability. 

Anatomic images of the heart and great vessels are a standard part of nearly every CMR examination. 

Such views are essential in patients with complex congenital malformations. In addition to conventional (axial, 

coronal, or sagittal views), several special oblique planes of imaging are routinely obtained for most cardiac 

studies. These may include long axis, short axis, and views of the valves, coronary arteries, and great vessels. 
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Figure 2-9. Different views for cardiac MR images. 

Two types of sequences are commonly used for morphologic imaging - dark blood and bright blood. 

Both are typically performed at multiple slice locations during diastole, producing a stack of images covering 

the relevant anatomy in 5-6 mm sections. Dark blood sequences utilize inversion recovery (IR) preparation 

pulses to null the signal from blood alone or from both blood and fat. Bright blood sequences are typically based 

on balanced Steady-State Free Precession (bSSFP) methods, which reflect the relatively high 𝑇2/𝑇1 ratio of 

blood25. 

SSFP-based bright-blood images of the beating heart are essential for displaying cardiac function. The 

motion of the ventricular walls during systole and diastole is of interest, which can be assessed qualitatively and 

quantitatively. Additional information about valve function is also possible. The turbulence created by valvular 

stenosis or insufficiency creates loss of signal in the bright blood which is related to its severity25. 

Cine studies are obtained by repeatedly imaging the heart at a single slice location throughout the cardiac 

cycle. Between 16 and 32 cardiac phases are usually sampled and displayed in a movie loop. Data collection 

takes place over multiple cardiac cycles using retrospective ECG-gating and breath-holding. In sick or 

uncooperative patients who have incapability of breath-holding, real-time cine images may be obtained in just a 

few seconds without breath-holding but suffer from decreased spatial and temporal resolution. 
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A typical left ventricular (LV) function study begins with single-slice cine images in two-chamber, 

three-chamber, and four-chamber views (Figure 2-9). This is followed by a stack of short-axis cine of eight to 

twelve slices perpendicular to the long axis of the LV spanning from the mitral valve to the apex throughout the 

cardiac cycle. These are usually obtained in multiple breath-holds with retrospective gating. 

Total LV volumes are calculated by multiplying the cross-sectional areas in each short-axis slice by the 

slice thickness plus inter-slice gap (Simpson's rule). Global ventricular functional parameters generated by this 

process include75: 

• End diastolic volume (EDV), largest volume of ventricular cavity during diastole (relaxation) 

• End systolic volume (ESV), smallest volume of ventricular cavity during contraction (systole) 

• Stroke volume (SV) = EDV−ESV, volume of blood displaced in a single heartbeat 

• Ejection fraction (EF) = SV/EDV, percentage of blood displaced in a single heartbeat 

• Cardiac output (CO) = SV × heart rate (beats per minute), total volume of blood displaced in a 

minute 

• Cardiac index (CI) = CO / body surface area, cardiac output normalized to body surface area 

Myocardial viability is assessed using gadolinium-enhanced imaging. The standard methods utilize 

segmented, 𝑇1-weighted, inversion-prepared fast gradient echo sequences. The inversion time (TI) is chosen to 

null signal from myocardium, typically in the range of 300-350 ms at 1.5 T 8-10 minutes after contrast injection. 

Delayed enhancement, also called late gadolinium-enhanced imaging (LGE), is characteristic of subacute 

myocardial infarction, but also several other diseases75. 

Measurement of myocardial 𝑇1  times (𝑇1  mapping) with Look-locker inversion recovery–prepared 

sequences may depict diffuse myocardial fibrosis and has good correlation with ex-vivo fibrosis content. 𝑇1 

mapping calculates myocardial 𝑇1 relaxation times with image-based signal intensities and may be performed 

with standard cardiac MR imagers and radiologic workstations. The most two common 𝑇1 mapping techniques 

are MOLLI76 and SASHA77. Myocardium with diffuse fibrosis has greater retention of contrast material, 

resulting in 𝑇1 times that are shorter than those in normal myocardium. Estimation of the extracellular volume 
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(ECV), which is a marker of myocardial tissue remodeling and provides a physiologically intuitive unit of 

measurement, requires measurement of myocardial and blood 𝑇1 before and after administration of contrast 

agents as well as the patient’s haematocrit value according to the formula75: 

 𝐸𝐶𝑉 = (1 − haematocrit) 

1
𝑝𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑚𝑦𝑜 𝑇1

− 
1

𝑛𝑎𝑡𝑖𝑣𝑒 𝑚𝑦𝑜 𝑇1

1
𝑝𝑜𝑠𝑡 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑏𝑙𝑜𝑜𝑑 𝑇1

− 
1

𝑛𝑎𝑡𝑖𝑣𝑒 𝑏𝑙𝑜𝑜𝑑 𝑇1

 [2-8] 

2.2 Coronary Artery Disease 

Coronary arteries are the blood vessels that supply oxygen-rich blood to the heart muscle to keep it 

pumping75. The coronary arteries are on the epicardial surface of the heart. Myocardial blood flow is tightly 

coupled to oxygen demand. In non-diseased coronary vessels, whenever cardiac activity and oxygen 

consumption increases, there is an increase in blood flow that is nearly proportionate to the increase in oxygen 

consumption75. 

Coronary artery disease (CAD) is a narrowing or blockage of the coronary arteries usually caused by 

the buildup of fatty material called plaque in the wall of the vessel75. CAD is the most common type of heart 

Plaque is made up of cholesterol deposits. As shown in Figure 2-10, plaque buildup causes the inside of the 

arteries to narrow over time. This process is called atherosclerosis. 

 

Figure 2-10. Coronary artery disease. Adapted from CDC website. 

Obesity, physical inactivity, unhealthy eating, and smoking tobacco are risk factors for CAD. A family 

history of heart disease also increases the risk for CAD, especially a family history of having heart disease at an 

early age (50 or younger)75. 

https://www.cdc.gov/heartdisease/coronary_ad.htm
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In the US alone, CAD is responsible for 1 in every 7 deaths2. It is estimated that in the U.S. 18.2 million 

people have CAD1 and 8.2 million suffer from angina pectoris with an expected 18% increase in the prevalence 

of CAD by 20302. In terms of the economic impact, CAD was one of 10 most expensive hospital discharge 

diagnoses, accounting for over $10 billion in direct expenditures with a projected increase in cost of 100% by 

203078. Improvements in the accuracy of non-invasive functional assessment of CAD could significantly reduce 

health care costs resulting from unnecessary and expensive invasive procedures and revascularization. Thus, 

determination of the underlying cause of a patient’s CAD syndrome and assessment of the myocardial blood 

flow and presence of myocardial scar in a fast and non-invasive way has important diagnostic, therapeutic and 

prognostic implications. 

2.3 Diagnosis of Coronary Artery Disease 

The CAD can be diagnosed by several ways79, the details are shown below. 

 

Table 2-1. Common methods of diagnosing CAD. 

Currently, cardiac catheterization is the gold standard for defining obstructive CAD. Notably, a 

retrospective analysis of the National Cardiovascular Data Registry demonstrated that nearly 40% of the 398,987 
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patients without known CAD who underwent coronary angiography did not have significant CAD80. This implies 

that current strategies which are used to inform decisions regarding invasive angiography need to be substantially 

improved to increase the diagnostic yield of cardiac catheterization in routine clinical practice. This procedure 

is not only invasive but is also expensive. 

Besides the invasive methods, non-invasive techniques including single-photon emission tomography 

(SPECT), positron emission tomography (PET), myocardial contrast echocardiography (MCE), cardiac MRI and 

cardiac computed tomography (CT) have been used to non-invasively assess myocardial perfusion in patients 

with known or suspected CAD. Each imaging modality has its own advantages and limitations. For example, 

SPECT myocardial perfusion imaging (MPI) is the most common stress test performed in the US, accounting 

for over 80% of the stress tests performed. The technique is based on the flow or metabolism dependent selective 

uptake of a radioactive tracer by functional myocardial tissue. SPECT MPI has been extensively studied and 

validated, and its advantages include compatibility with multiple stress modalities, and a relatively high SNR 

with longer data collecting time81. However, it also has several limitations including the use of ionizing radiation, 

poor spatial resolution, and sensitivity to motion and attenuation artifacts. Furthermore, conventional SPECT 

MPI techniques only detect obstructive CAD by identifying regional differences in relative myocardial perfusion. 

Due to the poor spatial resolution, SPECT cannot reliably detect the diffuse perfusion abnormalities in 

microvascular disease (MVD). Of note, PET and CMR have higher accuracy for detecting CAD than SPECT82. 

Fractional flow reserve (FFR), an index of the physiological significance of a coronary stenosis, is 

defined as the ratio of maximal blood flow in a stenotic artery to normal maximal flow75. CMR contrast enhanced 

first-pass myocardial perfusion imaging is highly accurate for diagnosing CAD as compared to the invasive 

functional gold standard of FFR. In fact, in a recent randomized clinical trial, a CMR perfusion guided strategy 

was non-inferior to an invasive-FFR guided approach for revascularization with similar rates of adverse cardiac 

outcomes83. Thus, CMR has become an important tool for diagnosing CAD. 
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2.4 Evaluation of CAD using Quantitative CMR Myocardial First-pass Perfusion Imaging 

CMR myocardial first-pass perfusion imaging is based on the first pass of a bolus of gadolinium-DTPA 

contrast agents to assess myocardial perfusion. CMR has the advantages of non-ionizing radiation, flexible 

imaging plane orientation, excellent soft tissue contrast and higher spatial resolution. The higher spatial 

resolution can resolve transmural differences in myocardial perfusion which could potentially help differentiate 

MVD from obstructive CAD84. 

Because perfusion is affected early in the ischemic cascade, assessments of coronary perfusion reserve 

under stress has a higher sensitivity in detecting flow limiting stenosis than analysis of stress-induced wall 

motion abnormalities. Quantification of myocardial perfusion using CMR has been an active research area in 

the past two decades, and it is performed both at stress and rest to calculate absolute myocardial blood flow 

(ml/min/g) and myocardial perfusion reserve which is the ratio of the stress flow and rest flow that inversely 

correlates with stenosis severity provides an assessment of the functional impact of increasing stenosis severity75. 

The underlying principle of first-pass myocardial perfusion MR imaging is that differences in blood 

flow to the myocardium can be tracked by the direct visualization of enhancement with gadolinium contrast 

agents. The diagnosis of myocardial ischemia or infarction is based on its lower blood flow, recognized by slower 

rates of both uptake and washout of contrast material during the first pass through the myocardial circulation75. 

Most cardiac perfusion sequences are 𝑇1 -weighted fast gradient echo sequences or echo planar sequences 

performed with magnetization preparation to improve image contrast. A typical perfusion procedure is depicted 

in Figure 2-11. 

 

Figure 2-11. A typical quantitative perfusion imaging procedure. 
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For analysis of first-pass myocardial perfusion images, the muscle and cavity of the left ventricle can 

be divided into a variable number of segments. Based on autopsy data, the American Heart Association 

recommends a division into 17 segments85 for the regional analysis of left ventricular function or myocardial 

perfusion (Figure 2-12). Interpretation is based on the expected coronary artery distributions for the segments. 

Analysis of perfusion imaging could be qualitative, semiquantitative, and fully quantitative (Figure 2-13). 

 

Figure 2-12. AHA 17-segment model. LAD: left anterior descending; RCA: right coronary artery; LCX: left 

circumflex. 

The simplest form of analysis is a visual assessment of perfusion defects. Localized coronary artery 

disease first manifests as subendocardial hypoperfusion, as shown in Figure 2-14. Qualitative and semi-

quantitative methods of interpretation rely on the differentiation of normally perfused areas from hypoperfused 

regions to diagnose ischemic heart disease based on compartmental models and established tracer kinetic 

techniques86,87. Challenges to these approaches include the derivation of gadolinium contrast concentrations 

from signal intensity measurements (Figure 2-15) and the stability of computational algorithms such as 

deconvolution. Nonetheless, quantitative measurements have the potential of improved sensitivity for the 

detection of changes in perfusion, particularly in the setting of global hypoperfusion. Quantitative perfusion 

measurements may prove useful markers for studying the effects of therapeutic interventions. To perform 

quantification of myocardial perfusion, an accurate measurement of the arterial input function (AIF), which can 
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be derived from the signal intensity-time curve in the left ventricular (LV) cavity, showing the variation of signal 

intensity in the blood pool is necessary87. 

 

Figure 2-13. The perfusion imaging analysis pipeline. 

 

Figure 2-14. Spiral stress perfusion images demonstrate a subendocardial perfusion defect (arrows) in the inferior 

wall14. 
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Figure 2-15. The characteristics of myocardial contrast enhancement87. 

Qualitative stress myocardial perfusion imaging using CMR has been demonstrated robust diagnostic 

and prognostic performance in several studies88,89. High resolution quantification of MBF with whole-heart 

coverage has the potential to provide unique information to improve the diagnosis of three-vessel disease and 

microvascular disease in comparison to simple qualitative evaluation90–92. A direct comparison of quantitative 

versus qualitative CMR perfusion was conducted by Patel et al in patients with suspected myocardial ischemia 

using quantitative coronary angiography as the comparative standard93. Although overall there was no significant 

difference in accuracy for the diagnosis of CAD, the quantitative method differentiated single-vessel disease 

from multivessel disease which has important implications for assessment of prognosis and therapeutic decision 

making. 

2.5 Quantitative CMR Spiral Perfusion Imaging with whole-heart Coverage 

It is essential to improve the spatial-temporal resolution of myocardial first-pass perfusion imaging. 

However, current clinically available techniques have limited in-plane spatial resolution (~2-2.5 mm) and 

incomplete heart coverage, which impede the assessment of transmural perfusion differences and underestimate 

the extent of ischemia. Furthermore, motion-induced dark-rim artifacts can significantly reduce image quality 

and limit evaluation of the sub-endocardium, which is most sensitive to myocardial ischemia7. 
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Spiral acquisitions, which are fast and robust to motion artifacts, provide advantages for myocardial 

first-pass perfusion imaging. Spiral trajectories may also be less sensitive to dark-rim artifacts that are caused, 

at least in part, by cardiac motion. 

By careful consideration of the spiral trajectory readout duration, flip angle strategy, and image 

reconstruction strategy, spiral artifacts could be mitigated to create high-quality first-pass myocardial perfusion 

images with high SNR, Salerno et al designed interleaved spiral pulse sequences for first-pass myocardial 

perfusion imaging and to evaluate them clinically for image quality and the presence of dark-rim, blurring, and 

dropout artifacts94. Furthermore, Salerno et al developed and evaluated variable-density spiral first-pass 

perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility 

of an apodizing density compensation function (DCF) to improve SNR and reduce dark-rim artifact caused by 

cardiac motion and Gibbs Ringing95. Subsequently, Yang et al developed CMR quantitative spiral perfusion 

techniques for both single-slice (SS) and simultaneous multi-slice (SMS) acquisitions enabling whole-heart 

coverage (6-8 slices) with high spatial resolution (2×2 mm2)8,9. Our lab has developed novel motion-

compensated CS-based L1-SPIRiT reconstruction techniques, that correct for breathing motion and enable free-

breathing acquisition8. Sampling efficiency could also be improved by using outer-volume suppression (OVS) 

technique to achieve a reduced field-of-view (rFOV) so that the sampling in k-space can be coarser10.  Yang et 

al applied an OVS technique for single-shot spiral perfusion imaging and demonstrated that it produced superior 

image quality as compared with full-FOV acquisitions11. To conduct quantitative analysis for perfusion imaging, 

our lab has also developed a quantification pipeline for spiral perfusion imaging to quantify myocardial blood 

flow and myocardial perfusion reserve (MPR). High diagnostic accuracy of the proposed techniques has been 

demonstrated as well12–14. 

However, achieving high resolution comes at the cost of a significant SNR penalty. To overcome the 

SNR limitation imposed by the higher spatial resolution, in this dissertation, we developed and implemented 

spiral perfusion techniques at 3 T. Additionally, one significant barrier to clinical translation of these techniques 

is the need for off-line reconstruction and quantification which currently takes hours to complete, and thus can’t 

provide data to physician in a clinically acceptable time frame. To overcome this, a deep learning-based rapid 
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and accurate image reconstruction technique is also proposed. In order to further advance the clinical adoption 

of myocardial first-pass perfusion imaging, high-resolution Cartesian perfusion imaging with deep learning-

based image reconstruction is also proposed. 
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Chapter 3: High Spatial Resolution Spiral Perfusion Imaging at 3 T 

3.1 Introduction 

First-pass contrast-enhanced cardiac magnetic resonance (CMR) perfusion imaging has proven to be a 

valuable tool for evaluating patients with known or suspected CAD3–6. However, current CMR perfusion 

imaging techniques still have limited spatial-temporal resolution and ventricular coverage. Over the past few 

years, developments in fast imaging techniques including non-Cartesian imaging8,9,11,94–97, parallel imaging43–45 

and compressed sensing49 have improved spatial-temporal resolution and enabled whole-heart imaging. 3D 

perfusion imaging techniques34,98 have also been successfully applied. However, most still have either limited 

spatial-temporal resolution or spatial coverage. 

Recently, we have developed a rapid interleaved single-slice (SS) spiral perfusion pulse sequence using 

a motion-compensated L1-SPIRiT reconstruction with 2×2 mm2 in-plane resolution at 1.5 Tesla (T) 8. To achieve 

whole-heart coverage and minimize motion artifacts, the acquisition window for each group of 2 slices following 

a saturation recovery RF pulse is short (<50 ms), limiting the maximum possible signal-to-noise ratio (SNR) that 

can be achieved at a given spatial resolution. We have also proposed utilizing simultaneous multi-slice (SMS) 

excitation to increase the acquisition time per slice and have developed a motion-compensated spiral SMS-L1-

SPIRiT reconstruction technique at 1.5 T9. Sampling efficiency can also be improved by using outer-volume 

suppression (OVS) technique to achieve a reduced field-of-view (rFOV) so that the sampling in k-space can be 

coarser10. We have previously applied an OVS technique for single-shot spiral perfusion imaging and 

demonstrated that it produced superior image quality as compared with full-FOV acquisitions11. Overall, whole-

heart coverage with an in-plane spatial resolution of 2×2 mm2 were achieved at 1.5 T scanners using the 

aforementioned spiral perfusion techniques. Recent radial and Cartesian perfusion studies at 3 T have utilized 

an in-plane resolution of around 1.5-2 mm99–103. However, with higher spatial resolution there is increased ability 

to detect transmural perfusion differences between the epicardium and the endocardium, which could improve 

the ability to detecting obstructive CAD as demonstrated in prior studies15–18. Recent advance in high-resolution 

SMS Cartesian perfusion imaging utilizing bSSFP provides another possibility for high-resolution perfusion 
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imaging104. However, bSSFP could have significant banding artifacts at 3 T without using frequency scouts and 

requires a special phase cycling compatible with both bSSFP and SMS. 

With a high in-plane spatial resolution of 1.25×1.25 mm2, the sensitivity to detect perfusion differences 

between the endocardium and epicardium may be improved as compared to techniques with lower spatial 

resolution. Also, dark-rim artifacts which mimic subendocardial perfusion defects can be reduced by reduced 

Gibbs-ringing at higher spatial resolution105. However, achieving this high resolution comes at the cost of a 

significant SNR penalty. In this study, we sought to design a spiral acquisition technique to achieve a spatial 

resolution of 1.25×1.25 mm2 with whole-heart coverage. To overcome the SNR limitation imposed by the higher 

spatial resolution, we developed and implemented spiral perfusion techniques at 3 T. 

We further optimized the spiral perfusion pulse sequences and corresponding reconstruction techniques 

for both SS and SMS acquisitions with or without OVS to address the higher undersampling factors required to 

achieve this spatial resolution with high temporal resolution and whole-heart coverage. Particularly, for SMS 

acquisitions, we developed the motion-compensated SMS-Slice-L1-SPIRiT reconstruction technique which 

incorporates split-slice-GRAPPA-like kernels106 for spiral imaging that could reduce the slice leakage and 

improve image quality107,108. The proposed techniques were evaluated in volunteers and patients undergoing 

clinically ordered CMR studies. 

3.2 Methods 

3.2.1 SNR Considerations 

Achieving high resolution intrinsically limits the achievable SNR. For gradient-echo based spiral 

perfusion sequences, the SNR expressed in terms of the field strength, spatial resolution, readout duration, flip 

angle (FA) and the effect of saturation recovery (SR) time can be expressed as: 

 𝑆𝑁𝑅 ∝ 𝜂 × 𝐵0 × 𝛿𝑥𝑦𝑧 × √𝑇𝑡𝑜𝑡𝑎𝑙 × (1 − 𝐸𝑠) × 𝑠𝑖𝑛(𝜃𝑐) × 𝐶 [3-1] 

where 𝜂 is the SNR efficiency of variable-density spiral trajectory, 𝐵0 is the static magnetic field strength, 𝛿𝑥𝑦𝑧 

is the voxel volume, 𝑇𝑡𝑜𝑡𝑎𝑙 is the total readout time per slice, 𝐸𝑠 is  𝑒−𝑇𝑆/𝑇1 that characterizes the SR effects 
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where 𝑇𝑆 is the saturation time, 𝜃𝑐 is the FA that drives constant transverse magnetization during each spiral 

acquisition94, and 𝐶 is a constant that depends on the proton density, relaxation times (𝑇1 and 𝑇2
∗), and the other 

sequence parameters. 

Increasing the in-plane resolution from 2×2 mm2 to 1.25×1.25 mm2 would result in a ~60% loss of SNR 

without changing any other acquisition parameters. Hence, we aimed to optimize other sequence parameters so 

that the SNR of the 1.25×1.25 mm2 resolution technique at 3 T would be comparable to the SNR of the 2×2 mm2 

resolution technique at 1.5 T for which we have previously successfully implemented and validated for spiral 

stress perfusion imaging8,9. 

As we have demonstrated previously, the constant FA that balances the loss in magnetization from each 

excitation RF pulse94, assuming an ideal slice profile, for a given TR, TS, and 𝑇1 to ensure the transverse 

magnetization evolution is the same for each spiral arm can be expressed as:  

 𝜃𝑐 = 𝑐𝑜𝑠−1 (
𝐸1 − 𝐸𝑠

𝐸1(1 − 𝐸𝑠)
) [3-2] 

where 𝐸1 = 𝑒−𝑇𝑅/𝑇1 and 𝐸𝑠 = 𝑒−𝑇𝑆/𝑇1. 

Assuming a pre-contrast 𝑇1  is 1160 ms109, and a gadolinium concentration of 1 mmol/L with a 

relaxivity110 of 3.6 L×mmol-1×s-1, the post-contrast 𝑇1 would be roughly 224 ms. With TS = 120 ms, TR = 8 ms, 

the optimal FA would be 18° for a standard SR and SMS acquisitions. Alternatively, as we have shown 

previously, a slice-interleaved approach for SS perfusion imaging can be used which results in an effective TR 

of 2 TR for each slice8. In this case the effective TR would be 16 ms, resulting in an optimal FA of 26° (Figure 

3-1). 

The SNR should roughly double with the increase of field strength from 1.5 T to 3 T based on the 

increase in the net magnetization. However, the readout time for each spiral arm needs to be shortened at 3 T 

relative to 1.5 T to minimize off-resonance artifacts caused by field inhomogeneities. As we have previously 

shown that the limit for 1.5 T in terms of readout duration that does not have significant drop-out off-resonance 

artifacts is around 8 ms111, we chose a readout duration of 4 ms for our experiments at 3 T112.  
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As seen in Figure 3-1, when all these factors are considered together, the 3 T high-resolution interleaved 

SS and SMS acquisitions would have an SNR of roughly 91% and 91% respectively as compared to our 

previously validated 2×2 mm2 technique at 1.5 T. Thus, the increase in field strength should compensate for the 

loss in SNR from the higher resolution and shorter spiral readout durations, making whole-heart high-resolution 

perfusion imaging feasible. 

3.2.2 Pulse Sequences 

To perform a comprehensive evaluations of different acquisition strategies for spiral perfusion at 3 T, 

two different factors were assessed: (1) slice-interleaved SS versus SMS acquisition and (2) acquisition of data 

with or without OVS. Four sequence variants were utilized in this study: SS without OVS (SS w/o OVS), SS 

with OVS (SS w/ OVS), SMS without OVS (SMS w/o OVS), and SMS with OVS (SMS w/ OVS). 

For both SS and SMS acquisitions, a non-selective saturation with an optimized hard-pulse train for 𝑇1-

weighted preparation113 and a spectrally selective adiabatic inversion recovery pulse (SPAIR) for fat suppression 

were used (Figure 3-1). 
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Figure 3-1. Pulse sequences for the interleaved SS (a) and SMS (b) spiral perfusion imaging. Specifically, (b) shows 

the acquisition scheme for MB=2. The OVS module was utilized only for OVS acquisitions. 

For acquisitions using OVS, the OVS module was applied after the SPAIR pulse. The OVS module 

consisted of an adiabatic nonselective BIR-4 tip-down RF pulse with parameters optimized for 3 T performance, 

followed by a 2.2-ms spatially selective spiral tip-back RF pulse and a spoiler module as previously described 

for single-shot spiral perfusion imaging11. The BIR-4 pulse that was utilized for the OVS module was lengthened 

from 4 ms at 1.5 T to 5.12 ms at 3 T to reduce SAR, and the shape parameters were optimized to minimize 𝐵0 

and 𝐵1  sensitivity over a ±200 Hz range of off-resonance frequencies. For OVS acquisition, the k-space 

trajectory was modified to support a nominal FOV of 170×170 mm2 (50% FOV reduction) to image only the 

region around the heart. The OVS pulse was designed to support a FOV of 80×80 mm2. By reducing the excited 

FOV, OVS enables a coarser sampling of k-space and improved sampling efficiency which should lead to the 

reduction of aliasing from structures outside of the heart region. OVS was evaluated for the interleaved SS and 

SMS MB=2 experiments. 
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Table 3-1. Detailed spiral pulse sequence parameters for both SS and SMS acquisitions. 

To achieve high spatial resolution with a small number of spiral interleaves, significant k-space 

undersampling is required. Variable density spirals enable the center of k-space to be more densely sampled with 

significant undersampling of the higher spatial frequencies, which can result in an incoherent noise-like aliasing 

pattern that is potentially advantageous for a CS reconstruction8. We utilized dual density (DD) spiral trajectories 

with a Fermi-function shape for the transition region9 for both SS and SMS acquisitions (Table 3-1). SS 

acquisitions utilized a slice-interleaved approach9, where spiral arms from two slices were acquired in an 

Acquisition Type SS SMS 

FOV (mm) 340 340 

Matrix size 272272 272272 

Spatial resolution (mm) 1.25 1.25 

Slice thickness (mm) 10 10 

No. of spiral interleaves 4 8 

Spiral readout per 
interleave (ms) 4.1 4.1 

Saturation time (ms) 120 120 

TR (ms) 8 8 

Temporal sampling 
footprint (ms) 56 64 

Highest possible heart 
rate (BPM) 

108 
108 (MB=2) 
163 (MB=3) 

Flip angle (degree) 26 18 

Number of slices 6 or 8 6 or 8 (MB=2)  
6 or 9 (MB=3) 

No. of slices per 
saturation recovery 2 2 (MB=2) 

3 (MB=3) 

Spiral density type dual density dual density 

Starting density (Nyquist) 1 2 

Ending density (Nyquist) 0.05 (w/o OVS) 
0.12 (w/ OVS) 

0.10 (w/o OVS) 
0.26 (w/ OVS) 
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interleaved fashion following each saturation recovery (SR) pulse. Non-adjacent slices were acquired in each 

saturation block to reduce effects of crosstalk between slices. The same total sampling time for interleaved SS 

and SMS acquisition were kept constant at 64 ms (8 TR), allowing for the acquisition of 8 spirals per saturation 

pulse for both strategies. This means that each slice of the SS technique has 4 interleaves, while the SMS 

technique has 8 interleaves per slice. 

For SMS acquisitions, MB RF pulse excitation pulses were designed by the summation of the slice-

selective SS sinc RF pulses with Hadamard phase modulation72 for each slice. The SS RF pulse was a 1 ms sinc‐

shaped pulse with a time‐bandwidth product of 5.69. Depending on different SMS factors, 2 (MB=2) or 3 (MB=3) 

slices were acquired in each SR block, and SR blocks were repeated until all the slices are imaged. In our 

experiments, 6-8 slices were acquired for MB=2 and 6-9 slices were acquired for MB=3 (Table 3-1). The number 

of acquired slices was based on both R-R duration and specific absorption rate (SAR) constraints. 

Spiral interleaves were uniformly distributed in each heartbeat and were rotated by the golden angle 

(137) between heart beats. This strategy was chosen to achieve temporal incoherence and also to permit a similar 

sampling strategy for both SMS acquisitions with Hadamard phase cycling of the interleaves in each heart-

beat9,72 and the interleaved SS acquisitions.  

3.2.3 Image Reconstruction and Processing 

Figure 3-2. The proposed motion-compensated L1-SPIRiT reconstruction technique for single-slice 

acquisition (a) and the motion-compensated SMS-Slice-L1-SPIRiT image reconstruction technique for SMS 

acquisitions (b). illustrates the image reconstruction and processing approach utilized in this study. SS and SMS 

images were reconstructed using a motion-compensated approach: (SMS-Slice-) L1-SPIRiT8,107, which can be 

expressed as follows: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

||𝛷𝑅𝐹𝑢𝑥 − 𝑦||2
2 + 𝜆1||(𝐺𝑆𝑃𝐼𝑅𝑖𝑇 − 𝐼)𝑥||2

2 + 𝜆2||𝛹𝑥||1 + 𝜆3||(𝐺𝑇𝑃 − 𝐼)𝑥||2
2 [3-3] 

where 𝑥 are motion-corrected multi-channel images to be reconstructed at each slice location, 𝑦 is the acquired 

spiral SS or SMS data that might contain motion, 𝐹𝑢  is an inverse Fourier gridding operator (NUFFT) that 
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transforms from Cartesian image space to spiral k-space48, 𝑅 is the motion-correction operator mapping the 

motion-corrected image series to the motion-corrupted image series, 𝐺𝑆𝑃𝐼𝑅𝑖𝑇 is an image‐space SPIRiT operator 

for each slice45, 𝐺𝑇𝑃 is an image‐space through-plane (TP) operator which is calibrated by enforcing consistency 

on the desired slice and blocking the signal from the interfering slices to reduce slice leakage artifacts107,108, 𝛹 

is the finite time difference transform that operates on each individual coil separately enforcing sparsity in the 

temporal domain of perfusion image series, 𝐼 is the identity matrix, 𝜆1, 𝜆2 and 𝜆3 are parameters that balance 

the data acquisition consistency with SPIRiT calibration consistency, temporal sparsity and slice consistency, 

and 𝛷 is the SMS Hadamard phase modulation operator. For SS acquisition the same equation can be utilized 

by setting 𝛷 to 𝐼 and setting 𝜆3 = 0, which leads to the L1-SPIRiT reconstruction approach we have described 

previously8. Note that the 𝛷 operator depends on the number of interleaves and the desired SMS factor, and 

when 𝜆3 is set to 0 the reconstruction becomes our previously proposed SMS-L1-SPIRiT reconstruction9. 

The slice-by-slice motion correction operator, 𝑅  , was incorporated into the image reconstruction 

process to compensate for motion caused by imperfect breath-holding during acquisition114. As most of the 

motion resulting from breathing motion can be approximated using in-plane rigid shifts, the 𝑅 operator was 

implemented as a linear phase shift in the k-space domain. In order to achieve robust motion correction in the 

setting of the dynamic signal intensity variation, images were registered to synthetic images derived by 

performing principal component analysis (PCA) in the temporal dimension so that images could be rigidly 

registered to a target frame that has consistent signal intensities115. 

The SPIRiT45 and TP107,108 operators for each slice were estimated using an auto-calibration approach 

so that the additional acquisition of calibration data was unnecessary. For SS, SPIRiT operators for each slice 

were estimated by temporally averaging the dynamic perfusion image series. This ensures that the training data 

is free of any aliasing artifacts. Specifically, for SMS acquisitions, the initial under-sampled images at each slice 

location were generated by performing NUFFT48 on the phase demodulation data. The SPIRiT and TP operators 

were then generated from the temporally averaging image series for each slice (Figure 3-1Figure 3-2).  Due to 

the large number of interleaves across the temporally averaged data and the Hadamard phase modulation strategy, 
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the interfering slices should have almost complete cancellation of signal allowing for the auto-calibration 

approach. 

 

Figure 3-2. The proposed motion-compensated L1-SPIRiT reconstruction technique for single-slice acquisition (a) 

and the motion-compensated SMS-Slice-L1-SPIRiT image reconstruction technique for SMS acquisitions (b). 

For SS acquisitions, dynamic perfusion image series were reconstructed slice by slice as described by 

Yang et al8. For SMS acquisitions, multiple slices for each SMS acquisition were reconstructed simultaneously 

and 𝑦 was the phase-modulated k-space data for each SMS acquisition. 𝜆1 = 1 and 𝜆2 = 0.4𝑀0 where 𝑀0 was 

the maximal magnitude value of the motion-corrected NUFFT images were selected for SS reconstructions based 

on the results of a retrospective experiment that balanced image quality and temporal fidelity as described by 

Feng et al116. The same regularization parameters were used for all reconstructions. For SMS reconstructions, 
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𝜆1 = 1, 𝜆2 = 0.5𝑀0 and 𝜆3 = 1 were selected based on a similar criterion regarding image quality and temporal 

fidelity. The nonlinear iterative conjugate gradient descent algorithm117 with 80 iterations was used to solve the 

optimization problem. 

Additionally, prior to image reconstruction, coil selection was performed to retain coils with low artifact 

power and high SNR over the heart region as we have described previously31. Coil compression with a 5% 

tolerance118 was performed to accelerate the reconstruction process. To enhance the image quality and minimize 

the artifacts caused by field inhomogeneities at 3 T, an automatic 𝐵0 inhomogeneity correction method based on 

auto-focus119 was performed after image reconstruction. 𝐵0 inhomogeneity correction was performed on coil-

combined complex images  generated from the multi-coil reconstruction using the method described by Walsh 

et al 120. 

The image reconstruction and processing were implemented in MATLAB (The MathWorks, Natick, 

MA). The image-based non-Cartesian reconstruction used Fessler’s NUFFT code48. 

3.2.4 Retrospective Experiment 

To test the newly proposed SMS-Slice-L1-SPIRiT reconstruction strategy, we reconstructed 10 

simulated SMS MB=2 datasets using the same reconstruction parameters for both SMS-Slice-L1-SPIRiT and 

the SMS-L1-SPIRiT where TP kernels were not incorporated. Simulation data were retrospectively created by 

inverse gridding and phase-modulated addition of previously acquired high resolution SS perfusion datasets 

reconstructed using L1-SPIRiT with 1.25 mm resolution at 3 T which served as the ground truth. The 

reconstructed images of both methods were assessed quantitatively using the root mean square error (RMSE) 

and structural similarity index (SSIM)121.  

3.2.5 Human Studies 

34 healthy volunteers and 8 patients undergoing clinically ordered CMR studies with gadolinium (Gd)‐

based contrast agents (Gadoteric acid - Gadoterate meglumine; Dotarem Guerbet or Clariscan GE Healthcare) 

were included in this study. The 13 healthy subjects underwent perfusion imaging during two separate 
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gadolinium injections separated by a 20-minute washout period, while the other 21 healthy volunteers and 8 

patients underwent a single gadolinium injection. Overall, the studies in volunteers and patients resulted in 55 

perfusion datasets for analysis. Of the 8 patients, 2 were for evaluation of myocarditis, 4 were for evaluation for 

heart failure/cardiomyopathy, 1 was for evaluation of hypertrophic cardiomyopathy, and 1 was for the evaluation 

of pericarditis. Written informed consent was obtained from all subjects using a protocol approved by the 

University of Virginia Health Sciences Research Institutional Review Board. Imaging was performed on 3 T 

MRI scanners (MAGNETOM Prisma/Skyra; Siemens Healthineers, Erlangen, Germany). Perfusion imaging 

was performed using 0.075 mmol/kg of contrast agent injected intravenously at a rate of 4 mL/s followed by 25 

mL of saline flush at 4 mL/s. Subjects were asked to hold their breath as long as possible, followed by shallow 

breathing during the acquisition of perfusion images over 50 to 60 heartbeats. 

3.2.6 Image Analysis 

For the image quality assessment, each set of perfusion images were blindly graded on a 5‐point scale 

(5, excellent; 1, poor) by 2 experienced cardiologists. The image quality grading was conducted independently 

by each of the two cardiologists, and their average score was computed. 

To address the effects of the 𝐵0 inhomogeneity correction, we randomly presented 10 cases with and 

without 𝐵0 correction to a cardiologist who blindly reviewed the images side by side to choose the image set 

with less blurring. Ties were allowed if there was no difference in the visual appearance of blurring. 

Additionally, one cardiologist also blindly evaluated the dropout severity of all different acquisitions (5, 

excellent; 1, poor). 

3.2.7 Statistical Analysis 

Normally distributed parameters are described by their mean and standard deviation, while non-

normally distributed parameters are described using the median and interquartile range (IQR).  For retrospective 

experiment evaluating the proposed SMS-Slice-L1-SPIRiT reconstruction technique, the normality of the SSIM 

and RMSE values were assessed using the Shapiro-Wilk test. As the visual scoring was graded on an ordinal 
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scale, a non-parametric Kruskal-Wallis test was used to test for differences between the techniques. Comparisons 

between individual imaging techniques were conducted using a Wilcoxon signed-rank test with Bonferroni 

correction for multiple comparisons.  For all statistics a p<0.05 was considered statistically significant. Statistical 

analysis was performed using SAS software (version 9.4; SAS Institute Inc., Cary, NC). 

3.3 Results 

The retrospective multi-band reconstruction experiment demonstrated the proposed SMS-Slice-L1-

SPIRiT had a higher SSIM (0.936±0.033 vs. 0.854±0.032, p<0.05) and lower RMSE (0.010±0.003 vs. 

0.015±0.003, p<0.05) as compared to SMS-L1-SPIRiT for the SMS MB=2 acquisition without OVS. This 

improved performance was also confirmed by visual assessment of the prospectively acquired SMS MB=2 w/o 

OVS perfusion images which demonstrated average scores of 3.7±0.4 for the SMS-Slice-L1-SPIRiT 

reconstruction and 3.1±0.5 for the SMS-L1-SPIRiT reconstruction (p<0.05). SSIM and NRMSE for the 

retrospective experiments were normally distributed by Shapiro-Wilks test justifying the use of paired t-tests. 

Figure 3-3 (a) shows an example case of SS acquisition without OVS from a clinical patient undergoing 

the resting perfusion with whole-heart coverage, which has an image quality score of 5 and minimal artifacts. 

Figure 3-3 (b) presents an example case for SMS MB=2 without OVS acquisition from a healthy volunteer 

undergoing the resting perfusion with whole-heart coverage. Good image quality was demonstrated with a score 

of 4 due to mild residual aliasing artifacts. 
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Figure 3-3. Example cases for SS w/o OVS acquisition (a) and SMS MB=2 w/o OVS acquisition (b). (a) shows an 

example case of SS w/o OVS spiral resting perfusion acquisition from a clinical patient with whole-heart coverage. Excellent 

image quality and minimal artifacts were demonstrated with an image-quality score of 5. (b) shows an example case of SMS 

MB=2 w/o OVS spiral resting perfusion acquisition from a healthy volunteer with whole-heart coverage. Good image 

quality was demonstrated with a score of 4. There is mild residual aliasing artifact. 

Figure 3-4 shows a direct comparison of whole-heart resting perfusion imaging at a middle time frame 

using SS acquisition and SMS MB=2 acquisition with OVS from the same healthy subject. The image quality 

was higher for the interleaved SS acquisition than the SMS acquisition due to residual aliasing artifacts that can 

be seen in the SMS images. Overall, the image quality score of SMS acquisition with OVS was less than the SS 

acquisition with OVS. 
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Figure 3-4. Direct comparison of whole-heart resting perfusion imaging at a middle time frame using SS 

acquisition (a) and SMS MB=2 (b) with OVS from the same healthy volunteer. Good image quality was demonstrated for 

OVS acquisitions for both SS and SMS MB=2. SS acquisition has a score of 4 and SMS MB=2 has a score of 3.5 due to more 

residual aliasing artifacts. 

Figure 3-5 shows an example case of whole-heart perfusion imaging at a middle time frame using SMS 

MB=3 acquisition without OVS from a healthy subject. Mild, but noticeable residual aliasing artifacts can be 

visualized. 
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Figure 3-5. An example case of SMS MB=3 without OVS spiral resting perfusion acquisition from a healthy 

volunteer with whole-heart coverage. Good image quality was demonstrated with a score of 4. 

To demonstrate the fidelity of temporal profile in myocardium, six segments in the myocardium from 

the American Heart Association (AHA) segmental model were selected from one of the slices presented in Figure 

3, and the mean signal intensity of the (SMS-Slice)-L1-SPIRiT reconstruction was plotted through temporal 

frames as compared to the corresponding region from the undersampled NUFFT data from the same slice which 

is reconstructed without any temporal constraint (Figure 3-6). Signal intensity and temporal fidelity in the ROI 

from the reconstructed results demonstrate good agreement with the under-sampled data (NUFFT results), with 

preserved temporal fidelity of the myocardial signal. 
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Figure 3-6. The temporal fidelity of the myocardium from one of the slices is shown in Figure 3-3. The signal is 

the mean value of the six segments in the myocardium based on the AHA segmental model. The reconstruction results 

demonstrate good temporal agreements with the under-sampled NUFTT reconstruction. 

Given the short readout duration there were minimal off-resonance blurring artifacts.  In some cases, 

there was blurring of the intracardiac structures such as the papillary muscles during maximal LV enhancement.  

Figure 3-7 demonstrates the performance of 𝐵0 inhomogeniety correction for a SS acquisition without OVS. The 

images show reduced blurring particularly in the region of the papillary muscles which are within the LV cavity 

following 𝐵0 inhomogeneity correction. These artifacts primarily affect the epicardial aspect of the inferolateral 

wall and can be differentiated from ischemia which primarily affects the sub-endocardium. 10 cases with or 
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without 𝐵0 inhomogeneity correction was blindly evaluated by an experienced cardiologist, and 7 of 10 cases 

with 𝐵0 inhomogeneity correction had superior image quality while the other 3 cases were considered to have 

similar degrees of blurring. 

 

Figure 3-7. Utilization of the 𝑩𝟎  inhomogeneity correction compensates the artifact caused due to field 

inhomogeneity. For a SS without OVS acquisition from a healthy volunteer, (a) shows one of the frames before doing 

inhomogeneity correction and (b) shows the corresponding output after doing the correction. 

Figure 3-8 presents the image quality scores for the different acquisition methods and the number of 

studies for each acquisition. SS w/o OVS acquisition has the highest image quality (4.5 [4, 5]),) while SS w/ 

OVS (3.5 [3.25, 3.75]) showed the lowest score (p<0.05). SS w/o OVS had a significantly higher image quality 

score than SS w/ OVS, SMS MB=2 w/ OVS and SMS MB=2 w/o OVS(p<0.05). There was no significant 
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difference in visual image quality score among the SS w/o OVS, and SMS MB=3 w/o OVS (Figure 3-8). 

However, the point estimate was higher for SS w/o OVS. 

 

Figure 3-8. Image quality score for each acquisition method. Images were blindly graded by 2 experienced 

cardiologists (5, excellent; 1, poor). The scores shown is the average score from 2 cardiologists. *Indicates significant 

difference (p < 0.05). The number of studies involved in each acquisition method is denoted as the number of 𝑵. 

The average drop-out score for SS w/o OVS, SMS MB=2 w/o OVS, SMS MB=3 w/o OVS, SS w/ OVS, 

and SMS MB=2 w/ OVS were 4.4, 3.8, 4.6, 3.8 and 3.9, respectively (5, excellent; 1, poor), which demonstrated 

the overall good reconstruction performance in terms of the drop out severity in the inferolateral wall. 

3.4 Discussion 

We demonstrate that high quality images of first-pass myocardial perfusion can be acquired using high-

resolution whole-heart spiral perfusion techniques at 3 T for both SS and SMS acquisitions with or without OVS. 

Specifically, SS without OVS acquisition demonstrated the highest image quality. Given the high sampling 

efficiency of spiral imaging, an in-plane spatial resolution of 1.25×1.25 mm2 was achieved over 6 to 8 slices 

with a temporal sampling footprint of 56 ms (7 TR) or 64 ms (8 TR) per slice for SS and SMS acquisitions, 

respectively. Recent studies using Cartesian and radial imaging at 3 T have either demonstrated lower spatial-

temporal resolution or more limited spatial coverage than what is feasible using spiral trajectories99–101.  The 

enhanced spatial resolution may increase the ability to assess transmural differences in myocardial perfusion15–
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17, and the whole-heart coverage may improve the ability to assess the extent of ischemia and quantify the 

ischemic burden. 

This work is an extension of our prior spiral perfusion sequence development for 1.5 T8,9,11 whole-heart 

perfusion imaging. To have adequate SNR for perfusion imaging with high spatial resolution, we adapted the 

spiral acquisition and reconstruction techniques for 3 T. The same spiral trajectory and pulse sequence 

parameters was used for both 3 T MR systems used in our study (MAGNETOM Prisma/Skyra; Siemens 

Healthineers, Erlangen, Germany). Studies were performed on either scanner based on scanner availability and 

clinical patient scheduling. There were no clear differences in image quality between the two different MR 

systems, however this was not systematically studied. In this study we focused on validating the proposed 

strategy for interleaved SS and SMS MB=2 acquisitions, as these are the minimal acceleration factors required 

to achieve whole-heart coverage (6-8 2D slices) with the given spatial resolution for each heartbeat. With the 

high acquisition efficiency of dual-density spiral trajectories, current acquisition protocols result in in-plane 

acceleration factors of around 10 and 5 at the outer-edge of k-space for SS and SMS acquisitions, respectively. 

The proposed SS and SMS MB=2 acquisitions can support heart rate up to 108 beats per minute (BPM), and a 

heart rate above 120 BPM can be supported by reducing the saturation time to 100 ms per slice. SMS MB=3 

acquisition can support a heart rate up to 163 BPM. Based on our experience at 1.5 T11, we hypothesized that 

OVS would reduce remote aliasing and improve image quality. However, the impact of OVS, was marginal at 

best at 3T. In this study we utilized a more optimized strategy to automatically select coils with high sensitivity 

around the heart31, which reduced the amount of aliasing from remote coils, potentially reducing the gains 

previously achieved with OVS. Furthermore, the time between saturation and acquisition was shorter for single-

shot imaging at 1.5 T which may have resulted in better suppression of the outer-volume signal. Further, although 

we optimized the OVS module for 3 T, performance may have been degraded by the increase in 𝐵1 and 𝐵0 

inhomogeneity between 1.5 T and 3 T. To reduce SAR, we lengthened the BIR-4 pulse in the OVS module to 5 

ms but increasing the duration of the BIR-4 pulse results in further degradation of the performance. Another 

challenge for using OVS at 3 T is that the minimal acquisition time per slice may need to be increased to avoid 

going over the time-averaged SAR limit when acquiring data with 3 or more saturations. 
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While data was acquired during breath-holding in this study, we adapted our previously proposed rigid-

registration strategy for motion correction114. This strategy was incorporated directly into the reconstruction 

pipelines for SS and SMS reconstruction to correct for the residual motion that can cause blurring for temporally 

constrained CS reconstruction. To further improve registration given the significant signal intensity variation, 

we utilized an iterative-PCA based registration technique115 which improved registration as compared to a pair-

wise approach. While this approach corrects for bulk cardiac motion, it does not correct for through-plane motion 

artifacts. One approach to reducing through-plane motion artifacts is prospective slice tracking122, which could 

potentially be utilized to improve motion correction for 2D imaging. 

Off-resonance effects due to 𝐵0 inhomogeneity can cause artifacts, particularly at 3 T including blurring 

and signal-dropout. At 1.5 T, readouts that are less than 8 ms are typically sufficient to avoid signal drop out 

artifacts for slices that are 8-10 mm thick8,9. At 3 T, we have used readouts that are less than 5 ms, and have seen 

further improvement in off-resonance performance for readouts less than 4 ms112. We have previously utilized 

off-resonance correction based on acquisition of a field map at each heartbeat, however for highly accelerated 

imaging this represents a significant overhead (2 additional interleaves per slice per heartbeat)8. For our whole-

heart accelerated acquisition we utilized an auto-focusing 𝐵0 inhomogeneity correction method which does not 

require acquisition of a 𝐵0 field map, has a low computational cost and reduces blurring particularly during the 

peak of first pass of the contrast agent in the LV cavity. Some cases still have mild dropout artifacts in the 

inferolateral wall. These artifacts primarily affect the epicardial aspect of the inferolateral wall and can be 

differentiated from ischemia which primarily affects the sub-endocardium. We are currently performing a 

clinical evaluation of these pulse sequences and will be able to determine if they affect diagnostic utility. From 

our prior 1.5 T clinical study which utilized 6 ms readouts at 1.5 T we did not see a degradation of diagnostic 

performance in the LCX territory. Dropout artifacts typically result from signal dephasing across the slice 

dimension, and can be avoided using shorter readouts and thinner slices, by phase-encoding in the through slice 

direction, or by using 3D acquisitions123. However, utilization of thinner slices reduces SNR, and phase-encoding 

in the slice dimension reduces efficiency. 
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Given that the SS interleaved sequence without OVS had the highest image quality, this may be the 

preferred sequence to achieve whole-heart high-resolution perfusion imaging when 6-8 slices are desired, 

particularly given the reduced SAR as compared to the SS interleaved acquisition with the OVS module. 

Preliminary clinical experiments using this technique have demonstrated good performance13. 

We also demonstrated that SMS was feasible at an SMS factor of 3 with good image quality. With 

MB=3, 6 slices can be acquired at high heart rate with or without OVS without limitations by SAR. Preliminary 

experiments suggest that imaging at MB=3 is feasible using this strategy. The SMS MB=3 w/o OVS shows 

higher image quality score than SMS MB=2, which may result from the more incoherent aliasing due to the 

different SMS phase modulation pattern. Further improvements in the SMS reconstruction algorithm, including 

further optimization of the strategy for leakage-blocking kernals107,108,124 could potentially further improve image 

quality. 

This study also has several limitations. While in volunteer studies we could obtain resting perfusion 

imaging using two different techniques, for studies performed as part of clinical routine, only a single resting 

perfusion study could be performed. The SS and SMS techniques could not be performed in a paired manner in 

the clinical subjects as only a single resting perfusion study could be performed. This may add variability when 

comparing the different techniques utilized in this study. The experiments in this study were performed during 

resting perfusion, and stress perfusion was not conducted. To address the clinical value of high-resolution 

perfusion imaging, further qualitative and quantitative evaluations of the performance of the proposed techniques 

with stress imaging in patients with suspected CAD will be necessary. We have recently demonstrated initial 

clinical evaluations of the proposed technique for SS acquisitions12. While the current spiral acquisition strategy 

and reconstruction pipeline demonstrate good image quality, further optimization of the trajectory and 

reconstruction techniques could potentially further improve image quality. Other OVS techniques which do not 

utilize a BIR-4 may achieve adequate OVS performance without SAR limitations. 
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3.5 Conclusion 

We demonstrated the successful application of high-resolution (1.25×1.25 mm2) spiral perfusion 

imaging with whole-heart coverage at 3 T for both SS and SMS acquisitions with and without OVS in a clinical 

setting. The increased transmural resolution may improve assessment of myocardial perfusion gradients, and the 

whole-heart coverage may improve quantification of ischemic burden. Further validation will be required in 

patients undergoing stress CMR to assess the clinical value of high-resolution perfusion imaging. 
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Chapter 4: DEep learning-based rapid Spiral Image Reconstruction 

(DESIRE) for High-resolution Spiral Perfusion Imaging 

4.1 Introduction 

For first-pass perfusion imaging, a contrast agent is injected, and images are acquired over the 

subsequent 40-60 heart beats. As images are acquired in each heartbeat at stress during the first pass of the 

contrast agent, the data for each frame must be collected in less than 500-600 ms requiring highly efficient data 

acquisition strategies. However, this typically requires undersampling in the k-space domain which can result in 

undesirable aliasing artifacts in the image domain. 

Recently, we have developed a rapid interleaved single-slice (SS) spiral perfusion pulse sequence and 

a corresponding motion-compensated L1-SPIRiT image reconstruction technique8,33,125. We have also developed 

spiral simultaneous multi-slice (SMS) techniques including motion-compensated SMS-L1-SPIRiT 

reconstruction and SMS-Slice-L1-SPIRiT reconstruction which includes in-plane and through-plane kernels that 

can further reduce the through-plane aliasing artifacts9,33,107,126. However, these advanced image reconstruction 

techniques rely on iterative algorithms such as non-linear conjugate gradient to recover the images which is time-

consuming.  As such, these reconstructions are typically performed off-line and do not provide rapid feedback 

to CMR technicians and physicians. Moreover, the need for parameter tuning for the compressed sensing (CS)-

based image reconstruction algorithm can be problematic. 

Thus, a faster image reconstruction technique, instead of an iterative non-Cartesian image reconstruction, 

is essential to facilitate clinical translation. Using deep convolutional neural networks (CNN) for CMR image 

reconstruction not only boosts reconstruction speed and simplifies parameter tuning, but also maintains high 

image quality. Recent advances in CMR image reconstruction using CNN51–64 have been proposed, but most of 

the works were based on Cartesian imaging. Fan et al51 and Hauptmann et al52 demonstrated dynamic radial 

CMR image reconstruction using 3D U-Net127,128based networks. However, the application of deep learning 

reconstruction for CMR spiral imaging and SMS imaging have been limited. Some image reconstruction 
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techniques with Cartesian sampling utilized data fidelity updates54,55,58,129. However, explicitly enforcing data 

fidelity is time-consuming and memory-consuming for non-Cartesian imaging, especially for dynamic imaging 

such as myocardial perfusion imaging. 

In this work, we sought to develop a DEep learning-based rapid Spiral Image REconstruction technique 

(DESIRE) for high-resolution spiral first-pass myocardial perfusion imaging for both SS and SMS MB=2 

acquisitions with whole-heart coverage. The highly accelerated spiral perfusion imaging has an in-plane 

acceleration factor of 10 and 5 for SS and SMS MB=2 acquisitions, respectively. Utilizing the proposed 3D U-

Net based denoising architecture, following pre-processing steps of coil selection, motion correction, and 

NUFFT, the image reconstruction time could be shortened from ~30 minutes per dynamic series to under 3 

minutes with a network inference time of ~100 ms while still maintaining high image quality as compared with 

a current state‐of‐the‐art CS algorithm, making online reconstruction feasible. 

4.2 Methods 

4.2.1 Pulse Sequences and Data Acquisition 

To evaluate the DESIRE technique, first-pass perfusion imaging was performed using both SS and SMS 

acquisitions. For both SS and SMS MB=2 acquisitions, a variable-density spiral trajectory with Fermi transition 

was adopted, leading to an in-plane acceleration factor of around 10 and 5 for SS and SMS, respectively. Pulse 

sequence parameters were from our previously proposed high-resolution spiral perfusion studies at 3 T33,112,125,126: 

FOV=340 mm, TR=8 ms, TE=1 ms, in-plane resolution=1.251.25 mm2, slice thickness=10 mm, flip angles 

were 26 and 18 for SS and SMS, respectively. Each spiral-out interleave had a readout time of 4 ms, and the 

number of interleaves were 4 and 8 for SS and SMS acquisitions, respectively. Both SS and SMS had similar 

signal-to-noise ratio (SNR) and temporal sampling footprint for each slice. Spiral interleaves were uniformly 

distributed in each heart-beat and were rotated by the golden angle (137) between heart beats, to achieve 

temporal incoherence and also to achieve a similar sampling strategy for both SMS MB=2 acquisitions with 

Hadamard phase cycling of the interleaves in each heart-beat9,72 and the interleaved SS acquisitions. 
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A non-selective saturation with an optimized hard-pulse train113 for 𝑇1-weighted preparation and a 

spectrally selective adiabatic inversion recovery pulse (SPAIR) for fat suppression were utilized. 

Resting perfusion images from 29 healthy volunteers and 5 clinical patients undergoing clinically 

ordered CMR studies with gadolinium (Gd)‐based contrast agents (Gadoteric acid - Gadoterate meglumine; 

Dotarem Guerbet or Clariscan GE Healthcare) were included. Written informed consent was obtained from all 

subjects using protocols approved by the University of Virginia Health Sciences Research Institutional Review 

Board. Imaging was performed on 3 T MRI scanners (MAGNETOM Prisma/Skyra; Siemens Healthineers, 

Erlangen, Germany). Spiral perfusion imaging was performed using 0.075 mmol/kg of contrast agent injected 

intravenously at a rate of 4 mL/s followed by 25 mL of saline flush at a rate of 4 mL/s. Subjects were asked to 

hold their breath as long as possible followed by shallow breathing during the acquisition of perfusion images 

over 50 to 60 heartbeats. 6-8 slices were acquired for each subject up to the SAR limitation and subject’s heart 

size. 6 out of 29 healthy subjects underwent spiral perfusion imaging during two separate gadolinium injections 

separated by a 20-minute washout period and the other 23 subjects underwent 1 spiral perfusion scan. Overall, 

the studies in volunteers and patients resulted in 30 SS and 10 SMS MB=2 perfusion datasets for analysis. 

4.2.2 Motion-compensated (SMS-Slice-)L1-SPIRiT Reconstruction Technique 

The proposed DESIRE technique aims to achieve similar image reconstruction quality as the iterative 

L1-SPIRiT based reconstruction technique for high-resolution spiral perfusion imaging. The previously 

proposed motion-compensated L1-SPIRiT reconstruction results served as the reference images for training of 

the image reconstruction networks. 

The interleaved SS and SMS images can be reconstructed using a motion-compensated technique: 

(SMS-Slice-) L1-SPIRiT8,107,126 where the through-plane operator was incorporated in the proposed SMS-Slice-

L1-SPRIiT reconstruction for spiral perfusion imaging to reduce the slice leakage and improve the reconstruction 

performance, which can be expressed as follows: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

||𝛷𝑅𝐹𝑢𝑥 − 𝑦||2
2 + 𝜆1||(𝐺𝑆𝑃𝐼𝑅𝑖𝑇 − 𝐼)𝑥||2

2 + 𝜆2||𝛹𝑥||1 + 𝜆3||(𝐺𝑇𝑃 − 𝐼)𝑥||2
2 [4-1] 
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where 𝑥 are motion-corrected multi-channel dynamic perfusion images to be reconstructed for each slice, 𝑦 is 

the acquired spiral SS or SMS data that might contain motion, 𝐹𝑢 is an inverse Fourier gridding operator (NUFFT) 

that transforms from Cartesian image space to spiral k-space48, 𝑅 is the motion-correction operator mapping the 

motion-corrected perfusion image series to the motion-corrupted image series130, 𝐺𝑆𝑃𝐼𝑅𝑖𝑇 is an image‐space 

SPIRiT operator for each slice45, 𝐺𝑇𝑃 is an image‐space through-plane (TP) operator which is calibrated by 

enforcing consistency on the desired slice and blocking the signal from the interfering slices to reduce slice 

leakage artifacts33,131,132, 𝛹 is the finite time difference transform that operates on each individual coil separately 

enforcing sparsity in the temporal domain of perfusion image series, 𝐼 is the identity matrix, 𝜆1, 𝜆2 and 𝜆3 are 

parameters that balance the data acquisition consistency with SPIRiT calibration consistency, temporal sparsity 

and slice consistency, and 𝛷 is the SMS Hadamard phase modulation operator72 that depends on the number of 

interleaves and the desired SMS factor. For SS acquisition the same equation can be utilized by setting 𝛷 to 𝐼 

and setting 𝜆3 = 0, which results in the SS L1-SPIRiT reconstruction. 𝜆1 = 1 and 𝜆2 = 0.4𝑀0 where 𝑀0 was 

the maximal magnitude value of the NUFFT images were chosen for SS reconstructions as in our SMS-Slice-

L1-SPIRiT manuscript.33 Similarly, for SMS reconstructions, 𝜆1 = 1, 𝜆2 = 0.5𝑀0, and 𝜆3 = 1 were selected as 

in our prior publication33. These parameters were selected based on the results of a retrospective experiment that 

balanced image quality and temporal fidelity as first described by Feng et al116. The same regularization 

parameters were used for all reconstructions.  

The motion correction operator 𝑅 was 2D in-plane rigid motion correction as described by Zhou et al130. 

To achieve good motion correction in the setting of the dynamic signal intensity variation in perfusion image 

series, images were registered to synthetic images derived by performing temporal principal component analysis 

so that images could be rigidly registered to a target frame that has consistent signal intensities33. 

Prior to image reconstruction, coil selection is performed to retain coils with low artifact power and 

high SNR in the region around the heart as described by Zhou et al31. This CS-based motion-compensated image 

reconstruction problem is solved using a nonlinear iterative conjugate gradient descent algorithm117 with 80 

iterations to achieve high image quality. This iterative reconstruction process takes ~30 minutes per dynamic 
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perfusion image series from a single slice location. The (SMS-Slice-)L1-SPIRiT image reconstruction and 

processing with GPU-accelerated NUFFT133 was conducted in MATLAB (The MathWorks, Natick, MA). 

4.2.3 Proposed DESIRE Reconstruction Technique 

We sought to comprehensively evaluate the reconstruction performance by evaluating four different 

factors: (1) the choice of magnitude-valued and complex-valued data types, (2) the difference of complex-valued 

and real-valued convolutions, (3) the influence of network structures including depth and the number of kernels 

at the initial layer for 3D networks and (4) the comparison between the (2D+t) and the 3D convolutional unit. 

The number of trainable parameters for each network are listed in Table 4-1. 

 

Table 4-1. The number of trainable parameters for each network. 

 

Network Structure No. of Trainable Parameters 

Complex-

valued 

Convolution 

3D, D2K16 609282 

3D, D3K16 2510594 

3D, D2K32 2434050 

3D, D3K32 10037762 

Non-complex-

valued 

Convolution 

3D, D2K16 

(Magnitude Data) 
304641 

(2D+t), D2K16 305164 

3D, D2K16 

(Baseline) 
305090 

3D, D3K16 1255746 

3D, D2K32 1217922 

3D, D3K32 5019778 
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Figure 4-1. The proposed deep learning-based image reconstruction workflow and the proposed 3D U-Net based 

image reconstruction network for spiral first-pass perfusion imaging. (A) shows the pre-processing steps for both 

interleaved SS and SMS MB=2 acquisitions. The baseline network is shown in (B), which has several initial kernels of 16 
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and a depth of 2. The numbers above each layer denote the number of kernels at each layer, and the corresponding image 

shape at each layer is also labelled. 

All the following comparisons were conducted with respect to the baseline model as shown in Figure 

4-1-B. This baseline model is a 3D U-Net image reconstruction network taking the complex-valued data as 

inputs where real and imaginary parts are concatenated along the channel dimension134. The outputs are the 

concatenated real and imaginary perfusion image series. As illustrated in Figure 4-1-B, the baseline network has 

a depth of 2 (D=2), 16 initial kernels (K=16), 3×3×3 convolution kernel and 2×2×2 pooling size.  We chose to 

use a kernel size of 3 based on preliminary experiments which demonstrated that kernel sizes of 5 and 7 did not 

improve reconstruction performance. The non-linear ReLU activations are conducted after each convolutional 

layer on each channel. Batch normalization operations are omitted from the network to reduce the GPU memory 

costs. A residual connection is conducted by summing the inputs and the model outputs51,52. 

Data Pre-Processing 

Prior to inputting the data into the image reconstruction network, the pre-processing steps for data 

preparation were conducted as illustrated in Figure 4-1-A. For 3D networks, the inputs to the network were 

undersampled 3D perfusion image series (2D spatial + time) from a single slice location following coil-

selection31, rigid motion-correction130, and adaptive phase combination as described by Walsh et al135. To save 

the GPU memory cost, each dynamic perfusion image series was cropped into a 192×192 matrix with 40 

temporal frames, where temporal frames 1 to 40 were cropped out of temporal frames 1 to 50 or 60 to reconstruct 

images during the first pass of the contrast agent. For each 3D input (2D spatial + time), the image intensities 

were normalized by its maximum absolute value. 

Specifically, for SMS MB=2, to prevent slice-leakage artifact from being learned by the SMS network, 

the reference image data were SS L1-SPIRiT images at each slice locations, and the input images were the 

retrospective data from the two separate slice images with Hadamard SMS MB=2 phase modulation72. Similar 

to the SMS-Slice-L1-SPIRiT method33, an through-plane kernel was applied on the initial images to further 

reduce the interfering artifact from the other slice prior to inputting the data into the network. 
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Evaluation 1: Magnitude-valued vs. Complex-valued Data Input Types 

We evaluated the reconstruction performance between using magnitude-valued or complex-valued 

data inputs and outputs. The magnitude-valued data for both inputs and outputs were generated by using the 

absolute values of the complex-valued data following optimal coil combination. Magnitude images do not take 

the complex-nature of the input data into account, whereas utilizing complex-valued data takes the phase of the 

MR images into consideration. A magnitude image-based 3D network was utilized where only a single input 

and output channel was used. The number of initial kernels and depth were the same as the baseline network 

shown in Figure 4-1-B. The magnitude-valued data were fed into the 3D model to compare the performance with 

respect to the baseline model taking the complex-valued data as inputs. 

Evaluation 2: Complex-valued vs. Real-valued Convolutions 

Unlike the baseline model taking the real and imaginary parts of data into two separate channels and 

performing real-valued convolutions at each layer, the complex-valued convolutions explored the inherent 

relationship between complex numbers, and it might improve the image reconstruction performance136,137. 

Assume a complex image data is represented as 𝐼 = 𝑎 + 𝑖𝑏 , where 𝑎  is the real part and 𝑏  is the 

imaginary part. The convolution of 𝐼 with a complex filter 𝐹 = 𝑥 + 𝑖𝑦 can be formulated as: 

 𝐶 = 𝐼 ∗ 𝐹 = (𝑎 + 𝑖𝑏) ∗ (𝑥 + 𝑖𝑦) = (𝑎 ∗ 𝑥 − 𝑏 ∗ 𝑦) + 𝑖(𝑎 ∗ 𝑦 + 𝑏 ∗ 𝑥)  [4-2] 

which can be formulated as the following matrix form: 

 𝐶 = [
𝑅𝑒(𝐼 ∗ 𝐹)

𝐼𝑚(𝐼 ∗ 𝐹)
] = [

𝑥 −𝑦
𝑦 𝑥 ] [

𝑎
𝑏

] [4-3] 

where 𝑅𝑒(𝐼 ∗ 𝐹) is the real component of 𝐶 and 𝐼𝑚(𝐼 ∗ 𝐹) is the imaginary component of 𝐶. 

The network that performed the complex-valued convolution had the same structure as the baseline 

network (Figure 4-1-B). Due to GPU memory limitation, the complex-valued convolution could only be used 

with a depth of 2 and 16 initial kernels (D2K16). The complex-valued convolution as shown above was enforced 

at each layer for the real and imaginary channels. The complex-valued image reconstruction network utilized 
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ℂReLU where real and imaginary parts underwent standard ReLU operations separately, which has been 

demonstrated to result in the superior performance in the U-Net based image reconstruction network 

previously137. 

Evaluation 3: Different 3D Network Structures 

The baseline network as shown in Figure 4-1-B has a depth of 2 (D=2) and 16 kernels in the initial layer 

(K=16). The U-Net based network has a structure where the number of kernels at each layer doubles as the 

network goes to each deeper layer. Compared with the baseline network, we aimed to evaluate the reconstruction 

performance as a function of the depth of the network (D) and the number of kernels at initial layer (K). 

Increasing the number of kernels at initial layer give the network more capacity to learn the mapping function 

from the undersampled images to the ground truth. With pooling operations, the height and width of the image 

gradually reduces as the number of layers increases, which helps the kernels in the deeper layers to focus on a 

larger receptive field to better understand the features presented in the image. Given the limitation of GPU 

memory, we explored 3D networks with real-valued convolutions that had a depth of 2 or 3 (D=2 or 3) and 16 

or 32 kernels at the initial layer (K=16 or 32), which resulted in four network structures: D2K16, D2K32, D3K16 

and D3K32. Additionally, analysis was conducted for the complex-valued convolutional network structures with 

more layers and initial kernels: D2K16, D2K32, D3K16 and D3K32.  

Evaluation 4: Comparison of (2D+t) and 3D Convolutional Networks 

For the 3D input data, either joint 3D convolutions or the separable 3D convolutions55,58,138 (i.e. the 3D 

convolution is decomposed into simpler 2D spatial and 1D temporal convolutions, referred as 2D+t convolutions) 

can be conducted. The performance of (2D+t) and 3D convolutions were compared for the baseline network 

(D2K16). For (2D+t) convolutional networks, an additional ReLU activation is added in between spatial and 

temporal convolutions to enhance the representational power. To make a fairer comparison, the number of 

trainable parameters between (2D+t) and 3D networks is matched by setting the number of 2D spatial filters as: 
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 𝑁 =
𝑡𝑑𝑥𝑑𝑦𝑁𝑖𝑛𝑁𝑜𝑢𝑡

𝑑𝑥𝑑𝑦𝑁𝑖𝑛 + 𝑡𝑁𝑜𝑢𝑡
 [4-4] 

where the spatial kernel size is 𝑑𝑥 × 𝑑𝑦 × 1 and the temporal kernel size is 1 × 1 × 𝑡, 𝑁𝑖𝑛 is the number of input 

kernels at each layer, 𝑁𝑜𝑢𝑡 is the number of kernels after the temporal convolution at each layer, and 𝑁 is the 

number of kernels after the intermediate spatial convolution. 𝑑𝑥, 𝑑𝑦 and 𝑡 were set as 3 to match the kernel size 

of 3D convolutions. This leads to the number of trainable parameters of 305164 and 305090 for (2D+t) and 3D 

convolutional networks, respectively. 

Training Procedures 

The deep learning model was implemented in PyTorch and all of the training procedures were conducted 

on a GPU server equipped with Python (version 3.6, Python Software Foundation). The training of the 3D 

baseline networks was conducted using PyTorch. 

Each network was trained with a batch size of 4 using the standard ADAM optimizer with 

hyperparameters 𝛽1=0.9, 𝛽2=0.999, 𝜖=10-8 and a learning rate of 0.0001. All of the trainings were conducted for 

150 epochs by minimizing an ℓ1 loss: mean absolute error (MAE) of the reconstructed images to the ground-

truth L1-SPIRiT images. MAE was calculated using the magnitude images of the final reconstructions. The 

choice of this ℓ1 loss function was based on our initial experiments that demonstrated improved SSIM for ℓ1 

loss as compared to ℓ2 loss, which was consistent with other studies comparing loss functions for image 

reconstruction and restoration61,139. 

SS and SMS networks were trained separately. In the training procedure for both SS and SMS MB=2 

networks, 156 slices from 20 perfusion data were used for training, and another 14 slices from 2 perfusion data 

sets were used for validation. 
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4.2.4 Experimental Hardware 

The training of networks (D2K16) was conducted on a single GPU (Tesla P100, 12GB memory, 

NVIDIA, Santa Clara, CA, USA). The training of the 3D networks with more layers or initial kernels and 

complex-valued convolutions were conducted on four P100 GPUs due to the memory limitation of a single GPU. 

The reconstruction time of the proposed DESIRE with different network structures and operations was 

evaluated on the single aforementioned P100 GPU, and the CS-based SMS-Slice-L1-SPIRiT reconstruction with 

GPU-NUFFT133 as GPU acceleration was conducted on a server equipped with an Intel i7-7700K CPU (4.20 

GHz) with 32 GB memory. CS-based reconstruction also used P100 GPUs. 

4.2.5 Image Analysis 

For SS networks, the performance of the proposed technique was evaluated on a separate 56 slices from 

8 subjects that were prospectively acquired using the SS pulse sequence. These SS data were also retrospectively 

processed to validate the training performance of SMS networks. 

For SMS MB=2 networks, in addition to the retrospective data from SS acquisitions, another 76 slices 

from 10 subjects with prospective SMS MB=2 acquisitions were used for testing. 

Structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and normalized root mean square 

error (NRMSE) were assessed for prospective SS data and retrospective SMS MB=2 data. 

For both prospectively acquired SS and SMS MB=2 data, two experienced cardiologists blindly graded 

images reconstructed using the proposed DESIRE networks that had the best performance and the CS-based 

(SMS-Slice-)L1-SPIRiT (5, excellent; 1, poor). Example images from this scoring system are presented in the 

appendix of the work by Wang et al33. The reconstruction time per slice (40 dynamic frames) was also evaluated.  

4.2.6 Statistical Analysis 

The normality of the SSIM, PSNR and NRMSE values were assessed using the Shapiro-Wilk test. 

Normally distributed parameters are described by their mean and standard deviation, while non-normally 

distributed parameters are described using the median and interquartile range (IQR). A non-parametric Kruskal-
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Wallis test with Tukey correction was used to test for differences between the techniques. Comparisons between 

individual performances were conducted using a Wilcoxon signed-rank test with Bonferroni correction. For all 

statistical comparisons a p-value of <0.05 were considered statistically significant. Statistical analysis was 

performed using SAS (version 9.4; SAS Institute Inc., Cary, NC). 

4.2.7 Validation on High-resolution Spiral Perfusion Imaging at 1.5 T 

1.5 T has been the dominant field strength for cardiac MR imaging as it has better 𝐵0  and 𝐵1 

homogeneity than at 3 T. Here, we aim to develop high-resolution spiral perfusion imaging at 1.5 T for both SS 

and SMS imaging with high SMS acceleration factors (MB=3 and MB=4), to provide fast and high-quality image 

reconstruction. 

SS (N=5), SMS MB=3 (N=9), and MB=4 (N=3) golden-angle spiral perfusion data sets with 1.5×1.5 

mm2 in-plane spatial resolution and whole-heart coverage (6-9 slices) were acquired from 17 patients undergoing 

clinical studies on a 1.5 T SIEMENS Aera scanner125,126. Detailed pulse sequence parameters are listed in Table 

4-2. 

 

Table 4-2. Detailed acquisition parameters for spiral perfusion imaging at 1.5 T. 

Before inputting the data into the network, coil-selection31, motion-correction114, and adaptive phase 

combination120 were performed on the NUFFT-gridded48 multi-coil image series at each slice location. 
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Specifically, for SMS data, perfusion image series that were input to the network were filtered by the through-

plane kernels33,107 at each slice location to reduce the slice leakage. 

The training data were SS golden-angle spiral perfusion data sets with whole-heart coverage acquired 

from 18 healthy volunteers and 4 patients undergoing our prior clinical studies on 3 T SIEMENS Skyra/Prisma 

scanners33. As described previously, the network adopted was the D3K32 with complex-valued convolutions 

enforced. The reference images were L1-SPIRiT reconstructions. 156 slices from 20 subjects were used for 

training. The training was conducted using PyTorch on four NVIDIA Tesla P100 GPUs with 150 epochs using 

an L1 loss. To test the performance of the proposed technique, prospective SS and SMS images were also 

reconstructed using the GPU-accelerated (SMS-Slice-)L1-SPIRiT where the through-plane kernel was utilized 

for SMS imaging to reduce the slice leakage. 

Prospective SS and SMS images reconstructed by both (SMS-Slice-)L1-SPIRiT and the proposed 

DESIRE technique were blindly graded by an experienced cardiologist (5, excellent; 1, poor). 

4.3 Results 

High image quality was achieved using the proposed DESIRE image reconstruction technique for both 

SS and SMS MB=2 acquisitions. The Shapiro-Wilk test showed that the SSIM, PSNR and NRMSE for each 

network structure were non-parametric, therefore the median and IQR values were used to represent the data and 

Kruskal-Wallis test was conducted separately within the group of SS and SMS MB=2. Table 4-3-A and Table 

4-3-B showed the image quality assessment with respect to SSIM, PSNR and NRMSE for both prospective SS 

and retrospective SMS MB=2 data. 
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Table 4-3. Summary of the image quality assessment for different network structures. Different letters indicate 

groups there are no significant difference (p>0.05) and networks with the best performance are labelled as bold. 

For evaluation 1, utilizing the complex-valued data showed better performance compared with using 

the magnitude-valued data in terms of SSIM, PSNR and NRMSE for both SS and SMS MB=2 (p=1.27×10-7). A 

model taking the magnitude-valued data might fail to explore the phase information. 

A. Image Quality Assessment for Single-Slice Acquisition 

Network Structure SSIM PSNR (dB) NRMSE 

Complex-

valued 

Convolution 

3D, D2K16 0.970 [0.962, 0.976]a 41.054 [38.717, 43.101]b 0.113 [0.087, 0.148]d 

3D, D3K16 0.967 [0.958, 0.973] 41.145 [39.115, 42.712]b 0.112 [0.090, 0.146]d 

3D, D2K32 0.971 [0.963, 0.975]a 40.857 [38.236, 43.127]b 0.118 [0.094, 0.149]e 

3D, D3K32 0.977 [9.972, 0.982] 42.113 [40.174, 43.493]g 0.102 [0.080, 0.125]f 

Non-

complex-

valued 

Convolution 

3D, D2K16 

(Magnitude Data) 
0.898 [0.881, 0.915] 36.893 [35.307, 38.098] 0.182 [0.145, 0.228] 

(2D+t), D2K16 0.957 [0.948, 0.965] 40.133 [37.981, 41.886] 0.130 [0.103, 0.165] 

3D, D2K16 

(Baseline) 
0.959 [0.950, 0.968] 40.658 [38.568, 42.238]c 0.122 [0.097, 0.158]g 

3D, D3K16 0.964 [0.954, 0.972] 40.617 [38.332, 42.557]c 
0.120 [0.095, 0.153]e, 

g 

3D, D2K32 0.971 [0.963, 0.977]a 41.971 [39.699, 43.524]g 0.099 [0.081, 0.130]f 

3D, D3K32 0.971 [0.964, 0.977]a 41.571 [38.856, 43.668]b 0.110 [0.089, 0.142]d 

B. Image Quality Assessment for SMS MB=2 Retrospective Data 

Network Structure SSIM PSNR (dB) NRMSE 

Complex-

valued 

Convolution 

3D, D2K16 0.958 [0.949, 0.965]a 39.603 [38.209, 40.792]c 0.115 [0.095, 0.146]f 

3D, D3K16 0.951 [0.939, 0.960]b 39.696 [38.464, 40.801]c 0.124 [0.010, 0.151] 

3D, D2K32 0.958 [0.949, 0.965]a 40.394 [39.147, 41.508]d 0.110 [0.090, 0.136]i 

3D, D3K32 0.957 [0.946, 0.966]a 40.400 [39.138, 41.512]d 0.109 [0.088, 0.133]i 

Non-complex-

valued 

Convolution 

3D, D2K16 

(Magnitude Data) 
0.934 [0.922, 0.945] 39.083 [38.038, 40.322] 0.128 [0.105, 0.158] 

 (2D+t), D2K16 0.953 [0.942, 0.962]b 40.015 [38.788, 41.146]e 
0.120 [0.095, 0.146]f, 

g, h 

 
3D, D2K16 

(Baseline) 
0.952 [0.941, 0.961]b 39.861 [38.582, 40.948]c, e 

0.121 [0.096, 0.149]f, 

g 

 

3D, D3K16 0.954 [0.943, 0.963]b 40.237 [39.095, 41.413]d 0.116 [0.093, 0.143] h 

3D, D2K32 0.957 [0.947, 0.965]a 40.398 [39.162, 41.459]d 0.113 [0.091, 0.140]f 

3D, D3K32 0.961 [0.950, 0.969] 40.834 [39.619, 42.004] 0.107 [0.086, 0.133]i 
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Figure 4-2 shows comparison between magnitude-valued and complex-valued data types for 3D U-Net 

image reconstruction networks (D2K16) from a healthy volunteer undergoing SS acquisition. There is noticeable 

residual artifact along the chest wall with the magnitude-valued data. 

 

Figure 4-2. Evaluation of the image reconstruction results using magnitude data. Images were acquired from a 

healthy volunteer undergoing SS acquisition and reconstructed using the baseline network (D2K16). As pointed out by the 

arrows, the noticeable artifact from the chest wall can be visualized in the output of the network using the magnitude-

valued data, which might be due to the failure to include the phase information in the data. 

For evaluation 2, the utilization of complex-valued convolution was compared to standard real-valued 

convolutions with respect to SSIM, PSNR and RMSE for SS and SMS MB=2. For SS, the utilization of complex-

valued convolution (D2K16) showed no statistically significant difference with non-complex-valued 

convolution using D2K32 and D3K32 networks in terms of SSIM (p=0.08 and p=0.09, respectively), and no 
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statistically significant difference with D3K32 in terms of PSNR (p=0.11) and NRMSE (p=0.06). For SMS 

MB=2, enforcing complex-valued convolution had no statistically significant difference with D2K32 in terms 

of SSIM (p=0.10), no statistically significant difference with D2K16 in terms of PSNR (p=0.41), and no 

statistically significant difference with D2K16 (p=0.30) and D3K16 (p=0.25) in terms of NRMSE. Enforcing 

the complex-valued convolution exploits the inherent phase information in MR data. The improvement by using 

complex-valued convolutions showed similar performance as increasing the number of layers and initial kernels 

for the magnitude convolutions. 

Figure 4-3 demonstrates the performance of real-valued and complex-valued convolution operations 

from a healthy volunteer undergoing SS acquisition. Overall, good image quality was demonstrated by using the 

3D U-Net networks. However, the network with complex-valued convolution recovered more details near the 

right ventricle as pointed out by the arrow. The error map showed that the complex-valued convolution operation 

had less errors than the regular convolutional network as compared with the ground-truth L1-SPIRiT images. 
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Figure 4-3. Evaluation of the complex-valued convolution. Images were acquired from a healthy volunteer using 

SS acquisition and reconstructed using the baseline network with and without complex-valued convolution. The network 

with complex-valued convolution recovered more details near the right ventricle as pointed out by the arrow. The error 

maps showed that the complex-valued convolution operation had less errors than the regular convolutional network as 

compared with the L1-SPIRiT images. 

For evaluation 3, for real-valued convolutional networks, an improved performance was noticed by 

increasing the depth of network and the number of kernels at the initial layer. However, the capacity of the 

network can be achieved: for SS, there was no statistically significant difference between D2K32 and D3K32 in 

terms of SSIM (p=0.14) and no statistically significant difference between D2K16 and D3K16 in terms of PSNR 

(p=0.18) and NRMSE (p=0.11); for SMS MB=2, there was no statistically significant difference between D2K16 

and D3K16 in terms of SSIM (p=0.21) and no statistically significant difference between D2K32 and D3K16 in 

terms of PSNR (p=0.25) and NRMSE (p=0.27). For complex-valued convolutional networks, the network 
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capacity was also achieved: for SS, there was no statistically significant difference between D2K16 and D2K32 

in terms of SSIM (p=0.82) and PSNR (p=0.77) and no statistically significant difference between D2K16 and 

D3K16 in terms of PSNR (p=0.32) and NRMSE (p=0.41); for SMS MB=2, there was also no statistically 

significant difference between D2K16, D2K32 and D3K32 in terms of SSIM (p=0.48), no statistically significant 

difference between D2K16 and D3K16 in terms of PSNR (p=0.42), and no statistically significant difference 

between D2K32 and D3K32 in terms of NRMSE (p=0.38). 

Figure 4-4 shows the comparison of different network structures. Increasing the number of kernels at 

initial layer and increase the depth of the network lead to improved performance. Overall, good image quality 

was achieved for all 3D network structures. However, as pointed out by arrows and error maps, subtle aliasing 

artifact could still be visualized for a network with fewer initial kernels and less depth. 

 

Figure 4-4. Evaluation of various network structures. Images were acquired from a healthy volunteer using SS 

acquisition and reconstructed using the 3D networks with different network structures. Images reconstructed using 

networks with more depth and initial kernels present less error as compared to the ground-truth images. Error maps were 

normalized with respect to the error map of D2K16 (baseline model). 
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For evaluation 4, the utilization of (2D+t) convolutions did not outperform the 3D convolutions for both 

SS and SMS MB=2 data. Results from SS data indicate the (2D+t) convolutional network was inferior to the 

results of 3D convolutional network (p=6.04×10-4) in terms of SSIM, PSNR and NRMSE (Table 4-3). However, 

for SMS MB=2, statistical analysis indicates the (2D+t) convolutional network had no statistically significant 

difference to the results of 3D convolutional network (p=0.90) in terms of SSIM, PSNR and NRMSE. 

Figure 4-5 shows the comparison of using (2D+t) and 3D convolutional networks for case with SS 

acquisition. Overall, good image quality was achieved for both networks. However, subtle aliasing could still be 

visualized in the results for (2D+t) network. 

 

Figure 4-5. Evaluation of the (2D+t) and 3D convolutional networks. Images were acquired from a healthy 

volunteer with SS acquisition and reconstructed using the baseline network structure with (2D+t) and 3D convolutional 
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units. The network with 3D convolution recovered more details as pointed out by the arrow. The error maps showed that 

(2D+t) convolutional network had more errors than the 3D convolutional network as compared with the L1-SPIRiT images. 

Figure 4-6 shows resting perfusion images acquire in a healthy volunteer using the SS acquisition. The 

images were reconstructed using DESIRE network that had the best performance (D3K32 with complex-valued 

convolution) and L1-SPIRiT separately. The image quality scores for this case were 5 and 4.8 for DESIRE and 

L1-SPIRiT, respectively. The SSIM, PSNR and NRMSE for these cases were 0.979 [0.972, 0.984], 42.456 

[39.670, 43.434] dB and 0.082 [0.068, 0.114], respectively. 

 

Figure 4-6. Interleaved SS prospective spiral perfusion images from a healthy volunteer with 6 slices reconstructed 

using L1-SPIRiT and the proposed DESIRE image reconstruction network (D3K32 with complex-valued convolution). 

Excellent image quality was demonstrated using the proposed image reconstruction network with an SSIM of 0.979 [0.972, 

0.984], a PSNR of 42.456 [39.670, 43.434] dB, and a NRMSE of 0.082 [0.068, 0.114]. Image quality scores for the DESIRE 

and L1-SPIRiT were 5 and 4.8, respectively (5, excellent; 1, poor). 

Figure 4-7 presents the performance for retrospective and prospective SMS MB=2 data. The images 

were reconstructed using DESIRE network that had the best performance (D3K32) and (SMS-Slice)-L1-SPIRiT 

separately. (A) shows an example case from a healthy volunteer undergoing SS acquisition but with retrospective 

SMS modulation. Good image quality was demonstrated with an SSIM of 0.964 [0.956, 0.969], a PSNR of 

41.516 [40.681, 42.127] dB, and a NRMSE of 0.092 [0.081, 0.106]. (B) shows an example case from a healthy 

volunteer undergoing SMS MB=2 acquisition with whole-heart coverage. Good image quality was demonstrated 

with a score of 4.3 for DESIRE and 4.3 for SMS-Slice-L1SPIRiT (5, excellent; 1, poor). 
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Figure 4-7. Evaluation of the SMS MB=2 acquisitions. (A) shows retrospective SMS MB=2 spiral perfusion images 

from a healthy volunteer with 6 slices and (B) shows prospective SMS MB=2 spiral perfusion images from a healthy 

volunteer with 6 slices reconstructed using the proposed DESIRE image reconstruction network (D3K32). Good image 

quality was demonstrated using the proposed image reconstruction network. The case in (A) has an SSIM of 0.964 [0.956, 

0.969], a PSNR of 41.516 [40.681, 42.127] dB, a RMSE of 0.092 [0.081, 0.106]. The case in (B) has an image quality score of 

4.3 and 4.3 (5, excellent; 1, poor) for DESIRE and SMS-Slice-L1-SPIRiT, respectively. 

Figure 4-8 presents a patient that underwent a research stress spiral perfusion imaging using the SS 

acquisition. The images were reconstructed using DESIRE (D2K32) and L1-SPIRiT separately. Good image 

quality was demonstrated with an SSIM of 0.951 [0.943, 0.958], a PSNR of 38.750 [36.439, 40.276] dB and a 

NRMSE of 0.143 [0.101, 0.173]. The perfusion defect seen in the DESIRE image is in agreement with the L1-

SPIRiT reconstruction and corresponds to the high-grade defect seen at cardiac catheterization. The temporal 

fidelity of the images reconstructed using DESIRE also had good agreement with the ground truth (L1-SPIRiT) 

and the input data for which each frame is reconstructed separately without any temporal regularization. 
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Figure 4-8. A patient underwent clinical stress spiral perfusion imaging using the SS acquisition. Images were 

reconstructed using the proposed DESIRE technique (D2K32 network) and L1-SPIRiT which served as the ground truth. 

Good image quality was demonstrated with an SSIM of 0.951 [0.943, 0.958], a PSNR of 38.750 [36.439, 40.276] dB and a 

NRMSE of 0.143 [0.101, 0.173]. The image quality score for DESIRE and L1-SPIRiT were 5 and 5, respectively. The 

perfusion defect showed in DESIRE had good agreement with the ground truth. The cardiac catherization showed that the 

left anterior descending artery had the complete occlusion. The signal plot demonstrated that the temporal fidelity using 

the DESIRE had good agreement with the ground truth and the inputs with the preserved temporal fidelity at myocardium 

circled by the yellow line. 

Figure 4-9 presents the image quality scores from two experienced cardiologists (5, excellent; 1, poor). 

The SS and SMS MB=2 images were reconstructed using the networks that had the best performance (D2K32 

for SS and D3K32 for SMS MB=2) and the CS-based (SMS-Slice-)L1-SPIRiT. Image quality scores were 4.5 

[4.1, 4.8], 4.5 [4.3, 4.6], 3.5 [3.3, 4], and 3.5 [3.3, 3.8] for SS DESIRE and SS L1-SPIRiT, MB=2 DESIRE and 

MB=2 SMS-Slice-L1-SPIRiT, respectively. For both SS and SMS MB=2, the Wilcoxon signed-rank test showed 

that there was no statistically significant difference (p=1) between the proposed DESIRE and (SMS-Slice-)L1-

SPIRiT reconstructions. 
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Figure 4-9. Image quality scores for prospective SS and SMS MB=2 acquisitions from two experienced 

cardiologists (5, excellent; 1 poor). 

The image reconstruction time using the proposed DESIRE technique is significantly shorter than that 

of the reference L1-SPIRiT technique. Table 4-4 demonstrated the image reconstruction time using the proposed 

DESIRE technique. The reconstruction of each dynamic perfusion image series with 40 temporal frames can be 

achieved within a second, showing the potential of online reconstruction and advancing the clinical translation. 

However, the reconstruction time for the ground-truth L1-SPIRiT images was ~30 minutes per dynamic series. 
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Table 4-4. Image reconstruction time of different network structures using the proposed DESIRE technique. 

For spiral perfusion imaging at 1.5 T, good image quality was demonstrated with the proposed DESIRE 

technique. For (SMS-Slice-) L1-SPIRiT reconstruction, image quality scores were 4.5±0.7, 4.0±0.8 and 3.0±0.0 

for SS, SMS MB=3 and MB=4 acquisitions. While for the proposed DESIRE technique, image quality scores 

were 4.4±0.8, 4.1±0.6 and 3.2±0.3 for SS, SMS MB=3 and MB=4 acquisitions (5 excellent, 1 poor). Figure 4-10 

shows an example case from a patient undergoing clinical high-resolution spiral perfusion imaging with SS 

acquisitions. Excellent image quality was demonstrated with a score of 5 and 5 (5 excellent, 1 poor) for L1-

SPIRiT and the proposed DESIRE technique, respectively. Figure 4-11 shows example cases from patient 

undergoing clinical high-resolution spiral perfusion imaging with SMS MB=3 (Figure 4-11-A) and MB=4 

(Figure 4-11-B) acquisitions. For SMS MB=3 (Figure 4-11-A), excellent image quality was demonstrated with 

a score of 5 and 5 (5 excellent, 1 poor) for SMS-Slice-L1-SPIRiT and the proposed DESIRE technique, 

respectively. For SMS MB=4 (Figure 4-11-B), image quality scores were 3 and 3 (5 excellent, 1 poor) for SMS-

Slice-L1-SPIRiT and the proposed DESIRE technique, respectively. The reconstruction time was ~800 ms per 

slice on a NVIDIA Tesla P100 GPU, while the reconstruction time of using (SMS-Slice-) L1-SPIRiT with GPU-

accelerated NUFFT on an Intel Xeon CPU (2.40 GHz) was ~30 minutes per image series. 

Network Structure 
Mean Reconstruction Time (ms) per Dynamic Series on a Single GPU 

(NVIDIA Tesla P100) 

Complex-

valued 

Convolution 

3D, D2K16 374 

3D, D3K16 391 

3D, D2K32 742 

3D, D3K32 791 

Non-complex-

valued 

Convolution 

3D, D2K16 

(Magnitude Data) 
77 

(2D+t), D2K16 89 

3D, D2K16 

(Baseline) 
89 

3D, D3K16 104 

3D, D2K32 161 

3D, D3K32 196 
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Figure 4-10. Prospective spiral perfusion images from a healthy volunteer using single-slice acquisition with 6 

slices reconstructed with L1-SPIRiT and the proposed DESIRE technique. Excellent image quality was demonstrated using 

the proposed image reconstruction network with a score of 5 for both L1-SPIRiT and the proposed DESIRE reconstructions 

(5 excellent, 1 poor). 
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Figure 4-11. High-resolution spiral SMS perfusion imaging reconstructed with SMS-Slice-L1-SPIRiT and the 

proposed DESIRE technique. (A) shows an example case of 9 slices of 1.5 mm resolution perfusion images at middle time 

frame with an SMS factor of 3 from a patient with image quality score of 5 and 5 for SMS -Slice-L1-SPIRiT and the 

proposed DESIRE technique (5 excellent, 1 poor). (B) shows an example case of 8 slices with an SMS factor of 4 from a 

patient with image quality score of 3 and 3 for SMS -Slice-L1-SPIRiT and the proposed DESIRE technique. 

4.4 Discussion 

We demonstrated that high-resolution first-pass myocardial perfusion images for both SS and SMS 

acquisitions at 3 T and 1.5 T with whole-heart coverage can be reconstructed using the proposed DESIRE 

technique. After the evaluation of the complex-valued data and convolution operation and the network structures, 

we found that the 3D U-Net based image reconstruction networks containing more initial kernels and depth with 

complex-valued data produced images with the highest image quality metric and visual scores. Utilizing 

complex-valued convolutions had a similar effect to increasing the number of initial kernels, and typically 

produced better results than a similarly sized magnitude-convolutional network. Compared with the traditional 
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CS-based image reconstruction technique, the proposed technique significantly reduced the image reconstruction 

time from approximately 30 minutes to approximately 100 ms per dynamic perfusion image series after the pre-

processing steps of the data, making the online image reconstruction feasible and advancing the clinical 

translation. 

This work provides a deep learning-based rapid image reconstruction solution for spiral SS and SMS 

myocardial perfusion imaging. In the preprocessing steps, both coil selection and motion correction were 

conducted. The coil selection operation can help remove coils remote from the heart which produce spiral 

swirling artifacts, hence improve the quality of images input to the network. We utilized motion correction of 

the input data to further enhance the reconstruction performance of DESIRE. For SMS MB=2 acquisitions, two 

slices were acquired simultaneously with Hadamard phase modulation as we have described previously. The 

SMS image reconstruction aims to reduce the slice leakage and recover the image content at each slice location. 

The utilization of the retrospective undersampling from SS images for training and the single slice-reconstructed 

images as the output prevents the network from learning any artifacts which may be present when using training 

data reconstructed using an SMS reconstruction. To further reduce the slice leakage, we filtered the data using 

the calibrated through-plane kernels as a pre-processing step as we have described previously33. The further 

improvements of spiral SMS reconstructions and further validation on SMS acquisitions with a higher MB factor 

is of interest. The training inputs to the network were generated from the single-slice “high-apparent SNR” L1-

SPIRiT reconstructions while the testing inputs were prospectively acquired SMS MB=2 images, suggesting the 

testing data had lower SNR level.  To test whether such a SNR difference would degrade the image quality for 

SMS images, we trained a separate network with noise added to the retrospective inputs so that both the 

retrospective and prospective inputs have similar SNR levels. The prospective testing outputs for both networks 

trained with or without added noise had image quality scores of 4 [3.5, 4] vs. 4 [3.5 4] (p=1), indicating the 

robustness of the networks. 

The choice of U-Net based image reconstruction network for spiral imaging was empirical. Of note, 

models which explicitly enforce data fidelity for non-Cartesian data are computationally demanding and require 

increased GPU memory. In our preliminary studies, we tried DL-ESPIRiT model55 without data fidelity and the 
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deep cascade model54 without data fidelity. However, both reconstruction models showed inferior performance 

compared with the 3D U-Net based models as shown in this work. For U-Net based models, the pooling structure 

enables the kernels in the deeper layers to focus on a larger receptive field to better learn the features presented 

in non-Cartesian imaging. Radial image reconstruction networks 51,52,63 also utilized U-Net based networks. 

More analysis regarding the performance of network structure for non-Cartesian imaging is necessary. 

In this work, a 3D U-Net based image reconstruction network with a depth of 2 and 16 kernels at the 

initial layer was proposed as the baseline network. Our preliminary experiments evaluated 2D U-Net based 

image reconstruction networks. However, the 2D networks had limited performance likely due to the lack of 

including the temporal correlations in the dynamic spiral perfusion data. Compared with the 2D networks, the 

3D networks showed significantly improved performance at the expense of increased training time for both SS 

and SMS MB=2 data. We also evaluated the performance of different kernel sizes in our preliminary experiments. 

Compared with the kernel size of 3 utilized in our study, the performance was not improved using a kernel size 

of 5 or 7 (p=0.87). However, using a kernel size of 5 or 7 would increase the number of trainable parameters and 

cost more GPU memory. 

The utilization of the complex-valued data and the complex-valued convolution is also of interest for 

deep learning-based MR image reconstruction. The complex-valued data and convolution inherently take the 

phase information into account, which exploit the inherent complex nature of MR raw data63,64,137. In this work, 

networks which utilized complex-valued convolutions on complex input and output further demonstrated that 

the utilization of complex-valued data and complex-valued convolution could improve the reconstruction 

performance for spiral perfusion imaging. While the training cost for complex-valued models is higher, at the 

time of deployment image reconstruction is still within a second. 

Assessing the influence U-Net structures could provide guidance to improve the reconstruction 

performance. Using more initial kernels and depth provide the network structures with more capacity to extract 

the features and learn the mapping function from the undersampled inputs to the ground truth. For both SS and 

SMS MB=2 data, an improved performance was noticed by increasing the initial kernels and network depth for 
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both complex-valued and non-complex-valued convolutional networks. However, for both SS and SMS MB=2, 

D2K32 and D3K32 had similar performance suggesting adequate capacity for the 2-layered network. By visual 

analysis the reconstructions using complex convolutions were slightly sharper for small trabeculations within 

the LV and RV cavities. For SMS MB=2 networks, the reconstruction task includes removing both in-plane 

aliasing due to in-plane undersampling and through-plane slice-leakage artifact due to SMS acquisition, which 

is a more complicated reconstruction task. Increasing the depth and the number of kernels provides the network 

more capacity to achieve this and the results showed improved performance. 

A related MR image reconstruction study using (2D+t) convolutions demonstrated superior 

performance as compared to using 3D convolutions55. However, in our 3D U-Net based networks for spiral 

perfusion image reconstruction, (2D+t) convolutional network was inferior to 3D convolutional networks for SS 

data and had similar performance for SMS MB=2 data. Previous applications of (2D+t) for CMR image 

reconstruction have been using cardiac cine imaging with Cartesian data sampling and networks using RNNs 

with explicitly enforced data fidelity. The difference in network architecture and the difference in contrast signal 

variation for perfusion datasets could account for these differences. For MR image reconstructions with CNNs, 

the performance and analysis of convolutional units might vary due to network structure and data type. Further 

investigation is still warranted. 

Several previously proposed image reconstruction techniques for Cartesian imaging incorporated data 

fidelity54,55,58,129. However, for non-Cartesian imaging such as radial and spiral imaging, the enforcement of data 

fidelity requires the NUFFT operation and gradient updates that are memory-consuming and time-consuming, 

especially for our 3D image reconstruction networks. To preserve the features from the input, our proposed 

network structure utilized a residual connection between the input and the final output layer. Furthermore, given 

the fact that we have achieved a high image quality with an SSIM of around 0.95 for both SS and SMS MB=2, 

further improvement by enforcing data fidelity might not justify the increased reconstruction time, but requires 

further study. 
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This study also has several limitations. First, the coil selection and motion correction in pre-processing 

steps for a single slice took around 1 minute, respectively. And the calibration process of through-plane kernel 

for SMS MB=2 acquisition took another 1 minute. If these are included the total reconstruction time per slice is 

still <3 minutes which would be clinically acceptable and compatible with online reconstruction. The 

optimization of the pre-processing by utilizing high-performance computers and parallel processing could further 

shorten the reconstruction time. Moreover, given the fact that it is not possible to acquire the fully sampled data 

for spiral perfusion imaging, our previously proposed CS-based image reconstruction was considered as the 

ground truth. Further optimization of the acquisition strategy could improve both the CS reconstructed ground 

truth images and the DESIRE reconstruction. 

4.5 Conclusion 

The proposed image reconstruction technique (DESIRE) enabled fast and high-quality image 

reconstructions for both SS and SMS MB=2 high-resolution first-pass spiral perfusion imaging with whole-heart 

coverage at 3 T and 1.5 T. Further validation will be warranted in patients to comprehensively assess the clinical 

value of the proposed technique. 
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Chapter 5: High-resolution Cartesian Perfusion Imaging with Deep learning-

based Rapid Image Reconstruction 

5.1 Introduction 

First-pass contrast-enhanced myocardial perfusion imaging is useful for evaluating coronary artery 

disease (CAD)3. Cartesian perfusion imaging has been most frequently utilized in clinical settings140. However, 

compared with non-Cartesian imaging like spiral imaging, the Cartesian imaging has relatively low acquisition 

efficiency and whole-heart quantitative perfusion imaging cannot be achieved with 2D acquisition. Additionally, 

Cartesian imaging is less robust to motion artifacts, and the dart-rim artifact (DRA) which are known to be 

exacerbated by low spatiotemporal resolution7 can be severe. Developing high-resolution Cartesian perfusion 

imaging with high acceleration to minimize the temporal footprint could potentially avoid the DRA, but the 

reconstruction time could also be significantly longer, especially for compressed sensing (CS)-based 

reconstruction algorithms where an iterative reconstruction process is involved. Due to the relatively low 

acquisition efficiency, it is difficult to achieve whole-heart coverage with Cartesian perfusion imaging 

techniques. To overcome this limitation, simultaneous multi-slice (SMS) perfusion imaging techniques that 

could enable increased slice coverage to enable whole-heart coverage132,141, has also been developed for high-

resolution Cartesian perfusion imaging. 

To accelerate the image reconstruction process, data-driven and physics-driven approaches have been 

proposed. For data-driven approaches, as shown in Chapter 4:, denoising networks in the image space are trained 

in an end-to-end way. Compared with data-driven reconstruction network utilized in this work, physics-based 

reconstruction methods142 incorporate data fidelity and help preserve fine features of images. Several previously 

proposed image reconstruction techniques for Cartesian imaging incorporated data fidelity54,55,58,129. However, 

physics-driven image reconstruction networks are not widely applied to dynamic imaging, especially for 

perfusion imaging. 
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While high-resolution SMS imaging has been demonstrated at 1.5 T using a Cartesian SSFP approach141, 

we sought to develop a high-resolution Cartesian SS and SMS perfusion imaging technique with a novel deep 

learning-based reconstruction technique, to provides fast and high-quality perfusion imaging for 3 T applications. 

With SMS imaging, multiple slices can be excited and acquired at the same time, and whole-heart coverage 

could be achieved, to provide a relatively comprehensive clinical review and analysis. An SMS factor of two 

was adopted for accelerated Cartesian perfusion imaging. 

5.2 Methods 

5.2.1 Pulse Sequences and Data Acquisition 

The Cartesian SS and SMS perfusion sequence utilized a Poisson-disc sampling patterns along phase 

encoding direction143 with an in-plane acceleration factor of 4. For SMS imaging, a Hadamard phase modulation 

factor of 2 was adopted72, resulting in a total of acceleration factor of 8. For SMS MB=2 phase modulation, the 

Hadamard phase modulation is the same as CAIPIRINHA phase modulation73. The saturation pulse consisted 

of a hard RF pulse train that was optimized at 3 T so that the specific absorption rate (SAR) could be met33. The 

saturation pulse was played out for each acquisition. A SPAIR pulse was utilized for fat saturation. The detailed 

acquisition parameters are listed in Table 5-1. 

 

Table 5-1. The detailed acquisition parameters for the Cartesian high-resolution perfusion imaging. 

To test the proposed technique, 10 healthy volunteers and 5 patients undergoing clinically ordered CMR 

studies with gadolinium on 3 T scanners (MAGNETOM Prisma/Skyra; Siemens Healthineers, Erlangen, 
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Germany) were involved. For healthy volunteers, two contrast injections were conducted, resulting in two 

perfusion datasets for each subject. Totally, 25 perfusion data were involved in this study. 

For single-slice acquisition, 3 slices were acquired for each subject due to the limitation of the available 

acquisition window in each heartbeat. While for SMS MB=2 acquisitions, 3 phase-modulated slices (6 slices) 

were acquired, enabling whole-heart coverage. 

5.2.2 CS-based Cartesian (SMS)-L1-SENSE Reconstruction 

For perfusion imaging, due to the unavailability of the fully sampled data, a state-of-art CS-based image 

reconstruction technique - (SMS)-L1-SENSE served as the reference for the network training. The (SMS-)L1-

SENSE reconstruction method is an extension of the 2D k-t SPARSE-SENSE reconstruction144 and can be 

formulated as: 

 𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

||𝛷𝐹𝑆𝑥 − 𝑦||2
2 + 𝜆||𝛹𝑥||1 [5-1] 

where 𝑥 is the multi-slice dynamic image series to be reconstructed, 𝑆 is the coil sensitivity maps for each slice 

estimated from the calibration images acquired in a separate scan using a method described by Walsh et al33, 𝐹 

is the fast Fourier operator that transforms the image space to k-space, 𝛷 is the Hadamard SMS MB=2 phase 

modulation pattern, 𝑦 is the acquired k-space data, 𝛹 is the finite time difference sparsifying operator, 𝐼 is the 

identity matrix and 𝜆 balances between data consistency and sparsity. 𝜆 = 0.03𝑀0 was chosen as a tradeoff 

between image quality and temporal fidelity, where 𝑀0 was the maximal magnitude value of the initial images 

derived by setting 𝜆 as 0 and executing the algorithm once. Specifically, for SS acquisitions, 𝛷 is 𝐼. 

Before image reconstruction, coil compression118 was conducted to accelerate the reconstruction process. 

The image reconstruction and processing were implemented in MATLAB (The MathWorks, Natick, 

MA). The algorithm was solved using a non-linear conjugate gradient algorithm with 30 iterations. 



94 

 

 

5.2.3 Deep learning-based Image Reconstruction Technique 

Figure 5-1 shows the proposed physics-driven unrolled image reconstruction network. The deep 

learning (DL) image reconstruction network consists of several repeating modules, and each block has a denoiser 

and a data fidelity update. Four repetitive denoising modules with five 3D convolutional layers in each denoising 

module and 32 kernels in each layer were implemented, which is the maximum denoising capacity allowed in 

our GPU (40 GB memory) due to the limited GPU memory. 

 

Figure 5-1. The proposed physics-driven unrolled image reconstruction network for Cartesian perfusion 

imaging. 

To comprehensively evaluate the performance of the proposed image reconstruction network, following 

factors were assessed:  

(a) the utilization of shared weights and non-shared weights in each denoising block: 

As shown in MoDL proposed by Aggarwal et al66, utilization of shared weights in each denoiser can 

provide superior performance compared with non-shared weights. In this work, we also compared the 

performance for the application of dynamic perfusion imaging. 

(b) the utilization of the data fidelity: 

The physics-driven image reconstruction network incorporates data fidelity to preserve the consistency 

with acquired data. The utilization of data fidelity has been demonstrated to be able to preserve details in image 

content55. To demonstrate the performance, with shared weights in each denoising module, images reconstructed 
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with and without data fidelity are compared. The data fidelity update is conducted using the proximal gradient 

descent (PGD) method: 

 𝑥𝑘+1 = 𝑥𝑘 − 2𝛼𝐴𝐻(𝑦 − 𝐴𝑥𝑘) [5-2] 

where the 𝑥𝑘 is the 𝑘th image output from the denoising network before conducting data fidelity while 𝑥𝑘+1 , 𝛼 

is the learning step size which is learnable through the model training process, 𝑦 is the acquired raw data in k-

space, and 𝐴 is the encoding matrix. Specifically, as shown in [5-1, 𝐴 could be represented as the 𝐹𝑆 for single-

slice acquisition while 𝛷𝐹𝑆 for SMS MB=2 acquisitions. 

5.2.4 Experimental Setup 

For single-slice acquisitions, the inputs to the network were a single-channel complex-valued under-

sampled dynamic image series after inverse Fourier transform and optimal coil combination135 The real and 

imaginary parts of the data were concatenated into two channels and the complex-valued convolution operation 

was enforced145. The outputs were concatenated real and imaginary dynamic image series reconstructed using 

the CS-based L1-SENSE as the reference images. 

For SMS MB=2 acquisitions, initial images at each slice location were generated by setting λ shown in 

[5-1. The denoising module from the single-slice acquisition was enforced on each phase-demodulated slice, and 

then the data fidelity update was conducted jointly on both slices. To prevent slice-leakage artifact from being 

learned by the network, the SMS image reconstruction network was trained using the SS L1-SENSE images at 

each slice locations as the reference data, and the input images were the retrospective data from the two separate 

slice images with Hadamard SMS MB=2 phase modulations. 

45 perfusion slices from 15 subjects undergoing single-slice acquisitions were used for training. To save 

GPU memory, each image series was cropped into a 192×192 matrix with 40 temporal frames. Each dynamic 

image series signal was normalized to 0-1. The training of networks was conducted on a single GPU (Tesla 

A100, 40 GB memory, NVIDIA, Santa Clara, CA, USA) with 100 epochs for around 20 hours. The network 

was implemented using PyTorch with a batch size of 1 and an l1 loss (absolute error) function using an ADAM 
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optimizer. The reconstruction time of the proposed DL method was also evaluated on the single aforementioned 

A100 GPU, and the CS-based SMS-L1-SENSE reconstruction was conducted on a server equipped with an Intel 

i7-7700K CPU (4.20 GHz) with 128 GB memory. 

5.2.5 Image Analysis 

For single-slice acquisitions, the performance of the proposed technique was evaluated on a separate 15 

slices from 5 subjects that were prospectively acquired using the single-slice pulse sequence. For SMS MB=2 

networks, another 18 slices from 3 subjects with prospective SMS MB=2 acquisitions were used for testing. 

Structural similarity index (SSIM), peak signal-to-noise ratio (PSNR) and normalized root mean square error 

(NRMSE) were assessed for prospective single-slice data. For both prospectively acquired single-slice and SMS 

MB=2 data, an experienced cardiologist blindly graded images reconstructed using the proposed networks and 

the CS-based (SMS-)L1-SENSE (5, excellent; 1, poor). The reconstruction time per slice (40 dynamic frames) 

was also evaluated. 

5.2.6 Statistical Analysis 

The normality of the SSIM, PSNR and NRMSE values were assessed using the Shapiro-Wilk test. 

Normally distributed parameters are described by their mean and standard deviation, while non-normally 

distributed parameters are described using the median and interquartile range (IQR). For all statistical 

comparisons a p-value of <0.05 were considered statistically significant. Statistical analysis was performed using 

SAS (version 9.4; SAS Institute Inc., Cary, NC). 

5.3 Results 

The difference in image quality between using shared weights and non-shared weights for each 

denoising block was compared. As shown in Figure 5-2, little difference was noticed and there was no statistical 

difference in the quantitative parameters. Images reconstructed using shared weights has an SSIM of 0.929 

[0.920, 0.935], a PSNR of 34.88 [32.10, 35.68] dB, and an NRMSE of 0.193 [0.185, 0.200]. While images 

reconstructed using non-shared weights has an SSIM of 0.931 [0.921, 0.933], a PSNR of 34.89 [32.10, 35.70] 
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dB, and an NRMSE of 0.192 [0.182, 0.199]. There is no statistical difference between using shared weights and 

non-shared weights. 

 

Figure 5-2. Comparison of image reconstruction network using shared weights and non-shared weights for each 

denoising module. Little differences are noticed, and there is no statistical difference. 

Image reconstruction networks with and without data fidelity update were compared. As shown in 

Figure 5-2, image reconstructed using data fidelity preserve more fine details with respect to image reconstructed 

with network not incorporating data fidelity. Image reconstructed with data fidelity has an SSIM of 0.929 [0.920, 

0.935], a PSNR of 34.88 [32.10, 35.68] dB, and an NRMSE of 0.193 [0.185, 0.200]. While images reconstructed 

with network without data fidelity has an SSIM of 0.911 [0.900, 0.921], a PSNR of 33.45 [31.95, 34.58] dB, and 

an NRMSE of 0.211 [0.200, 0.228] (p=0.01). This analysis demonstrates the necessity of incorporating data 

fidelity into the image reconstruction. 
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Figure 5-3. Comparison of image reconstruction network with and without data fidelity. As pointed out by 

arrows, fine features are preserved by incorporating data fidelity. 

With the above analysis, we utilized shared weights in each denoiser, four repetitive denoising modules 

and data fidelity was enforced. Both single slice acquisitions and SMS MB=2 acquisitions were assessed by 

cardiologist using results from such network setting. 

The DL image reconstruction results from single-slice acquisitions had SSIM, PSNR and NRMSE of 

0.944 [0.933, 0.952], 36.24 [35.02, 37.25] dB and 0.162 [0.132, 0.175] with respect to the reference (L1-SENSE), 

demonstrating good performance of the proposed method. The image reconstruction time for (SMS)-L1-SENSE 

was 45 minutes per slice while the reconstruction time using proposed deep learning method was around 8 

seconds, demonstrating a rapid and high-quality image reconstruction. 

For single-slice acquisitions, the image quality scores were 4.5 [4 ,5] and 3.6 [3.5, 4] for L1-SENSE 

and DL reconstructions, respectively. While for SMS MB=2 acquisitions, the image quality scores were 3.7 [2.5, 

4.5] and 3.3 [2.4, 4] for SMS-L1-SENSE and DL reconstructions. 
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Figure 5-4 shows an example case from a healthy volunteer undergoing clinical Cartesian single-slice 

perfusion imaging with an image quality score of 4 and 3 for L1-SENSE and DL image reconstruction, 

respectively, demonstrating the high image quality of the proposed method. 

 

Figure 5-4. Cartesian perfusion imaging from a healthy volunteer underwent single-slice acquisition with an in-

plane acceleration factor of 4. Image is reconstructed using the inverse Fast Fourier transform (IFFT), deep learning (DL), 

and compressed sensing (CS) method. 

Figure 5-5 shows an example case from a healthy volunteer undergoing clinical Cartesian SMS MB=2 

perfusion imaging with an image quality score of 4.5 and 4 for SMS-L1-SENSE and DL reconstruction, 

respectively, demonstrating the good performance of the proposed image reconstruction method. 
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Figure 5-5. Cartesian perfusion imaging from a healthy volunteer underwent SMS MB=2 acquisition with whole-

heart coverage. Image is reconstructed using the deep learning (DL) and compressed sensing (CS) method (SMS-L1-

SENSE). 

5.4 Discussion 

We demonstrated high-quality high-resolution Cartesian first-pass myocardial perfusion imaging for 

both SS and SMS MB=2 acquisitions at 3 T and images can be reconstructed using the proposed rapid DL image 

reconstruction technique. The proposed physics-driven DL-based image reconstruction approach demonstrated 

rapid and high-quality reconstructions, making online reconstruction feasible so that results could be provided 

to doctors in a timely manner. 

The model we adopted used shared weights among different denoising modules. Compared with 

networks trained using different weights for each module, utilizing shared weights could reduce the number of 

trainable parameters significantly and save the GPU memory cost. However, by comparing networks without 

using shared weights, image reconstruction performance was similar. 

The utilization of data fidelity could help enhance the image reconstruction performance and perverse 

some fine details shown in the image. In this work, the proximal gradient decent method was utilized to conduct 

data fidelity update. Optimization of the data fidelity update such as utilizing conjugate gradient descent could 

further improve the performance66. 
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There are also several limitations in this work. Firstly, the coil compression in pre-processing steps for 

a single slice took around 1 minute and the image reconstruction took around 8 seconds. The optimization of the 

pre-processing by utilizing high-performance computers and parallel processing could further shorten the time 

of pre-processing. Optimization of the data fidelity step could further shorten the inference time. Exploration of 

deep learning-based image reconstruction approach for SMS imaging is still of interest. Moreover, given the fact 

that it is impossible to acquire the fully sampled data for perfusion imaging with whole-heart coverage, a state-

of-art CS-based image reconstruction method (L1-SENSE) was considered as the reference in the network 

training process. Further optimization of the acquisition strategy could improve both the CS reconstructed 

images and the deep learning-based image reconstructions. 

5.5 Conclusion 

The proposed high-resolution Cartesian perfusion imaging with deep learning-based rapid image 

reconstruction network enabled fast and high-quality image reconstructions for both SS and SMS MB=2 high-

resolution first-pass Cartesian perfusion imaging. Further validation will be warranted in patients to 

comprehensively assess the clinical value of the proposed technique. 
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Chapter 6: Conclusions and Future Works 

6.1 Overview of Findings 

The overall goal of this dissertation is to develop advanced techniques for fast high-resolution first pass 

CMR perfusion imaging with whole-heart coverage. 

Firstly, high spatial resolution (1.251.25 mm2) spiral perfusion imaging at 3 T was proposed. The 

proposed single slice and SMS imaging incorporated OVS imaging to further advance the acquisition efficiency. 

Pulse sequences were carefully optimized so that high spatial-temporal resolution of spiral perfusion imaging 

could achieved, and SAR limitation could be met at 3 T. On the reconstruction side, to further improve the 

reconstruction performance for SMS imaging, a novel reconstruction approach that incorporated a through-plane 

kernel into the CS-based image reconstruction pipeline to reduce the slice leakage was proposed and evaluated. 

Results demonstrated superior performance of the technique using the through-plane kernel as compared to the 

technique not using the through-plane kernel. To compensate for respiratory motion, motion compensation was 

incorporated into the image reconstruction pipeline for both single slice and SMS acquisitions. After image 

reconstruction, the automatic 𝐵0  inhomogeneity correction was incorporated to further advance the image 

quality. Overall, high image quality was demonstrated for spiral perfusion imaging with whole-heart coverage 

at 3 T for both SS and SMS acquisitions with and without OVS in human studies. In direct comparison, the 

interleaved single slice spiral approach without OVS had the highest image quality. With high resolution, the 

increased transmural resolution may improve assessment of myocardial perfusion gradients, and the whole-heart 

coverage may improve quantification of ischemic burden. Further validation will be required in patients 

undergoing stress CMR to assess the clinical value of high-resolution perfusion imaging. 

However, one of the limitations of the proposed iterative CS-based image reconstruction algorithm for 

spiral perfusion imaging was the long reconstruction time, impeding the clinical translation of the proposed 

technique. To overcome this limitation, a DEep learning-based rapid Spiral Image Reconstruction (DESIRE) 

was proposed and implemented for both single slice and SMS imaging with an MB factor of 2. The image 

reconstruction network was a 3D U-Net based network that took CS-based L1-SPIRiT reconstructions as 
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reference. We systematically assessed the performance of the proposed network in terms of four different factors: 

(1) the choice of magnitude-valued and complex-valued data types, (2) the difference of complex-valued and 

real-valued convolutions, (3) the influence of network structures including depth and the number of kernels at 

the initial layer for 3D networks and (4) the comparison between the (2D+t) and the 3D convolutional unit. 

Results demonstrated that, complex-valued data inputs using the 3D complex-valued convolutional network with 

more depth and kernels in the initial layer had the best performance. The proposed method demonstrated high 

image quality for both spiral single slice and SMS imaging with an MB factor of up to 3. Specifically, for SMS 

MB=2 acquisitions, to prevent slice-leakage artifact from being learned by the SMS network, the reference image 

data were SS L1-SPIRiT images at each slice locations, and the input images were the retrospective data from 

the two separate slice images with Hadamard SMS MB=2 phase modulations. The proposed method could 

shorten the reconstruction time from around 30 minutes per image series (40 dynamic frames) at a slice location 

to around 1 second.  With an online implementation this would allow for rapid reconstruction facilitating clinical 

translation. The proposed DESIRE technique enables rapid image reconstruction for both single-slice and SMS 

imaging with high spatial resolution and respiratory motion correction. Specifically, we also demonstrated that 

the proposed technique could provide high-quality reconstruction for SMS spiral perfusion imaging at 1.5 T with 

an SMS acceleration factor of 3 and 4. 

As Cartesian perfusion techniques are most commonly deployed clinically, we also sought to evaluate 

the proposed CS, SMS, and deep-learning techniques for Cartesian high-resolution perfusion imaging for both 

single slice and SMS acquisitions with an MB factor of 2 using a 2D Poisson-Disc incoherent sampling pattern 

along temporal dimension. With SMS MB=2 acquisitions, whole-heart coverage for Cartesian perfusion imaging 

could be achieved. To overcome the limitation of the long reconstruction time for the iterative CS-based 

Cartesian (SMS)-L1-SENSE reconstructions, a deep learning-based physics-driven rapid image reconstruction 

network was proposed. The proposed unrolled image reconstruction network took CS-based L1-SENSE results 

as reference and incorporated both image denoising blocks and data fidelity so that fine features could be 

preserved. For SMS MB=2 acquisitions, to prevent slice-leakage artifact from being learned, the reference image 

data were SS L1-SNESE reconstruction results at each slice locations, and the input images were the 
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retrospective data from the two separate slice images with Hadamard phase modulations. Utilizing the proposed 

DL-based image reconstruction network, the reconstruction time could be shortened from 45 minutes dynamic 

series at a slice location to around 8 seconds. This proposed approach could provide rapid and high-quality image 

reconstruction for both single slice and SMS MB=2 high-resolution Cartesian perfusion imaging, demonstrating 

the potential for clinical translation. Further validation and comparison between spiral and Cartesian quantitative 

perfusion imaging will be required in patients undergoing stress CMR to assess the clinical value of the Cartesian 

versus spiral perfusion imaging techniques. 

6.2 Future Work 

6.2.1 Deep learning-based Rapid Image Reconstruction for other Spiral Imaging Modalities 

The proposed DESIRE reconstruction network was essentially a denoising network for spiral dynamic 

imaging, which motivates the applications of the network on other dynamic imaging applications such as spiral 

real-time cine imaging. Iterative CS image reconstruction of spiral imaging is time-consuming, and a high-

resolution real-time cardiac cine imaging at 1.5 T using rapid spiral acquisitions and deep learning-based imaging 

reconstruction for both bSSFP and GRE imaging could make high-quality and rapid online reconstruction for 

cardiac cine imaging feasible. 

Figure 6-1 shows examples from the testing data for the bSSFP (Figure 6-1-A) and GRE (Figure 6-1-

B) imaging, respectively. The case shown in Figure 6-1-A had an image quality score of 4.5 for L1-SENSE and 

DESIRE. The case shown in Figure 6-1-B had an image quality score of 4 for both L1-SENSE and DESIRE. 
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Figure 6-1. Cardiac bSSFP and GRE cine imaging at 1.5 T reconstructed using the proposed DESIRE technique 

and the spiral L1-SENSE served as the reference. 

Besides, the proposed method could potentially be applied to spiral 𝑇1  mapping. However, signal 

evolution in 𝑇1 mapping should be carefully analyzed since the network might potentially bias the temporal 

fidelity of the signal evolutions. Incorporation of physics-driven methods that incorporate data fidelity for spiral 

imaging might further enhance the image reconstruction performance. 

6.2.2 Deep learning-based Rapid Quantification Analysis for Spiral Perfusion Imaging 

With the rapid image reconstruction technique, rapid image reconstruction could be achieved with a 

clinically acceptable time frame (<1 second). It is also essential to provide rapid analysis of the quantification of 

spiral perfusion imaging. To date, the current available online quantification techniques do not include the rapid 
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online reconstructions146,147. The rapid online image reconstruction framework for both spiral and Cartesian 

perfusion imaging could be incorporated with deep learning-based rapid motion correction and quantification 

techniques. 
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