
Microservices: An Architectural Approach to Software Development

CS4991 Capstone Report, 2022
Wen Ip

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

wenip3@gmail.com

Abstract
The recent implementation of a
microservices architectural style for a
financial advisor application at a large
banking company had its advantages, as
well as drawbacks. The implementation
resulted in the potential for easy scalability
and product development work that
coincides more closely with business needs.
However, implementing microservices also
increased management complexity and
posed a challenge for the standardization of
microservices across teams. My team and I
explored a more efficient strategy for
managing and standardizing microservices
to maximize the potential of microservices
in applications. The drawbacks and
advantages of microservices will be used to
recommend potential implementation
methods for microservices that will improve
software development process while using
this architecture and enhance the
functionality and performance of
microservice applications. Microservices
demonstrated that they can be easily
integrated with other applications without
having to create redundant code; but also
showed the need for standards across
software development and microservice
implementations.

1. Introduction
Microservices is a new approach to the way
an application is structured and built.
Software development techniques and
processes have evolved to deliver high

quality software solutions. These solutions
have become more complex with larger
architectural designs to expand functionality
and scalability. The architecture style of
building a software application determines
its scalability, resilience, and business
functionality. It is important to determine
the architectural design of the software
product to fit its needs and purpose.

2. Literature Review
According to O’Connor, et. al., (2017),
microservice architecture is an emerging
approach that revolves around the idea that
self-contained components of functionality
make up a larger system [1]. It allows for an
application to be built upon a collection of
individual services that can be arranged,
organized, and maintained into multiple
applications.

Unlu, et. al. (2022) [2]. posit that the
potential of implementing this architecture
transforms the way companies utilize cloud
technology, as well. Microservices have
been paired with the emerging popularity of
cloud technology. With the use of
automation on cloud platforms,
microservices can be deployed and scaled
quickly. Each microservice serves a business
need or functionality, meaning an
application can easily be altered by choosing
to include a microservice or not.

Since microservices is an emerging
approach, many companies have adopted
this method, but there is not much research

about its common practices. Researching the
advantages and disadvantages of
microservices can help companies decide
whether they want to implement
microservices or further develop their
approach to implementing microservices.

3. Process Design
I was assigned to create an application from
scratch for my summer internship. As a
software engineering intern, I learned
software development techniques adopted
by the company, developed the proposed
application with a team, and presented a
demo of the application to stakeholders.

3.1 Review of Project
Over the course of ten weeks, I worked on
an application for a large banking company.
The five-person development team included
software engineering interns with a scrum
master and product owner. The team worked
in 2-week sprints using scrum
methodologies.

The purpose of the application we developed
is to enable financial advisors to give
feedback on how single-page applications
are meeting their business needs. The
application uses microservice architecture
and can be imported into different financial
advisors’ platforms as a button on the
taskbar of the page.

3.2 Technical Aspects
The microservice used Spring Boot
framework and layers. The database was
built on MongoDB. The frontend side of the
project used Angular, Typescript, HTML
and CSS. The backend side of the project
used Java. Other IDEs’ used to create the
project were Visual Studio Code, Postman,
Gradle, and IntelliJ.

3.3 Challenges
The team was new to the framework and
technologies used for this application, which

created a learning curve for using the
technologies and connecting the layers of
the application.

Another challenge was that the integration
can be different for various applications
because of the way these applications are
already set up. Grabbing URL links or
advisor IDs may vary greatly between
applications, which can cause confusion
between engineering teams when projects
are switched over to new teams.

3.4 Advantages
The implementation of this widget allows
users to submit feedback on the application
so engineers can better understand their
users’ needs. Using a microservice
architecture for this widget allows engineers
to customize the integration of the widget to
their application. Microservice architecture
also makes it easy to integrate the widget
with different applications. Different
applications have different ways of
collecting information related to the
feedback, such as page URLs and advisor
IDs. Engineers can pass parameters to the
microservice when it is imported into their
application.

3.5 Disadvantages
Since microservices can be implemented
into multiple applications, a concern would
be how to develop, integrate and maintain
these microservices. It can be difficult to
integrate microservices into different
applications if these existing applications are
developed differently and teams must spend
more time creating unique solutions for
integration and maintenance of each of these
applications. If a microservice architecture is
used for an application, it would be
important to create models and standards for
how these microservices are implemented so
that is easier to integrate and change the
architecture to better mold to business needs.

4. Results
By the end of the ten weeks, the application
had connected layers from frontend to the
database and successfully implemented a
microservice architecture. The team was
also able to import the microservice into
other applications locally, but not on the
cloud. The team attempted to import the
microservice through JFrog Artifactory, but
due to the time constraints, was unable to
get approvals and complete this task in time.
Theoretically, the application should be able
to function on its own and be integrated into
other existing applications.

5. Conclusion
This project allows us to analyze the
implementations of microservices for an
application. One of the most important
outcomes is that the microservice can be
customizable to other applications if
imported. This shows the potential of
microservices to reduce redundancy and
increase efficiency in creating applications
built on microservices.

While microservices can be adapted to many
different applications, complications in the
maintenance of these applications could
arise if certain standards are not set for
microservice integration. When
microservice architecture is implemented for
application, it is important to focus on and
research software development techniques
and standards to minimize integration issues
and maintenance time.

6. Future Work
If the application we designed is chosen for
further work by another team, they should
be able to continue their development work
with the documentation notes from JIRA
and Confluence created by my team. Future
work for the application includes
implementing and testing integration of the
microservice using JFrog Artifactory. With

complete integration through Artifactory, an
analysis can be done on calls made by the
microservice to see how it functions and to
review the performance of the microservice
component after integrating it with other
applications.

Since the use of microservices are relatively
new technology, it would be helpful to
continue to research and discuss
implementation of microservices to aid
decisions to use this type of architecture.

7. UVA Evaluation
The CS program prepared me to use skills
that allowed me to excel at my internships.
The program provided a variety of software
development skills, including programming
different types of applications,
understanding data structures, and software
development techniques that are relevant in
the current industry.

8. Acknowledgments
I would like to thank my professors,
teaching assistants, and classmates for
creating a safe learning environment where I
could learn and collaborate. I also want to
thank the team members and mentors from
my internship for working with me over the
summer and encouraging growth in my
career.

References
[1] O'Connor, R., Elger, P. and Clarke, P.,
2017. Continuous software engineering-A
microservices architecture perspective.
Journal of Software: Evolution and Process,
29(11), p.e1866.

[2] Unlu, H., Bilgin, B. and Demirors, O.,
2022. A survey on organizational choices
for microservice-based software
architectures. Turkish Journal of Electrical
Engineering and Computer Sciences, 30(4),
pp.1187-1203.

