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ABSTRACT

Sun, Yue Ph.D., University of Virginia, June 2015. Two Time-scales in Global Opti-
mization and Equilibrium. Major Professor: Professor Alfredo Garcia.

In recent years, the performance improvement in computer architecture is shifting

from making a single core faster to increasing the number of processors. Parallel

computing becomes the dominant paradigm in computer architecture. In the global

optimization and equilibrium community, parallel optimization algorithms have been

developed to solve heavily computational intensive problems. One major associated

problem is how to effectively utilize parallel computing power. In this dissertation,

we consider two timescales parallelism in which tasks assigned to parallel threads

are allowed to operate in two timescales. In chapter 2, we present an algorithmic

design with interacting annealing processes in two timescales that guarantee a faster

identification of a globally optimal solution. In chapter 3, we consider a parallel

computing scheme for global optimization that combines a fast timescale multi-start

local search with a slow timescale dynamic reallocation of computational resources.

In chapter 4, we modified Kyle’s informed trading model to include high frequency

traders and show that these traders play a beneficial role in the market in which

insider trading activity has also been detected.
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1. INTRODUCTION

The efficient computation of optimal and equilibrium solutions is an important re-

search domain at the intersection of several disciplines including operations research,

computer science and economics. With the development of both hardware and soft-

ware, computational power has been dramatically increased [1]. However, further

increases of computing speed are prevented from the temperature of chips when the

chips are clocked at higher speed and they become much less energy efficient [2].

In [3], the main techniques for increased clock frequency are described as hitting the

”power wall” because of increasingly complex architectures. In light of these physical

constraints, parallel computing is an alternative that has already been employed for

many years in high-performance computing. The increasing number of processors is

considered as a major source of future performance increases.

Compared to serial computing in which tasks are executed sequentially, parallel

computing carries out many calculations simultaneously operating on the principle

that large problems can often be divided into smaller ones which are then solved

concurrently (”in parallel”). There are several different forms of parallel computing:

bit-level [4], instruction level [5], data [6], and task parallelism [7]. The major form

involved in this dissertation is task parallelism, which is a form of parallelization of

computer code across multiple processors. This parallelism focused on distributing

execution processes (threads) across different parallel computing nodes. Task paral-

lelism is achieved when each processor executes a different thread (or process) on the
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same or different data, in which different execution threads communicate with one

another as they work.

Multiple thread computing has been used in optimization. The idea is to launch

multiple optima or equilibrium identification threads simultaneously on the same or

different searching domains. The optimization or equilibrium searching task is cut

into small pieces operated on different threads. Algorithms derived from paralleliza-

tion have allowed optimization or equilibrium problems requiring days or weeks of

computation on a single-processor computer to be solved in a matter of hours on a

multi-processor machine [8]. In order to effectively allocate threads and computa-

tional power, multiple threads with different communication layers such as MPI and

PVM have been used to develop parallel optimization algorithms [9]. The searching

threads of this kind of parallel optimization algorithms not only share information

but also react to the information shared. Each thread receives attractive, repulsive

or other kind of interactive force from accumulation of all other parallel threads.

The most popular methods of this category are genetic algorithm [10], simulated

annealing [11] and, most recently, particle swarm optimization [12]. Particle swarm

optimization belongs to a population based optimization category which is particu-

larly suited to continuous variable problems and has received increasing attention in

the optimization and equilibrium community. This kind of algorithms work by having

a population of particles following a few simple dynamic rules while the interaction

between acts as a major optimization driver to keep particles formation and direction

(see [13], [14] and [15]). In this dissertation, we implement an interactive technique

to the particles with full scale searching dynamic instead of having interaction as the

main driver. The communication and interaction benefit the efficient allocation com-

putational power and avoid repetition of the searching effort. The parallelism which
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related to this dissertation is similar to task parallelism, where different functions are

assigned to population of threads.

While allowing different functions of different threads or the same thread, it is

common that tasks are operated in different timescales. Inspired by many appli-

cations of science and engineering can be modeled by fast-slow processes [16, 17],

multiple timescales parallel optimization algorithm is introduced [18]. The major ap-

plications of this category are in online learning and optimization (see [19] and [20]),

the problems of which usually encounter objective function of uncertainty. Stochastic

approximation is served as an objective function parameter update rule, the process

includes parameter approximations which operated in a slow timescale and optimum

identification, which is processed in a fast timescale. The idea of two timescales

parallel optimization is to allocate a portion of threads in fast timescale to screen

objective function and help parameters’ approximation with the remaining threads in

slow timescale to perform optima searching function. In this dissertation, we consider

deterministic objective function problem and the parameters of objective function are

assumed to be known. All computational threads in different timescales have the same

category of functions of optimal and equilibrium identification while the threads in

fast timescale concentrate more on exploration and the threads in slow timescale fo-

cus on exploitation. Threads in the same and different timescales communicate and

interact in different layers which help efficiently allocate computational power and

avoid duplication effort.

In the first part of the dissertation we present an algorithmic design with interact-

ing annealing processes which guarantee a faster identification of a globally optimal

solution. A first annealing process operates in a faster timescale and has a drift

function that converges on a non-zero (but relatively small) noise level. A second

annealing process (operating a slower timescale) is subject to a modified drift term in
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which the steepest descent direction is perturbed with the density gradient associated

to the first annealing process. In other words, a repulsive potential from fast screen-

ing thread is added to smooth the objective function of second annealing process.

We show that this repulsive potential (based upon the first annealing process which

quickly identifies locally optimal solutions) allows the second annealing process to

bypass locally optimal solutions in a faster fashion.

In the second part, we revisit the interactive model-based approach to global op-

timization proposed in [21] in which parallel threads independently execute a model-

based search method and periodically interact through a simple acceptance-rejection

rule aimed at preventing duplication of search efforts. The local search functions

operate in fast timescale with the periodic interactions process in slow timescale. We

consider a real-time implementation of the interactive model-based approach which

leads to the problem that when the acceptance-rejection rule is implemented, sev-

eral threads may fail to identify a locally optimal solution. The acceptance-rejection

rule is modified to achieve those alternates with enforcing diverse search (in order to

prevent duplication) and reallocation of computational effort (in order to speed up

the identification of local optima). We show this modification improves the rate of

convergence in real-time which increases with the number of threads.

In the final part of this dissertation we consider a two timescales trading model

in financial markets. A single high frequency trader who trading in fast timescale

is added into Kyle’s discrete dynamic trading model in [22] with the insider trader.

The uninformed high frequency trader perturbs market structure and neutralizes the

ability of observing knowledge of liquidity order low. During equilibrium trading

process, market maker and the informed trader update their information about ag-

gregated order low from the high frequency trader and noise traders by Bayes’ rule.

The belief of liquidity variance converges on real variance in limit. The high frequency
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trader makes positive expected rent when market maker and informed trader’s belief

of liquidity is incorrect and this positive rent decreases with accuracy of liquidity

expectation. We show that when the trading quantity of high frequency trader stay

within a certain range, the high frequency trader protects noise traders by reducing

the total expected loss and plays a beneficial role of the market by providing extra

liquidity when market maker underestimated liquidity variance.
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2. INTERACTIVE DIFFUSIONS FOR GLOBAL

OPTIMIZATION

2.1 Introduction and Literature Review

Simulated annealing for global optimization (see [23], [24]) can be modeled in a

continuous domain as a diffusion process in which the drift term is equal to the steep-

est descent direction and the drift function (i.e. the “cooling schedule”) approaches

zero at a suitable rate so that weak convergence to a limiting distribution (concen-

trating almost all mass in the set of globally optimal solutions) is guaranteed (see,

for example, [25–27]). The main drawback of this class of methods relates to speed

of convergence as the cooling schedule can not be “too fast” in order to guarantee

convergence to globally optimal solutions. In other words, the initial emphasis on

“exploration” must slowly give way to emphasis on “exploitation” in order to guar-

antee globally optimal solutions are identified. Thus, many research efforts have been

devoted to accelerating the convergence rate for certain classes of smooth objective

functions (see, e.g., [28, 29] and, more recently, [30]). Given the technological chal-

lenges currently faced to speed-up processing, parallel implementation of simulated

annealing appears as a sensible approach for speeding up convergence to globally

optimal solutions (see, for instance, [31] for an application to molecular clustering).

In this chapter, we present a novel approach in which parallel annealing processes

interact in a manner that enables a faster identification of a globally optimal solu-

tion. A first annealing process operates at a faster timescale and has a drift function

that converges to a non-zero (but relatively small) noise level. A second annealing
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process (operating at slower timescale) is subject to a modified drift term in which

the steepest descent direction is perturbed with the density gradient associated to

the first annealing process. In other words, a repulsive potential is added in order

to ensure the second annealing process does not duplicate the first annealing process

search effort. We show that this repulsive potential (based upon the first annealing

process which quickly identifies locally optimal solutions) allows the second annealing

process to bypass locally optimal solutions in a faster fashion.

Our work is related to the class of smoothing methods (see [32, 33]) in which the

original objective function evolves into a (smoothed) function possessing far fewer

local minima. A potential drawback of these methods pertains to the possibility

that the minimum of the modified objective function may shift away from the global

minimum of the original objective function (see [33] for a smoothing method designed

to avoid this difficulty). The approach proposed in this chapter can be seen as a

time-varying smoothing of the original objective function which is related to the first

diffusion density. The computational work by the first diffusion is used to construct a

smoother objective function governing the second (slower) diffusion’s search. Building

up on [16], we show that it is easier for the second diffusion to escape the attraction

basins of locally optimal solutions.

The structure for this chapter is as follows. In Section 2, we formalize the proposed

approach in the context of a global optimization problem. In Section 3 we study the

“escape time” of interactive annealing processes. It is shown that due to interaction,

one of the annealing processes is able to escape the basins of attraction of local minima

in less time (in expectation). The discussion on this speed-up effect is followed by the

analysis of global asymptotic behavior in Section 4 in which convergence to global

minima is proven. Building up on the results in Sections 3 and 4, we show that the

speed of convergence is improved in Section 5. Finally in Section 6, we provide a
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limited numerical testbed to illustrate the merits of the proposed approach (which

are established in Sections 2 and 3 from a theoretical standpoint). Finally, in Section

7, we offer some conclusion and briefly comment upon future research.

2.2 Framework

2.2.1 Problem Setting

Consider the optimization problem min{H(x) : x ∈ Rn}, where H : Rn → R is

assumed to be continuously differentiable. As in [26], we make the following regularity

assumption throughout the chapter:

lim
‖x‖↑+∞

H(x) ↑ +∞, (2.1)

lim
‖x‖↑+∞

‖∇H(x)‖ ↑ +∞, (2.2)

lim
‖x‖↑+∞

‖∇H(x)‖ −∆H(x) > −∞. (2.3)

Let yl := min{H(x) : x ∈ Bl ⊂ Rn} for l = 1, 2, . . . , m denote the collection

of local minima values, where Bl ⊂ Rn is the basin of attraction for the l−th local

minima. Let y∗ := min{yl : l = 1, . . . , m}. Assume there exists a positive number M

such that:

yl − y∗ > M ≫ 0, ∀yl 6= y∗, l = 1, 2, . . .m. (2.4)
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2.2.2 Independent Diffusions

We start by introducing the dynamic system for a diffusion in Rn as follows:















ẋp(t) = vp(t)

v̇p(t) =
1

M

[

−∂H(x)

∂xp

− γ0vp(t) + σ0(t)
dWp(t)

dt

]

,

according to the Fokker-Planck equation (see [34]), where p = 1, . . . , n and M is

particle mass, γ0 is damping coefficient, σ0(·) is noise intensity and Wp(t) is pth com-

ponent of a standard n-dimensional Brownian motion, W (t). Assume particle mass

M is large enough relative to −∂H(x)
∂xp

− γ0vp(t) + σ0(t)
dWp(t)

dt
, so that v̇(t) ≈ 0 and the

system can be reduced to:

dX(t)

dt
=

1

γ0

[

−∇H(x) + σ0(t)
dW (t)

dt

]

.

Let U(x) = H(x)
γ0

, σ(t) = σ0(t)
γ0

. We obtain a diffusion model for simulated annealing

as:

dX(t)

dt
= −∇U(x) + σ(t)

dW (t)

dt
. (2.5)

The partial differential equation of this diffusion process is given by

∂

∂t
V (t, x) = ∇ · (V (t, x)∇U(x)) +

1

2
σ2(t)∆V (t, x),

where V (·, ·) is the density of particles.
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2.2.3 Interactive Diffusions

In our method, we shall make use of the notion of different time scales for interact-

ing diffusions. In what follows, we shall consider a first diffusion (with subindex) i in

a timescale t/ǫ2 where ǫ > 0 with constant noise intensity σi, and a second diffusion

j in slower timescale t, with annealing noise intensity σj(t) ∼ C/ log(t), interacting

with diffusion i. The dynamic system for these interactive diffusions is



























dXi(t) = − 1

ǫ2
∇U(Xi(t))dt+

1

ǫ
σidW (t)

dXj(t) = −∇U(Xj(t))dt− k∇Vi(t, Xj(t))dt+ σj(t)dW (t)

Xi(0) = x̂i, Xj(0) = x̂j ,

(2.6)

where Vi is density for diffusion i, x̂i and x̂j are the initial conditions for diffusion i

and j, k > 0 is a parameter that controls the strength of the “repulsive” potential, i.e

−∇Vi(t, Xj(t)) affecting diffusion j. From Feynman-Kac formula [35], the associated

Fokker-Planck type equation is:



























∂

∂t
Vi(t, x) =

1

2ǫ2
σ2

i ∆Vi(t, x) +
1

ǫ2
∇ · (Vi(t, x)∇U(x))

∂

∂t
Vj(t, x) =

1

2
σ2

j (t)∆Vj(t, x) +∇ · [Vj(t, x)(∇U(x) + k∇Vi(t, x))]

Vi(0, x) = δx̂i(x), Vj(0, x) = δx̂j (x).

(2.7)

2.3 Local Escape Time Problem

In this section, we analyze the “escape times” for the interactive diffusions using

the theory of large deviations introduced in [27]. We then proceed to compare the

expected escape time properties for the interactive diffusions and the original simu-
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lated annealing. Finally, we argue that such comparison is fair even when different

time scales (used in the interactive diffusions approach) are taken into account.

2.3.1 Escape Time Theory

For the dynamical system (2.5), define L as follows

L(β, x) := sup
α

[α′β − α′(−∇U(x))] , α, β ∈ Rn.

The action functional Sx(T, φ) for point x is defined as

Sx(T, φ) :=

∫ T

0

L(φ̇(s), φ(s))ds, φ(0) = x.

Finally, the action function between two points x and y is

S(x, y) = inf
φ,T
{Sx(T, φ) : φ(T ) = y}.

Let K0 be the set of local minima as

K0 = {xl ∈ Rn : | H(xl) = yl, l = 1, . . . , m}.

Let G be a bounded open set containing K0, with a piecewise differentiable boundary

∂G and Ḡ in the domain of attraction of K0, i.e. Ḡ ⊆ ∪m
l=1Bl, for x ∈ G define

SG(x) := inf
y∈∂G

S(x, y) = inf
φ,T
{Sx(T, φ) : φ(T ) ∈ ∂G}.
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Define the action function for any open set B ⊂ G as follows:

SG(B) := inf
x∈B

SG(x).

The action function being the integral of difference between the potential gradient

direction −∇U(φ(s)) and the path moving direction φ̇(s), can be understood as the

“energy” needed to resist the potential force through the path φ.

Assumption 3.1 For δ > 0, there is a ρ-neighborhood Nρ(K0) of K0 and δρ > 0,

Tρ < +∞, such that for each x, y ∈ Nρ(K0), there is a path φ(·):

φ(0) = x, φ(T ) = y,

where Ty ≤ Tρ and Sx(Tρ, φ) ≤ δ. (see [27], A3.1)

Lemma 3.1 Let Xσ(t) be the solution of dynamic system (2.5) with noise intensity

σ(t) = σ and escape time τσ = min{t : Xσ(t) 6∈ G}. Under Assumption 3.1, the

expected escape time can be written as

lim
σ
σ logExτ

σ = SG(K0),

which can be written as

Exτ
σ ∼ exp

(

SG(K0)

σ

)

.

Proof See proof of [27], p.174, Theorem 1.
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2.3.2 Escape Time Comparison

In this section, we will compare the local minima escape time of standard simulated

annealing and that of the interactive diffusions.

Theorem 3.1 Let τ̄σ
j = min{t : Xσ

j (t) 6∈ G}, i.e. the escape time of the j- diffusion

process defined in (2.6) when the noise intensity for the i- diffusion process is σi = σ.

When ǫ ↓ 0 (the timescale ratio for diffusion i in (2.6)), we have

lim
σ
σ logExτ̄

σ
j ≤ lim

σ
σ logExτ

σ.

Proof Consider the behavior of fluid i of (2.7) in fast time scale t/ǫ2 with constant

noise intensity σi. let t̂ = t/ǫ2, the dynamic for fluid i is

ǫ2
∂

∂t
Vi(t, x) =

∂

∂t̂
Vi(t, x) =

1

2
σ2

i ∆Vi(t, x) +∇ · (Vi(t, x)∇U(x)).

When ǫ ↓ 0, we have t̂ ↑ +∞, from standard results in the theory of diffusions

(see [36], p.147), we have the fluid i stationary density V̄i(x) = πσ(x), where

πσ(x) = C0 exp(−2U(x)

σ2
), (2.8)

and

C0 =

(
∫

Rn

exp(−2U(x)

σ2
)dx

)−1

,

which is the Gibbs density.
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For any K0 and ǫ ↓ 0, the fluid j can be seen as a diffusion governed by the

modified potential function

Ū(x) = U(x) + kV̄i(x) = U(x) + kV0 exp(−2U(x)

σ2
).

The corresponding L-function L̄ can be written as

L̄(β, x) = sup
α

[

α′β + α′∇U(x)

(

1− 2k

σ2
exp(−2U(x)

σ2
)

)]

.

We have, for all x ∈ G, ‖∇Ū(x)‖ ≤ ‖∇U(x)‖,

S̄G(K0) = inf
x∈K

inf
y∈∂G

inf
φ,T

{
∫ T

0

L̄(φ̇(s), φ(s))ds : φ(0) = x, φ(T ) = y

}

< SG(K0).

From Lemma 3.1, we have

lim
σ
σ logExτ̄

σ
j = S̄G(K0) ≤ SG(K0) = lim

σ
σ logExτ

σ.

2.3.3 Discussion

According to the previous results, in expectation, diffusion j is able to escape the

basin of attraction of locally optimal solutions in less time than a standard simu-

lated annealing type diffusion. However, in this comparison the standard simulated

annealing is assumed to diffuse in slow timescale t. In order to show that this com-

parison is fair, we need to consider the standard simulated annealing method in a

faster timescale.
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Consider the standard simulated annealing method in different time scale: a first

diffusion {Xa(t) : t > 0} (with density Va) in slow timescale t and a second diffusion

{Xb(t) : t > 0} (with density Vb) in faster timescale t/ǫ2 so that

∂

∂t
Va(t, x) =

1

2

c

log t
∆Va(t, x) +∇ · (Va(t, x)∇U(x))

∂

∂t
Vb(t, x) =

1

2

c/ǫ2

log t/ǫ2
∆Vb(t, x) +∇ · (Vb(t, x)

∇U(x)

ǫ2
).

Let ta and tb the time required to reach a noise intensity σ0 > 0 It follows that

σ0 =
C/ǫ2

log tb/ǫ2
=

C

log ta
.

From this we infer that

tb = ǫ2 t1/ǫ2

a .

For general situation, for ta ≫ 1 and ǫ ↓ 0, we have tb ≫ ta. That is, in a faster

timescale it takes longer to arrive at given level of noise intensity. Using a faster

timescale cannot accelerate convergence to global minima for the standard simulated

annealing method.

2.4 Global Asymptotic Behavior

In this section, we will analyze the global asymptotic behavior of “slow” diffusion

process, i.e. Xj(t). As in [26], let S denote the set of all local minimas of U and

S(η) = {x|d(x, S) < η}. Let

J(t, η) := sup
x,y∈S(η)

(I(t, x, y)− 2U(y)),
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where

I(t, x, y) := inf
ψ(0)=x
ψ(t)=y

1

2

∫ t

0

|ψ̇(s) +∇U(ψ(s))|2ds.

Define

c0 := inf
η

lim sup
t↑+∞

J(t, η) (2.9)

2.4.1 Convergence Behavior

Lemma 4.1 Under assumption (2.1), (2.2) and (2.3), and c > c0,

V (t, x) → π(x) as t ↑ +∞,

where V (·, ·) is the solution for equation:

∂

∂t
V (t, x) =

c

2 log t
∆V (t, x) +∇ · (V (t, x)∇U(x)), V (0, x) = δx0(x)

and π(x) := limσ↓0 πσ(x) concentrate on the global minima x∗ of U(x), with πσ(x)

defined as (2.8).

Proof See proof of [26], p.739, Theorem.

2.4.2 Unchanged Global Optimize Solution

For interactive diffusion (2.7), define the modified objective function

Ũ(t, x) := U(x) + kVi(t, x);
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for slow diffusion process j, define constant c̃0 similar as (2.9)

c̃0 := inf
η

lim sup
t↑+∞

J̃(t, η),

where

J̃(t, η) := sup
x,y∈S(η)

(Ĩ(t, x, y)− 2Ũ(y)),

and

Ĩ(t, x, y) := inf
ψ(0)=x
ψ(t)=y

1

2

∫ t

0

∣

∣

∣

∣

ψ̇(s) +∇U(ψ(s))

(

1− k
Vi(x)

σ2

)
∣

∣

∣

∣

2

ds.

Theorem 4.1 For fluid j with dynamic (2.7), and for fluid i, timescale ratio ǫ ↓ 0,

let σj = c/ log t as c > c̃0, under assumption (2.4), we have

Vj(t, x) → π̃(x),

where

π̃(x) = lim
σ↓0

π̃σ(x) = lim
σ↓0

[

C̃0 exp(−2Ũ0(x)

σ2
)

]

.

This π̃(x) concentrated on the global minima x̃∗ of modified objective function Ũ(x).

Moreover x̃∗ is in the attraction basin of the global minima x∗ of original objective

function U(x).

Proof From (2.8), with timescale ratio ǫ ↓ 0, Vi(t, x)→ V̄i(x) ,where

V̄i(x) = V0 exp(−2U(x)

σ2
).
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Let Ũ0(x) = U(x) + kV̄i(x), we have

Ũ(t, x)→ Ũ0(x) as t ↑ +∞.

Since U(x) is twice continuous differentiable, then V̄i(x) is at least twice differentiable.

By assumption, U(x) ↑ +∞ as ‖x‖ ↑ +∞, hence, V̄i(x) ↓ 0 as U(x) ↑ +∞ and

lim‖x‖↑+∞ V̄i(x) = 0. We conclude that the stationary modified objective function

Ũ0(x) satisfies assumptions (2.1), (2.2) and (2.3). From Lemma 4.1 for fluid j we

have

Vj(t, x) → π̃(x),

where

π̃(x) = lim
σ↓0

π̃σ(x) = lim
σ↓0

[

C̃0 exp(−2Ũ0(x)

σ2
)

]

;

and fluid j will concentrate on the global minima of modified objective function Ũ0(x),

which is different from the global minima of original objective function U(x).

Now, we show the global minima of Ũ0(x) is in the attraction basin of the global

minima of U(x) under assumption (2.4) with k < M . Let x∗ be the global minima

for U(x) with value y∗, xi i = 1, 2, . . . , m be the local minima with value yi. Assume

x̃∗ be a global minima for modified objective function Ũ0(x) with value ỹ∗. Note that

V̄j(t, x) ≤ 1, ∀x ∈ Rn. From k < M , we have

Ũ0(x∗) = y∗ + kV̄i(x) ≤ y∗ + k ≤ y∗ +M.
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From assumption (2.4), for all yl 6= y∗, l = 1, 2, . . . , m, y∗ +M < yi, and ỹ∗ is the

global minima value for Ũ0(x), we get

ỹ∗ ≤ Ũ0(x∗) ≤ y∗ +M < yl ∀yl 6= y∗, l = 1, 2, . . . , m.

From

ỹ∗ = Ũ0(x̃∗) = U(x̃∗) + kV̄ (x) ≥ U(x̃∗),

so that we have

U(x̃∗) ≤ ỹ∗ ≤ y∗ +M < yl ∀yl 6= y∗, l = 1, 2, . . . , m.

This means that U(x̃∗) is less than all the local minimas for original objective function.

It follows that the global minima x̃∗ for the modified objective function is in the

attraction basin of the global minima of the original objective function U(x).

2.5 Improved Speed of Convergence

In Sections 3 and 4, we have shown that interactive annealing processes have

shorter local escape time and converge to global minima attraction basin. To com-

plement these results, in this section, we show that interactive annealing also exhibits

improved speed of convergence.

The standard simulated annealing method requires an annealing schedule c0/ log t

in order to guarantee the fluid converge to global minima (see Lemma 4.1), where c0

is defined as follows:

c0 := inf
η

lim sup
t↑+∞

sup
x,y∈S(η)

(I(t, x, y)− 2U(y))
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and

I(t, x, y) := inf
ψ(0)=x
ψ(t)=y

1

2

∫ t

0

|ψ̇(s) +∇U(ψ(s))|2ds.

In Theorem 4.1, it is shown that the interactive diffusion approach also requires

an annealing schedule c̃0/ log t in order to converge to global minima.

c̃0 := inf
η

lim sup
t↑+∞

sup
x,y∈S(η)

(Ĩ(t, x, y)− 2Ũ(y)),

where

Ĩ(t, x, y) := inf
ψ(0)=x
ψ(t)=y

1

2

∫ t

0

∣

∣

∣

∣

ψ̇(s) +∇U(ψ(s))

(

1− k
Vi(x)

σ2

)
∣

∣

∣

∣

2

ds.

From (2.8), for fluid i, we have

Vi(y, t) = πσi(y) + δ(y, ǫ), as lim
ǫ↓0

δ(y, ǫ) = 0.

For the Gibbs density

πσi(x) :=
exp

(

−2U(x)
σ2
i

)

∫

Rn
exp

(

−2U(x)

σ2
i

)

dx
,

we have

∇Vi(y, t) = −∇U(y) · 2πσi(y)

σ2
+∇δ(y, ǫ).
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It follows that

Ĩ(t, x, y) = inf
ψ(0)=x
ψ(t)=y

1

2

∫ t

0

∣

∣

∣

∣

ψ̇(τ) +∇U(ψ(τ))

(

1−K
2πσ(ψ(τ))

σ2

)

+∇δ(y, ǫ)
∣

∣

∣

∣

2

dτ

= inf
ψ(0)=x
ψ(t)=y

{1

2

∫ t

0

∣

∣

∣

∣

ψ̇(τ) +∇U(ψ(τ))

(

1−K
2πσ(ψ(τ))

σ2

)
∣

∣

∣

∣

2

dτ +
1

2

∫ t

0

|∇δ(y, ǫ)|2 dτ

+

∫ t

0

∣

∣

∣

∣

ψ̇(τ) +∇U(ψ(τ))

(

1−K
2πσ(ψ(τ))

σ2

)
∣

∣

∣

∣

· |∇δ(y, ǫ)| dτ}

= inf
ψ(0)=x
ψ(t)=y

1

2

∫ t

0

∣

∣

∣

∣

ψ̇(τ) +∇U(ψ(τ))

(

1−K
2πσ(ψ(τ))

σ2

)
∣

∣

∣

∣

2

dτ + C(ǫ)

≤ I(t, x, y) + C(ǫ).

where C(ǫ) ↓ 0 as ǫ ↓ 0. If ǫ ↓ 0, then

c̃0 = inf
η

lim sup
t↑+∞

sup
x,y∈S(η)

(Ĩj(t, x, y)− 2(U(y) +K · Vi(y, t)))

< inf
η

lim sup
t↑+∞

sup
x,y∈S(η)

(I(t, x, y)− 2U(y)) = c0,

where the inequality follows from the fact that

2(U(y) +K · Vi(y, t)) > 2U(y).

In other words, the cooling or annealing schedule for interactive diffusion can be

decreased in constant level from c0/ log t to c̃0/ log t. We now restate a result ( [26],

p.740, Lemma 3) that establishes the relationship between the cooling schedule and

the speed of convergence for an annealing process.

Let V σ(x, t) be the solution of dynamic system

∂

∂t
V (t, x) = ∇ · (V (t, x)∇U(x)) +

1

2
σ2∆V (t, x).
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Lemma 5.1 For noise intensity σ

‖V σ(x, t)− πσ(x)‖ ≤ exp(tλ2(σ)),

where λ2(σ) is the second eigenvalue of Lσ = 1
2
σ2∆−∇U · ∇ and

λ2(σ) ∼ − exp(−c0
σ

),

where c0 is the previous constant.

Let V σ(x, t) denote the density associated with the standard simulated anneal-

ing method. We recall that V σ
j (x, t) is the j fluid solution for the dynamic system

associated to interactive annealing, i.e.:











∂

∂t
Vi(t, x) =

1

2ǫ2
σ2

i ∆Vi(t, x) +
1

ǫ2
∇ · (Vi(t, x)∇U(x))

∂

∂t
Vj(t, x) =

1

2
σ2∆Vj(t, x) +∇ · [Vj(t, x)(∇U(x) + k∇Vi(t, x))].

(2.10)

Proposition 5.1 For cooling schedule σ ∼ c/ log t, with c > c0 > c̃0, fluid j of

interactive diffusion V σ
j (x, t) has faster speed of convergence to global optima than

standard annealing V σ(x, t).

Proof Let S∗ and S̃∗ denote the set of global minima of U and Ũ , respectively. Let

B1(ǫ) = {x ∈ Rn |d(x, S∗) < ǫ} and B2(ǫ) = {x ∈ Rn | d(x, S̃∗) < ǫ}. For δ > 0 and

ǫ > 0 with
∫

B1(ǫ)
dx =

∫

B2(ǫ)
dx > eδ/2 , there exists σ > 0 such that

min{
∫

B1(ǫ)

πσ(x)dx,

∫

B2(ǫ)

π̃σ(x)dx} > 1− δ/2.
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From Lemma 5.1, we have

‖V σ(x, t)− πσ(x)‖ ≤ exp[−t(1− c0
c

)], ‖V σ
j (x, t)− π̃σ(x)‖ ≤ exp[−t(1− c̃0

c
)].

It follows that

∫

B1(ǫ)

πσ(x)dx−
∫

B1(ǫ)

V σ(x, t)dx ≤
∫

B1(ǫ)

‖V σ(x, t)− πσ(x)‖dx

≤ exp[−t(1− c0
c

)]

∫

B1(ǫ)

dx,

hence
∫

B1(ǫ)

V σ(x, t)dx ≥
∫

B1(ǫ)

(

πσ(x)− exp[−t(1− c0
c

)]
)

dx.

Similarly, we obtain

∫

B2(ǫ)

V σ
j (x, t)dx ≥

∫

B2(ǫ)

(

π̃σ(x)− exp[−t(1−
c̃0
c

)]
)

dx.

Define t1(δ) and t2(δ) as

t1(δ) :=

[

− log

(

δ/2
∫

B1(ǫ)
dx

)]
c

c−c0

, t2(δ) :=

[

− log

(

δ/2
∫

B2(ǫ)
dx

)]
c

c−c̃0

.

It follows that, for t > t1(δ),

∫

B1(ǫ)

V σ(x, t)dx ≥ 1− δ,

and, for t > t2(δ),
∫

B2(ǫ)

V σ
j (x, t)dx ≥ 1− δ.
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Finally, from c > c0 > c̃0 > 0, we get c
c−c0

> c
c−c̃0

. Together with

∫

B1(ǫ)

dx =

∫

B2(ǫ)

dx > eδ/2,

which implies

[

− log

(

δ/2
∫

B1(ǫ)
dx

)]

=

[

− log

(

δ/2
∫

B2(ǫ)
dx

)]

> 1,

we have

t1(δ) =

[

− log

(

δ/2
∫

B1(ǫ)
dx

)]
c

c−c0

>

[

− log

(

δ/2
∫

B2(ǫ)
dx

)]
c

c−c̃0

= t2(δ).

2.6 Illustration: Numerical Experiments

In order to complement the theoretical results obtained, we now present an il-

lustration of the application of interactive diffusions to global optimization. We use

Ackley’s Problem See [37] and extended Michalewicz function [38] to compare the

performance of interactive annealing with the standard simulated annealing method.

It can be verified that these two problems satisfy our standing assumptions (1) to (4).

2.6.1 Ackley Problem

Ackley’s Problem [37] is to find x ∈ Rn, with xi ∈ (−32.768, 32.768), that mini-

mizes the following function:
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H(x) = −20 · exp(−0.2

√

√

√

√

1

n
·

n
∑

i=1

x2
i )− exp(

1

n
·

n
∑

i=1

cos(2πxi)) + 20 + exp(1).

When n = 3, the global minima for the Ackley function is x∗ = (0, 0, 0) with

function value y∗ = 0, There are many local minima for this problem. Moreover, all

local minimas have function value yi > 2.1. Hence, the margin between global and

local minima satisfies M ≥ 2.5, and for any x with function value H(x) < 2.5, x is in

the attraction basin of the global minima x∗.

We set kC0 = 1 < M for 3-dimension Ackley function, use constant temperature

T = 5 a ball of radius ρ = 0.118 to ensure that H(x) ≤ 0.5 for all x ∈ Bρ(x∗).

In our implementation of the interactive diffusions approach, we have fluid i dif-

fusing with constant temperature T = 5 in a fast timescale. Convergence to the Gibbs

density takes place in a relatively short time.

To gain some insight into the workings of the interactive diffusions approach we

plot the objective function modified by the stationary distribution of fluid i, i.e.

F (x) = H(x) + kC0 exp(−H(x)/T ) where kC0 = 1.5 < M . Note that for this

modified objective function, x∗ = (0, 0, 0) is still in the attraction basin of the new

global minima. The original Ackley function, the modified Ackley function and fluid i

stationary distribution are shown as Fig.2.1(Here we use 2-dimension Ackley function

graph for demonstration).

We compare the performance of three methods: (1) standard simulated anneal-

ing (single thread) annealing; (2) independent diffusion (two independent, parallel

threads, one running the standard simulated annealing and another with constant

temperature diffusion); and (3) interactive diffusion (i.e. parallel annealing processes

interacting with constant temperature diffusion in fast timescale). We set constant
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Fig. 2.1. Ackley function figures
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Fig. 2.2. Current function value plot for 3-dimension Ackley function

temperature T = 5 for both the constant temperature diffusion in the second method

(independent diffusion) and fluid i in the interactive diffusions approach.

For the standard simulated annealing method (in methods (1) and (2)) and for

diffusion j (in method (3), the interactive diffusions approach) we use Boltzmann

annealing with initial temperature c = 4, with logarithm temperature update without

re-annealing. The convergence plot in a single run for three methods are given in

current function value plot Fig. 2.2.

From Fig.2.2, we see that in a single run, the interactive diffusions method needs

approximately 1800 iterations to reach the neighborhood of global minima, which is

less than the approximately 4900 iterations required by the standard simulated an-

nealing method. For constant temperature diffusion, it takes around 7900 iterations,

and the current function value is (not surprisingly) not convergent toward global min-

ima. The best performance of either the standard annealing method or the constant

temperature annealing is min{4900, 7900} = 4900.
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To compare the speed of convergence, we report the average time (over 500 runs)

to enter the ρ-neighborhood of the global minima for different temperature settings

(see Table 2.1). For all three methods, we fixed initial point at (20, 20, 20). The

reported number of iterations for independent diffusion is the minimum number of

iterations needed to enter the ρ-neighborhood of global minima by either the stan-

dard simulated annealing or the constant temperature annealing thread. The data

supports the theoretical results regarding a speedier identification of global minima

by the interactive diffusion method. This effect is more pronounced with lower initial

temperatures. However, as we shall see below, the finite time performance of the

interactive annealing method is superior for higher initial temperature.

Table 2.1
Average iterations before entering ρ-neighborhood of x∗ for 3-D Ackley function

Initial Temperature c 7.5 9 10.5 12 13.5 15

Standard Annealing 4696 5118 6150 6862 8336 9587
Independent Diffusion 4555 4908 5843 6392 7603 8842
Interactive Diffusion 4025 4281 4596 5188 6092 6699

To evaluate finite time performance (in this 3-dimension Ackley function) we run

the three methods with a limit of 104 iterations. We report the probability (i.e.

the empirical frequency over 500 runs) with which the three methods reached the

ρ-neighborhood of global minima (see Table 2.2)

We now test the implications of increasing the dimensionality of the problem.

When n = 5, the global minima for the Ackley function is x∗ = (0, 0, 0, 0, 0) with

function value y∗ = 0, and all local minimas have function value yi > 1.64. We set

kC0 = 1.2 < M for 5-dimension Ackley function, use constant temperature T = 5 a

ball of radius ρ = 0.176 (again to ensure that that H(x) ≤ 0.6 for all x ∈ Bρ(x∗)).



29

Table 2.2
Probability for reaching global optima within 104 iterations for 3-D Ackley function

Initial Temperature c 7.5 9 10.5 12 13.5 15

Standard Annealing 93.4% 91.6% 84.0% 77.6% 68.4% 63.0%
Independent Diffusion 93.8% 93.0% 85.8% 80.6% 73.6% 67.0%
Interactive Diffusion 95.8% 97.2% 93.2% 89.4% 83.2% 80.6%

We report the average time needed (over 500 runs) to enter the ρ-neighborhood of

the global minima for different temperature settings (see Table 2.3). For all processes

of three methods, we fixed initial point at (5, 5, 5, 5, 5).

Table 2.3
Average iterations before entering ρ-neighborhood of x∗ for 5-D Ackley function

Initial Temperature c 3 4.5 6 7.5 9 10.5

Standard Annealing 7279 18129 35733 52951 72908 79332
Independent Diffusion 7270 18089 35484 52418 72019 78404
Interactive Diffusion 3879 10401 21111 34508 52557 61078

Clearly, the gains in convergence speed by the interactive diffusion method are

made even more apparent in higher dimensions. To evaluate finite-time performance

(in this 5-dimension Ackley function), we report the probability (i.e. the empirical

frequency over 500 runs), with which the three methods reached the ρ-neighborhood

of global minima (see Table 2.4).
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Table 2.4
Probability for reaching global optima within 105 iterations for 5-D Ackley function

Initial Temperature c 3 4.5 6 7.5 9 10.5

Standard Annealing 100.0% 100.0% 97.0% 83.0% 56.2% 42.0%
Independent Diffusion 100.0% 100.0% 97.0% 84.0% 57.8% 43.2%
Interactive Diffusion 100.0% 100.0% 99.8% 97.6% 83.6% 71.6%

2.6.2 Rastrigin Problem

The Rastrigin problem is the minimization of the function defined as follows:

F (x) := 10n+

n
∑

i=1

[x2
i − 10 cos(2πxi)] xi ∈ [−5.12, 5.12], i = 1, 2, . . . , n.

When n = 3, the global minima for the Rastrigin function is x∗ = (0, 0, 0) with

function value y∗ = 0. All the local minima have function value yi > 0.95. The

margin M (difference between function value of global minima and local minima)

verifies M ≥ 0.95. In our implementation of the interactive diffusions approach, we

have fluid i diffusing with constant temperature T = 5 in a fast timescale.

Again we plot the objective function modified by the stationary distribution of

fluid i. The original Rastrigin function, and fluid i’s stationary distribution is shown

as Fig.2.3(using 2 dimension Rastrigin function for demonstration.)

Here again, as in the previous section we compare the speed of convergence of

(1) standard simulated annealing (single thread) annealing; (2) independent diffusion

(two independent, parallel threads, one running the standard simulated annealing

and another with constant temperature diffusion); and (3) interactive diffusion (i.e.

parallel annealing processes interacting with constant temperature diffusion in fast

timescale). We set the same temperature T = 5 for both constant temperature
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diffusions in methods (2) and (3). We choose a ball of radius ρ = 0.05 thatH(x) ≤ 0.5

for all x ∈ Bρ(x∗). We report the average time (over 500 runs) to enter the ρ-

neighborhood of the global minima for different temperature settings (see Table 2.5).

For all processes of three methods, we fixed initial point at (5, 5, 5).

Table 2.5
Average iterations before entering ρ-neighborhood of x∗ for 3-D Rastrigin function

Initial Temperature c 7.5 9 10.5 12 13.5 15

Standard Annealing 42170 11900 18458 39301 68866 77824
Independent Diffusion 39785 11658 18260 38177 64837 73342
Interactive Diffusion 23251 8885 14675 30855 54646 64104

To evaluate finite-time performance (in this 3-dimension Rastrigin function), we

report the probability that process reached global minima ρ−neighborhood within

105 (see Table 2.6).

Table 2.6
Probability for reaching global optima within 105 iterations for 3-D
Rastrigin function

Initial Temperature c 7.5 9 10.5 12 13.5 15

Standard Annealing 62.2% 99.6% 100.0% 99.6% 70.6% 33.4%
Independent Diffusion 66.0% 99.8% 100.0% 99.6% 73.8% 40.6%
Interactive Diffusion 82.8% 100.0% 100.0% 100.0% 90.6% 53.2%

Discussion

The limited computational evidence presented in this section confirms the theo-

retical prediction of the interactive diffusion approach’s faster speed of convergence.
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The results suggest that the relative gains in convergence speed are increasing with

decreasing initial temperatures. It is often the case that practitioners using simu-

lated annealing would attempt to reduce the value of the initial temperature as this

parameter serves as a proxy for available computational budget. In this sense, the

proposed method works best when there is a limited computational budget (in the

form of a relatively low value for initial temperature). The finite-time performance

evaluation is conducted by imposing a cap on the number of iterations. Here again,

the interactive annealing method proposed exhibits a higher probability of finding

the global optima.

2.6.3 Comparison with Parallel Simulated Annealing

We now compare the performance of independent parallel implementations of

simulated annealing suggested in [39–41]. Let Pci be probability of single annealing

threads reaching global optima within iteration cap for initial temperature ci. Con-

sider two annealing threads, let Qci be the probability of one of paralleled annealing

threads entering global optima. We have

Qci = 1− (1− Pci)
2,

the result shown in Table 2.7.

With only two threads, independent simulated annealing processes may outper-

form the interactive diffusions approach in certain cases. This can be explained as

follows. In the interactive diffusions approach with two threads, one thread is ”sac-

rificed” by having constant diffusion in order to speed up the interactive annealing

thread. With only two threads, the opportunity cost of running a constant diffusion
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Table 2.7
Probability for 2 trivial paralleled annealing threads reaching global
optima within iterations cap

Initial Temperature c 7.5 9 10.5 12 13.5 15
3-D Ackley Func., cap 104 99.6% 99.3% 97.4% 95.0% 90.0% 86.3%

Initial Temperature c 3 4.5 6 7.5 9 10.5
5-D Ackley Func., cap 105 100.0% 100.0% 99.9% 97.1% 80.8% 66.4%

Initial Temperature c 7.5 9 10.5 12 13.5 15
3-D Rastrigin Func., cap 105 85.7% 100.0% 100.0% 100.0% 91.4% 55.6%

thread to speed up a second diffusion is too high. However, with more reactive threads

this cost is diluted. To make this point we now present the simulation results with

five (5) threads (one (1) constant diffusion and four (4) interactive diffusion threads)

and compare with the performance of five (5) independent simulated annealing pro-

cesses. The performance is evaluated on the basis of (i) average iterations before first

thread enters ρ- neighborhood of x∗ in Table 2.8, Table 2.9 and Table 2.10 and (ii)

the probability of 1 of 5 threads entering global optima within the total number of

iterations in Table 2.11, Table 2.12 and Table 2.13.

Table 2.8
Average iterations before 1 of 5 threads entering ρ-neighborhood of
x∗ for 3-D Ackley function

Initial Temperature c 7.5 9 10.5 12 13.5 15

Paralleled Annealing 1916 2093 2207 2364 2806 3138
Interactive Diffusion 1770 1887 1971 2270 2429 2559
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Table 2.9
Average iterations before 1 of 5 threads entering ρ-neighborhood of
x∗ for 5-D Ackley function

Initial Temperature c 3 4.5 6 7.5 9 10.5

Paralleled Annealing 2399 5881 11049 17640 27869 41975
Interactive Diffusion 1645 4072 7539 13222 20178 27819

Table 2.10
Average iterations before 1 of 5 threads entering ρ-neighborhood of
x∗ for 3-D Rastrigin function

Initial Temperature c 7.5 9 10.5 12 13.5 15

Paralleled Annealing 3403 4450 8911 17767 32681 30926
Interactive Diffusion 2251 3860 8124 15718 22697 20783

Table 2.11
Probability for 1 of 5 threads reaching global optima within 5000
iterations for 3-D Ackley function

Initial Temperature c 7.5 9 10.5 12 13.5 15

Paralleled Annealing 98.8% 98.6% 96.8% 94.6% 88.8% 84.8%
Interactive Diffusion 100.0% 99.4% 97.6% 96.8% 93.2% 91.8%

Table 2.12
Probability for 1 of 5 threads reaching global optima within 104 iter-
ations for 5-D Ackley function

Initial Temperature c 3 4.5 6 7.5 9 10.5

Paralleled Annealing 100.0% 83.6% 51.8% 33.6% 19.0% 12.2%
Interactive Diffusion 100.0% 96.2% 73.4% 45.8% 29.6% 23.0%
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Table 2.13
Probability for 1 of 5 threads reaching global optima within 104 iter-
ations for 3-D Rastrigin function

Initial Temperature c 7.5 9 10.5 12 13.5 15

Paralleled Annealing 96.7% 98.0% 61.3% 21.3% 31.0% 57.0%
Interactive Diffusion 100.0% 99.7% 69.3% 26.0% 44.7% 67.7%

With five (5) threads, we observe the interactive diffusions approach exhibits

better performance than independent simulated annealing processes. This is a further

indication of the proposed method’s improved speed of convergence.

2.7 Chapter Summary

Simulated annealing for global optimization is a well-known method for global

optimization. Its main drawback pertains to the speed at which emphasis on “explo-

ration” gives way to “exploitation”. This transition can not be “too fast” in order to

guarantee convergence to globally optimal solutions. Evidently, with faster comput-

ing this drawback may become less critical. However, computing speed (which used

to double every couple of years) has stopped increasing because as chips are clocked

at higher speeds they become difficult to cool and much less energy-efficient. Par-

allel implementation of annealing-like search for global optima appears as a sensible

approach for speeding up convergence to globally optimal solutions.

In this chapter, we have introduced a novel approach, in which parallel annealing

processes interact in a manner which expedites the identification of a globally optimal

solution. A first annealing process operates at a faster timescale and has a drift

function that converges to a non-zero (but relatively small) noise level. A second
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annealing process (operating at slower timescale) is subject to a modified drift term,

in which the steepest descent direction is perturbed with the first process density

gradient. This additional term ensures the second annealing process is “repelled”

areas explored by the first process. As a result, the second annealing process is able to

bypass locally optimal solutions that its own “cooling schedule” can be decreased. We

have shown that when compared to independent diffusions, the proposed interactive

diffusions approach can increase the speed of convergence at the expense of minimal

additional computational overhead.

In a limited computational testbed, we provide numerical illustration of the (the-

oretical) speed-up effect. These numerical experiments suggest the relative gains

in convergence speed are increasing with decreasing initial temperatures. Since the

initial temperature often serves as a proxy for available computational budget, the

proposed method works best when there is a limited computational budget in the

form of a relatively low value for initial temperature. The finite-time performance

evaluation also consistently indicates that the interactive annealing method exhibits

a higher probability of finding the global optima in finite-time. Finally, the numerical

illustrations suggest the relative performance of interactive annealing improves with

higher dimensions.

There are a number of outstanding research questions that we continue to explore.

First, in this chapter we have limited our analysis to the case of two interacting an-

nealing processes. It would be desirable to characterize the extent to which faster

convergence to globally optimal solutions is obtained as a function of several inter-

acting annealing processes. Given the computational overhead involved, this type of

analysis could help identify the “optimal” number of interacting annealing processes.

Secondly, in this chapter, we have only considered one form of interaction amongst

annealing processes, namely, one in which a second (slower) annealing process is re-
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pelled by the density of the first (faster) process. In addition to a repulsive potential,

the incorporation of an attractive potential in the differential equations governing the

interaction across annealing process could conceivably yield a speedier exploration of

neighborhoods of promising solutions. In a manner analogous to the results obtained

in this chapter, this may yield faster identification of globally optimal solutions.
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3. INTERACTIVE MODEL-BASED SEARCH WITH

REACTIVE RESOURCE ALLOCATION

3.1 Introduction and Literature Review

We consider a parallel computing scheme for global optimization that combines

multi-start local search with the dynamic reallocation of computational resources

(e.g. processing time). Our work builds upon the interactive model-based approach

to global optimization proposed in [21] Wang and Garcia (2015) in which parallel

threads independently execute a model-based search method (see [42]) and periodi-

cally interact through a simple acceptance-rejection rule aimed at preventing dupli-

cation of search efforts. In a model-based search method, the distribution of re-start

points is adjusted at each iteration upon evaluating local search results which informs

the selection of a new “model” (i.e. probability distribution) over the feasible region.

This model is in turn used to randomly generate new re-start points. The degree

to which the new probability distribution (or “model”) is concentrated around the

best solutions identified so far reflects the relative emphasis on exploitation versus

exploration. Diversity in multiple re-start points (i.e. exploration) is a desirable trait

as it provides a form of insurance against operating with a poor model. However, too

much diversity may slow down the identification of globally optimal solutions which

could be accelerated by selecting models the lead to increased search effort in promis-

ing areas as determined by history (i.e. exploitation). This description encapsulates

a wide variety of stochastic methods in the literature based upon a multi-start strat-

egy featuring different resolutions to the exploration vs. exploitation tradeoff ( [43]
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and [44]). Invariably, in single-thread approaches to global optimization based on

stochastic multi-start search, exploitation and exploration are substitutes. The main

point of [21] is that in a parallel computing environment when duplication of search

effort is prevented (or limited), exploitation and exploration are complements and

not substitutes. This is shown to be the case as when the models governing each

thread’s multi-start local search strategy are subject to an acceptance-rejection rule.

Assuming each thread successfully identifies a locally optimal solution every time

the acceptance-rejection rule is implemented, it was shown in [21] that the rate of

convergence to a globally optimal solution exponentially increases in the number of

threads.

In practice however, the computational time required to identify a locally optimal

solution varies greatly. Therefore, when the acceptance-rejection rule is implemented,

several threads may fail to identify a locally optimal solution. Thus the main result

in [21] relies on a highly stylized model of computational time. In this chapter we

consider an implementation of the interactive model-based approach that accounts

for real time; that is, it takes into account the possibility that several threads may

fail to identify a locally optimal solution whenever the acceptance-rejection rule is

implemented. We propose a modified acceptance-rejection rule that alternates be-

tween enforcing diverse search –in order to prevent duplication– and reallocation of

computational effort –in order to speed up the identification of local optima– when

one or more threads repeatedly fail to do so. We show that the rate of convergence

in real-time increases with the number of threads. This result formalizes the idea

that in parallel computing, exploitation and exploration are complements and not

substitutes (as in most single-thread approaches to global optimization).



41

The promise of parallel computing for global optimization is more than ever a re-

ality as computer manufacturers have continued to introduce more cores per chip and

graphics processing units (GPUs) are increasingly popular. This trend implies signif-

icant multi-thread processing power is readily accessible to optimization practitioners

which no longer need sophisticated or overly expensive infrastructure to run parallel

algorithms for solving global optimization problems. This has motivated recent stud-

ies aiming to develop paralleled implementation of well-known global optimization

algorithms (see for example, [45] and [46] for simulated annealing and [9] for particle

swarm algorithm).

Parallel computing approaches to global optimization vary depending upon the

level of coordination among threads (see [47] for a survey). Without any coordina-

tion among threads, a judicious choice of stopping rules is needed to fully accrue the

benefits of parallelization (see [48]). Often some degree of coordination is desirable as

real-time information by different threads can be used to improve performance at the

expense of overhead. This is for example the case of a parallel implementation of sim-

ulated annealing (see [45] and [46]). Some degree of coordination also enables the real

time re-allocation of computational resources among several instances of search algo-

rithms (see for example, [49]) in order to improve performance. The optimal real-time

allocation of computational resources can be modeled as a non-stationary multiple-

armed bandit problem which –in and of itself– may be as complex as the underlying

global optimization problem. For example, in [49] certain regularity assumptions are

needed to obtain asymptotic bounds on algorithm’s performance.

In this chapter, we develop a real-time reallocation strategy that is based upon

historical performance. There is no attempt at using sophisticated algorithmic vari-

ations in order optimally react to search outcomes. Instead, the main idea is to
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leverage relatively simple ideas such as i) continuing searches that are promising be-

cause the end-points have lower objective values than all other solutions found so

far and ii) avoiding duplication of failed searches and/or search effort across threads.

The relatively small gains afforded by these simple ideas are then shown to be mag-

nified by parallelization. Indeed, we show the rate of convergence for an interactive

model-based search increases with the number of threads for a wide-class of local

search techniques (i.e. model-based) when compared to independent parallel imple-

mentation. The structure of this chapter is as follows. In section 2 we review the

single-thread model based search and provide a characterization of improved per-

formance when the algorithm reacts to incomplete search outcomes. In section 3,

we analyze an interactive multi-thread approach that in addition to reacting to in-

complete searches (at each thread) incorporates a way to avoid duplication of failed

searches and/or search effort across threads. In our main result we show the inter-

active scheme speeds up the search for global optimal solutions, i.e. the time needed

to identify a global solutions decreasing with the number of threads. In section 4 we

illustrate this effect by means of a computational testbed.

3.2 Single Thread Model-based Search in Real-Time

Consider a general optimization problem min{f(x) : x ∈ Ω} where f : Rn 7→ R is

continuous and Ω ⊂ Rn is such that X∗ = arg minx∈Ω f(x) is well-defined. Assume

further f has N local (non-global) minima, say X = {x1, x2, . . . , xN}, that is,

f(xi) ≤ f(x) ∀x ∈ N(xi, ǫi)

for some ǫi > 0 where N(xi, ǫi) = {x ∈ Rn | ‖x− xi‖ ≤ ǫi}.
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The multi-start method that we shall describe later makes use of a local search

algorithm. This algorithm takes an initial solution or “seed” as input, say x ∈ Ω and

produces an output in the form of a local minimum, say y ∈ X∪X∗. The local search

algorithm determines a map ℓ : Ω → X ∪ X∗ such that ℓ(x) = y if x ∈ B(y) where

B(y) ⊂ Ω is the “basin of attraction” of local minimum y ∈ X ∪X∗, i.e.:

B(y) := {x ∈ Ω | ℓ(x) = y}

The properties of the local search algorithm (e.g. the size of basins of attraction) are

unknown. However, we assume the basins of attractions partition the solution space

Ω:

Assumption 1: B(xi) ∩ B(xj) = ∅, for all xi 6= xj ∈ X ∪X∗ and

⋃

xi∈X∪X∗

B(xi) = Ω.

This assumption states that given any initial input on the solution space, the

local search algorithm will produce one and only one local minimum as the output.

Additionally, the local search algorithm is deterministic, i.e. the same output is

always obtained when provided the same input.

In what follows we revisit the basic iteration scheme in Wang and Garcia (2015)

so that each iteration is equivalent to T0 > 0 units of computational time. Let T (x)

be the time required by local search ℓ from x to identify xi if x ∈ B(xi). We modify

definition of operation ℓ for real time as: if T (x) ≤ T0, ℓ(x) returns local optima xi

when x ∈ B(xi); if T (x) > T0, ℓ(x) returns ending location of local search from x at

time T0.
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3.2.1 Basic Single-Thread Computation

Let G denote a class of probability density functions with support Ω and g(J) the

current “model”. As in [21] we assume that any g ∈ G, g(x) 6= 0 for x ∈ Ω almost

surely. Taking into account the computational time limit T0, the basic iteration for

each thread is as follows:

1. A sample x from the current “model” g(J) is drawn and a local search algorithm

is launched.

2. At time T0, the resulting state of information is

J ′ =











J ∪ ℓ(x) if T (x) ≤ T0

J otherwise

3. A new model g(J ′) ∈ G is selected as follows:

g(x, J ′) = arg min
g∈G

DKL(h(x; J ′), g) (3.1)

where

h(x; J ′) =
I(f(x), J ′)U(x)

∫

Ω
I(f(x), J ′)U(x)dx

where DKL is the Kullback-Leibler divergence, U is the uniform probability

density function on Ω and the reference function I is defined as:

I(f(x), J ′) =











1 f(x) ≤ minx∈J ′ f(x) + ǫ

0 f(x) > minx∈J ′ f(x) + ǫ

for ǫ > 0.
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The lower the value of ǫ the more probability mass the reference density function posits

around the best locally optimal solutions in the state of information J ′ and thus the

selection of a new model emphasizes exploitation over exploration. To account for

the possibility that the local search procedure may fail to identify a locally optimal

solution within the allotted time T0 we define the set C(T0) = {x : T (x) ≤ T0}. We

obtain a Markov chain model for {JnT0 : n > 0} with transition probabilities:

Pr(J ′ | J) =



















∫

B(x)∩C(T0)

g(y; J)dy J ′ = J ∪ {x} and x ∈ {X ∪X∗}\J
∑

x∈J

∫

B(x)∩C(T0)

g(y; J)dy

∫

Ω\C(T0)

g(y; J)dy J ′ = J

Define J ∗ as the class of states with at least a globally optimal solution, i.e. J ∈ J ∗

if and only if J ∩X∗ 6= ∅. It follows that J 6∈ J ∗,

Pr(J ∗ | J) =

∫

B(X∗)∩C(T0)

g(y; J)dy

Lemma 1 The transition probability matrix for the Markov chain {JnT0 : n > 0}

is upper triangular. The eigenvalues are λJ = Pr(J |J) and Pr(J ∗|J ∗) = 1. Let

πnT0
J = Pr(JnT0 = J |J0) be the distribution at time nT0, we have

|πnT0
J ∗ − 1| ≤ Cλn

[2]

where λ[2] ∈ (0, 1) is the second-largest eigenvalue.

Proof The proof is essentially the same as in [21] Lemma 1 and Theorem 1 with

modified transition probabilities accounting for the probability of incomplete search

outcomes.
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3.2.2 Reacting to Incomplete Searches

We consider a variation in which an incomplete search leading to a “high quality”

end-point is allowed to continue. Specifically, if the objective function value associated

with the end-point of an incomplete search is lower than the values associated with

all discovered local optima, this end-point must be in the attraction basin of an

undiscovered local optima. Hence, the search should be allowed to continue. The

iteration of modified single-thread model based search is modified as follows:

1. A sample x from the current “model” g is drawn and a local search algorithm

is launched.

2. At time T0, the resulting state of information is

J ′ =























J ∪ {ℓ(x)} T (x) ≤ T0

J T (x) > T0

Let y denote the end-point if search is incomplete.

3. A new model g′ ∈ G is selected as follows:

g′ =























g(J ′) f(y) ≥ min
x∈J ′

f(x)

1y f(y) < min
x∈J ′

f(x)

(3.2)

g(J ′) is computed as in (1) and 1y is Dirac’s density on y.

Let ykT0 denote the end point if search is incomplete at time kT0 where ykT0 = ∅ if

the search is completed. The modified single-thread model based search is no longer
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a stationary Markov-chain. The one-step transition probability matrices {P nT0 :

n > 0} is a stochastic process adapted to the filtration generated by the process

{ynT0 : n > 0}. Note that P nT0 maintains upper triangular structure so that its

eigenvalues (entries along diagonal) are of the form:

λnT0
J = Pr(JnT0 = J |J (n−1)T0 = J)

Let P̄ nT0 denote the product of one-step transition probability matrices:

P̄ nT0 =

n
∏

k>0

P kT0

Note that P̄ nT0 is also upper triangular so that its eigenvalues are the entries along

the diagonal, i.e. they are of the form:

λ̄nT0
J = Pr(JnT0 = J |J0 = J) =

n
∏

k>0

λkT0
J

In our main result of this section we show that reacting to incomplete local searches

provides an improved rate of convergence with probability 1. We will assume that

the computational time required to identify any locally optimal solution is uniformly

bounded.

Assumption 2: n̄ = sup
y∈Ω
⌊T (y)

T0
⌋ <∞.

Theorem 3.2.1 For all n ≥ n̄ and J ∈ 2X,

(λJ)n−n̄ ≥ λ̄nT0
J

with probability one.
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Proof We start by characterizing the process {λnT0
J : n > 0} as a function of the

history of the process {ynT0 : n > 0}. Conditional upon J (n−1)T0 = J and ynT0:

λnT0
J =



























λJ f(ynT0) ≥ min
x∈J

f(x) or ynT0 = ∅

1 f(ynT0) < min
x∈J

f(x) and T (ynT0) > T0

0 f(ynT0) < min
x∈J

f(x) and T (ynT0) ≤ T0

To see why this is, recall that if the search is complete (i.e. ynT0 = ∅) or the end-

point is not of “high quality” (i.e. f(ynT0) ≥ minx∈J f(x) the single-thread model

is not affected by the search outcome. The remaining cases are associated with an

unsuccessful (respectively, successful) continuation of an incomplete search.

By Assumption 2, conditional upon yT0(the initial search outcome), we have

λ̄nT0
J =











0 f(yT0) < min
x∈J

f(x)

λJ λ̄
(n−1)T0

J otherwise

for n ≥ n̄. Hence, by induction

λ̄nT0
J ≤ (λJ)n−n̄

n
∏

k>n̄

λkT0
J ≤ (λJ)n−n̄.

3.3 Interactive Model-based Search in Real Time

Having modified the single-thread model based search to react to incomplete

searches we now consider a multiple-thread implementation, with M threads and

denoting by J = (J1, . . . , JM) the joint state of information. To avoid duplication of

search efforts, all threads report their search outcome after T0 units of computational
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time and the selection of a new model associated is subject to an acceptance-rejection

test. The basic iteration of interactive model based search is as follows:

1. A sample yi is drawn from the current model gi(Ji) and a local search algorithm

is launched for each thread i.

2. After T0 units of computational time, the current state Ji is updated as

J ′i =











Ji ∪ ℓ(yi), if T (yi) ≤ T0

Ji, otherwise

3. A tentative new model gi(J
′
i) ∈ G is selected by each thread i as in (1). The

acceptance-rejection test is implemented so that the new model g′i ∈ G is de-

termined as follows:

g′i =











g(J ′i) DKL(g(J ′i), g(J
′
ℓ)) > η ∀ℓ > i

g̃(J ′i) otherwise

where g̃(J ′i) ∈ arg ming∈GDKL(h̃(J ′i), g) and

h̃(J) =
I(x, J)U(x)

∫

Ω
I(x, J)U(x)dx

I(x, J) =











1, x 6∈ B(J) ∩ C(T0)

0, otherwise

Here the intent of the reference density h̃ is to choose a new model positing

probability in areas not in the basin of attraction of the locally optimal solution in

the state J ′i . In practice, an approximate solution to KL divergence minimization

problem is needed. This is done by using moments of all empirical distributions. For



50

example, when the class of sampling densities is normal with fixed variance then the

empirical mean is used to find the distribution that approximately minimizes the KL

divergence.

In what follows we shall use an independent multi-thread implementation as a

benchmark. The following lemma which is adapted from [21] characterizes the per-

formance of this scheme.

Lemma 2 The interactive model based search can be modeled as a Markov chain

{JnT0 : n > 0} with an upper triangular transition probability matrix so that the

eigenvalues are of the form λ∗
J

= Pr(J|J). The process with M independent threads

is also a Markov chain with eigenvalues of the form λJ =
∏

i≤M Pr(Ji|Ji). Moreover,

(λ[2])
M ≥ λJ ≥ λ∗

J

where λ[2] denotes the second largest eigenvalue of the single-thread model-based search.

Proof See [21] Theorem 3 and replace all B(Ji) terms to B(Ji) ∩ C(T0).

3.3.1 Reactive Resource Allocation: Avoiding Duplication of Incomplete

Search

In this section we propose a modification to the interactive model-based search

scheme to reallocate resources in response to real-time information. We will use a

relatively simple reactive strategy based upon the following ideas. Start points (or

seeds) that have led to incomplete local searches should not continue to be used. We

will show that the effect of this reallocation strategy is to speed up the identification

of local optima when one or more threads repeatedly fail to do so. The reactive
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reallocation strategy outlined above operates in a different (slower) time-scale {nT0 :

n > 0}.

To motivate the analysis, recall that for single-thread implementation of model-

based search the eigenvalues of the associated Markov chain are of the form:

Pr(Ji | Ji) =
∑

x∈Ji

∫

B(x)∩C(T0)

g(y; Ji)dy +

∫

Ω\C(T0)

g(y; Ji)dy

The reallocation strategy outlined above reduces the magnitude of this eigenvalue by

modifying g(·; Ji) in order to reduce the probability to have new sample in Ω\C(T0)

where local search cannot finish in time T0 In what follows, we shall describe how to

achieve the goal by introducing a “repulsive” force to the start location of unfinished

local search.

We will describe how to incorporate the need to avoid duplication in incomplete

search effort into the overall interactive model-based search scheme. Suppose that

upon executing the interactive model-based algorithm we keep track of the set (say

Ks) of starting points that have led to incomplete searches. In light of Assumption 1

we have:

Ω\C(T0) = ∪xi∈X∪X∗B̃(xi)

where B̃(xi) = B(xi) ∩ Ω\C(T0) Hence, for each y ∈ Ks there exists a unique xi ∈

X ∪ X∗ such that y ∈ B(xi) ∩ Ω\C(T0). With a slight abuse of notation, in what

follows, we shall refer to B̃(xi) as B̃(y). Consider the modified reference density H

defined as follows:

H(x, J,Ks) =
I(x, J,Ks)U(x)

∫

Ω
I(x, J,Ks)U(x)dx
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where

I(x, J,Ks) =











1, x /∈ ∪y∈Ks
B̃(y) ∪ B(J),

0, otherwise

In order to minimize the likelihood of sampling a starting point that would lead to

either no new locally optimal information (state J) or another incomplete search

outcome (the state Ks) the new candidate model g̃ is computed as follows:

g̃(J,Ks) ∈ arg min
g∈G

[DKL(H(x, J,Ks), g)]

Thus, sampling from this density gives a high likelihood to starting points or “seeds”

that are more likely to result in new locally optimal solutions identified while avoiding

incomplete searches.

We can now formally describe the modified interactive model-based search. Let

t = nT0, for M threads, with Kt
s = (Kt

s,1, . . . , K
t
s,M) and Jt = (J t

1, . . . , J
t
M) as the

current states, the interactive model-based search scheme with reactive allocation can

be succinctly described as follows:

1. A sample yi is drawn from the current model gt
i and a local search algorithm is

launched for each thread.

2. At time t+ T0, the result state is updated as

J t+T0
i =











J t
i ∪ ℓ(yi), if T (yi) ≤ T0

J t
i , otherwise

The set of starting points leading to incomplete searches is updated as

Kt+T0
i,s = Kt

i,s ∪ {yi | T (yi) > T0}
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and record end-point yt+T0
i

3. A new model g(J t+T0
i ) ∈ G is selected as in (2). If yt+T0

i ≥ min
x∈J

t+T0
i

f(x),

the acceptance-rejection test is implemented and the resulting model gt+T0
i is

computed as follows:

gt+T0
i =











g(J t+T0
i ) DKL(g(J t+T0

i ), gℓ(J
t+T0
ℓ )) > η ∀ℓ > i

g̃i(J
t+T0
i , Kt+T0

i,s ) Otherwise

where g̃i(J
t+T0
i , Kt+T0) ∈ arg ming∈GDKL(H(Ji, K

t+T0
i,s ), g).

3.3.2 Analysis

Having enlarged the state of information to include points leading to incomplete

searches, the interactive model based search can no longer be modeled as a stationary

Markov-chain. In fact, the sequence of one-step transition probability matrix {PnT0 :

n > 0} is a stochastic process adapted to the history of search outcomes, i.e. the

processes {KnT0
s : n > 0} and {ynT0

i : n > 0} for each thread i. Note that PnT0

maintains upper triangular structure so that its eigenvalues (entries along diagonal)

are of the form:

λnT0
J

= Pr(JnT0 = J|J(n−1)T0 = J)

Let P̄nT0 denote the product of one-step transition probability matrices given the

history of starting points resulting in incomplete local searches, i.e.:

P̄nT0 =
n
∏

k>0

PkT0
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Note that P̄nT0 is also upper triangular so that its eigenvalues are the entries along

the diagonal, i.e. they are of the form:

λ̄nT0
J

= Pr(JnT0 = J|J0 = J) =

n
∏

k>0

λkT0
J

In the following result we show in finite time the probability of identifying a glob-

ally optimal solution is increased when the finite history of incomplete local searches

is used to avoid an incomplete search.

Theorem 3.3.1 For any n > n̄, (λ∗
J
)n−n̄ ≥ λ̄nT0

J
with probability one.

Proof For any time nT0 and any thread i ≤M ,

λnT0
Ji

=



























ΛJi(ĝ
nT0
i , T0) f(ynT0

i ) ≥ min
x∈Ji

f(x) or ynT0
i = ∅

1 f(ynT0
i ) < min

x∈Ji
f(x) and T (ynT0

i ) > T0

0 f(ynT0
i ) < min

x∈J
f(x) and T (ynT0) ≤ T0,

where

ĝnT0
i =











g(J t+T0
i ) DKL(g(J t+T0

i ), gℓ(J
t+T0
ℓ )) > η ∀ℓ > i

g̃i(J
t+T0
i , Kt+T0

i,s ) Otherwise

and g(J t+T0
i ) ∈ G is selected as in (1) instead of (2). Define λ̂nT0

J
=
∏

i≤M ΛJi(ĝ
nT0
i , T0),

from theorem 1,
n−n̄
∏

k=1

λ̂kT0
J
≥ λ̄nT0

J
, with probability one.

For any n > n̄, one sufficient condition of (λ∗
J
)n−n̄ ≥ λ̄nT0

J
with probability one is:

λ∗
J
≥ λ̂nT0

J
, ∀n > 0 with probability one.
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Consider first the case with two threads (M = 2), recall that

λ∗
J

=























ΛJ1(g1, T0)ΛJ2(g2, T0) DKL(g1, g2) > η

ΛJ1(g̃1(J1), T0)ΛJ2(g2, T0) DKL(g1, g2) ≤ η

and

λ̂nT0
J

=























ΛJ1(g1, T0)ΛJ2(g2, T0) DKL(g1, g2) > η

ΛJ1(g̃1(J1, K
nT0
s,1 ), T0)ΛJ2(g2, T0) DKL(g1, g2) ≤ η

where

ΛJ(g, T0) =

∫

B(J)∩C(T0)

g(y; J)dy +

∫

Ω\C(T0)

g(y; J)dy

and

g̃1(J1, Ks,1) = arg min
g∈G

DK,L(H(x, J1, Ks,1), g).

From the definition of g̃1(J1, Ks,1) and g̃1(J1), it follows that

∫

Ω

ln
g̃1(x, J1, K

nT0
s,1 )

H(x, J1, K
nT0
s,1 )

H(x, J1, K
nT0
s,1 )dx ≥

∫

Ω

ln
g̃1(x, J1)

H(x, J1, K
nT0
s,1 )

H(x, J1, K
nT0
s,1 )dx

∫

Ω

ln
g̃1(x, J1, K

nT0
s,1 )

H(x, J1)
H(x, J1)dx ≤

∫

Ω

ln
g̃1(x, J1)

H(x, J1)
H(x, J1)dx

which implies

∫

[B(J1)∩C(T0)]∪B̃(K
nT0
s,1 )

g̃1(J1, K
kT0
s,1 , x)dx ≤

∫

[B(J1)∩C(T0)]∪B̃(K
nT0
s,1 )

g̃1(J1, x)dx

∫

B(J1)∩C(T0)

g̃1(J1, K
kT0
s,1 , x)dx ≥

∫

B(J1)∩C(T0)

g̃1(J1, x)dx
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When KnT0
s,1 = ∅, g̃1(J1, K

nT0
s,1 ) = g̃1(J1) and λ∗

J
= λ̂nT0

J
. When KnT0

s,1 6= ∅ then:

[B(J1) ∩ C(T0)] ( {[B(J1) ∩ C(T0)] ∪ B̃(KnT0
s,1 )} ⊆ {[B(J1) ∩ C(T0)] ∪ [Ω\C(T0)]}

and

∫

[(B(J1)∩C(T0))]∪[Ω\C(T0)]

g̃1(J1, K
nT0
s,1 , x)dx ≤

∫

[(B(J1)∩C(T0))]∪[Ω\C(T0)]

g̃1(J1, x)dx

thus

ΛJ1(g̃1(J1, K
nT0
s,1 ), T0) ≤ ΛJ1(g̃1(J1), T0)

Hence, λ∗
J
≥ λ̂nT0

J
.

We now prove the case in which M > 2 by induction. Assume the result holds

for any M − 1 dimensional state of information, say J′. Let us construct an M

dimensional state J as follows:

J = {J1} × J′

where J′ = (J2, . . . , JM) is a M−1 dimension state variable. The induction hypothesis

implies λ∗
J′
≥ λ̂nT0

J′
. Recall that the interaction between threads is hierarchical: any

given thread only interacts with higher-indexed threads. Thus, adding a new thread

with say index 1 (as in the construction of J above) has no impact on threads 2 to

M . The eigenvalues λ∗
J′

and λ̂nT0
J′

are independent of thread 1. Thus,

λ∗
J

=























ΛJ1(g1, T0) · λ∗J′ DKL(g1, gj) > η ∀j ∈ {2, . . . ,M − 1}

ΛJ1(g̃1(J1), T0) · λ∗J′ otherwise
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and

λ̂nT0
J

=























ΛJ1(g1, T0) · λnT0

J′
DKL(g1, gj) > η ∀j ∈ {2, . . . ,M − 1}

ΛJ1(g̃1(J1, K
nT0
s,1 ), T0) · λnT0

J′
otherwise.

Using the same argument as above we have:

ΛJ1(g̃1(J1, K
nT0
s,1 ), T0) ≤ ΛJ1(g̃1(J1), T0)

which together with λ∗
J′
≥ λ̂nT0

J′
implies λ∗

J
≥ λ̂nT0

J
with probability one.

3.4 Numerical Experiments

In this section we report the results from a series of numerical tests aimed at

illustrating the improved performance enabled by an interactive approach to model-

based search. The models used in the experiment correspond to class of multivariate

normal distributions with the fixed covariance matrix Σ = 0.03I. The local search

method set to BFGS Quasi-Newton method.

3.4.1 Ackley Problem

Ackley’s Problem [37] is to find x ∈ Rn, with xi ∈ (−32.768, 32.768), that mini-

mizes the following function:

H(x) = −20 · exp(−0.2

√

√

√

√

1

n
·

n
∑

i=1

x2
i )− exp(

1

n
·

n
∑

i=1

cos(2πxi)) + 20 + exp(1).
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Fig. 3.1. Independent model search method

The performance of independent model search method is in figure 3.1.

To determine g̃ of rejected thread, it is hard to calculate KL divergence precisely.

We sample a finite set of trial random selected points (choosing 20 in this experiment).

Calculate distance between the trailing points and the set of detected local optimas

and take the one with the largest total distance as the mean of reference distribution.

Let ǫ = 0.1.

For the modified interactive model search method, we set the iteration with cap

350 function evaluation, the early finished threads wait other threads only within

this cap. Same to interactive model based search, 20 trial points are sampled to

determine new sample by choosing the one with largest total distance to set which

contains starting points of incomplete search and detected local minimas. We report

the average number of iterations of reaching global optima in table 3.1.
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Table 3.1
Average number of iterations before reaching global optima

Number of Threads 5 10 25 50

Independent Model Search 68.75 44.73 26.34 19.11
Interactive Model Search 66.77 43.95 25.83 18.91
Modified Interactive Model Search 69.28 42.81 26.90 19.37
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Fig. 3.2. Original and modified interactive model search method

Our modified interactive model search underperformed interactive model search in

measure of iterations as a result of incomplete search iterations. To measure real local

search time instead of numbers of iterations, the number of objective function eval-

uations is set as standardized time ticks. Performing 500 numerical experiments, we

report the average number of maximum objective function evaluations cross threads

before one of threads find the global optima in table 3.2. For finite time performance,

we report the average best objective value detected over ticks eclipse in figure 3.2.

We also report the probability of find global optima under ticks limitation 5000 in

table 3.3.

The modified interactive model search need less ticks to reach to global optimas

and achieve lower objective function value than independent and interactive model

search. The acceleration becomes more significant as number of threads increases.
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Table 3.2
Average number of ticks before reaching global optima

Number of Threads 5 10 25 50

Independent Model Search 13732 10698 8223 7194
Interactive Model Search 13388 10491 8046 7123
Modified Interactive Model Search 12827 9236 7032 5820

Table 3.3
Probability of finding global optima within 5000 ticks

Number of Threads 5 10 25 50

Independent Model Search 7.6% 10.8% 15.8% 24.0%
Interactive Model Search 7.0% 12.6% 21.4% 26.2%
Modified Interactive Model Search 10.2% 18.8% 28.8% 43.6%
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Fig. 3.3. Independent model search method

3.4.2 Rastrigin Problem

The Rastrigin problem is the minimization of the function defined as follows:

F (x) := 10n+
n
∑

i=1

[x2
i − 10 cos(2πxi)] xi ∈ [−5.12, 5.12], i = 1, 2, . . . , n.

we have run numerical experiment on 3-D Rastrigin function with covariance matrix

Σ = 0.03I.

The performance of independent model search method is in figure 3.3 We take

same 20 trial points to generate reference distribution mean of rejected threads. We

also use ǫ = 0.1 in this experiment.
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Table 3.4
Average number of iterations before reaching global optima

Number of Threads 5 10 25 50

Independent Model Search 121.404 86.224 52.676 33.828
Interactive Model Search 122.842 80.316 40.492 20.636
Modified Interactive Model Search 127.842 78.628 42.046 22.266
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Fig. 3.4. Original and modified interactive model search method

For modified interactive model search method, we set the iteration cap as 60

function evaluation. Performing 500 numerical experiments, we report the average

number of iterations of reaching global optimas by table 3.4.

Using the number of objective function evaluations as time measurement ticks,

the performance is present in table 3.5, we report average number of maximum ticks

over different threads before one of threads find global optima. We also report the
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Table 3.5
Average number of ticks before reaching global optima

Number of Threads 5 10 25 50

Independent Model Search 5784.5 4664.6 3363.4 2406.6
Interactive Model Search 6354.9 4866.6 2925.5 1671.4
Modified Interactive Model Search 6253.6 4304.4 2486.4 1335.2

Table 3.6
Probability of finding global optima within 2000 ticks

Number of Threads 5 10 25 50

Independent Model Search 11.0% 15.2% 28.8% 44.6%
Interactive Model Search 10.6% 16.2% 37.6% 62.0%
Modified Interactive Model Search 9.4% 19.2% 38.6% 70.2%

finite time performance in figure 3.4 and table 3.6 for best objective value found and

probability of finding global optima within ticks limit.

3.5 Chapter Summary

In this chapter we consider a parallel computing scheme for global optimization

that combines multi-start local search with the dynamic reallocation of computa-

tional resources (e.g. processing time). Our work builds upon the interactive model-

based approach to global optimization proposed in [21] in which parallel threads

independently execute a model-based search method (see [42]) and periodically in-

teract through a simple acceptance-rejection rule aimed at preventing duplication of

search efforts.
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While sophisticated algorithmic variations can be designed in order to optimally

react to search outcomes our focus is to leverage relatively simple ideas such as i) con-

tinuing searches that are promising because the end-points have lower objective values

than all other solutions found so far and ii) avoiding duplication of failed searches

and/or search effort across threads. The relatively small gains afforded by these sim-

ple ideas are shown to be magnified by parallelization: the rate of convergence for an

interactive model-based search increases with the number of threads for a wide-class

of local search techniques (i.e. model-based) when compared to independent parallel

implementation.
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4. HIGH FREQUENCY TRADERS IN INEFFICIENT

MARKET

4.1 Introduction and Literature Review

High frequency trading is one of the most significant market structure devel-

opments in recent years. The computer hardware and software development shifts

trading responsibilities for human agent to computer algorithms. Debate on the high

frequency trading arbitraging is growing. In general, arbitraging is viewed positively

as arbitrageurs actively search for mispricings, executing trades that eliminate mis-

pricings thus increasing market efficiency. However, such positive consensus is yet

to emerge on arbitraging enabled by computer algorithms at a very fast timescale.

The increasing evidence shows that high frequency trading spreads widely in financial

market including equity exchange, foreign exchange and future market (see [50], [51]

and [52]). It has been argued that high-frequency trading to improve or at least does

not hurt the overall quality of markets because high frequency trading increases liq-

uidity and reduces discrepancies in prices across related markets [51,53]. Others argue

that high frequency trading not only increases market volatility and the probability

of mispricing but also makes abnormal profit from liquidity traders which discourage

them from the market [54]. High frequency trading was names as one of the likely

causes of the ”flash crash” in 2010 but empirical evidence suggest this is not the case

(see [55] Kirilenko at a. (2014)).

On low-latency communications and decision making, high frequency traders con-

vey orders for electronic exchanges over intervals measured in micro- and milliseconds.
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High frequency traders can front-run other traders by examining trading volume and

quotes to detect the time when traders are using algorithms to split up large orders

that will move the market [56]. This strategy, by which the high frequency trader

can predict future flows into or out of a particular asset is called order anticipation in

the order world, if high frequency traders are sufficiently fast, they might observe the

first orders to arrive in an exchange and react by trading on other exchanges before

the remaining orders from the original trader arrive there [57].

We study the effects of high frequency trading when there is also insider trading

activity (trading activity involve possession of nonpublic information material) in the

market. In earlier work, [22] Kyle (1985) had shown how insider trading induces

systematic losses to uninformed liquidity (or noise) traders. The multiple informed

traders model introduced in [58] extends Kyle’s model to involve multiple imperfect

information insider traders who competing and learning during the trading process.

More recently, [59] and [60] introduce asymmetric information filtration for insider

trader and market maker in which the liquidity order low is modeled as stochastic

process, and the market maker assumed to know in which distribution liquidity low is

drawn from while informed trader processes the information about underlying value

of the asset but no accuracy information about liquidity. The informed trader update

liquidity information during the trading process, and the profitability of the informed

trader depends on this information updating.

In this chapter, we modify Kyle’s discrete dynamic insider trading model by in-

cluding a high frequency trader. The high frequency trader observes the combined

order low from insider’s and noise traders’ demand ahead of the market marker. The

presence of the high frequency trading makes liquidity information no longer available

to the informed trader and market maker. The market maker and the informed trader

have to learn the liquidity activity by observing the aggregated order low from noise



68

and high frequency traders. We show that high frequency traders make abnormal

profit if the market maker and informed trader expectations about liquidity are in-

correct. The profit associated with this incorrect expectation vanishes over time with

accuracy of belief of liquidity improving. The expected profit of the informed trader

decreases as a result of presence of a high frequency trader. High frequency trading

quantity within a certain range makes the reduction of insider’s profit exceeding the

profit of the high frequency trader, thus the expected loss of noise traders is reduced.

The high frequency trader plays beneficial role when market maker underestimates

the liquidity variance. Under this situation, the high frequency trader makes mar-

ket and provide extra liquidity. In section 2, we build a single stage trading model

and provide conditions associated the beneficial role of the high frequency trader. In

section 3, we introduce a discrete dynamic informed trading model with the high fre-

quency trader. In our main results we show the convergence of belief about liquidity,

the positive expected profit of the high frequency trader and the reduction of expected

loss of noise traders. In section 4, we have an illustrative numerical experiment to

demonstrate the theoretical findings.

4.2 One Stage Kyle Model with High Frequency Trader

In this section we introduce a modification of [22] Kyle’s (1985) single auction

model by including high frequency trader.

Assume there is an infinitely supplied and dividable asset available for trading for

a single trading period. The fundamental value of is asset is given by

ṽ ∼ N (0, σ2
v)
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At the end of trading period, any participant holding a share of the asset receives a

liquidating dividend (liability) of ṽ dollars.

There are 3 kinds of agents: one informed trader, one high frequency trader and

noise traders. Let x denote order from the informed trader, u ∼ N (0, σ2
u) denote the

aggregate order from noise traders, and f denotes order from high frequency traders.

The trading takes place by following sequence:

1. The informed trader submit order x after observing fundamental value of asset

ṽ. Noise traders submit cumulated order u.

2. The HF trader observe order flow x+ u and place f = η(x+ u), where |η| < 1.

3. The market maker receives total order flow y = x+u+ f and clears the market

at price p.

Define the profit of insider trader as π = (ṽ − p)x.

Assumption 1 Both insider trader and market maker have same prior belief of

aggregate liquidity orders from noise traders and high frequency trader as u + f ∼

N (0, σ2
f).

Let X be the trading strategy of informed trader and P be the pricing rule of

market maker. An equilibrium is defined as a pair (X,P ) with two conditions:

1. Profit Maximization:

E{π(X,P )} ≥ E{π(X ′, P )}

for any alternative trading strategy X ′.

2. Market Efficiency:

p(X,P ) = E[ṽ|x+ u+ f ]
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Lemma 3 Under Assumption 1, there exists a unique equilibrium in which X and P

are linear function. Define constants β =
σf
σv

and λ = σv
2σf

The equilibrium X and P

are given by

X(ṽ) = βṽ, P (x+ u+ f) = λ(x+ u+ f)

Proof See [22] Kyle (1985) Theorem 1. Replace u and σu by u+ f and σf .

Lemma 4 The expected profit for informed trader is

Eπi(ṽ) = (1− η)
σfσv

2

The high frequency trader receive no expected surplus if the expectations on σ2
f are

correct. If expectation on σ2
f are incorrect, the expected profit of high frequency trader

is as follows:

• If σ2
f >

1+η
1−η

σu, with η > 0,

E[πf ] = η
σv

2σf
[σ2

f(1− η)− (1 + η)σ2
u] > 0

• If σ2
f <

1+η
1−η

σu, with η < 0,

E[πf ] = η
σv

2σf
[σ2

f(1− η)− (1 + η)σ2
u] > 0
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Proof Based on equilibrium trading strategy, the expected profit for informed trader

is

E[πi(ṽ)] = E[(ṽ − p)x] = E[(ṽ − λ[x+ u+ f ])x]

= E

[(

v − (1 + η)
σv

2σf
(u+

σf

σv
ṽ)

)

σf

σv
ṽ

]

= (1− η)
σfσv

2

The expected profit for high frequency trader is

E[πf(ṽ)] = E[(ṽ − p)f ] = E[(ṽ − λ[x+ u+ f ])f ]

= E

[(

v − (1 + η)
σv

2σf
(u+

σf

σv
ṽ)

)

η(
σf

σv
ṽ + u)

]

= η
σv

2σf

[σ2
f (1− η)− (1 + η)σ2

u]

If the expectations are fulfilled,

σ2
f = E[(u+ f)2] = E[(u+ η[u+ x])2] = (1 + η)σ2

u + η2σ2
f

Hence,

σ2
f =

(1 + η)2

(1− η2)
σ2

u =
1 + η

1− η
σ2

u

and σ2
f(1− η)− (1 + η)σ2

u = 0, thus

E[πf (ṽ)] = η
σv

2σf
[σ2

f (1− η)− (1 + η)σ2
u] = 0

If σ2
f >

1+η
1−η

σu and η > 0, σ2
f (1− η)− (1 + η)σ2

u > 0,

E[πf ] = η
σv

2σf

[σ2
f(1− η)− (1 + η)σ2

u] > 0
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If σ2
f <

1+η
1−η

σu and η < 0, σ2
f (1− η)− (1 + η)σ2

u < 0,

E[πf ] = η
σv

2σf
[σ2

f(1− η)− (1 + η)σ2
u] > 0

This two conditions follow the fact that the market maker over or under prices asset

based on he or she overestimating or underestimating liquidity variance, the high fre-

quency trader can make expected positive rent by observing this incorrect estimation

and thus mispricing.

In the market without high frequency trader, we have β = σu
σv

and λ = σv
2σu

. The

expected profit of informed trader is

E[π̄i] = E[(ṽ − λ(x+ u))x] = E[βṽ2 − λβ2ṽ2] =
σuσv

2

In the zero-sum game environment, the total expected loss of noise trader in the

market without high frequency trader is

E[L̄] = E[π̄i] =
σuσv

2

In the market with high frequency trader, the total expected loss of noise traders

is

E[L] = E[πi] + E[πf ] = (1− η)
σfσv

2
+ η

σv

2σf
[σ2

f (1− η)− (1 + η)σ2
u]

Theorem 4.2.1 The high frequency trader protect noise traders if expectation on σ2
f

are incorrect and one of following condition holds: (1) η > 0 and 1+η
1−η

σ2
u < σ2

f < σ2
+η;

(2) η < 0 and σ2
−η < σ2

f <
1+η
1−η

σ2
u, where

σ+η =
σu(1 +

√

1 + 4η(1− η2)(1 + η))

2(1− η2)
, σ−η =

σu(1−
√

1 + 4η(1− η2)(1 + η))

2(1− η2)
.
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Furthermore, when condition (2) holds, high frequency trader plays beneficial role by

providing extra liquidity.

Proof The high frequency trader protect noise traders if

E[L̄]−E[L] > 0,

the expected loss of noise traders is reduced due to presence of high frequency trader.

The expected loss reduction is

E[L̄]−E[L] =
σuσv

2
− (1− η)

σfσv

2
− η

σv

2σf

[σ2
f (1− η)− (1 + η)σ2

u]

=
σuσv

2
− σv

2σf

[σ2
f (1− η2)− η(1 + η)σ2

u]

=
σv

2σf

[−(1− η2)σ2
f + σuσf + η(1 + η)σ2

u]

Condition E[L̄]− E[L] > 0 is equivalent to

(1− η2)σ2
f − σuσf − η(1 + η)σ2

u < 0

For fulfilled expectation σf ,

(1− η2)σ2
f − σuσf − η(1 + η)σ2

u =
σuσv

2
[1−

√

1− η2] > 0

Consider incorrect expectation, the discriminant of equation (1−η2)x2−σux−η(1+

η)σ2
u = 0 is σ2

u+4η(1+η)(1−η2)σ2
u. If η ∈ (0, 1), we have σ2

u+4η(1+η)(1−η2)σ2
u > 0.

If η ∈ (−1, 0), we have (1 + η)η > −1
4
, thus σ2

u + 4η(1 + η)(1 − η2)σ2
u > 0. So the

equation

(1− η2)x2 − σux− η(1 + η)σ2
u = 0
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has two real solutions for all |η| < 1, which are

σ+η =
σu(1 +

√

1 + 4η(1− η2)(1 + η))

2(1− η2)
and σ−η =

σu(1−
√

1 + 4η(1− η2)(1 + η))

2(1− η2)

When η > 0 and 1+η
1−η

σ2
u < σ2

f < σ2
+η; or η < 0 and σ2

−η < σ2
f <

1+η
1−η

σ2
u, we have

(1− η2)σ2
f − σuσf − η(1 + η)σ2

u > 0

and thus

E[L̄]−E[L] > 0.

When η < 0, the high frequency trader takes order placed by slow agents, who

makes the market and provides extra liquidity, and thus plays beneficial role.

4.3 Dynamic Kyle Model with High Frequency Trader

In this section, we consider the dynamic trading model with informed and high

frequency trader. Assume both market maker and informed trader do not have full

information about the liquidity orders and learn it during the trading process. We

show that when the initial expectation about the liquidity order in a certain range,

the high frequency trader plays beneficial role who reduce the total expected loss of

noise trader.

Consider a single asset traded over time {1, . . . , T}. Similar to [59] H. Hong (2002),

assume the value of the asset is gradually resolved over time as

v =
T
∑

t=1

vt
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where vt becomes public information after all trading activity end of time t. Let

vt ∼ N (0, σ2
v) is a common knowledge. By the end of period T , the value of asset will

be known by all participants.

There are 3 kinds of agents: one informed trader, one HF trader and noise traders.

Informed trader observes vt before vt becomes public information. Let xt denote order

flow from the informed trader, ut ∼ N (0, σ2
u) denote the aggregate order flow from

noise traders, and ft denotes order flow from HF traders.

Assume the market maker and insider trader do not have full information about

liquidity ut + ft, but have same prior guess ut + ft ∼ N (0, σ2
f), where σ2

f is drawn

from Inverse Gamma distribution as

σ2
f ∼ Inv −Gamma(a0, b0)

To simplify analysis, assume a0 > 2, the prior of σ2
f has mean

b0
a0 − 1

and variance

b20
(a0 − 1)2(a0 − 2)

Let both informed trader and market maker update their belief (at, bt) of σ2
f based

on Baye’s rule.

In period t, trading takes place by following sequence:

1. The informed trader receives private information vt. Informed trader and noise

traders submit order xt and ut simultaneously.

2. The high frequency trader observe order flow xt + ut and place ft = η(xt + ut)
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3. The market maker receives total order flow yt = xt + ut + ft and clear market

at price pt.

4. Information vt and quantity pt, yt are revealed to public. Market maker and

informed trader update belief (at, bt) of liquidity order variance σ2
f .

In reality, the market maker knows who are high frequency traders and can distin-

guish their orders. However, algorithmic trading is widely used by investment bank,

pension funds, mutual funds and other institutional traders. Institutional traders can

participate market at both high and low frequency. The market maker is hard to

distinguish high frequency orders from slow orders, thus we assume market maker

can only observe total flow yt.

Let Σt be the belief of σ2
f at time t as

Σt =
bt

at − 1

4.3.1 Equilibrium Strategy and Information Update

An equilibrium requires two conditions for all time t ≤ T :

1. Market Efficient: market maker sets price as

pt = E[v|Σt−1, Vt−1, Yt]

where Vt−1 = (v1, . . . , vt−1), Yt = (y1, . . . , yt).

2. Profit Maximization: the insider trader maximize the expected profit as

E[πt] = E[xt(v − pt)|Σt−1, Vt, Yt−1]
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Lemma 5 At time t, if informed trader and market maker have same belief Σt−1.

Define βt = 1
2λt

and λt =
β2
t σv

β2
t σ

2
v+Σt−1

, the equilibrium trading strategy is

pt =
t−1
∑

j=1

vj + λtyt, xt = βvt

Proof At time t, given belief Σt−1 the market maker can calculate the conditional

expectation of vt as

E[vt|Σt−1, yt] =
Cov[vt, βvt + ut + ft|Σt−1]

Var[βtvt + ut + ft|Σt−1]
yt =

βtσ
2
v

β2
t σ

2
v + Σt−1

yt

Market maker set the price rule as

pt = E[v|Σt−1, yt] =
t−1
∑

j=1

vj + E[vt|Σ, yt] =
t−1
∑

j=1

vj + λtyt

where

λt =
βtσ

2
v

β2
t σ

2
v + Σt−1

The profit maximization objective function of informed trader is

E[πt] = E[xt(v − pt)] = E[xt(

T
∑

j=1

vj −
t−1
∑

j=1

vj − λtyt)]

= E[xt(vt +
T
∑

j=t+1

vj − λt[xt + ut + ft])]

From E[ut + ft] = 0 and E[
∑T

t+1 vj ] = 0,

E[πt] = E[xt(vt − λtxt)]
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The FOC is

vt − 2λtxt = 0

thus

xt = βtvt =
1

2λt
vt

In trading period t, once vt revealed, the market maker can deduce xt by equilib-

rium strategy xt = βtvt. Together with total order flow yt, the total liquidity order

ut + ft = yt − βtvt is available to the market maker. The informed trader is able to

access ut + ft at the end of trading period t as well.

The prior belief of σ2
f at time t is

σ2
f ∼ Inv −Gamma(at−1, bt−1)

The likelihood function for a single observation ut + ft is

f(ut + ft|σ2
f) =

1
√

2πσf

exp

(

− (ut + ft)
2

2σ2
f

)

The posterior distribution is

f(σ2
f |ut + ft) =

f(σ2
f)f(ut + ft|σ2

f)
∫

f(σ2
f)f(ut + ft|σ2

f)dσ
2
f

where f(σ2
f) is the PDF of distribution Inv−Gamma(at−1, bt−1).

From conjugate prior property of normal distribution with known mean, distribu-

tion associated with f(σ2
f |ut + ft) remains Inverse-Gamma with

at = at−1 +
1

2
, bt = bt−1 +

(ut + ft)
2

2
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thus

at = a0 +
t

2
, bt = b0 +

t
∑

j=1

(uj + fj)
2

2

After trading period t, both market maker and informed trader believe σ2
f follows

inverse gamma distribution with mean

Σt =
bt

at − 1
=
b0 +

∑t
j=1

(uj+fj)2

2

a0 + t
2
− 1

and variance

V ar(σ2
f ) =

(

b0 +
∑t

j=1
(uj+fj)2

2

)2

(a0 + t
2
− 1)(a0 + t

2
− 2)

4.3.2 Trading Process Convergence

The high frequency trading quantity is

ft = η(xt + ut).

The total liquidity order volume is

ft + ut = ηβtvt + (1 + η)ut

from ut and vt are independent,

ft + ut ∼ N (0, η2β2
t σ

2
v + (1 + η)2σ2

u)

The variance of ft +ut is time variant which depends on βt. Assume both market

maker and insider trader have not prior information about the correlation between βt
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and variance of ft + ut. The time variant fact is not available for market maker and

informed trader who are fully confident that σ2
f is constant over time.

At time t, given at−1 and bt−1,

E[Σt|at−1, bt−1] = E

[

bt−1 + (ut+ft)2

2

at−1 + 1
2
− 1

∣

∣

∣

∣

at−1, bt−1

]

=
2bt−1 + η2β2

t σ
2
v + (1 + η)2σ2

u

2at−1 − 1

thus

E[at] = at−1 +
1

2
= a0 +

t

2

E[bt] = E[bt−1] +
1

2
[η2β2

t σ
2
v + (1 + η)2σ2

u] = b0 +
1

2
[

t
∑

i=1

β2
i η

2σ2
u + t(1 + η)2σ2

v ]

From equilibrium strategy, we have

βt =
1

2λt
=
β2

t σ
2
v + Σt−1

2βtσ2
v

which implies

β2
t =

Σt−1

σ2
v

Thus,

E[bt] = E[bt−1] +
1

2
[η2Σt−1 + (1 + η)2σ2

u] =

(

1 +
η2

2a0 + t− 3

)

E(bt−1) +
(1 + η)2σ2

u

2

We have limt→∞ at = ∞ and limt→∞E(bt) = ∞. To determine whether E(Σt) is

convergent, consider

|E(Σt)|
|E(Σt−1)|

= E

(

bt
bt−1

)

at−1 − 1

at − 1
=

2a0 + t− 3

2a0 + t− 2

[(

1 +
η2

2a0 + t− 3

)

+
(1 + η)2σ2

u

2E(bt−1)

]
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the ratio criteria is

r = lim
t→∞

|E(Σt)|
|E(Σt−1)|

= 1

The convergence is inclusive, it is possible that limt→∞E(Σt) = ∞. However, if

E(Σt) →∞, we have λt → 0, trading quantity has no impact on price. We introduce

an assumption to avoid this situation.

Assumption 2 Assume the market maker has a lower bound λ for price parameter

λt. λt ≥ λ for all t > 0 is a public knowledge.

Theorem 4.3.1 Under assumption 2, the expected liquidation variance belief E(Σt)

converges. If λ ≤
√

1+ησv
2
√

1−ησu
, define Σ∗ as the limit, we have

lim
t→∞

E(Σt) = Σ∗ =
1 + η

1− η
σ2

u

Proof Under Assumption 2, the informed trader can reach a upper bound of trading

parameter as

βt ≤ β =
1

2λ

and the expectation has

E(Σt) =
2b0 +

∑t
i=1 β

2
t η

2σ2
v + t(1 + η)2σ2

u

2a0 − 2 + t
≤ 2b0 + tβ̄2η2σ2

v + t(1 + η)2σ2
u

2a0 − 2 + t

we have

lim
t→∞

E(Σt) ≤ β̄2η2σ2
v + (1 + η)2σ2

u <∞
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Consider

|E(Σt)− E(Σt−1)| =
∣

∣

∣

∣

2E(bt−1) + η2β2
t σ

2
v + (1 + η)2σ2

u

2a0 + t− 2
− 2E(bt−1)

2a0 + t− 3

∣

∣

∣

∣

≤
∣

∣

∣

∣

2E(bt−1)

(2a0 + t− 2)(2a0 + t− 3)

∣

∣

∣

∣

+

∣

∣

∣

∣

η2β2
t σ

2
v + (1 + η)2σ2

u

2a0 + t− 2

∣

∣

∣

∣

≤
∣

∣

∣

∣

2E(bt−1)

(2a0 + t− 2)(2a0 + t− 3)

∣

∣

∣

∣

+

∣

∣

∣

∣

η2β̄2σ2
v + (1 + η)2σ2

u

2a0 + t− 2

∣

∣

∣

∣

we have

lim
t→∞

|E(Σt)−E(Σt−1)| ≤ lim
t→∞

∣

∣

∣

∣

2E(bt−1)

(2a0 + t− 2)(2a0 + t− 3)

∣

∣

∣

∣

+ lim
t→∞

∣

∣

∣

∣

η2β̄2σ2
v + (1 + η)2σ2

u

2a0 + t− 2

∣

∣

∣

∣

= 0

then limt→∞E(Σt) < ∞ and limt→∞ |E(Σt)− E(Σt−1)| = 0, thus Σt converges. Let

Σ∗ = limt→∞Σt, β
∗ = limt→∞ βt. If β∗ < β̄, we have











Σ∗ = β∗2η2σ2
v + (1 + η)2σ2

u

β∗2 =
Σ∗

σ2
v

and














β∗2 =
(1 + η)σ2

u

(1− η)σ2
v

Σ∗ =
1 + η

1− η
σ2

u

We can conclude that

lim
t→∞

Σt =















1 + η

1− η
σ2

u, if λ ≤
√

1 + ησv

2
√

1− ησu

σ2
v

4λ2 , otherwise
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4.3.3 Profitability Analysis

In this section, we assume λ is small enough to satisfy λ ≤
√

1+ησv
2
√

1−ησu
.

Given equilibrium strategy βt = 1
2λt

and βt =

√
Σt−1

σ2
v

at time t, the expected profit

for insider trader is

E[πi
t] = E[(v − pt)xt] = E[(

T
∑

i=1

vi − (

t−1
∑

i=1

vi + λtyt))xt]

= E[(vt +
T
∑

i=t+1

vi − λt(1 + η)(xt + ut))xt]

= E[βtv
2
t − λt(1 + η)β2

t v
2
t ]

=
σ2

v

2λt
− 1 + η

4λt
σ2

v =
1− η

4λt
σ2

v =
(1− η)σv

√
Σt−1

2

Theorem 4.3.2 If η(Σ0 − Σ∗) > 0, high frequency trader get positive rent for all

trading period t > 0, the rent is vanished over time as market maker and informed

trader learning liquidity information.

Proof The profit for high frequency trader is

E[πf
t ] = E[(v − pt)ft] = E[(

T
∑

i=1

vi − (
t−1
∑

i=1

vi + λtyt))ft]

= E[(vt +

T
∑

i=t+1

vi − λt(1 + η)(xt + ut))η(xt + ut)]

= ηE[βtv
2
t − λt(1 + η)β2

t v
2
t − λt(1 + η)u2

t ]

= η

[

σ2
v

2λt
− 1 + η

4λt
σ2

v − λt(1 + η)σ2
u

]

= η

[

(1− η)σv

√
Σt−1

2
−− σv

2
√

Σt−1

(1 + η)σ2
u

]

=
η

2
√

Σt−1

[

(1− η)σvΣt−1 − (1 + η)σ2
uσv

]
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When t→∞,

lim
t→∞

E[πf
t ] =

η

2
√

Σ∗

[

(1− η)σvΣ
∗ − (1 + η)σ2

uσv

]

= 0

If Σt−1 > Σ∗ = 1+η
1−η

σ2
u and 0 < η < 1,

E[πf
t ] =

η

2
√

Σt−1

[

(1− η)σvΣt−1 − (1 + η)σ2
uσv

]

> 0

If Σt−1 <
1+η
1−η

σ2
u and −1 < η < 0,

E[πf
t ] =

η

2
√

Σt−1

[

(1− η)σvΣt−1 − (1 + η)σ2
uσv

]

> 0

So for single period t, high frequency trader get positive rent if η(Σt−1 −Σ∗) > 0.

For aggregate profit over time, we need to analyze the path of belief Σt. Consider

any period t, assume Σt−1 > Σ∗, we have

E[Σt]− E[Σt−1] =
2bt−1 + η2Σt−1 + (1 + η)2σ2

u

2at − 2
− bt−1

at−1 − 1

=
η2Σt−1 + (1 + η)2σ2

u

2at − 2
− bt−1

2(at − 1)(at−1 − 1)

=
η2Σt−1 + (1 + η)2σ2

u

2at − 2
− Σt−1

2at − 2

=
1

2at − 2

[

(1 + η)2σ2
u − (1− η2)Σt−1

]

<
1

2at − 2

[

(1 + η)2σ2
u − (1− η2)Σ∗

]

= 0
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and

E[Σt]− E[Σ∗] =
2bt−1 + η2Σt−1 + (1 + η)2σ2

u

2at − 2
− Σ∗

=
η2Σt−1 + (1 + η)2σ2

u

2at − 2
+

(

bt−1

at−1 − 1

)(

at−1 − 1

at − 1

)

− Σ∗

=
η2Σt−1 + (1 + η)2σ2

u

2at − 2
+

(

at−1 − 1

at − 1

)

Σt−1 − Σ∗

>
η2Σt−1 + (1 + η)2σ2

u

2at − 2
− Σ∗

2at − 2
= 0

Thus Σt−1 > Σ∗ implies

E[Σt]−E[Σt−1] < 0 and E[Σt]− Σ∗ > 0

Given Σ0 > Σ∗, we have limt↑∞ Σt ↓ Σ∗, together with η > 0, we have

E(πf
t ) > 0 ∀t > 0, and lim

t→∞
E(πf

t ) = 0

Similarly, we can have given Σ0 < Σ∗ and η < 0,

E(πf
t ) > 0 ∀t > 0, and lim

t→∞
E(πf

t ) = 0

4.3.4 Market Impact of High Frequency Trader

In the market without high frequency trader, the equilibrium strategy is















βt =
1

2λt

λt =
βtσ

2
v

β2
t σ

2
v + σ2

u
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and βt = σu
σv

, λt = σv
2σu

. The expected profit of insider trader at time t is

E[πt] = E[xt(v − pt)] = E[xt(vt − λxt)] = E[βtv
2
t − λtβ

2
t v

2
t ] =

σuσv

2
.

From zero sum game property, the expected loss of noise traders is

E[Lt] = E[πi
t] =

σuσv

2

In the market with high frequency trader, the total expected profit of insider and

high frequency trader is

E[πi
t] + E[πf

t ] =
(1− η)σv

√
Σt−1

2
+

η

2
√

Σt−1

[

(1− η)σvΣt−1 − (1 + η)σ2
uσv

]

=
σv

2
√

Σt−1

[

(1− η2)Σt−1 − η(1 + η)σ2
u

]

The expected loss of noise traders is

E[L̃t] = E[πi
t] + E[πf

t ] =
σv

2
√

Σt−1

[

(1− η2)Σt−1 − η(1 + η)σ2
u

]

Theorem 4.3.3 There are two sufficient conditions that high frequency trader protect

noise traders

1. η > 0 and Σ0 ∈
(

Σ∗,
σ2
u

(

1+
√

1+4(1−η2)η(1+η)
)2

4(1−η2)2

)

;

2. η < 0 and Σ0 ∈
(

σ2
u

(

1−
√

1+4(1−η2)η(1+η)
)2

4(1−η2)2
,Σ∗

)

.

Specially, under condition 2, high frequency trader plays beneficial role for the market.
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Proof The high frequency trader protects noise traders is equivalent to

∑

t≤T

[E[Lt]− E[L̃t]] > 0 ∀T > 1

where

E[Lt]−E[L̃t] =
σuσv

2
− σv

2
√

Σt−1

[

(1− η2)Σt−1 − η(1 + η)σ2
u

]

Consider the limit situation, when t → ∞, Σt−1 → Σ∗ = 1+η
1−η

σ2
u, assume η 6= 0, we

have E[πf
∞] = 0 and

E[L̃∞] =
(1− η)σv

√
Σ∗

2
=

√

1− η2σvσu

2
<
σvσu

2
= E[L∞]

thus when t → ∞, high frequency trader protects noise traders regardless η > 0 or

η < 0.

Now consider finite time situation,

E[Lt]− E[L̃t] > 0

is equivalent to

(1− η2)Σt−1 − σu

√

Σt−1 − η(1 + η)σ2
u < 0

When η > 0 and Σt−1 > Σ∗, we have for all 0 < η < 1,

σ2
u + 4(1− η2)η(1 + η)σ2

u > 0

and

σu(1−
√

1 + 4(1− η2)η(1 + η))

2(1− η2)
<
√

Σ∗ <
σu(1 +

√

1 + 4(1− η2)η(1 + η))

2(1− η2)
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If choose Σ0 ∈
(

Σ∗,
σ2
u

(

1+
√

1+4(1−η2)η(1+η)
)2

4(1−η2)2

)

, for all t > 0,

√
Σ∗ <

√

Σt−1 <
√

Σ0 <
σu(1 +

√

1 + 4(1− η2)η(1 + η))

2(1− η2)

thus

E[Lt]−E[L̃t] > 0, ∀t > 0

which implies
∑

t≥T

E[Lt]−
∑

t≤T

E[L̃t] > 0, ∀T > 1

When η < 0 and Σt−1 < Σ∗, we have for all −1 < η < 0, η(1 + η) ≥ −1
4

thus

σ2
u + 4(1− η2)η(1 + η)σ2

u > 0

and

σu(1−
√

1 + 4(1− η2)η(1 + η))

2(1− η2)
<
√

Σ∗ <
σu(1 +

√

1 + 4(1− η2)η(1 + η))

2(1− η2)

If choose Σ0 ∈
(

σ2
u

(

1−
√

1+4(1−η2)η(1+η)
)2

4(1−η2)2
,Σ∗

)

, for all t > 0,

σu(1−
√

1 + 4(1− η2)η(1 + η))

2(1− η2)
<

√

Σ0 <
√

Σt−1 <
√

Σ∗

thus

E[Lt]−E[L̃t] > 0, ∀t > 0

which implies
∑

t≥T

E[Lt]−
∑

t≤T

E[L̃t] > 0, ∀T > 1
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When Σt < Σ∗ and η < 0, the high frequency trader takes order placed by slow

agents, who makes the market and provides extra liquidity, and thus plays beneficial

role.

4.4 Illustrative Numerical Experiment

Consider the trading process with total T = 105 trading periods. Asset value is

reveal over time, while ṽ =
∑T

i=1 vi and {vi} are i.i.d random variables drawn from

N (0, σv), where we set σv = 0.025.

Set the high frequency trader parameter η = 0.1 and noise trader variance σu =

0.1, the true limit liquidity variance is σ∗ = 1+η
1−η

= 0.1222. The prior liquidity variance

belief is a = 3, b = 0.65 and thus Σ0 = 0.325.

This set of parameters setting satisfies the conditions to ensure high frequency

trader makes positive expected rent and plays beneficial role during the trading pro-

cess.

The profit of informed trader for each trading period is calculated as

πi(t) = (ṽ − p(t))x(t), πf(t) = (ṽ − p(t))f(t)

The value revealed path is shown in figure 4.1. The price path is perturbed closely

around this value path. Set Baye’s update scale parameter to ǫ = 0.01. We report the

belief update path Σt in figure 4.2. The expectation of liquidity variance converges

to the real limit variance σ∗.

In figure 4.3, we report the cumulative profit of informed trader in the market with

and without high frequency trader. The presence of high frequency trader significantly

reduce the cumulative profit of informed trader. The margin builds up mainly during
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Fig. 4.3. Cumulative profit of informed trader

the first half of trading periods while the liquidity expectation is significant away from

the true value. When expectation converges close to true value, the margin between

profit with and without high frequency trading stops growing. In zero sum market,

the loss of noise traders is equal to the total gain of insider traders and high frequency

trader. The fast trader profit is less than reduction of insider trader’s profit. All fast

trader’s profit is generated from insider traders, and the noise trader suffer less loss

in market with fast traders. We report the cumulative loss of noise traders in figure

4.4.

4.5 Chapter Summary

In this chapter, we focus on identification of the market impact of high frequency

trading activities which provide additional liquidity but increase volatility and mis-

pricing. Our work builds under the market environment involving significant insider

trading activity in which high frequency trader clearly improves market quality as in-
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creasing the liquidity not only by directly trading but also by reducing the expected

loss of liquidity trader to encourage liquidity trading activity.

While complicated, a dynamic model can more accurately describe competition

between high frequency traders and informed traders, our goal is to utilize relative

simple idea as: high frequency trading activity hides real liquidity variance from

market maker and informed trader, that forces informed traders to choose conservative

trading strategy without exploring all profit convoyed by private information. Instead

of earning profit from noise traders, high frequency trader makes positive rent from

the decreased profit portion of the informed trader.
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5. CONCLUSIONS

In global optimization and equilibrium community, thanks to the development of

computer architecture and algorithm such as task parallelism, multiple threads pro-

cess has been widely applied. The time cost is reduced by trading with insensitive

computing power. In decentralized parallel computing scheme, there is no constrain

on the uniqueness of timescales of multiple tasks. Parallel threads can be assigned to

operate tasks in two or more different timescales. In this dissertation, we introduced

three applications facilitated by two timescales technique to demonstrate the effec-

tiveness of this technique in stochastic perturbation control, computational power

allocation and dynamic trading systems analysis.

In chapter 2, we introduced two timescales in global optimization scope, most spec-

ified, in simulated annealing. A first annealing process operates on a faster timescale

and has a drift function that converges to a non-zero noise level. A second annealing

process, which operating a slower timescale, is subject to a modified drift term in

which the steepest descent direction is perturbed with the first process density gra-

dient. The two time scale technique enables the second annealing process to be able

to bypass locally optimal solutions. We have shown that when compared to indepen-

dent diffusions, the proposed interactive diffusions approach can increase the speed

of convergence at the expense of minimal additional computational overhead.

In chapter 3, we apply two timescales to a parallel computing scheme for global

optimization that combines multi-start local search with the dynamic reallocation of

computational resources. In fast time scale, parallel threads independently execute
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a model-based search method, while in slow timescale, searching threads interact

through a modified acceptance-rejection rule aimed at preventing duplication of search

efforts. The modification of acceptance-rejection rule focus on two ideas related to

local search that fails to complete: one is continuing searches that are promising

because the end-points have lower objective values than all other solutions find so

far and the other is avoiding duplication of failed searches and/or search effort across

threads.

In chapter 4, we implement two timescales in a dynamic trading system. In

fast timescale, the high frequency trader observes total trading quantity and places

order, while the insider trader, the market maker and noise traders operate in a slow

timescale. In the market environment involving significant insider trading activity, we

show that high frequency trading activity hides real liquidity variance from market

maker and the informed trader and forces informed trader to choose conservative

trading strategy without exploring all profit generated by private information which

implies the high frequency trader clearly improves market quality by increasing the

liquidity by reducing the expected loss of liquidity traders.
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