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Sociotechnical Synthesis 

The marketisation of healthcare can often lead to those who belong to smaller 

demographic groups, such as people with disabilities, receiving suboptimal levels of care. These 

small pockets exist across the US healthcare system, from children with rare scoliosis to 

scattered amputees forced to work within an outdated system. In order to address larger issues 

within the healthcare system, it is critical to first uncover why these small populations 

consistently experience adverse healthcare outcomes and work to understand how to confront the 

dislocations that have occurred. 

 For those with early onset neuromuscular or syndromic scoliosis, the existing techniques 

for measuring and tracking total lung capacity (TLC) are insufficient and can make a physician’s 

decision regarding the timing of spinal fusion surgery difficult.  The growth of neural networks 

in the past few years has created the opportunity to segment and label ribs and determine lung 

volume through analysis of biplanar X-rays alone. That is the task the technical portion of this 

report sought to undertake. Total lung capacity was calculated through subtracting the 

mediastinum volume from the rib cage volume, the former being determined through a 

multivariate linear regression and the latter determined via a convolution neural network. The 

mediastinum volume was able to be predict with a relatively high accuracy compared to previous 

work and the convolution neural network was able to identify the ribcage with limited success. 

For many of the 2 million Americans living with a missing limb, the current policies in 

place within the orthotics and prosthetics sector of healthcare have inhibited their access to 

potentially life changing devices due to high costs, negatively affecting their physical, financial, 

and physiological health. The research section of this report identifies the policies that restrict 

access to these advanced devices, the benefits of these devices as well as their true cost.  
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Although the biplanar ribcage identification presented in the technical portion of this 

report was not accurate enough to progress further in lung volume calculation, significant 

advancements were made in mediastinal volume calculations. As the capacity of neural networks 

continue to improve every year, the possibility of a more inclusive and affordable lung volume 

calculation technique grows closer for future teams to strive towards. Furthermore, the evidence 

presented in the research section of this report has the potential to increase public awareness and 

provides recommendations for future research that in combination could assist in in the 

facilitation of policy change that would change hundreds of thousands of lives.  
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Abstract 
Early onset scoliosis is a three-dimensional curvature of the spine that occurs in patients 10 years or 
younger. Physicians tend to pursue non-surgical options first. If these are unsuccessful, surgical intervention 
becomes necessary. In scoliosis cases, physicians use total lung capacity as the metric for determining the 
optimal time for surgery. Current standards of treatment do not offer an accurate way for physicians to 
measure total lung capacity for early onset scoliosis patients. This project offers a potential solution to this 
problem. The total lung capacity can be calculated by subtracting the mediastinum volume from the rib 
cage volume. A multivariate linear regression was used to create a predictive equation with patient 
demographics as input variables to predict the mediastinum volume. This equation predicted mediastinum 
volume at a higher accuracy compared to previous work and had a multiple R2 of 0.87. To calculate the rib 
cage volume, a convolutional neural network was built. Using X-ray images, a computer could train itself 
to identify the rib cage. Although the rib cage volume was not calculated, the convolutional neural network 
was able to identify the rib cage to a limited degree. The model built here can be further improved upon to 
calculate a volume. If successfully calculated, the mediastinum and rib cage volumes could be combined to 
calculate the total lung capacity. 
 
Keywords: Early Onset Scoliosis, Lung Volume, Predictive Equation, Convolutional Neural Network

Introduction 
Early onset scoliosis (EOS) is a spinal deformity 
that presents itself before 8-10 years of age1.  The 
four types of EOS are idiopathic, congenital, 
neuromuscular, and syndromic2.  Idiopathic 
scoliosis has no known cause. Congenital 
scoliosis is present at birth. Neuromuscular 
scoliosis is caused by a systemic condition such as 
cerebral palsy or muscular dystrophy. When 
scoliosis is part of a larger condition, such as 
Marfan’s Syndrome, it is called syndromic 
scoliosis. While the overall prevalence of EOS is 
unknown, scoliosis has an incidence of two to 
three percent of the US population3,4. While 80% 
of  scoliosis cases are idiopathic, idiopathic EOS 
cases make up less than one percent of all 
scoliosis cases4,5. Although EOS is a rare 
condition, a treatment plan needs to be created for 
each patient. If left untreated, EOS can bring 
about an early death due to pulmonary 
complications1. 
 
Non-surgical options are often initially used to 
treat EOS to slow progression of the disease6. A 
common surgical option is spinal fusion, which 
corrects the spinal deformity and curvature seen in 
scoliosis patients. An incision is made either 
through the back or the side of the patient, and 
two metal rods are then placed alongside the 
vertebrae to force it to straighten7. If this 
procedure is performed too early, the patient can 
develop restrictive pulmonary disease8. For this 

reason, spinal fusion is not a routine procedure at 
a young age. In order to proceed with this surgery, 
it is crucial to determine the total lung capacity 
(TLC) of the lungs. TLC allows the physician to 
determine if the patient will have proper 
pulmonary function after spinal fusion surgery. 
Two common methods for measuring TLC are 
spirometry or pulmonary function testing (PFT), 
and computed tomography (CT)9. However, there 
are drawbacks to these methods. It is difficult for 
young children or those with disabilities to 
perform the PFT properly. CT scans also have 
multiple drawbacks. They are relatively 
expensive, subject patients to roughly ten times 
the amount of radiation of an X-ray10. The current 
options for determining TLC offer no clear set of 
rules or indications to perform surgery. Instead, 
the best option is to rely on the doctor’s expertise 
and experience6.  
 
This project investigates the hypothesis that 
sagittal and coronal X-ray images can be used in 
combination with patient demographics to 
calculate TLC. While X-rays may not be able to 
identify the lungs, they do display the rib cage. By 
using a convolutional neural network, a computer 
can learn to detect the rib cage from images. From 
this the volume of the chest cavity can be 
calculated. Patient demographics are used to 
predict mediastinum volume. If the volume of the 
mediastinum, the central portion of the thoracic 
cavity that is not the lungs, is subtracted from the 



7 
 

volume of the chest cavity, TLC will be 
calculated. 

Results 
Creating a Predictive Equation for Mediastinum 
Volume Using Patient Demographics as Inputs 
Calculation of Mediastinum Volume from CT 
Scans 
Mediastinal volume was computed using the 
MATLAB software package Pulmonary Toolkit. 
Our work was built upon the code of the previous 
capstone group and needed to be debugged before 
it was able to run11. In order to make handoffs to 
future groups easier, comments were added to the 
code to make it easier to understand and modify.  
 

 
The Pulmonary Toolkit uses DICOM files from CT 
scans as its input. It finds the boundaries of both the 

right and left lung and then segments them (Figure 
1). Each slice of  
the CT scan is examined and the area in between 
the lungs is calculated (Figure1). The mediastinum 
area of each slice is used to compute the volume.  
 
Our group was provided with some initial 
calculated volumes but they lacked information on 
patient height. Our team hypothesized that height 
may be an important predictor of mediastinum 
volume, and in order to pair it with the appropriate 
volume, new volumes needed to be calculated. A 
total of 80 CT scans were used to create the 
predictive algorithm. Some scans were not used 
because they either lacked important patient 
demographics or were unable to be segmented.  
 
Validating Mediastinum Volumes 
CT scans can be used to estimate mediastinum 
volume, but they cannot provide the true value. Our 
team did not have access to the true mediastinum 
volumes, and  without them it is difficult to validate 
the calculated volumes. The heart is the largest 
component of the mediastinum, and therefore, 
heart volumes from literature were used to make 
sure our calculated values were reasonable12. The 
volumes from the literature are reported in 
averages and are organized by weight and gender. 
Since cardiac volume is an underestimate of 
mediastinum volume, it is expected  that our 
calculated volumes should be greater than the 
cardiac volumes. Our calculated data set did not 
have enough data points to compare exact weights 
so ten pound ranges centered on the target weight 
were used. As seen in Supplemental Table 1, most 
of the calculated mediastinum volumes were found 
to be significantly greater than the cardiac volumes. 
The calculated mediastinal volumes being larger 
than their component part does not completely 
verify them, but it shows that our data is not a gross 
underestimate. An underestimate of mediastinum 
volume would lead to an overestimate of TLC. This 
could have negative repercussions for the patient if 
their operation resulted in restrictive pulmonary 
disease due to their actual TLC being too low for 
the operation. The larger p-values in Supplemental 
Table 1 are likely due to small sample sizes and ten 
pound weight ranges. The large amount of N/As for 
females in the upper weight ranges can be 
attributed to both a small sample size and lower 
average female weights. 
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Since the heart is the largest component of the 
mediastinum, mediastinum volume trends should 
mirror those of cardiac volume. As seen in Figure 
2, both cardiac and calculated mediastinal volume 
increase as weight increases with males having 
larger volumes in both cases. The similarity in 
trends suggests that our calculated data may be 
representative of mediastinum volume. 
 
Linear Regressions Using Individual Variables 
Individual variables were plotted against 
mediastinum volume so that potential inputs to a 
predictive equation could be identified and so that 
comparisons can be made against previous results11. 
Specifically, we analyzed how height, age, weight, 
and gender related to mediastinum volume. We 
found that age, weight, and height were positively 
correlated and that on average males had larger 
mediastinum volumes than females. The regression 
curves shown in Supplemental Figure 1 show that 
weight had the highest correlation coefficient, 0.85, 
and height had the lowest at 0.74. As seen in 
Supplemental Table 2, our linear regressions had 
much higher R squared values than the previous 
year for all measured variables. This is likely due 
to a narrowed patient age range. 
 
Predictive Model 
All four available patient demographics correlated 
with mediastinum volume and were included in the 
initial multivariate predictive models. The random 

forest (RF), multivariate adaptive regression 
splines (MARS), and multivariate linear regression 
(MVLR) models were tested to find the model that 
best fit the data. As seen in Table 1, the multivariate 
linear regression model is the highest performing 
model across all metrics. The correlation 
coefficients, intercept, and their respective p-
values for the multivariate linear regression model 
can be found in Supplemental Table 3. All 
coefficients in the equation except the intercept 
were statistically significant at a significance level 
of ɑ = 0.01. Since this equation will not be used 
when all variables are at or near zero, a non-
significant intercept is not problematic. Each of the 
coefficients from patient demographics are positive 
indicating that an increase in them will result in an 
increase in mediastinum volume. This was 
expected due to the positive linear correlations 
described earlier. The multivariate linear 
regression model takes weight, age, and gender as 
its inputs. Age and height were found to be 
redundant variables and age provided for a slightly 
better predictive model. For this reason, height was 
excluded from the final predictive equation. 

 

Rib Cage Identification 
Generating Masks 
To train a U-Net model, masks of input images are 
required, which in this case are the biplanar X-rays. 
Masks are the specified boundaries the U-Net 
model uses to learn the desired region of interest. 
For example, a boundary was drawn along the rib 
cage. From the original image and the mask, the 
model can learn where the desired object is located. 
Our dataset did not contain masks; therefore, they 
were made manually. The VGG Image Annotator 
developed by the Visual Geometry Group was used 
to create the masks. An example of the masks can 
be seen in Figure 3. 
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Final Model Specifications 
The Adam compiler, which uses the default Adam 
algorithm, in the keras library was used to construct 
the optimal model. The final model consisted of an 
input layer, 4 downsampling layers, 4 max pooling 
layers, 5 bottleneck layers, 4 upsampling layers, 4 
concatenating layers, and one output layer. The 
model trained itself on the same images over 
multiple epochs. In one epoch, the model trains 
itself once on the training images. Therefore, with 
multiple epochs. the model learns from each run 
and retrains itself. The model attempts to improve 
its predictions after each run. A total of 9 epochs 
were used for the sagittal model. A varying 
learning rate was also introduced to the model. The 
learning rate alters how quickly the model changes 
its prediction based on accuracy. If the accuracy 
remained constant, the learning rate would 
decrease. Additionally, the model would cease 
training when the same accuracy was obtained after 
successive epochs. The model stopped training 
after 9 epochs because of the constant output 
accuracy. 
 
Jaccard Index and Dice Coefficient 
The model output two accuracy measurements: the 
jaccard index and Dice coefficient. The Jaccard 
index is found by dividing the area of overlap 
between the prediction and actual values divided 
by its union. Therefore, the Jaccard index indicates 
how well the predicted region covers the actual 
region of interest. The Dice coefficient is found by 

dividing the area of overlap by the total number of 
pixels then multiplying this value by 2. The Dice 
coefficient indicates how much of the total area is 
covered by the area of overlap. The Jaccard index 
obtained from the sagittal model was 0.691364 and 
0.66833 from the coronal model. The Dice 
coefficients obtained were 0.5 and 0.5485 from the 
sagittal and coronal models respectively. 

Discussion 
The correlation coefficients for the regressions we 
made this year were much higher than the previous 
year’s11. This is likely due to the exclusion of 
patients outside of the pediatric age range. The goal 
of predicting TLC is to determine if the lungs have 
sufficiently developed, and this is not a large 
concern for older patients. Furthermore, our focus 
is on the pediatric population. These older patients 
were also outliers for the previous group, and this 
explains why our correlation coefficients were 
higher.  
 
A study using pulmonary function tests for two 
patient groups whose average ages were 14.3 and 
15.4 years old found that the worst PFTs had TLCs 
of 3L and the best were 3.9L. Our RMSE was 
175.26 ml, and this is 0.058% of the worst TLC13. 
On its own, the error from the mediastinum volume 
prediction makes it difficult to rely on this method 
as the sole measure of TLC for surgery, but it may 
be accurate enough to provide a physician a general 
idea of their patient’s TLC. This may allow a 
physician to not subject the patient to unnecessary 
CT scans if their predicted volume is much lower 
than the threshold. After chest volume is able to be 
calculated, the error for TLC will likely be higher 
and the equation for mediastinum volume 
prediction may need to be further optimized.  
 
The obtained Dice coefficient value was not as high 
as we had aimed. In the aforementioned study, 
Wessel et al. was able to get a dice coefficient 
equivalent to 0.73 for identification from sagittal 
X-rays14. The two U-Net models produced Dice 
coefficients near 0.5. The  larger Jaccard index 
values may indicate that the model was working 
effectively. Future tuning of the U-Net model could 
improve the model’s accuracy. 
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Limitations 
For both the mediastinum and rib cage volume 
calculations, there were no actual measurements of 
volume. Therefore, the obtained measurements 
could not be compared to actual values. Using 
cardiac volumes for mediastinum volume 
validation made it difficult to judge how 
accurate  the predicted volumes were. It could only 
be found that the predicted volumes were within 
reason. This raises the possibility that the 
predictive model was created on inaccurate data. 
For the rib cage identification algorithm, there was 
no true mask for the rib cage. Instead, masks were 
manually generated. This manual creation 
introduces human error. The model would then be 
trained on incorrect data. 
 
The metadata from the CT scans provided a limited 
amount of patient demographics and some had 
incomplete metadata that caused them to be 
excluded from analysis. Additional patient 
demographics and complete CT metadata would 
allow for more potential input variables and data 
points respectively.  
 
Additionally, the U-Net model was unable to 
output image predictions on the testing data. This 
lack of information does not allow a visualization 
of the rib cage prediction. Therefore, it can not be 
stated with certainty that the model is actually 
predicting the region of interest with 69%  or 66% 
accuracy in the sagittal or coronal planes 
respectively.  

Future Work 
In future work, an emphasis should be placed on 
improving the accuracy of the rib cage 
identification algorithm. One possible solution 
would be acquiring a large dataset that contained 
both CT scans or spirometry data along with the 
patient's biplanar X-ray images. First, this would 
allow a comparison between the predicted volume 
measurements and the actual measurements. 
Second, a larger dataset could improve the 
accuracy of the rib cage identification model. For 
instance, the coronal model was only trained on 57 
images. More data could improve the model’s 
prediction accuracy. Additionally, further model 
tuning could improve its accuracy. One method 
would be to further augment the data. There are 

many data augmenting techniques that were not 
pursued. These methods have the potential to 
improve the model. 
 
Finally, creating a unified algorithm and simple 
software for both rib cage identification and 
mediastinum volume calculation would provide 
physicians an easy tool to use in clinical practice. 
The rib cage identification and mediastinum 
calculations were written separately.  
 
Materials and Methods 
Predicting Mediastinum Volume 
Dataset 
Dr. Keith Bachmann provided a data set of 
deidentified CT scans of patients primarily in the 
pediatric age range . The CT scans were DICOM 
files and patient information could be found in the 
files’ metadata.  
 

Mediastinum Volume Calculation 
The Pulmonary Toolkit MATLAB package was 
used to calculate mediastinum volume. The 
package found the boundaries of the lungs and 
segmented them. The right and left lung boundaries 
were identified. The code starts at the top of the 
lungs (closer to the head) and moves downwards 
until it finds the start of the both of the lungs. These 
indexes are used to create the upper boundary of 
the central mediastinum. If one lung is tilted higher 
than the other, the interior upper edges of both are 
found and connected using Bresenham’s line 
package. Given endpoints, Bresenhams’s line can 
calculate intermediate points which will form part 
of the upper boundary. 
 
The lower boundary of the mediastinum is found 
by finding the slice in the xz-plane that has the 
greatest lung area. This slice is used as it will likely 
be from a central portion of the lung and 
representative of the lower boundary. The code 
finds the z position at which the x component of the 
xz slice is discontinuous, and this marks the 
beginning of the diaphragm and the lower 
boundary of the mediastinum. The lungs curve 
around the diaphragm so a straight line along the x 
axis would be discontinuous.  
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After the boundaries have been identified, the 
slices are stepped through and the area between the 
lungs is calculated. Any gaps in the area are filled 
in and the area of all the slices is used to calculate 
mediastinal volume.  
  
Predictive Model 
The predictive model was created using 
mediastinal volume as the response variable and 
weight, age, gender, and height as the initial input 
variables. The data was cleaned in excel and then 
imported into R for analysis. Initial linear 
regressions were performed to determine the 
linearity of the relationship between input variables 
and mediastinum volume and to serve as a 
benchmark to previous work. The patient 
population was trimmed to a pediatric age range as 
this range is relevant to EOS.  
 
The dataset was randomly divided into a training 
and testing dataset. Three predictive models were 
tested on the testing dataset RF, MARS, and 
MVLR. Each individual variable had a close fit to 
a linear regression when compared against 
mediastinum volume. This is the reason for the 
testing of the MVLR. The MARS model builds 
upon the MVLR model to make it more flexible 
and better fit non linear trends. This was used in 
case our initial impressions of the data were 
incorrect. The RF model is a machine learning 
model that can be used for regression and is not 
prone to overfitting. Three different models were 
so that any unseen trends in the data could be 
caught. 

Rib Cage Identification 
Dataset 
For the rib cage identification, a dataset was given 
by Dr. Keith Bachmann. The dataset consisted of a 
set of biplanar X-ray images taken of scoliosis 
patients. Biplanar means for each patient there was 
both a sagittal and coronal image. The images were 
in DICOM format. 
 
Convolutional Neural Network 
The first step in completing the rib cage 
identification was to identify the optimal 
convolutional neural network (CNN) for image 
segmentation. A study illustrated that Mask R-
CNN had the potential to identify the rib cage. 

Although this study was successful, it was only 
implemented on posterior-anterior X-ray images14. 
There was trouble implementing this network due 
to its dependency on older libraries and packages. 
Therefore, other CNN architectures were 
examined. U-Net is a CNN that was initially 
trained on medical images. Therefore, the network 
should train well on this dataset. The U-Net 
architecture consists of two parts. The first is 
typical of a traditional CNN. It involves 
downsampling and pooling the most important 
features of the training dataset. The second part 
involves upsampling and concatenating the 
images. At each layer, the feature map obtained 
from the downsampling is cut in half 15. 
 
The code for rib cage identification was 
implemented in Python. It was written on Google 
Colab Notebooks to allow collaborative coding. 
Sci-kit learn and keras, which are Python libraries 
and software, were used to develop the model. The 
pydicom library was used to convert the images 
from DICOM to PNG files. 
 
Since the dataset consisted of biplanar X-ray 
images, two separate models were created. The 
first model was trained on the sagittal dataset, 
while the second was trained on the coronal 
images. Additionally, this involved splitting the 
original images into their respective image group. 
In order to train the model, some images had to be 
removed due to their poor quality. In some cases, 
parts of the rib cage were not in the image or had 
objects obstructing its view as seen in 
Supplemental Figure 2. Eleven images were 
removed from the posterior-anterior dataset and 28 
images from the lateral dataset. 
 
Finally, to train the model each image needed to be 
the same size. Therefore, the images were all 
resized to 224 by 224 dimensions. The resizing also 
helps the model run more efficiently. The model 
will run faster with a smaller dataset versus larger 
images. The dataset needed to be split into training, 
testing, and validation images. The model uses the 
training and validation images to teach itself. The 
testing images are used to observe how accurate the 
model is after creation. The dataset was randomly 
split. 
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Introduction 

Each year, over 150,000 Americans lose a lower limb (Molina and Faulk 2021). 

Undergoing a transfemoral or transtibial amputation is a life-altering experience that can be 

devastating for one’s physical, financial, and psychological wellbeing. Those who sustain an 

amputation encounter significant challenges during their recovery, rehabilitation, and 

reintegration into their homes and their communities. The loss of ability to support self and 

family drives patients towards various psychiatric disorders at incredibly alarming rates. The 

levels of stress and trauma induced on a patient are so dramatic that researchers in the field 

typically equate it with the death of a spouse or loss of a home. When one loses a limb, there is a 

very real possibility that they lose their own perception of wholeness and sense of self. That is 

why prostheses are so incredibly important. The right prosthetic limb can give a patient the hope 

that they can overcome their newfound limitations and potentially regain some semblance of the 

life they lived prior to their amputation. Oftentimes, that hope can make all the difference. 

Studies have found that the perceived loss of one’s ability to engage in previous vocational, 

avocational, sexual, leisure, and social activities can play a greater role in postamputation quality 

of life than the absence of the limb itself (Roberts et al. 2006). 

Traditional mechanical knee joints lack the responsiveness and fine motor control 

necessary to replicate the complexities of the human knee. Prosthetic limb users have no choice 

but to compensate for this with tremendous amounts of concentration and energy. For 

transfemoral amputees, activities that used to be simple—such as walking on a level surface—

now require up to 65% more energy (Traugh, Corcoran, and Reyes 1975). The passive control of 

flexion and extension during gate also does not provide sufficient stability, leading to a high 

incidence of dangerous falls.  
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Considering the shortcomings of mechanical prostheses, when Ottobock introduced the 

C-Leg in 1997, the world’s first microprocessor-controlled leg prothesis, it was coupled with 

considerable expectations of the possibility of patients regaining some of their potential to live an 

active life. Unlike the earlier non–microprocessor-controlled (NMPK) prosthetic knees, the C-

Leg offered dynamic control of both flexion and extension during a swinging or a standing 

phase. Utilizing sensors in the shin of the prosthesis, the device continually assesses the position 

of the leg in space, feeding data to a microprocessor in the knee that instructs a hydraulic damper 

to adjust and optimize knee stiffness throughout the entire gait cycle. For patients, this was 

nothing short of revolutionary. However, despite the C-Leg offering more intuitive control while 

requiring less user effort as well as marked safety improvements, the device was and still is 

entirely unattainable for many of the two million Americans living with an amputated limb.  

In recent years, news and media outlets have lauded the advancements in robotic 

prosthetics. Multinational joint research efforts have led to incredible developments such as the 

creation of mind controlled neuromusculoskeletal prostheses, devices that connect to the user’s 

nerves, muscles and skeleton to grant them the sensation of touch in the prosthetic hand itself 

(Ortiz-Catalan et al. 2020). These remarkable breakthroughs, however, lie in stark contrast to an 

industry brimming with inequity and adverse healthcare outcomes. As a result of high prices and 

poor insurance coverage, the reality for many amputees is more similar to that of Robert Riiber, a 

bilateral transfemoral amputee who lost his legs following complications from aortic aneurysm 

surgery unable to afford two C-Legs with the insurance he had. Riiber reported falling a total of 

25 times with his NMPK prostheses, once while crossing an intersection (Hostetler n.d.). He was 

forced to quit his job so he could become eligible for Medicare, as Medicare would cover 80 

percent of the cost of the devices.  
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In the United States, patient access to appropriate prosthetic care and rehabilitation 

services. Gender, age, geographical barriers, race, socioeconomic position, and cost all 

contribute to healthcare disparities. There is a growing body of evidence that those disparities not 

only obstruct access to the most appropriate prosthetic and rehabilitative care but contribute to 

prosthetic abandonment, reduced quality of life, psychological problems, and unsuccessful return 

to meaningful community participation. Major limb amputation is associated with a higher 

incidence of secondary health complications, and more than half of those who have a leg 

amputated will require amputation of the contralateral limb (Ephraim et al. 2005). Black 

Americans are four times more likely to under an amputation than white Americans and 2.5 

times as likely to have to undergo a secondary amputation, even when controlling for age, sex, 

and diabetes severity (Pasquina, Carvalho, and Sheehan 2015).  

Currently, restrictive patient ambulatory classification levels and dated reimbursement 

policies not only jeopardize the health of patients but increase the financial burden on the 

healthcare system at large while limiting the potential for innovation. An open dialog among 

stakeholders could help address these dislocations that are perpetuating inequity and help strike 

the right balance between controlling healthcare costs and improving clinical outcomes. This is 

where robust evidence needs to play a role, particularly the incremental value of advanced 

prosthetics in comparison to conventional prosthetics. Payers have a fiduciary obligation to 

contain ever-expanding healthcare costs; however, they also should ensure patient access to 

advanced technologies with proven health benefits, especially it can be demonstrated that 

providing access can reduce the patient’s long-term financial burden on the healthcare system 

and therefore the insurers. 
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The Need for Increased Access: Enabling Progress 

The US healthcare payment system has not yet evolved simultaneously with the rapid 

progress in advanced technologies, treating prosthetics as commodity products and emphasizing 

cost-cutting rather than value added for the cost. Currently, the Centers for Medicare and 

Medicaid Service (CMS) and private insurers restrict reimbursement of prosthetics based on the 

Medicare Functional Classification Level (MFCL), an index for classifying the functional 

mobility and productivity potential of individuals with lower limb loss. The system was designed 

in 1995 with the goal of aiding in the prosthetic component selection and reimbursement process 

by classifying rehabilitation potential; however, certain characteristics of the MFCL have led to 

questions (Borrenpohl n.d.) regarding the systems validity and rigidity. Within Medicare, 

amputees have to pay 20% of the device cost out-of-pocket when they purchase a new prosthesis. 

Private insurers pay even less, typically setting their reimbursement rates as percentages of what 

Medicare pays. Furthermore, if a prosthetic device is in a higher MFCL and therefore not 

covered, amputees have to pay for the entire device out of pocket. Consequently, patients often 

choose low-cost prosthetic devices at the beginning of their rehabilitation process and never fully 

realize their functional mobility potential (Chen et al. 2018).  

Since their creation, studies have continually demonstrated that microprocessor-

controlled knees (MPKs) such as the C-Leg and microprocessor-controlled feet (MPFs) elicit 

better results when compared to their convention NMPK counterparts, These advantages include 

easier negotiation of stairs and uneven terrain, higher user satisfaction, decreased difficulty 

multitasking (Hafner et al. 2007), decreased frequency of stumbles and falls, lower exertion 

levels (Perry et al. 2004), as well biomechanical advantages such as enhanced gait smoothness, 
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decreased hip work production levels, and lower peak hip flexion(Johansson et al. 2005). MPKs 

and MPFs can be a vital, necessary and important means to improve rehabilitation outcomes and 

quality of life. Evidence strongly supports their use, showing demonstrable improvements in 

safety, energy requirements, and long-term cost effectiveness(Sedki and Fisher 2015). Despite 

this, a large number of patients are ruled ineligible.  Due to microprocessor-controlled joints 

coming at relatively high initial and ongoing costs compared to NMPKs, insurers will not 

provide reimbursement for the higher-quality limbs for patients below a certain ambulatory 

potential, determined by the patients’ MFCL.  

The MFCL consists of five discrete K levels (K0-K4) that broadly define levels of patient 

mobility. The exact wording of the level descriptors for each of these levels can be found in 

Table 1. By objectively classifying components and assigning K-levels, the process of matching 

a patient’s functional level to a proper component should become easier and more consistent; 

however, the increasing variety of commercially available MPKs has led many to argue that the 

five-tier system no longer adequately represents the complexities of the matching process. In a 

survey administered to over 200 medical professionals involved in the K-level determination 

process, nearly 70 percent of respondents indicated that they did not believe the current K-level 

classification system is sufficient to accurately assign a level of rehabilitation potential for lower-

limb prosthetics patients (Borrenpohl n.d.). Nevertheless, due to third party payers placing 

increased scrutiny on documentation to justify prosthetic component recommendations, MFCL 

determination has become a critical step in the process.   
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Table 1. Descriptors of the Medicare Functional Classification Level and Recommended 
Components for Each K-level(Andrews, Nanos, and Hoskin 2017) 

K Level Descriptor Foot/Ankle Knee 
K0 This patient does not have the ability or potential to 

ambulate or transfer safely with or without 
assistance and a prosthesis does not enhance their 
quality of life or mobility. 
 

Not eligible for 
prosthesis 

Not eligible for 
prosthesis 

K1 This patient has the ability or potential to use a 
prosthesis for transfers or ambulation on level 
surfaces at fixed cadence - a typical limited or 
unlimited household ambulator. 
 

External keel, SACH 
feet or single axis 
ankle/feet 

Single-axis, 
constant friction 
knee 

K2 This patient has the ability or potential for 
ambulation with the ability to traverse low-level 
environmental barriers such as curbs, stairs, or 
uneven surfaces - a typical community ambulator. 
 

Flexible-keel feet and 
multiaxial ankle/feet 

Single-axis, 
constant friction 
knee 

K3 The patient has the ability or potential for 
ambulation with variable cadence - a typical 
community ambulator with the ability to traverse 
most environmental barriers and may have 
vocational, therapeutic, or exercise activity that 
demands prosthetic use beyond simple locomotion. 
 

Flex foot and flex-
walk systems, energy 
storing feet, multi-
axial ankle/feet, or 
dynamic response feet 

Fluid and 
pneumatic control 
knees 

K4 The patient has the ability or potential for 
prosthetic ambulation that exceeds basic 
ambulation skills, exhibiting high impact, stress, or 
energy levels - typical of the prosthetic demands of 
the child, active adult, or athlete. 
 

Any ankle foot system 
appropriate  

Any ankle knee 
system is 
appropriate 

 

The current process of assigning K levels relies heavily on the experience and opinions of 

the practitioner. The particular levels and their descriptors were created arbitrarily—not attached 

to any scientific validation. For example, according to official guidelines of the Center for 

Medicare and Medicaid Services (CMS), an individual who can negotiate two stairs using a 

handrail receives a K2 designation while an individual capable of negotiating three or four stairs 

will receive a K3 designation and qualify for an MPK. MFCL evaluations are conducted over the 

six months that follow an amputation (Andrews, Nanos, and Hoskin 2017). Considering it can 

take up to two months for the wound to properly heal and for swelling to abate and up to an 
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entire year (Above-the-Knee Leg Amputation n.d.) for a patient to relearn activities, balance, and 

coordination as they recondition and rehabilitate their muscles, a physicians decision at six 

months of whether a patient will be capable of walking up a single additional step can be largely 

subjective.  

The K level system fails to takes into account a considerable number of factors have an 

impact on the mobility level of a lower limb prosthesis user—specifically the prosthesis itself. 

This is of particular importance for the K2 – K3 distinction. Two separate studies found that after 

accommodating K2 patients to the C-Leg, their MFCL improved to K3 status in 44 – 50 percent 

of subjects (Hafner et al. 2007; Kahle, Hubbard, and Highsmith 2008). In other words, the mere 

act of simply granting patients access to the MPK technology that has been on the market for 

nearly a quarter century results in half of the patient population markedly improving. Compared 

to NMPKs, MPK use results in significant improvements in balance and balance confidence 

(Wong, Wilska, and Stern 2012). This confidence increase is noteworthy as one’s perceived loss 

of ability has been demonstrated to play a greater role in postamputation quality of life than the 

loss of limb itself (Roberts et al. 2006).  

Total Cost of a Knee: Combining Clinical and Economic Benefits 

The benefits of increasing access to the advanced prosthetic knees extend beyond 

allowing for more dynamic movement and enhancing mobility. According to a recent clinical 

practice guideline, granting K2 ambulators MPKs results in a substantial reduction of 

uncontrolled falls (Stevens and Wurdeman 2019). In K2 above-knee amputees, MPK use may 

reduce uncontrolled falls by up to 80 percent while significantly improving indicators of fall 

risk(Kahle, Hubbard, and Highsmith 2008). These findings were echoed by a simulation model 

developed by Chen et. al that used estimates from published literature and expert input to 
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determine healthcare outcomes for unilateral transfemoral Medicare amputees with a MFCL K3 

designation. Compared to NMPK users over a ten-year time period, the results demonstrated that 

for every 100 persons: MPK use results in 82 fewer major injurious falls, 62 fewer minor 

injurious falls, 16 fewer incidences of osteoarthritis, and 11 lives saved. According to literature, a 

major injury due to a fall costs $24,845, a minor injury costs $1,332, and a fall-related death 

costs $27,338 (Chen et al. 2018). 

 On a per person per year basis, an MPK reduces direct healthcare cost by an estimated 

$3676 and indirect cost by $909. When factoring in higher device acquisition and repair costs, 

the study estimates MPKs to have an incremental cost of $10,604 for each quality-adjusted life-

year (QALY) gained (Chen et al. 2018). For patients with previous NMPK experience such as 

K2 ambulators who upgrade to MPKs, decision-analytic models have determined the cost per 

QALY gained to be $3,800 (Brodtkorb et al. 2008).  

The most comprehensive sensitivity analysis on the incremental cost effectiveness of 

MPKs compared to NMPKs to date was published by the Rand Corporation in 2018. Using their 

base case input values and combined clinical benefits, economic benefits, and device acquisition 

and repair cost together, for a ten-year time period, they found MPKs resulted in an average 

incremental cost effectiveness ratio (ICER) of $11,606 per QALY for the K3/K4 population (Liu 

et al. 2017). The probabilistic sensitivity analysis is displayed in Figure 1. In comparing NMPKs 

to MPKs, the latter was more effective in every situation, but also more costly 83 percent of 

time. The sensitivity analysis resulted in an ICER range of -$25,355 – $36,357 per QALY. In 17 

percent of scenarios, MPKs dominate NMPKs, resulting in a lower total cost and greater health 

outcomes simultaneous, at best saving $25,355 while adding a quality year of life when 

compared to an NMPK. 
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Figure 1: Incremental Cost and Effectiveness of MPK in Comparison to NMPK in 
K3/K4 Amputees, Note: all costs are in 2016 US dollars (Liu et al. 2017). 

 

 

In the worst scenario, the ICER is still well below the $50,000 cost-effective threshold, as 

outlined in Table 2. This holds true in their K1 and K2 populations as well, where MPKs have an 

ICER of $13,568 per QALY. In both cases, the health benefits provided by MPKs in terms of 

cost per QALY added would classify it as a ‘Very Cost-Effective’ treatment, as seen in Table 2. 

Table 2: Established Incremental Cost Effectiveness Ratios for Therapies in ($/QALY) 

(Zhong et al. 2015). 

Very Cost-Effective Cost-Effective Marginally Cost-Effective Not Cost-Effective 

≤$25,000 $25,001 - $50,000 $50,001 - $100,000 >$100,000 
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While there are some cases where medical intervention proves to lead to net cost savings, 

such as the 17 percent of instances found in the Rand study, most often a new medical innovation 

will lead to better health but cost more than existing technologies. In the United States, the 

Institute for Clinical and Economic Review, which conducts drug cost-effectiveness analyses, 

values one QALY at $50,000 to $150,000(The “QALY” shouldn’t be used in drug cost-

effectiveness reviews 2019). Total knee arthroplasty and prophylactic cardioverter defibrillator 

implantation have an ICER of $14,572 and $76,396 per QALY, respectively, and are covered by 

all insurers. The median ICER of the nearly 500 published diabetic therapies is roughly $17,200 

per QALY gained (Zhong et al. 2015).  There is a substantial body of evidence that MPKs are 

more cost effective than each of these therapies, yet insures continue to restrict access.  

Another consideration not taken into account by existing simulations due to a lack of data 

is that transtibial amputation patients develop secondary conditions related to sound limb 

overuse, prosthetic malalignment, and other factors, including degenerative joint disease, 

osteopenia, postural issues, low back pain, and others. Each of these secondary complications 

has health care utilization and cost implications that are unexplored with regard to this 

population. For example, the development of knee or hip problems from walking incorrectly 

could cost $80,000-$150,000 to fix with surgery or amputees may also suffer from wrist, elbow, 

and shoulder problems from crutch overuse, which can cost $7,500-$25,000 (Snowe 2010). 

Furthermore, these estimates do not take into account the long-term economic burden of the 

sedentary lifestyle adopted by those with an ineffective prosthesis, both in terms of productivity 

lost and healthcare complications. Each year an estimated $21 billion in costs of missed work 

days is lost due to absenteeism and reduced productivity of diabetic amputees (Association 

2018). Medicare spends $143 billion per year on critical limb ischemia—a significant portion of 
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which is secondary amputation costs for the 55 percent of diabetic amputees who require another 

amputation within 2 - 3 years of their first due to rest pain, ulcers, and gangrene (Annual U.S. 

Economic Burden of Critical Limb Ischemia Exceeds $200 Billion 2019; Ephraim et al. 2005). 

K1 and K2 patients account for approximately 35 percent of the patient demographic in the US 

(DaVanzo 2013). Granting them access to MPK prostheses with demonstrated cost-effective 

health benefits may help to lower the incidence of secondary amputation and better manage the 

oncoming wave of diabetic amputees entering the US health system. 

In the United States, every 17 seconds someone is diagnosed with diabetes, and everyday 

230 Americans with diabetes will suffer an amputation. After years of decline, the rate of 

amputations increased by 50% between 2009 and 2015 (Diabetic Amputations May Be Rising in 

the United States n.d.). Nearly half of the amputations that occur each year in the US are due to 

diabetes and 85 percent of amputations that take place worldwide are the result of diabetic foot 

ulcers (Diabetic Amputations May Be Rising in the United States n.d.). The economic burden of 

the diabetes epidemic in the US is only going to increase. Approximately $414 billion of the total 

$1.7 trillion in US health expenditures in 2017 was incurred by people with diabetes, reflecting 1 

in 4 of all health care dollars and an amount that’s only expected to increase (Association 2018).  

Increasing access now can help not only reduce future burdens on the health system but also 

ensure that the US is more prepared to face the outcomes of the diabetes epidemic. 

The K-level system should be used only as a predictor of the appropriate equipment an 

amputee will receive rather than a final judgement. That decision should involve the patient and 

their prosthetists and incorporate the patient’s ability and willingness to rehabilitate with the 

assistance of the advanced device. Data strongly suggests that many K2 amputees are unfairly 

restricted and would greatly benefit from MPK’s the Department of Veterans Affairs considers 
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“under-prescribed” (Kahle, Hubbard, and Highsmith 2008). Increasing access to MPKs and 

MPFs will not only give hundreds of thousands of Americans the hope that accompanies finally 

being properly equipped to work to regain the parts of their life they lost following their 

amputation, but will also provide cost effective treatment that reduces the short- and long-term 

economic burden on the healthcare system. 

Addressing Reimbursement Flaws 

 Prostheses are reimbursed to providers through Level II Healthcare Common Procedure 

Coding System (HCPCS) codes, created by Blue Cross Blue Shield in the late 1970s and 

commonly referred to by prosthetists—or others in the prosthetics industry—as L Codes. Each 

bill for a prosthesis will consist of multiple L Codes that have an associated price. That price—

determined by the Centers for Medicare & Medicaid Services (CMS)—represents the amount 

that Medicare will reimburse the prosthetist for a feature or component, from which private 

insurers will then reimburse at a percentage of that cost. The reimbursement amount “frequently 

does not accurately reflect real-world costs” (Fairley 2008), and in some cases is so low that 

prosthetists cannot provide devices for patients. For example, United HealthCare wished to 

reimburse prosthetic-fitting company Biometrics 45% less that what Medicare would. United 

HealthCare would then only reimburse Biometrics $15,649 for the same C-Leg for which 

Medicare would reimburse $28,454. Because the reimbursement offered by United HealthCare is 

lower than the wholesale cost Biometrics pays for the device, they are simply unable to provide 

in-network services to United HealthCare members.  

 Furthermore, prosthetists cannot bill for time or adjustments unless they replace a 

specific billable part. As a result, all costs to the business: the time of the practitioner, the 

technicians, the receptionist, the rent of the building, the highly specific tools needed by 
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practitioners to make adjustments for which they cannot be compensated, the toner for the 

printer, everything—must be paid for through the cost of the prosthesis(Upper Limb Prosthetics 

Information n.d.).  

Under-compensation of prostheses is rather commonplace. As seen in Table 3, the 

prostheses for transfemoral K3 and K4 level ambulators are considerable, due in part to the 

substantial cost of MPKs, which can range from $16,000 to $47,000 in wholesale cost 

(Reimbursement Issues | AOPA – AMERICAN ORTHOTIC & PROSTHETIC ASSOCIATION 

n.d.). Despite this, CMS has concluded that these knees are similar in function and therefore all 

are equally reimbursed using a combination of codes seen in Figure 2 totaling $28,454.  

Table 3: Transfemoral and Transtibial device costs per ambulatory level(Reimbursement 

Issues | AOPA – AMERICAN ORTHOTIC & PROSTHETIC ASSOCIATION n.d.). 

K Level Mobility Level Transtibial Prosthesis 

Price 

Transfemoral Prosthesis 

Price 

K0 Minimal N/A N/A 

K1 Household Ambulator  $3,000 - $6,000 $5,000 - $12,000 

K2 Limited Community 

Ambulator 

$5,000 - $10,000 $6,000 - $20,000 

K3 Community Ambulator $8,000 - $40,000 $14,000 - $70,000 

K4 Athletic Ambulator $8,000 - $40,000 $30,000 - $150,000 
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Figure 1: MPK L code Reimbursement Levels(Retired n.d.) 

Figure 2: MPF L code Reimbursement Levels(Retired n.d.) 

 

 The overgeneralization of device costs that leads to under-reimbursement is compounded 

by issues within the billing categorization process. Because the application process is so slow 

and hesitant to create new codes for new devices, oftentimes older L Codes or a combination of 

miscellaneous codes are reused for the devices. In some cases, it is unclear what L code to use 

for a device. Ottobock recommends that prosthetists use a combination of miscellaneous codes 

and L Codes for the C-Leg Genium; however, the practice of assigning miscellaneous codes in 

prohibited by the Durable Medical Equipment Medicare Administrative Contractor in regions 

such as the Northeastern US. Medicare recommends using the exact same codes for 

reimbursement for the C-Leg and C-Leg Genium, despite the latter being significantly more 
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advanced and costing almost twice as much. Consequentially, patients who want advanced 

features such as the ability to safely take more than two steps backwards have no choice but to 

cover the price difference themselves.  

Even patients who opt for more conservative devices still have to pay a substantial 

amount. Medical insurance plan quotes from a selection of large insurers, including Medicare 

can be found in the appendix. Patients can end up paying anywhere from $5,000 - $39,000 in 

out-of-pocket costs for each artificial limb. For some policies there is a limit on the number of 

prosthetic or prosthetic related devices that can be purchased per calendar year. This limitation 

has serious repercussions. For instance, Robert Riiber, the bilateral transfemoral amputee was 

unable to purchase two C-Legs with his insurance plan as mentioned in the introduction. For 

Riiber, quitting his job so that he only had to cover 20 percent of each C-Leg—an out-of-pocket 

cost of approximately $40,000—was the most affordable option. Even patients who lose only a 

single limb have trouble with these prosthetic caps. Oftentimes temporary prosthetics are given 

to patients for the first several months while swelling abates before they switch to a permanent 

prosthesis. With some policies, If the temporary prosthetic is bought with an insurance plan that 

only covers a single device per calendar year, the amputee may have to wait a full year before 

receiving their permanent device. Additionally, if a single part on the prosthesis were to break, 

these policies may inhibit an amputee from receiving replacement parts in a timely manner. 

These expenses add up, and the lifetime direct out-of-pocket costs for a lower limb amputee is 

estimated to be $509,272 (Miller and Jr. 2020). 

It’s recommended that the limbs are replaced every 3-5 years, but with the high out-of-

pocket costs created by under-reimbursement, few patients can afford that. The combination of 

the high costs and the adjustment policy creates a positive feedback loop wherein compensation 
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for the expenses of past free adjustment sessions is included in the initial price of the device, 

deterring those in need of a new device from purchasing one and instead opting to make do with 

free adjustments. With the amount reimbursed to Orthotics and Prosthetics (O&P) practices by 

insurers being fixed per device, as more patients decide to prolong the lifetime of their device 

through free adjustments, the out-of-pocket costs for other patients has to rise to compensate for 

this. In a recent interview, executive vice president and COO of the national Hanger Clinic 

network Sam Liang echoed this, stating that current policies and constant reimbursement rate 

reduction from payers has made it increasingly difficult to keep clinics profitable (Ferrendelli 

2020).  

Insurance companies reserve the right to conduct time and resource consuming audits on 

the use of miscellaneous codes. Although practices are rarely found guilty or even fined, they 

still have to absorb expensive legal fees. Due to payers constantly reducing O&P rates over the 

year while simultaneously increasing audit rates, providers are reluctant to try to maximize 

reimbursement for their patients and risk an audit as they cannot afford to leave any value on the 

table themselves.  

The strong industry headwinds created by payers have significant implications. 

Increasing out of pocket costs has driven more patients to compromise on the fit and walkability 

of their prostheses and in turn their own health. Only 47 percent of patients with ischemia who 

undergo primary amputation successfully rehabilitate to near pre-amputation levels of mobility 

(Ponticello 2016). Consequently, nearly half of all amputees in America enter the persistent 

high-cost population that accounts for the estimated 22 percent of the $2.6 trillion dollars in 

annual health care expenditures that is related to potentially avoidable complications, such as 

hospital admissions for diabetic patients with gangrenous limbs that require amputation 
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(Aldridge and Kelley 2015; Emanuel 2012). Approximately one in every 170 Americans is 

currently living with the loss of a limb. There is evidence that unchecked, this number may 

double by 2050 (Ziegler-Graham et al. 2008). The currently model of deferring to suboptimal 

healthcare outcomes for amputees in order to save in the short-term has the potential to become 

incredibly costly in the near future.  

The L Code Application Process: Inhibiting Innovation 

A major hurdle in prosthetic billing is the L Code application and verification process. 

Currently, the billing code verification process is time consuming and creates significant barriers 

to entry that prevent new devices from entering the market, forcing the industry to skew towards 

oligopolistic tendencies. Unless these are addressed, innovators within the industry will 

increasingly allocate more resources and capital to tangential ventures within the industry, 

slowing device development and growth. 

The application process itself can be quite lengthy. When a new prosthetic device is 

invented, and it functions differently than any other categorized device, then a new billing code 

is required before Medicare or other insurers will cover the device. Demonstration of national 

programmatic need is required in order to create a new code, use a miscellaneous code, or use an 

existing code a substitute. The HCPCS defines National Programmatic Need as “At least one 

insurance sector, public (Medicare or Medicaid) or private (commercial insurers) identified a 

program operating need to separately identify the item and that need is common across the 

sector”—i.e., nationally (HCPCS - General Information | CMS n.d.). Essentially, a code cannot 

be assigned to a device unless a national insurer deems it that it is unique and necessary. 
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Additionally, before an L Code is established a new device must meet paradoxical 

volume and marketing requirements. The HCPCS defines volume and marketing criteria as there 

being “sufficient claims activity or volume in 3 percent of the affected population, as evidenced 

by 3 months of marketing activity” (HCPCS - General Information | CMS n.d.). For Ottobock 

and Össur, the respective manufacturers of the two most popular MPKs, the C-Leg and the Rheo 

Knee, this means leveraging their expansive networks of providers. For smaller manufacturers, 

that means convincing enough clinics that they may not have an existing relationship with to risk 

an audit by using miscellaneous codes that they are able to reach a 3 percent market share, a 

nearly impossible task.  

Manufacturers are beginning to realize importance of such networks with regard to the 

potential of device approval, creating further stratification between large, established 

manufacturers and upstart innovators. In the past few years, Ottobock and Össur have quietly 

been making inroads into the O&P clinical care market in the United States (Ferrendelli 2020). 

While consolidation is occurring across all healthcare sectors in the US, the O&P industry 

remains the only example of manufacturers acquiring patient care facilities. Since 2018, Össur 

has acquired Virginia Prosthetics & Orthotics, Bulow Orthotic & Prosthetic Solutions, Next Step 

Bionics & Prosthetics, SRT Prosthetics & Orthotics, and many other providers across the 

country. Ottobock has followed suit, with each company leveraging their preexisting clinic 

service networks to generate acquisition momentum (Ferrendelli 2020).  

While the acquired clinics have enjoyed the increased access that accompanies joining 

such a network, many within the industry are fearful that these recent moves from manufacturers 

are more indicative of a concerning paradigm shift. With manufacturers increasingly deploying 

capital and resources towards patient care versus innovation and research and development, 
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leaders within the industry such as the aforementioned Sam Liang are asking: "Are 

manufacturers signaling that there is no more innovation in O&P?" (AOPA 2020).  

As troubling of a concept as that is, Liang’s concerns are valid. Demonstrably unique 

devices are increasingly being lumped in with old L codes that severely undercompensate the 

prothesis, forcing the cost disparity onto patients (Highsmith et al. 2016). If this continues, it will 

become increasing difficult for large and small manufacturers alike to justify the costs of 

developing new devices and as a result innovation within the industry will grow stagnant.  

Conclusion 

There has not been a push for prosthetic parity laws since Maryland’s failed Senate Bill 

98 of 2008, the Prosthetic Parity Act. Under the proposed prosthetic parity laws, if the same 

device was purchased in the same year by two different amputees from the same billing region, 

patient A with Medicare, and patient B with a private insurer, then the amount that patient A 

must pay plus the amount that Medicare must pay will equal the amount that patient B must pay 

plus the amount that their private insurance must pay. As a result, the clinic will be reimbursed 

an equal amount for the two same prosthetics regardless of the insurer. This will allow 

prosthetists to offer MPKs to more of their patients, potentially increasing the demand for the 

devices and decreasing the price while increasing the overall availability (Program (CHBRP) 

2006).  

Aside from indirectly increasing access to MPKs, one of the significant arguments in 

favor of parity laws is the fact that requiring private insurance to use the same fee schedules as 

Medicare will increase premiums by only $1.44 - $4.20 per year per policy holder (Program 

(CHBRP) 2006). However, despite the financial, social, and medical benefits of advanced 
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prosthetic devices such as MPKs outlined in the Bill, it still failed to pass as the Department of 

Health was unable to make a fully informed recommendation due to two areas of concern: a lack 

of specific data provided by the applicant to Washington and ambiguous language in the 

proposed legislation that could support a variety of interpretations (Prosthetics and Orthotics 

Coverage Mandated Benefit Sunrise Review 2011).  

In the years following the rejection of the bill, those within the prosthetics industry have 

build a substantial body of evidence include some of the studies cited in this report. In order to 

convince payers to increase access to MPKs, providers need to continue to increase data 

collection and leverage benchmarking to demonstrate clear differences in health outcome 

between MPK users and NMPK users and the long-term health and economic consequences of 

the under prescription of the devices. Meaningful change will only be able to occur with 

sufficient specific and robust evidence. With the finding reported in recent years, hopefully that 

change will occur within the next decade, and more amputees will be given the hope that they 

can overcome their limitations and regain their sense of self.  
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Appendix: 

A: Samples of Various National Insurance Plans 

Aetna 
 

Plan Category In Network Out of Network  

Open Access 
Managed Choice 

1500 

Deductible 
Individual $1,500 $3,000  

Family $3,000 $6,000  

Coinsurance 
Maximum 

Individual $3,500 $7,000  

Family $7,000 $14,000  

Out-of-Pocket 
Maximum 

Individual $5,000 $10,000  

Family $10,000 $20,000  

D.M.E 
Coinsurance 40% 50%  

$2000 per calendar year max  

Specialist Visit 
Copay/ 

Coinsurance 
$45 50% 

 

 

Physical Therapy 
Coinsurance 40% 50%  

24 visits per year  

           

Plan Category In Network Out of Network  

Open Access 
Managed Choice 

2500 

Deductible 
Individual $2,500 $5,000  

Family $5,000 $10,000  

Coinsurance 
Maximum 

Individual $2,500 $5,000  

Family $5,000 $10,000  

Out-of-Pocket 
Maximum 

Individual $5,000 $10,000  

Family $10,000 $20,000  

D.M.E 
Coinsurance 40% 50%  

$2000 per calendar year max  

Specialist Visit 
Copay/ 

Coinsurance 
$45 50% 

 

 

Physical Therapy 
Coinsurance 40% 50%  

24 visits per year  

           

Plan Category In Network Out of Network  

Open Access 
Managed Choice 

5000 

Deductible 
Individual $5,000 $10,000  

Family $10,000 $20,000  

Coinsurance 
Maximum 

Individual $5,000 $2,500  

Family $10,000 $5,000  

Out-of-Pocket 
Maximum 

Individual $10,000 $12,500  

Family $20,000 $25,000  

D.M.E 
Coinsurance 20% 50%  

$2000 per calendar year max  

Specialist Visit 
Copay/ 

Coinsurance 
$45 50% 

 

 

Physical Therapy 
Coinsurance 20% 50%  

24 visits per year  
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Assurant (default non-customized plans) 
 

Plan Category In Network Out of Network  

Value Plan 

Deductible 
Individual $5,000 $6,000  

Family $5,000 $6,000  

Coinsurance 
Maximum 

Individual $4,000 $10,000  

Family $8,000 $20,000  

Out-of-Pocket 
Maximum 

Individual $9,000 $16,000  

Family $23,000 $38,000  

D.M.E 
Coinsurance 50% 50%  

Deductible & Coinsurance Maximum  

Specialist Visit Coinsurance 50% 50% 
 

 

Physical Therapy 
Coinsurance 50% 50%  

Unlimited Visits  

           

Plan Category In Network Out of Network  

One Deductable 
PPO HAS 

Deductible 
Individual $5,000 $5,500  

Family $10,000 $11,000  

Coinsurance 
Maximum 

Individual $0 $1,000  

Family $0 $2,000  

Out-of-Pocket 
Maximum 

Individual $5,000 $6,500  

Family $10,000 $13,000  

D.M.E 
Coinsurance 100% 80%  

Deductible & Coinsurance Maximum  

Specialist Visit Coinsurance 100% 80% 
 

 

Physical Therapy 
Coinsurance 100% 80%  

Unlimited Visits  

           

Plan Category In Network Out of Network  

PPO X-tra Plan 

Deductible 
Individual $5,000 $6,000  

Family $5,000 $6,000  

Coinsurance 
Maximum 

Individual $2,500 $10,000  

Family $5,000 $20,000  

Out-of-Pocket 
Maximum 

Individual $7,500 $16,000  

Family $20,000 $38,000  

D.M.E 
Coinsurance 50% 50%  

Deductible & Coinsurance Maximum  

Specialist Visit Coinsurance 50% 50% 
 

 

Physical Therapy 
Coinsurance 50% 50%  

Unlimited Visits  
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Anthem Blue Cross Blue Shield 
 

Plan Category In Network Out of Network  

Premier 

Deductible 
Individual $500 - $10,000 $500 - $10,000  

Family  $1,000 -$20,000   $1,000 -$20,000   

Coinsurance 
Maximum 

Individual $0 - $3,000 $7,500   

Family $0 - $6,000 $15,000   

Out-of-Pocket 
Maximum 

Individual $3,500 - $10,000 $8,000 - $17,500  

Family  $7,000 - $20,000   $16,000- $35,000   

D.M.E 
Coinsurance 0 - 20% 30%  

Deductible & Coinsurance Maximum  

Specialist Visit Coinsurance $40  30% 
 

 

Physical Therapy 
Coinsurance 0 - 20% 30%  

20 visits per year  

           

Plan Category In Network Out of Network  

SmartSense 

Deductible 
Individual $750 - $12,000 $750 - $12,000  

Family  $1,500 - $24,000   $1,500 - $24,000   

Coinsurance 
Maximum 

Individual $0 - $4,000 $7,500   

Family $0 - $8,000 $15,000   

Out-of-Pocket 
Maximum 

Individual $4,750 - $12,000 $8,250 - $19,500  

Family  $9,500 - $24,000   $16,500- $39,000   

D.M.E 
Coinsurance 0 - 50% 30 - 50%  

Deductible & Coinsurance Maximum  

Specialist Visit Coinsurance $30 for first three 30 - 50% 
 

 

Physical Therapy 
Coinsurance 0 - 50% 30 - 50%  

20 visits per year  

           

Plan Category In Network Out of Network  

Lumenos HAS 
Plus 

Deductible 
Individual  $1,500 - $5,950   $1,500 - $5,950   

Family  $3,000 - $11,900   $3,000 - $11,900   

Coinsurance 
Maximum 

Individual $0 - $1,000 $3,500 - $5,950  

Family $0 - $2,000 $7,000 - $11,900  

Out-of-Pocket 
Maximum 

Individual $2,500 - $5,950 $5,000 - $11,900  

Family  $5,000 - $11,900   $10,000- $23,800   

D.M.E 
Coinsurance 0 - 20% 30 - 40%  

Deductible & Coinsurance Maximum  

Specialist Visit Coinsurance 0 - 20% 30 - 40% 
 

 

Physical Therapy 
Coinsurance 0 - 20% 30 - 40%  

20 visits per year  
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Medicare 
 

Plan Category Costs  

Part B 

Deductable $140 
 

 

Coinsurance Maximum N/A 
 

 

Out-of-Pocket Maximum N/A 
 

 

D.M.E 20% of the Medicare approved cost 
plus the difference between the 

approved cost and the actual cost.  

 

 

Specialist Visit 
 

 

Physical Therapy 60 visits per year 
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Introduction 

For a significant portion of early onset scoliosis patients (EOS) such as those with 

neuromuscular or syndromic scoliosis, the existing techniques for measuring and tracking total 

lung capacity (TLC) are insufficient and can make a physician’s decision regarding the timing of 

spinal fusion surgery more difficult. This project aims to address the need for a more accurate 

and accessible TLC measurement technique through developing a convolution neural network 

(CNN) that is capable of segmenting and labeling ribs and building a three-dimensional model 

through analysis of biplanar X-rays alone. Aside from advances in imaging, one of the most 

significant breakthroughs in management of EOS in the past decade has been the introduction of 

magnetically controlled growing rods (MCGRs). Though MCGR implants are significantly more 

expensive, they minimize surgical scarring, surgical site infection, and psychological distress due 

to multiple surgeries needed in the traditional growing rods system, thus not only improving 

quality of life but saving health care costs (La Rosa et al., 2017). As a result, many insurers 

encourage the more costly procedure and MGCRs have rapidly emerged as the new standard of 

care for EOS patients within a remarkable short timeframe. This is in stark contrast to the 

adjacent prosthetics industry, where the standard of care lags significantly behind innovation. 

Inhibitive and dated insurance policies place the bulk of costs on patients, and while these 

policies allow insurers to largely shirk upfront costs, they may actually be costing them more 

through creating a persistent high cost population. 
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Technical Topic 

EOS is a three-dimensional rotational deformity of the spinal column that exceeds 10 

degrees and presents itself before a patient reaches 10 years of age (Early Onset Scoliosis 

Consensus Statement | Scoliosis Research Society, n.d.). Children with EOS are at risk for 

impaired pulmonary function due to the high prospect of progressive spinal deformity and 

thoracic constraints during a critical time of lung development. For children with severe 

progressive EOS, non-surgical options are often initially used to treat and slow the progression 

of the disease but early spinal fusion is the most common eventual treatment. Fusion surgery 

corrects scoliosis, but it also limits spine and thoracic growth, leading to adverse pulmonary 

outcomes such as restrictive pulmonary disease where forced vital capacity is less than 50% of 

normal (Karol, 2011).  

The best way to promote lung development and optimize pulmonary function post-

surgery is to maximize the amount of time the lungs have to develop before the fusion. However, 

during adolescence the likelihood of the spinal deformity worsening becomes significantly 

higher (Yang et al., 2016). To accommodate these two contrasting timelines, physicians try to 

operate as soon as they can confirm that a patient has reached a sufficient total lung capacity 

(TLC) that will not cause long term issues. If surgery is deemed necessary, TLC is typically 

measured through pulmonary function testing (PFT) or computed tomography (CT) scans 

(Delgado & Bajaj, 2020). 

It is often difficult for young children or those with developmental disabilities to perform 

PFTs properly. CT scans are expensive, subject patients to roughly ten times more radiation than 

an X-ray, and difficult for children with neuromuscular EOS in particular as they may require a 

sedative to remain still for the duration of the exam (Kilbaugh et al., 2010; Mettler et al., 2008). 
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Current methods for determining whether a patient has reached a safe TLC are clearly 

insufficient, as evidenced by restrictive pulmonary disease occurring in 43% to 64% of patients 

who undergo early fusion surgery (Karol, 2011). That is the problem this project seeks to 

address.  

EOS patients regularly receive biplanar X-rays to track the progression of their spinal 

growth and the imaging is already an integral part of preoperative assessment. If a neural 

network is developed that can use the combined angles of the scans to segment and label the ribs 

and model them in three-dimensions, TLC can be accurately calculated in a more accessible, 

more cost effective, and more safe manner.  

To build the network, we will be working with Dr. Keith Bachmann, an orthopedic 

surgeon in the UVA health system. Dr. Bachmann has provided a library of biplanar X-ray 

images from which we can train and test our network and corresponding CT scans that can be 

used to confirm the accuracy of our algorithm.  

There have been many attempts to find a novel approach to lung volume measurement, 

several of which attempted to do so using X-rays. As early as 1995, studies were being 

conducted to calculate TLC from radiographs alone (Schlesinger et al., 1995). Although the team 

achieved some level of success, their method required twenty-one separate images and was too 

cumbersome to inspire further pursuit. Because rib cage volume has a high correlation with TLC, 

rib cage identification has become a popular research subject in recent efforts to calculate lung 

volume. These new attempts have largely been made possible by advances in computer-aided 

image processing. 

 The prospect of using convolution neural networks (CNNs) for ribcage analysis has 

gained significant momentum in the past decade. These artificial intelligence algorithms have 
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been used to assess the developmental stage of bones and even segment and label ribs in the 

coronal plane with promising accuracy. 

The most accurate of such studies to date employed 

the state-of-the-art Mask R-CNN network architecture 

developed by Facebook’s AI research arm and was 

conducted by a team at the Institute of Medical Informatics 

at the University of Lubeck. The breakthrough work was 

able to segment the top nine pairs of ribs in the coronal 

plane with millimeter level accuracy, as seen in Figure 1.  

The goal of this project is to employ the pixel level 

segmentation of Mask R-CNN and the sequential processing 

scheme enhancements introduced by Wessel et. al to not 

only segment every rib in posterior-anterior X-ray images 

but to segment and label the ribs in lateral X-rays as well 

while achieve comparable levels of accuracy. The scans will 

then be merged to create three dimensional models from 

which mediastinal volume calculations can be used to accurately estimate TLC. It is my role to 

develop the CNN, and as such I have been in contact with the team from the University of 

Lubeck in order to gain insights into the process. Our network will be deemed successful when 

its TLC estimates calculated from the biplanar X-rays provided by Dr. Bachmann equal the 

actual TLC values from the provided CT scans for both typical patients and scoliosis patients.  

STS Topic 

 

 

Figure 2: Application of the adapted 
Mask R-CNN algorithm to a chest X-
ray image (Wessel et al., 2019). The 
ground truth is shown on the top and 
the prediction is on the bottom. 
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The United States spends fifty percent more on health care in terms of share of GDP than 

any other developed country. This is largely because the U.S. health care landscape is dominated 

by private health insurance, which covers more than half of the American population. Aside from 

efforts for Medicare for all, the current strategy for addressing the ballooning spending problems 

within the U.S. health care system is to introduce small changes that will make it function more 

like a traditional consumer-driven “perfect market” (Iii, 2008). However, this is all based on the 

assumption that health care should be treated as a private consumable product rather than a 

public good, a premise that virtually no other developed country operates under.  

There are several instances where non-uniform, privatized healthcare not only slows 

innovation, but increases cost to patients while decreasing quality of care. This paper cannot and 

will not serve as a critique of the entire for-profit health care complex, but rather it will be an 

audit of the dislocations that occur in niches that are overlooked by the greater private healthcare 

machine. Specifically, analysis will be performed on the dated billing practices in the prosthetics 

industry that create prohibitive upfront costs and disincentivize innovation. 

Except for repairs to existing devices, prosthetists cannot bill for their time, even when 

making and fitting device adjustments. The only thing they can bill for is the device that they 

deliver to the patient. As a result, all costs to the business: the time of the practitioner, the 

technicians, the receptionist, the rent of the building, the highly specific tools needed for 

practitioners to make adjustments for which they cannot be compensated, even the toner for the 

printer, everything—must be accounted for in the cost of the prosthesis (Upper Limb Prosthetics 

Information, n.d.).  

This already high cost is worsened by dated reimbursement practices. Prostheses are 

billed exclusively through “L Codes”, which were created by Blue Cross Blue Shield in the late 
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1970s. Each bill will consist of multiple L code has an associated price that varies slightly with 

location and practice quality (Fairley, 2008). That price—determined by the Centers for 

Medicare & Medicaid Services (CMS)—represents the amount that Medicare will reimburse the 

prosthetist for a feature or component. Almost all other insurance companies follow the 

guidelines and prices outlined by Medicare.  

Unless congress passes a bill to change prices, L Code prices will continue to increase 

annually with the consumer price index (CPI), as they have since being set in 1987.  This does 

not account for the comparative inflation of health care spending, as U.S. annual per capita 

healthcare spending has ballooned over 250% above the CPI inflation rates adjusted for by the 

CMS since 1987 (California Health Care Foundation, 1967; Letsch et al., 1988; Value of 1987 

US Dollars Today - Inflation Calculator, n.d.). In addition, to further inhibit the path to 

commercialization for devices in development, any new component has to go through a 

multiyear fee determination process, during which it will not be covered by Medicare or private 

insurance. Once CMS has determined that they have sufficient information to set a price, they 

deflate the fee back to the 1987 base period and then reinflate according to the increases 

mandated by Congress. The new calculated fee “frequently does not accurately reflect real-world 

costs” (Fairley, 2008). 

 This bulk of this price discrepancy comes at a direct out-of-pocket cost to patients. The 

two million amputees in America pay somewhere between $5,000 —$50,000 each time they buy 

a new prosthetic limb. It’s recommended that the limbs are replaced every 3-5 years yet so few 

patients can afford that. A study conducted by the Department of Veteran’s Affair’s determined 

that the first and third 5-year quartile costs for veterans who lost their lower limbs in combat are 

$82,251 and $228,665, respectively (Blough et al., 2010). The average lifetime cost for 
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prosthetics and medical care for loss of a single leg for a veteran of the Iraq or Afghanistan wars 

is more than $1.4 million (How Much Does a Prosthetic Leg Cost?, n.d.). The Johns Hopkins 

Center for Injury Research and Policy estimates the direct total lifetime costs to be $509,272 

(Miller & Jr., 2020). Regardless of the exact cost, it is an exorbitant figure to expect a patient 

with a disability to pay out of pocket.  

 There may be a way to incentive insurance companies to help foot the bill. Recent 

commentary has suggested that an estimated 22% of the $2.6 trillion dollars of annual health care 

expenditures are related to potentially avoidable complications, such as hospital admissions for 

diabetic patients with gangrenous limbs that require amputation (Aldridge & Kelley, 2015; 

Emanuel, 2012).  The true cost of amputation must also take into account the loss of function and 

independence, reduced quality of life and the increased mortality rate. Only 47% — 67% of 

patients with ischemia who undergo primary amputation successfully rehabilitate to near pre-

amputation levels of mobility (Ponticello, 2016). If L codes can be reworked so that Medicare 

and insurers bear more of the upfront cost, this could potentially increase the portion of patients 

who successful rehabilitate, which not only improves their quality of life but decreases their 

likelihood of becoming a member of a persistent high-cost population, therefore saving Medicare 

and private insurers money in the long run. 

Next Steps 

Moving forward, the most important focus is understanding L Code policy. It is critical to know 

as much as possible about its formation, its history, how it is currently used, how it is currently 

abused, and its most obvious shortcomings. From there, thorough analysis is required of the 

Practice Analysis of Certified Practitioners in the Disciplines of Orthotics and Prosthetics report 

released by the American Board for Certification in Orthotics, Prosthetics & Pedorthics, which 
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has a trove of data on how practitioners allocate their time and how exactly they make their 

money. That data will then be analyzed against long-term cost data from the department of 

Veteran’s Affairs to identify dislocations surrounding L code policy and expenses. As noted by 

Ponticello, there is no published data on long-term wheelchair-bound healthcare costs, so the 

data will be compared to that of Aldridge and Kelley and sensitivity analysis will be ran to 

discern the scenarios where it is financially beneficial to all parties for the insurer to contribute 

more to the cost of the prosthetic. 
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