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Abstract
Chromatin accessibility assays enable base pair resolutionmeasurements of the

chromatin landscape and facilitate inferences about the nature of regulatory state.

These assays determine which genomic regions are actively regulated by quantify-

ing enzymatic digestion of DNA in a given region. However, the enzymes which

conduct this digestion are biased with respect to their propensity to cleave specific

sequences. Enzymatic sequence bias can introduce artifacts into data, leading to

misinterpretation of downstream analysis. Previous work to address this bias re-

lied on calculating enzymatic bias for specific k-mers and correcting these values

to their genomic frequency, known as k-mer scaling. K-mer scaling was successful

in correcting nuclease bias, but not the bias of Tn5 transposase, the enzyme used

in ATAC-seq. This dissertation illustrates that the breadth and complexity of Tn5

bias hinders the use of k-mer scaling for sequence bias correction. Comparison of

Tn5 bias with nucleases highlights why k-mer scaling is ineffective: Tn5 sequence

bias is based on a region greater than 20 bp. K-mer scaling can only be applied to

k-mers which have many instances in the data set and genome, an impossibility with

k-mer sizes greater than 9, due to the number of reads contained in most ATAC-seq

experimental data sets. To model this large bias window, we used a machine learn-

ing approach, rule ensemble, which integrates information from many input k-mers

into a computational bias correction. We created a workflow using this approach,

seqOutATACBias, in order to promote bias correction in other studies. We applied

seqOutATACBias to naked DNA and found that it effectively diminishes both local

sequence bias in addition to correcting a previously unreported Tn5 regional bias for

high GC content. Correction of enzymatic sequence bias is of utmost importance

for determining ground truth of chromatin accessibility assays.
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Chapter 1

Introduction

1.1 Chromatin accessibility regulates gene expression

Regulation of gene expression is a necessary component of multicellular life.

As each cell contains theoretically identical genetic material, it is the regulated ex-

pression of these genes which creates cellular types as diverse as red blood cells

and neurons (H. Wu and Sun 2006). Gene expression regulation occurs through

many mechanisms from DNA to functional protein, frequently in unique interac-

tions for each gene. Of these mechanisms, regulation of transcription by DNA-

binding proteins is thought of as the most important, in part because it is the most

energetically efficient form of expression regulation (Pulverer 2005). Regardless of

relative importance, transcriptional regulation is the initial regulatory step of protein

function, and is universal as it applies to every protein. This process is conducted

by about 1500 DNA binding proteins which recognize specific sequence motifs,

known as transcription factors (TFs) (Dynan and Tjian 1983; Ignatieva, Levitsky,

and Kolchanov 2015). TFs bind to specific DNA sequences, and often require DNA

in an uncondensed, accessible state to regulate transcription of a given gene (Cremer

et al. 2015; Felsenfeld et al. 1996). DNA accessibility is itself a highly regulated

process. DNA accessibility is mediated through a host of chromatin remodeling

proteins and histones. Interactions between chromatin remodeling proteins and hi-

stones determine nucleosome (a complex of DNA and histones) positioning and

local availability for TFs and RNA polymerase (Clapier and Cairns 2009; Blossey
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and Schiessel 2018).

TFs and nucleosome remodeling proteins are known to regulate transcription

and chromatin accessibility, respectively. A deterministic understanding as to how

interactions between the two alter regulation of either process is currently a topic of

investigation (M. Li et al. 2015; Ren et al. 2019; Hansen, Loell, and Cohen 2022).

However, it is well known that genomic regions with high transcriptional rates have

proportionally less nucleosome occupancy (Lee et al. 2004). Therefore, accessi-

bility of regions in the genome can be measured to infer the degree of regulatory

activity acting on the resident genes (Felsenfeld et al. 1996). Previous studies have

leveraged this principle to show alterations in accessibility due to developmental

changes or between cell types (John et al. 2011; Thurman et al. 2012). Accessible

regions in the genome occur dynamically in response to environmental or develop-

mental stimuli, account for the majority of TF-bound locations, and define cellular

ability to differentiate (John et al. 2011; C. Wu, Bingham, et al. 1979; C. Wu, Wong,

and Elgin 1979; Di Stefano et al. 2016).

Early measurements of chromatin accessibility used DNase to digest genetic

material, as the nuclease preferentially cuts accessible regions of the genome (Wein-

traub and Groudine 1976). These initial DNase digestions were followed by hy-

bridization with a labeled complementary probe (Southern blot) to determine the

sensitivity to digestion of the areas around the sequence of interest (C. Wu, Bing-

ham, et al. 1979; C. Wu, Wong, and Elgin 1979). DNase digestions produce frag-

ments of DNA when two independent cutting events occur in close enough prox-

imity. Because cutting events happen more frequently in accessible, actively reg-

ulated regions, fragments from these hypersensitive sites are more abundant than

those from condensed DNA (Elgin 1988; Gross and Garrard 1988). Initial work
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using these methods generally examined only a few sequences of interest, as each

sequence required its own probe. Subsequent advancements in sequencing technol-

ogy allowed for each fragment produced by DNase digestion to be sequenced and

aligned to a reference genome, a technique known as DNase-seq (Boyle et al. 2008;

Song and Crawford 2010). DNase-seq produces genome-wide information about

chromatin accessibility. Analysis of DNase-seq chromatin accessibility data identi-

fied genome-wide footprints of transcription factor binding as a reduction of signal

within regions of hypersensitivity (Hesselberth et al. 2009). These footprints had

previously been reported, as initial in vitro DNase digestions of DNA were shown

to be protected by interactionwith DNA-binding proteins (Galas and Schmitz 1978).

However, the genome-wide scope of DNase-seq allowed for alignment of sequences

on a common motif and analysis of signal at all of these positions combined. Analy-

sis of this combined signal was thought to show a statistical average of DNA-protein

interaction among the population of surveyed cells, as some studies observed an in-

verse correlation between footprint signal and information content of a TF motif

(Hesselberth et al. 2009). Although these footprint signals allowed researchers to

generate new insights into TF-DNA interactions, they are also susceptible to enzy-

matic sequence bias. This footprint susceptibility to bias is a consequence of de-

termining signal given aggregation of similar sequences and thus similar biases. In

order to correct these biases seqOutBias, a command line interface, was developed

in order to apply an algorithmic bias correction to individual aligned reads in a data

set (Martins et al. 2018).
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1.2 seqOutBias uses direct k-mer scaling to correct

enzyme bias

Further investigation into the relationship between DNase hypersensitivity and

footprinting yielded remarkable links between DNA-TF crystal structures and ob-

served DNase-seq signal at aggregated TF motifs (Neph et al. 2012). In short, it was

observed that genetic positions protected by a bound TF had reduced signal, while

nearby positions exposed to DNase digestion had increased signal. Unfortunately,

these findings were partially subsumed by studies which examined the sequence bias

of DNase. Two independent studies, published within a year of each other, recapitu-

lated many of the DNase-seq TF footprinting patterns observed in previous studies,

using naked DNA (Sung et al. 2014; He et al. 2014). Because naked DNA lacks

proteins bound to the DNA, the signal observed at aggregated TF motifs could not

be due to interactions between TFs and DNA. Instead, these studies demonstrated

that using the DNase cut frequency of each k-mer, DNase sequence bias could be

modeled reproducibly across experiments and cell types. This modeling strategy

was also shown to apply to the nucleases Benzonase and Cyanase, indicating that

nuclease preference for specific sequences was a reproducible phenomenon. In-

tuitively, if one can imagine on a molecular scale, nuclease contact with its DNA

substrate involves chemical interactions between the two, some genetic sequences

may favor or disfavor interaction over others.

Furthering the modeling of enzymatic sequence bias, seqOutBias was pub-

lished as a software package which corrects this bias using a direct k-mer scaling

approach (Martins et al. 2018). seqOutBias leverages the observation that enzy-

matic sequence preferences are consistent across species and chromatin state. This
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obviates the need for a naked DNA baseline of the applied nuclease’s k-mer cut-

ting preferences, and instead allows this correction to be derived from and directly

applied to experimental data regardless of experimental parameters.

In order to apply direct k-mer scaling to a given data set, the seqOutBias

algorithm executes several computations. First, each k-mer specified at a relative

position in both the data set and reference genome are tallied. These k-mer counts

are then used to determine percent frequency in both the reference genome and data

set for each possible -mer of length k. A given k-mer’s percent frequency in the

reference genome is then divided by its percent frequency in the data set, creating

a ’scale factor’ for each possible k-mer. Each scale factor is the ratio of genomic

occurrence of a k-mer to its occurrence in the data set. The final computation mul-

tiplies each read by the scale factor for its respective k-mer in order to scale the

occurrence of all k-mers in the data set to their observed frequency in the refer-

ence genome. Thus, seqOutBias corrects the observed k-mer bias for the specified

position relative to each read.

As read values are only scaled based on the k-mer specified by a position rela-

tive to each read, sequence bias is only corrected for these corresponding positions.

Consequently, to truly correct the sequence bias for a given enzyme, one must scale

reads based on the positions which bias cutting. Intuitively, these locations can

be thought of as the bases which interact with the enzyme and create biased DNA

sequence-enzyme interactions with respect to cutting propensity. A simple solu-

tion to this problem would be to specify a large window around a cut site so as to

incorporate all possibly relevant positions. Unfortunately, aside from being compu-

tationally expensive (there are 4k possible k-mers), direct k-mer scaling necessitates

several instances of each k-mer for bias correction. This limitation becomes appar-
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ent in a recommended data set size of 50 million reads using a 9-mer. This would

result in the average k-mer having 191 instances, and many k-mers would have few

instances based on a normal distribution (Buenrostro, B. Wu, Chang, et al. 2015).

The size of the human genome (3,099,706,404 bases in hg38) further limits k-mer

size to smaller than 12, as the average k-mer would have 185 instances.

Application of the seqOutBias algorithm was shown to correct the surveyed

nucleases’ (DNase, Cyanase, Benzonase, MNase) sequence bias by scaling reads

to the k-mer several positions around a cutsite (Martins et al. 2018). These masks

were determined using an enzyme cutsite model. However, this method did not

sufficiently correct Tn5 transposase bias. Instead, the best performing Tn5 bias

correction was produced using a hill climbing optimization method (Martins et al.

2018). This method sought to reduce the sum of standard deviations between posi-

tions in a composite plot of signal at a set of a PSWMs. Hill climbing optimization

of the positions which bias cutting in Tn5 data specified a wide range of spaced

positions around a cutsite as the most relevant for bias correction. Unfortunately,

these positions also did not fully smooth the bias observed in composite plots.

1.3 ATAC-seq uses Tn5 transposase to measure chro-

matin accessibility

ATAC-seq (Assay for TransposaseAccessible Chromatinwith high-throughput

sequencing), first described in 2013, is a technique that uses a modified Tn5 trans-

posase to fragment DNA and measure chromatin accessibility (Buenrostro, Giresi,

et al. 2013). The annual number of published ATAC-seq data sets surpassed those

of other chromatin accessibility assays within four years of its introduction. This



7

rapid increase in publications is due to its comparative ease of use, the broad ap-

plicability of the data generated, and the smaller sample size required (Yan et al.

2020; Buenrostro, B. Wu, Chang, et al. 2015). These factors have facilitated the

refinement and application of ATAC-seq to single-cell measurements of chromatin

accessibility (Buenrostro, B.Wu, Litzenburger, et al. 2015). Tn5 transposase’s rapid

adoption for these purposes was facilitated by the previous knowledge gained and

modifications made to it as an early model system.

Tn5 transposase, a dimer, is the key component of ATAC-seq. It was initially

identified for its ability to transfer a suite of antibiotic resistance genes from Es-

cherichia coli to an infecting phage’s genome (Berg et al. 1975). This led to its use

as a model system for transposon studies due to its spontaneous transposition, rela-

tive simplicity, and mechanistic similarities to other biologically relevant processes

such as HIV-DNA integration (Reznikoff 1993). However, one initial challenge

in studying Tn5 as a model transposase was its low rate of endogenous activity.

To address this, a hyperactive variant of the complex was created through numer-

ous modifications to both its protein structure and target DNA sequence (Reznikoff

2008; Igor Yu Goryshin and Reznikoff 1998). This variant was able to fragment

DNA at a reasonable rate, enabling the measurement of sequence preferences (Igor

Y Goryshin et al. 1998). Further analysis revealed that regions of the dimer interact

with DNA sequences outside of the 9bp active site, contributing to sequence bias for

insertions (Ason and Reznikoff 2004; Gradman et al. 2008). These findings suggest

that using a direct k-mer scaling approach to correct Tn5’s sequence bias would re-

quire a k-mer significantly larger than 9bp. As previously explained, a direct k-mer

scaling approach using a k-mer this large is not feasible for most data sets. Con-

sequently, a modeling strategy would need to incorporate information from many
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smaller direct k-mer scaling approaches to successfully model the full Tn5 sequence

bias. One such modeling strategy is a rule ensemble, using as input the output from

many different direct k-mer scaling approaches.

1.4 Rule ensemble combination of multiple direct k-

mer scaling inputs models enzyme bias

The degree to which a model corrects chromatin accessibility assay enzymatic

sequence bias is best measured using data from deproteinated, naked DNA. Theoret-

ically unbiased naked DNA digestion would result in an average signal of read depth

divided by positionswithin the reference genome, containing variationswithin noise.

Unbiased signal from naked DNA chromatin accessibility studies should be evenly

distributed throughout the genome, regardless of sequence context. Variations on

this even distribution can be easily visualized using a composite plot of sequences

similar to a chosen motif. If any sequences from this motif are not uniformly pre-

ferred by the digesting enzyme, bias will be visualized as either an increase or de-

pletion of signal in the plot. Hence, the degree to which a model corrects enzymatic

sequence bias is measured by its ability to return composite plot signal to the known

ground truth.

Composite plots of a set of sites which conform to a TF motif are an average

of signal at known coordinates, and thus their sequences are known. Using these

known sequences, one can partition each position into the k-length sequences sur-

rounding it. These k-length sequences can be used to determine the frequency of

each possible k-mer at each position within the plot. Multiplying k-mer frequency

values by the inverse of seqOutBias scale factors for a k-mer at a given relative
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position yields the predicted bias for that k-mer position and composite plot. Pre-

dicted bias is the value which seqOutBias aims to correct by multiplying reads by

non-inverted scale factors. Therefore, predicted bias values from different k-mer

sizes and positions can be used as unique training input into the predictive model-

ing technique of the user’s choice to estimate the observed bias in a composite plot

of raw data. Using the trained modeling technique’s formula, seqOutBias output

values can be integrated in an identical fashion which combines corrections for each

respective input k-mer size and position.

Statistical inference uses training input to create a model which predicts out-

put, given new data. Rule ensemble (RE) is a statistical inference modeling method

which has predictive accuracy comparable to boosted tree ensembles and random

forests (Fokkema 2017). The accuracy of RE arises from combining a linear basis

function (similar to a linear regression model) with decision trees (rules) (Friedman

and Popescu 2008). This combination helps to alleviate the deficiency of decision

trees in predicting linear relationships and conversely, allows nonlinear interactions

to be captured by rules. Models are trained based on the importance sampled learn-

ing ensemble methodology and terms are scaled using the lasso penalty (Friedman,

Popescu, et al. 2003). A unique advantage to REs is the interpretability of predic-

tions. This interpretability can be assessed at the level of the individual prediction,

insofar as the linear combination of inputs and each rule can be evaluated for its

contribution to the prediction. Single point interpretability enables an assessment

of the prediction and can reveal which nonlinear interactions between inputs are nec-

essary for the estimate. More generally, REs produce importance values for each

input, quantifying both the linear and rule-based contributions each makes.



Chapter 2

Results

2.1 Correction of transposase sequence bias inATAC-

seq data with rule ensemble modeling

2.1.1 Abstract

Chromatin accessibility assays have revolutionized the field of transcription

regulation by providing single-nucleotide resolution measurements of regulatory

features such as promoters and transcription factor binding sites. ATAC-seq di-

rectly measures how well the Tn5 transpose accesses chromatinized DNA. Tn5 has

a complex sequence bias that is not effectively scaledwith traditional bias-correction

methods. We model this complex bias using a rule ensemble machine learning ap-

proach that integrates information from many input k-mers proximal to the ATAC

sequence reads. We effectively characterize and correct single-nucleotide sequence

biases and regional sequence biases of the Tn5 enzyme. Correction of enzymatic

sequence bias is an important step in interpreting chromatin accessibility assays that

aim to infer transcription factor binding and regulatory activity of elements in the

genome.

10
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2.1.2 Introduction

Chromatin accessibility assays measure the relative frequency that exogenous

enzymes access DNA. Chromatin accessibility is not a direct measure of molecular

features of chromatin such as transcription factor occupancy or histone modification

status. However, accessibility is considered a proxy measurement of regulatory el-

ement activity irrespective of the constellation of factors bound to the DNA (C.

Wu, Bingham, et al. 1979; C. Wu, Wong, and Elgin 1979). Accessible regions are

enriched for transcription factor binding and histone modifications that are hall-

marks of functional cis-regulatory elements (Moore et al. 2020; Thurman et al.

2012; Tewari et al. 2012; Guertin et al. 2012; Boyle et al. 2008). Deconvolution

of genome-wide chromatin hypersensitivity data to infer individual transcription

factor binding events remains a challenge (H. Li, Quang, and Guan 2019).

ATAC-seq revolutionized the chromatin accessibility field by providing a straight-

forwardmethod that requires fewer than 5000 cells (Buenrostro, B.Wu, Chang, et al.

2015). ATAC-seq leverages a hyperactive Tn5 transposase that directly inserts high

throughput sequencing adapters into accessible DNA to create sequencing libraries.

The analysis of ATAC-seq data requires additional considerations beyond traditional

hypersensitivity assays because the molecular biology of transposase function is

distinct compared to DNase and other enzymes that are used to measure chromatin

accessibility (Buenrostro, Giresi, et al. 2013; J. P. Smith et al. 2021).

Although using Tn5 to measure chromatin accessibility is experimentally eas-

ier than using DNase, the dimeric Tn5 enzyme recognizes a wider region when

interacting with DNA and this is reflected in the sequence bias of Tn5 (Z. Li et al.

2019). Characterizing and correcting enzymatic sequence bias is an essential step
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for accurate interpretation of chromatin accessibility data (Koohy, Down, and Hub-

bard 2013; He et al. 2014; Sung et al. 2014). Strategies to correct biases use a variety

of sequence inputs to build models, including k-mer instances, position weight ma-

trices, and long stretches of DNA. DNase bias can be directly scaled based on the

6-mer sequence centered on the DNase cleavage site (Martins et al. 2018; Yardımcı

et al. 2014; Schwessinger et al. 2017; J. R. Wang, Quach, and Furey 2017). The

advantage of direct k-mer scaling is the simplicity: reads are scaled by the expected

/ observed k-mer count ratio. If a k-mer is found less often than expected by chance,

then the read is scaled to a higher value. However, direct k-mer scaling does not

effectively correct Tn5 biases from ATAC-seq data (Martins et al. 2018; Karabacak

Calviello et al. 2019; Schwessinger et al. 2017), so other methods were developed

to correct Tn5 bias. ATACorrect scales individual ATAC-seq reads based upon a

dinucleotide weight matrix representing Tn5 bias and introduces simulated reads

to offset observed biases (Bentsen et al. 2020). Similar to weight matrix scaling,

HINT-ATAC employs position dependency models, which account for interactions

between weight matrix positions to model ATAC-seq bias (Z. Li et al. 2019). SELMA

encodes k-mer data into a simplex vector, which is incorporated into a Hadamard

matrix for all mono and dinucleotide combinations. These data are input into a linear

regression model to capture and correct both DNase and Tn5 bias (Hu et al. 2022).

More sophisticated methods that correct ATAC-seq data are often less interpretable

than k-mer and weight matrix scaling. Seqbias trains a Bayesian network to en-

code nucleotide preferences using a 40 basewindow centered on the Tn5 recognition

site (Vinayak, Vinay, and Shiv 2019). MsCentipede uses naked DNA cleavage to

train a Bayesian multi-scale model of a Poisson distribution of reads to account for

sequence bias (Raj et al. 2015). Another method employs a convolutional neural

network to account for intrinsic sequence biases (Ansari, Fischer, and Theis 2020).
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Among bias correction software packages, seqOutBias is the only existing method

that scales each individual input read and does not couple the bias correction to

downstream processing steps.

We previously found that direct k-mer scaling corrects the majority of nucle-

ase sequence bias. We developed seqOutBias to implement k-mer scaling for

molecular genomics data. The seqOutBias package is stand-alone software that

specializes in sequence bias correction for a range of k-mer lengths and gapped k-

mers. SeqOutBias output files can be piped into programs that specialize in peak

calling and footprint inference (Gaspar 2018), but seqOutBias performs poorly

with ATAC-seq data. Here, we expanded the seqOutBias package to accommo-

date ATAC-seq data by coupling seqOutBias output to a rule ensemble modeling

framework that effectively scales individual ATAC-seq reads to correct Tn5 bias.

This modeling approach captures complex interactions between k-mers and quanti-

fies the importance of individual positions that contribute to overall Tn5 bias. More-

over, the importance of k-mers and positions are intrepretable locally for each posi-

tion in the genome, because the rules and terms applied to each aligned read are ex-

plicit. This reproducible workflow efficiently corrects single-nucleotide resolution

Tn5 sequence bias and addresses regional baseline bias determined by GC content.

To facilitate bias correction of chromatin accessibility data, we developed a work-

flow that can be applied to existing high-throughput sequencing analysis pipelines.

The maintained and updated repository for this work will be within the lab’s GitHub

repository: https://github.com/guertinlab/Tn5bias. The archived Zenodo

link for the analysis at the time of submission will be stable at the following link:

https://doi.org/10.5281/zenodo.7757436.

https://github.com/guertinlab/Tn5bias
https://doi.org/10.5281/zenodo.7757436
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2.1.3 Results

2.1.3.1 Tn5 sequence bias is more extensive than other nuclease biases

ATAC-seq measures how well Tn5 transposase accesses DNA in chromatin,

which is a proxy measurement for regulatory element activity. Although chromatin

condensation is the main contributor that influences Tn5-mediated DNA cleavage,

the local sequence content biases transposition activity (Buenrostro, Giresi, et al.

2013). A dimeric Tn5 complex nicks opposite strands of DNA 9 base pairs apart,

and each monomer inserts a sequencing-compatible adapter at each nick position

(Figure 2.1A) (Reznikoff 2008; Reznikoff 2003). The interaction of Tn5 with a

precise genomic region results in reads aligning to two converging genomic coor-

dinates 9 bases apart on opposite strands. Therefore the field shifts the reads align-

ing to either reference genome strand so that a common position anchors the Tn5

recognition site regardless of the orientation of the adapter. We refer to the center

nucleotide of this 9 base insertion site as the central Tn5 recognition base, in con-

trast to a traditional nuclease which cleaves a single position between two adjacent

bases. Shifting ATAC-seq reads results in base-pair resolution data that precisely

identifies the center of the Tn5 recognition site.

Detection of a single Tn5-inserted adapter necessitates an independent Tn5 in-

sertion within approximately 500 bases. Only half of the Tn5 insertion events are

capable of amplification, even when an independent insertion occurs within 500

bases (Figure 2.1B,C,D). To specify this central base, we shift the forward-strand

aligned reads downstream by 4 bases and we shift the reverse-strand aligned reads

upstream by 4 bases (Figure 2.1E). Most current ATAC-seq analysis workflows shift

the reverse-strand aligned reads upstream by 5 bases so that the data looks more
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similar to the chromatin accessibility predecessor DNase-seq. However, this ap-

proach requires an independent shift of one base for reverse-aligned sequences to

ensure that a single DNA cleavage event is specified by a single genomic coor-

dinate (Public Twitter correspondence: https://twitter.com/jeffvierstra/

status/1396900282634625025).

All enzymes that recognize nucleic acids as substrates have sequence biases.

These sequence biases are quantified as the observed frequency of each base at in-

dividual positions relative to a cleavage site (or the centrally recognized base in

the case of transposases) compared to the expectation of random genomic cleavage.

Enzyme bias motifs are represented by a position probability matrix that reports the

fraction of each base observed at each position relative to the cut site, which is most

easily visualized as a seqLogo (Schneider and Stephens 1990; Gavin E. Crooks and

Brenner 2004). We confirm, as others have shown, that Tn5 favors CG-rich DNA

and the seqLogo is a reverse complement palindrome, which is because Tn5 rec-

ognizes DNA as a dimer (Figure 2.2A) (Buenrostro, Giresi, et al. 2013; Vinayak,

Vinay, and Shiv 2019; Z. Li et al. 2019; Bentsen et al. 2020). The nucleases Ben-

zonase, Cyanase, DNase, and MNase have distinct biases that span fewer positions

compared to Tn5 (Figure 2.2A) (Grøntved et al. 2012; Lazarovici et al. 2013; Iwata-

Otsubo et al. 2017). In addition to Tn5 having a wider bias window, the cumulative

information content within the window is highest for Tn5 compared to the nucleases

(Figure 2.2A). Importantly, we consider background nucleotide frequencywhen cal-

culating information content. If we did not background-correct, then random cleav-

age would be interpreted as an AT bias because A/T bases account for 59% of the

genome (Figure 2.3A). Previous methods that accurately correct enzyme sequence

biases use k-mer scaling (Martins et al. 2018). However, k-mer scaling does not

https://twitter.com/jeffvierstra/status/1396900282634625025
https://twitter.com/jeffvierstra/status/1396900282634625025
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Tn5-mediated digestion requires two insertion events on either side of a fragment. 
Only two orientations are productive- an i7 and i5 on either side:
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CTGTCTCTTATACACATCTTn5 mosaic end sequence:

Nextera transposase adaptors:  TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG i5
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG i7

Mosaic end reverse complementTn5 adaptor loading combinations:
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i7 PCR primer
CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG
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AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC

filled in by 72° 
extension

filled in by 72° 
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i7 PCR primer
CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG
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filled in by 72° 
extension
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extension

5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGgenomicDNAgenomicDNAgenomicDNAgenomicDNAgenomicDNAgenomic[9bp gap]CTGTCTCTTATACACATCT5’ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGgenomicDNAgenomicDNAgenomicgenomicDNAgenomicDNAgenomicDNA[9bp gap]CTGTCTCTTATACACATCT

reference genome plus strand

reference genome minus strand

reference genome minus strand

reference genome plus strand

C

E

PCR amplification using i5 or i7 primers:

PCR products:
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genomicDNCTGTCTCTTATACACATCTGACGCTGCCGACGA[i5]GTGTAGATCTCGGTGGTCGCCGTATCATT

Sequencing either i7 or i5 PCR product reveals that a shift of 4 positions centers the cut site on the centrally recognized base:
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Figure 2.1: Shifting forward and reverse aligned ATAC-seq data reads by 4
bases captures the center of the Tn5 duplication. A) Each monomer of the Tn5
transposase dimer is loaded with one of two Nextera adapter sequences. During an
insertion event, each adapter is attached to one side of the duplicated 9 base pairs.
Each adapter sequence is a concatenation of the Tn5 hyperactive mosaic end se-
quence and either an i7 or i5 sequencing primer. Each Tn5 dimer is capable of four
possible DNA insertion events, based on which adapters are loaded into each Tn5
monomer. B) For a fragment to be sequenced, it must have an i7 and i5 primer on
either side. Two possible combinations result in non-productive fragments. C) i5
and i7 overhangs are first filled in by a 72° extension step. This filled in sequence is
then used as a template for PCR amplification of fragments. D) To begin bridge am-
plification, PCR products are first denatured into single strands. Next, these single
strands are flowed over a lawn of oligos grafted to the flow cell floor which have a
complementary sequence that anneals to the P5 or P7 sequences of the index 1 (i7)
or index 2 (i5) PCR primers. Once annealed, complementary strands are then poly-
merized and the original binding strand washed away after being denatured. The
single stranded, newly polymerized sequence is then able to bind to a complemen-
tary oligo grafted to the flow cell, and the complementary strand is polymerized and
subsequently denatured. This process repeats many times to create clonal colonies
of each read. Finally, the reverse strands are cleaved and washed away and 3′ ends
of bound reads are blocked. The initial binding and end product stages of bridge
amplification are depicted in the panel. E) Sequencing primers are used to deter-
mine the sequence downstream of the insertion event. Regardless of orientation, the
first base of every read (the end of the adapter sequence) will be 4 positions away
from the centrally recognized base.

effectively correct Tn5 bias because of the wide bias window and the limitation that

large k-mers occur rarely in both the observed and expected k-mer counts.

If nucleotide sequence far from the Tn5 recognition site center influences cleav-

age and insertion, then we would expect that k-mers found at positions distal from

Tn5’s centrally recognized base would deviate substantially from random expecta-

tion. We quantified the influence of distal and proximal k-mers on cleavage bias by

plotting the log2 ratio of observed 5-mer frequency to expected 5-mer frequency for

all 1024 5-mers; expected frequency is based on the genomic frequency of each 5-

mer. The log2(observed/expected) ratio is zero if a 5-mer is observed at the expected
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frequency. We find that the distribution of this ratio becomes more tightly centered

around zero as we query more distal 5-mers (Figure 2.2B). The distribution does

not stabilize for Tn5 until we exceed 11 bases from the Tn5 recognition site, while

the other four enzymes stabilize within 4 bases of the cleavage event. This analy-

sis confirms that distal sequences more strongly influence Tn5-mediated cleavage

compared to the other enzymes, and indicates that a k-mer spanning at least 21 base

pairs is required to model Tn5 bias effectively.

The background corrected sequence motif (Figure 2.2A) for Tn5 is a reverse

palindrome, which is common for homodimeric DNA binding factors (Welboren

et al. 2009; Sasse et al. 2017). The consensus Tn5 recognition sequence contains

CAG trimers present on each strand of the DNA, each CAG is displaced from the

adjacent reverse complemented CAG by 5 bases. This unique feature suggested that

Tn5 dimers may interact with this sequence motif in multiple orientations to direct

the transposition of adapters with higher frequencies. We plotted the read-depth

normalized composite profile of each enzyme’s bias motif to compare their relative

strength of directing DNA cleavage (Figure 2.2C). The Tn5 recognition site directs

a central peak that is substantially higher than the other enzymes. The composite

profiles also highlight peaks 5 and 10 base pairs downstream and upstream of the

centrally recognized base (Figure 2.2C). These flanking peaks are not observed in

the other nucleases, although they are comparable in intensity as the central peak of

other enzymes. Although not definitive, this pattern is consistent with Tn5 dimers

interacting with opposite sides of the DNA helix, displaced by five bases. Taken

together, the length of the Tn5 bias motif, the strong influence of distal k-mers, the

stronger cutting preference, and 5-base spaced cutting pattern all preclude conven-

tional k-mer based approaches for correcting Tn5 sequence bias.
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Figure 2.2: Tn5 sequence bias is more complex than nuclease sequence bias. A)
The seqLogo sequence bias motifs are corrected for background nucleotide content
and they illustrate that Tn5 bias is wider and more complex than other commonly
used chromatin accessibility enzymes. Nucleotide frequencies listed in the inset
to the right correspond to the highest information content position; for instance,
G is found at position -4 45% of the instances that Tn5 inserts into DNA. Nucle-
ase cleavage sites are indicated by dashed red line. Total information content (IC)
from positions -10 to 10 is listed in the inset to the upper left. B) We plotted the
log2(observed/expected 5-mer frequency) for all positions surrounding DNA cleav-
age sites or Tn5 recognition sites as box and whisker plots. C) We plotted read
depth normalized composite signal from various molecular genomics assays for the
top 400,000 sites that conform most stringently to the respective enzyme’s bias mo-
tif.

2.1.3.2 Tn5 sequence bias is complex and not modeled well by previous meth-

ods

A key assumption of representing sequence biases as probability matrices or

seqLogos is that any nucleotide observed at a position within the motif does not

influence the probability of observing nucleotides in other positions, this property

is referred to as positional independence (Guertin et al. 2012; Sharon, Lubliner,

and Segal 2008). If each position is independent from the others, observed k-mer
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Figure 2.3: Tn5 sequence bias motif is more complex than nucleases. A) These
sequence logos (Schneider and Stephens 1990; Gavin E. Crooks and Brenner 2004)
representing enzyme biases were generated with equiprobable background nu-
cleotide frequencies, which does not incorporate information about genomic AT/CG
content. Nucleotide frequencies listed in the inset to the right correspond to the high-
est information content position (Pos). Nuclease cleavage sites are indicated by the
dashed red line. B) Plots of enzymatic sequence bias motifs as seen in (Figure 2.2A),
with the y-axis limit scaled to the position with highest information content.

frequencies should be equal to those expected based on nucleotide frequency in

the position probability matrix. To test Tn5 sequence bias position independence,

we determined the observed frequency of each 3-mer found in position -6 to -4

relative to the central Tn5 recognition base and divided by the expected frequency

(Figure 2.4A). We find that 3-mers are observed at frequencies that deviate from

the calculated expectation. We can infer basic features describing which 3-mers are
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disfavored (NAA) and preferred (NCA), but characterizing a comprehensive set of

basic rules for many k-mer combinations and k-mer positions is not straightforward.

However, since k-mer scaling does consider dependencies between positions, k-

mer scaling remains an attractive starting point for developing more complex bias

correction models.

Next we tested the feasibility of using rationally spaced k-mers to systemati-

cally reduce Tn5 bias. The 3-mer ”CAG” is overrepresented in three positions in the

Tn5 bias and each CAG bias is displaced by 5 bases (Figure 2.2A). We measured

the composite ATAC-seq signal in the window centered on 400,000 random CAG

instances in the hg38 genome assembly. As expected, we observe that the CAG

3-mer directs cutting in three peaks, each displaced from one another by 5 bases

(Figure 2.4B). Conventional k-mer scaling is performed with any reasonably short

k-mer size (<9 bases) and the k-mer can be positioned at any distance from the ob-

served Tn5 recognition site. In an effort to determine whether k-mer scaling would

effectively flatten these three peaks, we used seqOutBias to scale reads using 3-

mers that are located at the Tn5 recognition site and up/down stream by 5 bases.

Recall that each peak corresponds to a peak of Tn5 recognition and that each peak

is relative to the CAG 3-mer that anchors the plot at position x = 0. Therefore, we

expect that scaling based on the k-mer located 5 bases upstream will flatten the +5

peak because the CAG directing this downstream peak is located 5 bases upstream.

Likewise, the central k-mer scaling would abolish the central peak and downstream

k-mer scaling would ablate the upstream peak. This exercise indicates that we can

rationally design k-mer scaling to correct known biases, but it also highlights the

fact that multiple k-mers are needed to correct biases even within the context of

this simple example. Therefore, we pursued a rule ensemble modeling approach to
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integrate multiple k-mer sizes from a range of positions relative to the Tn5 recog-

nition site as input data and determine whether interactions between these inputs

contribute to Tn5 insertion bias.
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Figure 2.4: K-mers capturemore bias complexity thanweightmatrices and pro-
vide a basis for which to build more sophisticated bias-correction models. A)
We quantified the frequency that all 64 3-mers occur at positions -4 to -6 from the
center of a Tn5 recognition site and compared observed frequency to the position
weight matrix prediction. A bar chart of log2 observed divided by expected (from
k-mer prevalence in the bias position probability matrix) k-mer frequency highlights
the interdependency between sequences are different positions. B) We plotted the
signal from 400,000 randomly selected ”CAG” instances in the genome. Overlaid
on top of the unscaled signal, each plot shows that the individual peaks from com-
posite profile can be corrected by rationally designed spaced k-mer scaling, based
on the position of the scaling k-mer and the peak.

2.1.3.3 Rule ensemble modeling leverages interaction terms and k-mer scal-

ing to correct sequence biases

We previously developed seqOutBias, which directly scales chromatin acces-

sibility data by expected/observed k-mer frequency. Althoughwe specify seqOutBias
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to scale based on a 6-mer centered on the DNA cleavage event for DNase, one can

specify any k-mer length and relative k-mer position. Our data indicate that Tn5

bias is too broad to scale with a single k-mer and this suggests that bias correction

would need to incorporate information from several k-mer positions. Therefore, we

chose to use seqOutBias scaling outputs with different invocations of k-mer posi-

tions and lengths as the input for the rule ensemble model, and to test its capacity to

correct Tn5 bias (Figure 2.5A). Sequence biases were first characterized by quan-

tifying enzymatic cut frequency in average composite profiles that are centered on

transcription factor binding motifs (He et al. 2014; Sung et al. 2014). We previously

developed a model (seqToSign) that reproduced these composite profiles by scaling

the genome-wide cut frequency of each k-mer found in a given position in the com-

posite by the number of occurrences of the k-mer at that position (Sung et al. 2014).

We attempted a similar approach to predict biased composites by using the inverse

of seqOutBias scale factors as an input, since this value represents the genomic cut

frequency for a k-mer. For each k-mer we multiplied its frequency at each position

in the composite by the inverse of that k-mer’s corresponding seqOutBias scaling

factor. We summed these values for all 4k k-mers at each position in the composite

profile (Figure 2.5B). Each of these values at each position in the composite is a

covariate input for the rule ensemble model and we repeated the process for many

k-mer length and relative k-mer position combinations (Figure 2.6A). We trained a

rule ensemble model using these covariate inputs to predict multiple transcription

factor composite profiles. The output of this trained model is the formulaic com-

bination of k-mer positions using linear regression coefficients and decision trees

(Figure 2.5C). To test the efficacy of the model, we first combined the scaled read

values from each k-mer covariate according to the output formula. This generated

a single rule ensemble-scaled read file which we tested for its ability to correct test
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group composite profiles to resemble theoretically unbiased genomic cleavage (Fig-

ure 2.5D).

Training Motifs

  AAACC,AACCA,ACCAA,CCAAA

chr1 130484 130492 Signal at Coordinates

seqOutBias Scaling for K-mers

Input for Each Motif/Mask Combo

Coefficient       Variable (Rule or Input)
0.33              5-mer 5bp upstream
0.24              6-mer 2bp downstream > 2
0.17              5-mer 4bp upstream < 1
0.13              7-mer 3bp downstream

Rule Ensemble Model

Test Motifs

Genomic Coordinates Test Rule Ensemble Bias Correction
Rule Ensemble Predicts 

Signal Using Input

Rule Ensemble-Scaled Data

Input Calculation Model Training Bias Correction Testing

NIR
K-mers at Each Position of Sequence

Input:
Predicted:

TET S
Unscaled:

Rule Ensemble:

A SFOM I
ATGACGGACGCGTCCGTCAT

seqOutBias

Chromatin Accessibility Data
Rule Ensemble 
Model of Bias Unbiased Cutting

Biased Signal
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Sequence at Coordinates

B

Read Position
Read scaled by:

k-mer genomic occurrence

C D

bedGraph bigWig

Upstream 5-mer > 5 Else

Downstream 7-mer > 1.2 Else

00.2

0

k-mer occurrence in data

ATGACGGACG

20 kb hg38
118,820,000 118,825,000 118,830,000 118,835,000

Scale
chr2:

Figure 2.5: Rule ensemble modeling of enzymatic bias combines k-mer scaling
approaches to enhance bias correction. A) We generate the rule ensemble input
by combining seqOutBias scaling output with k-mer frequencies observed at tran-
scription factor motifs found throughout the genome. This input is then used to train
a rule ensemble model to predict the enzymatic sequence bias. Finally, the model
is tested for its ability to correct this bias. B) For each training motif, we identify
the 400,000 occurrences in the genome that conform most stringently to the weight
matrix. We extract sequences (200 bases) in the region for each identified motif and
calculate the frequency of each k-mer at each position relative to the motif center.
We perform independent runs of seqOutBias to calculate scale factors for each k-
mer in each position within a defined window from the center of the motif. K-mer
frequency for each position is then multiplied by the inverse scale factor for every
frame of reference. These are the rule ensemble input values for each motif/k-mer
(size and position) pairing. C) We train a rule ensemble model to predict the biased
signal measured at each of these region sets in a deproteinized data set. D) Output
from seqOutBias corresponding to all input frames of reference are then combined
according to the rule ensemble model to generate a single BED or bigWig file with
bias-corrected values for each sequence read. Successful bias correction is evalu-
ated using a held-out test set of TF motifs.

2.1.3.4 Choosing training and test transcription factor motifs

Transcription factors recognize a diversity of DNA sequences that vary by

length, degeneracy, and nucleotide content. We chose training and test data for
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Figure 2.6: Many 5/6/7-mer and spaced 6-mer combinations were inputs to rule
ensemble modeling of Tn5 bias. A) This graphic depicts direct k-mer scaling po-
sitions used as input for the Tn5 rule ensemble model. In this example, the positions
marked ’X’ represent unmodeled positions, while the ones marked ’N’ are the po-
sitions which each read is scaled by. The ’n’ in the upper left corner is the number
of permutations per k-mer size. Each graphic for each contiguous k-mer size rep-
resents the first three and last three input positions. The graphic for spaced 6-mer
positions shows how the leading 3-mer is moved across the span, followed by a sin-
gle base pair movement of the trailing 3-mer, to sample all possible combinations
of spacing between the two.

the model by selecting sequence motifs based on these features (Figure 2.7A). In a

sequence logo representation of DNA binding preference, the information content

is a function of sequence length and degeneracy. We used hierarchical clustering of

these values for 43 input motifs that represent a wide range of information content

and GC content, encompassing well-characterized binding motifs (Figure 2.7B).

Groupings consisted of either doublets or triplets, with a single singlet. Within a

group, a single motif was assigned as testing data and the others were assigned as

training data.
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Figure 2.7: Clustering of transcription factor motifs creates diverse test and
training sets. A) We clustered transcription factor motifs into test and training
sets based on motif information content and GC content. We indicate clusters with
transparent ovals. Training and test sets are indicated as red or blue text that indicates
the motif name. B) The seqLogos of training and test transcription factor motifs
illustrate their diversity.

2.1.3.5 Rule ensemble modeling corrects DNase sequence bias

We chose rule ensemble modeling because the importance of covariate inputs

are easily interpreted in the overall model and for any individual model prediction.

Since DNase-seq biases are well-characterized, we have an expectation of the im-
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portance of positions that lead to DNase specificity. We chose to test the feasibility

of this model using naked DNA DNase-seq data. We invoked seqOutBias with

staggered 5-mers within 9.5 base pairs of the cut site as input for the model. The

DNase rule ensemble model confirmed that the 3 bases on either side of the cleavage

event most strongly influence DNase cleavage (Figure 2.8A).
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Figure 2.8: Rule ensemble modeling effectively corrects DNase bias. A) Rule
ensemble modeling provides information about the importance of variable in the
model. The positions proximal to DNase cleavage are most important. B) Violin
plots quantify the log2 ratio of unbiased signal to output for each transcription fac-
tor’s composite profile given the method of k-mer scaling. Regions measured in
each plot are within ±10 base pairs of each motif, as indicated by the graphic above
the figure panel. C) We plotted composite profiles of transcription factors from rule
ensemble output compared with direct k-mer scaling of the 5-mer that encompasses
the five most influential positions in panel A. D)We visualized improvement of rule
ensemble modeling over seqOutBias by using a violin plot of distance from calcu-
lated random cut frequency for rule ensemble output subtracted from seqOutBias.
Positions which rule ensemble outperforms seqOutBias will be above 0 (dashed
red line); 68% of positions in this plot were improved.

We visualized the correction of single nucleotide bias by calculating the log2

ratio of theoretically unbiased signal to either unscaled, direct k-mer scaling (se-
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Treatment
Unscaled

Abs Mean

seqOutBias

Abs Variance

Rule Ensemble

Unscaled U test p−value
0.48

seqOutBias U test p−value

0.17

Unscaled F−test p−value

0.13

seqOutBias F−test p−value
0.35

0.019
0.011

−
***
***

−
−

***

−
***
***

−
−

***

Figure 5B summary statistics

Table 2.1: Statistical tests for Figure 5B and Figure S4A highlight the improve-
ment rule ensemble correction provides. The absolute value mean and variance
were determined for all data of a given treatment of DNase single nucleotide bias
correction, as displayed in Figure 5B and S4A. The smaller the absolute log2 values
of variance and mean are, the better bias correction is performing. A value of 0
would indicate perfect bias correction. Q-Q plots indicated that these data are not
normally distributed, therefore Mann-Whitney U tests were used to compare dif-
ferences in mean. F-tests were used to show differences in variation between the
values output from the scaling methods. P-values for U and F-tests are indicated by
asterisks: ***:p<0.0005, **:p<0.005, *:p<0.05

qOutBias), or rule ensemble output within the region of ±10 base pairs for each

motif (Figure 2.8B & Figure 2.9A). Our results indicate that direct k-mer scaling

corrects DNase bias well, but rule ensemble modeling outperforms k-mer scaling

(Table 2.1). This is most easily illustrated by observing individual composite pro-

files (Figure 2.8C & Figure 2.9B). Although improvement is comparable between

direct k-mer scaling and rule ensemble modeling, we sought to directly compare

the two more rigorously. We calculated the absolute value of the difference be-

tween each corrected value and random cleavage for each point within 10 base

pairs of each motif for both bias correction methods. This metric represents how

much the values deviate from perfect bias correction for each method (seqOutBias

and rule ensemble). For each position, we subtracted the rule ensemble deviation

from unbiased cleavage value from the seqOutBias deviation from unbiased cleav-

age and plotted the difference (Figure 2.8D). Each point represents the difference

in improvement between seqOutBias and rule ensemble modeling. For each point

greater than 0, the rule ensemble modeling outperforms seqOutBias (Figure 2.8D).
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We find that 68% of all points showed improvement, indicating that rule ensemble

modeling generally outperforms direct k-mer scaling for correcting DNase bias.
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Figure 2.9: Rule ensemble modeling corrects DNase bias. A) The remaining
violin plots which compare the log2 of output divided by unbiased signal for each
test transcription factor’s composite profile. B) Composite profiles of the test set
transcription factors show correction of DNase sequence bias. Each plot shows rule
ensemble output compared with direct k-mer scaling of the 5-mer that encompasses
the five most influential positions in Figure 2.8A. The horizontal dashed red lines
indicate random cleavage, while the vertical dashed red lines indicate the beginning
and end of the motif.
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Figure 2.10: Rule ensemble modeling corrects Tn5 transposon single nucleotide
bias in ATAC-seq data. A) The importance values for each position relative to
Tn5’s recognition site mirror the information content values of positions in the seqL-
ogo representation of Tn5 bias. B) We directly compare bias correction of Tn5 data
by seqOutBias and rule ensemble modeling by visualizing the composite corrected
signals and comparing to the unscaled composite traces. C) We quantify the single
nucleotide correction for each transcription factor’s composite profile by measuring
divergence from unbiased signal. Regions measured are within ±10 base pairs of
each motif, as indicated by the graphic above the figure panel. D) We visualized
improvement of rule ensemble modeling over seqOutBias by using a violin plot of
distance from calculated random cut frequency for rule ensemble output subtracted
from seqOutBias. Positions which rule ensemble outperforms seqOutBiaswill be
above 0 (dashed red line); 78% of positions in this plot were improved and those that
are not improved have lower magnitude deviations from the expectation of random
cleavage. E) Composite profile overlays of test motifs highlight the improvement
of rule ensemble modeling compared to seqOutBias correction. The red dashed
line indicates the calculated random cleavage frequency.

2.1.3.6 Rule ensemble modeling corrects local Tn5 transposition bias

Since this modeling approach corrected DNase bias, we developed a rule en-

semble model to correct bias from deproteinated ATAC-seq data. Since Tn5 bias is

more complex than DNase, we ran seqOutBias for all contiguous 5-mers, 6-mers,

7-mers, and spaced 6-mers within 19 bases of the DNA cleavage/insertion site for
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the model input. In total, we included 663 distinct k-mer combinations as inputs

(Figure 2.6A). The number of input variables was much higher compared to DNase,

so we prioritized the input covariates by first modeling the data using linear regres-

sion to determine the most influential k-mers (formalized calculations are included

in the Methods), then we incorporated the most influential 10% of these variables

into a full rule ensemble model to predict the biased signal for each training motif

(Figure 2.5C). The relative importance values for each nucleotide position revealed

three central peaks that are separated by 5 bases (Figure 2.10A). Comparison of

individual composite profile traces highlights the improvements (Figure 2.10B &

Figure 2.11A&B). We systematically measured how bias-corrected signal deviated

from random DNA cleavage at sequence motifs (±10 bases) and compared to un-

scaled and k-mer scaled correction (Figure 2.10C). The rule ensemble bias correc-

tion outperforms k-mer scaling with respect to reducing variance and scaling reads

to more accurately approximate random DNA cleavage (Table 2.2). For each in-

dividual position, the rule ensemble model outperforms k-mer scaling 78% of the

time (Figure 2.10D). Examination of the 22% of positions with worse performance

reveals the magnitude by which the model is outperformed is modest compared to

the magnitude of improvement for the other 78% of instances. This can be visu-

alized by comparing the distribution above zero (improvement) versus below zero

(outperformed by k-mer) in Figure 2.10D. Visual inspection of the composite traces

of the 18 test motif composite profiles illustrates that rule ensemble models effec-

tively flatten these profiles (Figure 2.10B & Figure 2.11B). The traces approach the

theoretical random cleavage red dotted line more closely than k-mer scaling alone

(Figure 2.10B& Figure 2.11B). Therefore, the local sequence bias, which we define

as the region within 10 bases of sequence motifs, is more effectively corrected with

rule ensemble modeling.
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Treatment
Unscaled

Abs Mean

seqOutBias

Abs Variance

Rule Ensemble

Unscaled U test p−value
1.1

seqOutBias U test p−value

0.72

Unscaled F−test p−value

0.43

seqOutBias F−test p−value
0.59
0.24
0.1

−
***
***

−
−

***

−
***
***

−
−

***

Figure 6C summary statistics

Table 2.2: Statistical analysis of the metrics in Figure 6C and Figure S5A high-
light the improvement that rule ensemble modeling provides. For all motifs and
positions within the motifs (±10bp), we log2 transformed the scaled values, con-
verted to their absolute values, and reported the resultant means and variances of
each scaling method from the data in Figure 6C and Figure S5A. The closer values
are to 0 for each group, the more effective that treatment is at correcting Tn5 sin-
gle nucleotide bias. The distribution of values for each method was not normal, so
we used the Mann-Whitney U test for comparison. We compared the variances us-
ing an F-test. P-values for Mann-Whitney U and F-tests are indicated by asterisks.
***:p<0.0005, **:p<0.005, *:p<0.05

2.1.3.7 Rule ensemble modeling corrects regional sequence biases caused by

GC-content

We developed these models and measured correction of enzyme biases using

these composite motif profiles because this visual representation is an intuitive way

to observe enzyme biases in genomic assays. As we move away from the sequence

”anchor” in DNase-seq composite profiles, the traces flatten and approach the ex-

pectation of random cleavage because the sequence content in these regions is more

random (Figure 2.12A). Unlike DNase-seq, the composite profiles for ATAC-seq

do not approach random expectation, even at distances 100 bases from the sequence

motif center. The Tn5 recognition site is GC-rich (Figure 2.2A) and it is known that

AT/GC richness is clustered throughout the genome (International Human Genome

Sequencing Consortium 2001). We hypothesized that Tn5 preference for GC-rich

regions would lead to generally elevated signal within these regions, accompanied

by depleted signal in AT-rich regions. Therefore, we determined whether there is



33

−4

−2

0

2

Uns
ca

led

se
qO

utB
ias

Rule
 Ens

em
ble

CEBPB

Uns
ca

led

se
qO

utB
ias

Rule
 Ens

em
ble

E2F1

Uns
ca

led

se
qO

utB
ias

Rule
 Ens

em
ble

FERD3L

Uns
ca

led

se
qO

utB
ias

Rule
 Ens

em
ble

HOXC12

Uns
ca

led

se
qO

utB
ias

Rule
 Ens

em
ble

HSF1

Uns
ca

led

se
qO

utB
ias

Rule
 Ens

em
ble

MAX

Uns
ca

led

se
qO

utB
ias

Rule
 Ens

em
ble

POU3F1

Uns
ca

led

se
qO

utB
ias

Rule
 Ens

em
ble

Six3

Uns
ca

led

se
qO

utB
ias

Rule
 Ens

em
ble

USF1
A

B

lo
g

2
 

U
nb

ia
se

d 
S

ig
na

l
M

od
el

 S
ig

na
l O

ut
pu

t

Rule Ensemble
seqOutBias
Unscaled

Distance from Motif Center

In
se

rti
on

 F
re

qu
en

cy

0.00

0.01

0.02

0.03

−2
0

−1
0 0 10 20

AR

0.005

0.010

−2
0

−1
0 0 10 20

CEBPB

0.01

0.02

−2
0

−1
0 0 10 20

E2F1

0.005

0.010

0.015

0.020

−2
0

−1
0 0 10 20

FERD3L

0.000

0.005

0.010

−2
0

−1
0 0 10 20

HOXC12

0.000

0.005

0.010

0.015

−2
0

−1
0 0 10 20

HSF1

0.01

0.02

−2
0

−1
0 0 10 20

MAX

0.005

0.010

−2
0

−1
0 0 10 20

MEF2A

0.01

0.02

0.03

−2
0

−1
0 0 10 20

MGA

0.00

0.01

0.02

−2
0

−1
0 0 10 20

NR2F2

0.005

0.010

−2
0

−1
0 0 10 20

POU3F1

0.00

0.02

0.04

0.06

−2
0

−1
0 0 10 20

REST

0.005

0.010

0.015

0.020

−2
0

−1
0 0 10 20

Six3

0.00

0.01

0.02

0.03

−2
0

−1
0 0 10 20

TEAD1

0.005

0.010

0.015

0.020

−2
0

−1
0 0 10 20

USF1

Figure 2.11: Rule ensemble modeling corrects Tn5 bias. A) The single nucleotide
bias correction comparison of the log2 ratio of model output to unbiased signal for
each transcription factor indicate that rule ensemble outperforms direct k-mer scal-
ing. These motifs represent the remaining test set motifs that are not in Figure 2.10.
B) The composite profiles of transcription factors from rule ensemble output com-
pared with direct k-mer scaling highlight the improvement of rule ensemble mod-
eling. Dashed horizontal red lines denote random cleavage and the dashed vertical
lines bookend each transcription factor motif.

a relationship between motif GC content and this regional ”baseline signal”. Mo-

tif GC content linearly correlates with baseline signal (Figure 2.12B&C). Rule en-
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Figure 2.12: Rule ensemble modeling corrects regional sequence biases caused
by GC-content. A)We illustrate the range of baselines for each enzyme by plotting
unscaled overlays of DNase and Tn5 composite profiles for the 43 transcription
factors surveyed. B) A plot of motif GC content vs. baseline signal indicates a linear
and correlated relationship between the variables. C) The E2F1 and MEF2A motifs
have very different GC content and this is reflected in their baseline signal within
the composite traces. D) Baseline correction is measured by the ratio of unscaled,
seqOutBias, and rule ensemble scaled reads to random cleavage. Two points for
each motif are plotted; each point is the average of upstream or downstream signal
in the window ±10 base pairs from the edge of the motif spanning 100 bases from
the motif center (green box).

semble modeling outperforms seqOutBias for 88% of the positions when regional

GC bias correction (Figure 2.12D&E) and scaling within the motif (Figure 2.10C)

are considered together. We find that rule ensemble corrections improve scaling

compared to seqOutBias in terms of both reducing baseline mean and variance (Ta-

ble 2.3). Rule ensemble modeling effectively corrects Tn5’s regional and local se-

quence biases.
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group
Unscaled

Abs Mean

seqOutBias

Abs Variance

Rule Ensemble

Unscaled t−test p−value
0.7

seqOutBias t−test p−value

0.52

Unscaled F−test p−value

0.42

seqOutBias F−test p−value
0.13
0.078
0.047

−
***
***

−
−

***

−
0.12

**

−
−

0.14

Figure 7D summary statistics

Table 2.3: Statistical analysis of the data in Figure 7D indicates that rule en-
semble modeling provides statistically significant improvement of regional se-
quence biases. Mean and variance are reported for the absolute values of regional
log2 Tn5 composite data displayed in Figure 7D. Perfect bias correction in this com-
parison is a value of 0 for both measurements. The data is normally distributed, so
we performed t-tests to compare differences between means and F-tests were used
to measure differences between variance. P-values for F- and t-test are indicated by
asterisks. ***:p<0.0005, **:p<0.005, *:p<0.05
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2.1.4 Discussion

Transcription factor binding sites and promoters are the most interesting re-

gions of the genome with respect to gene regulation. ATAC-seq signal correlates

with the regulatory potential of these regions. ATAC-seq is a simple experimental

assay, but analysis of the data requires dedicated pipelines, specialized software,

and unique considerations (J. P. Smith et al. 2021). Importantly, Tn5 sequence

bias was described in the first ATAC-seq paper (Buenrostro, Giresi, et al. 2013)

and many groups have developed methods to characterize and correct these biases.

Approaches often combine bias correction and footprinting or propose models that

cannot be easily interpreted. Here, we provide a workflow that directly scales indi-

vidual ATAC-seq reads to correct Tn5 bias and provides common output files that

can be used for peak calling or footprinting. The rule ensemble modeling approach

that we employed is interpretable globally, in that we identify the positions relative

to Tn5 recognition that influence the model. Moreover, for any individual scaled

read the model is interpretable locally. If a rule does not apply to the local sequence

read, then the rule drops out of the model and does not contribute to that individual

instance of read scaling.

Enzymatic sequence preferences must be considered when interpreting molec-

ular genomics data, particularly when the data is single-nucleotide resolution. We

introduce this rule ensemble framework as a novel method that efficiently scales

individual sequence reads to correct Tn5 bias.
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2.2 Materials & Methods

2.2.1 Reproducible analysis and plotting code

We provide a detailed and reproducible vignette to reproduce all analyses and

figure panels directly from raw data here: https://github.com/guertinlab/

Tn5bias/tree/master/Manuscript_Vignette. We provide aworkflow vignette

using only chr21 ATAC-seq reads, the chr21 reference genome, and estrogen recep-

tormotifs as a quick-start reference document: https://github.com/guertinlab/

Tn5bias/tree/master/seqOutATACBias_workflow_Vignette

2.2.2 Chromatin accessibility data preprocessing and read align-

ment

We downloaded the hg38 and mm39 reference genomes from the UCSC genome

browser (International Human Genome Sequencing Consortium 2001; Consortium

2002). We retrieved data sets for the respective nucleases and Tn5 from the NCBI

SRA (sequence read archive), in fastq format, using fasterq-dump (Leinonen et

al. 2010). The following SRA accession numbers were used for mouse (mm39) liver

data: SRR535737, SRR535738, SRR535739, SRR535740, SRR535741, SRR535742,

SRR535743, SRR535744 (Grøntved et al. 2012), SRR5723785 (Iwata-Otsubo et al.

2017). The following SRA accession numbers were used for human (hg38) DNase

(lung fibroblast) SRR769954 (Lazarovici et al. 2013) and Tn5 (T lymphoblast)

SRR5123141 (Martins et al. 2018). Reads from each data set were aligned to their

respective reference genomes using bowtie2 (Langmead and Salzberg 2012), then

https://github.com/guertinlab/Tn5bias/tree/master/Manuscript_Vignette
https://github.com/guertinlab/Tn5bias/tree/master/Manuscript_Vignette
https://github.com/guertinlab/Tn5bias/tree/master/seqOutATACBias_workflow_Vignette
https://github.com/guertinlab/Tn5bias/tree/master/seqOutATACBias_workflow_Vignette


38

sorted and converted to BAM files with samtools (Danecek et al. 2021).

2.2.3 Determining sequences around each cleavage site

All aligned reads (plus, minus, and unseparated) were used individually as input for

unscaled seqOutBias (Martins et al. 2018) runs, which generated bigWig and bed

format output files. We deconvolved independent reads that aligned to the same

genomic coordinate into separate bed file entries, then converted to sequence files

using fastaFromBed (Quinlan and I. M. Hall 2010). Sequences corresponding to

minus-aligned reads were reverse complemented before concatenating them with

the sequences corresponding to plus aligned reads.

2.2.4 Counting positional nucleotide frequencies for each enzyme

We determined nucleotide counts at each position relative to the start of a read by

loading all the sequences into R, separating sequences into columns, and tallying

nucleotide bases at each position. Results were output in TRANSFAC format and

input into Weblogo (Gavin E. Crooks and Brenner 2004).

2.2.5 Plotting background nucleotide frequency-corrected sequence

logos

We desired background corrected information content values for our sequence lo-
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gos generated from Weblogo (Gavin E. Crooks and Brenner 2004). We retrieved

these values by modifying the source code of the Weblogo command line inter-

face. A step-by-step guide on the modifications we made to retrieve these values is

included in the vignette on Github. As a coherence check, we calculated the back-

ground corrected information content values for each position. First, we calculated

the Shannon entropy:

H(l) = −
t∑

b=a

= f(b, l)log2f(b, l)

Here, H(l) is the entropy at any given position, and f(b,l) is the frequency of a base

(b) at this position (l). Subtracting this value from 2 is the classic calculation for

information content. We next calculated the background entropy:

H(background) = −
t∑

b=a

= f(b, l)log2(
0.25

f(background, b)
)

Where H(background) is the correction for background nucleotide frequency. And

f(background,b) is the background frequency (background) for a base (b) Thus, for

any position the background corrected information content is:

Information Content = 2− (H(l) +H(background))

These values were plotted using the Weblogo command line interface.

2.2.6 Determining enzyme bias motif genomic coordinates

Startingwith the TRANSFAC format nucleotide count files, we used transfac2meme
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(Bailey et al. 2015) to convert to the meme file format. We then used these files as

input into FIMO to generate region sets for each bias motif using the appropriate

refererence genome (Grant, Bailey, and William Stafford Noble 2011). The highest

scoring 400,000 regions were used for each composite profile plot.

2.2.7 Plotting composite signal of genomic coordinates

We visualized the average signal at genomic coordinates by aligning plus and minus

locations on the same position and retrieving the signal in the plotted interval from a

given data set’s bigWig file, using the bigWig R package (https://github.com/

andrelmartins/bigWig). We then divided all signal in this interval by the number

of genomic coordinates within the plot to calculate the average cut or insertion (for

Tn5) frequency at this position relative to the motif.

2.2.8 Determining background nucleotide frequencies of refer-

ence genomes

Background nucleotide frequencies for reference genomes were calculated by using

the grep command to count the occurrences for a given nucleotide.

2.2.9 Calculating scale factors for k-mer position

Genomic and data set k-mer frequencies were determined by using the seqOutBias

https://github.com/andrelmartins/bigWig
https://github.com/andrelmartins/bigWig
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table (Martins et al. 2018) command to tally each k-mer in the reference genome

and those in the data sets for each k-mer size and position. We then used these k-

mer counts to calculate scale factors for each k-mer by dividing the expected k-mer

frequency in the genome by the observed k-mer frequency in the data set (Martins

et al. 2018).

2.2.10 Calculating observed and expected upstream k-mers

Starting with the sequences flanking each insertion in the Tn5 data set in fasta for-

mat, we counted each 3-mer in relevant positions from the cut site to determine

observed k-mer occurrence. To determine expected k-mer occurrence, nucleotide

frequency from the sequence logo motif at each position was multiplied together,

in all possible combinations, to construct each possible k-mer. This value is the ex-

pected frequency for each k-mer; we plotted the log2 ratio of observed to expected

k-mers.

2.2.11 CAG peak direction

Wegenerated a list of all 3-mer locations in the genome by invoking the seqOutBias

dump (Martins et al. 2018) command using a 3-mer .tbl file (output from previous

invocations of seqOutBias table) for input. From this file, we determined the

genomic location of all CAG instances in the reference genome. We then plotted

ATAC signal at 400,000 random CAG instances from this bed file. Rationally de-

signed masks were implemented using the seqOutBias (Martins et al. 2018) soft-
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ware with the noted k-mer masks.

2.2.12 Transcription factor motif genomic interval determina-

tions

Motifs for each transcription factor included in the test and training sets were down-

loaded from the JASPAR (Castro-Mondragon et al. 2022) database in meme format.

These motifs were then used as input, along with the hg38 reference genome, into

FIMO to output genomic regions conforming best to the motif. We took the top

400,000 highest scoring genomic instances for each motif for both the plus and mi-

nus strands and used them as input for the rule ensemble model.

2.2.13 Rule ensemble target input

We calculated the target values by plotting the composite signal at each transcription

factor’s genomic coordinates using unscaled data produced from seqOutBias (Mar-

tins et al. 2018), using the --no-scale option. bigWig files were accessed and plot-

ted using the bigWigRpackage (https://github.com/andrelmartins/bigWig).

These plotted values were normalized using a common factor, to preserve variation

between motifs and allow for accurate rule ensemble prediction.

2.2.14 K-mer frequency calculation

https://github.com/andrelmartins/bigWig
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We determined k-mer frequency using the 400,000 genomic locations for each strand

of each transcription factor motif previously generated using FIMO. From these lo-

cations, we retrieved the sequences using fastaFromBed (Quinlan and I. M. Hall

2010). We split each sequence into k-sized slices for each k-mer. For example, using

a 5-mer, the sequence “AAACCAAA” would be split into: AAACC, AACCA, AC-

CAA, CCAAA. Each of these sections are a position within the original sequence:

position 1-AAACC; position 2-AACCA; etc. For each position, we then determined

the frequency of each k-mer among the original 400,000 input sequences.

2.2.15 Rule ensemble independent variable input

We computed the rule ensemble input for each combination of transcription factor

motif region set and k-mer size/position. As we previously determined k-mer fre-

quency at each position of a composite profile, we multiply these frequencies by the

inverse of the scale factor for each matching k-mer, which was also described above.

Finally, we sum these values for all possible k-mers at a position for the input value.

This process was repeated for each modeled position in the composite correspond-

ing to each included k-mer size and location relative to the cut site. These values are

the seqOutBias predicted values output for a k-mer size and position, and modeled

genomic regions.

2.2.16 Rule ensemble modeling

After calculating the independent variable input, a rule ensemble model was trained
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to predict the training set biased target values using the prediction rule ensemble

package in R (Fokkema 2017). This package implements the original rule ensemble

modeling framework (Friedman and Popescu 2008). The output rules and scaling

coefficients were recorded as a single equation for later implementation.

2.2.17 Rule ensemble model implementation

We implemented the rule ensemble model by combining scaled seqOutBias (Mar-

tins et al. 2018) output as defined by the model. We first aggregated the required

seqOutBias output by combining output bed format files using unionbedg soft-

ware (Quinlan and I. M. Hall 2010). These output values were then combined by

applying the modeling equation at every read to generate a rule ensemble-scaled

bed file. This bed file was then scaled to the same total read depth as the original,

unscaled data. Finally, we converted the bed file to bigWig format for subsequent

analysis using the bedGraphToBigWig command line interface (Kent et al. 2010).

2.2.18 k-mer importance formalization

Calculations for the importance of a given input variable are conducted by the

PRE package in R. The formalized method is imported with little modification from

the accompanying paper (Fokkema 2017; Friedman and Popescu 2008).

In order to calculate input k-mer position importance, the importance of in-

dividual rules and linear terms in which it appears must be determined. We can

calculate linear term importance using the formula:
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Ij = |b̂j| ·
sd(lj(xj))

sd(y)

Here, lj(xj) indicates the linear term for predictor variable xj (k-mer frequen-

cies of a given size and position relative to cut site multiplied by inverse scale factors

for the same k-mer size and position), sd signifies standard deviation, and y repre-

sents output, or bias predicted by the model. The term |b̂j| is the absolute value of

the k-mer’s coefficient in the trained model.

To calculate the global importance of a given rule, we use the equation:

Iv = |âv| ·
√

sv(1− sv)

sd(y)

Similar to a linear term’s importance,
√
sv(1− sv) evaluates to the rule’s sam-

ple standard deviation. This value is measured by first determining sv, or the support

for rule v, which is the fraction of training data for which the rule’s conditions are

satisfied.

We can calculate the support for a given rule (rv) using the expression:

sv =
1

N

N∑
i=1

rv(xi)

To evaluate the total importance of a predictor k-mer, we sum all rules in which

it applies, in addition to its linear term. This is calculated in the following expres-

sion:
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Jj = Ij +
∑
xj∈rv

Iv
cv

In which the variable cv is equal to the number of requirements for rule v. This

results in the importance of any given rule being equally divided between the various

k-mers included in the rule.

2.2.19 Calculating positional importances from rule ensemble

models

We calculated variable importances, for each position within our range of inputs

to visualize how the rule ensemble model combined input positions. Each k-mer’s

importance was derived from the model and we calculated the importance of each

position by summing the values of each position for all k-mers. We performed this

calculation for DNase, however Tn5 k-mers were not equally distributed at each

input position and this caluclation was not appropriate. We scaled the normalized

Tn5 positional importance by dividing the sum of values by the number of inputs

that included the respective position in the input masks.

2.2.20 Calculating improvement of rule ensemblemodeling com-

pared to seqOutBias

Wedirectly compared the improvement of rule ensemblemodeling over seqOutBias

by first determining the absolute value difference between scaled output from either
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method and the calculated unbiased output. This value was determined for each

position in our test set composite profiles. Each of these values is the difference

between either method and perfect bias correction at a given position—a value of

0 means the method perfectly corrected bias at this position. For each position we

subtracted the rule ensemble output from the seqOutBias; for every value above 0,

rule ensemble modeling outperforms seqOutBias correction.

2.3 Hill climbing optimization of seqOutBias masks

One approachwe initially explored to correct Tn5 sequence biaswas hill climb-

ing optimization of seqOutBias masks (positions used to scale reads), similarly to

the method reported in Martins et al. 2018. The rationale of this optimization algo-

rithm is that the positions which are most beneficial to correcting Tn5 bias may not

be contiguous, but rather spaced across many positions relative to the cut site. These

spaced positions can be identified by their ability to reduce enzyme bias to a greater

extent than other positions. To visualize enzyme bias, we plotted the reads scaled

by each position onto several TF aggregate plots. We then define enzyme bias as the

sum of standard deviations for the points on these aggregate plots. Consequently,

the plots with the minimum sum of standard deviations between positions will have

the lowest bias.

Hill climbing optimization of seqOutBias masks was carried out using a win-

dow of 40 base pairs around the cut site to determine the best positions for correcting

bias in PE1 plus naked Tn5 reads. Each iteration of the optimization quantified the

sum of standard deviations of the aggregate plots, for each possible position within

the 40 base pair window. The position whose aggregate plots had the lowest sum
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of standard deviations was included as a scaling position for subsequent rounds of

optimization. This process was allowed to continue until the top 12 positions had

been determined (Figure 2.13).
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Figure 2.13: Hill climbing optimization of naked ATAC-seq data reduces vari-
ance in aggregate plots. For each position determined to best correct Tn5 bias, the
sum of standard deviations is plotted. Each k-mer includes all previous best posi-
tions as scaling positions, and uses the new best position as an additional scaling
position.

Visualization of hill climbing optimization showed that it successfully reduced

the variance between positions in the aggregate plots. Unfortunately, these reduc-

tions in variance were greatest with large k-mers, which are not experimentally fea-

sible. Further inspection of the aggregate plots showed that hill climbing optimiza-

tion preferentially selected positions which depressed the overall signal, rather than

selectively correcting enzyme bias (Figure 2.14). This results in the spaced 12-mer

read depth being equal to roughly a quarter of the unscaled read depth, indicating a
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loss of signal rather than bias correction.

Spaced 7−mer

Distance from Motif Center

In
se

rti
on

 F
re

qu
en

cy

0.000

0.005

−2
0

−1
0 0 10 20

ESR1

0.000

0.001

0.002

−2
0

−1
0 0 10 20

NFATC3

0.000

0.005

−2
0

−1
0 0 10 20

SP1

Spaced 12−mer

Spaced 4−mer
Unscaled

Figure 2.14: Hill climbing optimization reduces total signal in aggregate plots.
Aggregate plots of the hill climbing-derived indicated best scaling k-mers. The red
dashed line indicates theoretically random cleavage.

2.4 Tn5 regional bias and genomic GC organization

Early work on the human genome project revealed that GC content (the fre-

quency of guanine or cytosine in a region) was clustered throughout the genome (In-

ternational Human Genome Sequencing Consortium 2001). Although this knowl-

edge informs our view of genomic organization, it does not visualize or expand on

how clustering in the genome takes place (e.g. is this clustering stable on the order

of kilo bases, mega bases; what is the range of possible GC percents etc.). In or-

der to more directly illustrate this clustering, we first determined the sequence of the

100 bases surrounding every position in the human genome. Using these sequences,

we next calculated the surrounding percent GC at all positions in the genome. We

finally plotted these values for the first 6Mb in chromosome one. This plot illus-

trates that the GC content of the human genome has a wide range, from nearly 100%
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at some positions, to 0% in others (Figure 2.15). While the extremes of this range

are due to local outliers, the overall GC percent observed is relatively stable, and

gradually changes from 30% to 60% on the order of mega bases.

Figure 2.15: GC content of 6Mb in chromosome 1 shows regional consistency.
Percent GC of each position was calculated using a 100 base pair window. Every
possible position within the first 6Mb of chromosome 1 in hg38 is plotted. Image
resolution was reduced for size purposes, as the original plot contains 6 million
plotted points.

The stability of GC content in the genome led us to next question whether or

not the GC content in baselines (defined as ±10 base pairs outside of the motif) of

aggregate plots reflected the GC content of the aggregate motif. To determine if a

correlation exists, we first retrieved the known sequences which make up aggregate

plots. We then determined the GC content for a 5 base pair window around each

position within the plot, and averaged these values for each TF. Plotting this average

baseline GC content against each motif’s GC content demonstrated a strong corre-
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lation between the two (Figure 2.16). This result is consistent with the organization

of GC content in the genome (Figure 2.15). Taken together, these results indicate

an aggregate of similar sequences (a PSWM in this case) should have comparable

GC content to the motif used to aggregate, up to several kilobases from the central

base pair.
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Figure 2.16: Aggregate plot baseline GC content is correlated with motif GC
content. Baseline GC content for each TF was determined by using a single step,
5 base pair window. These values were then averaged to give a single baseline GC
content. Motif GC content is calculated based on PSWM information content and
nucleotide identity.

Encouraged by these results, we used the previously calculated GC content as

additional input into a rule ensemble model, alongside the original k-mer frequency
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multiplied by inverse scale factor input. Comparison of bias correction between

the rule ensemble model which included GC content, and models which did not

showed no improvement from the inclusion of this information (data not shown).

We speculate that this lack of improvement is due to the original k-mer frequency

multiplied by inverse scale factor input already containing GC content information,

at the k-mer level.



Chapter 3

Conclusion

3.1 Summary of major conclusions

Past investigations have shown that interactions with DNA, whether chemical

or physical, have biases for specific nucleotide sequences (Meyer and Liu 2014; H.

Zhang et al. 2021). Failure to correct these biases can lead to errant conclusions

about the ground truth of studied biological systems (Neph et al. 2012; Sung et al.

2014; Teng and Irizarry 2017). This sequence bias also applies to the cleavage of

DNA, the foundation of chromatin accessibility assays (Sung et al. 2014; He et al.

2014). Among chromatin accessibility assays, ATAC-seq is the most widely used

(Yan et al. 2020). Tn5 transposase, the enzyme used in ATAC-seq, has a sequence

bias which is not satisfactorily corrected by direct k-mer scaling, a method which

eliminates the majority of observed bias from other commonly used enzymes (Mar-

tins et al. 2018). Therefore, it is important to address and correct for these biases

before analysis of ATAC-seq data.

Previous studieswhich sought to correct Tn5 enzymatic sequence bias inATAC-

seq data displayed the PSWM of the Tn5 bias motif as a characterization of its bias

(Vinayak, Vinay, and Shiv 2019; Z. Li et al. 2019; Bentsen et al. 2020). This in-

spired us to not only begin our study by characterizing Tn5 bias, but to quantitatively

compare it with other enzymes used for chromatin accessibility assays. In this initial

comparison of enzymatic sequence biases, we determined that Tn5 had nearly twice

53
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the information content and breadth in its bias motif as was seen in the secondwidest

and highest information content motif (DNase). We advanced this comparison of

enzymatic sequence bias by determining the distribution of 5-mer scale factors for

each position relative to the cut site or centrally recognized base. Scale factor dis-

tributions for the other enzymes surveyed showed a slim window, within 4bp, of

positions necessary to model to effectively correct their biases. This is in contrast

to the 21bp window observed for Tn5, which confirms direct k-mer scaling is not

capable of modeling the transposase’s bias. We next sought to directly compare the

strength of enzymatic sequence bias. In order to visualize this comparison, we plot-

ted the signal at sites of greatest bias for each enzyme and normalized these values

to the read depth of each data set. The resultant plots showed that Tn5 bias was

stronger in magnitude for preferred sequences than all other enzymes surveyed.

The stronger sequence bias of Tn5 and its GC-rich bias motif likely also con-

tribute to the observed regional GC preference. When regions with high or low

GC content were compared, it was clear that baseline Tn5 signal was elevated in

high GC content regions. We termed this ’regional bias’ as it acted on the genomic

GC content organization in which some regions contained elevated, while others

contained depleted, GC content. This regional bias indicated that aside from sin-

gle nucleotide bias, Tn5 interaction with DNA was influenced by regional factors

as well. These findings corroborated previous work, which showed that Tn5 could

form scaffolds on DNA with which it had interacted, suggesting interactions be-

tween long stretches of DNA and many Tn5 molecules (Adey et al. 2014). Further

examination of Tn5 bias led us to test the assumption of positional independence

in probability matrices, such as those used to depict the sequence bias motif. Here,

we saw that even in a limited 3bp window of the bias motif (positions -4 to -6 from
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the centrally recognized base) sequence identity at one position influenced cutting

at the other positions, violating positional independence. This again suggested that

more advanced modeling strategies were necessary to fully account for the observed

Tn5 sequence bias.

As we devised methods to correct Tn5 sequence bias, we first attempted to op-

timize a direct k-mer scaling approach by determining the best performing spaced

k-mer to correct the bias. This attempt involved using a hill climbing algorithm to

find the local minima of standard deviation between plotted positions for each k-

mer position modeled. The best performing 12-mer determined using this method

simply suppressed all signal, rather than specifically correcting biased signal and

returning composite signal to calculated random cleavage. Because of these results,

this method was abandoned. We next explored using statistical inference and mod-

eling to predict and correct Tn5 bias.

3.2 Rule ensemble combination of direct k-mer scal-

ing input corrects Tn5 bias

Before modeling Tn5 bias could be attempted, we needed to devise how to

prepare input for the model. A key component of the input was that it needed to

represent Tn5 bias across many different genomic intervals and environments. We

accomplished this by first selecting a group of transcription factor motifs repre-

sentative of a wide range of information and GC content. Using these motifs, we

determined composite signal at the top 400,000 sites which conformed to each mo-

tif, for both strands. Next, enzymatic insertion frequency for each possible k-mer

at a given location relative to the centrally recognized base was used together with



56

k-mer frequency at each position to predict these composite signals. This formed

the input for the RE model.

Once the RE model was trained, we first measured the importance of each

position relative to the centrally recognized base, to determine the degree to which

it contributed to the model’s prediction. Positional importance values showed that

the RE model used input k-mers in a pattern similar to the previously determined

Tn5 bias motif’s information content distribution. We next tested the RE output

by determining how close corrected values were to calculated random cleavage and

comparing this with unscaled and seqOutBias (direct k-mer scaling) output. These

results revealed that at a single nucleotide level, the biased composite signal was

greatly reduced by RE scaling in comparison with direct k-mer scaling. This led us

to examine how RE scaling affected the observed regional bias of Tn5. Similarly,

testing RE regional bias scaling against seqOutBias output showed that Tn5 regional

bias wasmore greatly reduced by our REmodel. Quantification of this improvement

showed that 88% of positions were improved by RE modeling over seqOutBias

scaling. These findings led us to conclude that RE modeling successfully corrects

Tn5 sequence bias.

3.3 Future Directions

Although RE modeling largely corrects observed Tn5 transposase bias, alter-

ations to the method may yield improved results. One way to likely improve the

scaling method involves incorporating larger k-mers. When first implementing the

RE model for Tn5 data, we reduced the number of input variables by selecting the

10% most important and removing the rest. An unreported aspect of this input vari-
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able refinement was that the model heavily preferred larger k-mers over smaller

ones. While we desired to incorporate larger k-mers into the model, this was a

mathematical impossibility. As we previously mentioned, effective direct k-mer

scaling requires many instances of both observed (input data) and genomic k-mers.

This means that the human genome can theoretically support k-mers on the scale

of at least 11-mers for direct k-mer scaling. Mathematically this would mean the

average 11-mer would have 763 occurrences (3.2 billion base pairs divided by 411),

and as k-mer occurrence is a distribution, those at the lowest end would still have

several instances. However, because most ATAC-seq experiments do not produce

this many reads, incorporating larger k-mers is limited by the number of reads in a

data set. Therefore, if one wished to create a high fidelity, ultra low bias data set,

a new RE could be implemented in which larger k-mers could be incorporated and

used for training. This would require that the experimental protocol be modified to

accommodate these larger k-mers by increasing the read count, which has been pro-

posed previously for footprinting (Buenrostro, B. Wu, Chang, et al. 2015). While

this would add new experimental constraints, it would also likely reduce the bias

further than the reduction observed using 7-mers as we did in this research project.

Another addition which could be made to our RE model is the ability to cor-

rect Tn5 sequence bias in single-cell ATAC-seq data. Several previous studies which

examined the downstream effects of bias correction in ATAC-seq data also imple-

mented single-cell bias correction with promising results which showed enhanced

cell type clustering (Hu et al. 2022; Z. Li et al. 2019). Characterization of the Tn5

sequence bias observed in single-cell data sets showed that the observed bias was

highly correlated with the bias observed in bulk ATAC-seq data. This is to be ex-

pected as the basic enzyme-DNA interaction is the same. Therefore, applying the
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RE correction to single-cell ATAC-seq data would likely not require a specially

trained model. Nonetheless, applying the RE workflow to single-cell data would

require some accommodations. Namely, the current RE workflow only includes

scaled read’s genomic coordinates and signal values, and is lacking any information

about cell barcodes. Barcodes would need to be included in this new workflow, as

combining single-cell reads would be necessary to create enough observed k-mers

for bias correction to take place. Hence, the current workflow would need to be

modified to include this information, as it is necessary for proper analysis of single-

cell data.

The RE model could be further improved by inclusion of DNA shape as a

variable. One study investigating Tn5 sequence bias attempted to classify Tn5 in-

sertion sites and random genomic regions using the DNAmotif at any given site (H.

Zhang et al. 2021). This investigation showed that the accuracy of this classification

could be improved in deproteinated ATAC-seq data by including local DNA shape

as a variable. Interestingly, this same study later used seqOutBias and direct k-mer

scaling to show that peak calling fidelity was increased by bias correction, but did

not include DNA shape as a variable for bias correction. Because our method inte-

grates several runs of seqOutBias (and was shown to be capable of incorporating GC

content) to effect bias correction, DNA shape could be incorporated into our bias

correction model. Similarly to GC content, whether or not DNA shape contributes

to bias correction could both be determined by analysis of output, and regression

coefficient after the Lasso penalty is applied.
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3.4 Final Thoughts

Meaningful scientific understanding requires a pure, artifact-free grasp of ground

truth. As ATAC-seq has become the dominant assay used to probe chromatin acces-

sibility, the correction of Tn5 sequence bias has become a priority for accurate anal-

ysis of many downstream applications. Failure to account for Tn5 sequence bias

has, and will continue to lead to incorrect interpretations of experimental results.

This work defines a method to apply an easily implementable, machine learning

bias correction to ATAC-seq data. We designed this method to be easily imple-

mentable insofar as it accepts commonly used file types as input and generates out-

put which is readily incorporated into field-standard pipelines. Further, this method

is interpretable at several levels, giving a rare understanding into the mechanisms

by which a machine learning approach achieves its modeling accuracy. We addi-

tionally add to the literature and findings which define the nature of Tn5 transposase

bias in comparison with nucleases. These findings give reasoning behind the dif-

ficulty of modeling Tn5 bias and clarify why previously successful approaches for

other enzymes did not apply well to this system. Integration of our RE modeling

approach enables others to gain a true understanding of their ATAC-seq output, free

from sequence bias artifacts.
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