

Hijacking Power: Developing an Exploit for EV Chargers

CS4991 Capstone Report, 2025

Thomas Antal
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
yrz2yy@virginia.edu

ABSTRACT
During my internship with Caesar Creek
Software, I was tasked with reverse
engineering charger for an electric vehicle and
developing an exploit to impact its regular
function. To accomplish this, I had to both
learn how the device functioned normally,
obtain a copy of the firmware, and understand
how the different modules communicated
between each other. Then I had to decompile
and analyze the firmware and analyze memory
during runtime to find the sections with
accessible vulnerabilities. I ultimately created
a payload that, when added, disabled the need
for authentication with the built in RFID
reader and would begin to charge any attached
car. Moving forward, it will be important to
look for vulnerabilities in the charger’s
networking capabilities, as some versions can
connect to a Wi-Fi or cellular network. This
would eliminate the current need for physical
access to the device and make delivering the
payload significantly easier.

1. INTRODUCTION
Electric Vehicles have seen rapid growth in
recent years, with some considering them the
future of personal transit. However, Tesla laid
off their whole Supercharger team in April
2024, leading to instability in the EV charger
market. As a response, websites such as
Amazon have been flooded with at-home
chargers that are looking to scoop up a portion
of Tesla’s market share. While well-known
companies such as ChargePoint have several
models to choose from, these often cost

several hundred if not a thousand dollars.
Consumers looking for a more budget-friendly
option may instead opt for a charger from a
lesser-known brand that costs around two
hundred dollars.

As a Cybersecurity Analyst intern, I was given
a charger from one of these lesser-known
brands and told to uncover everything I could
about the way it worked. Conducting a reverse
engineering project on the EV charger enabled
me to uncover underlying vulnerabilities and
see how teams coordinate and develop
software together.

2. RELATED WORKS
Over the last 15 years, electric vehicles and
plug-in hybrids have gone from nonexistent to
a significant portion of market share. In 2014,
there were approximately one million electric
vehicles in the world. In 2020, there were over
ten million and the largest company, Tesla, is
valued at over a trillion dollars. Even during
the coronavirus pandemic and the brief
recession that came with it, sales continued to
rise (IEA, 2021).

With the boom in the sales of electric vehicles,
many have become frustrated with the current
state of charging infrastructure in the United
States. The cost of a gallon of gas is plastered
on a large board outside of every gas station,
and prices must remain competitive to see
business. However, this is not the case with
charging stations. They do not have the cost
per kilowatt hour posted on a large board and

 2

it can be unknown until the customer pulls into
the station. This combined with broken
equipment has resulted in electric vehicle
charging being described as the “Wild West”
by some (DeLollis, et. al., 2024). Since
consumers are frustrated with the current
options, many have been making the switch to
at-home chargers. There are currently ten
times as many private chargers as public ones,
and they saw growth of almost 50% from 2022
to 2023 (IEA, 2024). This growth can see the
release of sub-par chargers that cannot
properly handle the power requirements. Also,
rigorous testing must be done to ensure that
these units are safe.

3. PROJECT DESIGN

Beginning a reverse engineering project

requires finding out as much as possible about

the system one is given. For the EV charger,

this meant I had to open it up, remove the

motherboard and write down the serial

numbers of every chip or peripheral inside.

Then, I found the datasheets and manuals for

as many of them as possible. Next, I

determined which of the chips was the CPU

and how the other chips and peripherals were

linked together. The motherboard was

powered on a 12V rail with a desktop power

supply, as running a 240V line would have

been incredibly unsafe. The three major steps

of the development cycle were obtaining the

firmware, gaining access to the charger’s

memory, and determining the point of

vulnerability I wished to exploit.

3.1 Obtaining the Firmware
After reading the manual and datasheet for the
CPU, I learned that it had a main flash for its
firmware and serial wire debug (SWD) to
communicate with it. Tracing the SWD pinout
led to a header that a device could be
connected to. The board was then put into a
“debug mode” by powering it on after
connecting a jumper. This enabled SWD and
allowed a connection to be formed with a

JLink. Using software for the JLink, the
firmware and a full memory map was copied
from the chip in blocks into binary files. These
were then loaded into Ghidra and decompiled
into C using the proper ARM instruction set.
The datasheets allowed the blocks to be
properly labeled and renamed, which made the
code significantly easier to understand. This
allowed me to more easily find vulnerabilities.

3.2 Gaining Access to Process Memory

While ghidra had a dump of the RAM, it was
functionally useless because I could not
determine the point in execution it was taken
from. After revisiting the manual, I found that
the CPU supported on-chip JTAG debugging.
However, the pinouts used for this did not go
to a header like SWD. Instead, they went to an
unpopulated pad near the SWD header. To
rectify this, wires were soldered to the pad to
allow a connection. This allowed it to connect
to an Olimex ARM chip debugger. I then used
OpenOCD to run a remote GDB server on the
CPU, which allowed me to pause execution,
edit registers, and view memory. Physically
connecting and disconnecting the Olimex was
annoying and had a high likelihood of ripping
off the soldered wires. To rectify this, a custom
20 pin header was created to allow for the easy
connection and disconnection of the Olimex
and Jlink. It also made the motherboard more
visually clear, as well as making transporting
it safer. I now had full access to the device,
making it possible to create an exploit.

3.3 Developing the Exploit
My goal was an exploit that was subtle and
affected a peripheral. Logically, this led to the
RFID reader as the point of attack. Normally,
a user would have to swipe one of the provided
RFID cards to unlock the device and enable
charging. However, using Ghidra I found that
the charger is unlocked when it powers on and
locks later in a function call during the bootup
sequence. My exploit was a patch in the
firmware that wrote out this function call and
never locked the device. This would allow
anyone to use the device regardless of

 3

authorization. This patch was flashed back into
the firmware on the chip.

4. RESULTS
The result was a success. The RFID reader was
no longer required. After powering up the
board, the charging relay would open up and
power would flow through the charger.
Repeating this exploit on another charger
would be significantly easier and less invasive
because it would not be necessary to solder any
wires as I did when developing it. All that is
required is a JLink and a laptop with the new
firmware, making it possible to simply open
up the device, put it into debug mode. connect
to the SWD header, flash the memory, power
cycle the device, and put the cover back on.
This full cycle would take less than two
minutes in skilled hands, which is important
because access time with the device should be
minimized for it to be considered a “good”
exploit.

This process also yielded other results that are

useful if a different exploit is to be developed.

Embedded systems often have a checksum that

is used to determine if the firmware has been

tampered with in any way. This means that any

modified firmware could be flashed into the

device and be executed without any issues.

This also means that other security systems,

such as the voltage line that the car and charger

use to communicate, could be easily modified

or overwritten entirely.

5. CONCLUSION
The result of the project can serve as a method
of national security. More and more countries
are utilizing electric vehicles, including in
military operations. Hijacking an enemy’s
chargers could cripple their forces and lead to
their being useless. Constantly leaving the
relay open would cause the batteries to
depreciate much faster than normal and result
in more maintenance being required as well.

This project gave me firsthand experience with
the research and development process required
to find software vulnerabilities, develop an
exploit, and create a payload to get the exploit
into the system. I also saw how teams
coordinate and relay new findings between
each other. Working with exploits reinforced
the need to write vulnerability-free code and
gave me the insight to avoid common pitfalls
that developers run into.

6. FUTURE WORK
Future work on the project would likely
require making the delivery of the payload as
easy as possible. This would require making a
device to combine the JLink and laptop
process described in the results section.
Another avenue would be to modify the
behavior of the RFID reader itself. This would
require additional research into the firmware
as I was unable to find where and how the
cards are read. If this is insecure then invalid
cards could be accepted or exploits including
remote code execution could be possible.

7. ACKNOWLEDGMENTS
I would like to thank my supervisor, Nicholas
Foster for the guidance throughout the whole
development cycle. I would also like to thank
the entire Atlanta Caesar Creek software team
for training me as I learned new suites of
software, and for making the process
enjoyable and more than just work.

REFERENCES
IEA. (2021). Trends and developments in
electric vehicle markets—Global EV outlook
2021—Analysis. IEA.
https://www.iea.org/reports/global-ev-
outlook-2021/trends-and-developments-in-
electric-vehicle-markets

DeLollis, B., & Justice, G. (2024, June 26).
The state of EV charging in America: Harvard
research shows chargers 78% reliable and
pricing like the “Wild West” | Institute for
Business in Global Society. Harvard Business

https://www.iea.org/reports/global-ev-outlook-2021/trends-and-developments-in-electric-vehicle-markets
https://www.iea.org/reports/global-ev-outlook-2021/trends-and-developments-in-electric-vehicle-markets
https://www.iea.org/reports/global-ev-outlook-2021/trends-and-developments-in-electric-vehicle-markets

 4

School. https://www.hbs.edu/bigs/the-state-
of-ev-charging-in-america

IEA. (2024). Trends in electric vehicle
charging—Global EV outlook 2024--
Analysis. IEA.
https://www.iea.org/reports/global-ev-
outlook-2024/trends-in-electric-vehicle-
charging

https://www.hbs.edu/bigs/the-state-of-ev-charging-in-america
https://www.hbs.edu/bigs/the-state-of-ev-charging-in-america
https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-vehicle-charging
https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-vehicle-charging
https://www.iea.org/reports/global-ev-outlook-2024/trends-in-electric-vehicle-charging

