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Abstract

Commercial and industrial buildings account for a considerable fraction of all the energy consumed in the

U.S., and reducing this energy consumption has become a national grand challenge. Based on the large-scale

deployment of sensors in modern commercial buildings, many organizations are applying data analytics to

the thousands of sensing and control points to detect wasteful, incorrect and inefficient operations for energy

savings. Scaling this approach is challenging, however, because the metadata about these sensing and control

points is inconsistent between buildings, or even missing altogether. As a result, an analytics engine cannot be

applied to a new building without first addressing the issue of mapping: creating a match between the sensor

stream context and the inputs of a data analytics engine. This mapping process currently requires significant

integration effort and anecdotally can take a week or longer for each building. Thus, metadata mapping is a

major obstacle to scaling up building analytics.

The overarching goal of this research is to enable automatic inference of the sensor context such as its type,

location, and relationships to others, so that building analytics can be quickly applied at scale. Bearing this

goal in mind, we have developed a suite of techniques to infer the sensor context (i.e., the metadata), requiring

minimal human intervention. At the core are fully automated techniques that infer two kinds of contextual

information about each sensor: the type and its relationship with other sensors. The type inference technique

leverages information from existing well mapped buildings to help the inference for a new building, while the

relationship inference technique builds upon the intuition that connected equipment or co-located sensors are

exposed to the same real world events, thus exhibiting correlated changes in their data. We have also designed

methods to complement the automatic type inference technique in the absence of already mapped buildings

or when faced with high-dimensional data. The techniques proposed in this dissertation represent a first step

towards technology that would enable any new building analytics to quickly scale to the 10’s of millions of

commercial buildings across the globe, with the minimal need of manual mapping on a per-building basis.

With the advent of Internet of Things (IoT) and proliferation of sensory data, continuously inferring the context

of the data at scale will become inevitable, and we believe the techniques presented in this dissertation are

generally applicable to the broader picture of IoT.
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Chapter 1

Introduction

1.1 Overview and Motivation

People spend 93% percent of their life in buildings [2], and according to recent reports from the U.S.

Department of Energy [3, 4], commercial and industrial buildings in the U.S. account for almost 20 percent

of the country’s total energy use and a good 30 percent of that energy is used “inefficiently or unnecessarily.”

Reducing this energy usage is a national grand challenge: in 2011, the U.S. government launched the Better

Buildings Challenge to make these buildings at least 20 percent more efficient by 2020 [5]. To achieve this

goal, many organizations are applying data analytics to the thousands of sensing and control points in a

typical commercial building to detect wasteful, incorrect and inefficient operations, as well as to optimize for

occupants‘ comfort. A building data analytics engine, such as thermal comfort optimization, fault detection

and diagnosis, and model predictive control [6, 7, 8, 9], typically connects to and pull data from the points in a

building, in order to monitor and assess the operations of the building. For example, an analytical tool that

detects over-heated rooms needs to locate a room and its associated points such as temperature measurement

and room temperature setpoint.

Despite the promise of building analytics, its roll-out significantly lags behind and is adopted in far less

than 30 percent of the buildings nationwide [10]. This is because of the challenge of connecting sensor data to

the context in which it was generated, in a normalized and semantically consistent way. In particular, these

analytics engines are tightly coupled to the database schemata and metadata1 conventions in the buildings for

which they were designed, and thus cannot easily be applied to different buildings where the type, location, and

relationships between sensors are represented differently. As a result, an analytics engine cannot be applied to

a new building without first addressing the issue of mapping: creating a match between the sensor streams and

1We shall note that the terms “context” and “metadata” are used interchangeably in this dissertation.

1
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the inputs of a data analytics engine. In practice, the process of mapping a new building to the inputs of an

analytics engine is currently a manual process that often involves a technician visiting the building to visually

inspect the sensor and equipment installation. The mapping process requires significant integration effort and

anecdotally can take a week or longer for each commercial building. For large organizations that are applying

this approach to hundreds or more buildings, such as Microsoft’s 88 Acres project [11], this process can take

years. Thus, sensor metadata mapping is a major obstacle to applying building analytics at scale.

Even if this highly manual process is performed once, the need for additional mapping is not necessarily

eliminated. New types of metadata will be required as the building is modified or renovated, as the equipment

is upgraded, or as new conditions and algorithms are added to the analytics engine. Additionally, the mapping

problem cannot be solved simply by investing more person hours into the problem. Even after a building is

fully mapped, a new analytics engine may be developed that requires a different kind of metadata, e.g., which

devices are on the northern side of the building, or which sensors are in the same HAVC zone. These and

other types of metadata may even never have been encoded in the original databases at all. Thus, as energy

models and building analytics engines become more nuanced, the mapping problem will become increasingly

important. As a result, we envision a system that will allow an advanced analytics engine to quickly connect to

and analyze the data from a commercial building. It would extract or infer metadata values about the sensing

and control points, and map them to a normalized standard metadata schema. The system should also enable

any new building analytics engine to quickly be applied to the 10’s of millions of commercial buildings across

the globe. Doing so would enable a new market where boutique analytics could quickly be matched with the

buildings they would benefit the most.

Several solutions have been proposed recently to facilitate the mapping problem, inferring various aspects of

sensors, including the type, location, and relations between them. Schumann et al. [12] develop a probabilistic

framework to classify sensor types based on the similarity between a point name and the entries in a manually

constructed dictionary. However, the dictionary needs to be created on a per building basis, hence still

time-consuming and unscalable. Bhattarcharya et al. [13] formulate a solution that derives a set of regular

expressions from a handful of labeled examples to extract the sensor context, where the example selection is

aided by time series data feature-based clustering. However, they assume a small, limited amount of patterns

in the naming convention for a building, which might not always be true. Marco et al. infer [14] the relation

between Variable Air Volume (VAV) boxes and Air Handling Units (AHU) by perturbing the operation of

each AHU and observing the response of VAVs. However, this approach takes weeks to execute and requires

knowledge of when and how to perturb the operations in a way that does not interfere with building needs.

These approaches can significantly reduce the time required for metadata mapping in each new building, but

they all still require some manual effort, one building at a time. We would still need a framework that can be
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Figure 1.1: Automatic Metadata Mapping is a first step towards scalable building analytics, which involves 1)
inferring the context of sensors with an easy-to-use tool, and 2) expressing it following a standardized schema.
This dissertation is dedicated to the first perspective.

(almost) automatically executed.

The overarching goal of this research is to enable the inference of sensor contextual information requiring

minimal human intervention. To address this need, we have designed and built Data Holmes. The basic idea is

that users such as a building manager only needs to provide the point names and time series data of sensors,

together with the labels for only a few example sensors, as input to our framework – Data Holmes, and it will

then automatically infer the contextual information about the sensors in the building. Data Holmes infers

two key kinds of information — the type of each sensor and the relations between sensors. Buildings share

similarity with regard to the types of sensors installed, occupancy patterns, operation schedules, etc, so when

inferring the type for each sensor in one building, Data Holmes leverages the information from sensors in

other well mapped buildings and completely automatically performs the inference; it will require a few human

inputs, only if there are no mapped buildings available otherwise. When Data Holmes infers the relations

between equipment (e.g., the functional connections), the process is fully automatic where it first detects the

“events” in the time series data of each sensor and then performs correlation analysis to identify the relations.

The intuition is that connected equipment or co-located sensors are exposed to the same real-world events,

thus exhibiting correlated changes in their time series measurements.
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1.2 Hypothesis Statement

In this dissertation, we argue that it is possible to infer the contextual information (including the type and

relation) about sensors in a building with high accuracy requiring minimal manual input, using their point

names and time series data, so that data analytics can be quickly applied at scale.

1.3 Technical Challenges

This dissertation addresses a number of key technical challenges in building a framework that automatically

infers sensor context and in facilitating this line of research in the future.

First, no two buildings are identical. When leveraging existing mapped building(s) to help infer the type

for sensors in a new building, given the difference across buildings, to accurately quantify the underlying

similarity in sensors between the mapped and new buildings and subsequently effectively apply the information

is therefore challenging.

Second, human input is prohibitive. When there are no other mapped buildings available to assist the

type inference in a new building, it is necessary to ask a human expert to provide labels for example sensors;

and typically labeling one sensor can cost more than one hundred dollars. A challenge is therefore how to

effectively select a minimal set of example sensors for a human to label.

Third, the type inference problem space can be high-dimensional. The proliferation of cheap, ubiquitous

sensing infrastructure could pose a high-dimensional computational problem — the number of sensors can

significantly outnumber the readings in each sensor time series. This essentially results in more variables to

estimate than the observations available for each variable.

Fourth, the search space of relation inference between sensors is huge. Given a set of sensors in a building,

the total number of possible pairwise relations among all sensors grows quadratically with the number of

sensors, while the number of true relations is only linear in the number of sensors; identifying true relations of

interest is to find a needle in a haystack.

Fifth, existing metadata inference algorithms require a benchmark. Considering the heterogeneity in the

data models, learning scope, input/output format of existing metadata inference algorithms, together with the

absence of a common dataset, to conduct systematic and fair comparisons between these algorithms is another

challenge.
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1.4 Contributions

Recognizing these challenges, we make the following contributions in this dissertation:

• We design a transfer learning-based method to fully automatically infer the type for points in one

building, leveraging any existing already mapped buildings; for a new building, the proposed solution

can automatically label at least 36% of the points with more than 85% accuracy, and in some cases up to

81% of the points with 96% accuracy.

• We formulate a novel, effective yet general active learning approach to perform semi-automated type

classification requiring minimal human labeling input, by exploiting the commonalities among sensor

names; our solution achieved more than 92% accuracy with at least 50% fewer examples than the

state-of-the-art active learning algorithms. This semi-automated algorithm would complement the first

algorithm when there are no existing mapped buildings available.

• We propose a new measure to quantify the similarity between time series, based on which we perform

clustering to identify clusters of the same type of sensors, in the high-dimensional setting — the number

of sensor time series is more than the number of readings per sensor; the method can achieve more than

80% clustering accuracy on real-world data, which is at least 20% higher than the state-of-art baselines.

We also conduct theoretical analysis for the algorithm to prove when it is guaranteed to succeed.

• We develop a two-step approach to automatically identify the functional relationships between AHUs

and VAVs, which first locates the events in the time series sequence from each equipment and then

performs correlation analysis to find the connections; the algorithm achieves more than 94% accuracy

on average, which is more than 10% better than the best baselines. We also briefly demonstrate how the

same principle of locating correlated events can help identify co-located sensors.

• We design and implement an open-sourced integration platform, comprised of unified dataset and

standard benchmarks, for systematically comparing and combining existing state-of-the-art metadata

inference algorithms for the first time. The platform provides easy-to-use programming interfaces

for non-computer science practitioners such as building facilities technicians to compose their own

workflows, in order to develop and evaluate (new) metadata inference algorithms.

1.5 Organization of the Dissertation

In the rest of the dissertation, we will first overview the related works to this research (Ch. 2), explain multiple

techniques on inferring the type for sensors (Ch. 3 - Ch. 5), introduce a method for relationship inference
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(Ch. 6) as well as a framework for users to perform these tasks (Ch. 7), and finally conclude the dissertation

(Ch. 8). In particular,

• Chapter 2 presents the state-of-the-art in various related topics, including the problem of sensor metadata

inference, transfer learning, active learning, high-dimensional clustering, and event detection, that are

involved in this dissertation.

• Chapter 3 describes the design and evaluation of Building Adapter — a transfer learning-based algorithm

that leverages existing well mapped buildings to assist the type inference for a new building.

• Chapter 4 provides in-depth explanation and evaluation of the active learning-based method, which

requires a minimal amount of human labeling input to efficiently learn the sensor types, as a complement

to Building Adapter.

• Chapter 5 elaborates the motivation, algorithm, and evaluation of the high-dimensional clustering

method for recognizing clusters of the same type of sensors.

• Chapter 6 presents the solution to automatically infer the functional relationships between equipment

(i.e., which AHU is connected to which VAVs), using the sensory time series measurements from each

equipment.

• Chapter 7 describes the details of an open-sourced integration platform for systematically benchmarking

and combining existing metadata inference algorithms.

• Chapter 8 concludes the dissertation by summarizing the contributions and discussing future improve-

ments as well as new directions.



Chapter 2

Background and Related Work

This chapter first explicates the “metadata challenge” in commercial buildings and then presents the state-

of-the-art in topics related to sensor metadata inference, transfer learning, active learning, high-dimensional

clustering, and event detection that are involved in this dissertation.

2.1 Metadata Heterogeneity

In modern commercial buildings, a sensing or control “point” is a sensor, a controller, or a software value,

e.g., a temperature sensor installed in an office room, or a room temperature setpoint. The metadata about the

point indicates the physical location, the type of sensor or controller, how the sensor or controller relates to the

mechanical systems, and other important contextual information. Most of the time, the metadata, often also

referred to as point names, is encoded as short text strings comprised of an arbitrary number of concatenated

abbreviations. Table 2.1 lists a few point names of sensors in three different building management systems

(Trane1, Siemens2, and Barrington Controls3). For example, the point name SODA1R300 ART is constructed

as a concatenation of the building name (SOD), the air handling unit identifier (A1), the room number (R300),

and the sensor type (ART, area room temperature). As the name indicates, this point measures the temperature

in a particular room; and it also indicates the air handling unit that can affect the temperature in this room.

These point names are often esoteric and meaningful to only domain experts such as building managers and

facilities technicians. Furthermore, clearly distinct naming conventions — generally devised by the equipment,

vendor, and manufacturer — are used in these buildings. For example, the notion of room temperature is

encoded with a different abbreviation in each of the three buildings as: Temp, RMT, and ART, respectively.

1http://www.trane.com/
2http://www.siemens.com/
3The company is no longer in business.
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Table 2.1: Example point names for temperature sensors from three different buildings.

Building Point Name

A
Zone Temp 2 RMI204
spaceTemperature 1st Floor Area1

B
SDH SF1 R282 RMT
SDH S1-01 ROOM TEMP

C
SODA1R300 ART
SODA1R410B ART

Such variations across different buildings impose great difficulty in quickly interpreting the data streams and

deploying automated analytic solutions.

2.2 Related Work

2.2.1 Metadata Inference

There have been recent efforts in addressing the sensor metadata mapping problem studied in this dissertation.

Dawson-Haggerty et al. [15] and Krioukov et al. [16] introduced a Building Operating System Service stack,

whereby the underlying building sensor stock is presented to applications through a driver-based model and an

application stack provides a fuzzy-query based interface to the namespace exposed through the driver interface.

Although this architecture has some useful properties for easing generalizability across buildings, the driver

registration process is still performed manually. Munir et al. [17] detected the dependency conflicts between

smart home applications that access the same sensor resources by parsing their XML specifications. However,

the metadata of sensors in the specification of each application is again manually injected. Schumann et

al. [12] developed a probabilistic framework to classify sensor types based on the similarity of a raw point

name to the entries in a manually constructed dictionary. However, the performance of this method is limited

by the coverage and diversity of entries listed in the dictionary, and the dictionary size becomes intractable

when there exist considerable variations in the names of the same sensor type, or conflicting definitions of

a dictionary entry in different buildings. Bhattarcharya et al. [13] exploited a programming language based

solution that derives a set of regular expressions from a handful of labeled examples to extract the contextual

information about sensors from their point names. This approach assumes a (reasonably) consistent format for

the point names in a building, which might not be true in practice (as shown in Table 2.1), and the human input

requires expertise in regular expression. Balaji et al. [18] proposed a method that first clusters the point names

and then acquires the labels for a few examples from each cluster to learn a classifier for predicting the type of

points. They assume points within each cluster to have the same type, which is often not true and therefore

introduces significantly more labeling burden on the human labeler. Gao et al. [19] comprehensively studied
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how the time series data features can be exploited to learn sensor types with various classical supervised

algorithms. While their focus is more concerned with the effectiveness of different algorithms, they do not

specifically aim to minimize the number of labels, i.e., the amount of human input.

Among the first papers attempting to automatically infer the relations between different sensors, Smith et

al. [20] used linear models to infer the relationship between temperature sensors and heating vents, and Hong

et al. [21] used a correlation based metric over time series to infer which sensors are in the same room. Koc

et al. [22] later also used a correlation-based method to infer spatial relationships between discharge air and

zone temperature sensors from different rooms. For the method in Chapter 6, we focus on a different type

of relationship — the functional connection between equipment, and so all these approaches do not directly

apply. Additionally, these approaches assume a known structure of building design or building equipment,

whereas our solution is expected to be building-independent. A recent work [14] is focused on the same type

of relation as in Chapter 6, where the solution relies on manually turning off each AHU and leveraging the

responses in VAVs to identify the connections. Koh et al. [23] exploits the same principle of injecting control

perturbations to a VAV to identify the co-located sensors and the dependency between actuators in the same

VAV. This approach requires the knowledge about when and how to perturb the operations of the equipment

in a way that does not interfere with the normal building needs, and furthermore, it takes weeks to execute.

Furthermore, the approach still contains significant errors and must be applied to each individual building

manually, while the goal of our work is to enable inference on new buildings with higher accuracy, yet with

minimal to almost no manual intervention.

In addition, there are three major bodies of related work to the methods studied in this dissertation, viz, 1)

schema matching in database, 2) transfer learning, active learning, and high-dimensional clustering in machine

learning, and 3) event detection in data mining.

2.2.2 Schema Matching

Automatic schema matching [24] is a classical problem in the database community where correspondences

between elements of two schemas are identified as part of the data integration process. Many techniques have

been proposed to achieve partial automation of the match operation for specific application domains. Doan

et al. [25] asked a user to provide semantic mappings for a small set of data sources and then train a set of

learners with existing machine learning approaches to find the mappings for new data sources. Dhamankar et

al. extended [25] to a semi-supervised setting, where domain-specific knowledge is introduced for complex

expressions learning [26]. Madhavan et al. [27] exploited a large collection of schemata with known mappings
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to learn a prior distribution of the elements and their properties. The learned prior distribution is then used as

constraints to help a suite of base learners to complete the matching. Though adapting learning techniques,

these works mostly focus on the offline supervised settings and do not emphasize the efficiency of learning

methods, i.e., the amount of human input required.

2.2.3 Transfer Learning

In our context, applying transfer learning across buildings, e.g., exploiting the labels in already well annotated

building(s), for sensor type classification can save extra effort in manual annotations. There are several

categories of transfer learning, e.g., inductive, transductive, and multi-task transfer learning as comprehensively

surveyed in [28]. Inductive transfer learning [29] assumes the set of class labels in the target domain is different

from those in the source domain, and aims at achieving high classification performance in the target domain

by transferring knowledge from the source domain. Multi-task transfer learning [30] has a similar setting,

but tries to learn from the target and source domains simultaneously. Transductive transfer learning [31]

assumes the source and target domains have the same set of labels, but different marginal distribution of

features or conditional distribution of labels. This breaks the basic identical and independent assumption

in classical supervised learning models and makes them inept. Typical solutions in transductive transfer

learning reweigh the source domain trained classifiers’ predictions in target domain, e.g., instance-based local

weighting [32, 33, 34]. But these solutions usually assume that only the marginal distribution of features differ

in the source and target domain. Ensemble methods are therefore explored to assign different weights to a set

of classifiers to accommodate the varying conditional probabilities of labels in the target domain [35, 36]. Our

problem setting falls into this category: we assume we have well-labeled instances in a source building, but

do not have any labeled instances in the target building. When designing the Building Adapter, we exploit

different properties of a sensor point to perform the transfer learning: sensor’s time series data is utilized to

estimate a diverse set of classifiers to transfer knowledge from the source building to the target building, while

sensor names in the target building are used to compute the ensemble weight of classifiers during knowledge

transfer. We will defer the details to Chapter 3.

2.2.4 Active Learning

The algorithm detailed in Chapter 4 builds upon active learning to reduce the amount of human labeling

required, as a complement to Building Adapter when no mapped buildings are available. The main idea behind

active learning is that a machine learning algorithm can achieve greater accuracy with fewer labeled training

instances if it is allowed to choose the data from which it learns [37]. Therefore, the key research question in
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active learning is evaluating the informativeness of unlabeled instances for querying. Various solutions have

been proposed from different perspectives, including uncertainty reduction [38], query by committee [39], and

expected error reduction [40]. In particular, Nguyen and Smeulders also incorporated the idea of clustering

into active learning, as we do in our proposed algorithm, to select the most informative instances [41]. Their

proposed query strategy gives priority to instances that are close to both classification boundary and cluster

centroid. Dasgupta and Hsu utilized a hierarchical clustering structure to alleviate sampling bias and improve

learning efficiency [42]. They present an algorithm that is statistically consistent and guarantees to have better

label complexity than supervised learning. However, in these two methods clustering is performed in an ad-hoc

manner, e.g., with predefined cluster size; and neither of them considers the label proximity between adjacent

instances or propagates labels to reduce the amount of labels required for model training. Our proposed active

learning algorithm effectively leverages a clustering step to identify examples that are both informative and

representative for training a classifier, and also employs a label propagation mechanism to further reduce the

human labeling effort.

There has been a substantial body of work on time series clustering, and we next briefly overview two

related categories to our method in Chapter 5: clustering based on similarity and subspace clustering.

2.2.5 Similarity/Distance-based Time Series Clustering

A wide range of classical similarity/distance metrics have been developed and studied [43], including Pearson’s

correlation coefficient [44], cosine similarity [45], autocorrelation [46], dynamic time warping [47, 48],

Euclidean Distance [49], edit distance [50], distance metric learning [51, 52], and so on. Studies have also

shown that time series can be modeled as generated from Hidden Markov Models [53, 54], and the estimated

weight for each mixture can be used to cluster the time series. Recently, Ryabko et al. [55] considered brain-

computer interface data for which independence assumptions do not hold, and for clustering they proposed

a new distance metric to measure the similarity between two time series distributions. Khaleghi et al. [56]

formulated a novel metric to quantify the distance between time series and proved the consistency of k-means

for clustering processes according only to their distributions. However, in the aforementioned studies, they

either did not provide theoretical analysis of the performance or only handled settings where the number of

time series d is smaller than the number of observations T . Different from the above similarity or distance

metrics, we define the similarity between time series from a new perspective — time series are clustered based

on how much they can be predicted by each other.
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2.2.6 Subspace Clustering (SC)

Another relevant line of research on high-dimensional data analysis is subspace clustering [57], where the

assumption is that data lie on the union of multiple lower-dimensional linear spaces and data points can

be clustered into the subspace they belong to. SC has been widely applied to face images clustering [58],

social graphs [59] and so on. Recently, extensions to handling noisy data [60, 61, 62] and data with irrelevant

features [63] have been studied as well. SC achieves the state-of-art performance while enjoying rigorous

theoretical guarantees. The key difference between SC and our method is two-fold: first, SC assumes data lie

on different subspaces and even data in the same subspace are independent and identically distributed (i.i.d.),

while we assume the time series follow a Vector Autoregression model and are dependent for the ones in the

same cluster; second, SC mathematically solves for each data point a linear regression problem with all other

data points being the candidate, while in contrast, our study solves the regression problem to estimate the

prediction weights between observations from different time stamps using all the time series.

In Chapter 6, we will present a method to identify the functional relations between AHUs and VAVs, which

first locates the latent events in the time series data and then performs correlation analysis based on the events.

We next discuss about the line of work on event detection as well as a few other related ones.

2.2.7 Change and Event Detection

Change detection for time series [64, 65, 66] locates the changing point of data distribution, and has been

widely applied to various domains, including medical condition monitoring [67], climate change [68], image

analysis [69], etc. Particularly, change detection has been extended to detect events, in supervised manner

(decision tree [70], support vector machines [71], and Bayesian net [72]), and unsupervised manner (Gaussian

Mixtures [73], Kalman Filter [74], Poisson Process [75], and Scan Statistics [76]). Our method falls into the

unsupervised category. However, events in our context are real-world activities (e.g., fans turning on) that can

just have the same values as non-events; and for this reason, the aforementioned unsupervised methods cannot

directly apply to our context. Instead, to identify the events in our context, we seek to learn a noise model and

a transition model to differentiate different operating states of equipment. In addition, compared with standard

algorithms that model kinematics of the data, such as Kalman Filter, our model learns the state parameters by

holistically using all the data, and the learned model parameters are globally shared to all the observations in

time. Furthermore, while the above methods focus on domain-specific event detection, our approach does not

require any domain-specific knowledge about the data, and so we expect it to be more generally applicable.
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Event detection also shares similarity with novelty detection [77], outlier [78] and anomaly detection [79],

frequent and periodic pattern mining [80]. Outlier and anomaly detection is focused more on identifying

nonconforming or irregular patterns in the data, while events typically affect a subgroup of the data and they

are not necessarily individual outliers. Frequent and periodical pattern mining search for periodic and frequent

events in the data, whereas our model is able to identify acyclic and rare events.

At first glance, detecting events in time series appears to be related to time series segmentation [81],

subsequence clustering [82], or the combination of both [83, 84]. However, detecting events in a time series is

more difficult than segmentation, since events can happen in different manners and can possibly span over

multiple segmentations. For subsequence clustering, it tends to assign nearby points into the same cluster,

which could unnecessarily introduce false positive events. Additionally, in our context, detecting events in

each time series is only a first step and subsequently based on the events, it requires solving a more challenging

matching problem where we seek to find the one-to-many mapping between an AHU and a group of VAVs of

unknown size. The existence of groups of time series with unknown sizes a priori makes the recent advances

in simultaneous segmentation and clustering [85], which requires the knowledge about the number of sensors

in a group beforehand, inapplicable to our problem.



Chapter 3

Fully Automated Type Classification

This chapter presents the design and implementation details of Building Adapter, a fully automated approach

to inferring the type for sensors, which is a sheer distinction from previous works that still require human

input [12, 13, 18, 19]. It is a first step towards scalable building analytics which will require new techniques to

automatically infer the sensor contextual information such as its type in a building without manual labeling.

The technique discussed in this chapter is based on the observation that we often have access to a few fully

mapped buildings, and we can transfer the information from these buildings to assist the inference in a new

building. The key insight that guides our solution is that a sensor typically has two attributes — its recorded

name (a text string) and its numerical readings generated over time. In particular, the sensor names are likely

to be good indicators of metadata structure since people would usually follow a certain naming convention,

but the conventions might not be consistent across buildings, as shown in Table 2.1. While the sensor readings

are more consistent across buildings but are likely to be poor indicators of sensor types. For instance, room

temperature will be between 60 and 70 Fahrenheit degrees, no matter in which building. Building Adapter

combines the complementary strengths of these two attributes to recognize the type of points in a building.

More specifically, our approach comprises three steps: 1) we start with a fully labeled building and train

multiple statistical classifiers based on the sensor stream data. These classifiers predict sensor types based

on the raw data, e.g., readings from air temperature sensors are different and change more slowly than those

generated by light or CO2 sensors; 2) in an unlabeled building, we cluster the points based on patterns in their

names such as the phrases “temp” or “occ”; 3) we ensemble the classifiers from the first building to predict for

the points in the second building, and assign higher weights to classifiers whose predictions on an instance’s

neighborhood in the target building are more consistent with the name feature defined clusters. In the rest

of this chapter, we first explain a few essential primers for understanding the approach and then describe the

14
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details of each step.

3.1 Feature Representation

Building Adapter exploits two common attributes of the sensor points in a building — the actual sensor reading

data and the text string-based point names, both of which play an important role for differentiating sensor

types. In this section, we describe the construction of two different sets of features, i.e., the data features and

the name features.
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Figure 3.1: Different types of sensor generally have different amplitudes that can be separated and binned to
characterize the data.
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Table 3.1: Statistical features extracted in window level for each time series data.

Category Statistical Function Acronym

Extrema Minimum min
Maximum max

Average Median emd
Root Mean Square rms

Quartiles 1st and 3rd Quartiles 1q, 3q
Inter-quartile range iqr

Moments
Variance var
Skewness skew
Kurtosis kurt

Shape Linear Regression Slope slope

3.1.1 Data Features

A signal1 in the time domain is a trend of sensor reading. Different types of sensors generally have different

amplitudes that can be separated and binned, as shown in Figure 3.1. Similar to piecewise aggregated

approximation (PAA [86]) — where the mean value is calculated in a fixed-length window — we compress

the signal by computing a set of summary statistics over fixed-length windows. Table 3.1 shows a summary of

the statistics we calculate as data features.

Our feature extraction process consists of three steps. First, each sensor trace is segmented into N

hour-long windows with 50% overlap between consecutive windows. Second, for each time window, we

compute the statistics shown in Table 3.1. For example, the vector for MIN is computed as follows:

MIN = {min1,min2, ...,minN}, where N is the number of time windows. We compute a similar vector

for each statistic shown in the table. Third, we compute a statistical summary of these vectors. For each

vector we compute the minimum, maximum, median, and variance, resulting in a feature vector containing 44

variables:

xD = {min(MIN),max(MIN),

median(MIN), var(MIN),

· · ·

min(SLOPE),max(SLOPE),

median(SLOPE), var(SLOPE)},

and xD is the data feature vector for each sensor stream used in our study.

1In this chapter, we use the term “signal”, “trace” and “time series” interchangeably.
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3.1.2 Name Features

Sensor point names are short text strings comprised of several concatenated abbreviations, as shown in

Table 2.1. To extract features from a point name, we first convert all alphabetical characters to lower cases and

trim out numerical characters. For example, Zone Temp 2 RMI204 becomes {zone, temp, rmi}.

Next, we compute k-mers [87], which includes all the substrings of length k and helps measure sequence

similarity without requiring alignment, to capture variations in type abbreviations. For example, the type

“temperature” might be encoded as “tmp” or “temp” and only considering the bag-of-words [88] will miss

the similarity within a word boundary, leaving these two strings far in the vector space after transformation.

Therefore, we adopt k-mers, which refers to all the possible substrings of length k in a given string. This

feature representation is widely used in protein and gene sequence analysis [89, 90] and we limit our k-mers

computation within a word boundary. For example, for a string “ABCDE”, the 3-mers (k=3) generated would

be {ABC, BCD, CDE}.

In general, a smaller k will increase the overlapping between the generated k-mers, making points less

differentiable. Therefore, we compute all k-mers of length 3 and 4 for each point name. For example,

{zone, temp, rmi} yields a set of k-mers {zon, one, tem, emp, rmi} when k=3. A dictionary

of k-mers is constructed with all the k-mers generated from each point name. Each point name is transformed

into a feature vector based on the frequency of k-mers in it. For example, a set of k-mers {zon, tem,

emp, zon}will be transformed to a vector (2,0,1,1,0)with the dictionary {zon, one, tem, emp,

rmi}, meaning zon occurs twice, one does not appear, and so forth. This feature representation of point

names will be used for clustering on the new building.

3.2 Non-parametric Bayesian Clustering

We shall note that in both of the proposed techniques in this chapter and the next chapter, name feature

distribution p(xP ) is exploited via its latent clustering structure. We choose Gaussian Mixture Model

(GMM) [91], a partitional clustering algorithm, to perform the clustering.

In GMM, the cluster label for every instance is treated as a latent variable, which is drawn from a

multinomial distribution p(c), i.e., p(c) ∝ αc, where ∀c, αc ≥ 0 and
∑
c αc = 1. In any given cluster c, the

conditional data likelihood of an instance x is specified by a multivariate Gaussian distribution. To reduce the

number of parameters to be estimated, we choose the isotropic Gaussian in our solution,

p(xP |c) = (2πσ2)−d/2 exp− (xP − µc)T(xP − muc)

2σ2
(3.2.1)
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where the variance σ2 is shared by all the clusters. {αc, µc}kc=1 and σ are considered as model parameters in

GMM.

However, in GMM, we need to manually specify the number of clusters for a given input data set, and

the clustering result of GMM is very sensitive to such setting. More importantly, in our solutions, for the

automated technique, usually there is more than one pattern in the point names even for the same type of

sensors; therefore we cannot assume a class has only one cluster. As for the semi-automated technique, we

need to perform sub-clustering whenever we encounter a cluster contradicting with the current classifier’s

prediction. It is impossible to pre-define the size of those sub-clusters during active learning. To make

clustering feasible in our solution, we appeal to a non- parametric Bayesian solution: we assume the model

parameters (α, µ) in each cluster are random variables, which are drawn from a Dirichlet Process prior [92].

A Dirichlet Process DP (G0, η) with a base distribution G0 and a scaling parameter η is a distribution

over distributions [92]. The base distribution G0 specifies the prior distribution of model parameters, e.g.,

mean parameter µ in each cluster, and the scaling parameter η specifies the concentration of samples drawn

from DP, e.g., cluster proportion p(c). An important property of the DP is that though the draws from a DP

have countably infinite size, they are discrete with probability one, which leads to a probability distribution on

partitions of data. The number of unique draws, i.e., the number of clusters, varies with regard to the data and

therefore is random, instead of being pre-specified.

As a result, with the introduced DP (G0, η) prior, data density in a given collection of instances can be

expressed using a stick-breaking representation [93]:

p(xP ) =

∞∑
c=1

αcN (xP |µc, σ)p(µc|G0) (3.2.2)

where α = α∞c=1 ∼ Stick(η) represents the proportion of clusters in the whole collection. The stick-

breaking process Stick(η) for the cluster proportion parameter α is defined as: α′c ∼ Beta(1, η), αc =

α′c
∏c−1
i=1 (1− α′i). Since the variance σ2 is fixed in all clusters, we use a conjugate prior for µ in G0, i.e., for

∀c, µci ∼ N (a, b), with the assumption that each dimension in µc is independently drawn from a univariate

Gaussian. This will greatly simplify the later on inference procedure.

Because the data density distribution defined in Eq (3.2.2) only has finite support at the points of

{αc, µc}kc=1, we can calculate the posterior distribution of latent cluster labels in each unlabeled instance to

discover the clustering structure for active learning. Following the sampling scheme proposed in [94], we

appeal to a Gibbs sampling method to infer the posterior of cluster membership. Detailed specifications of this

sampling algorithm can be found in [94]. In particular, we use the same hyper-parameter setting of (a, b) in

G0 and η for initial clustering and subsequent sub-clustering during our cluster-based active learning process.
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3.3 Building Adapter — Fully Automated Type Classification

Being able to automatically map points to a normalized standard in a new building is the key to scaling up

and performing widespread analysis. In this section, we will elaborate on our technique for automating the

metadata mapping process for a building with the information from other well mapped buildings. Based on

the insight that sensor reading data and sensor names characterize different properties of a sensor stream, we

develop a transfer learning based approach to exploit features extracted from both. Specifically, we construct

classifiers based on the data features because they are more likely to be consistent across buildings. However,

a single supervised classifier might not perform well on all instances in the new building due to the inductive

bias inherent in classifier training. Hence, we employ an ensemble of classifiers, where each classifier captures

a different “perspective” in predicting the sensor type. When being applied to a new building, since different

classifiers might be effective in predicting different instances, we appeal to the instance-specific local weighting

method proposed in [95] to weight different classifiers while ensemble. In our solution, the weight is derived

based on the consistency between a classifier’s predictions and the instance’s local clustering structure, which

is estimated by the sensor names in the target building. In the rest of the section, we first elaborate how we

construct the two different types of features and then concentrate on the proposed transfer learning method.

3.3.1 Locally Weighted Ensembles for Knowledge Transfer

To effectively encapsulate the knowledge from one labeled building and transfer it to another unlabeled one,

we construct a set of different classifiers, including support vector machines [96], logistic regression [97] and

random forest [98], using the same set of data features from the source building. Each classifier presents a

different “perspective” for recognizing sensor types in the source building, due to the inductive bias of the

underlying classifier. We refer to these classifiers as base classifiers in this chapter, which will be combined

for type classification in the target building.

The performance of any particular classifier can vary from building to building, and different classifiers

can be effective at different regions or structures in a target building: no single classifier can perform well on

all instances. Therefore, to combine the knowledge in base classifiers, we employ the method from [95] to

locally weigh each classifier and combine the predictions from different base classifiers in the target building.

The weight is computed per classifier per instance based on the consistency between the base classifiers’

predictions and the local clustering structure of the target instance. Intuitively, the estimated local weights will

favor classifiers whose predictions are consistent with the estimated local structure of the target instance in the

target building.
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Formally, let xD be the data feature vector of an instance x in the target building and y be its predicted

class label. Given a set of k base classifiers M1, . . . ,Mk and the new testing set DT encoded with the data

features, the general Bayesian model averaging rule estimates the posterior distribution of y in x as,

p(y|xD) =

k∑
i=1

p(y|xD, DT ,Mi)p(Mi|DT ) (3.3.1)

where p(y|xD, DT ,Mi) = p(y|xD,Mi), because xD ∈ DT and p(y|xD,Mi) is the label for x predicted by

Mi and p(Mi|DT ) is the probability of choosing Mi given the testing set DT . Since xD ∈ DT , p(Mi|DT ) is

equal to p(Mi|xD), which is the locally adjusted weight for Mi, and Eq. 3.3.1 becomes,

p(y|xD) =

k∑
i=1

wMi

xDp(y|xD,Mi) (3.3.2)

where wMi
x = p(Mi|xD). A classifier Mi is expected to have a higher weight for x if Mi’s predicted local

structure for x is closer to its estimated neighborhood. We will next explain how the weight is calculated per

instance.

3.3.2 Graph-based Weight Estimation

Ideally a larger weight should be assigned to the classifier whose predicted neighborhood structure of a testing

instance in the target building is most consistent with its true neighborhood. To locally weight the classifiers in

such a manner, we appeal to the technique proposed in [95]: it performs clustering in the target domain and

assumes if the clustering boundary for the region where x falls, agrees with the decision boundary of Mi, a

larger weight should be assigned to Mi for instance x. In other words, if the predictions made by Mi in the

area surrounding x have greater consistency with the clustering results, Mi will be assigned a larger weight at

x.

Based on these assumptions, the weight can be estimated with a graph-based algorithm. To compute the

wMi
x for Mi at instance x, we construct two neighborhood graphs: GM = (V,EM ) and GC = (V,EC), for

classification and clustering results, respectively, where each vertex is an instance in the target domain DT . In

the graph constructed based on the classifier Mi, i.e., GMi , an edge exists between two vertices (denoting the

two instances are “neighbors”) if and only if Mi assigns the same label for these two instances. Likewise, in

GC , an edge exists between two vertices if and only if these two instances reside in the same cluster. If the

neighbors of x on both graphs significantly overlap, meaning the structure predicted by classifier is consistent

with the cluster structure, Mi will then be assigned a larger weight in ensemble. So the weight wMi
x for Mi at
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x is proportional to the similarity of the two graphs:

wMi
x ∝ s(GM , GC |x) =

|VM ∩ VC |
|VM ∪ VC |

(3.3.3)

where VM (VC) is the set of neighbors of x on graph GM (GC), |X| is the cardinality of set X , and

s(GM , GC |x) denotes the similarity between the two graphs. Figure 3.2 illustrates an example of neighborhood

graphs for an instance x (in grey circle): classifier 1 has a similarity of 0.75 with the cluster graph while

classifier 2 has a similarity of 0.5 with the cluster graph.
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Figure 3.2: An example of local neighborhood graphs of x (in grey circle): two different classifiers predict
different instances as neighbors to the target instance, where classifier 1’s prediction is more similar than
classifier 2’s to the cluster structure.

The weight for each Mi is then calculated by normalizing among all similarity scores:

wMi
x =

s(GMi
, GC |x)∑k

i=1 s(GMi
, GC |x)

(3.3.4)

The final prediction for x is simply ŷ = argmaxy p(y|xD) as p(y|xD) is defined in Eq. 3.3.2.

Distance-based Adjustment

In some cases the similarity score defined in Eq 3.3.4 can be problematic. Consider the case shown in

Figure 3.3. The example shows two classifiers where the target instance has two neighbors. The distance

between the instances is marked on the edge. Since the original similarity definition only considers the number

of neighbors, both classifiers will be assigned the same weight of 0.5. However, the neighbors in classifier 1

are closer to the target instance than those in classifier 2. Therefore, classifier 1 should be assigned a larger

weight. To fix this issue we include the distance between instances into consideration and adjust the similarity

score as,

s∗(GM , GC |x) = 1−
∑
dVI

/|VI |∑
dVU

/|VU |
(3.3.5)
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where VI = VM ∩ VC , VU = VM ∪ VC , and
∑
dVI

is the sum of distance between x to its neighbors in VI

(likewise for
∑
dVU

).
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Figure 3.3: An example of local neighborhood graphs of x with distance into consideration.

Thresholding-based Adjustment

The use of a weighted-average decision for x among base classifiers is reasonable when at least some classifiers

perform well on x. However, the similarity s(GMi , GC |x) for Mi is expected to be small when the predictions

of Mi around x conflict with its true local structure. In such a case, using the decision from this classifier

might be misleading. Since s(GMi
, GC |x) reflects the consistency between Mi’s predictions and the testing

instance x’s local clustering structure, we set a threshold on the average similarity score over all Mi on x to

limit the usage of these base classifiers. As an adjustment before the normalization of similarity scores, we

check the average similarity score with,

s̄x =
1

k

k∑
i=1

s(GMi , GC |x) (3.3.6)

We continue with the ensemble of predictions only if s̄x is larger than a threshold δ, and we will discuss the

choice of δ in the evaluation chapter.

Putting it all together: Algorithm 1 summarizes our transfer learning algorithm for fully automated

sensor type mapping across buildings. We start from training a few base classifiers based on the data features

and labeled instances in a source building. Then we generate clusters using GMM with DP priors, as detailed

in Section 3.2 on the name features of instances in the target building. For each instance x in the target building,

we measure the local similarity score for each base classifier. If the average similarity is significant enough,

we compute the weight for each classifier at x by normalizing the similarity score. Finally we calculate the

weighted sum of predictions from all base classifiers and obtain the label y for x.
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Algorithm 1: Transfer Learning for Automated Mapping

Input: Data features of the source building DS = {xD1 , xD2 , . . . , xDn } and their labels
YS = {y1, y2, . . . , yn} data features of the target building DT = {xD1 , xD2 , . . . , xDm}, and name
features of the target building PT = {xP1 , xP2 , . . . , xPm}
Output: predicted labels Y of the instances in the target building
Initialize: Generate clusters with DP (G0, η) on name features PT
Train k classifiers M1, . . . ,Mk based on DS and YS ;
for xD in DT do

Construct neighborhood graphs GM and GC for xD as defined in Section 3.3.2 for each Mi;
Compute the similarity score for each Mi with Eq. 3.3.5;
Check the average similarity score s̄x over all Mi with Eq. 3.3.6;
If s̄x > δ, then use Eq. 3.3.4 and Eq. 3.3.2 to predict the label y;

end

3.4 Evaluation

To demonstrate the effectiveness of our proposed solution for automated sensor type mapping, we evaluate our

transfer learning-based algorithms on data readings and point names of sensors collected from three distinct

buildings. Extensive experimental comparisons confirm that the proposed fully automated technique is able to

accurately classify sensor types for a considerable fraction of the instances without human intervention; with

more training data, the performance of our technique can be further enhanced.

3.4.1 Background & Building Sensor Taxonomy

AHU 

HOT WATER RETURN 

COLD WATER RETURN 

HOT WATER SUPPLY 

COLD WATER SUPPLY 
VFD 1 VFD 4 

DAMPER 

C
O

LD
 A

IR
 

VAV 

HVAC ZONE 

HOT WATER PIPE SUPPLY AIR RETURN AIR 

REHEAT COIL 

CENTRAL PLANT 
SUPPLIES HOT AND 

COLD WATER 

Figure 3.4: A typical HVAC system consisting of an air handler unit (AHU), several variable air volume boxes
(VAV), water-based heating/cooling pipes and air circulation ducts. (Figure used with permission from the
authors of [1].)

Figure 3.4 illustrates a typical heating, ventilation, and air conditioning (HVAC) system deployed in

modern commercial buildings. An HVAC system usually uses a combination of hot and cold water pipes
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in conjunction with air handling units (AHU) to maintain the appropriate thermal environment within the

building. An HVAC system usually consists of several AHUs and each AHU is responsible for a physical zone

in the building. An AHU consists of variable speed drives that supply cold air (cooled by the supplied cold

water) using ducts to VAV boxes distributed throughout the building. The hot water loop is also connected to

these Variable Air Volume (VAV) boxes using separate pipes. Each VAV box controls the amount of air to be

let into an HVAC zone using dampers, whose opening angle can be programmed. A reheat coil, which uses

supplied hot water, is used to heat the air to meet the appropriate HVAC settings for each zone.

Table 3.2 summarizes all the types of sensors evaluated in these three buildings and the number of sensors of

each type. For example, “room temperature” measures the temperature in room and for a better understanding,

all the other temperature measurements on water circulation and air ventilation are illustrated in Figure 3.4.

For setpoints, we assign only one general type which includes all set points for every actuator configured in

the building.

Our evaluation dataset, which contains both the data readings and point names of sensor streams, is

collected from over 2,500 sensors of more than 20 different types deployed in three commercial buildings.

We collected a week’s sensor reading data from each building. Specifically, building A is Rice Hall at the

University of Virginia, where the sensing points report to the database in a Trane BMS, every 10 seconds to

10 minutes. Both building B and C are from UC Berkeley: building B is Sutardja Dai Hall, which contains

sensors and equipment from KETI2 and Siemens. Building C is Soda Hall, which uses an archaic system

by Barrington Controls. Points and sensors in these two buildings transmit data to an sMAP [99] archiver

periodically between every 5 seconds to 10 minutes.

All of our learning and classification procedures are implemented with the scikit-learn [100] library, an

open-source machine learning package implemented in Python.

3.4.2 Feature Transferability

We first examine how well the two different types of features explained in Section 3.1 perform in classifying

sensor types when being applied across buildings, i.e., learning a classifier based on the features from one

building and testing it on another. We expect the data features to be more generalizable than the name features

since building environments are conditioned similarly while the sensor naming conventions can be vastly

different. For example, temperature readings in a room will usually fall between 60-70 degrees, no matter in

which building. In contrast, point name features might not transfer well due to various naming conventions as

shown in Table 2.1.
2http://www.keti.re.kr/

http://www.keti.re.kr/
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Table 3.2: Number of points by type for the 3 test buildings. “Temp” stands for “temperature”, “HW” for “hot
water” and “CW” for “cold water”.

Building
Type A B C
CO2 16 52 0
Humidity 54 52 0
Air Pressure 142 216 215
Room Temp 159 231 208
Facility Operation Status 59 72 41
Facility Control 0 138 403
Setpoint 140 486 229
Air Flow Volume 14 172 9
Damper Position 0 290 10
Fan Speed 0 25 15
HW Supply Temp 27 1 0
HW Return Temp 15 1 0
CW Supply Temp 18 2 11
CW Return Temp 15 3 10
Supply Air Temp 20 17 3
Return Air Temp 6 2 4
Mixed Air Temp 5 2 3
Ice Tank Entering Temp 1 2 0
Ice Tank Leaving Temp 1 4 0
Occupancy 25 52 0
Timer 0 0 15
Sum 575 1124 1166

To examine how well each type of features can be used for knowledge transfer, we perform sensor type

classification across buildings with each type of features separately. For example, with data features from

building A, we train a random forest and apply it to building B on the same type of feature, and vice versa.

Table 3.3 summarizes the results, from which we conclude that the data features are more useful to build

a classifier across buildings than the name features, though the resulting performance is not perfect. We

also conducted this experiment with other statistical classifiers, but the choice of classifiers does not affect

the conclusion. These observations confirm our assumption that data feature is preferable to train statistic

classifiers across buildings.

3.4.3 Features for Clustering

As shown in Algorithm 2, to perform classification in a target building we need to generate clusters for the

points in it. These clusters are employed to compute the weight of base classifiers. Therefore, it is preferred to

have points in the same cluster well align with their true class labels: the higher quality of clusters is, the more

accurate the weights will be given to the base classifiers.
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Table 3.3: Type classification accuracy between two buildings (denoted as X → Y) with different sets of
features: data features transfer better than point name features of sensors.

Data Feature Name Feature
A→ B 0.778 0.400
B→ A 0.612 0.254
B→ C 0.521 0.030
C→ B 0.399 0.302
A→ C 0.922 0.021
C→ A 0.584 0.399

Table 3.4: Quality of clusters generated on three buildings with different features measured by adjusted rand
index (in the range of [0,1], higher is better).

Data Feature Name Feature
A 0.21 0.58
B 0.34 0.75
C 0.32 0.78

Table 3.4 shows the quality of clusters generated by our non-parametric Bayesian method on the data

features and the name features. Clustering quality is measured by adjusted rand index [101], which is a

standard measure of the similarity between the grouping in clusters and the true labels. From the results we

can clearly observe that clusters generated using the name features are more consistent with their true sensor

type labels than those generated by the data features. This confirms our assumption about using the name

features to estimate local cluster structures in target buildings.

3.4.4 Base Classifier Performance

Our transfer learning based approach employs a few base classifiers. Each base classifier is trained on the same

set of data features from the source building. There is no restriction on what classifiers should be used in this

step. We employ three base classifiers: random forest, logistic regression (LR) and support vector machines

(SVM) with RBF kernels.

For the three buildings, we create six cross building training and testing pairs, and the corresponding

classification performance is shown in Table 3.5. The base classifiers achieve an accuracy between 0.158

and 0.921 in this cross building evaluation scenario. On average, random forest performed the best, followed

by SVM and LR. We should note that the accuracy of learning on building C and testing on building B is

substantially worse than the other cases. One reason is that building B contains many dynamic temperature

setpoints whose values change throughout the day, whereas the setpoints in building C are static. Anther major

source of error is the type of air flow, whose reading amplitude is significantly different from the ones in

building C.
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Table 3.5: Base classifier performance across buildings on the data features. In each cell, the three numbers
are the accuracy for random forest, logistic regression and SVM, respectively.

Target A B C
Source A N/A 0.754/0.496/0.510 0.921/0.766/0.538

B 0.614/0.228/0.362 N/A 0.513/0.247/0.258
C 0.582/0.299/0.421 0.393/0.158/0.190 N/A

Table 3.6: Accuracy and F1 score of transfer learning and the best base classifier with δ=0.4. Each cell contains
two numbers for our approach and the baseline respectively. Overall, our approach outperforms the baseline.

Target A B C
Acc F1 Acc F1 Acc F1

Source A N/A N/A 0.943/0.934 0.936/0.931 0.977/0.970 0.981/0.971
B 0.897/0.875 0.932/0.913 N/A N/A 0.950/0.952 0.939/0.937
C 0.862/0.862 0.864/0.864 0.726/0.702 0.691/0.726 N/A N/A

3.4.5 Transfer Learning Performance

We first consider the case where only one building is exploited as the transfer source, i.e., all the base classifiers

are trained on data from only one building. The overall accuracy of transfer learning for type classification

across our three target buildings is illustrated in Figure 3.5. There is an intrinsic trade-off between the

prediction accuracy and the percentage being labeled, as we set a threshold on the average weight of base

classifiers. Since the average similarity score s̄ reflects the confidence in predictions by classifiers, when we

increase the threshold δ on the average similarity score for base classifiers, we filter out more instances with

low prediction confidence and have labels of better quality – naturally resulting in a drop in the percentage

of instances being labeled. We observe such a trend from Figure 3.5: when we have a small threshold, the

approach can label more instances with low confident labels while we can label fewer instances with much

better quality when increasing the threshold. Empirically, we can set the threshold δ be around 0.4, which

strikes a reasonable balance between accuracy and coverage.

As an example, Figure 3.6 presents a confusion matrix for the classification results for the case of

transferring from building A to building C. The numbers below the predicted labels on the x-axis denote the

percentage of each type of sensor streams in that building, while the numbers below the true labels on the left

denote the percentage of points being labeled by our technique for each sensor type.

On imbalanced data sets, investigation of accuracy alone is not enough. We also measure the weighted

macro F1 score of classification for our approach and the baseline. The weighted macro F1 score is an altered

version of macro F1 score [102], which calculates the F1 score for each class; where “one- versus-all” binary

classification is performed and weighs the resulting F1 of each class by support (the number of true instances

for each label).
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Figure 3.5: Building Adapter’s type classification accuracy (Acc) against labeled percentage (Cov) with
transfer learning between different pairs of buildings (denoted as X→ Y). As we increase the threshold, the
coverage drops while the overall accuracy increases.

As a baseline, we take the subset of instances in the new building that get labeled by the transfer learning

process and apply base classifiers to predict labels on the same population. We set δ to 0.4 and repeat 10 times

for the experiment in each direction (e.g., A→ B). The average performance is reported in Table 3.6. Each
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Figure 3.6: Confusion matrix for the transfer learning classification results for transferring from A to C. “rmt”
stands for room temperature, “stpt” for setpoint, “sup” for supply, “ret” for return, and “SAT” for supply air
temperature.

Table 3.7: Combining the knowledge from multiple buildings to infer on a new one is superior to exploiting
one source building in both accuracy (Acc) and coverage (Cov).

Two Sources Single Source
Acc Cov Acc Cov

Target A 0.863∗ 0.397∗ 0.855 0.362
B 0.899∗ 0.458 0.874 0.455
C 0.980∗ 0.890∗ 0.968 0.809

∗p-value<0.01

cell contains two results: the former is from our approach while the latter is from the best base classifier. The

case of transferring from C to B is again substantially worse than the other cases, this is because the transfer

learning algorithm is bounded by the performance of base classifiers. Intuitively, if none of the base classifiers

is able to correctly predict an instance, no matter how we manipulate the weights, it will not make a difference

in the results. Overall, our approach outperforms the best baseline.

3.4.6 Training on Multiple Buildings

The above results indicate that our fully automated technique can label a fraction of the points in a commercial

building with no human intervention. We further investigate how using multiple buildings as the training

source would affect the labeling performance.
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In practice, it is common to have labels for multiple buildings and combining them as a single training

source might achieve better performance. We set δ to 0.4 and use two buildings as the training source. We

repeat 10 times for the experiment on each target building and the average of 10 runs is reported. From

Table 3.7, we see that combining multiple buildings as the source is superior to single source.

Upon further inspection of the model predictions, compared with the case of single source, we observe

that the improvements for integrating multiple sources in transfer learning mostly come from labeling more

instances of the same classes, rather than capturing more new classes. Training based on the labeled data from

multiple buildings produces more robust classifiers and as hundreds of buildings are mapped, our approach

could become even more promising. In contrast, existing approaches scale only linearly with the number of

buildings being mapped since they all require manual labeling and apply to only a single building.

3.5 Summary

In this chapter, we describe the design and evaluation of Building Adapter — a technique to automatically

infer the type information in a building without manual labeling. This technique combines the complementary

strengths of the data and the point name of a sensor to automatically create metadata for one building based on

the information of another mapped building. By experimenting with over 2,500 streams from three buildings

on two campuses, we demonstrate that our technique is able to automatically label more than 36% percent of

the points in a new building with at least 85% accuracy, and in some case up to 81% points with more than

96% accuracy. We also illustrate how combining multiple buildings as the training source could further boost

the performance, which shows promise of the technique. As a first step towards automatic metadata mapping,

though not being able to label all the points, Building Adapter can label most common types of sensors related

to HVAC with high accuracy. We will discuss in the next chapter a technique to complement Building Adapter,

which exploits a minimal amount of human input to predict the type for sensors.
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Semi-Automated Type Classification

The fully automated technique discussed in the previous chapter does not create type labels for all the

points. We therefore need to address the unlabeled points requiring some extent of human input. However,

acquiring human labels is often costly, so we want to minimize the amount of labels we need from a human.

Therefore, we develop a novel clustering-based active learning algorithm to perform semi-automated sensor

type classification requiring only a minimal amount of human labels, within a single commercial building.

This chapter describes in detail the design and evaluation of the algorithm.

4.1 Active Learning-based Classification

The idea underlying active learning is that a learning algorithm can achieve better performance with fewer

training examples if it can choose the examples it learns from. We should note that although the naming

schemata vary significantly across buildings, there will be definite variants within the same building, given

there are only finite types of sensors deployed in a building. As a result, beyond the traditional active learning

solutions [37, 38, 103], we further accelerate the learnin process by exploiting the clustering structure of point

names. In particular, during the active learning procedure, unlabeled examples can be clustered; those in the

same cluster are more likely to share the same label and hence do not need to be queried repeatedly. The

cluster structure is therefore exploited to assist the manual labeling of instances and to avoid repeated selection

of similar instances. Moreover, the acquired labels can be further propagated to the unlabeled neighbors

in the same cluster to expedite classifier training, which is uniquely explored in our method, compared to

previous active learning-style solutions [13, 18]. In our solution, the examples selected for labeling are chosen

based on both their representativeness in the cluster and the informativeness of the cluster itself. A Gaussian

Mixture Model with Dirichlet Process Prior [104] is used to cluster the instances on the fly to accommodate

31
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the dynamic nature of active learning. Label propagation is performed with respect to the connectivity of

labeled examples’ neighborhood in an adaptive manner. Because in practice one can get direct access to all

point names in a target building, our active learning-based approach adopts the pool-based sampling setting,

which selects the most informative instances from the entire collection of unlabeled data points. We shall

note that both of the two approaches explained in this chapter and the previous chapter exploit the same set of

attributes of sensors, yet in very different manners: the approach in the previous chapter looks for a “match”

between the structure found in the name features and the data features, while the approach in this chapter only

uses the structure in the name features to propagate manual labels to similar neighbors.

4.1.1 Clustering-based Active Learning

Formally, the problem of using active learning for semi-automated sensor type classification can be described

as follows. For a given collection of unlabeled point represented with name features P = {xP1 , xP2 , . . . , xPn },

in which the text string based point name xi is represented as a d dimensional feature vector xPi (as explained

in Section 3.1.2), we aim at learning a classifier f : f(xP ) → y, with respect to a set of labeled instances

Dl = {(xP1 , y1), (xP2 , y2), . . . , (xPn , yn)} acquired during classifier training. In particular, yi is the true sensor

type for the point name xi and takes value from a set of predefined labels. Our goal of learning is to maximize

f ’s classification accuracy on the future testing data while minimizing the size of Dl. We should note that our

proposed solution has no assumption about the classifier f ; any supervised multi-class classifier can be used in

our method.

Conventional active learning methods mostly focus on efficient search through the hypothesis space.

Each time a new label is added to Dl, the set of hypothesis space shrinks, e.g., filters the classifiers that are

inconsistent with the labels seen so far. Great research attention has been devoted to designing effective

query strategies for label acquisition. Typical solutions include uncertainty-based sampling [38], query by

committee [39], and expected model change [40].

However, such solutions implicitly assume unlabeled instances are independent, and thus fail to exploit any

information conveyed in the density of data, i.e., the marginal distribution of p(xP ) is assumed to be uniform.

However, if the unlabeled instances in P form clusters, i.e., their clustering membership is consistent with the

underlying class labels, one will only need one label from each cluster to estimate a perfect classifier. Although

this example is overly optimistic, the clustering structure can still unveil the representativeness of instances

with respect to their neighborhood. Hence, special emphasis should be given to those most representative

instances for manual labeling. In addition, because instances in the same cluster are more likely to share the
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same label [105], one can accelerate active learning by avoiding labeling instances from the same cluster and

propagating manual labels to nearby unlabeled instances.

In our solution, the density of unlabeled instances, i.e., p(xP ), is exploited via its clustering structure.

In particular, again, we use a probabilistic mixture model to identify the latent clusters, e.g., p(xP ) =∑
c p(x

P |c)p(c), where c denotes a cluster label. The detailed instantiation of this mixture model, e.g., how to

decide the cluster size and the specification of cluster conditional likelihood, has been discussed in Section

3.2. With the identified clustering structure at hand, we devise a divide-and-conquer strategy for selecting the

query instances: 1) it should come from the most informative cluster; and 2) it should be representative in that

cluster. This query strategy focuses on the entire input space; comparing to those individual instance based

selection methods, it can thus help to avoid querying outliers or repeatedly querying similar instances.

To quantify the “informativeness” of a cluster, we exploit an information theoretic metric - class entropy

H(c). For every cluster c, we apply f(xP ) to predict the labels for all the unlabeled instances in it. Then based

on these predicted labels, we compute the class entropy for this cluster as,

H(c) = −
∑
y∈Yc

p(y) log p(y) (4.1.1)

where Yci is the set of unique labels in cluster ci predicted by classifier f(xP ).

A cluster with larger class entropy indicates increased discrepancy between the current classifier’s pre-

diction and clustering structure inferred from the density of unlabeled instances. Therefore instances from

such a cluster are considered potentially more helpful in introducing new information to classifier training. In

addition, the size of a cluster is also an important criterion for measuring its informativeness. When multiple

clusters have similar class entropy, a larger cluster will indicate more uncertainty of the class labels in it.

Hence acquiring a label for such a cluster can mostly reduce the classifier’s uncertainty on a larger portion of

instances. Combining these two aspects, we locate the cluster of choice by the product of cluster proportion

p(c) and class entropy H(c) as follows,

ĉ = arg max
c

p(c)H(c) (4.1.2)

Once we locate the candidate cluster ĉ, we need to choose the most “representative” instance from it for

labeling. We use the conditional likelihood p(xP |ĉ) over all the unlabeled instances to select such an instance.

The intuition behind this choice is that the instance with the maximum conditional likelihood best captures the

homogeneity of instances in the selected cluster, such that knowing its label will provide a substantial boost

for the classifier to predict the class labels within this cluster.
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Figure 4.1: Distribution of pairwise distance between instances from the same class and different classes.

In addition, we view high class entropy in the selected cluster also as an indicator of low resolution of

clustering results in that local region: classification boundary goes inside the cluster. To reduce this divergence

between predicted classes and clustering results, we need to further separate this cluster into finer clusters.

The benefit of this sub-clustering is that the class distribution estimated by the classifier is introduced into

clustering; this helps generate more homogeneous clusters for later instance selection.

4.1.2 Label Propagation

The basic assumption in our clustering-based active learning solution is that instances in the same cluster tend

to share the same class label. The query strategy described in the previous section exploits this assumption to

avoid repeated selection of similar instances. In this section, we will further capitalize on this assumption to

propagate the acquired labels to their nearby unlabeled neighbors to reinforce our current knowledge about the

underlying class distribution.

The idea of label propagation is popularized in transductive learning [105, 106, 107], where class labels

are propagated from the labeled instances to their unlabeled neighbors based on the structure of data manifold.

In practice, the data manifold is approximated by the nearest neighbors of each instance derived from data

features. To empirically validate the feasibility of applying label propagation in our problem, we randomly

selected a small portion of labeled sensor point names in our evaluation corpus, computed the Euclidean

distance between all pairs of instances based on their feature vectors, and grouped them into pairs from

the same class and different classes. We plot the cumulative distributions of the three types of distances in

Figure 4.1.

As we can clearly notice from the results, there is a clear gap between the cumulative distribution of
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distances between instances from the same class and those from different classes. This result also confirms

our assumption in the proposed clustering-based active learning that nearby instances tend to share the same

class label. Therefore, with properly constructed data manifold, we can confidently propagate the labels to

their closest unlabeled neighbors and use them to update the classifier. This label propagation will amplify the

importance of acquired labels and better avoid repeatedly querying of similar instances.

A typical approach to constructing the data manifold for label propagation in transductive learning is to

look for the k nearest neighbors of each instance. However, in our solution it is challenging to find a universal

setting of k. To accommodate the clustering structure, label propagation should only be performed within the

same cluster. However, since the resulting clusters vary and change across iterations, a fixed setting of k might

lead to inconsistency between the data manifold and clustering results. To address this issue, we introduce a

distance threshold r to define the data manifold for label propagation in our active learning process. When the

label y is acquired for instance x, all the unlabeled instances located within the distance r to x will be assigned

the same label y. Those instances will be then removed from P and added to a collection of propagated label

set Dp for later classifier training.

The optimal threshold r should be the minimum inter-class distance between any pair of instances.

However, it is impossible to calculate without knowing the true class labels. In our solution, we keep an

estimation of r from all the labeled instances in Dl during active learning,

r = arg min
(xP

i ,yi),(x
P
j ,yj)∈Dl

d(xPi , x
P
j )

2
, with yi 6= yj (4.1.3)

d(xPi , x
P
j ) is the Euclidean distance between two name feature vectors xPi and xPj .

We divide the minimum distance by 2 to avoid possible overlapping of label propagation between two

labeled instances. The adaptive estimation of distance threshold defined in Eq (4.1.3) will shrink during active

learning and therefore refines the propagated labels. Accordingly, we need to correct previously propagated

labels where the estimation of r was less accurate. In particular, when we have a new estimation of r, we will

remove instances from Dp that fall outside the region defined by the latest r to any closest labeled neighbors

with the same label, and put these instances back to the unlabeled set P . This correction happens before the

new round of classifier training.

Putting it all together: Algorithm 2 summarizes our clustering-based active learning algorithm for the

semi-automated mapping. In each iteration, we select the most “informative” cluster measured by the class

entropy of predicted labels by the classifier. We acquire a label for the instance centered in the selected cluster,

and update the estimated distance threshold r for label propagation. We then update all previously propagated

labels and propagate the newly obtained label to its unlabeled neighbors within the new estimated distance. At
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Algorithm 2: Clustering-based Active Learning for Semi-Automated Mapping

Input: point names P = {xP1 , xP2 , . . . , xPn }, and label budget B
Output: predicted labels of the point names Y
Initialize: Generate clusters with DP (G0, η) on P , reset the labeled instance set Dl and propagated

label set Dp to empty
while B > 0 do

Train the classifier f(xP )→ y based on Dl and Dp;
Apply f(xP ) to all instances in P;
Compute class entropy H(c) defined in Eq (4.1.2) for each cluster c;
Retrieve a cluster by ĉ = arg maxc p(c)H(c);
Acquire label ŷ for example x̂ given by arg maxx∈P p(x

P |ĉ), and move (x̂, ŷ) from P to Dl;
Update the distance threshold r by Eq (4.1.3);
Update all previous propagated label in Dp with new threshold r;
Assign ŷ to all unlabeled examples xu, where xu ∈ ĉ and d(xu, x̂) < r;
Move (xu, y) from P to Dp;
Perform sub-clustering with DP (G0, η) in ĉ;

end

the end of this iteration, we perform sub-clustering on the selected cluster to refine its local clustering structure

for later instance selection.

4.1.3 Discussion

Comparing to the existing solutions for sensor type classification, our proposed algorithm addresses the

problem from a totally different perspective. As we discussed before, because existing solutions [12, 13]

isolated the annotation process from model training, it is likely to lead to wasted effort in data annotation. With

active learning, we can restrict our effort to a smaller set of instances that are the most helpful for classifier

training. A practical benefit of this learning approach is that we can rapidly bootstrap the building analytic

software across different sites. Instead of going back and forth for several rounds of blind annotation, a

building manager only needs to interact with the system for several iterations on the fly to achieve immediate

satisfactory results.

Comparing to other active learning algorithms, our proposed method focuses on exploiting information

conveyed in the data clustering structure. Based on the assumption that nearby instances are more likely to

share the same class label, we select the most informative instances for labeling based on the identified latent

clustering structure of instances and propagate the labels to their adjacent unlabeled neighbors. This helps us

avoid repeatedly querying similar instances and enhance the importance of labeled instances. In addition, the

clustering structure and label propagation strategy are adapted in an online fashion. In Nguyen and Smeulders’s

work [41], clustering is also exploited for active learning; but their clustering structure is static and no label

propagation is performed. In Dasgupta and Hsu’s work [42], hierarchical clustering is used to provide a more
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flexible and dynamic clustering structure, but no label propagation is performed either. We should note this

proposed active learning algorithm is general, it only assumes the proximity of label distribution in nearby

instances. Therefore, this algorithm can also be applied to a broader context, e.g., document categorization

[108] and image retrieval [109].

4.2 Evaluation

In this section, we present the evaluation of the proposed algorithm using the same dataset as in Section 3.4.1.

Via extensive experiments, we demonstrate that the active learning-based semi-automated classification method

can achieve the same classification accuracy with much fewer labeled instances than all the baseline methods.

To demonstrate the promise of the technique, we combine transfer learning with the active learning process to

further accelerate the learning efficiency. We also demonstrate how metadata mapping can enable meaningful

analytics on top of raw sensor streams under the context of commercial building energy control and comfort

assessment.

4.2.1 Baselines

To evaluate the performance of our proposed active learning algorithm, we adopt four active learning

algorithms as baselines.

Random (RAND): this method selects an example at random uniformly from the unlabeled set in each

iteration.

Least Margin (LM) [110]: this method adopts the a simple yet effective sampling strategy, which queries the

instances with least for labeling confidence measured by the difference of posterior probability of the first and

second most probable class labels predicted by the classifier:

x∗M = arg min
x

p(ŷ1|x)− p(ŷ2|x),

where ŷ1 and ŷ2 are the first and second most probable class labels, respectively. We compute the class

prediction probability by SVM based on the method proposed in [111].

Pre-clustering (PC) [41]: this method pre-clusters the instances and selects the example for querying

satisfying two criteria: 1) locate at the classification boundary and 2) representative of dense clusters. The

clusters are constructed by the same Gaussian Mixture Model with Dirichlet Process prior as used in our

method.
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Hierarchical Clustering (HC) [42]: this method leverages a hierarchical clustering structure, which is

represented as a binary tree, and estimates the purity of labels for each cluster node. The algorithm iteratively

selects instances from a subtree whose size is significantly large or the impurity of labels is high.

For all the baselines and our method, a linear SVM model is used as the classifier.

We measure the overall classification accuracy of each active learning algorithm with different amount of

manual labels, and examine how many instances are needed by each method to reach a required accuracy level.

Besides classification accuracy, we also compute the weighted macro F1 score of each method given different

labeling budgets (e.g., 5%, 10%, etc of the entire unlabeled set) in each building.

In our experiments, to reduce possible bias introduced by training/testing split, we perform 10-fold cross

validation for each active learning method, and repeat it 10 times with different random seeds. The average

performance of 10 runs from each method is reported.

4.2.2 Classification Results

In Figure 4.2, we illustrate the comparison results of sensor type classification accuracy from all three buildings

over all the methods. In all three buildings, our method performed the best against all the baselines. In

particular, our method consistently requires the least amount of manual labels to achieve a satisfactory and

converged accuracy. In building A, to achieve the accuracy of 90%, our clustering based active learning

method (hereafter denoted as AL+CP) requires 105 labeled instances while HC needs 110, which is the best

among all the baselines. LM takes 127 labeled instances and the other two baselines take a hundred more

labeled instances to obtain the same accuracy. In building B, both our method and LM reach the accuracy of

99% with 26 instances, while it takes 51, 61 and more than 200 instances, respectively, for the HC, PC and

RAND baselines. In building C, our method achieves 99% accuracy with 35 labels while HC and LM requires

101 and 135 labels, respectively, for the same accuracy. Again, PC and RAND require much more labeled

instances to get the same performance.

On all three buildings, RAND performs reasonably on initial iterations (e.g., before 20) but becomes the

worst later on. This is due to the imbalanced class distribution in the three buildings in our data set. RAND

selects more instances from larger classes at the beginning and quickly gets a fraction of the major classes

correctly classified. However, in later iterations, RAND has a lower chance of picking instances from smaller

classes and converges to a local optimal quickly.

The PC baseline, which also exploits data clustering structure, performs significantly worse than other

baselines for Building A. PC gives priority to the instances that are: 1) close to the decision boundary, and 2)

representative of a cluster. Such criteria are very similar to those in our method. Further inspection reveals
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Figure 4.2: Classification accuracy on three different buildings: comparing to the baselines, our method
(AL+CP) is able to achieve better accuracy on all buildings with less labeled examples.
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Table 4.1: Weighted macro F1 score of classification on three buildings with different labeling budgets. Our
method (AL+CP) converges with less than 5% examples being labeled in Building B and C. It consistently
outperforms the baselines in all the cases.

Building A Building B Building C
Labeled Percentage 1% 5% 10% 1% 5% 10% 1% 5% 10%

RAND 0.204 0.582 0.696 0.711 0.933 0.970 0.795 0.915 0.937
LM 0.222 0.572 0.769 0.736 0.995 0.995 0.835 0.980 0.988
PC 0.232 0.515 0.581 0.752 0.958 0.968 0.762 0.862 0.987
HC 0.326 0.516 0.669 0.829 0.993 0.996 0.867 0.977 0.987

AL+CP 0.416∗ 0.765∗ 0.819∗ 0.919∗ 1.000∗ 1.000∗ 0.890∗ 1.000∗ 1.000∗

∗p-value<0.01

that instances selected by the PC baseline were neither informative nor representative enough to distinguish

different types of instances in these buildings. This stems from the fact that for building A, the initial clusters

from GMM fairly overlap with each other, which biases the PC method to select more instances with relatively

high uncertainty but less representative in a cluster.

The HC baseline is quite effective in avoiding querying similar instances from dense areas. However,

because HC does not perform label propagation, after all the clusters become roughly equally pure with

sufficient sampling, it will start repeatedly querying previously sampled areas, which results in a long plateau

for building B and C. For building A, the larger classes contain a few variations in their point names, therefore

when HC avoids sampling from the same dense area at first, it misses important informative instances and is

only able to pick them up in later iterations.

Moreover, we notice that, for all the methods, the convergence rate on building B and building C is much

faster than building A, despite the fact that there are more points in these two buildings. The reason is that the

point names in these two buildings share stronger regularities - the last segment always indicates the sensor

type. Recall the examples shown in Table 2.1: SDH SF1 R282 RMT from building B and SODA1R410B ART

from building C. Both of them adhere to the same order of segment categories - building name-air

handler/supply fan identifier-room number-sensor type, only with a slightly different

set of delimiters. Our string feature captures such regularity and helps the learning algorithm converge faster.

However, the same rule does not apply to building A because the type information can be encoded in any

segment in a point name. For instance, a temperature measurement can be named in many conventions, such as

averageSpaceTemperature 1st Floor Area1, East Space Temperature scc2UIP33 or

RM511A Zone Temp. With such variety in the naming conventions, the learning algorithms need to explore

all possible variants of point names for convergence in building A.

We also measure the weighted macro F1 score of classification for each method with different labeling

budgets, i.e., different percentage of total instances that can be labeled. We examine the F1 score at three

different labeling budgets, 1%, 5% and 10%. Paired two sample t-test is performed to validate the statistical
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significance of improvement from our method over the best-performing baseline. The results are shown in

Table 4.1. In general, more labeled instances lead to better classification performance over all classes; and our

method performed the best in all cases. As we discussed earlier, all methods converge much faster in building

B and building C than in building A. In these two buildings, our method can achieve an 100% classification

accuracy with slightly more than 1% of total instances being labeled.

In addition, to investigate the effect of data clustering and label propagation in our proposed active learning

algorithm, we also conduct experiments by disabling data clustering and label propagation in our method.

From the results in Figure 4.3, we can observe that with clustering only, the performance of our method is no

better than margin-based active learning; and beyond a certain point, the performance plateaus because the

classification boundary converges to the clustering structure, and no more new instances could be selected for

labeling. However, we do observe some improvement from clustering only over margin-based active learning

for building B and building C in early iterations. This is because the same type of points in these two buildings

contain few variations and these initial instances at the center of relatively pure clusters are more representative

for a dense region. Interestingly, after adding label propagation, we clearly see a boost in the performance

than performing clustering only. We attribute the improvement of our method to label propagation which

considerably amplifies the amount of available labeled instances for classifier training, and therefore helps to

estimate a better classifier.

Besides, we also examine how the label propagation alone can help active learning in general. We adopt

the same distance threshold estimation method as defined in Eq (4.1.3) to introduce propagated labels into the

margin-based baseline and denote it as LM+P in Figure 4.3. On building A, the inclusion of label propagation

makes LM even worse, because in early stage the estimated threshold r in LM+P is not accurate enough, and it

mistakenly propagates the labels. Only when more labels are acquired in later stages, the estimation of distance

threshold r get improved and therefore LM receives propagated labels with improved quality. In our method,

because of data clustering, the labeled instances in the early stage are more representative; it in turns helps

better estimate the distance threshold r. As a conclusion, data clustering and label propagation complement

with each other in our proposed method, and help active learning acquire more informative instances quickly.

4.2.3 Combining the Fully and Semi-Automated Approaches

As we discussed earlier, the fully automated technique does not label all the points in a new building, so we

can use the semi-automated approach to address the remaining unlabeled streams. To examine how well it

works by joining the two approaches, we first apply our fully automated technique to automatically label a

fraction of the points in a building, and then we switch to the semi-automated algorithm to label the rest. We
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(b) Building B
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Figure 4.3: Comparison of margin-based active learning (LM), clustering-based active learning without label
propagation (AL+C), margin-based active learning with label propagation (LM+P), and clustering with label
propagation based active learning (AL+CP). The label propagation significantly improves the performance of
learning with clustering only.
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Figure 4.4: Our transfer learning based approach can complement traditional labeling technique to achieve
better accuracy with the same amount of labels.

adopt the active learning technique developed in Section 4.1 and as a comparison, we examine how much

combining the two techniques can accelerate the semi-automated labeling process.

In the target building, we split all the testing instances into 10 folds. We run the active learning method

(AL) and active learning combined with transfer learning method (AL+TL), respectively, on nine folds while

testing on the one remaining fold. For the case of AL+TL, we start from the fully automated process with a δ

= 0.6 to minimize the amount of inaccurate labels from transfer learning. Then we switch to the AL algorithm

developed in Section 4.1 where we acquire one manual label per iteration. For brevity, we only show the

results from transferring from building B to building A in Figure 4.4. We can see that AL+TL helps reduce the

number of manual labels to achieve the same performance as AL. For example, given the same amount of

manual labels, AL+TL can always outperform AL.

4.2.4 A Proof-of-Concept Application

As a first step towards automated metadata mapping, our algorithm is able to classify and transform the type

information in the primitive metadata into a normalized name space. It provides a better opportunity for

running uniform analysis on heterogeneous metadata across buildings with different management systems. As

a proof-of-concept, we demonstrate an illustrative example, in which we search over the normalized metadata

for different types of sensors that are in the same room under the application context of building comfort

assessment and energy control.

Ideally, with the occupancy information of spaces considered, a properly configured building should

automatically stop conditioning unoccupied rooms and areas. However, one typical problem plaguing buildings

that incurs energy waste is unoccupied room being conditioned. For a building manager to inspect the building
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Table 4.2: The performance of searches over the normalized metadata with our method (AL+CP) and the best
baseline (margin based active learning, LM). We search for four specific types of streams: occupancy (O),
temperature (T), humidity (H) and CO2 (C).

AL+CP LM
Precision Recall Precision Recall

O 0.930 1.000 1.000 0.688
T 0.892 0.935 0.635 0.975
H 0.962 1.000 0.778 0.519
C 0.556 0.833 0.222 0.286

Table 4.3: The performance of searches for different types of streams that are in the same room. We consider
the pair of occupancy and temperature (O+T), the combination of occupancy, temperature and humidity
(O+T+H), and also the combination of occupancy, temperature, humidity along with CO2 (O+T+H+C).

AL+CP LM
Precision Recall Precision Recall

O+T 0.832 1.000 1.000 0.900
O+T+H 0.926 1.000 1.000 0.400

O+T+H+C 0.375 0.833 1.000 0.125

and locate such spots for better scheduling, he should be able to run simple keyword based searches over the

metadata looking for different types of streams, such as room temperature and occupancy streams. With the

desired types of streams returned, he can match different types of streams by room location to perform further

examination, e.g., which room is still comfortable during unoccupied periods.

To accomplish the task, we first classify the sensor streams by type with both our method and the best

baseline (LM). Then based on the predicted sensor type for each stream, we map each type of sensors into a

common name space, e.g., all the streams predicted as room temperature are named as “room temperature”.

With the mapped type information, we can simply retrieve all the streams of a certain type with one keyword,

e.g, using “temperature” to search for temperature streams. The next step is to match different types of sensors

by room location. In particular, we derive a few regular expressions to find the segment indicating room

location in the point names of each sensor.

In this experiment, we search for four types of sensors - occupancy, temperature, humidity and CO2 - by

simply using these type names as the keywords. Then we match the room location of these four groups with

regular expressions on their original primitive point names. Specifically, we examine the accuracy of three

searches: 1) occupancy and temperature in the same room; 2) occupancy, temperature and humidity in the

same room; and 3) occupancy, temperature, humidity and CO2 in the same room, given these combinations

are usually needed to assess the comfort of a room or identify potential waste in unoccupied rooms.

Table 4.2 illustrates the performance of basic searches for occupancy (O), temperature (T), humidity (H)

and CO2 (C). Our method can return better results with both higher recall and precision because of better
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predictions on type class for the streams. Given the four returned groups of streams, we further run regular

expression based matching on the primitive metadata to find the pairs in the same room. For instance, we first

identify the room location of each returned occupancy stream with regular expressions, then we search for the

temperature stream with the same room number as each of these occupancy streams. Similarly, we further

search for humidity and CO2 streams in the same room. With these different types of streams grouped into

the same room, a building manager can compare the actual data against some standard to decide if a room is

problematic or not. We summarize the search results in Table 4.3. In general, normalized metadata by our

method produces search results with higher recall and slightly lower precision. Such results are expected

considering the practical demand from building managers - it is acceptable to return some unexpected results

(false positives) while not missing the expected ones (false negatives), where he can manually examine a much

smaller group of candidates and filter out the incorrect ones. We conclude that with normalized metadata for a

building, people such as a building manager can more easily retrieve expected streams and conduct meaningful

analysis to identify problems in a building.

4.3 Summary

In this chapter, we introduce a novel, effective yet general active learning method to address the sensor type

inference problem, requiring the minimal amount of human input. This method can be used to complement the

Building Adapter developed in the last chapter, or used independently as a standalone procedure. Following

the assumption that similar instances are more likely to share the same class label, our solution exploits the

data clustering structure and propagates the labels to their nearby unlabeled examples, in order to accelerate

the learning process. We performed extensive experimental comparisons against several state-of-the-art active

learning algorithms with over 20 different sensor types and 2,500 sensor streams collected from three buildings.

The proposed method is able to achieve more than 92% accuracy for type classification with at least 20% fewer

labeled examples than baselines. The proposed method is general, and it is therefore applicable in a broader

contexts such as document categorization [108] and image retrieval [109].

In our current metadata normalization process, only the text features from point names are utilized.

However, another important aspect of the sensor streams is the actual time series data from sensors, i.e., the

sensor readings. Features constructed from such raw signals can also be introduced to characterize the stream,

and these feature will become vital when the point names are missing or corrupted. In addition, our current

problem setting is limited to one building; it is necessary for us to solve this problem across buildings, e.g.,

classification model learned in one building can be used to bootstrap the learning in another building, and we

discuss in more details about this in Chapter 7.



Chapter 5

Cross-Predictive Clustering for Sensor

Type

We discussed an unsupervised transfer learning technique in Chapter 3 for inferring the sensor types, where

we have implicitly assumed abundant data for the task. Specifically, we assumed the number of readings per

sensor time series is more than the number of sensors. However, the proliferation of cheap, ubiquitous sensing

infrastructure has pervaded and been monitoring the world, and many expect the Internet of Things to have over

25 billion devices by 2020 [112]. In this paradigm, sensory time series data will often be high-dimensional:

the number of time series d (i.e., number of sensors) will be much larger than the length of each time series T .

Conventional classification techniques are likely to fall short in such scenarios, and we tackle the problem from

the perspective of time series clustering, which often serves as an important first step for many applications

and poses long-standing challenges. In this chapter, we explore the challenge of time series clustering in the

high-dimensional regime, in the context of recognizing sensor types.

The key to time series clustering is how to characterize the similarity between any two time series. In

the past several decades, various metrics for measuring the similarity/distance between time series have been

investigated [43, 44, 45, 46, 47, 48, 49, 50, 51, 52], and so on. Hidden Markov Models [53, 54] have also

been utilized to derive the distances between time series for clustering. Recently, a few new metrics [55, 56]

to measure the similarity between time series have been proposed and applied to cluster brain-computer

interface data and motion capture data. However, all the aforementioned work either did not provide theoretical

guarantees for their methods, or only considered scenarios where the number of observations per time series T

far exceeds the number of time series d.

In this chapter, we explore a new similarity measure called “cross-predictability”: the degree to which

46
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a future value in each time series is predicted by past values of the others. This measure captures causal

relationships between time series, such as seasonal or diurnal effects on multiple environment sensors, market

effects on multiple stock prices, and so on. However, it is challenging to estimate such cross-predictability

among time series in the high-dimensional setting where d > T : a conventional regression task, for example,

would have d variables and T equations, which is under-constrained. Intuitively, only time series in the same

cluster would have significant cross-predictability for each other, thus yielding sparse relationships that are

indicative of the cluster structure. Consequently, we propose to estimate cross-predictability by imposing

a sparsity assumption on the cross-predictability matrix, i.e., that only time series in the same cluster have

significant cross-predictability with each other. To do this, we propose a new regularized Dantzig selector,

which is a variant of standard Dantzig selector [113], to estimate the similarity among the time series. We

demonstrate that this approach is computationally attractive because it involves solving d regularized Dantzig

selectors that can be optimized by alternating direction method of multipliers (ADMM) [114] in parallel.

Additionally, we provide a theoretical proof that the proposed algorithm will identify the correct clustering

structure with high probability, if two conditions hold: 1) the individual time series themselves can be

modeled with an autoregressive model [115], and 2) the transition matrix for the vector autoregressive model

is block diagonal, i.e., that it is actually possible to create clusters such that time series in the same cluster are

cross-predictive while those in different clusters are not.

To the best of our knowledge, this is the first practical high-dimensional time series clustering algorithm

with a provable guarantee. It is worth noting that the proposed algorithm can be generally applied to cluster

any high dimensional times series, regardless of the underlying data distribution. We make the autoregressive

model assumption solely for the purpose of providing the theoretical guarantees for our method.

To demonstrate the effectiveness of our method, we conduct experiments on a real-world data set of sensor

time series as well as simulations with synthetic data. Our method can achieve more than 80% clustering

accuracy on the real-world data set, which is 20% higher than the state-of-art baselines.

Notations We compile here some standard notations used throughout this chapter. We use lowercase letters

x, y, . . . to denote scalars, bold lowercase letters x,y, . . . for vectors, and bold uppercase letters X,Y, . . .

for matrices. We denote random vectors by X,Y . We denote the (i, j) entry of a matrix as Mij , and use

Mi∗ to index the i-th row of a matrix (likewise, M∗j for the j-th column). We also use MS,T to represent

a submatrix of M with its rows indexed by the indices in set S and columns indexed by T . In addition,

we write Sc to denote the complement of a set S. For any matrix M, P(M) represents the symmetric

convex hull of its columns, i.e., P(M) = conv(±X). For any matrices M1,M2, . . .Mk, we denote a block

diagonal matrix by diag(M1,M2, . . . ,Mk) such that the k-th diagonal block is Mk. Throughout the chapter,
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we will use vector norm `q for 0 < q < ∞ and `∞ of v defined as ‖v‖q =
(∑

i |vi|
q
)1/q

, ‖v‖∞,∞ =

maxi |vi|, and matrix norm `q , element-wise `∞ and `F of M as ‖M‖q = max‖v‖q=1 ‖Mv‖q, ‖M‖∞,∞ =

maxij |Mij | , ‖M‖F =
(∑

i,j |Mij |2
)1/2

.

5.1 The Cross-Predictive Clustering

5.1.1 The VAR Model

Our algorithm is motivated by the autoregressive model, and the later-on theoretical guarantee for our algorithm

also relies on the autoregressive model assumption, so we briefly review the stationary first-order vector

autoregressive model with Gaussian noise here. Let random vectorsX1, . . . ,XT be from a stationary process

(Xt)
∞
t=−∞, and we further define X = [X1, . . . ,Xt, . . .XT ]> ∈ RT×d, where Xt = (x1, . . . , xd)

> ∈ Rd

is a d-dimensional vector and each column of X is a one-dimensional time series with T samples. In particular,

we assume eachXt can be modeled by a first-order vector autoregressive model:

Xt+1 = AXt +Zt, for t = 1, 2, . . . , T − 1. (5.1.1)

To secure the above process to be stationary, the transition matrix A must have bounded spectral norm, i.e.,

‖A‖2 < 1. We also assume Zt ∼ N(0,Ψ) is i.i.d. additive noise independent ofXt, andXt has zero mean

and a covariance matrix Σ, i.e., Xt ∼ N(0,Σ), where Σ = E[XtX
>
t ] is the autocovariance matrix. In

addition, we have the lag-1 autocovariance matrix as Σ1 = E[XtX
>
t+1]. Since (Xt)

∞
t=−∞ is stationary, it is

easy to observe that the covariance matrix Σ depends on A and Ψ, i.e., Σ = A>ΣA + Ψ, and we further

have:

ΣA> = Σ1. (5.1.2)

Essentially, the zero and nonzero entries in the transition matrix A directly reflect the Granger non-causalities

and causalities with regard to the stochastic time series. In other words, a nonzero entry Aij implies that

the j-th time series is predictive for the i-th time series, with the magnitude |Aij | indicating how much the

predictive power is. The new similarity measure in our clustering algorithm is built upon such cross-predictive

relationship between time series. Now we set to introduce the clustering algorithm.

5.1.2 The Proposed Clustering Algorithm

Our algorithm first estimates the cross-predictability among the time series, and then identifies the clustering

structure based on the estimated relationship. To introduce our proposed algorithm, we need the following
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notations: XS = [X1, . . . ,XT−1]
> ∈ R(T−1)×d, XT = [X2, . . . ,XT ]

> ∈ R(T−1)×d, Σ̂ = X>SXS/(T −

1), and Σ̂1 = X>SXT /(T − 1). Inspired by the relationship in Eq. (5.1.2), our main idea is to estimate A

based on the relationship between A and the autocovariance and lag-1 autocovariance matrices. This motivates

the following Dantzig selector type estimator [116],

Â = arg min
A
‖A‖1 subject to ‖Σ̂A> − Σ̂1‖∞,∞ ≤ µ, (5.1.3)

where µ > 0 is a tuning parameter. Since each row of A is independent, the above optimization problem can

be decomposed into d independent sub-problems and solved individually as follows:

β̂i = arg min
βi

‖βi‖1 subject to ‖Σ̂βi − γ̂i‖∞,∞ ≤ µ, (5.1.4)

where γ̂i = (Σ̂1)∗i = X>S (XT )∗i/(T−1), i.e., γ̂i is the i-th column of Σ̂1, and Â =
[
β̂1, . . . , β̂d

]>
∈ Rd×d

with each β̂i ∈ Rd. Therefore, the β̂i in (5.1.4) is an estimation of the i-th row of the transition matrix A.

Furthermore, for each µ > 0, there always exists a λ > 0 such that (5.1.4) is equivalent to the following

regularized Dantzig selector type estimator:

β̂i = arg min
βi

λ‖Σ̂βi − γ̂i‖∞,∞ + ‖βi‖1, (5.1.5)

where λ is a regularization parameter to determine the sparsity of the estimation. (5.1.4) can be solved by

alternating direction method of multipliers (ADMM) [114]. All the d optimization problems can be solved in

parallel, thus computationally efficient.

After solving the problem in (5.1.5), we construct an affinity matrix W based on Â =
[
β̂1, . . . , β̂d

]>
by

symmetrization, and compute the corresponding Laplacian to perform standard spectral clustering [117, 118]

to recover the clusters in the input time series. The procedure is summarized in Algorithm 3.

5.1.3 Discussion

At first glance, the regularized Dantzig selector in (5.1.5) and Lasso appear similar. However, different from

Lasso, the “input” of the regression problem in Eq (5.1.5) is the lag-0 covariance matrix, and the “response”

is the lag-1 covariance matrix. Here the lag-one covariance matrix encodes and includes into consideration

the first-order temporal information, which is missing in conventional similarity metrics such as correlation.

Additionally, different from the Lasso-based estimation procedure [119], which penalizes the square loss, the

regularized Dantzig selector estimator penalizes the `∞,∞ loss.
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Algorithm 3: Time Series Clustering Algorithm

Input: Time series X = [X1, . . .XT ]
> ∈ RT×d, XS = [X1, . . . ,XT−1]

> ∈ R(T−1)×d,
XT = [X2, . . . ,XT ]

> ∈ R(T−1)×d, Σ̂ = X>SXS/(T − 1), and γ̂i = X>S (XT )∗i/(T − 1)
Output: Cluster membership of each time series Y
1. Solve for each i = 1, . . . , d:

β̂i = arg min
βi

λ‖Σ̂βi − γ̂i‖∞,∞ + ‖βi‖1;

2. Set Â =
[
β̂1, . . . , β̂d

]>
;

3. Construct the affinity graph G with nodes being the d time series in X, and edge weights given by
the matrix W =

∣∣Â∣∣+
∣∣Â∣∣>;

4. Compute the unnormalized Laplacian L = M−W of graph G, with M = diag(m1,m2, . . . ,md)

and mi =
∑d
j=1Wij ;

5. Compute the first k eigenvectors σ1, . . . , σk of L and let V ∈ Rd×k be the matrix containing as
columns the first k eigenvectors;

6. Cluster time series x′i ∈ Rk, as the i-th row of V, with the k-means algorithm into clusters
C1, . . . , Cl, . . . , Ck.

d

d⇥
T - 1

d

T - 1

d

…
…

…
…

A
XSXT

X1X2

XT−1XT

⇡ A∗,di

Xt+1,di Xt,∗

Figure 5.1: Illustration of the Proposed Regularized Dantzig Selector: it solves the regression problem to
estimate the predictive relationship between the observations from time t+ 1 and time t considering all the
time series.

It is also worth noting that Algorithm 3 shares a similar high level idea as the subspace clustering (SC)

algorithm [120, 62, 61], but the key difference is that SC considers the relationship between each data point

and all the other points, while in contrast, our estimator solves the regression problem to estimate the predictive

relationship between the observations from time t+ 1 and the observations from time t considering all the

time series, as illustrated in Figure 5.1. Another fundamental difference here is, SC assumes data are i.i.d. and

lie on different subspaces, while here the time series data are obviously dependent. This poses a big challenge

to the theoretical analysis of our algorithm.
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5.2 Main Results

In this section, we state our main theory - a provable guarantee for successfully recovering the underlying

clustering structure of the input time series. We first introduce some necessary definitions for understanding

our main theorem.

5.2.1 Preliminaries

To define the clusters among time series X under the context of VAR model, we assume A = diag(A1, . . . ,Al, . . . ,Ak)

to be block diagonal, where Al ∈ Rdl×dl and the number of time series d satisfies d =
∑k
l=1 dl. Consequently,

we can rewrite X as X =
[
X1, . . . ,Xl, . . . ,Xk

]
with each Xl ∈ RT×dl obeying:

X l
t+1 = AlX

l
t +Zlt, for t = 1, 2, . . . , T − 1,

which essentially defines the clustering structure in the time series, such that the dataX l
t+1 ∈ Rdl at time point

t+ 1 depends only on the dataX l
t from the previous time point t in the same block indexed by Al. In other

words, as an effect of Al, data are more predictive for each other in the same block, rather than for those in the

other blocks. The block diagonal transition matrix A gives rise to the fact that the time series in X ∈ RT×d

formulate k clusters C1, . . . , Cl, . . . , Ck of RT×dl , and each Cl contains dl one-dimensional time series of RT

denoted as Xl. Without loss of generality, let X =
[
X1, . . . ,Xl, . . . ,Xk

]
be ordered. We further write Sl to

denote the set of indices corresponding to the columns of X that belong to cluster Cl.

Definition 5.2.1 (Cluster Recovery Property). The clusters {Cl}kl=1 and the time series X from these clusters

obey the cluster recovery property (CRP) with a parameter λ, if and only if it holds that for all i, the optimal

solution β̂i to (5.1.5) satisfies: (1) β̂i is nonzero; (2) the indices of nonzero entries in β̂i correspond to only

the columns of X that are in the same cluster as X∗i.

This property ensures that the output coefficient matrix Â and affinity matrix W will be exactly block

diagonal, with each cluster represented in a disjoint block. Particularly, recall that we assume the transition

matrix A in the VAR model to be block diagonal, and therefore the CRP is guaranteed to hold for data generated

from such a model. For convenience, we will refer to the second requirement as the “Self-Reconstruction

Property (SRP)” from now on.

Definition 5.2.2 (Inradius [120]). The inradius of a convex body P , denoted by r(P), is defined as the radius

of the largest Euclidean ball inscribed in P .



Chapter 5 Cross-Predictive Clustering for Sensor Type 52

By the definition, the radius of a P(X) measures the dispersion of the time series in X. Naturally,

well-dispersed data will yield a large inradius while data with skewed distribution will have a small inradius.

5.2.2 Theoretical Guarantees

One of our major contributions in this work is to provide theoretical guarantees for successfully recovering the

clustering structure in the data.

Theorem 5.2.3. Under the assumption of VAR model with a block diagonal transition matrix, we compactly

denote P l0 = P(ΣSl,Sl), P l1 = P((Σ1)Sl,Sl), rl0 = r(P l0), rl1 = r(P l1), and r0r1 = minl r
l
0r
l
1 for l =

1, 2, ..., k, and let

ρ =
16‖Σ‖2 maxj Σjj

minj Σjj(1− ‖A‖2)

√
6 log d+ 4

T
. (5.2.1)

Furthermore, if

r0r1 >
‖ΣSc

l ,Sl‖∞,∞ + 2ρ

‖γSl‖∞,∞ − 2ρ
, (5.2.2)

where γSl ∈ Rdl is a column of Σ1, then with probability at least 1 − 6d−1 the cluster recovery property

holds for all the values of the regularization parameter λ in the range:

1

r0r1(‖γSl‖∞,∞ − 2ρ)− ρ < λ <
1

ρ+ ‖ΣSc
l ,Sl‖∞,∞

, (5.2.3)

which is guaranteed to be non-empty.

We defer the full proof of the theorem in the supplementary material. The theorem provides an upper

bound and a lower bound for the regularization parameter λ, to successfully recover the underlying clustering

structure in the time series: on the one hand, λ cannot be too large, otherwise A will be too dense to perform

clustering on. On the other hand, as λ approximates 0 the connectivity among time series decreases because

the optimal solution to (5.1.5) becomes more sparse. To guarantee the obtained solution is nontrivial (i.e., β̂i

is nonzero), λ must be larger than a certain value. In addition, a lower bound on r0r1 is established, which

imposes a requirement on the dispersion of the covariance between time series within the same cluster. We

further make the following remarks:

Remark 5.2.4 (Tolerance of Noise across Clusters). From (5.2.2) we see that, for the CRP to hold, the

dispersion of the columns of Σ (each column is taken as a data point ∈ Rd) needs to be sufficiently large. r0 is

the dispersion of covariance between time series in a cluster Sl, and r1 is the dispersion of lag-1 covariance

between time series in a cluster Sl. The RHS of (5.2.2) depends on the scale of ΣSc
l ,Sl and reflects the

maximum correlation between the time series in one cluster Sl and any time series from all the other clusters.
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Remark 5.2.5 (Sample Complexity). We can observe that the factor before the square root in (5.2.1) is

bounded by the largest and smallest eigenvalue of Σ, and therefore we can rewrite ρ = κ
√

(6 log d+ 4)/T

where κ is a constant dependent on Σ. We can further derive from (5.2.2) that T > 4κ2(6 log d+ 4)(r0r1 +

1)2/(r0r1‖γSl‖∞,∞ − ‖ΣSc
l ,Sl‖∞,∞)2, which essentially indicates that the sample complexity for CRP to

hold is O(log d). In other words, for the algorithm to succeed, the number of time series d is allowed to grow

exponentially with the length of time series T ; as long as log d is smaller than the length of time series T , our

theory holds. Indeed, it is desired to see such a property for high-dimensional data, as d can often possibly far

exceeds the number of samples T .

Remark 5.2.6 (A Uniform Parameter λ). Another direct observation from the main theorem is that we can

find a uniform value for λ, within the range as specified in (5.2.3), which can work for the regression task

in (5.1.5) for all i = 1, ..., d. In other words, problem in (5.1.5) is solvable with a single λ and can be solved

in parallel for each i = 1, ..., d.

5.3 Evaluation

In this section, we demonstrate the correctness of our theoretical findings and the effectiveness of our proposed

clustering algorithm on both synthetic and real-world data. We first experiment with different sets of parameters,

including the number of time series d, the length of the time series T , and the number of clusters k in the data.

The experimental results confirm that, when the required condition in Theorem 5.2.3 is satisfied, the clusters in

the data can be recovered perfectly. We further apply the algorithm to a real-world data set where the task is to

group sensor time series by their type of measurement (e.g., a temperature sensor vs. a humidity sensor). Our

algorithm is able to outperform the state-of-art baselines by more than 20% measured by adjusted rand index.

5.3.1 Baselines

In our proposed clustering algorithm, we estimate the similarity matrix with the regularized Dantzig selector

(referred to as CP). As baselines, instead of using our estimator, we consider the following methods to obtain

the similarity matrix, and the rest of the clustering procedure remains the same as ours:

Correlation Coefficient (CC): In this baseline, we compute the Pearson correlation coefficient between all

pairs of time series, and use these coefficients to construct the similarity matrix.

Cosine Similarity (Cosine): In the second baseline, we compute the pairwise cosine similarity for all the time

series, and preserve only the similarity scores for the top-k nearest neighbors for each time series and put them
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as the row of the similarity matrix. Our experiment shows that the results are not sensitive to k and we set

k = 5.

Autocorrelation (ACF): This baseline first computes the autocorrelation vectors (with a lag up to 50) for

each time series, and then further calculates the Euclidean distance between each pair of time series based on

the autocorrelation vectors. We use the implementation in [121] to obtain the distance matrix first, and then

convert the distance into similarity score with Gaussian kernel function. (Smaller distances should map to

larger similarity scores.)

Dynamic Time Warping (DTW): DTW is a popular method to compute the similarity between time series.

Here we compute the pairwise DTW similarity score for all the time series, and then normalize similarity

scores to between 0 and 1.

We also implement a baseline that does not rely on the similarity between time series:

Principal Component Analysis (PCA): In this method, PCA is first applied to reduce the dimensionality of

each original time series by preserving d(=4) principle components, and then k-means is applied to these PCA

scores for clustering.

5.3.2 Synthetic Data

In this section, we show the effectiveness of our proposed clustering algorithm via numerical simulations.

Particularly, the data Xt at a time point t are generated from a VAR model as defined in (5.1.1), and we

generate the input time series X as follows: (1) We first generate the block diagonal transition matrix A with

k clusters, and the values within each block are generated with a Bernoulli distribution; (2) Since we assume

(X)∞t=−∞to be stationary, we then rescale A such that its spectral norm ‖A‖2 = α < 1; (3) Given A, Σ is

generated such that the elements on the diagonal equal to 1 and the off-diagonal elements are set to a same

small value, e.g., 0.1. Then we rescale Σ to have its spectral norm satisfy ‖Σ‖2 = 2‖A‖2; (4) Next, according

to the stationary property, the covariance matrix of the additive noise Zt follows Ψ = Σ−A>ΣA, where

Ψ must be a positive definite matrix; (5) We can then generate X1 from the multivariate normal distribution

with the parameters generated in previous steps, and obtain the following Xt with the VAR model. We fix the

number of time series d at 100, and choose the length of the time series T from a grid of {1, 3, 5, 7, 9}× log(d)

(rounded to the closet integer), i.e, the ratio of T/ log(d) varies from 1 to 9. For each value of T , we repeat the

data generation process for 100 times and report the average of the experimental results.

We first experiment with different values for the regularization parameter λ and examine if the two

requirements as stated in Definition 5.2.1 are satisfied. We scan through an exponential space of λ from

1/(log(d)/T )× 10−1 to 1/(log(d)/T )× 103 and define the metric Self-Reconstruction Property Violation
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(a) Self-Reconstruction Property (SRP) violation rate for different T/ log(d) against
different λ with k = 25: too small a λ will produce trivial solutions (A = 0, thus
V ioRate = 1) while a sufficiently large λ gives a solution satisfying both the nonzero
and SRP requirements (V ioRate = 0).
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(b) Clustering quality for different T/ log(d) against different λ with k = 25: cases
satisfying the nonzero and SRP conditions yield perfect clustering results. It is also
clear that the exact self-reconstruction condition (V ioRate = 0) is not necessary for
perfect clustering.

Figure 5.2: Self-Reconstruction Property Violation Rate and the Corresponding Clustering Quality (measured
by Adjusted Rand Index) with Different T/ log(d) Against Different λ.

Rate (VioRate) of the estimated transition matrix A as follows:

V ioRate =

∑
i,j /∈Cl |Aij |∑
i,j∈Cl |Aij |

,
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Figure 5.3: Clustering Quality for Different T/ log(d) Against Different Number of Clusters k:
larger k is better.

where (i, j) ∈ Cl denotes that the i-th time series X∗i and the j-th time series X∗j are in the same cluster Cl
for some l (likewise for (i, j) /∈ Cl). By definition, V ioRate measures relatively how significant the predictive

weights are for pairs of time series across different clusters, compared to the weights for pairs in the same

cluster. For a trivial solution, i.e., A = 0, the V ioRate is defined to be 1 while for a solution satisfying the

self-reconstruction property, the V ioRate should be exactly 0. The violation rates for different T/ log(d) and

λ values when k = 25 are illustrated in Figure 5.2a; the results confirm our theoretical findings. We observe

that when λ is small, the solution violates the nonzero requirement, thus the V ioRate being 1 (refer to the

two rows at the bottom). When λ is sufficiently large within a range, the violation rates are zero, indicating

all the entries in the off-diagonal blocks of the estimated A are zero, which satisfies the SRP. In Figure 5.2b,

we show the quality of time series clustering (measured by adjusted rand index and higher is better) with the

corresponding A obtained in Figure 5.2a. We can notice that cases perfectly satisfying the nonzero and SRP

requirements can produce perfect clustering results. Furthermore, it is also clear that exact self-reconstruction

condition is not necessary for perfect clustering.

We next investigate how the number of clusters k affects the clustering performance, where we vary the

value of k from 5 to 25. For the regularization parameter λ, we scan through the same exponential space as the

above experiment with 5-fold cross-validation, and choose the one with the minimal cross-validation error.

We fix ‖A‖2 at 0.4 and report the average results of the 100 runs for each set of parameters as illustrated in

Figure 5.3. We clearly see that a larger k leads to better clustering results, which makes sense since the more

the number of clusters is, the sparser A is, and therefore the more accurate the estimation of A is.

We also examine the effect of the transition matrix’s spectral norm ‖A‖2 on the clustering quality. To this

end, we set ‖A‖2 = α and vary α from 0.1 to 0.9, and the covariance matrix Σ and Ψ are generated in the
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Figure 5.4: Clustering Quality for Different T/ log(d) Against Different Values α for Spectral
Norm ‖A‖2: smaller α is better.

Table 5.1: Experimental Comparisons with Baselines: results on synthetic and real data demonstrate the
advantage of our proposed algorithm (CP), and each cell includes the average clustering performance (adjusted
rand index) of 10 runs with standard deviation.

CC Cosine ACF DTW PCA CP
Synthetic Data-1
(d = 50, T = 50)

0.383± 0.171 0.521± 0.123 0.240± 0.147 0.282± 0.184 0.786± 0.139 0.943± 0.165

Synthetic Data-2
(d = 50, T = 100)

0.603± 0.181 0.551± 0.143 0.253± 0.109 0.410± 0.105 0.912± 0.141 1.000± 0.000

Real Data 0.617± 0.031 0.542± 0.014 0.362± 0.113 0.523± 0.119 0.456± 0.144 0.824± 0.025

same way as described earlier. For the parameter λ, we take the same cross-validation procedure as above. We

fix the number of clusters k at 25 and report the average results of the 100 runs for each set of parameters, as

shown in Figure 5.4. We observe that, for a certain value of T/ log(d), the clustering quality increases as the

spectral norm of the transition matrix decreases. This indicates that the spectral norm of the transition matrix

is a critical factor and verifies the theoretical findings in (5.2.1).

To compare our method with the baselines described in §5.3.1, we further conduct two sets of experiments

on synthetic data with different parameters. To generate the synthetic data in the first experiment (referred to as

Synthetic Data-1 in Table 5.1), we set the number of time series d = 50, the length of time series T = 50, the

number of clusters k = 5, and the transition matrix’s spectral norm ‖A‖2 = 0.5. For the second experiment

(Synthetic Data-2 in Table 5.1), we change T to 100, and the rest of parameters remain the same. We see that,

when d is comparable to T in the first experiment, our method (CP) performs significantly better than the

baselines. When the number of samples T is increased to 100, all the baselines see performance boost, while

our method produces perfect clustering results.

One shall note the better performance of PCA, our understanding is that PCA extracts better explanatory

components out of the sample covariance matrix, which still captures the underlying causal relationship



Chapter 5 Cross-Predictive Clustering for Sensor Type 58

Regularization Parameter 1/λ
0.05 0.1 0.15

Ad
ju

st
ed

 R
an

d 
In

de
x

0

0.2

0.4

0.6

0.8

Figure 5.5: Clustering Quality of Our Regularized Dantzig Selector-based Spectral Clustering Algorithm: the
algorithm works with a wide range of λ.

between variables, though it does not consider the first-order temporal information as our proposed method

does. For the other baselines, they simply compute similarity directly between variables, which is not

sufficiently effective in characterizing the relationship between time series in the high-dimensional setting.

5.3.3 Real-world Data

To further examine how effective our proposed algorithm is in practice, we also apply it to a real-world data

set, where the assumption of VAR model with block diagonal transition matrix might not be perfectly satisfied.

The data set [21] contains data collected from 204 sensor time series from 51 rooms on 4 different floors of a

large office building on a university campus. Each room is instrumented with 4 different types of sensors: a

CO2 sensor, a temperature sensor, a humidity sensor and a light sensor. The data from each sensor is recorded

every 15 minutes and the data set contains one-week worth of data. There are missing values in the one-week

period, so the total number of observations T is smaller than the number of sensor time series d. Our goal

is to assign each sensor time series into the correct type cluster, e.g., a temperature cluster or a CO2 cluster.

Recognizing the type of sensors is often an important step for many useful applications. For instance, when

applying analytics stacks comprised of a bundle of analytics jobs to a building for energy savings, every

particular analytics job requires as input some specific types of sensors.

In this case, we do not know the values of the parameters in the sufficient condition in Theorem 5.2.3, so

we cannot fine-tune λ. We roughly scan through the entire range of [0,1] for 1/λ and the results are shown

in Figure 5.5 (the data points beyond 0.15 all drop to zero, thus omitted in the figure). It again confirms

our theoretical findings in the sense that the proposed clustering algorithm can work when λ is sufficiently

large, even not perfectly. We also examine how well the baselines (detailed in §5.3.1) perform on the real



5.4 Summary 59

data set, and the results are summarized in Table 5.1. Our method can achieve more than 80% accuracy and

outperforms the best baseline by more than 20%, indicating that our method can still be effective when the

assumption of VAR with a block diagonal transition matrix might not be satisfied.

5.4 Summary

In this chapter, we describe a time series clustering method that relies on a new similarity measure in the high-

dimensional regime, where the number of time series is much larger than the length of time series. Different

from existing metrics, our similarity measure quantifies the “cross-predictability” between time series, i.e., the

degree to which a future value in each time series is predicted by past values of the others. We impose a sparsity

assumption and propose a regularized Dantzig selector estimator to learn the cross-predictability among time

series for clustering. We further provide a theoretical proof that the proposed algorithm will successfully

recover the clustering structure in the data with high probability under certain conditions. Experiments on both

synthetic and real-world data verify the correctness of our findings, and demonstrate the effectiveness of the

algorithm. For the real-world task of sensor type clustering, our method is able to outperform the state-of-art

baselines by more than 20% with regard to the clustering quality.



Chapter 6

Relationship Inference

Previous chapters presented various techniques for inferring the sensor type. In this chapter, we describe a

method for inferring another critical aspect of the sensor metadata — the functional relationships between

equipment in the building. In particular, we propose a new approach to automatically identify the functional

relationships between mechanical equipment. For example, the heating, ventilation, and air conditioning

(HVAC) system in a commercial building typically contains 5-15 air handling units (AHUs) that heat or cool

the air and circulate it to 200-500 variable air volume (VAV) terminal units. Each VAV contains dampers and

heating coils to fine tune the volume and temperature of the air for a specific room, as illustrated in Figure 6.1.

Thus, an HVAC system typically has thousands of highly-coupled mechanical parts and hundreds of controller

modules, each acting independently. In current industry practice, one can query a building’s BACnet network

for the names of all these components, but not for the mechanical relationships between them. Therefore,

when installing an analytics engine to a legacy or renovated building, obtaining these relationships is necessary.

The methods proposed in this chapter will automatically determine how the VAVs and AHUs are connected

to each other with minimal manual setup and configuration effort, so that an analytics engine can perform

real-time monitoring and system-wide efficiency analysis, for example, model predictive control [122] or fault

detection and diagnosis [9].

The research community has been trying to address the issue of inferring the relations among equipment

and sensors [20, 13, 14], together with other physical aspects, including the type [18, 19, 123] and the

location [21, 22]. However, all of these approaches involve a manual process that must be applied to each

building individually, thus not scalable. For example, a recent study tries to infer the relation between VAVs

and AHUs by perturbing the operation of each AHU and observing the response of VAVs [14]. Koh et

al. [23]also exploits the same principle of injecting control perturbations to a VAV to identify the co-located

60
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AHU	1
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Figure 6.1: A typical building contains multiple air handling units (AHUs), each heating/cooling air and
circulating it to dozens of variable air volume (VAV) boxes. Each VAV fine tunes the air flow supplied to a
single room. Building analytics requires such information about the functional connection between equipment,
which is currently performed manually in practice.

sensors and the dependency between actuators in the same VAV. However, this approach takes weeks to execute

and requires knowledge of when and how to perturb operations in a way that does not interfere with building

needs. Another study shows that contextual information can be extracted based on the names of data streams

and equipment controllers [13]. However, this approach still requires manual assistance to interpret the naming

convention of each building. Additionally, mechanical relationships are often not encoded in the equipment

names and sometimes the names can even be missing entirely.

The key intuition behind our solution is that functionally connected equipment is exposed to the same

events in the physical world (e.g., a person entering a room or a supply air fan turning on) and thus will exhibit

correlated events in their time series data. These events do not necessarily manifest as data outliers in the

traditional sense, but rather as coordinated changes in the data progression; an event is a short subset of time

series that may have exactly the same values as steady state operation but different noise levels, different rates

of change, and/or different second derivatives. For example, Figure 6.2 shows example readings from a VAV

air flow meter, where the events (marked in grey) can be outlier values (A and B), periods of gradual change

(C and D) or discontinuities. Each of these events corresponds to a different state of the room, the equipment,

or mechanically coupled equipment. We desire a unified model that can automatically characterize normal

operation for any data stream, and differentiate from other modes of operation.

Because events are subsets of time series of indeterminate length, differentiating them from normal

operation requires solving a combinatorial data segmentation problem — there are K possible states at each of

the N timestamps and this gives a total of KN possible combinations. To address these challenges, we take a
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Figure 6.2: Example sensor readings from a VAV and its connected AHU. The VAV events (marked in grey)
have many different causes. We desire a unified model that can automatically characterize normal operation
for any data stream, and differentiate from other modes of operation.

probabilistic perspective of the events and develop a Markovian Event Model (MEMO) that uses a bank of

kinematic models (each akin to a Kalman Filter [124]) to characterize the noise model and transition model

for different modes of time series data. We introduce a latent variable to govern the switching between these

models, reflecting the fact that the latent mechanical state underlying each data point is not observable. Here

we assume that the equipment is in its normal mode of operation most of the time, and that important event

types occur repeatedly and are statistically similar. Hence, using large raw data traces (e.g. one month), we

can use a maximum likelihood estimator to jointly estimate a model of normal operation, common types of

events, and the segmentation between them.

Once the events are detected, we identify relations between equipment by defining a correlation metric

based on the inferred events in their time series data. The key challenge is that the data streams are affected by

a mixture of latent factors, and not just the equipment relationships. For example, false correlations can be

created by diurnal weather patterns, changes in room occupancy, the opening of a window, and other events. We

filter these events and only look for co-incident events in both pieces of equipment. This dramatically reduces

the number of spurious relations and helps to sift out pairs of equipment that are truly connected. Moreover,

as we search for more of these correlated events over time, the probability of two pieces of equipment being

correlated by random chance drops exponentially.

To evaluate our solution, we consider the functional relation between a particular pair of equipment in

buildings discussed earlier: which VAV box is connected to which AHU. We evaluated the proposed approach

on one-month data from 5 commercial buildings of various sizes which are geographically located across the

US. Particularly, we performed evaluation in two different settings: 1) when we have knowledge about what

type of sensors to use for the relation inference (e.g., only measuring the correlation between air flow volume
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in VAV and fan speed in AHU for the inference), our approach achieves 94.38% accuracy on average across

all test buildings, compared to 85.49% by the best baseline; 2) when we do not have any knowledge about

the type to use, i.e., we need to automatically select sensors for the analysis, our method achieves an average

accuracy of 91.19%, compared to the possibly best accuracy of 95.64%. We believe this is a promising result,

and expect our method to be generally applicable to broader domains of event detection and relation inference.

6.1 Methodology

The main insight behind our solution is that functionally connected equipment is exposed to the same events

in the physical world, thus exhibiting correlated events in the attached sensors’ readings. As we search for

more of these correlated events over time, the probability of two streams being correlated by chance will drop

exponentially and sift out the true relations. To this end, our approach first detects the latent events in sensor

time series, and then identifies the relations among equipment based on the detected events, requiring minimal

human interventions. Specifically, we employ a bank of kinematic models—each modeling one of the latent

states—and a latent variable to govern the switch between these models. Once the events are detected, we use

a correlation-based metric to further pinpoint the correlated set of events that are indicative of the equipment

relations. In the rest of this section, we describe the basics of our continuous space Markovian Event Model,

elaborate on how we estimate the latent states in the time series data, and finally explain the procedure of

inferring the relation between equipment based on detected events.

6.1.1 The Markovian Event Model

In this study, we consider time series data from sensors, e.g., an air flow meter in a VAV that conditions some

room, that are subject to changes in the physical world. As an example, Figure 6.2 shows the readings from an

air flow meter of a VAV, where the events (marked in grey) have many different causes (labeled as A to D).

The events can be outlier values (A and B), periods of gradual change (C and D) or discontinuities. There are

also periods where the equipment stabilizes (the two long plateaus before and after C), although they stabilize

around different values. Each of these periods corresponds to a different state of the room, the equipment,

or mechanically coupled equipment. We desire a unified model that can automatically differentiate normal

operation from other modes of operation in any data stream. A classical sequential model such as a basic

Hidden Markov Model (HMM) would fail to model the underlying states with regard to such a requirement,

because it simply models the probability of observing each value given the model parameters (e.g., mean

and variance) of the possible states. In other words, HMM will interpret periods such as the two plateaus in

Figure 6.2 as different states, since their statistics (e.g., mean) are apparently different.



Chapter 6 Relationship Inference 64

latent true values

observed values
e.g., airflow sensor readingsxt-1 xt xt+1

yt-1 yt yt+1

zt-1 zt zt+1 latent states

Figure 6.3: Graphical model representation of our Markovian Event Model.

To fulfill such a requirement, we model the latent “true” values of time series based on the observed values

(i.e., we assume the observed time series is contaminated by noise), where we further assume each latent true

value is inherently generated from an underlying latent state. Following the design, for the latent true values

we assume the current true values are dependent on the previous ones, and the transition mode (e.g., how

fast the transition is) would essentially reveal the underlying state. Such a design overcomes the inability of

classical latent state models, which only center around the values, in differentiating various states in the data.

Moreover, different from previous works, the parameters (e.g., variance) of each state in our model are learned

globally and apply to all the data in time, thus allowing data that appear to be in different states (e.g., the two

steady plateaus in Figure 6.2) to be modeled as in the same state.

Specifically, for the random variables in our proposed solution, we model both the value and the “velocity

of change” in value for their time series readings. We consider the velocity of change because it helps to

better characterize the time series in the case of changes. For example, when a person enters a room and

the room temperature rises, the air conditioning system starts cooling and the sensor readings will exhibit

sudden changes. A model that only models the value will not be able to closely track these sudden changes

and results in significant residuals, i.e., modeling errors. Hence, we add the extra velocity dimension, so as to

accommodate sudden changes.

Overall, there are three layers in the proposed model, as illustrated in Figure 6.3 (from top to bottom): (1)

the latent state layer that governs the switch between states (e.g., steady or event) of the data; (2) the latent true

values (e.g., the value of readings and the velocity of change in value) of the data; (3) the observed primitive

readings of sensor data. Let xt = [x(t),vx(t)]> ∈ R2 be the observed continuous readings from a particular

sensor, e.g., a temperature sensor, where x(t) is the observed sensor value at timestamp t, and vx(t) is the

observed velocity of change at timestamp t, for t ∈ {1, 2, . . . , N}. Likewise, we define the latent true values

yt = [y(t),vy(t)]> ∈ R2, where y(t),vy(t) are the latent true sensor value and the latent true velocity of

change at each time t, respectively. For the latent discrete state variables z1:N , each zt takes on a value from

{1, 2, . . . ,K}, implying a total of K possible states in data at each time t.
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Given the model structure specified in Figure 6.3, the joint distribution over the observed values x1:N , the

latent true values y0:N , and the latent states z0:N is given by:

p(x1:N ,y0:N , z0:N ) =

p(z0)p(y0|z0)

N∏
t=1

p(zt|zt−1)p(yt|yt−1, zt)p(xt|yt, zt), (6.1.1)

where z0 and y0 stand for initial latent state and latent true values.

For the latent states z1:N , we assume they form a first-order Markov chain and the transition probability is

given by:

pij = p(zt = j|zt−1 = i), 1 ≤ i, j ≤ K, (6.1.2)

whereK is the total number of possible states in the data. Thus, pij is modeled as aK-dimensional multinomial

distribution. As we assume the observations are transformed from the latent true values subject to underlying

noise, we assume the observed values are drawn from a Gaussian distribution centered at the latent true values.

As a result, conditioned on the latent state zt, the probability of observing sensor reading data xt is given by:

p(xt|yt, zt) = N(Hztyt,Rzt) (6.1.3)

∝ exp
[
(Hztyt − xt)

>
R−1zt

(Hztyt − xt)
]

= exp

[(
Yt −H−1zt

Xt

)> (
H−1zt

Rzt

(
H−1zt

)>)−1 (
Yt −H−1zt

Xt

)]
,

where N(·, ·) denotes a Gaussian distribution, Hzt ∈ R2×2 is a matrix that linearly maps the hidden true

values Yt to the observation Xt, and Rzt
∈ R2×2 is the corresponding covariance matrix capturing the noise

embedded in this transformation. For the latent true values Yt, we assume they also form a Markov chain and

the transition probability follows Gaussian as well, i.e.,

p(Yt|Yt−1, zt) = N(FztYt−1,Qzt) (6.1.4)

∝ exp
[
(Yt − Fzt

Yt−1)
>

Q−1zt
(Yt − Fzt

Yt−1)
]
,

where Fzt
∈ R2×2 is the state transition matrix between Yt and Yt−1, and Qzt

∈ R2×2 the covariance matrix

capturing noise in the state transition.
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6.1.2 Posterior Inference and Model Estimation

The key in applying the proposed model for event extraction is to infer the latent states z1:N in a given

time series x1:N . Based on our first order Markovian assumption in state transition, we develop an efficient

sampling algorithm based on Gibbs sampling techniques [125] for posterior inference. The basic idea of Gibbs

sampling is to accumulate posterior samples by sweeping through each variable to sample from its conditional

distribution with the remaining variables fixed to their current values. Such sweeping is often performed

iteratively until convergence.

Particularly, given our model structure in Figure 6.3, we can obtain the conditional probability of Yt:

p(Yt|Yt−1,Yt+1,Xt, zt)

∝ p(Yt|Yt−1, zt)p(Yt+1|Yt, zt+1)p(Xt|Yt, zt), (6.1.5)

where the first term on the right-hand side is given in Eq. (6.1.4), the third term is given in Eq. (6.1.3), and the

second term is computed as

p(Yt+1|Yt) = N(FztYt,Qzt) (6.1.6)

∝ exp
[
(Fzt

Yt+1 −Yt)
>

Q−1zt
(Fzt

Yt+1 −Yt)
]

= exp

[(
Yt − F−1zt

Yt+1

)> (
F−1zt

Qzt

(
F−1zt

)>)−1 (
Yt − F−1zt

Yt+1

)]
.

We can hereby sample the latent variable Yt from the composite Gaussian distribution, whose parameters are

derived based on the above three Gaussian density functions. For sampling the latent state zt, we similarly

have the conditional probability as follows:

p(zt|zt−1, zt+1,Xt,Yt) (6.1.7)

∝ pzt−1,zt
pzt,zt+1

p(Xt|Yt, zt)p(Yt|Yt−1, zt)

= pzt−1,zt
pzt,zt+1

N(Hzt
Yt,Rzt

)N(Fzt
Yt−1,Qzt

).

We can then draw samples for each of the variables by sweeping through all the posterior conditionals. The

theory of MCMC guarantees that the stationary distribution of the samples simulated under the Gibbs sampling

algorithm is the target joint posterior that we are interested in [126]. Therefore, we run for a sufficient number

of iterations of the sweeping process for each variable, and use the converged results to approximate the target

posteriors.
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The aforementioned posterior inference procedures depend on the availability model parameters, i.e.,

{Fi,Hi,Qi,Ri}Ki=1. In theory, we can estimate the parameters using Maximum Likelihood Estimation

(MLE). However, as the sensor time series data in our problem reflects the physical property of the world, it is

straightforward to assume the values (i.e., Xt and Yt) follow the physical law - sensor reading values at the

next timestamp are based on the current one plus the product of velocity and time difference. As a result, for

our problem, we fix F =

1 1

0 1

 and H =

1 0

0 1

 regardless of the value of zt, to reflect the physical law.

In order to estimate {Qi,Ri}Ki=1, we maximize the log data likelihood function defined by Eq. (6.1.1)

based on the sampled results of z1:N and y1:N . As the transition follows a Gaussian distribution, the

maximization problem has a closed form solution; and for brevity, we only give the conclusion below:

Q̂ =
1

N

∑
t

(Yt − FYt−1) (Yt − FYt−1)
>
. (6.1.8)

Note that, we dropped the subscription zt in y and Q to avoid cluttered notations. Specifically, when estimating

Q for each state (i.e, Qi), one should only collect the inferred y1:N values in this latent state. Similarly, we

can estimate R with,

R̂ =
1

N

∑
t

(Xt −HYt) (Xt −HYt)
>
. (6.1.9)

We can estimate the transition probability pij for Z by collecting the sufficient statistics

pij =

∑
{t|zt−1=i,zt=j} 1

N
for 1 ≤ i, j ≤ K. (6.1.10)

Basically, these quantities summarize the percentage of transitions from state i to j in the sampled z1:N

sequence.

Putting together the aforementioned posterior inference and parameter estimation procedures, we develop

a stochastic Expectation-Maximization algorithm to iteratively refine the model parameters and the latent

variable inference results:

E-Step: At each timestamp t, infer the latent variables Yt, zt by Gibbs sampling based on the current model

parameters (i.e., {Qi,Ri}Ki=1 and {pi}Ki=1) using Eq. (6.1.5)-(6.1.7).

M-Step: Update the model parameters by collecting the sufficient statistics of each latent variable, following

Eq. (6.1.8)-(6.1.10).

We shall note that the sampling procedure for the latent variables in the E-step can be performed in time

linearly with the length of time seriesN and further efficiently expedited via parallelism: because each variable
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depends only on the adjacent nodes before and after, we can update all the variables associated with even

timestamps in parallel with all their neighbors at odd timestamps fixed, or vice versa. We alternate between

these two groups and such parallelism helps us empirically achieve more than 30x speedup for the inference in

our evaluation datasets.

6.1.3 State-dependent Transitions

In practice, when the data stabilizes within one state, it is reasonable to have the velocity of change follow

the first-order model we specified earlier, i.e., the velocity at the current timestamp depends on the one at a

previous timestamp. However, when the time series transits between states, e.g., from steady into events, or

vice versa, a sudden change in velocity is expected. Still enforcing the first-order transition as in Eq. (6.1.4)

will cause unnecessary early reaction or delay in latent velocity inference. In other words, the first-order

dependency will enforce the velocity to start increasing ahead of events when transiting from steady into

events (for example, from the first plateau to C in Figure 6.2), or stay decreasing post-events after exiting from

events to steady.

To account for possible sudden changes in velocity across state transition boundaries, it is necessary to

eliminate the dependency on its neighbors for velocity modeling in these boundary cases, i.e., the velocity at a

timestamp such that at least one of its two adjacent readings is in a different latent state than its own. This can

be intuitively understood as the system being perturbed by some sudden external stimulus, e.g., the AHU has

been shut down. Basically, we have two different scenarios: 1) one of the adjacent readings is in a different

state, and 2) both of the adjacent readings are in a different state.

For the first scenario, when modeling the posterior of Yt, we need to modify the form of its conditional

probability by only preserving the emission probability and one direction of the transition probability. First,

when zt+1 and zt are different, we use the emission probability p(Xt|Yt) and the transition probability

p(Yt|Yt−1), i.e., (note the difference below from Eq. (6.1.5))

p(Yt|Yt−1,Yt+1,Xt, zt 6= zt+1) ∝ p(Xt|Yt)p(Yt|Yt−1), (6.1.11)

where the first term on the right-hand side is given in Eq. (6.1.3), and the second term is given in Eq. (6.1.4).

We shall note that the above function only applies to the sampling for the velocity dimension (recall that

yt ∈ R2). Due to the Gaussian assumption about the emission and transition probabilities, the posterior

distribution in the transition case here can still be analytically derived as a composite Gaussian distribution.
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When zt−1 and zt are different, to capture the unknown external stimulus that affect the sampling of yt,

we introduce a global prior distribution of the latent true velocity p(Yt|θzt
) that is also state-dependent:

p(Yt|Yt−1,Yt+1,Xt, zt−1 6= zt) ∝ p(Xt|Yt)p(Yt+1|Yt)p(Yt|θzt
). (6.1.12)

For the second scenario, when modeling the posterior of Yt, we adjust the conditional probability to include

only the emission probability, together with the prior probability, i.e.,

p(Yt|·) ∝ p(Xt|Yt)p(Yt|θzt). (6.1.13)

6.1.4 Inferring Relations via Detected Events

The search space for equipment relation inference in a typical commerical building is huge. For a set of N

sensors, the number of true relationships of interest is on the order of O(kN), given the fact that each sensor

is associated with k other sensors with respect to a particular relation; while the total number of pairwise

relationships among them is on the order of O(N2). As we scale to thousands of sensors in a building, the total

number of possible relations quadratically outnumbers the true relations of interest. To facilitate the inference

process, our basic assumption for identifying the relations is that connected equipment will be exposed to the

same events in the physical world, and thus will exhibit correlated changes in the data.

Yet, the key challenge is that the data streams are affected by a mixture of latent factors, and not just the

equipment relationships. For example, false correlations can be created by diurnal weather patterns, changes

in room occupancy, the opening of a window, and other external events. Thus, we need to filter these events

and only look for co-incident events in both pieces of equipment. This can dramatically reduce the number of

spurious relations and help to sift out pairs of equipment that are truly connected. Moreover, as we search for

more correlated events over time, the probability of two sensors being correlated by random chance drops

exponentially.

In our context, when there are events in an AHU, e.g., the outlet fan speed increases, these events will

affect the downstream VAVs that connect to this AHU. Essentially, we should only look for the events in each

VAV caused by the AHU for correlation, as they are the ones that reveal the true functional relation between

them. Assuming that these resultant events in VAV would align temporally with its connected AHU events, we

therefore filter spurious events by masking each VAV event sequence with AHU event timestamps—we only

preserve the (detected) events in a VAV that align in time with the events in a given AHU, and reset the others
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to no events (or steady state), i.e.,

z
(i,j)
V AV (t) = ziV AV (t) & zjAHU (t) , for t ∈ {1, . . . , N}, (6.1.14)

where z
(i,j)
V AV (t) is the value at time t in the binary event sequence of VAV i masked by AHU sequence j,

zjAHU (t) is the value at time t in the event sequence of AHU j, and & denotes the bitwise AND operation.

To be more specific, when correlating the event sequence from a VAV sensor i with each of the candidate

AHU sensor j, we first mask the VAV event sequence with the given candidate AHU event sequence, and then

calculate the cosine similarity simij by

simij =

∑
t z

(i,j)
V AV (t) zjAHU (t)

‖z(i,j)V AV ‖ · ‖zjAHU‖
, (6.1.15)

where ‖ · ‖ is the L-2 norm of a vector. After that, we assign each VAV to the AHU with which it has the

highest similarity score. The masking step helps to further concentrate the comparison between VAV and AHU

around periods when there are events in the AHU, which we believe drive the events in its connected VAVs

and are the key to identifying the relations. Presumably, a masked VAV event sequence is expected to best

correlate with its truly connected AHU among all the candidate AHUs. We will demonstrate in details the

effect of the masking operation in the evaluation.

6.2 Evaluation

In this section, we empirically evaluate the effectiveness of the proposed solution in identifying the functional

relation between equipment based on their sensor time series data. Both quantitative and qualitative evaluations

are performed to demonstrate the inferred events and their value in relation inference.

6.2.1 Dataset

To evaluate our approach, we use the data from a set of 5 commercial buildings distributed across the U.S.:

the number of VAVs ranges from 100 to over 500, and the number of AHUs varies from 5 to 13. The ground

truth for VAV to AHU association is obtained from our industrial partner that contracts with these buildings.

The details of each building is summarized in Table 6.1. In the dataset, the typical number of sensing and

control points attached to each equipment is between 6 and 13, and the smallest building in our set has over

1,300 points. The number of connected VAVs for each AHU falls in anywhere from a handful to more than 80.

We shall note that, oftentimes, the connected VAVs to the same AHU can span over different floors within a
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Table 6.1: The details of the buildings used in our study, including the number of air handling units (AHU),
variable air volume boxes (VAV), floors, and attached sensors.

Building ID 10312 10320 10596 10606 10642
# of AHU 12 8 5 13 8
# of VAV 261 113 195 510 259

# of Floor 9 1 5 4 8
# of Sensor 2754 1318 2010 4811 2379

Size (SF) 300,000 65,000 150,000 490,000 181,397

building, which leaves the manual perturbation-based solution [14] inefficient, inaccurate, albeit considerably

time-consuming. For the time series from each point, it is recorded every 15 minutes. And in each building we

have collected one-month worth of time series data for all sensors.

6.2.2 Baselines

Inspired by [127], we compare our method with several baselines that combine the idea of time series clustering

and bipartite matching. In particular, we first cluster the VAVs (using k-means with k set to the number of

AHUs) and calculate the average linkage degree between every AHU and each group of VAVs. We then

perform bipartite matching to assign each group of VAVs to one AHU, using the Ford-Fulkerson Maximum

Flow Algorithm [128]. The linkage degree is defined as

l(AHUi, Cj) =
1

|Cj |
∑

k∈{Cj}

d(AHUi, V AVk), (6.2.1)

where Cj , {Cj}, |Cj | refer to the j-th cluster of VAVs, the VAVs assigned in the cluster, and the size of the

cluster, respectively. And d(a, b) calculates the cosine similarity between the two input streams, and we

experiment with two different kinds of input streams—the primitive time series (TS) and the event sequence

(ES). This gives us two baseline combinations. i.e., KMeans-TS and KMeans-ES.

We also compare our method with the following baselines, where each is used as an alternative method for

event detection, and the subsequent relation inference step is the same as our approach.

Pearson Correlation Coefficient (CC): As the most straightforward baseline, we compute the pairwise

Pearson Correlation Coefficient between each VAV and AHU, and then assign the VAV to the AHU with

highest score.

Hidden Markov Model (HMM): For this baseline, we apply a K-state discrete HMM to infer the latent state

in the sensor data.

Kalman Filter (KF): We compare against a standard KF that models the velocity of change in the time series

data. We take the residues between the KF inferred true values and observed values as events for correlation
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analysis in the relation inference step.

Adaptive Event Detection (AED): AED models a time series by combining two Poisson distributions - one

for the normal periodic component and the other for the rare event component [75]. We replace the Poisson

distributions in the original method with Gaussians, to handle the continuous sensor readings in our problem.

Sliding Window Likelihood (SWL): We also compare our approach with a method that employs sliding

windows and estimates the likelihood of having an event in each window sequentially [129].

6.2.3 Experimental Setup

For the number of possible states K in senor data, we set K = 2 by default, if not specified otherwise: we

assume the time series data is either in a steady state or in an event state. For the first dimension of the

input variable X to our algorithm(i.e., X(t)), we simply use the observed sensor readings; and for the second

dimension (the velocity, vx(t)), we take the difference between two successive readings in the observed sensor

time series. For the initial values of the latent true values Y in our Gibbs sampling based posterior inference,

we pass the raw sensor readings X through an Exponentially Weighted Moving Average filter (EWMA) [130]

with a look-back window length (L = 5), and take the output as the initial values for Y. For the latent state

variable Z, we assign random values from {0, 1}. Starting from the initial assignments, the sampled values

in the first several iterations may not necessarily represent the actual posterior distribution; and thus, it is

common to discard these samples. The discarded iterations are often referred to as the “burn-in” period, and

we set the number of burn-in iterations Mb = 20. For the total number of samples M for each variable in

Gibbs sampling, we set M = 200 and it is usually large enough to obtain converged results on our dataset. For

the stopping criterion for the EM procedure, we set a threshold on the log data likelihood difference between

two successive iterations, with a sufficiently small value.

6.2.4 Results & Analysis

Relation Inference Accuracy

As there are often multiple sensing points attached to each piece of equipment, we need to choose a pair of

sensing points—one from VAV and one from AHU—to run our algorithm and compute the event sequence-

based correlation score. In other words, domain knowledge about what type of points in different equipment

are mostly correlated and best capture the relation becomes input of this problem, and typically such knowledge

is acquired from a building manager; this is the only manual input required by our algorithm. In particular, in

our experiments, we use AirFlowVolume in VAVs and SupplyFanSpeed in AHUs for evaluation, as
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Figure 6.4: Examples of detected events for state number K=3 (events are marked with colored bars and the
height of each bar indicates its probability) for a VAV (top), its associated AHU (mid), and a non-associated
AHU (bottom). We see that events in different magnitudes are detected, i.e., dramatic ones (in green) and mild
ones (in grey). The events in the VAV are clearly more correlated with the ones in its associated AHU.

Table 6.2: VAV assignment accuracy (%) by our method (MEMO,K = 2) against the baselines: Our algorithm
consistently outperforms the baselines.

Building ID 10312 10320 10596 10606 10642
CC 42.53 58.41 57.95 35.29 49.42

HMM 18.77 11.50 21.54 31.76 34.78
KF 90.04 80.53 87.69 80.29 88.91

AED 72.38 61.42 78.72 70.98 63.24
SWL 79.69 69.91 86.67 74.71 68.50

KMeans-TS 41.00 35.40 38.46 47.06 42.08
KMeans-ES 52.88 53.10 51.28 58.82 54.83

MEMO (K=4) 93.28 86.59 93.81 89.24 91.57
MEMO (K=3) 95.43 88.72 94.16 91.35 94.67

MEMO-NM (K=2) 96.17 84.96 95.38 89.41 94.59
MEMO (K=2) 96.93 91.15 95.90 92.55 95.37

the two are physically correlated. And later in the section, we also present a solution to automatically select a

pair of points for this inference purpose.

We first pass each time series through our Markovian Event Model (MEMO) to obtain a sequence of

detected events. Figure 6.4 shows examples of detected event sequences from the air flow measurement of a

VAV, the fan speed measurement of the associated AHU, and that of a non-associated AHU. To illustrate the

power of MEMO in detecting events, we set K = 3 in this case study, i.e., the model identifies three states.

We label them as steady state, mild event state (in grey bars), and dramatic event state (in green bars). Our

MEMO is able to detect the significant events, while ignoring lots of relatively strong noise (such as the small

change around timestamp 100). By visually comparing the event sequences detected among the three pieces

of equipment, we are able to recognize that the VAV event sequence is more closely aligned with the event

sequence from the associated AHU, than the one from the non-associated AHU.

Formally, the assignment accuracy is defined as the proportion of VAVs that are correctly assigned to

the associated AHU in a building. The main results are summarized in Table 6.2. On average, our algorithm
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achieves 94.38% accuracy across all the buildings, compared to 85.49% by the best baseline. First, we see

that the clustering+bipartite matching baselines (KMeans-TS/ES) could not produce competitive results as

our method, in large because the clustering step generates spurious groups of VAVs in the first place, thus the

significant matching errors. Yet, we do see an average improvement of∼14% by KMeans-ES over KMeans-TS,

where the former performs clustering over the event sequence, which we believe makes better sense than using

the primitive time series.

For the event-based baselines, as expected, HMM does not perform well because it simply models the

state at each point based on its raw sensor reading value, thus producing almost random state assignments.

KF performs the closest to ours, as it also considers the velocity of change in the data, yet it only encodes

the influence of past observations on the current values, but not the influence from future data (as standard

KF only performs forward computation of expected values). For AED, because it relies on a normal periodic

component to model the steady states, e.g., daily patterns, any slight deviations from the norm, such as stronger

cooling due to temperature rise on a hotter day in our data, will be modeled as events, thus resulting in too

many false positive events. In contrast with these methods, our algorithm complements the strength of a

kinematic model by taking into account both the backward temporal information, i.e., the influence of future

data, and learns the state parameters that globally apply to data across all time.

Overall, we attribute the better performance of our algorithm to its more accurate event detection, which

produces less spurious candidates to compare against. The results imply that our algorithm could have

profound impacts: with only limited knowledge about what type of sensors to use for running the analysis,

the algorithm is able to automatically identify the correct relations for about 94% of the equipment. Our

solution can significantly reduce the manual effort required in the relation identification process, as the current

state-of-the-art industrial solution stands. One should note that, due to the absence of the event ground truth

for the dataset, we were unable to directly evaluate the event detection accuracy. However, here we indirectly

demonstrate the accuracy of event detection with a proxy, namely, the relation inference accuracy.

Effect of Masking

Since we believe only the events in a VAV caused by its associated AHU help reveal the functional relation

between them, we take the masking operation when performing the proposed correlation analysis, i.e., to

preserve only the events in a VAV that overlap in time against a given AHU. To demonstrate the effect of

masking, we present an illustrative example in Figure 6.5 where from top to bottom are an AHU, its connected

VAV, and a non-connected VAV (we set K = 2 to simplify the illustration). We can find that, after masking the

original events (in grey), the remaining events (in pink) in the connected VAV (mid) clearly better correlate
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Figure 6.5: Event sequences from an AHU (top), a connected VAV (mid), and a non-connected VAV (bottom):
preserving VAV events that overlap in time with AHU events (marked in pink overlaid on grey) helps to better
pinpoint the correlated set of events, for inferring the relations.

with the AHU (top), than the non-connected VAV (bottom) does, which fails to correlate in the later part of

sequence). To be more specific, before and after the masking operation, the similarity score is 0.73 vs 0.87

between the top and mid, while the score is 0.59 vs 0.31 between the top and the bottom; masking clearly

helps to concentrate on the potentially correlated set of events. We also modify the correlation step in the

original method to only compare the primitive event sequences between VAV and AHU without the masking

operation, i.e., we compute

simij =

∑
t z
i
V AV (t) zjAHU (t)

‖ziV AV ‖ · ‖zjAHU‖
, (6.2.2)

and assign a VAV to the AHU with the highest correlation score. The results are listed in Table 6.2 (MEMO-

NM), and we observe clear degradation, especially for building 10320 and 10606.

Upon closer inspection, we note that the VAV placement in these two buildings is significantly denser

than the others — for these two buildings there are more than 100 VAVs on each floor, whereas for the others

the number is between 20-30. The denser VAV placement in these two buildings means that each individual

conditioning zone is essentially smaller, and thus more subject to the thermal influences from other nearby

zones, generating more changes in the VAV data stream. As a result, after adding the masking operation to

each VAV’s event sequence, which is designed to filter out irrelevant events with respect to an AHU, our

algorithm is able to better reveal the functional connections among the equipment.
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Figure 6.6: Without the independence constraint, the modeled velocity results in early reactions and delays,
consequently producing false positive events (marked in green).

Effect of Velocity Independence

We also examine the effect of relaxing dependency in velocity modeling at the transition periods, as explained

in Section 6.1.3. To this end, we instead preserve the dependency between velocity during transition periods

and inspect the inferred events and velocity. We see from Figure 6.6, the velocity reacts early or delays

when dramatic changes occur, resulting in false positive events (marked in green). We conclude that adding

independence into velocity modeling with respect to the latent state change benefits the event detection.

Effect of Number of States

For the set of results above, we set the number of states in the event detection model K = 2, i.e., we assume

there is either an event or none. Here we further inspect how the choice of K affects the relation inference

performance. Particularly, we increased K to 3 and 4 (see MEMO (K = 3, 4) in Table 6.2) and found

that choosing a larger K did decrease the relation inference accuracy. When the number of states increases,

the types of inferred events become inconsistent across streams (see Figure 6.4); a more rapid event in one

sequence might look like at a relatively mild event in another, or vice versa. In other words, the alignment

between different types of identified states is not guaranteed in our model, as the model parameters (i.e.,

{Qi,Ri}Ki=1) are not shared across sequences. We need to emphasize that as {Qi,Ri}Ki=1 specify the inherent

noise in modeling the time series data from different pieces of equipment, it is not reasonable to share them

across streams, which will enforce the same noise distribution on all streams.

Effect of Amount of Data

To examine the effect of the amount of training data on the inference accuracy, we vary the amount of data

passed to our proposed algorithm from 1 week to 8 weeks. From Figure 6.7, we find that, as we increase the
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Figure 6.7: The effect of amount of data on average inference accuracy across all the test buildings: the more
the data, the higher the accuracy of our solution (MEMO). Same trend is observed also for the best baseline
(KF).

amount of time series data for model training, both our model (MEMO) and the best baseline improve in the

inference accuracy and plateau after reaching around 4 to 5 weeks of data.

This also verifies our intuition that, as we search for more correlated events between points over a longer

time period, the probability of two points being correlated by random chance drops, thus resulting in higher

accuracy of relation inference. We also observe a similar trend for the best baseline (KF), yet its performance

is still worse than our method.

6.2.5 Fully Automation for General Applicability

A premise in the previous evaluation is that we are given the knowledge about which points to use for

correlation and that pair of points are consistently available across all buildings. However, such a premise

might break in practice, as the type of measurements available could vary from site to site, namely, in different

buildings. For example, Table 6.3 presents the VAV assignment accuracy using different pairs of points in

one of our test buildings. We see that the accuracy of using different pairs of points varies drastically, and

furthermore, the set of points available in another building could be much different. Consequently, we need a

strategy to automatically decide which pair of points to use, in order to make it generally applicable across

sites, or even problem areas. The question raised here is, “Can we automatically decide which pair of points to

use to best identify the relations?” As a futuristic direction, we make a preliminary attempt at automating the

selection of points to use for identifying the relations.

Intuitively, the points representative of the relations are expected to yield a “deviant” correlation score for

the pair of truly associated equipment, compared to the other candidates. In other word, ideally, the correlation

score between the pair of equipment that are truly associated should as much separate from the rest of pairs
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Table 6.3: VAV assignment accuracy (%) by using different pairs of points in one of the buildings: the
performance varies drastically from pair to pair.

VAV \AHU
Supply

AirPressure
Supply

AirTemp
Supply

FanSpeed
AirFlowVolume 75.22 33.63 91.15

DischargeAirTemp 57.52 42.48 36.28
SpaceTemp 13.27 15.04 31.86

Table 6.4: Assignment accuracy using automatically selected pair of sensors (AutoPair) for correlation against
the oracle accuracy.

Building ID 10312 10320 10596 10606 10642
Oracle 96.55 91.15 97.95 92.55 100.00

AutoPair 95.79 84.88 89.72 85.98 99.60

as possible. Following such an intuition, we design a metric to measure the deviation of the highest score

produced by a particular pair of points. Given the m-th point from the i-th VAV and the n-th point from the

j-th AHU, we obtain the similarity scores between that particular VAV and all candidate AHUs:

sm,n =
{
simm,n

i,j

}
, for 1 ≤ j ≤ L, (6.2.3)

where simm,n
i,j stands for the correlation score between the i-th VAV with the j-th AHU using the m-th sensing

point in VAV and the n-th sensing point in AHU, and j sweeps through all L AHU candidates in a given

building. Then we measure the following quantity for each pair of points:

p(sm,n) = σ(sm,n)×
(

1−N
(
sm,nmax |µ(sm,n \ sm,nmax ), σ(sm,n \ sm,nmax )

))
,

where the notation “\” denotes set difference, and N(v|µ, σ) gives the likelihood of observing v under the

Gaussian distribution parameterized by the mean µ and standard deviation σ. Then for each VAV, we decide a

pair of points to use by argmaxm,np(s
m,n), and the rest of the assignment process remains the same as the

original approach.

To evaluate the approach, we first need the oracle accuracy of using automatically chosen pair. To this end,

we calculate the relation inference accuracy enumerating all pairs of points, such as presented in Table 6.3,

and pick the highest accuracy achieved among all pairs as the oracle accuracy. This can be understood as the

upper bound accuracy of our algorithm in this dataset. In Table 6.4, we summarize the accuracy using the

pairs decided with our proposed metric, compared with the oracle accuracy. On average, while the oracle

hits 95.64%, our approach achieves 91.19%, which degrades only slightly compared to the 94.38% accuracy

when given the pair of points to use a priori. We believe our approach is promising in automating the relation
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Algorithm 4: Genetic Algorithm-based Co-location Inference
Input: Raw sensor readings of K types
Output: Room assignment of each sensor
1. Obtain the event sequence for each sensor.
2. Randomly assign each sensor into a group for every type i and repeat N times to generate N initial

grouping candidates.
3. Calculate all the pairwise Pearson correlation scores between sensors in each group using their

event sequences, and obtain the total sum Scorr over all groups.
4. Create a new generation of N assignment candidates, where each is generated by swapping M

random pairs of sensors of the same type i, and calculate the correlation score sum Scorr for every
new candidate.

5. Rank the N candidates by their correlation score sum Scorr and replace the bottom Nlow candidates
with the top Nlow candidates.

6. Go back to 4 and repeat until Scorr converges for the top grouping candidate on the ranking.
7. Output the room assignment according to the top grouping candidate.

inference process and making it generally applicable across sites, or even domains.

6.2.6 Co-location Inference

Our intuition behind the solution to the equipment connection inference problem is that, as two pieces of

equipment are connected, we shall observe correlated changes in their sensor readings. As a brief demonstration

next, we shall note that the same intuition can also be applied to automatically identify sensors in the same

room, i.e., the co-location relationships. Extracting such co-location information is critical to applications

that monitor and control specific rooms, e.g., to optimize occupant’s comfort, and identifying the co-located

sensors is not a one-time effort due to retrofitting or renovation of a building [21].

As sensors are placed in the same room or physical space, they are again subject to the same events, e.g., a

person entering the room or the sun rising, and therefore we shall also observe coincident changes in these

sensors’ data. Specifically, a sensor should best correlate with the others in the same room, rather than the

others that are not co-located. To solve the co-location inference problem, we again leverage the detected

events in each sensor’s time series data as we did in identifying the functional relationships, and search for a

grouping among sensors such that it maximizes the total sum of the intra-group pairwise correlation between

sensors for all groups. However, to obtain such a grouping requires solving a combinatorial problem with

huge search space, and we exploit a genetic algorithm (GA) [131] to facilitate the search process. The whole

algorithm is described in Algorithm 4. We shall note that we assume that the type information of each senor is

known and that there is only one sensor for each type. As a result, the mutation operation in Step 4 of the

algorithm only happens within the same type between two rooms.

We evaluate the above algorithm on one-week data collected from the sensors in an office building, where

in total there are 51 rooms. Each room has four types of sensors: a CO2 sensor, a humidity sensor, a light
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Figure 6.8: Co-location inference accuracy using the detected events and genetic algorithm.

sensor, and a temperature sensor. The data from these sensors are reported to an sMAP [99] archiver over

6LowPAN [132] every 15 seconds. As baselines, we also run the GA-based algorithm on the raw time series

data (marked as Raw) and the subcomponent used in our preliminary study [21] (marked as EMD) of each

sensor. The results are summarized in Figure 6.8. We see that GA combined with the event sequence clearly

outperforms the others, which corroborates our statement that looking for coincident events can also help to

identify co-located sensors.

6.3 Summary

In this chapter, we tackle the problem of inferring another important contextual aspect of the equipment in

buildings, apart from the sensor type — how equipment is functionally connected with another. We first

develop a Markovian Event Model to identify the latent events in the time series data of equipment, and then

further propose a correlation-based metric to locate the correlated set of events for inferring the underlying

relations among equipment. We evaluated our approach on data from 5 commercial buildings and the approach

achieves 94.38% accuracy, compared to the 85.49% by the best baseline. We also made an attempt to fully

automate the solution and we only observe slight performance degradation. As a brief demonstration, we

also present the results on using correlated events to identify co-located sensors. We believe the solution

is promising and can be generally applied to event detection for times series data and relation inference in

broader domains.



Chapter 7

An Integration, Benchmark, and

Development Framework for Metadata

Inference Methods

To fully realize the potential of smart building applications, we would need a system that is able to quickly

discover the points in a building, interpret their data context, and express it in a standardized and uniform

way. Doing so would require a common metadata schema for buildings. Typically, a building metadata

schema defines and provides a structure for describing and representing the resources in the building. The

representation would comprise two kinds of information about each point in the building — the type and

the relationship. An example conforming to such a representation would read as a temperature sensor is in

room 501, which contains a first entity with the type being temperature measurement, a second entity with

the type being room, and the relation between these two entities, i.e., A is in B. In the same spirit, Brick

— a recently proposed schema by the research community — is designed to improve over and complement

existing industrial building metadata schemata (e.g., Haystack [133], IFC [134], and SAREF ontology [135])

with better expressibility, extensibility, and usability [136, 137]. Brick particularly provides a full hierarchy

of entity classes as TagSets and a systematic way of describing various relationships among entities. Brick

enables portable building applications built upon common vocabularies of classes and relationships to find

required entities, instead of adapting to each individual target building’s convention.

However, currently converting (existing) metadata to a schema such as Brick still requires tremendous

manual effort, and we need a more usable, accessible solution for non-technical users such as building

81
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managers to close the loop. Along with the techniques discussed in this dissertation, various methods have

been proposed to partially automate the inference of sensor context [138, 139, 13, 140, 19, 123, 14, 141, 142],

with each focusing on different aspects of the contextual information. Some methods recognize all entities in

raw metadata [138, 13, 141], including the site name, floor and room identifiers, and point type. Other methods

identify only the point type based on either the raw metadata [140, 139], time series data [19], or both [123].

Still other methods focus on inferring relations between entities, including the spatial relationships [21, 22]

and functional relationships [142, 14]. In order to reduce the manual effort required, these methods either

only exploit the information available within each individual building [138, 13, 140, 139, 19] or they apply

“transfer learning” from one building to the next [123, 141]. Importantly, while all of these prior works

exploit the common attributes of each point — the alphanumeric text-based metadata and/or the numerical

time series readings, they differ significantly with regard to the inference scope, input/output format and

structure, algorithm interface, evaluation metric, etc [143]. Consequently, the resultant lack of compatibility

among the combination of methods precludes the possibility of combining and comparing them effectively

and systematically. There is still no standalone, versatile solution so far.

We need a unified framework that is modular and extensible, enabling both existing techniques to be

explored, as well as new algorithms and techniques to be developed and tested, to advance the state of the art

in building metadata normalization. Our vision is to build a framework akin to the Scikit-learn [100] of the

building metadata normalization problem. To this end, this chapter we introduce Plaster with the following

contributions:

• We design and implement Plaster, a unified, modular framework that incorporates existing metadata

normalization methods, along with a set of data models, evaluation metrics and canonical functionalities

commonly found in the literature. Altogether these enable the integration of different methods into a

generic workflow as well as development and evaluation of new algorithms.

• We present the first systematic evaluation of state-of-the-art methods via a set of unified metrics as

well as building datasets. Our evaluation covers a wide spectrum of aspects, such as how accurate each

method is in inferring the same kind of label, how many different kinds of labels each method can

produce, and how many human labels are required to achieve certain performance. The experiment

results reveal that there is no one-size-fits-all solution and properly combining them would produce

better results. This evaluation would not have been possible without Plaster, given the heterogeneous

algorithms, inputs, and datasets used in earlier work.

• We discuss a number of future research directions inspired by our results. We believe Plaster provides a

comprehensive framework for further development of new algorithms, techniques and workflows for



7.1 Background and Related Work 83

Plaster
Structured Metadata 

RM­1.T

Avg. == 70

T ==  
Temperature

RM­1 is a Room
RM­1.T is a Temp_Sensor 
RM­1.T  hasLocation RM­1

Raw Metadata

Timeseries Data

Experts' Input

Figure 7.1: To facilitate the deployment of portable smart building applications, Plastercollects the state-of-the-
art metadata normalization methods and provides a standardized way for users to map unstructured metadata
to the Brick format. Plasteralso provides a standard benchmark for comparing different methods and spurs
new ones.

metadata normalization, as well as mapping them to a structured ontology like Brick, enabling seamless

smart buildings applications in the future.

7.1 Background and Related Work

In this section, we first present the background of building metadata normalization. Next we describe the prior

work, highlighting our specific contributions beyond the state of the art.

7.1.1 Building Metadata Schema: Brick

Without metadata represented in a unified, standardized building-agnostic schema, deploying a smart building

application requires adapting it to each target building’s naming convention. Thus, the existence and adoption

of a standardized metadata schema directly affect the cost of deploying smart building applications [144].

Indeed, there already exist several metadata schemata such as Industry Foundation Classes (IFC) [134]

and Project Haystack [133]. However, as they have incomplete vocabularies and cannot fully describe the

relationships required by common building applications [145], Brick has been introduced as a complete,

extensible, flexible, and usable metadata schema for application portability [136, 137]. Brick comprises a full

hierarchy of classes (Fig. 7.2a) and covers a canonical set of relationships between entities (Fig. 7.2b). The

classes in Brick are also referred to as TagSets as they consist of multiple Tags. For example, Temperature

and Sensor are Tags constituting a TagSet, Temperature Sensor. With Brick, one can instantiate the

classes to represent actual entities (e.g., a sensor or a room) and relate an entity to another via a particular

relationship. The table in Fig. 7.1 presents an example of a temperature sensor using Brick: the original

raw metadata RM-1.T is mapped to an instance of Temperature Sensor; and to represent relational

information such as its location, one can explicitly associate it with other entities such as room-1, which is
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Figure 7.2: Brick comprises (a) a full hierarchy of classes and covers (b) a canonical set of relationships
between entities required by common smart building applications.

again an instance of type Room. With Brick, a user can avoid using custom tags to describe both the entity type

and its relationships with others, which fundamentally makes running portable applications across buildings

feasible. Therefore, we choose Brick as the target mapping convention in this chapter as it is capable of

representing (almost all) the resources and relationships that are needed in smart buildings, and is in our

opinion more comprehensive compared to other schemata.

7.1.2 Metadata Inference Methodologies

We identify three dimensions of variance in existing metadata inference methods: 1) the type of data sources

exploited, 2) the kinds of labels covered, and 3) the degree of human input required.

First, there are three different types of data sources we can exploit in buildings — raw alphanumeric

metadata in existing building management systems (BMSes), numerical historical time series data for points,

and control perturbations. The raw metadata in BMSes, also referred to as point names, usually encode

various kinds of information about the control and sensing points, including the type of sensor, floor and

room numbers, HVAC equipment ID, etc. The metadata for each point is typically a concatenation of an

arbitrary number of abbreviations and each describes a different aspect of the point, following certain naming

convention. The metadata within a building often exhibits strong learnable patterns, and various works have

leveraged such patterns for metadata inference [138, 139, 13, 140, 141]. However, the pattern or structure in

the metadata varies significantly across buildings, and thus the pattern extracted from metadata often does

not generalize from one building to another. Secondly, modern BMSes also collect historical time series

readings of each point in the building, which contain information that indirectly reveals what the point is

and its relationship with others. For example, the range of the readings can indicate the type of sensor (e.g.,

readings around 70 units are likely for a temperature measurement while readings around 500-1,000 units are

more likely for a CO2 sensor), and the correlation between different streams can indicate the relationship (e.g.,
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observing correlated changes in the readings might indicate they are monitoring related events). Works that

leverage the characteristics of time series data include [21, 22, 19]. In addition to the raw metadata and time

series data, one may also perform controlled perturbation in a building, in order to identify attributes such

as functional relationships across different entities [142, 14]. Controlled perturbations are manually injected

to the building, e.g., to manually turn off an air handling unit, and can create new patterns in operations that

produce unusual or unique changes in the time series data, but require more careful and sophisticated designs.

Existing metadata inference methods focus on producing two kinds of labels — following the definition

in Brick — entity types and relationships between entities. The entity type refers to the type of measurement

of a point and there is a wide variety in its possible set of labels, while the relationships include how points are

connected to each other, whether they are in the same room/zone, etc. A few methods infer all the available

information (e.g., both kinds of labels) encoded in the raw metadata [138, 13, 141], whereas many others

identify the point type only [139, 19, 123, 146], which is the most important aspect of a point in buildings, or

infer the relationships only [21, 22, 14, 142].

While different methods all aim to reduce the amount of manual effort in normalizing metadata, the

degree of human input (i.e., manual labeling) required by each of them varies from fully supervised to

semi-supervised to completely unsupervised. Particularly, supervision, or human input, in this context is the

annotation or labels that a human expert provides to interpret the point for its type, location, relationship

with others, etc. Supervised learning has been used to learn the point types based on time series data or raw

metadata, where both clean, accurate labels from experts [19], and crowd-sourced labels from occupants in the

building [146] have been explored in the literature. For the set of semi-supervised solutions, active learning is

a key direction [147] and leads to the reduction in the amount of human labels. Specifically, an active learning

algorithm iteratively selects a most informative example and queries an expert for its label to improve a model

for normalizing the metadata [139, 13, 140, 141]. On the other hand, transfer learning method [148] has been

developed to exploit information from existing buildings and completely eliminate human effort from the

process of inferring metadata structure in a target building without any training examples [123]. Similarly,

Scrabble [141] is another method that exploits existing buildings’ normalized metadata, though through an

active learning procedure. Table 7.1 summarizes these various methods with regard to the above criteria. In

this work we show that, while each of these techniques has its advantages, our proposed meta-framework —

Plaster— can leverage and integrate these different techniques in a complementary manner to yield much

better results.

Additionally, although not being directly related to the metadata inference problem, there are frameworks in

other domains that integrate different algorithms and create composable workflows, including general machine

learning analytics [150], recommendation systems [151, 152], non-intrusive load monitoring [153, 154]. To
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Table 7.1: State-of-the-art metadata normalization methods produce various types of labels using different
data sources. They also employ different machine learning (ML) algorithms involving diverse types of user
interaction.

Method Label Produced Data Source ML
Bhattacharya et al. [13]

Scrabble [141] All entities Raw metadata AL

Zodiac [140]
Hong et al. [139] Point type Raw metadata AL

Fürst et al. [146] Point type Raw metadata CS

Building Adapater [123] Point type
Raw metadata,

Time Series TL

Gao et al.[19] Point type Time Series SL
Hong et al.[149] Point type Time Series UL

Pritoni et al. [14]
Quiver [142]

Functional
Relationship

System
Perturbation,
Point Label

UL

AL: Active Learning TL: Transfer Learning
SL: Supervised Learning CS: Crowd Sourcing
UL: Unsupervised Learning

the best of our knowledge, Plasteris the first framework of its kind that enables the exploration and integration

of various algorithms on building metadata inference, as well as provides the ability to systematically compare

related algorithms and results.

7.2 Plaster Framework

Plaster delivers an integration and development framework, as well as a standard benchmark, for different

metadata inference methods, despite the heterogeneity of the data model, learning scope, interaction style,

and evaluation metrics of each method. To tackle the heterogeneity, we propose a modular design with

two levels of abstractions by identifying the commonalities among existing methods. As the first level of

abstraction, Plasterviews a metadata inference method as an ensemble of a key inferencer and several other

reusable components. These components provide a variety of functionalities and each component defines

its own functions and programming interfaces. This way, we provide users with the flexibility in choosing

the data model, learning scope, and inference algorithm as needed. As the second level of abstraction, an

inferencer, which is the core component, contains multiple common functions that we identify by summarizing

existing metadata inference solutions. Because of the modular design of Plaster, it also enables and facilitates

the invention of new workflow where a user can connect different inferencers to essentially create a new

algorithm, without changing or re-implementing prior algorithms. In the rest of this section, we will explain

the architecture of Plaster, elaborate the core idea of inferencerthat is the key to enabling the creation of

workflows, and also describe the other components of Plaster.
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Figure 7.3: PlasterArchitecture: Plasteradopts a modular design and incorporates a variety of components,
among which the core is a family of inference algorithms. Each algorithm is abstracted as an ensemble of
common functions, which allow the communication between different algorithms. Such a design enables not
only flexible invention of a workflow composed of any algorithms, but also systematical comparison between
different algorithms.

7.2.1 Architecture

In Plaster, we abstract each method as an ensemble of components, and overall there are four basic categories

of components as illustrated in Fig. 7.3a (from left to right): preprocessing, feature engineering, inference

models, and results delivery functions.

The preprocessing component includes standard functions such as denoising and outlier removal for

time series data, and lowercasing and punctuation removal for textual metadata, via an interface to utilize

existing libraries such as SciPy and Pandas. There are also database (DB) I/O functions for both the metadata

and time series data. We use universally unique identifiers to identify points and one can access both the

textual metadata and time series data through the identifiers. For the time series DB functions, Plasterbuilds

upon an open-source library [155] piggybacked on MongoDB, which is dedicated and optimized for time
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series data operations on large data chunks. For feature engineering, there are a number of existing libraries,

such as the most widely used scikit-learn [156] and a recent effort – tsfresh [157]. However, none exists as

customized for the time series data from buildings, considering their uniqueness such as the distinct diurnal

patterns. Hence, we incorporate and extend the feature sets1 implemented by Gao et al. [158], which contain

various feature functions customized for building time series data. In addition to the original feature sets,

we provide straightforward programming interfaces for a user to select a subset of features out of these

predefined features and a lightweight yet effective feature selection function based on lasso [159]. We shall

demonstrate the effectiveness of the feature selector in Section 7.3.4. For text features, we provide an interface

for Bag-of-Words [88], sentence2vec [160], and LSTM-based auto-encoder [161]. Delivery components

consist of the set of evaluation metrics (detailed in Section 7.3.1), user interaction mechanisms to provide

additional supervision for inferencerupdate as needed, and serialization tools that convert the inference results

into the Brick format (e.g, triples and graphs).

7.2.2 Inferencer

At the core of Plasteris a collection of state-of-the-art metadata inference methods. We examine these

algorithms and identify similar procedures among them. We therefore abstract these procedures as a series

of common functions, encapsulate each as a parameterized interface, and formulate a standardized way of

constructing an inference algorithm. We use an abstract class – inferencer– to represent an algorithm (e.g.,

Scrabble, Building Adapter, etc), which maintains its own model for metadata normalization under these

abstract interfaces, together with other standardized input and output interfaces. Such abstraction decouples

the complex procedures in individual algorithm and allows new algorithms to be easily included into the

framework.

At a high level, an inference algorithm in the building metadata domain aims to achieve the best possible

accuracy with the largest coverage using the minimal set of labeled examples. Therefore, an inferencertypically

contains a few steps: 1) the algorithm selects as training set the most “informative” example(s) based on its

own criterion and acquires the labels for the selected example(s) from a human expert; 2) the model updates

its parameters based on the latest training set after the new examples are added in the previous step, and

then 3) the model predicts all types of labels (e.g., point type, location, relationships, etc.) covered by the

algorithm. Plasterabstracts each of the above steps as a function, viz, select examples(), train(),

and predict(), respectively, as shown in Fig. 7.3c; and we design an inferencerto be a composition of

these functions. We shall note that, although these functions appear to be only able to compose an active

1We refer the readers to their original paper [158] for more details on each feature set.
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learning-based procedure, we design the select examples() function to be generic enough such that

any fully to semi-supervised learning algorithm can fit into this template. When obtaining examples for a

supervised or transfer learning algorithm, the select examples() function simply includes all the labeled

or transferred examples for training at one time, rather than being iteratively done as in active learning. For

active learning, these steps are repeated in iterations involving a human expert to best learn the model, while

for a supervised learning or transfer learning algorithm, these steps are mostly executed just once with already

labeled examples.

We also define standardized input/output interfaces for these common functions to enable the commu-

nication between different inferencers, which permits the creation of workflow as we shall discuss shortly.

For inputs, an inferenceraccepts three types of sources: raw metadata, timeseries data, and the corresponding

labels of examples. We provide a wrapper to digest two types of raw metadata commonly found in existing

systems: 1) point names accessible through vendor-given interfaces that are widely used in the literature, and

2) metadata in BACnet [162] including entries such as BACnet Description and BACnet Unit. Time

series data is stored as a series of timestamped values and the data for each specific point is associated with

a unique identifier of the point for indexing and future retrieving. As each inferencercan learn and produce

various types of labels as discussed in Section 7.1.2, an inferencer can take three kinds of labels at different

granularities: point type labels, labels for all entities existing in the metadata, and character-level parsing with

BIO tagging [163].

The ultimate goal of each individual inferenceris to generate structured metadata. Since Brick is capable

of representing different kinds of metadata such as the types of entities and the relationships between them,

we express the predict() method’s outputs of each inferencerfollowing the Brick’s format. Particularly,

the outputs are a list of triples for entities and relationships in a building as explained in Section 7.1.1.

Consequently, an inferenceris capable of representing different inference results in the same format. For

example, Zodiac [140] infers the point types, which can be represented as “X is a Y” triples, while Quiver [142]

infers the co-location relationship for multiple sensors expressed as “X1 hasLocation Y” and “X2 hasLocation

Y”. Such different types of inference are serialized in the same format of Turtle [164] using the vocabulary in

Brick.

Additionally, for each inferencerwe include the confidence of its inference results produced by the original

algorithm in its output so that an inferenceris able to more flexibly sift through and use another inferencer’s

results. Specifically, we store the confidence for each produced triple within the inferencer. However, the

notion of confidence is unique per inference algorithm with different meanings. For example, Support Vector

Machine’s confidence is usually measured by the distance to the hyperplane, while in Naı̈ve Bayes, it is

the probability of observing the example given the model’s parameters. Thus, we restrict the interpretation
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of confidence score within each individual inferencerdespite the values of those metrics being uniformly

normalized to be between zero and one. We shall show how this is useful in real workflows in Section 7.3.3.

As a natural outcome, Plaster provides a standard benchmark for different metadata normalization algo-

rithms. With the unified interfaces in inferencer, to do so is straightforward as one only needs to specify the set

of algorithms he/she wants to compare as well as the type(s) of data to ingest and designate a building for the

comparison. We will demonstrate with concrete examples in Section 7.3.2.

7.2.3 Workflow

The standardized interfaces in inferenceralso enable the creation of a workflow for metadata normalization. A

workflow is a hybrid method comprised of multiple algorithms, each being an inferencerin Plaster, where the

output of an inferenceris passed to another while each inferencerexecutes its inference procedure independently.

While a single inferencerusually only infers one aspect of the metadata, a workflow would potentially be able

to infer multiple or all the aspects of the metadata by employing different inferencers. Each inferencermay

have a different learning objective as described in Section 7.1.2, and Plasterhelps to systematically leverage

the advantages of each. For example, Building Adapter (BA) [123] is a transfer learning based algorithm

that infers point types without any human inputs, but usually with a potential low recall. Instead of starting

from scratch, the output of BA can constitute an initial training set for Zodiac [140] to jump start its learning

procedure and potentially reduce the amount of manual labels required. Various use cases of workflow enabled

by Plasterare elaborated and evaluated in Section 7.3.3.

When executing, the workflow function call will invoke the corresponding functions (i.e., select examples(),

train(), and predict()) in each of its inferencers in the order specified in the workflow, with an addi-

tional connecting step that obtains and applies the previous inferencer’s prediction results to the next. The

process of applying a precedent inferencer’s results vary across different inferencers so that a human integrator

should specify how to digest such predictions inside the inferencer’s methods. If some of the inferred rela-

tionships by the previous inferencerare less confident, the next inferencershould filter the results or simply

avoid using them. On the contrary, if the previous inferencer’s inference is more confident than the current

inferencer’s, it can discard its own inference and adopt the previous one. In the example of connecting BA and

Zodiac, Zodiac would need to be able to select only the prediction results with high confidence from BA and

subsequently add them into its own training set inside select examples(). Although it is an additional

implementation over the base algorithms, we shall see such synergy could lead to better results.
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Table 7.2: Case Study Buildings Information.

Building Vendor Year Size (ft2) # Points # Point Types
A-1 Johnson Controls 2004 150,000 4,594 108
A-2 Johnson Controls 2004 150,000 4,357 111
B-1 Trane 2011 100,000 1,300 60
C-1 Johnson Controls 2009 141,000 2,300 31
D-1 Automated Logic 2009 217,000 8,292 147

7.3 Evaluation

In this section, we demonstrate how Plaster conveniently enables systematic comparisons of different metadata

inference algorithms, the creation of new workflows by connecting multiple algorithms, and new functionality

such as feature selection. We also present our evaluation results and discuss about the implications of the

results.

7.3.1 Experimental Setup

Datasets

We obtain a subset of the study buildings used in Brick [136], which consists of five buildings from four

different campuses, including the raw metadata and time series data for about a month. Table 7.2 summarizes

the details of each test building. While this collection of five buildings are not comprehensive for building

metadata research, we argue that they are representative enough with regard to the diversity in vendors, sizes,

years of construction, etc. For building D1, the original author did not release the time series data, and

therefore, one shall notice that later D1 is not included in evaluations that involve time series data.

Evaluation Metrics

Overall, we consider three aspects supported by Plaster when evaluating each algorithm:

• Inference Accuracy: How accurate are the predictions of an algorithm in terms of its original learning

purpose?

• Inference Coverage: What kinds of labels can an algorithm infer?

• Human Efforts: How many examples does an expert need to provide in the learning process of an algorithm?

In this study, each algorithm infers one or multiple kinds of labels for a point. For example, Zodiac infers

only one kind of labels, which is the point type, whereas Scrabble also identifies other kinds of labels such

as location aside from the point type. For each kind of label, every possible Brick tagset is treated as a class
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(e.g., for point type we have room temperature, supply air temperature, etc), and we evaluate the inference

performance considering all the kind(s) of labels each algorithm produces. To measure how accurate the

inference results are for an algorithm, we calculate the Micro-averaged F1 (MicroF1), Macro-averaged F1

(MacroF1), and example-level accuracy. MicroF1 globally counts the total true positives, false negatives and

false positives regardless of the class, while MacroF1 calculates the same quantities for each class and then

finds their unweighted mean. MacroF1 indicates how many different classes can be correctly inferred, which

is an important metric for a building dataset that typically has an (extremely) imbalanced class distribution,

with the points related to heating and cooling in domination. For example, while Zone Temperature

Sensors might frequently exist in HVAC systems, specialized points such as Gas Meters are generally

rare. For example-level accuracy, it is defined as the ratio of the number of correctly labeled examples over the

total number of examples. Specifically, an examples is considered to be correctly labeled if and only all kinds

of labels existing for it are correctly inferred. We use this metric along with the F1 scores when an algorithm

produces more than one kind of labels.

We measure human efforts by the number of examples labeled by an expert during the model learning

process. For point type inference, an example is usually a mere point type label given the raw metadata of the

point. For the examples used for inferring all possible entities, they contain more information aside from the

point type label, such as equipment ID and location. Although the amount of information in the examples are

different, we consider the effort for labeling an example to be the same because the required knowledge per

example is similar.

Inferencers Included in Plaster

We have refactored and incorporated the following algorithms into Plaster: Hong Active Learning [139]

(referred to as AL Hong hereafter), Bhattacharya et al. [13] (referred to as ProgSyn), Zodiac [140], Building

Adapter [123], and Scrabble [141]. We exclude algorithms from the evaluation that require the actual control

of actuations in buildings [142, 14] because such experiments are not practical in most buildings. However,

they fit into Plasterwell as part of a workflow in the real world such as building commissioning. Plasteris

open-sourced2 and implemented in Python, which has identified itself as one of the most popular programming

languages for scientific computing for its high-level programming interfaces, interactive nature, and vibrant

ecosystem of supporting libraries such as Numpy and Pandas. To maximize reproducibility while minimizing

development time, we deliberately reuse the original implementation of each method and modularize them

according to the interface design in our framework.

2The repository is publicly available, including its source code, running examples, and accompanying datasets.
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(a) Learning rate for inferring point type by different algorithms on 4 buildings starting from scratch (i.e., zero training set).
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(b) Learning rate for inferring point type, exploiting existing building’s normalized metadata. X→ Y indicates applying
X’s normalized metadata to initialize the learning for Y (e.g., A-1→ C-1).
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(c) Learning rate for inferring all entities in the raw metadata from scratch.

Figure 7.4: Comparisons of Different Algorithms on Various Buildings: (atop each figure) The alphabet
represents a campus and the number represents a building on that campus (e.g., A-1). We leave out Scrabble’s
results for B-1 and ProgSyn’s results for A-1, B-1 and D-1 due to the limited types of labels in these buildings.
All experiments are averaged over four runs and the legend is shared across all figures.

7.3.2 Benchmarking

Enabled by the design of workflow, Plasterallows a user to easily select an inferencerand specify the type

of input ingested, the test building to use, and the evaluation metric; this fundamentally facilitates fair and

systematical comparisons of different metadata inference algorithms, i.e., benchmarking. We focus on three

different scenarios and next present the results for each.
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Active Learning for Point Type Inference

In this scenario, we evaluate a set of active learning-based algorithms for their learning efficiency in inferring

point types, which is the most important aspect of building metadata. We include two algorithms that

exclusively work for this purpose — AL Hong [139] and Zodiac [140], together with another two algorithms

that infer multiple aspects in metadata (type, location, equipment, etc)—ProgSyn [13] and Scrabble [141].

Although the latter two are designed to learn all aspects of metadata, we make each to infer only the point

type in this set of experiments. We run each algorithm on four different buildings, starting with zero training

examples, and calculate the MicroF1 and MacroF1 of inferred type labels. The results are shown in Fig. 7.4a.

We see that AL Hong marks a stark contrast to all the other algorithms for its steep learning rate (for

MicroF1) in the early stage for the first 75 examples. This is because of its clustering-based example selection

strategy, which excels in quickly selecting examples that represent a large population and are also informative

for model training. However, we do also see that Zodiac and Scrabble are able to catch up after 75 to 125

examples, surpassing in MacroF1, and even achieve a 100% F1 in some case (on building A-1) after converging.

These results suggest that Zodiac and Scrabble are better in learning the minor point type classes that appear

less frequently in a building, which AL Hong is not able to learn even with more examples. We would also like

to point out the fact that, due to the deterministic nature of the algorithm, ProgSyn and Zodiac may terminate

early (e.g, for C-1). Zodiac runs with a preset confidence threshold, and as it gradually acquires training

examples, whenever the algorithm has high enough confidence in every testing instance, it will cease. For

ProgSyn, it decides whether the learned rules are able to parse every example and stops when it becomes the

case. Furthermore, there is no clear winner in this set of experiments. The implication here, however, is that

if one wants to quickly label the types with reasonably high accuracy (e.g., around 85%), AL Hong is an

appropriate choice. When one desires better coverage of less frequent types in a long run, Zodiac or Scrabble

would be a better choice.

Jump-started Active Learning

All the original active learning based algorithms [140, 139, 141] are designed to work only within the same

building, meaning that they do not consider or leverage any information from existing buildings. However,

because the inferencerdesign in Plastermakes it convenient to start from any training set, we will next show

how the inference results change if we run an active learning based algorithm using information transferred

from another building for inferencerinitialization. More specifically, we use another building’s point names

along with the labels (e.g., from A-1) to formulate the initial training set for an inferencerand after that run the

algorithm on another building (e.g., C-1) as we did in Section 7.3.2. The results are shown in Fig. 7.4b.
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When added with a building from a different vendor with almost completely distinct naming conventions

(e.g., A-1 → C-1 and C-1 → A-1), the type inference performance either remains unchanged or even

deteriorates in the early stage. This is expected as adding another building using a different metadata naming

convention would introduce more irrelevant patterns to the same point type for the algorithm to learn, which

is almost equivalent to injecting noise. Nonetheless, we still notice an increase in MicroF1 for Scrabble in

the early stage in the case of A-1→ C-1. This is largely due to Scrabble’s underlying deep network based

representation learning that is able to learn more general patterns even given different buildings. On the other

hand, when we add a building from the same vendor which uses a similar vocabulary for point types (see A-2

→ A-1), we observe a better starting point (71% in the first figure in 7.4b vs 58% in the first figure in 7.4a)

and also a better converged MicroF1 for AL Hong. We observe similar improvements for Scrabble and Zodiac

in this case. These results suggest that having labeled buildings with similar naming convention is useful for

normalizing subsequent buildings by transferring the information in the raw metadata.

Active Learning for Multiple Entities

Even though detecting the point type is important, other types of entities encoded in the metadata, such

as the associated room and equipment, are also essential for building applications. We therefore evaluate

Scrabble [141] and ProgSyn [13] for their ability to identify multiple types of entities from the given raw

metadata, including the point type, room location, and associated equipment. As shown in Fig. 7.4c, Scrabble

outperforms ProgSyn in both MacroF1 and example-level accuracy. The gain in performance of Scrabble is

attributed to its more sophisticated representation learning procedure where it first maps input to an intermediate

representation and then to actual labels, while ProgSyn maps the raw metadata directly to final labels. For

example, for a string ZNT, Scrabble first learns its nuanced character-level BIO tags and then maps to the

Brick tagset (i.e.e, Zone Temperature Sensor), while ProgSyn directly learns its mapping rule to the

tagset via regular expressions.

7.3.3 Workflow

Having seen the results on comparing different algorithms individually, we next show how they can interact with

each other in Plaster. A key feature of Plasteris the ability to try out different workflows, or pipelines, which

integrate different algorithms in different orders. We now present and evaluate three exemplary workflows

where two inferencers are connected together for better performance than if they were used independently.
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Figure 7.5: Learning efficiency for inferring point type by different workflows. They all show the synergistic
improvement in performance. (BA stands for Building Adapter.)

Transfer Learning Benefits Active Learning

A completely automated method such as Building Adapter (BA) is able to achieve relatively high inference

precision in point types on a target building, though only for a fraction of the points. It would be natural to

connect and feed the labeled examples by BA to an active learning-based method, such as Zodiac [140], as a

better starting point. This appears to be similar to the jump-started active learning scenario in Section 7.3.2, in

that both provide a better starting point for active learning. However, a fundamental difference here lies in the

fact that a method such as BA, which transfers the learnt model via time series data from a different building

to facilitate another learning process based on textual data, which is independent from these two buildings’

naming conventions, while in the previous scenario we will only see benefits when transferring from a building

with a similar naming convention. We implement such a workflow of combining BA and Zodiac to again

infer point types, with Fig. 7.5a showing the comparison results. We see that the combination achieves both

higher MicroF1 and MacroF1 up to 70 examples, benefiting from the transferred information. However, the

incorrect labels from BA’s predictions (though only a handful) remain as negative training examples to Zodiac

and it cannot recover from such noise in such a naı̈ve integration. These inherited incorrect labels would be

corrected or filtered out at the beginning if Zodiac could have the ability to quantify BA’s results based on its

own criterion. Yet, this will require additional modifications to the original algorithm and is hence out of the

scope of Plaster.
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Specialty Complements Versatility

Some algorithms have high precisions while others have high recalls in their inference results. For example,

Zodiac [140] has a high precision for point type inference while Scrabble [141] can identify multiple kinds

of entities likely with a high recall. Thus we can filter Scrabble’s results by using Zodiac’s results without

compromising the results of either. More specifically, we feed Zodiac’s results to Scrabble’s prediction and if

there is a disparity between the two on an instance, Scrabble will adopts Zodiac’s prediction for point type.

As shown in Fig. 7.5b, we see there are about 1,500 corrections made to the point type predictions in total

(note that we only count the number of corrections made by this strategy, and an instance could be corrected

multiple times) with little additional computational cost.

Synergy between Different Types of Inference

Learning functional relationships often relies on perturbations to the control systems (e.g., Quiver [142]) and,

to correctly perform perturbations on a target point such as a VAV on/off command, it requires knowing the

point types apriori. Thus, it is natural to apply an active learning algorithm (Zodiac) to infer point types

as a prior step to a perturbation-based relationship inference algorithm (Quiver). Furthermore, the inferred

relationships can in return help examine whether the point types are correctly inferred by an active learning

method. For example, the fact that a VAV typically contains only one for each type of its sensing and control

points can help identify mistakes made in type inference. For example, based on the manual perturbation

to a VAV on/off command, Quiver [142] identifies a group of co-located points and finds that there are two

supply air temperature sensors; it is highly likely that Zodiac has made a mistake in the type inference. For

this experiment, we emulate the above procedure by first running Zodiac to infer point types, and for each

predicted VAV on/off command, we use the ground-truth for the co-located points in that VAV (since we are

not able to actually run Quiver) and examine if there is any duplicated type among these points, in order to

correct any type mis-predictions. We see modest improvement in the type inference results because we only

consider ∼15 most common point types existing in VAVs, as Quiver can only find the co-located points for

VAVs. Although a workflow as such exploits certain domain knowledge, we believe that it will be generally

useful to practitioners with special demands in building applications.

7.3.4 Time Series Feature Selection

We empirically inspect how well each time series feature set performs and how effective the feature selection

is in Plaster. To this end, we create a workflow that feeds the time series data to each of the feature extraction

modules included in Plaster, passes the features to a random forest classifier (which is identified as the best
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Figure 7.6: Results for time series data-based type inference: We show 7 different feature sets (each is shown
as a group of bars and each bar represents the result on a building), along with a fusion of them (All) and a
better subset via automated feature selection (Selected).

performing classifier in prior work [158]), and predicts the point type for evaluation. We apply the workflow

to each of the buildings with time series data available and conduct 10-fold cross validation to obtain the point

type prediction accuracy. Fig. 7.6 summarizes our results. We observe that each individual feature set roughly

performs on a par except the second set. A simple fusion of all the dimensions from each feature set (marked

as All in the figure), which equates to a 106-dimensional feature set, does not yield much better performance.

However, the selected set of features does give a 3% increase overall than the best set with the number of

features reduced to 60. This demonstrates the effectiveness of feature selection and integration provided by

Plaster.

Using time series feature for point type inference on each building, we clearly notice the performance is far

less competitive than the one we obtained by using textual metadata (as demonstrated in Fig. 7.4). However,

the implication is that, as data features better suit transfer learning based tasks (according to Table 3.3), the

better feature set we have identified here would help to better improve such a procedure, for instance Building

Adapter. Moreover, we would also like to emphasize that subsequent users and/or researchers can easily

register their own feature set in the feature extractor interface in Plaster, and can also perform feature selection

with our provided method to obtain a even better set of features for their target metadata inference problem.

7.4 Discussion and Future Work

First, although not being the focus of Plaster, we see that for the same metadata inference algorithm, still its

performance varies significantly from building to building. When designing an algorithm in the future, one
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would want to test on a diverse set of buildings, rather than one or two, to avoid over-fitting for a single building.

Secondly, having seen the synergy between different algorithms via our workflow design, the original authors

or subsequent researchers, might consider revisiting and refining the design of existing metadata inference

algorithms, in order to better leverage the advantages from each other. Thirdly, given the recent advances

in deep neural networks concerning both textual and time series data, it remains open how to best harvest

their progress to complement or reshape the research on metadata inference. Plasternow provides some basic

functions for feature selection taking advantage of existing neural network algorithms. And the architecture of

Plasteris flexible enough to directly develop neural network based metadata inference algorithms. Additionally,

as Plastercurrently is only compatible with inputs in the Brick format, in future we would want to extend it

to exploit existing resources available in other schemata such as Haystack, in order to augment the existing

methods in Plastervia a workflow. Furthermore, we would like to provide the ability of automatically selecting

an inferencer, or composing a workflow, for a user based on their demands and what are available to them, i.e.,

the idea of meta-learning [165]. For example, if they want to convert a building with a few others available

already, we could connect Building Adapter and Scrabble as a workflow for them.

7.5 Summary

In face of the metadata inference challenge, various methods have recently been proposed to (partially)

automate the process of generating structured metadata. Yet, the lack of compatibility between methods

precludes the possibility of combining or even comparing them, due to the heterogeneity in the inference

scope, input/output format and structure, algorithm interface, evaluation metric. In this chapter, we present

the design, implementation, and evaluation of Plaster — a unified, extensible and modular framework that

incorporates existing advances in metadata inference. The modular design of Plaster enables generic, flexible

workflows as well as development and evaluation of new algorithms. Via systematic evaluations with a set of

unified metrics as well as building datasets, we have demonstrated that the workflows in Plaster can, for the

first time ever, provide a standard benchmark for comparing different metadata inference methods, and can

leverage and integrate existing methods in a complementary manner to deliver superior results. We believe

Plaster provides a comprehensive framework for further development of new algorithms, techniques, and

workflows for metadata inference, as well as for mapping them to a structured ontology like Brick, enabling

seamless smart buildings applications in the future.
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Conclusion

8.1 Summary and Key Contributions

In this dissertation, we present the design, implementation, and evaluation of Data Holmes — a framework

that infers the contextual information about sensors in commercial buildings, requiring minimal to no human

input. This is a first step towards the of vision of scalable and fast building analytics. As part of the framework,

we describe four algorithms, together with an open-sourced programming platform, for practitioners such as

building managers and researchers to tackle the building metadata problem and foster new algorithms. In

summary, we make a few contributions in this dissertation.

8.1.1 A Fully Automated Type Classification Technique

Building Adapter automatically infers the type information in a building without requiring human labeling

input, leveraging the information from one already mapped building. We provide experimental evidence that

the technique is able to automatically label more than 36% of the points in a new building with at least 85%

accuracy, and in some case up to 81% points with more than 96% accuracy. We also illustrate how combining

multiple buildings as the learning source could further boost the performance (i.e., create more accurate labels

for larger fraction of the points), which demonstrates promise of the technique. Furthermore, the technique

is general, simple, yet effective, which we believe can act as a tool for type inference for not only building

sensors, but also sensory data in the broader context of the Internet of Things.

100



8.1 Summary and Key Contributions 101

8.1.2 A Semi-Automated Type Classification Technique

Due to the fact that no two buildings are completely identical, the first technique cannot create type labels for

all the points given a building; labeling the remaining unlabeled points would still require human input, which

is often prohibitive. To address this need, we introduce a novel, effective yet general active learning method

to predict the sensor types by exploiting the clustering structure in the sensor names, requiring the minimal

amount of human input. Extensive experimental comparisons demonstrate the superiority of the technique —

it is able to achieve more than 92% accuracy for type classification with at least 20% fewer labeled examples

than baselines; on average, we need to present only ∼20 examples to a human expert for labeling, to achieve

90% prediction accuracy for more than 1,300 sensors. In addition, we also demonstrate how our solution can

complement the fully automated technique. Our proposed active learning algorithm is general, and therefore it

is applicable in a broader contexts such as document categorization and image retrieval.

8.1.3 A Cross-Predictive Clustering Technique

The proliferation of cheap, ubiquitous sensing infrastructure has permeated the world, and the data in this

paradigm is expected to be high-dimensional — the number of (sensor) time series is much larger than the

length of time series. Faced with the challenge, we describe a clustering method built upon a new similarity

measure, which quantifies the “cross-predictability” between time series, i.e., the degree to which a future

value in each time series is predicted by past values of the others. We also provide a theoretical proof that

the proposed algorithm will successfully recover the clustering structure in the data with high probability

under certain conditions. Experiments on both synthetic and real-world data verify the correctness of our

findings, and demonstrate the effectiveness of the algorithm. For the real-world task of sensor type clustering,

our method is able to outperform the state-of-art baselines by more than 20% with regard to the quality of

identified type clusters.

8.1.4 An Automatic Solution to Functional Relationship Inference

In addition to the type information of sensors, the functional relationships among equipment (e.g., the

connection between AHUs and VAVs) is also critical to lots of building applications. We propose an automatic

solution to this problem — it first develops a Markovian Event Model to identify the latent events in the time

series data of equipment, and then uses a correlation-based metric to locate the correlated set of events for

identifying the underlying relations. We demonstrate that the solution achieves an average accuracy 94.38%,

compared to 85.49% by the best baseline. We believe the solution is promising and can be generally applied to

event detection and relation inference in broader domains.
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8.1.5 An Integration Framework for Metadata Inference Algorithms

Various methods, together with the ones in this dissertation, have been proposed to (partially) automate the

process of generating structured metadata. However, the lack of compatibility between methods precludes

the possibility of combining or even comparing them, due to their heterogeneity. We design and implement

Plaster — a unified, extensible and modular framework that incorporates existing advances in metadata

inference. The modular design of Plaster enables generic workflows as well as development and evaluation

of new algorithms. We demonstrate that the workflows in Plaster can, for the first time, provide a standard

benchmark for comparing different metadata inference methods, and can leverage and integrate existing

methods in a complementary manner to deliver superior results. We believe Plaster can spur and facilitate

further development of new algorithms for metadata inference, which would enable seamless smart buildings

applications in the future.

8.2 Future Improvements

In this section, we discuss future work that further improves the proposed techniques in this dissertation.

First, we need better representation of the data. The performance of the transfer learning- and active

learning-based classification methods is fundamentally bounded by the base classifiers, which rely on a standard

set of statistical features. The domain specific line of work on representing time series with discretized symbols

(e.g., the SAX [166]) or primitive “shapes” (e.g., the “shapelets” [167, 168]) could be revisited and further

extended for the sensor time series concerned in this thesis. Recent advances in learning representation of data

using deep networks [169, 170, 171, 172] may also contribute to better base classifiers for our method.

Second, we could further reduce the human labeling effort for the semi-automated technique. Currently,

when acquiring labels for the selected examples, the active learning method only employs human input.

However, provided that we often have already well trained classifiers from other buildings (as in the Building

Adapter), we could use their outputs as the labels for active learning, instead of always resorting to a human

labeler. Yet, we would need to accurately quantify the credibility of these transferred “labelers”.

Third, we could extend the cross-predictive clustering method to more complicated settings. The current

setting of the method assumes no noise or outliers, which often does not hold in practice. We could extend the

assumption to allow for noise and/or outliers in the data distribution, yet still bear the theoretical guarantee;

and this is a fairly understudied direction, under our VAR data model assumption.

Fourth, the event detection model needs further development and comprehensive evaluation. The model

currently considers each sensor time series independently to detect the events, and it would be beneficial
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to incorporate the dependency between sequences into the modeling, such as VAVs connected to the same

AHU might respond to the same set of events. In addition, we would also like to evaluate the method on data

containing events in broader scenarios, e.g., events in water usage traces or events in smart wearable records,

in order to demonstrate the general usability of the method.

8.3 Future Research Directions

We also discuss a few future research directions inspired by the work and results in this dissertation.

The main focus of the techniques proposed in this dissertation is to infer the contextual information about

sensors in commercial buildings. However, the concept of “data context” definitely applies to beyond just

building data, and we expect our techniques to be generally applicable, too. As each individual starts to own

a fleet of personal devices that produce a plethora of digital traces, being able to automatically associate

the data with the owner and to interpret the data will be a key to the future data intelligence. For example,

clinical records for each patient are still mostly manually created and maintained [173], while the sensory

measurements of the same patient are often (automatically) digitally stored; matching the two sources is a first

step to patient identification and is currently still manually performed. With the advent of Internet of Things

(IoT), we would expect increasing demand and more stringent requirement of such data context generation

and analysis, yet requiring the minimal amount of human input.

Another direction is concerned with the security and privacy in the process of exploiting data. Data-driven

analysis has proven to be effective in revealing a lot about the data sources. For example, BACnet in buildings

is known to be hackable [174], and by simply inspecting the occupancy sensor trace in an office room, someone

could easily infer the occupant’s daily schedule and pay a malicious visit to the occupant’s home while he is at

work. Therefore, how to still fulfill computational requirements such as extracting effective features without

revealing data owner’s privacy has garnered attentions. Techniques including differential privacy [175] have

been put into extensive uses; however, how to effectively protect and secure users’ data in the context of IoT,

given the possible exponentially long chain of data stakeholders from data collectors to storage service to

analytics providers, remains a challenge.



Appendix A

Proof of Theorem 5.2.3

To prove the theorem, we need to prove the two conditions are satisfied as required in definition 5.2.1 of cluster

recovery property (CRP), i.e., the optimal solution is nonzero and has support indices of columns only from

the same cluster (SRP - the self-reconstruction property). At the core of our proof lies the primal-dual witness

method [176] widely used in lasso analysis, which involves the explicit construction of an optimal primal-dual

problem and a dual certificate. We organize the proof as follows:

(1) We prove the SRP by duality: first we establish a set of conditions on the optimal dual variable, which

corresponds to the case where all the primal solutions satisfy SRP; we then construct a dual variable to certify

the proof. This step includes §A.1, §A.2 and §A.3.

(2) We prove the optimal solution is nonzero by showing that there exists a value smaller than the value

of (A.2.1) when the solution is zero. This step corresponds to §A.4.

(3) We derive the range of λ for successfully recovering the clustering structure: the proof of step (1)

imposes an upper bound on λ while step (2) reduces to a lower bound of λ. It is essential to require the

lower bound to be smaller than the upper bound, and based on this we will derive a sufficient condition that

guarantees the existence of a valid λ. This step will be explained in §A.5.

A.1 Optimal Primal-Dual Problem

We propose a regularized Dantzig selector and define our primal convex optimization problem as the following

general form:

P0 : arg min
βi

λ‖Σ̂βi − γ̂i‖∞,∞ + ‖βi‖1, (A.1.1)
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where Σ̂ = X>SXS/(T − 1) and γ̂i = X>S (XT )∗i/(T − 1). Then the dual problem of (A.1.1) is:

D0 : arg max
ν
〈ν, γ̂i〉 subject to ‖ν‖1 = λ, ‖Σ̂ν‖∞,∞ ≤ 1.

To avoid cluttered notations, we omit some subscriptions and use γ̂ to refer to γ̂i unless stated otherwise, and

likewise use γ̂Sl for (γ̂Sl)i in the rest of the proof. We state the following technical lemma on the support of

the optimal solution, which extends the Lemma 7.1 in [120]:

Lemma A.1.1. Consider a vector γ ∈ Rd and a matrix Σ ∈ Rd×d. If there exists a pair (β,ν) with β’s

support S ⊆ T , and a dual certificate vector ν satisfying:

ΣS,ηνη + sgn(βS) = 0, ‖ν‖1 = λ, ‖ΣT∩Sc,ηνη‖∞,∞ ≤ 1, ‖ΣT c,ηνη‖∞,∞ < 1,

where η is the set of indices of entry i such that |(Σβ − γ)i| = ‖Σβ − γ‖∞,∞, then all the optimal solutions

β∗ to (A.1.1) obey β∗T c = 0.

The detailed proof of this lemma is deferred to Section B.

A.2 Construction of the Dual Certificate

We define Σ̂Sl,Sl = (Xl
S)>Xl

S ∈ Rdl×dl and γ̂Sl = (Xl
S)>(Xl

T )∗i ∈ Rdl , and we next apply the above

lemma to Σ̂Sl,Sl and γ̂Sl for a particular cluster Cl, and prove the existence of a pair (β̂,ν) such that the

optimal solution β̂ satisfies the self-reconstruction property and the certificate ν satisfies all the conditions in

Lemma A.1.1. Thereafter, the SRP holds for any optimal solution to (A.1.1).

To construct the dual certificate, we consider the following problem:

P1 : β̂ = arg min
β

λ‖Σ̂Sl,Slβ − γ̂Sl‖∞,∞ + ‖β‖1, (A.2.1)

and its dual form is:

D1 : arg max
ν
〈ν, γ̂Sl〉 subject to ‖ν‖1 = λ, ‖Σ̂Sl,Slν‖∞,∞ ≤ 1.

Define β̂ to be the optimal solution to the primal problem P1, the dual problem D1 is then also feasible by

strong duality, which implies that for each optimal solution β̂ to (A.2.1) with its support on Ŝ , there exists a
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dual certificate ν̂ that by definition satisfies:

Σ̂Ŝ,η̂ν̂η̂ + sgn(β̂Ŝ) = 0, ‖ν̂‖1 = λ, ‖Σ̂Ŝc,η̂ν̂η̂‖∞,∞ ≤ 1, (A.2.2)

where η̂ is the set of indices of entry i such that
∣∣(Σ̂Sl,Sl β̂ − γ̂Sl)i∣∣ = ‖Σ̂Sl,Sl β̂ − γ̂Sl‖∞,∞. If we define:

β =
[
0, ...,0, β̂,0, ...,0

]
and ν = [0, ...,0, ν̂,0, ...,0] . (A.2.3)

Note that if we use T̂ to index the columns of XS from cluster Cl, it is easy to see that the β defined above

obeys (β)T̂ c = 0 (i.e., the SRP holds), and we have T̂ ∩ Ŝc = Ŝc, which makes the last condition in (A.2.2)

equivalent to the third condition as required in Lemma A.1.1. Therefore, it remains to check the following

condition according to the lemma:

‖Σ̂Sc
l ,η̂
ν̂η̂‖∞,∞ < 1. (A.2.4)

If the condition is satisfied, we can then conclude that ν as constructed in (A.2.3) is a dual certificate as

required in Lemma A.1.1, and the SRP holds for all the optimal solutions.

A.3 Upper Bound of λ

In this section, we show that (A.2.4) can be separated into two terms and bounded individually, we then

further impose inequality on the bound to obtain the desired condition, which boils down to an upper bound of

λ.

Following (A.2.4), we have:

‖Σ̂Sc
l ,η̂
ν̂η̂‖∞,∞ = ‖(Σ̂Sc

l ,η̂
−ΣSc

l ,η̂
+ ΣSc

l ,η̂
)ν̂η̂‖∞,∞

≤ ‖(Σ̂Sc
l ,η̂
−ΣSc

l ,η̂
)ν̂η̂‖∞,∞ + ‖ΣSc

l ,η̂
ν̂η̂‖∞,∞, (A.3.1)

where we applied the triangle inequality for the last inequality. To bound the first term, we introduce the

following lemma from [116]:

Lemma A.3.1. Let Σ̂ be the sample covariance matrix and Σ be the population covariance matrix, when

T ≥ max(6 log d, 1) for the sample data matrix X ∈ RT×d, we have the following condition hold with

probability at least 1− 6d−1:

‖Σ̂−Σ‖∞,∞ ≤
16‖Σ‖2 maxj(Σjj)

minj(Σjj)(1− ‖A‖2)

√
6 log d+ 4

T
. (A.3.2)
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Particularly, for the ease of reference, we write the RHS of (A.3.2) as ρ. Therefore, we have:

‖(Σ̂Sc
l ,η̂
−ΣSc

l ,η̂
)ν̂η̂‖∞,∞ ≤ ‖Σ̂Sc

l ,η̂
−ΣSc

l ,η̂
‖∞,∞ · ‖ν̂η̂‖1 ≤ ρ‖ν̂η̂‖1 ≤ ρ‖ν̂‖1 ≤ ρλ, (A.3.3)

where we applied Lemma A.3.1 for the second inequality and the second condition in (A.2.2) for the last

inequality. Next we consider the second term in (A.3.1):

‖ΣSc
l ,η̂
ν̂η̂‖∞,∞ ≤ ‖ΣSc

l ,η̂
‖∞,∞ · ‖ν̂η̂‖1 ≤ λ‖ΣSc

l ,η̂
‖∞,∞, (A.3.4)

where the last inequality again follows from the second condition in (A.2.2). Putting together (A.3.1), (A.3.3)

and (A.3.4), we get a sufficient condition for (A.2.4):

ρλ+ λ‖ΣSc
l ,η̂
‖∞,∞ < 1,

which implies:

λ <
1

ρ+ ‖ΣSc
l ,η̂
‖∞,∞

.

To generalize the above condition to all the clusters l = 1, 2, . . . , k, we further need:

λ < min
l

1

ρ+ ‖ΣSc
l ,η̂
‖∞,∞

. (A.3.5)

A.4 Lower Bound of λ

In this section, we set to prove the nontrivialness of the optimal solution to (A.2.1), i.e., the solution is nonzero.

We will show that this step reduces to a lower bound of λ, and we state that if λ satisfies the following

condition, the optimal solution to (A.2.1) can not be trivial, i.e., β = 0 can never be optimal:

λ >
1

r(P((Σ0)Sl,Sl))r(P((Σ1)Sl,Sl))(‖γ‖∞,∞ − 2ρ)− ρ .

On the one hand, if β = 0 is the optimal solution to (A.2.1), then the optimal value will be λ‖γ̂Sl‖∞,∞;

on the other hand, suppose we can choose a particular β∗ such that:

λ‖Σ̂Sl,Slβ∗ − γ̂Sl‖∞,∞ + ‖β∗‖1 < λ‖γ̂Sl‖∞,∞. (A.4.1)
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If we can prove the existence of such a β∗, we are then equivalently proving β = 0 is not optimal. In particular,

we let β∗ be the optimal solution to the following fictitious problem:

β∗ = arg min
β
‖β‖1 subject to ΣSl,Slβ = γSl , (A.4.2)

and its dual is:

arg max
ν
〈ν,γSl〉 subject to ‖ΣSl,Slν‖∞,∞ ≤ 1. (A.4.3)

Here ΣSl,Sl ∈ Rdl×dl and γSl ∈ Rdl is a column of Σ1. Based on the condition ΣA> = Σ1, it is valid to

assume there exists such a β∗.

Next, we first deal with the LHS of (A.4.1):

λ‖Σ̂Sl,Slβ∗ − γ̂Sl‖∞,∞ + ‖β∗‖1

= ‖β∗‖1 + λ‖(Σ̂Sl,Sl −ΣSl,Sl + ΣSl,Sl)β
∗ − (γ̂Sl − γSl + γSl)‖∞,∞

= ‖β∗‖1 + λ‖(Σ̂Sl,Sl −ΣSl,Sl)β
∗ − (γ̂Sl − γSl)‖∞,∞

≤ ‖β∗‖1 + λ‖(Σ̂Sl,Sl −ΣSl,Sl)β
∗‖∞,∞ + λ‖(γ̂Sl − γSl)‖∞,∞

≤ ‖β∗‖1 + λρ‖β∗‖1 + λρ

= ‖β∗‖1(1 + ρλ) + ρλ, (A.4.4)

where the first inequality follows again from the triangle inequality while the second inequality is based on the

bound as given in Lemma A.3.1. To obtain an upper bound of β∗, we rely on the use of polar set, inradius and

circumradius as defined in Section B.1. Based on the condition in (A.4.3) and according to definition B.1.1,

we have:

‖ν‖2 ≤ R([P(ΣSl,Sl)]
◦
) =

1

r(P(ΣSl,Sl))
, (A.4.5)

where we applied Lemma B.1.3 for the equality. Note that, γSl is a column of (Σ1)Sl,Sl and according to the

definition of circumradius, we have:

‖γSl‖2 ≤ R([P((Σ1)Sl,Sl)]) = R([P((Σ1)Sl,Sl)]
◦
) =

1

r(P((Σ1)Sl,Sl))
. (A.4.6)

The first equality holds because P(ΣSl,Sl) is convex itself in the first place, and again we applied Lemma B.1.3

for the last equality. Since (A.4.2) is a linear program, strong duality holds:

‖β∗‖1 = 〈ν,γSl〉 ≤ ‖ν‖2 · ‖γSl‖2 ≤
1

r(P(ΣSl,Sl))r(P((Σ1)Sl,Sl))
. (A.4.7)
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For the last inequality, we applied (A.4.5) and (A.4.6). Plugging (A.4.7) into (A.4.4), we get:

λ‖Σ̂Sl,Slβ∗ − γ̂Sl‖∞,∞ + ‖β∗‖1 ≤
1 + ρλ

r(P(ΣSl,Sl))r(P((Σ1)Sl,Sl))
+ ρλ. (A.4.8)

Next, we consider the RHS of (A.4.1):

λ‖γ̂Sl‖∞,∞ = λ‖γSl + γ̂Sl − γSl‖∞,∞

≥ λ‖γSl‖∞,∞ − λ‖γ̂Sl − γSl‖∞,∞

≥ λ‖γSl‖∞,∞ − ρλ, (A.4.9)

where it follows from the triangle inequality and the bound in Lemma A.3.1 for the first and second inequality,

respectively. Therefore, to guarantee there exists a β∗, by putting together (A.4.8) and (A.4.9), a sufficient

condition for (A.4.1) to hold is:

1 + ρλ

r(P(ΣSl,Sl))r(P((Σ1)Sl,Sl))
+ ρλ < λ‖γSl‖∞,∞ − ρλ,

which implies:

λ >
1

r(P(ΣSl,Sl))r(P((Σ1)Sl,Sl))(‖γSl‖∞,∞ − 2ρ)− ρ . (A.4.10)

A.5 Existence of λ

We compactly denote P l0 = P(ΣSl,Sl) = P(E[X l
t(X

l
t)
>]), P l1 = P((Σ1)Sl,Sl) = P(E[X l

t(X
l
t+1)>]),

rl0 = r(P l0), rl1 = r(P l1), and r0r1 = minl r
l
0r
l
1. To guarantee there exists a λ satisfying both (A.4.10)

and (A.3.5), the following condition needs to hold:

max
l

1

rl0r
l
1(‖γSl‖∞,∞ − 2ρ)− ρ < λ < min

l

1

ρ+ ‖ΣSc
l ,η̂
‖∞,∞

.

Also note that:

max
l

1

rl0r
l
1(‖γSl‖∞,∞ − 2ρ)− ρ =

1

minl rl0r
l
1(‖γSl‖∞,∞ − 2ρ)− ρ .

Therefore, it suffices to require λ obey:

1

r0r1(‖γSl‖∞,∞ − 2ρ)− ρ < λ <
1

ρ+ ‖ΣSc
l ,Sl‖∞,∞

. (A.5.1)
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Note that we further relaxed ‖ΣSc
l ,η̂
‖∞,∞ to ‖ΣSc

l ,Sl‖∞,∞ on the RHS, and (A.5.1) is equivalent to:

ρ+ ‖ΣSc
l ,Sl‖∞,∞ < r0r1(‖γSl‖∞,∞ − 2ρ)− ρ,

which implies that:

r0r1 >
‖ΣSc

l ,Sl‖∞,∞ + 2ρ

‖γSl‖∞,∞ − 2ρ
, (A.5.2)

with

ρ =
16‖Σ‖2 maxj Σjj

minj Σjj(1− ‖A‖2)

√
6 log d+ 4

T
.

Here (A.5.2) is a sufficient condition to guarantee that the range given in (A.5.1) is non-empty. This

concludes the proof of Theorem 5.2.3.
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Proof of Lemma A.1.1

Proof. Observe that for any optimal solution β∗ to problem (A.1.1), we have:

‖β∗‖1 + λ‖Σβ∗ − γ‖∞,∞ − ‖β‖1 − λ‖Σβ − γ‖∞,∞

= ‖β∗S‖1 + ‖β∗T∩Sc‖1 + ‖β∗T c‖1 + λ‖Σβ∗ − γ‖∞,∞ − ‖β‖1 − λ‖Σβ − γ‖∞,∞

= 〈sgn(βS),β∗S − βS〉+ ‖β∗T∩Sc‖1 + ‖β∗T c‖1 + λ‖Σβ∗ − γ‖∞,∞ − λ‖Σβ − γ‖∞,∞

≥ 〈sgn(βS),β∗S − βS〉+ ‖β∗T∩Sc‖1 + ‖β∗T c‖1 + 〈Σ∗,ηνη,β∗ − β〉

= 〈−ΣS,ηνη,β
∗
S − βS〉+ ‖β∗T∩Sc‖1 + ‖β∗T c‖1 + 〈Σ∗,ηνη,β∗ − β〉

= ‖β∗T∩Sc‖1 + ‖β∗T c‖1 + 〈Σ∗,ηνη,β∗〉 − 〈ΣS,ηνη,β
∗
S〉+ 〈ΣS,ηνη,βS〉 − 〈Σ∗,ηνη,β〉

= ‖β∗T∩Sc‖1 + ‖β∗T c‖1 +
〈
νη,Σ

>
∗,ηβ

∗〉− 〈νη,Σ>S,ηβ∗S〉+
〈
νη,Σ

>
S,ηβS

〉
−
〈
νη,Σ

>
∗,ηβ

〉
= ‖β∗T∩Sc‖1 +

〈
νη,Σ

>
T∩Sc,ηβ

∗
T∩Sc

〉
+ ‖β∗T c‖1 +

〈
νη,Σ

>
T c,ηβ

∗
T c

〉
.

The first inequality holds because of the convexity of the original optimization function. The last equality

holds because :

Σβ∗ = Σ>S,∗β
∗
S + Σ>T∩Sc,∗β

∗
T∩Sc + Σ>T c,∗β

∗
T c , and Σβ = Σ>S,∗βS .

With the third inequality condition stated in Lemma A.1.1, we have:

〈
νη,Σ

>
T∩Sc,ηβ

∗
T∩Sc

〉
= 〈ΣT∩Sc,ηνη,β

∗
T∩Sc〉 ≤ ‖ΣT∩Sc,ηνη‖∞,∞ · ‖β∗T∩Sc‖1 ≤ ‖β∗T∩Sc‖1,

111



Chapter B Proof of Lemma A.1.1 112

which implies:

‖β∗T∩Sc‖1(1− ‖ΣT∩Sc,ηνη‖∞,∞) ≥ 0. (B.0.1)

In a similar manner, we have
〈
νη,Σ

>
T c,ηβ

∗
T c

〉
≤ ‖ΣT c,ηνη‖∞,∞ · ‖β∗T c‖1. We also have ‖βS‖1 = ‖β‖1

since β is supported on S, and therefore we get:

‖β∗‖1 + λ‖Σβ∗ − γ‖∞,∞ − ‖β‖1 − λ‖Σβ − γ‖∞,∞

≥ ‖β∗T∩Sc‖1 +
〈
νη,Σ

>
T∩Sc,ηβ

∗
T∩Sc

〉
+ ‖β∗T c‖1 +

〈
νη,Σ

>
T c,ηβ

∗
T c

〉
≥ ‖β∗T∩Sc‖1 −

〈
νη,Σ

>
T∩Sc,ηβ

∗
T∩Sc

〉
+ ‖β∗T c‖1 −

〈
νη,Σ

>
T c,ηβ

∗
T c

〉
= ‖β∗T∩Sc‖1(1− ‖ΣT∩Sc,ηνη‖∞,∞) + ‖β∗T c‖1(1− ‖ΣT c,ηνη‖∞,∞)

≥ ‖β∗T c‖1(1− ‖ΣT c,ηνη‖∞,∞),

where the last inequality follows from the inequality in (B.0.1). Furthermore, based on the last inequality

condition stated in Lemma A.1.1, it is easy to see that (1− ‖ΣT c,ηνη‖∞,∞) is strictly greater than 0. On the

other side, using the fact thatβ∗ is the optimal solution, ‖β∗‖1+λ‖Σβ∗−γ‖∞,∞−‖β‖1−λ‖Σβ−γ‖∞,∞ ≤

0. Therefore it follows that β∗T c = 0. We conclude the proof.

B.1 Auxiliary Results

We state some necessary definitions and lemmas in this section.

Definition B.1.1 (Polar Set). The polar set K◦ of set K ∈ Rd is defined as:

K◦ =
{
y ∈ Rd | 〈x,y〉 ≤ 1 for all x ∈ K

}
.

Definition B.1.2 (Circumradius [120]). The circumradius of a convex body P , denoted by R(P), is defined as

the radius of the smallest ball containing P .

We will also leverage the following lemma:

Lemma B.1.3 ([177], page 448). For a symmetric convex body P , i.e., P = −P , the following relationship

between the inradius of P and the circumradius of its polar P◦ holds:

r(P)R(P◦) = 1.
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