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Abstract 

Climate change is an accelerating issue, bringing the global environment closer than ever before to 
irreversible damage due to anthropogenic actions. Air pollution is just one contributor to a contaminating 
environment, and this project aims to shed light on air quality’s impact on human health through 
computational modeling in R. Air quality data from the EPA consisting of pollutants PM2.5, PM10, SO2, 
NO2, CO, and ozone were acquired and cleaned. Respiratory-related mortality time-series data was also 
acquired from the CDC. Temperature data was also included as a confounding variable. The data was 
derived from six geographic locations in the DC-Maryland-Virginia area and spanned over 19 years. 

Data transformation techniques were conducted on the time-series data for input into the causal model code. 
Granger Causality and Bayesian network principles were the basis for the two models created. Results 
demonstrated temperature to be a major causal contributor to mortality in both general population models. 
For race, age, and Chronic Obstructive Pulmonary Disease (COPD) stratification, racial minorities, older 
age groups, and those with underlying respiratory conditions were disproportionately affected by negative 
changes in air quality. The two models were validated through a variety of statistical tests and forecasting 
accuracy metrics. A pseudo-data set with defined causal links was also created in order to evaluate how 
well the Granger and Bayesian algorithms we used, could learn known causal relationships from the data. 

These models, while non-exhaustive, provide a small contribution to elucidating the long-term effects of 
climate change on public health outcomes. Further research in causal modeling by the scientific community 
is needed to help verify the severity of air pollution and ultimately lead to more concrete adaptation and 
mitigation efforts by policymakers.  

Keywords: climate change, air pollution, causality, Granger, Bayesian 

Introduction 

Climate change is deemed the largest global health threat of 
the 21st century. Climate change is defined as the long-term 
alteration of temperature and typical weather patterns in a 
given place and includes events such as average increases 
in the frequency of natural disasters, global temperatures, 
and exposure to vector-, food-, and water-borne infectious 
diseases. Between 2030 and 2050, climate change is 
expected to cause approximately 250,000 additional deaths 

per year, from malnutrition, malaria, diarrhea and heat 
stress1. Impacts of climate change extend well beyond 
increases in global temperature; things that we depend upon 
and value — water, energy, transportation, wildlife, 
agriculture, ecosystems, and human health — are 
experiencing the adverse effects of a changing climate. 

Air pollution is one of many drivers of climate change, and 
negatively impacted air quality is also an exposure pathway 
affected by upstream climate change drivers. Changes in the 
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quality of air, water, and food affect our health through 
multiple pathways, increasing respiratory and 
cardiovascular disease, injuries and premature deaths, as 
well as threats to mental health, just to name a few. When 
specifically referring to air quality, the annual U.S. average 
levels of fine particulate matter (PM 2.5) was on the decline 
by 24% between 2009 to 2016, and then experienced a 5% 
increase between 2016 and 2018 which can be attributed to 
the rollbacks of the Clean Air Act. Air pollution causes an 
estimated 7 million deaths worldwide every year and has 
been on the rise2. 

Due to the complex processes involved in climate change, 
the exact extent to which human health outcomes may be 
influenced by the changing climate remains unclear. In fact, 
several different interpretations of the severity of climate 
change exist. There is currently a strong divide in the US 
population with polarized beliefs in regards to the negative 
health impacts that climate change causes. As of 2020, the 
bipartisanship experienced the greatest divide in whether or 
not climate change should be a top priority, with 85% of 
Democrats and only 39% of Republicans stating yes, 
meaning a 46% disparity2.  

Recent studies show strong temporal correlations between 
climate change and societal public health crises. However, 
specific causal mechanisms underlying this relation have 
not been addressed and are often swept aside due to the 
presumed impracticality of establishing causality.  

Our approach aimed to bridge the gap in knowledge 
regarding climate-induced health outcomes previously 
known to have a weak causal relationship. Although such 
literature has implied correlations between public health 
outcomes and climate change, the two have not been 
combined in a comprehensive causal model thus far. 
Separate climate change and health outcome trends have 
been analyzed, but few causal models have merged the two 
together. In order to further decipher the impacts of climate 
change on human health, we have developed a causal model 
between a climate change driver (and also exposure 
pathway) and a public health metric. As a long-term goal, 
this model can help support the prioritization of climate 
change preventative programs and adaptive resilience plans. 
It can also help estimate associated costs and benefits in 
mitigating human impacts attributed to climate change. 
Understanding the implications of climate change now will 
help foster the development of proactive and responsive 
policies and predictive models to reduce future risks and 
impacts of climate change.  

The established aims for this project are as follows: 

Aim 1: To collect, process and integrate historical 
climate and public health time series data  
For historical climate time-series data on this topic, we 
acquired temperature and air pollution data gathered from 
sources such as the CDC, the Census, and the EPA’s 
Environmental Justice Screening and Mapping Tool 
(EJSCREEN), with a focus on monthly time series data. The 
health outcome we chose was respiratory-related mortality, 
and time-series data was gathered for the same time period 
and at equivalent levels (monthly) as the climate time-series 
data in order to compare the two variables. Literature served 
as a basis for choosing the specific air quality and mortality 
variables. The climate and health outcome data was refined 
to only include relevant and useful time points, integrated 
from different sources, and combined into standardized 
headers using data pre-processing techniques in R. The final 
climate change driver chosen was air pollution, and data for 
6 pollutants was incorporated in the models. Data was 
stratified also by geographic location (with an emphasis on 
the DC-Maryland-Virginia area), race, age, and COPD. The 
final health metric incorporated in the causal models was 
respiratory-related mortality. 
 
Aim 2: To develop a causal model of a specific pathway 
between a climate change factor and public health 
metric 
After leveraging information in temporal data to assist with 
causal linking between a factor of climate change and a 
health outcome metric, a series of models were developed 
utilizing computational modeling libraries in R. This 
included various Granger Causality models and Dynamic 
Bayesian Networks in order to compare and contrast results.  

 
Aim 3: To validate the causal model against data using 
time-series cross-validation  
The model was evaluated using the train-test split method 
by partitioning the time-series data into chronological 
subsets with the earlier observations (20-80% of the data) 
reserved for the training set and later observations (the final 
80-20%) reserved for the testing set. To assess the model’s 
accuracy, we determined how well the model utilizes the 
training set to predict the testing set through statistical errors 
such as mean absolute error3. Another form of validation 
included software validation, in which a “test” data set with 
predefined causal relationships, was created in MATLAB 
that was similar in characteristics to the climate/health data, 
and was used to evaluate whether Granger and Bayesian 
algorithms were capable of  detecting the causal 
relationships embedded in the dataset. 



 

     3 

Assumptions 
In the beginning of the project, there were several 
hypotheses and assumptions that had to be made. A major 
assumption that was made during the data acquisition 
process was that the air pollution sensors in various counties 
worked precisely and thus the data was a reflection of the 
true pollution values. Another assumption that had to be 
made when referring to the respiratory-related mortality 
data was that the reportings of the crude death rate were 
accurate and that any missing data points would not 
drastically alter any trends and model outputs. As for 
hypotheses, links between all pollutants and respiratory-
related mortalities were expected, since the six pollutants 
acquired have been indicated to cause health issues in 
previous literature.  

Methods 

Data Acquisition 

Historical climate time series data was gathered from the 
EPA’s Environmental Justice Screening and Mapping Tool, 
with a focus on monthly data from January 1999 to 
December 2018. Data for 6 different air pollutants was 
acquired, including PM2.5 and PM10 in units of ug/𝑚ଷ, and 
CO, ozone, SO2, and NO2 in units of parts per million 
(ppm). Monthly temperature averages (Fahrenheit) were 
also acquired from the EPA as temperature acts as a 
confounding variable when detecting mortality trends. 
General respiratory-related mortality time-series data which 
fall under the J00-J99 ICD-10 codes was then gathered for 
the same time period and at the equivalent monthly level in 
order to align temporal and geographical scales. Mortality 
was then stratified by race, age, and sub-categories of 
disease using the CDC’s Wondertool. More specifically, 
race was broken down into white and Black populations, 
age groups into 65-74, 75-84, and 85+ populations, and 
disease into the COPD population. Limited data was 
available for other races (Latinx, Native American and 
Asian) as well as for younger age groups <65 years of age. 
Units were given in terms of “Crude Death Rate” which is 
the total number of deaths to residents in a specific 
geographic region per hundred thousand residents.  

The data was gathered for 6 different counties within the 
D.C.-Virginia-Maryland region based on data availability: 
Washington D.C., Fairfax County (VA), Richmond City 
(VA), Montgomery County (MD), Prince George’s County 
(MD), and Baltimore County (MD). Counties with very few 
time points were excluded, as well as those with very large 

gaps in data points in which interpolation would yield 
inaccurate estimations. Counties such as Loudon and 
Arlington county were omitted due to the lack of monthly 
data for the given time frame. The CDC’s Social 
Vulnerability Indices (or SVIs) of each county were 
determined in order to identify demographic groups and 
geographic locations that are more vulnerable to external 
stresses on human health, including air pollution and 
disease. The higher the SVI (on a scale of 0-1), the more 
vulnerable an area is to environmental and public health 
hazards.  

Data Cleaning 

The data was integrated from the different sources and 
combined into standardized headers for data pre-processing. 
If daily data was available for certain counties, the monthly 
average was taken using Excel. The climate and health 
outcome data were then refined to only include relevant 
time points in R. Several counties required interpolation and 
extrapolation due to sparse data. Using the dplyr package in 
R, interpolation had to be used to fill in gaps in the time-
series data in order to have consistent monthly time 
intervals for each year. Some datasets had to be extrapolated 
using Excel’s curve fitting tool in order to have set start and 
end time points for the data. The optimal extrapolated 
values were determined based on R2 values from either 
linear or polynomial regression. What was noticed as we 
began gathering and cleaning data was that data for non-
white populations typically required much more 
interpolation and extrapolation than data for white 
population. For example, Prince George’s County’s white 
population only makes up about 17% of the total population, 
but the Black population still required more interpolation4. 
This lack of data may stem from the fact that some counties 
and communities are more socially vulnerable and may not 
have the resources for consistent and accurate data 
collection, indicating a need to enforce better and more 
consistent data collection and management across 
communities, at a policy level. 

In addition to those two primary forms of data cleaning, we 
also conducted time-series decomposition using the stats 
package in R in which the monthly pollutant and mortality 
data was broken down into seasonality, trend, and random 
components. Seasonality would be defined as repeating 
short-term cycles found in the data, and the trend 
component refers to the overall increasing or decreasing 
pattern in data. The random residual output was used for 
Granger causality modeling in order to remove seasonality 
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patterns and confounding trends when determining causal 
relationships, and also address requirements for data to be 
stationary. The trend component was calculated based on a 
12-day moving average; therefore, 6 points were omitted at 
the beginning and end of the data set.  

Model Formation 

Two types of causal models, including the Granger-Causal 
model and the Bayesian Network model were used in model 
formation and then compared and contrasted. The Granger-
Causal model is a prediction-based statistical concept of 
causality in which empirical data is used to find patterns of 
correlation. Specifically, it states that if variable X causes 
variable Y, then past values of X should help predict Y 
beyond just the previous values of Y alone. Granger 
causality is also known as a “bottom-up” procedure in 
which the assumption is that the two time-series variables 
are independent, and then the data sets are analyzed for 
correlation. This is different from “top-down” procedures 
which would be assuming a link between the time series 
variables, and then analyzed to see if they are generated 
independently from each other.  

The vars package in R allows one to develop a Granger 
causal model using vector autoregression, a statistical 
model used to capture the relationship between all the 
pollutants and respiratory-related mortalities as they change 
over time. Time-decomposed variables for pollutants, 
temperature, and mortality for each county were imported 
as time-series objects. Then, the VAR() function created 
multivariate time-series equations where the endogenous 
variables in the system are functions of the lagged values of 
all endogenous variables. A lag order of 1, indicating a lag 
of one month, was determined using the VARselect() 
function which outputted the optimal lag based on different 
information criterion (IC). The Akaike Information 
Criterion (AIC) tests how well our model fits the data set 
without overfitting it, and therefore was used in determining 
the IC score. 

After a VAR equation was obtained for each potentially 
causal variable (pollutants and temperature), the equation 
and its associated parameters were inputted into the 
causality() function. The causality function outputted p-
values that represented the probability of statistical 
significance of Granger causality for each pollutant. After 
having acquired the p-values for each individual pollutant 
vs mortality, pollutants which showed significant causality 
were then paired and grouped together to investigate the 

potential relationships between multiple pollutants and their 
combined effect on mortality. Tables were then generated 
to organize the p-values for each model for later 
downstream analysis.  

The second type of causal model was the Dynamic Bayesian 
Network model. A Bayesian network is defined as a 
directed acyclic graph that utilizes conditional probabilities 
to reflect causal links between parent and child nodes. The 
parent nodes are defined as the original input variables (i.e. 
pollutants/temperature) whereas the child nodes are nodes 
extending from other nodes and therefore are dependent. 
Furthermore, one approach to learning Bayesian networks 
is using score-based structure learning algorithms and more 
specifically the hill climbing algorithm. Hill climbing is an 
optimization technique that starts with an arbitrary solution 
to a problem and then makes incremental changes to the 
solution to find a better solution. The algorithm continues 
to make incremental changes until no further improvements 
can be made. Because we are using time series data 
representing a dynamic system, we learned a Dynamic 
Bayesian Network using the dynamic max-min hill 
climbing (dmmhc) algorithm. At their core, these 
algorithms are based on Bayes Theorem and conditional 
probabilities between pollutants, temperature, and 
mortality, in order to measure how likely variable X caused 
variable Y or the probability that evidence of Y occurs given 
that knowledge about X already exists (P (Y | X)). 
 
To formulate a Dynamic Bayesian network, raw (non-time-
decomposed) data from each county was imported into R 
using the bnlearn, bnstruct, dbnR, and Rgraphviz packages. 
The node sizes were set to five meaning five time-series 
points were compared. A node size of five was chosen 
because it balanced factors such as computational time, 
feasibility, and model accuracy for each county. 
Furthermore, certain arcs such as those protruding from 
mortality had to be blacklisted to ensure meaningful causal 
relationships were maintained.  
 
The original data set was set to 80% training and 20% test 
but was altered afterwards for cross-validation testing. The 
80% training set was subsequently inputted into the 
learn_dbn_struc() function and plotted to formulate a visual 
network for each county. Accessory functions such as 
fit_dbn_params() were then used to calculate the the 
regression coefficients linking parent and child nodes in the 
network. The equation with mortality as the dependent 
variable was used to generate conditional density tables to 
capture the strengths of each connection between pollutants 
and temperature.  
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Results 
Granger General Population 
 

 

Table 1: Granger Causal Model P-Value Table for General 
Population. The causality function in R generated p values for 
each variable combination, describing the relationship they each 
have with respiratory-related mortality. Those which are less than 
0.1 are displayed, indicating a potentially significant Granger 
causal link between the pollutants and respiratory-related 
mortality. P values were often found to be smaller when paired 
with temperature. 

The VAR() function in R was used in 
conjunction with the causality() function 
to generate several models using the 
residual data combining various 
pollutants and temperature with 
respiratory-related mortality for each 
county. However, only DC, Fairfax 
County, and Richmond City yielded 
models with p-values under 0.1, our 
chosen critical value (See Table 1). Prior 
to model generation, it was hypothesized 
that temperature would act as a proxy for 
a seasonality component and would strengthen the causal 
links by decreasing the p-values. This hypothesis was taken 
from many pieces of literature linking seasonality-mortality 
relationships, such as a case study in subtropical China in 
which morbidity burden increased with exposure to extreme 
temperatures5. This hypothesis was supported by the results 
in Table 1, as eleven of the thirteen significant models 
included temperature. Significant causal pollutants included 
PM10 in Fairfax, SO2 in Richmond City, and ozone in DC. 
NO2-significance seemed to be evenly dispersed between 
the geographic regions, which makes sense because NO2 is 
one of several gas pollutants produced by road traffic and 
fossil fuel combustion processes, which is present in all 

regions. A limitation for Granger Causal models is that 
although p-values are generated, it is less straightforward to 
visualize relationships intuitively with a network structure. 
This is a shortcoming that can be mediated by the Bayesian 
Network model. 

 

Granger Stratification by Race  

As for stratification by race, when inputted into the causality 
function, it was seen that a greater amount of p values were 
significant for the Black population, indicating more 
potentially causal links between air particulate matter and 
general respiratory-related mortality (see Table 2). For 
D.C., five causal variables and their pairwise groupings 
were seen to be significant in the Black population, and 
none were significant for the white population. This racial 
disparity may be due to the effects environmental racism 
has on the health and well-being of marginalized 
communities, where environmental racism is defined as the 
environmental decisions, actions, and policies that 
disproportionately affect minorities6. 

Granger Stratification by Age 

 After completing the Granger causal models for the 
general population, the same air pollutant and respiratory-
related mortality data was stratified by age for each 
geographic location. Certain regions, such as Fairfax 
County, DC, Montgomery County, and Prince George’s 
County had available data for both 75-84 and 85+ age 
groups, while Richmond City had very sparse data that did 
not meet the chosen interpolation and extrapolation limit (at 
least half the time points). Baltimore County, however, had 
available data for three age groups, including 65-74, 75-84, 
and 85+ populations. The results for the Granger models 

 
Table 2: P-value Table for Racially-Stratified Models. Granger Causal Models were 
generated for both the Black and white population in Washington, D.C. for multiple 
combinations of pollutants and mortality. The respective p-values are shown, with those 
less than 0.1 highlighted in orange. Based on statistical hypothesis testing, each model 
suggested whether there was a potential causal relationship between one or more air 
pollutant variables, and the health outcome of interest (mortality). The air pollutants that 
were considered for each model, are stated in the column titles. 
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stratified by age indicated that if one model was significant 
within a location for a given age group, the subsequent 
combinations of pollutants and temperature with mortality 
were found to be significant as well. This was shown with 
the DC 75-84 age group as well as the Montgomery 75-84 
age group (See Table 3). The same level of consistency was 
not seen for the general population Granger models, and one 
reason for this may be because individuals in a certain age 
group are more likely to have similar backgrounds and 
medical history, and thus any existing causal links would be 
strengthened. 

Granger Stratification by COPD 

Granger models were also stratified by COPD, which is 
caused by long-term exposure to irritants that can damage 
lungs and airways. Therefore, we thought it would be 
beneficial to evaluate if there were similar causal links 
found in the general population. Given the high p-values, 
there were no significant causal relationships present in 
Washington DC, Fairfax, Montgomery, Prince George’s, or 
Baltimore County. However, in Richmond City County, 
two models showed significant p-values under 𝛼= 0.1 One 
of those models demonstrated that temperature and SO2 
may be causally linked to COPD-related mortalities with a 

p-value of 0.02499. The other model demonstrated that NO2 
may be causally linked to COPD-related mortality with a p-
value of 0.0411. This disparity is surprising as Richmond 
City is seen as one of the nation’s least congested urban 
areas. Given Richmond City’s sparse population and that 
the average commuter in Greater Richmond spends only 35 
hours in traffic annually compared to the national average 
of 54 hours per year, it was originally hypothesized that the 
county would not have SO2 or NO2, pollutants mainly 
associated with traffic, closely associated with mortality7. 
However, based on the Bayesian results, this was not the 
case. 

Bayesian General Population 

 For the general population, 
Bayesian network models were 
constructed for each of the 6 
counties. As stated before, the node 
size was set to five, which 
representations relationships 
spanning 5 months, and blacklisting 
was utilized for arcs extending from 
mortality to ensure meaningful 
causal relationships were being 
maintained. Furthermore, the 80-20 
train-test set was utilized for all 
general population models. For all 
counties, temperature had causal 
links present with mortality. In 
addition, all models had a slightly 
negative coefficient indicating that 
as temperature increases, mortality 
decreases. An example Bayesian 
network and coefficient table for 
DC’s general population is provided 
in Figure 1. The negative 
relationship between temperature 

and mortality may actually be a false-positive association 
that occurs given the seasonal component present in the 
non-time-decomposed input data. Due to computational 
limitations and the dbnR package’s sensitivity, the Bayesian 
models may not have been able to detect all causal links 
with mortality and therefore this may be another reason for 
temperature’s negative relationship with mortality. In 
addition, for Montgomery, Baltimore, and Prince George’s 
County, ozone also had causal links present with mortality. 
In the mortality equation, the weighted coefficients for 
ozone were slightly positive indicating that as ozone levels 
increase, the mortality rate increases.  

Table 3: Granger Causal Model P-value Table Stratified by Age and COPD: a) All 
attempted models for the 75-84 age population resulted in low p-values, with the ones 
below .05 indicated in dark red and the ones below 0.1 indicated in light red. b) For 
COPD stratification, only two models in Richmond City appear to show significant 
causality to mortality with a p-value <0.1. In model 1, temperature and SO2 are linked to 
mortality while in model 2, NO2 was linked to mortality which is feasible considering 
that NO2 and SO2 have been known to lead to characteristic airway remodeling and 
changes in mucus secretion. Therefore, NO2 and SO2 are major risk factors for COPD.  
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This aligns with the current literature that states that 
elevated concentrations of ozone are associated with an 
increased number of deaths from respiratory causes. 
Furthermore, the biological mechanisms behind this 
relationship is largely unknown but preliminary research is 
currently investigating the effects of ozone on the 
autonomic control of the cardiovascular system, on 
coagulation mechanisms, and on vasoactive substances in 
the blood8.  

In Richmond City, NO2, alongside with temperature, also 
had causal links present with mortality. The weighted 
coefficients for NO2 were slightly positive indicating that as 
NO2 levels rise, the mortality rate increases.  The reason 
may be due to the fact that NO2 is a highly reactive, poorly 
water-soluble gas that deposits peripherally in the lungs. A 
major target site for the action of NO2 is the terminal 
bronchioles where NO2 has been linked to inducing airway 
inflammation, worsening coughing and wheezing, 
increasing asthma attacks, and reducing overall lung 
function9. 

 

Bayesian Stratification by Race 

Figure 2: Bayesian Models for Racially-Stratified Models. 
Bayesian Models were created for both races. The nodes and 
connections at t_0 are highlighted, signifying that SO2 and 
temperature are causally linked to mortality for the Black 
population, and NO2 is causally linked to mortality for the white 
population. 
 
Atmospheric ozone has two effects on the temperature 
balance of the Earth. It absorbs solar ultraviolet radiation, 
which heats the stratosphere10. It also absorbs infrared 

Figure 1: General DC Population Bayesian Modeling. A Bayesian network model of D.C. was generated using the dbnR 
package, and the node size was designated to be five, which meant five time series points were compared. As seen across all 
networks, there seems to be a strong relationship between temperature and mortality. There are also many links between the 
pollutants themselves, such as ozone to NO2, which, rather than indicating direct causal relationships, may be due to common 
sources like automobile emissions. 
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radiation emitted by the Earth's surface, effectively trapping 
heat in the atmosphere, and therefore it makes sense for 
ozone to be linked to temperature in the Bayesian model 
(see Figure 2). Based on Figure 2, temperature has a 
potentially causal relationship with mortality only in the 
Black population. This may be due to historical redlining 
and residential segregation. Redlining is the discriminatory 
practice that puts financial services, including housing 
mortgages, out of reach for racial and ethnic minorities. In 
fact, formerly redlined neighborhoods are, on average, five 
degrees warmer than whiter, more affluent neighborhoods 
where redlining never occurred11.  

SO2 and NO2 are both linked to mortality in the 
Black and white populations respectively. Both of these 
pollutants are emitted by the burning of fossil fuels — coal, 
oil, and diesel — from power plants and automobiles12. 
Taking a look at D.C., it is unsurprising to see these two 
pollutants act as potentially major causes of respiratory-
related mortality as D.C. has 51 major roadways, each a 
major avenue that serve as the city's principal traffic 
arteries, with more than 3.8 million vehicles registered in 
the District13. This number does not take into account the 
number of commuters from neighboring states. Most other 
counties located near major cities and urban centers 
(Baltimore, Richmond City) also have NO2 and SO2 
linkages to mortality. The EPA recognizes that NO2 and 
SO2 are inextricably linked from both atmospheric 
chemistry and environmental effects perspectives as 
deduced by their typical linkage in several Bayesian 
models14. However, the discrepancy between races may be 
due to the fact that each race may generally live nearby 
different industrial facilities within the D.C. metropolitan 
area due to differential land zoning11. Although, it is 
important to note that the coefficients linking mortality to 
NO2 for the white population are lower than that of the links 
to SO2 for the Black population, indicating a potentially 
stronger causal relationship for the Black population. 

It was also observed that only Black populations, 
particularly in Baltimore and Prince George’s counties, had 
Bayesian models in which PM2.5 or PM10 had direct nodal 
connections to mortality. Disparities in residential 
proximity to pollution sources may account for this 
difference6. 

Bayesian Stratification by Age 

When examining data stratification by age, it was seen that 
older age populations (85+) generally had more connections 
linking air pollutants to mortality. It was also seen that older 
ages (75+) typically had temperature linked to mortality, as 

seen with Baltimore County in Figure 3a. This aligns with 
the current literature which states that older adults are more 
susceptible to air pollutants compared to younger adults due 
to decreased physiological, metabolic and compensatory 
processes as well as a greater incidence of cardiovascular 
and respiratory disease1.  

Figure 3: Bayesian Models for Age-Related and COPD-
Related Mortality Models. Bayesian models were stratified by 
a) age groups and b) Chronic Obstructive Pulmonary Disease 
related mortality. Younger populations were less susceptible to 
pollutants. PM10 and temperature were linked to mortality for the 
COPD populations. 
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Bayesian Stratification by COPD 

For COPD stratification, all county models except 
Baltimore had autocorrelation present between past and 
future COPD-related mortality time points. All county 
models except DC and Richmond City demonstrated casual 
links present between temperature and COPD-related 
mortalities, which was similar to the general population 
trends (see Figure 3b). In the COPD equation for all 
counties, the weight of the temperature coefficient was 
slightly negative showing that there may be false-positive 
artifacts present in the models and that additional data 
transformation techniques may be required. 

In particular, Prince George’s County also had a 
causal relationship between PM10 and COPD-related 
mortalities which was unlike the general population trends. 
In the COPD equation, there was also a slightly negative 
coefficient for PM10 which may again be a false-positive 
artifact. However, this finding does not align with the 
current literature where a study found that for every 10 
ug/𝑚ଷ increase in PM10, there was 1.1% increase in COPD-
related mortalities17. This may be due to the fact that air 
pollutants like PM10 are seen as risk factors for COPD and 
have the potential to cause inflammation in the lungs. PM10 

is also known to lead to destruction of cells and tissue 
through oxidative stress where there is an imbalance in the 
body’s ability to neutralize certain molecules such as free 
radicals and reactive species. If the body’s antioxidants are 
depleted, then this can result in impaired cellular function 
thereby contributing to diseases such as COPD15.  
 

Social Vulnerability Indices 

Generally, counties with higher SVIs tended to have higher 
Black populations and tended to require greater data 
interpolation. Fairfax county is the third most affluent 
county in the country, with the lowest SVI of the 6 we 
examined. However, Fairfax did not have any available data 
for its Black population16. The two counties with highest 
SVIs, Prince Georges and Richmond City, required the most 
interpolation and extrapolation during data cleaning. The 
Black population in these counties also make up the 
majority, with Prince George’s being 62.67% Black and 
Richmond City being 49% Black4. D.C. also has a Black 
majority, making up 46.31% of the population compared to 
41% of white people18.  
 
When modeling Granger causality, it was evident that 
counties with higher SVIs had many more significant p-

values outputted from the models compared to counties with 
lower SVIs. In fact, Montgomery and Baltimore counties 
had no significant p-values of the pairwise groupings tested. 
It was also observed that the Bayesian models for counties 
with the three lowest SVIs only had temperature and/or 
ozone linked to mortality, whereas the other counties with 
higher SVIs had NO2, SO2, CO, PM2.5 and/or PM10 linked to 
mortality as well. 
 

Data and Model Validation 

Granger Statistical Testing 

To conduct validation as part of Aim 3, the group utilized 
the vars, tseries, and forecast packages in R in order to 
conduct diagnostic statistical testing on models that had 
already demonstrated Granger causality in Aim 2 (p-value 
< 0.1). The stationary test was first utilized prior to inputting 
the data into the model to determine if the statistical 
properties of the time-series data do not change over time. 
For all counties, it was found that the general population 
models passed the stationarity test and therefore the data 
was deemed stationary. An example Granger validation 
table for the DC general population is shown in Figure 4a.  

The next test, autocorrelation, was utilized to 
determine if there was a similarity present between 
observations as a function of the time lag between them. 
Across all counties’ general populations, approximately 
half of the models from each county passed this metric with 
a p-value < 0.1. Furthermore, a normality test was 
conducted to determine if the residuals of the data follow a 
normal distribution. Multiple statistical tests such as Jarque-
Bera, Skewness, and Kurtosis, were utilized to measure 
normality. Across all counties’ general populations, again, 
only a few models passed at least one of these tests.  

Another metric to consider is heteroscedasticity or 
the volatility of the changing variance in data. In time-series 
data, it is desirable to have constant variance, but 
unfortunately, across all counties’ general populations, only 
a handful of models demonstrated non-heteroscedastic 
behavior. The last metric, stability, tests for the presence of 
structural breaks which is important considering that if 
structural breaks go undetected in modeling, then the 
accuracy of the model degrades. In order to fail the stability 
tests, the data would need to fall outside of the red 
boundaries in the generated plots. An example plot of the 
stability test for Fairfax County is shown in Figure 4b. For 
all counties’ general population, all models passed this 
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metric demonstrating stable data.  For Granger stratification 
by race, models for both the Blacks and whites in all 
counties exhibited similar trends to those of the general 
population models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

One should note, however, that the Black population models 
tended to fail more heteroskedasticity tests compared to 
white population models, which may arise from the extra 
interpolation that was needed for the Black population 
thereby increasing its volatility. For Granger stratification 
by age and COPD, models for all counties demonstrated 
similar trends to those of the general population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Diagnostic Testing for DC Granger Model. a) The Granger model output for each 
significant relationship was tested for stationarity, autocorrelation, normality, heteroscedasticity and 
stability. The stationarity test was conducted prior to Granger causality testing, whereas the 
subsequent diagnostic tests were performed on the model’s outputs. The red boxes indicate a failed 
test, and the green represents a passed test. The p values are shown for the applicable tests, with a 0.1 
critical value. b) The stability() function in R generated the following plot for one of the models in 
Fairfax County. As seen from the figure, mortality passed the test since none of the data exceeded the 
red boundaries. 

a) 

b)  
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Test Data Set 

Another large portion of validation for this project was the 
software validation portion. We wanted to test the ability of 
Granger and Bayesian algorithms implemented in R, to 
learn known causal relationships from a ground truth dataset 
that we constructed to have those causal links. In order to 
input pseudo-data that had distinct causal links, four 
variables were generated in MATLAB — Y, Z, N, and P. In 
order to generate these variables, Y was first defined as the 
first 300 values of a sin() function. Then, additional trend, 
random, and seasonality components were added in order to 
replicate similar data characteristics that were found in 
actualmortality and air pollutant data. An upward trend was 
added by increasing each Y data point by a random value 
between 0.01 and 1.5. Then, a random component was 
added by adding a random number within -1.5 and 1.5 to 
each Y value. Next, the variables Z, N, and P were made 
with respect to Y and a time delay of (t-1) was added. The 
variables Z, N, and P are defined as follows: 𝑍௧ିଵ = 2𝑌ଷ −

𝑌ଶ + 5𝑌 , 𝑁 = ඥ3|𝑌|
య , and 𝑃 = 3𝑌 + 2. Once the test data 

set was completed, it was time-series decomposed in R and 
then subsequently run through the Granger causality code. 
All combinations of Y, Z, N, and P models were tried, and 
all models resulted in a p-value of 2.2E-16, which is how R 
outputs p-values less than 0.000119. This indicates that we 
were able to learn the true causal links from the test data. In 
addition to running the test data set through the Granger 
causal code, the same statistical VAR tests done for the 
pollutant and mortality data was also completed. Similar to 
the air quality/mortality data, the test data passed about half 
of the statistical VAR tests. For the most part, the models 
passed the AC autocorrelation, stationarity, and the stability 
tests, and did not pass the serial autocorrelation, the 
normality, and the heteroscedasticity tests. This is a good 
sign because it demonstrates that even models built on data 
with known causal links can fail statistical tests.    

The same data set, except the raw data instead of the 
residual data, was inputted into the Bayesian Network 
Model to test the algorithm’s ability to learn the 
manufactured causal links from the data. The result was that 
the learn_dbn_struc function was only able to pick up on 
some of the relationships between the four variables, 
including a consistent causal link between variables Z and 
P. This is interesting because variables Z, N, and P were 
defined all in terms of Y, and Y did not have many causal 
links. This demonstrates a limitation with the bnstruct and 
bnlearn packages and their ability to decipher complex 
relationships. These links, or the lack thereof, may also be 

due to the noise and trend/seasonality components added to 
the data after variable definition. 

Bayesian Mean Absolute Error 

For Bayesian validation, the predict function, which uses 
past data to perform inference over test data was utilized to 
assess forecast accuracy for each general population model 
from each county. Figures illustrated the predicted data in 
red superimposed with the raw data outlined in black. An 
example figure for DC is seen in Figure 8. The average 
mean absolute error (MAE) and standard deviation (SD) 
were also calculated in R. As part of cross-validation, 
training and testing datasets for the general population 
models were altered and varied to include an 80-20 train-
test split, a 60-40 split, a 40-60 split, and a 20-80 split, in 
which the MAEs and SDs were averaged. In an 80-20 train-
test split, 80% of the data points are reserved for the training 
set and 20% are reserved for the testing set. As the training 
data set decreased from 80 to 20, the MAEs and SDs were 
observed to be higher on average given that less training 
data was being used to formulate the models thereby 
introducing the potential for more error. These MAEs and 
SDs were then recorded for each county’s general 
population model as seen in Figure 8.  Counties that 
required less interpolation and extrapolation tended to have 
the lowest MAEs and SDs.  

Figure 8. Bayesian Validation with Forecasting Accuracy. For 
all models, the predict function was utilized to plot mortality vs 
time with the predicted data in red superimposed with the raw 
data depicted in black as seen in the top graph. Mean absolute 
error (MAE) and standard deviation (SD) values were recorded 
for each of the counties’ general population on the bottom table.  
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For Bayesian stratification by race, the MAE for each race’s 
Bayesian models was also strikingly different - the white 
population of D.C. had a MAE of 0.38, with a standard 
deviation of 1.04. The Black population had a MAE of 4.70, 
with a standard deviation of 5.22, despite D.C. requiring 
very little interpolation for both races. This was consistent 
among every county. As for Bayesian stratification by age, 
the MAE and SD values decreased as the age groups 
increased. For example, in Prince George’s 75-84 age 
group, the MAE and SD was 1.09 and 1.51, respectively. 
The MAE and SD for the 85+ age group was 0.9830276 and 
1.238806. This trend was commonly observed across all 
counties. The lower error amongst older ages aligns with the 
fact that older age groups had more available data requiring 
less interpolation and thereby reducing any potential error. 
For Bayesian stratification by COPD, the MAEs and SDs 
were much lower for all counties compared to their general 
population model counterparts. For example, in DC’s 
COPD population, the MAE and SD were 1.57 and 2.06, 
respectively. This aligns with the fact that a smaller portion 
of the population is being used, and therefore more specific 
subsets of data were analyzed. As a result, the dbnR package 
uses a less computationally intensive approach and is more 
accurate in detecting causal links. 
 
Discussion 
 
Bayesian and Granger Comparison 
 
When comparing Granger and Bayesian models, one can 
see that temperature is repeatedly causally linked to 
mortality in both general population models.  In both the 
Bayesian and Granger models, it can be seen that 
temperature is a major actor in causing respiratory-related 
mortalities in only the Black population. When combining 
temperature with an additional pollutant, the Granger 
models for only the Black population often outputted a p 
value less than 0.1, indicating the influence temperature has 
on respiratory health. SO2 was also causally linked to 
mortality in both the Bayesian and Granger models for the 
Black population. For stratification by age and COPD, 
temperature was also causally linked to mortality in both 
models. However, these two models cannot necessarily be 
compared with each other as Granger utilized a combination 
of variables to demonstrate causality as opposed to 
relationships between pairs of variables in the Bayesian 
networks.  
 

While we have established potential causal links with our 
models, this list is not exhaustive. Our data driven causal 

inference serves as a suggestion for further research to be 
conducted as more experimentation is needed to establish 
definite causality. However, compared to randomized 
control trials and cohort studies which can be unethical, 
time-consuming, and full of unaccounted for extraneous 
determinants, computational-based studies may serve as a 
more efficient way of testing air pollutant effects on health. 

 
Limitations 

Many limitations stemmed from the lack of data 
availability. Had daily raw data been available for all 
counties from 1999 to 2018, the models would have more 
successfully captured the complexities of climate 
epidemiology as opposed to more commonly collected 
monthly or yearly data. For example, public hospital 
admission data (HCUP) would have been a better public 
health outcome indicator than mortality due to respiratory 
disease because it would include a larger, more 
comprehensive set of patients and would detail the patterns 
of a consistently maintained hospital database on a daily 
timescale. If HCUP data was acquired, asthma data could 
have been analyzed as an effect of air pollutants. However, 
very few asthma cases lead to death and thus most 
geographic locations did not have enough data to analyze 
on an acceptable time scale. HCUP data could not be 
acquired due to funding restraints and legal hurdles. 

In addition, Latinx, Native American and Asian populations 
lacked sufficient data and were omitted from analysis, 
presenting itself as an issue related to data diversity and 
model inclusivity. This could partially be due to such small 
populations of these races in certain DMV areas, but likely 
points to an issue of inaccurate demographic representation. 
It was seen that Black mortality data had to be interpolated 
much more than that of the white population, with the Black 
populations of some counties having very little or no data in 
the CDC Wonder Tool database. Since these sub-population 
groups required much more interpolation than others, their 
respective models may be less accurate than others, 
indicating major racial disparities in terms of analytical 
accuracy and model validity. Younger age groups also had 
large breaks in data.  

Even though statistical p-values were used to detect 
causality, our definition of significance is subjective based 
on our critical value of 0.1. In addition, there is also a chance 
of type-1 error, in which the statistical test concludes 
causality when in actuality there is not, and therefore, 
further research should be conducted to verify our findings. 
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The failure of the models, including the test dataset, to pass 
many VARS statistical tests also presents itself as a 
computational limitation. 

As for the Bayesian models, decreasing the node size loses 
some of the short-term connections, signifying the 
sensitivity of the dynamic Bayesian graph connections. In 
addition, blacklisting unwanted linkages introduced 
different linkages between a few variables and readjusted 
nodal relationships that were originally presented, 
demonstrating the sensitivity of the dynamic Bayesian 
model. Whitelisting may be used for further model 
advancement to link nodes that are already known to have a 
causal relationship. It may also be beneficial to incorporate 
low-pass filtering of the data which would remove excess 
noise and outliers. 

Societal Impact 

The development of these causal models helps explore the 
reality of climate change’s impact on health outcomes, and 
more specifically, the effect of air quality on respiratory 
disease outcomes. The models allow for enhanced 
predictability of respiratory disease based on geographical 
location, environmental exposures and prior medical 
conditions. They can improve the predictability of higher 
respiratory disease rates in certain geographical areas with 
higher pollution rates, thus allowing for better allocation of 
resources and proactive risk management. Furthermore, the 
models serve to incentivize more research in terms of what 
behavioral adaptations should be taken to reduce the extent 
of climate change and its incontestable threats to health. 
With an improved understanding, the models will also 
foster the implementation of preventative action and 
adaptive resilience programs with prime focus on the 
reduction of carbon emissions, water resource management, 
and urban planning20. It is hoped that stricter regulations of 
power plants, industrial urbanized centers, and automobile 
pollutants, as well as better monitoring of construction sites, 
unpaved roads, fields, and fires will be prioritized21. Not to 
mention, through successful implementation, this model 
could promote higher standards in medical/climate data 
collection across states by highlighting the importance of 
acquiring frequent and readily accessible data.  

Amidst the country's struggle to bring climate change under 
control, an even deeper, entrenched problem of health 
inequity in society is brought to light. Not only do our 
models transform how we view the boundaries and 
determinants of human health, but they provide evidence for 

the disproportionate effects of climate change and air 
particulate matter on socially vulnerable, marginalized 
communities. By quantifying disparities of climate change 
impacts by modeling racial subpopulation groups and 
counties of varying social vulnerability indices, our model 
investigates the socioeconomic and granular demographic 
factors that affect the resilience of communities22. However, 
for future studies, it would be beneficial to probe systems 
that produce and perpetuate inequalities in exposure to 
particulate matter and how these can persist by measuring 
particulate-matter emitting facilities in residential areas and 
comparing differences between places of varying 
demographics. Additional climate change drivers (extreme 
weather conditions, greenhouse gas emissions, biodiversity 
loss) and public health outcomes (infectious disease, mental 
health issues) could also be explored and implemented into 
the same model. Given its robustness and usage of universal 
parameters, the model can also be applied to other 
geographical areas to better understand the health impacts 
of climate change.  
 
In conclusion, with our project, understanding the 
implications of climate change now will hopefully help 
foster the development of adaptation and mitigation efforts 
and predictive models to reduce future risks and impacts of 
climate change for all demographic groups. Pathways to 
resilient public health sectors are possible, building on the 
growing evidence-based understanding of the pronounced, 
persistent and pervasive threats climate change imposes on 
human health. 
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Abstract 

 
In the last fifty years, many civilizations have contributed significantly to anthropogenic 

climate change, or "human-made" climate change, through several actions such as the burning of 

fossil fuels from heat, electricity, and transportation. Although the scientific community is 

largely synonymous with the perspective that the rise in Earth's global temperature is not just a 

cyclic or natural phenomenon of climate, there is still a large disparity in the general public and 

policymakers' views on these scientific findings. The American culture of skepticism and 

contrarianism has fueled the media to instill doubt and uncertainty in climate change, when the 

health and medical repercussions of it are already being manifested.  In addition, many 

corporations fuel this disbelief of climate change for their own profit or agenda, further 

confusing the public. On the other hand, some policymakers either outright neglect the topic or 

lack the updated knowledge from the scientific community. These three primary stakeholders: 

the general public, the scientific community, and policymakers all play a major role in climate 

change mitigation and adaptation and will be analyzed through historical case studies and policy 

analysis coupled with Actor-Network Theory in this paper. The findings of this research depict a 

deep political divide in climate change policy prioritization which is translated to the public 

through media, and case studies such as the ExxonMobil scandal reflect an unwillingness of 

large and influential organizations to take proper mitigation measures.   
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U.S. Climate Change Policy: An Analysis of the Primary Stakeholders 

Introduction 

In the European heatwave of 2003, over seventy thousand excess deaths were recorded. 

This is just one example of the impact of extremely high temperatures. Throughout the last fifty 

years, several human actions, such as the burning of fossil fuels from heat, electricity, and 

transportation, have released large amounts of greenhouse gases into the atmosphere, which 

ultimately raise the Earth’s temperature (Climate change and health 2018). Extreme heat is just 

one result of climate change, along with extreme weather events, rising sea levels, a loss of 

biodiversity, and many others. These climate factors have long-lasting health impacts, including 

air-pollution related health effects, an increase in water/food-borne diseases, a food/water 

shortage, and mental health effects, just to name a few. While the repercussions of climate 

change are very real and very disturbing, one in five American adults still believe that there is no 

evidence of global climate change (Americans' views on climate change and climate scientists 

2016). 

When evaluating the reason behind persistent resistance to climate change’s existence 

and effects, one must take into account the key stakeholders. The three stakeholders that this 

research paper will evaluate are US governmental bodies, the public, and the scientific 

community. It is important to note that while these three stakeholders are non-exhaustive in 

impacting climate change policy in the United States, they were chosen because they are 

arguably the three largest bodies of influence. Historically, state and federal-level legislation is 

the largest stepping stone for social, economic, and overall societal progression —and climate 

change is no exception. Along with governmental bodies, the public also plays a role in shifting 
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the prioritization of climate change. In a time where political beliefs are becoming more and 

more polarized, the US is experiencing a deep divide between the Democratic and Republican 

stance on climate change (Kamarck, 2019). Lastly, the scientific community has consistently 

provided incontrovertible evidence for the influence of human action on climate change, yet they 

lack the power to implement long term mitigation and adaptation techniques. Several 

organizations such as the Environmental Protection Agency (EPA), Intergovernmental Panel on 

Climate Change (IPCC),  National Center for Atmospheric Research (NCAR) and many more 

have provided immeasurable research publishings highlighting the anthropogenic effects of 

climate change. In addition, the scientific community actor can be divided into further actors, 

with academic institutions such as university-funded research as one actor, and large, profit-

driven gas companies such as ExxonMobil as another actor. 

The STS framework of Actor-Network Theory (ANT) will be used to assist in the 

evaluation of the relationship between policymakers, the public, and the academic community in 

the network of climate change policy. ANT has the ability to explain social and political effects 

generated as a result of associations between different actors, and thus can prove helpful for 

depicting a complex issue like U.S. climate change policy. Documentary research methods and 

policy analyses will be employed to answer the question, “How is US climate change data by the 

scientific community translated into public beliefs and policy, and why is it important?” First, the 

culture of contrarianism and skepticism through the media will be explored, and then the lack of 

accountability and desire for updated knowledge for many important stakeholders will be 

examined. Later, a few case studies and climate change evidence history will be detailed. Finally, 

conclusions will be made on the current state of US climate change policy and the main barriers. 

Although the scientific community is overwhelmingly synonymous with their findings that 
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climate change greatly affects public health outcomes, U.S. policy makers experience a great 

divide in the prioritization of climate change policy that can be attributed to mass public 

confusion, a lack of accountability, and a lack of accurate and updated knowledge. 

The Role of the Media in Mass Public Confusion 

 Research shows that much of the public receives its scientific knowledge from mass 

media, ranging from television to newspapers to social media platforms (Boykoff & Rajan, 

2007). The scientific stories that the media chooses to cover also help shape the public’s political 

and economic views, so the media plays an integral role in the portrayal of climate science and 

man-made climate change — also known as anthropogenic climate change. The three spheres of 

media, science, and policy must be analyzed in order to understand the mass public confusion 

and differing opinions of climate change in the U.S. today. For example, historically, the United 

States media coverage has been reasonably more critical than the UK counterparts with regards 

to this topic, and the external factors of skepticism and contrarianism come into play. Boykoff 

and Rajan argue “an emphasis on economic freedom” and “stronger personal consumption 

patterns” influence the actions and expectations of American citizens and consequently hinder 

the US from taking action towards a reduction in carbon dioxide emissions. The trait of 

skepticism embedded in US culture has caused the rise of “climate-contrarians,” many of which 

come from accredited US universities and gained traction in the media. One study found that 

across all media sources in the United States, climate change contrarian (CCC) media visibility 

was 49% greater than climate change scientist (CCS) media. One example of contrarian culture 

being embedded in the US is when Michael Crichton, challenger of anthropogenic climate 

change and author of a fictional book about an environmental terrorist group, was welcomed to 

the White House to discuss climate policy with George W. Bush. In addition, former Chair of the 


