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Abstract

Transport Generative Models in Pattern Analysis and Recognition

Mohammad Shifat-E-Rabbi

There exists a growing need for computational models for pattern analysis and recognition

in numerous scientific and technological fields, including computer vision, biology, and

healthcare. Although generic feature approximation and deep learning approaches have been

widely used in this aspect, they suffer from limitations in robustness, generalizability, and

interpretability. Moreover, they are computationally expensive, require a vast amount of training

data, and are vulnerable to out-of-distribution samples. In this study, we introduce a

transport-based modeling approach for solving pattern analysis and recognition problems. Our

approach focuses on modeling data obtained from processes involving some kind of transport of

mass or intensity of pixels, tissue, or molecules, such as tissue growth, cell division,

carcinogenesis, and gene expression. We postulate that data classes obtained from such processes

can be represented as instances of an unknown template under the effect of unknown spatial

deformations. Using this hypothesis, we aim to demonstrate that our classification and modeling

approach can solve problems involving segmented data in closed-form. We show that our

proposed method has the potential to achieve better accuracy, generalizability, interpretability, and

data efficiency compared to existing approaches. Moreover, our method is designed to be simple

and computationally efficient, potentially making it a more practical solution for real-world

applications.

In order to accomplish our research objectives, we introduce a novel transport-based data



generative model for image classification and develop a new supervised image classification

method applicable to a broad class of image deformation models. We formulate and derive the

mathematical properties of the data generative model and solve the classification problem in

closed-form using transport-based embeddings. Additionally, we demonstrate how the method

can learn data invariances without the need for data augmentation. Furthermore, we extend the

aforementioned framework to formulate transport-based embeddings for the classification of

high-dimensional distributions, which can be applied in a variety of applications. Our approach is

not only simple to implement, but also non-iterative, computationally efficient, data-efficient, and

possesses out-of-distribution generalization. Lastly, we introduce a transport-based morphometry

framework for modeling nuclear structures of digital pathology images in cancer and use this

framework to explore the existence of shared nuclear structure biomarkers across different cancer

types. We show that our model can reveal meaningful information within and across various

tissue types by identifying morphological differences among them. We show that our framework

can provide quantitative measurements for comparisons across diverse datasets and cancer types

that can potentially enable numerous cancer studies, technologies, and clinical applications and

help elevate the role of nuclear morphometry into a more quantitative science.
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Chapter 1: Introduction and Background

Image classification methods occupy a predominant place in data sciences, given their inherent

link to numerous medical imaging, computer vision, and computational biology applications [1, 2,

3]. Automated image classification methods have been utilized to detect cancer from microscopy

images of tumor specimens [4, 5], detect and quantify atrophy from magnetic resonance images

of the human brain [3, 6], identify and authenticate a person from cell phone camera images [7],

and many other applications in computer vision, medical imaging, automated driving, and related

fields. In many image classification problems, image classes can be thought of being an instance

of a template observed under a set of spatial deformations. For example, consider the classes of

the MNIST dataset [8]. Each image in a class can be considered as an image of a prototype digit

with a transformation applied to it (such as translation, scaling, shear, rotation, higher-order de-

formations, and others). Other instances of this category of image classification problems include

detecting the protein localization patterns within a cell [9], classifying the nuclear structures from

the fluorescence measurements of a population of cells [5], and profiling the distribution of gray

matter within a brain as depicted through MRI [3], among many other examples.

Beyond the analysis of two-dimensional images, the analysis of high-dimensional data distribu-

tions has also become a crucial component in various fields of computer vision and computational

biology. This includes the analysis of high-content and high-throughput cytometry data, which

facilitates the understanding and profiling of the phenotypic and functional characteristics of mil-

lions of individual cells [10, 11]. Additionally, it includes the classification of set structured data

obtained from a diverse range of scanning technologies, such as LiDAR or photogrammetry [12,

13]. Sampling a continuous probability density function over an #-dimensional space is another

technique for obtaining high-dimensional point-set distributions [14]. Furthermore, the modeling

of a vast quantity of histopathology data obtained via microscopes can also be a prominent ap-
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plication in this field [5]. Recent advances in measurement technology have provided access to

vast quantities of high-dimensional data, making it possible to conduct computational analyses of

multiple parameters [15]. High-dimensional analysis techniques are being utilized to character-

ize metastatic breast cancers [16, 17], identify brain macrophage development [18], and profile

COVID-19 using images of platelet aggregates [1], among other applications.

In addition to the aforementioned classification methods for 2-dimensional images and high-

dimensional distributions, pattern analysis methods can be employed in many other modeling

problems. An exemplary application is the utilization of pattern recognition, machine learning,

computer vision, and mathematical modeling techniques in real-world digital pathology appli-

cations. Alterations in nuclear morphology have been a staple in the pathologists’ repertoire of

diagnostic tools since the inception of microscopic examination of tissue [19, 20, 21, 22]. Nu-

clear morphology is usually determined by the microscopic structure and degree of chromatin

condensation, which are regulated by interactions between the cell and its local microenviron-

ment [23, 21]. Defects in the coupling of the nucleus to the cytoskeleton can lead to genomic

instability and the transformation from a benign to a malignant cell, altering chromosomal orga-

nization [19, 24]. In cytopathology, nuclear morphological parameters, such as increased nuclear

size, increased nuclear-to-cytoplasmic ratio, irregularities of the nuclear membrane, and abnor-

malities in chromatin organization, provide crucial visual clues for pathologists in diagnosis and

patient management decisions [19, 21, 20, 22, 25]. Traditionally, pathologists determine the ma-

lignant potential of tissue specimens based on morphology through visual microscopic inspection

[26, 27]. However, recent advances in computer-aided digital pathology and computational pattern

recognition methods have led to several successful experimental applications in cancer detection

[28], staging [29], prognosis prediction [30], drug discovery [31], and cell biology [32, 33]. These

methods have the potential to perform standardized, efficient, and automated large-scale analyses

of nuclear structure with the aim of providing a quantitative method for evaluating relationships

between nuclear morphological changes and cellular discovery [25, 34].
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Existing approaches

Over the past few decades, image classification methods have evolved from feature engineering-

based methods relying on hand-tailored numerical features [35, 36] to hierarchical (deep) convo-

lutional neural network-based (CNN) methods utilizing a series of computational layers [8, 2].

CNNs have recently emerged as leading classification methods for several reasons [37, 38, 39].

They provide a framework for end-to-end learning bypassing the feature engineering process, of-

ten decreasing the time and expenses related to bringing classification systems into production [2].

They obtain high accuracy in several image classification tasks [38, 39] and offer feasibility to be

implemented in parallel utilizing graphical processing units (GPU) [40], among other improve-

ments and conveniences over feature engineering methods. Recent improvements in computing

power [41], the availability of annotated data [40], and open-source software [42] have also con-

tributed to the usability of CNNs. However, it is broadly understood that CNN-based methods re-

quire large amounts of data for training [43], are computationally expensive [44], time-consuming

[45], require careful parameter and hyper-parameter tuning [46], and are often vulnerable against

out-of- distribution samples and attacks [47, 48].

High-dimensional data analysis is also typically achieved through the use of either deep neural

networks, predetermined numerical features, or a combination of both [49, 2, 39]. While these

methods are useful in some automation tasks, they may not be suitable for scientific endeavors due

to their lack of transparency, interpretability, and physical units [50, 48]. Furthermore, their gener-

alizability beyond the training data and mathematical understanding are often limited [51]. There-

fore, alternative methods that offer more interpretability and transparency, such as physics-based

or other explainable models, might be explored for high-dimensional data analysis in scientific

applications.

The current practice of computational digital pathology is also predominantly based on heuris-

tic feature engineering [52] and end-to-end feature learning [33], whereby analytical features are

either predetermined or learned from the data. End-to-end deep learning methods using convolu-
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tional neural networks (CNN) have obtained high classification accuracy in several experimental

applications [53, 54], can be implemented in parallel using graphical processing units (GPUs) [55,

40], and are able to learn from large quantities of annotated data [40]. However, CNN methods

are frequently limited by their lack of connection with an underlying physical process that can

provide a scientific rationale for their use. A limited knowledge of their internal workings makes

it difficult to distinguish settings when they do and do not work [56]. This predisposes CNNs to

unpredictably producing misleading and inaccurate results, severely restricting their interpretabil-

ity and generalizability [50, 48]. Confidence in their results, from a mechanistic point of view,

is critical for safe and effective translation to clinical or scientific use. Using these methods, it is

evidently challenging to develop a model capable of quantitative nuclear morphological analysis

that contributes to understanding of the relationship between the structure and function of tumor

cells and the biology of cancer [50, 32]. Consequently, nuclear morphological studies have not yet

become a quantitative science, despite being a prime target for cancer research.

While quantitative studies exist in other branches of cancer bioinformatics, including genomics

and proteomics [22, 57, 58], methods to build a reliable and understandable analytical model to

quantify malignant transformation solely using nuclear morphological features (other than mitotic

figures) have been lacking [59, 60]. In addition to the aforementioned limitations of end-to-end

methods, current computational systems lack robustness to adversarial information. Slight changes

in image data (e.g., different pathology staining protocols) can cause systems to make confident

but erroneous predictions. [50, 61, 62]. This limits the accuracy of comparisons between datasets

when performing meta-analyses to produce scientifically meaningful results. Previous approaches

to overcome such variability and integrate information across datasets, including transfer learning

[63] and I-score normalization [64], have been found to lack reliability and generalizability [65,

66], rendering their application in biomedical inference and diagnosis limited. Consequently, it has

not yet been possible to describe similarities or differences across cancer types, combine datasets

to enhance clinical practice and cell biology applications, (e.g., drug discovery and biomarker dis-

covery) [67, 68], identify organ-specific, cancer-specific, or shared malignant signatures in nuclear

4



morphology, or test correlations between nuclear morphological signatures and gene expression,

drug efficacy, or treatment response [22, 57, 69].

A less commonly employed method in modeling and classification involves representing an

observed image or high-dimensional distribution as the transformation of another. To accomplish

this, "morphing" models have been developed to capture transformations among two or more inputs

[70]. Recently, a new class of general "transport" models has been introduced that describes an

input distribution as a smooth, nonlinear, invertible transformation of a reference distribution [71,

72]. The estimation of such models from observed data is facilitated by a set of transport-based

transforms [71, 73]. Unlike most numerical feature-based methods, these transform operations are

invertible, making them a mathematical representation method for input images or distributions.

These transforms, such as Linear Optimal Transport (LOT) and Radon-Cumulative Distribution

Transform (R-CDT), developed in [71, 73] are linked to the optimal transport theory [72, 74]. In

previous studies, LOT and R-CDT models have been combined with linear classifiers like Fisher

discriminant analysis and support vector machines, along with their respective kernel techniques

[71, 75, 76]. While this approach has been successful in some applications [76], it has failed to

achieve state-of-the-art classification results in certain other applications (refer to Fig. 3 from [32]).

Objectives and contributions of our study

Our study aims to propose a new set of methods for solving several pattern analysis and recog-

nition problems, where the data at hand can be described with a transport-based data generative

model. We first introduce a novel classification method for a particular type of image classification

problem where image classes are formed with unknown templates under the effect of unknown

deformations. To achieve this, we utilize transport-based embeddings and demonstrate that such

classification problems can be solved in closed-form using our technique. Our proposed method

exhibits competitive accuracy performance compared with state-of-the-art methods in both low

and high data regimes, requiring minimal labeled data for training and being computationally ef-

ficient. Moreover, our approach is robust under out-of-distribution scenarios, implying that the
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model can generalize to previously unseen data. Additionally, we leverage the mathematical prop-

erties of the model to provide approximations for known transformations, enabling the model to

learn those transformations automatically without the need for data augmentation. We further

extend our framework to formulate transport-based embeddings for classifying high-dimensional

distributions, which can be applied to a broad range of applications. Our experimental results

demonstrate that the transport-based embeddings approach enables the development of a simple,

efficient, mathematically coherent, and robust classification method with high accuracy using real-

world data.

Our final objective is to address a digital pathology problem by proposing a mathematical

method that models nuclear chromatin structure and morphology using routinely processed and

imaged tissues in clinical settings. By considering normalized intensity values as relative mea-

surements of chromatin density, our technique models the relative intensity observed in each pixel

within a nucleus relative to a template (i.e. average) nucleus. The technique thus preserves the en-

tire information content of each nucleus image within a biologically meaningful, transport-based,

representation. Statistical analyses are then employed to summarize chromatin transport-based

variabilities observed within and across datasets, as well as to elucidate meaningful discriminating

information between relative malignancy levels within and across cancer types. We demonstrate

our transport-based morphometry (TBM) technique can not only detect and interpret meaningful

malignancy levels within each of the four cancer tissue types (liver, thyroid, lung, and skin), but

also to detect and interpret persistent discriminating information along the spectrum from benign

and malignant categories across these different cancer types, even when imaged using different

protocols, resolutions, and staining patterns. We believe these proof of concept calculations can

be used as preliminary evidence that our proposed technique can provide the quantitative measure-

ments necessary to enable meaningful comparisons across a wide range of datasets. In combination

with interesting emerging datasets (such as the human protein atlas [77], the cancer genome atlas

[78]), we believe that our techniques can elevate the role of nuclear morphometry for use in cancer

studies, technologies, and clinical applications in the emerging use of digital pathology tools to aid

6



the pathologists, and help to render nuclear morphology studies into a more quantitative science.

Thesis overview

In this dissertation, we introduce a new set of methods for solving various pattern analysis

and recognition problems, which can be described using a transport-based data generative model.

In the first chapter, we introduce the transport-based transforms and embeddings, which form the

basis of the proposed methods. Chapters 2 and 3 focus on the classification of a certain type

of image and high-dimensional distribution classes, respectively. These classes are formed with

unknown templates under the effect of unknown spatial deformations, and are classified using

transport-based embeddings. In Chapter 4, we demonstrate the application of our method in a dig-

ital pathology context by quantifying nuclear structures of digital pathology images across cancers

using transport-based morphometry. Finally, Chapter 5 offers concluding remarks and suggests

avenues for future research. Mathematical derivations and other related details are presented in the

appendices.

1.1 The Cumulative Distribution Transform (CDT)

The CDT [79] is an invertible nonlinear 1D signal transform from the space of smooth proba-

bility densities to the space of diffeomorphisms. The CDT morphs a given input signal, defined as

a probability density function (PDF), into another PDF in such a way that the Wasserstein distance

between them is minimized. More formally, let B(G), G ∈ ΩB and A (G), G ∈ ΩA define a given signal

and a reference signal, respectively, which we consider to be appropriately normalized such that

B > 0, A > 0, and
∫
ΩB
B(G)3G =

∫
ΩA
A (G)3G = 1. The forward CDT transform1 of B(G) with respect

to A (G) is given by the strictly increasing function B̂(G) that satisfies

∫ B̂(G)

−∞
B(D)3D =

∫ G

−∞
A (D)3D

1We are using a slightly different definition of the CDT than in [79]. The properties of the CDT outlined here hold
in both definitions.
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As described in detail in [79], the CDT is a nonlinear and invertible operation, with the inverse

being

B(G) = 3B̂
−1(G)
3G

A

(
B̂−1(G)

)
, and B̂−1( B̂(G)) = G

Moreover, like the Fourier transform [80] for example, the CDT has a number of properties

which will help us render signal and image classification problems easier to solve.

Property 1.1-A (Composition): Let B(G) denote a normalized signal and let B̂(G) be the CDT

of B(G). The CDT of B6 = 6′B ◦ 6 is given by

B̂6 = 6
−1 ◦ B̂ (1.1)

Here, 6 ∈ T is an invertible and differentiable function (diffeomorphism), 6′ = 36(G)/3G, and ‘◦’

denotes the composition operator with B ◦ 6 = B(6(G)). For a proof, see Appendix A.1.

The CDT composition property implies that, variations in a signal caused by applying 6(G)

to the independent variable will change only the dependent variable in CDT space. In essence,

this property asserts that variations along both the independent and dependent axes in the original

signal space are translated into changes entirely along the dependent axis in CDT space.

Property 1.1-B (Embedding): CDT induces an isometric embedding between the space of 1D

signals with the 2-Wasserstein metric and the space of their CDT transforms with a weighted-

Euclidean metric [71][79], i.e.,

,2
2 (B1, B2) =

����( B̂1 − B̂2)
√
A
����2
!2 (ΩA ) , (1.2)

for all signals B1, B2. That is to say, if we wish to use the Wasserstein distance as a measure of

similarity between B1, B2, we can compute it as simply a weighted Euclidean norm in CDT space.
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For a proof, see Appendix A.2.

The property above naturally links the CDT and Wasserstein distances for PDFs. Wasserstein

[74] distances are linked to optimal transport and have been used in a variety of applications in

signal and image processing and machine learning (see [72] for a recent review).

1.2 The Radon transform

The Radon transform of an image B(x), x ∈ ΩB ⊂ R2, which we denote by B̃ =ℛ(B), is defined

as

B̃(C, \) =

∫
ΩB

B(x)X(C − x · b\)3x (1.3)

Here, C is the perpendicular distance of a line from the origin and b\ = [cos(\), sin(\)]) , where \

is the angle over which the projection is taken.

Furthermore, using the Fourier Slice Theorem [81][82], the inverse Radon transform B =

ℛ
−1( B̃) is defined as

B(x) =

∫ c

0

∫ ∞

−∞
B̃(x · b\ − g, \)F(g)3g3\, (1.4)

where F is the ramp filter (i.e.,(ℱF) (b) = |b |,∀b ) and ℱ is the Fourier transform.

Property 1.2-A (Intensity equality): Note that

∫
ΩB

B(x)3x =
∫ ∞

−∞
B̃(C, \)3C, ∀\ ∈ [0, c] (1.5)

which implies that
∫ ∞
−∞ B̃(C, \8)3C =

∫ ∞
−∞ B̃(C, \ 9 )3C for any two choices \8, \ 9 ∈ [0, c].
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1.3 Radon Cumulative Distribution Transform (R-CDT)

The CDT framework was extended for 2D patterns (images as normalized density functions)

through the sliced-Wasserstein distance in [71], and was denoted as R-CDT. The main idea behind

the R-CDT is to first obtain a family of one dimensional representations of a two dimensional

probability measure (e.g., an image) through the Radon transform and then apply the CDT over the

C dimension in Radon transform space. More formally, let B(x) and A (x) define a given image and

a reference image, respectively, which we consider to be appropriately normalized. The forward

R-CDT of B(x) with respect to A (x) is given by the measure preserving function B̂(C, \) that satisfies

∫ B̂(C,\)

−∞
B̃(D, \)3D =

∫ C

−∞
Ã (D, \)3D, ∀\ ∈ [0, c] (1.6)

As in the case of the CDT, a transformed signal in R-CDT space can be recovered via the

following inverse formula [71],

B(x) =ℛ
−1

(
mB̂−1(C, \)

mC
Ã

(
B̂−1(C, \), \

))
As with the CDT, the R-CDT has a couple of properties outlined below which will be of interest

when classifying images.

Property 1.3-A (Composition): Let B(x) denotes an appropriately normalized image and let B̃(C, \)

and B̂(C, \) be the Radon transform and the R-CDT transform of B(x), respectively. The R-CDT

transform of B6\ =ℛ
−1

( (
6\

)′
B̃ ◦ 6\

)
is given by

B̂6\ = (6\)−1 ◦ B̂, (1.7)

where
(
6\

)′
= 36\ (C)/3C, B̃ ◦ 6\ := B̃(6\ (C), \), and (6\)−1 ◦ B̂ = (6\)−1( B̂(C, \)). Here for a fixed \,

6\ can be thought of an increasing and differentiable function with respect to C. The above equation
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hence follows from the composition property for 1D CDT. For a proof, see Appendix A.3.

The R-CDT composition property implies that, variations along both independent and depen-

dent axis directions in an image, caused by applying 6\ (C) to the independent C variable of its

Radon transform, become changes solely along the dependent variable in R-CDT space.

Property 1.3-B (Embedding): R-CDT induces an isometric embedding between the space of im-

ages with sliced-Wasserstein metric and the space of their R-CDT transforms with a weighted-

Euclidean metric, i.e.,

(,2
2 (B1, B2) =

������( B̂1 − B̂2)
√
Ã

������2
!2 (ΩÃ )

(1.8)

for all images B1 and B2. For a proof, see Appendix A.4.

As the case with the 1D CDT shown above, the property above naturally links the R-CDT

and sliced Wasserstein distances for PDFs and affords us a simple means of computing similarity

among images [71]. We remark that throughout this chapter we use the notation B̂ for both CDT

or R-CDT transforms of a signal or image B with respect to a fixed reference signal or image A, if

a reference is not specified.

1.4 Linear Optimal Transport (LOT) embeddings

The fundamental principle of optimal transport theory relies on quantifying the amount of effort

(measured as the product of mass and distance) required to rearrange one distribution to another,

which gives rise to the Wasserstein metric between distributions. Here we present a linearized

version of this metric, as outlined in [73], which is constructed formally through a tangent space

approximation of the underlying manifold.

Following the construction in [73], we define the linear optimal transport transform for proba-

bility measures in P2(R!), which is the set of absolutely continuous measures with bounded finite

second moments and densities 2. For simplicity, let us fix a reference measure f as the Lebesgue

2Any ` ∈ P2 (R!) has the following two properties (i) bounded second moment, i.e.
∫
‖G‖23`(G) < ∞; (ii)

absolute continuity with respect to the Lebesgue measure on R! with bounded density, i.e., ` has a density function
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measure on a convex compact set of R! . Thanks to Brenier’s theorem [83], there is a unique

minimizer ) `f to the following optimal transportation problem

min
)♯f=`

∫
R!
‖G − ) (G)‖23f(G), (1.9)

where the push-forward (transport) relation )♯f = ` is defined via `(�) = f()−1(�)) for any

measurable set � ⊆ R! . The linear optimal transport (LOT) transform is given by the following

correspondence

` ↦→ )
`
f , (1.10)

where each probability measure ` is identified with the optimal transport map ) `f : R! → R!

from a fixed reference f to `, which lies in a linear space. This square-root of the minimum is

called the Wasserstein-2 distance between f and ` [84]. The LOT metric between two probability

distributions `, a ∈ P2(R!) is 3

3LOT(`, a) := ‖) `f − ) af‖f . (1.11)

For simplicity, we denote ̂̀as the LOT transform of `, i.e., ̂̀= ) `f where f is fixed.

1.4.1 LOT for point-sets

For the analysis of discrete point-set data, a discrete version of the Linear Optimal Transport

(LOT) embedding is required. In this particular case, both the reference f and target ` are chosen

as discrete probability measures, represented by point-sets in R! . A point-set in a !-dimensional

space is a finite set of points in R! . A point-set ΩB with # points can be thought as the image of

an injective map B : {1, · · · , #} → R! 4. Given a point-set ΩB with # points, we define a discrete

5` defined on R! with ‖ 5` ‖∞ < ∞.
3Note that ‖) ‖f :=

( ∫
R!
‖) (G)‖23f(G)

)1/2
.

4Note that a point-set may be associated with many injective maps, e.g. the image sets of B ◦ W and B are the same
for any permutation W.
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probability distribution associated with the point-set as

%B :=
1
#

∑
x∈ΩB

Xx =
1
#

#∑
8=1

XB(8) . (1.12)

Given a diffeomorphism 6 ∈ T! , the push-forward distribution of %B under 6 is given as

6#%B :=
1
#

∑
x∈ΩB

X6(x) =
1
#

#∑
8=1

X6(B(8)) = %6◦B . (1.13)

Let FN ,L denote the collection of injective maps from {1, · · · , #} to R! . Given B, A ∈ FN ,L ,

the optimal transportation (Wasserstein-2) distance between associated distributions %B and %A can

be obtained by solving the linear programming problem given below:

32
, (%B, %A) = min

c∈R#×#

#∑
8=1

#∑
9=1

c8 9 |B(8) − A ( 9) |2 (1.14)

where c8 9 ≥ 0, and
∑#
8=1 c8 9 =

∑#
9=1 c8 9 = 1/# for all 8, 9 = 1, · · · , # . Let us fix some A ∈ FN ,L and

use %A as a reference. It turned out that any minimizer matrix c∗ to the optimal transport problem

in (1.14) is a permutation matrix[84]. In other words, there is a permutation f∗B : {1, · · · , #} →

{1, · · · , #} such that

c∗8 9 =


1/# if 9 = f∗B (8)

0 otherwise
.

Hence with A being fixed, an optimal transport map between %A and %B can be determined by f∗B

and B. The LOT transform for %B is defined as [73] 5

%̂B := B ◦ f∗B , (1.15)

5Note one can write B ◦ f∗B =
[
B(f∗B (1)), · · · , B(f∗B (#))

])
. Note also that f∗B may not be unique in general, we

follow the implementation in [73] to estimate one of them.
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and the LOT distance between two point-set measures is

3LOT(%B, %@) := | |%̂B − %̂@ | |, (1.16)

where B, @ ∈ FN ,L .
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Chapter 2: Image classes formed with unknown templates under the effect

of unknown deformations can be classified in closed-form using the

transport-based embeddings

Part A: Formulating a data generative model for image classification and developing a frame-

work for a data-efficient, computationally efficient, generalizable, and robust classification

method.

We introduce a new supervised image classification method applicable to a broad class of image

deformation models. The method makes use of the Radon Cumulative Distribution Transform (R-

CDT) for image data, whose mathematical properties are exploited to express the image data in

a form that is more suitable for machine learning. While certain operations such as translation,

scaling, and higher-order transformations are challenging to model in native image space, we show

the R-CDT can capture some of these variations and thus render the associated image classification

problems easier to solve. The method — utilizing a nearest-subspace algorithm in the R-CDT

space – is simple to implement, non-iterative, has no hyper-parameters to tune, is computationally

efficient, label efficient, and provides competitive accuracies to state-of- the-art neural networks

for many types of classification problems. In addition to the test accuracy performances, we show

improvements (with respect to neural network-based methods) in terms of computational efficiency

(it can be implemented without the use of GPUs), number of training samples needed for training,

as well as out-of-distribution generalization.

2.1 Generative model and problem statement

We begin with a discussion of a generative model-based problem statement for the type of clas-

sification problems we discuss in this chapter. We note that in many applications we are concerned
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with classifying image or signal patterns that are instances of a certain prototype (or template)

observed under some often unknown deformation pattern. Consider the problem of classifying

handwritten digits (e.g. the MNIST dataset [8]). A good model for each class in such a dataset

is to assume that each observed digit image can be thought of as being an instance of a template

(or templates) observed under some (unknown) deformation or similar variation or confound. For

example, a generative model for the set of images of the digit 1 could be a fixed pattern for the

digit 1, but observed under different translations – the digit can be positioned randomly within the

field of view of the image. Alternatively, the digit could also be observed with different sizes, or

slight deformations. The generative models stated below for 1D and 2D formalize these statements.

Example 1 (1D generative model with translation) Consider a 1D signal pattern denoted as

i(:) (the superscript (:) here denotes the class in a classification problem), observed under a

random translation parameter `. In this case, we can mathematically represent the situation by

defining the set of all possible functions 6(G) = G−`, with ` being a random variable whose distri-

bution is typically unknown. A random observation (randomly translated) pattern can be written

mathematically as 6′(G)i(:) (6(G)). Note that in this case 6′(G) = 1, and thus the generative model

simply amounts to random translation of a template pattern. Fig. 2.1 depicts this situation.

The example above (summarized in Fig. 2.1) can be expressed in more general form. Let

G ⊂ T denotes a set of 1D spatial transformations of a specific kind (e.g. the set of affine trans-

formations). We then use these transformations to provide a more general definition for a mass

(signal intensity) preserving generative data model.

Definition 2.1.1 (1D generative model). Let G ⊂ T . The 1D mass (signal intensity) preserving

generative model for the :th class is defined to be the set

S(:) = {B(:)
9
|B(:)
9
= 6′9i

(:) ◦ 6 9 ,∀6 9 ∈ G}. (2.1)

The notation B(:)
9

here is meant to denote the 9 th signal from the : th class. The derivative term
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Figure 2.1: Generative model example. A signal generative model can be constructed by applying
randomly drawn confounding spatial transformations, in this case translation (6(G) = G − `), to a
template pattern from class (:), denoted here as i(:) . The notation B(:)

9
here is meant to denote the

9 th signal from the :th class.

6′
9

preserves the normalization of signals. This extension allows us to define and discuss problems

where the confound goes beyond a simple translation model.

With the definition of the 2-Dimensional Radon transform from section 1.2, we are now ready

to define the 2-dimensional definition of the generative data model we use throughout the chapter:

Definition 2.1.2 (2D generative model). Let G ⊂ T be our set of confounds. The 2D mass (image

intensity) preserving generative model for the :th class is defined to be the set

S(:) =
{
B
(:)
9
|B(:)
9
=ℛ

−1
((
6\9

)′
ĩ(:) ◦ 6\9

)
,∀6\9 ∈ G

}
.

(2.2)

We note that the generative model above can yield a non convex set, depending on the choice

of template function i(:) and confound category G. Note that we use the same notation S(:) for

both 1D and 2D versions of the set. The meaning each time will be clear from the context.

We are now ready to define a mathematical description for a generative model-based problem

statement using the definitions above:

Definition 2.1.3 (Classification problem). Let G ⊂ T and G define our set of confounds, and let

S(:) be defined as in equation (2.1) (for signals) or equation (2.2) (for images). Given training
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generative model geometric interpretation

Signal space

transform

Transform space

Figure 2.2: Generative model for signal classes in signal (top panel) and transform (bottom panel)
spaces. Four classes are depicted on the left: S(1) , S(2) , S(3) , S(4) , each with three example signals
shown. The top panel: it shows the signal classes in their corresponding native signal spaces. For
each class, three example signals are shown under different translations. The right portion of the
top panel shows the geometry of these four classes forming nonlinear spaces. The bottom panel:
it depicts the situation in transform (CDT, or R-CDT) space. The left portion of the bottom panel
shows the corresponding signals in transform domain, while the right portion shows the geometry
of the signal classes forming convex spaces.

samples {B(1)1 , B
(1)
2 , · · · } (class 1), {B(2)1 , B

(2)
2 , · · · } (class 2), · · · as training data, determine the

class (:) of an unknown signal or image B.

It is important to note that the generative model discussed yields nonconvex (and hence non-

linear) signal classes (see Fig. 2.2, top panel). We express this fact mathematically as: for arbitrary

B
(:)
8

and B(:)
9

we have that UB(:)
8
+ (1 − U)B(:)

9
, for U ∈ [0, 1], may not necessarily be in S(:) . The

situation is similar for images (the 2D cases). Convexity, on the other hand, means the weighted

sum of samples does remain in the set; this property greatly simplifies the classification problem

as will be shown in the next section.
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2.2 Proposed solution

We postulate that the CDT and R-CDT introduced earlier can be used to drastically simplify

the solution to the classification problem posed in definition 2.1.3. While the generative model

discussed above generates nonconvex (hence nonlinear) signal and image classes, the situation can

change by transforming the data using the CDT (for 1D signals) or the R-CDT (for 2D images).

We start by analyzing the one dimensional generative model from definition 2.1.1.

Employing the composition property of the CDT (see Section 1.1) to the 1D generative model

stated in equation (2.1) we have that

B̂
(:)
9
= 6−1

9 ◦ î(:) (2.3)

and thus

Ŝ(:) = {B̂(:)
9
| B̂(:)
9
= 6−1

9 ◦ î(:) ,∀6 9 ∈ G}.

Thus we have the following lemma:

Lemma 2.2.1. If G ⊂ T is a convex group, the set Ŝ(:) is convex.

Proof. Let i(:) be a template signal defined as a PDF. For 6 9 ∈ G, let B(:)
9
= 6′

9
(i(:) ◦ 6 9 ). Then

using the composition property of CDT, we have that B̂(:)
9
= 6−1

9
◦ î(:) . Hence Ŝ(:) = {6−1

9
◦ î(:) |

6 9 ∈ G}. Since G is a convex group, G−1 is convex, and it follows that Ŝ(:) is convex.

�

Remark 2.2.2. Let S(:) and S(?) represent two generative models. If S(:) ∩ S(?) = ∅, then Ŝ(:) ∩

Ŝ(?) = ∅.

This follows from the fact that the CDT is a one-to-one map between the space of probability

density functions and the space of 1D diffeomorphisms. As such the CDT operation is one to one,

and therefore there exists no B̂(:)
9
= B̂
(?)
8

.
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transform deformation modeltraining data

Training: estimating basis vectors for subspaces corresponding to each class

orthogonalize output

transformtest sample

Testing :predicting the test sample as belonging to the class corresponding to the nearest subspace

nearest subspace
class 2

class 1

Figure 2.3: The training and testing process of the proposed classification model. Training: First,
obtain the transform space representations of the given training samples of a particular class (:).
Then, enrich the space by adding the deformation spanning set U) (see text for definition). Finally,
orthogonalize to obtain the basis vectors which span the enriched space. Testing: First, obtain the
transform space representation of a test sample B. Then, the class of B is estimated to be the class
corresponding to the subspace Ŝ(:)

�
which has the minimum distance 32( B̂, Ŝ(:)

�
) from B̂ (see text

for definitions). Here, �(:) = �(:)�(:)) .

Lemma 2.2.1 above implies that if the set of spatial transformations formed by taking elements

of G and inverting them (denoted as G−1) is convex, then the generative model will be convex

in signal transform space. The situation is depicted in Fig. 2.2. The top part shows a four class

generative model that is nonlinear/non-convex. When examined in transform space, however, the

data geometry simplifies in a way that signals can be added together to generate other signals in

the same class – the classes become convex in transform space.

The analysis above can be extended to the case of the 2D generative model (definition 2.1.2)

through the R-CDT. Employing the composition property of the R-CDT (see Section 1.3) to the

2D generative model stated in equation (2.2) we have that

Ŝ(:) = {B̂(:)
9
| B̂(:)
9
=

(
6\9

)−1
◦ î(:) ,∀6\9 ∈ G}. (2.4)

Lemma 2.2.1 and Remark 2.2.2 hold true in the 2-dimensional R-CDT case as well. Thus, if G'

is a convex group, the R-CDT transform simplifies the data geometry in a way that image classes

become convex in the R-CDT transform space. Fig. 2.4(a) depicts the situation.

We use this information to propose a simple non-iterative training algorithm (described in
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more detail in Section 2.2.1) by estimating a projection matrix that projects each (transform space)

sample onto V̂(:) , for all classes : = 1, 2, · · · , where V̂(:) denotes the subspace generated by the

convex set Ŝ(:) as follows:

V̂(:) = span
(
Ŝ(:)

)
=

{∑
9∈�
U 9 B̂
(:)
9
| U 9 ∈ R, � is finite

}
. (2.5)

Fig. 2.4(b) provides a pictorial representation of V̂(:) .

Lemma 2.2.3. Let S(:) , : = 1, 2, ..., be generative classes with a common confound set G such that

for any 5 ∉ G, 5 ′i(:) ◦ 5 ∉ S(:) . If G is a convex group that also includes scaling, Ŝ(:) ∩ Ŝ(?) = ∅,

and

U 83 + (1 − U)ℎ ∉ G (2.6)

∀ increasing function ℎ ∉ G and 0 < U < 1 (here id denotes the identity function, 5 (G) = G), then

Ŝ(:) ∩ V̂(?) = ∅.

Proof. For a proof, see Appendix 2.12.1. �

Lemma 2.2.3 above states that given certain assumptions, the convex space for a particular class

does not overlap with the subspace corresponding to a different class. A corollary from Lemma

2.2.3 is that UB̂(:)
8
+ (1 − U) B̂(?)

9
∉ Ŝ(:) ∪ Ŝ(?) for all B̂(:)

8
∈ Ŝ(:) and B̂(?)

9
∈ Ŝ(?) with 0 < U < 1

(see Appendix 2.12.1). Intuitively speaking, the generative classes generated by G are "thin" in the

transform space. Lemma 2.2.3 holds true for the 2-dimensional R-CDT case as well.

There are a number examples of G that satisfy the assumption in equation (2.6). For example,

if G is the set of translation functions, any strict convex combination (i.e., for 0 < U < 1) of a

function other than translation and the identity function, is not a translation function either. One

can also verify that there are other sets of functions that also satisfy the assumption, e.g., the set of

increasing affine functions, the set of diffeomorphisms that have a common fixed point, etc.
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It follows from Lemma 2.2.3 that, if the test sample was generated according to the generative

model for one of the classes, then there will exist exactly one class (:) for which 32( B̂, Ŝ(:)) =

32( B̂, V̂(:)) = 0. It also follows, 32( B̂, V̂(?)) > 0 when : ≠ ? 1. Here 32(·, ·) is the Euclidean

distance between B̂ and the nearest point in Ŝ(:) or V̂(:) .

As far as a test procedure for determining the class of some unknown signal or image B, under

the assumption that Ŝ(:) ∩ V̂(?) = ∅, it then suffices to measure the distance between B̂ and the

nearest point in each subspace V̂(:) corresponding to the generative model Ŝ(:) . Therefore, under

the assumption that the testing sample at hand B was generated according to one of the (unknown)

classes as described in definition 2.1.3, the class of the unknown sample can be decoded by solving

arg min
:
32( B̂, V̂(:)). (2.7)

Finally, note that due to property 1.3-B we also have that

32( B̂, Ŝ(:)) = min
6\

(,2
2

(
B,ℛ−1

((
6\

)′
ĩ(:) ◦ 6\

))
with 6\ ∈ G. In words, the R-CDT nearest subspace method proposed in equation (2.7) can be

considered to be equivalent to a nearest (in the sense of the sliced-Wasserstein distance) subset

method in image space, with the subset given by the generative model stated in definition 2.1.2.

Fig. 2.4 shows a system diagram outlining the main computational modeling steps in the proposed

method.

2.2.1 Training algorithm

Using the principles and assumptions laid out above, the algorithm we propose estimates the

subspace V̂(:) corresponding to the transform space Ŝ(:) given sample data {B(:)1 , B
(:)
2 , · · · }. Natu-

rally, the first step is to transform the training data to obtain {B̂(:)1 , B̂
(:)
2 , · · · }. We then approximate

1Rigorously speaking, if V̂(?) is a closed subspace, then 32 ( B̂, V̂(?) ) > 0 if and only if B̂ ∉ V̂(?) . In practice, V̂(?)

will be a finite dimensional space and hence the closedness condition is satisfied.
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R-CDT

Image Space Transform SpaceNonlinear Invertible Transformation

Radon 
Transform

Cumulative 
Distribution 
Transform

Add 
translation

Learn class-
conditional 

orthonormal
basis

b(k)1

b(k)2

(b)

(a)

R-CDT

Nearest Subspace Search

"̂

#(%)"̂

#(')"̂
(%('

A(k) = B(k)B(k)T

✏k = kŝ�A(k)ŝk

(c)

Figure 2.4: System diagram outlining the proposed Radon cumulative distribution transform sub-
space modeling technique for image classification. (a) R-CDT - a nonlinear, invertible transforma-
tion: The R-CDT transform simplifies the data space; (b) Generative modeling - subspace learning:
the simplified data spaces can be modeled as linear subspaces; (c) Classification pipeline: the clas-
sification method consists of the R-CDT transform followed by a nearest subspace search in the
R-CDT space.

V̂(:) as follows:

V̂(:) = span
{
B̂
(:)
1 , B̂

(:)
2 , · · ·

}
.

Given the composition properties for the CDT and R-CDT, it is also possible to enrich V̂(:) in

such a way that it will automatically include the samples undergoing some specific deformations

without explicitly training with those samples under said deformation. The spanning sets corre-

sponding to two such deformations, image domain translation and isotropic scaling, are derived

below:

i) Translation: let 6(x) = x − x0 be the translation by x0 ∈ R2 and B6 (x) = | det �6 |B ◦ 6 =

B(x − x0). Note that �6 denotes the Jacobian matrix of 6. Following [71] we have that

B̂6 (C, \) = B̂(C, \) + x)0 b\ where b\ = [cos(\), sin(\)]) . We define the spanning set for

translation in transform domain as U) = {D1(C, \), D2(C, \)}, where D1(C, \) = cos \ and
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D2(C, \) = sin \.

ii) Isotropic scaling: let 6(x) = Ux and B6 (x) = |�6 |B ◦ 6 = U2B(Ux), which is the normalized

dilatation of B by U where U ∈ R+. Then according to [71], B̂6 (C, \) = B̂(C, \)/U, i.e. a scalar

multiplication. Therefore, an additional spanning set is not required here and thereby the

spanning set for isotropic scaling becomes U� = ∅.

Note that the spanning sets are not limited to translation and isotropic scaling only. Other spanning

sets might be defined as before for other deformations as well. However, deformation spanning sets

other than translation and isotropic scaling are not used here and left for future exploration. We also

emphasize that there is a crucial difference between enriching the subspace and data augmentation.

Our method only requires one spanning set (set of basis functions) corresponding to a deformation

type. The method can use it to learn the instances under that deformation type. On the contrary,

the data augmentation method requires having those instances in the training set, which can be

thousands of data samples.

In light of the above discussion, we define the enriched space V̂(:)
�

as follows:

V̂
(:)
�
= span

({
B̂
(:)
1 , B̂

(:)
2 , · · ·

}
∪ U)

)
(2.8)

whereU) = {D1(C, \), D2(C, \)}, with D1(C, \) = cos \ and D2(C, \) = sin \. We remark that although

the R-CDT transform (1.6) is introduced in a continuous setting, numerical approximations for

both the Radon and CDT transforms are available for discrete data, i.e., images in our applications

[71]. Here we utilize the computational algorithm described in [79] to estimate the CDT from

observed, discrete data. Using this algorithm, and given an image B, B̂ is computed on a chosen

grid [C1, ..., C<] × [\1, ..., \=] and reshaped as a vector in R<=.2 Also the elements in U) were

computed on the above grid and reshaped to obtain a set of vectors in R<=.

Finally, the proposed training algorithm includes the following steps: for each class :

1. Transform training samples to obtain
{
B̂
(:)
1 , B̂

(:)
2 , · · ·

}
2The same grid is chosen for all images. <, = are positive integers .
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2. Orthogonalize
{
B̂
(:)
1 , B̂

(:)
2 , · · ·

}
∪U) to obtain the set of basis vectors

{
1
(:)
1 , 1

(:)
2 , · · ·

}
, which

spans the space V̂(:)
�

(see equation (2.19)). Use the output of orthogonalization procedure to

define the matrix �(:) that contains the basis vectors in its columns as follows:

�(:) =
[
1
(:)
1 , 1

(:)
2 , · · ·

]
The training algorithm described above is summarized in Fig. 2.3.

2.2.2 Testing algorithm

The testing procedure consists of applying the R-CDT transform followed by a nearest sub-

space search in the R-CDT space. Let us consider a testing image B whose class is to be predicted

by the classification model described above. As a first step, we apply R-CDT on B to obtain the

transform space representation B̂. We then estimate the distance between B̂ and the subspace model

for each class by 32( B̂, V̂(:)
�
) ∼ ‖ B̂ − �(:)�(:)) B̂‖2. Note that �(:)�(:)) is an orthogonal projection

matrix onto the space generated by the span of the columns of �(:) (which form an orthogonal

basis). To obtain this distance, we must first obtain the projection of B̂ onto the nearest point in

the subspace V̂(:)
�

, which can be easily computed by utilizing the orthogonal basis
{
1
(:)
1 , 1

(:)
2 , · · ·

}
obtained in the training algorithm. Although the pseudo-inverse formula could be used, it is ad-

vantageous in testing to utilize an orthogonal basis for the subspace instead. The class of B̂ is then

estimated to be

arg min
:
‖ B̂ − �(:) B̂‖2.

where, �(:) = �(:)�(:)) . Fig. 2.3 shows a system diagram outlining these steps.
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2.3 Computational experiments

2.3.1 Experimental setup

Our goal is to study the classification performance of the method outlined above with respect

to state of the art techniques (deep CNN’s), and in terms of metrics such as classification accuracy,

computational complexity, and amount of training data needed. Specifically, for each dataset we

study, we generated train-test splits of different sizes from the original training set, trained the

models on these splits, and reported the performances on the original test set. For a train split of a

particular size, its samples were randomly drawn (without replacement) from the original training

set, and the experiments for this particular size were repeated 10 times. All algorithms saw the

same train-test data samples for each split. Apart from predictive performances, we also measured

different models’ computational complexity, in terms of total number of floating point operations

(FLOPs).

A particularly compelling property of the proposed approach is that the R-CDT subspace model

can capture different sizes of deformations (e.g. small translations vs. large translations) without

requiring that all such small and large deformations be present in the training set. In other words,

our model generalizes to data distributions that were previously unobserved. This is a highly de-

sirable property particularly for applications such as the optical communication under turbulence

problem described below, where training data encompassing the full range of possible deforma-

tions are limited. This property will be explored in section 2.4.

Given their excellent performance in many classification tasks, we utilized different kinds of

neural network methods as a baseline for assessing the relative performance of the method out-

lined above. Specifically, we tested three neural network models: 1) a shallow CNN model

consisting of two convolutional layers and two fully connected layers (based on PyTorch’s of-

ficial MNIST demonstration example), 2) the standard VGG11 model [37], and 3) the standard

Resnet18 model [38]. All these models were trained for 50 epochs, using the Adam [85] optimizer

with learning rate of 0.0005. When the training set size was less than or equal to 8, a validation set
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was not used, and the test performance was measured using the model after the last epoch. When

the training set had more than 8 samples we used 10% of the training samples for validation, and

reported the test performance based on the model that had the best validation performance. In ad-

dition to the deep learning-based methods, we also implemented several other linear and nonlinear

classification methods: kNN, linear SVM, kernel SVM (with RBF kernel), and nearest subspace

classifiers [86] used on the HOG [87], SIFT [88], wavelet [89], and raw image features (See Ap-

pendix 2.12.3). To make a fair comparison, we used the same number of training images for all

methods.

The proposed method was trained and tested using the methods explained in section 2.2. The

orthogonalization of V̂(:)
�

was performed using singular value decomposition (SVD). The matrix

of basis vectors �(:) was constructed using the left singular vectors obtained by the SVD of V̂(:)
�

.

The number of the basis vectors was chosen in such a way that the sum of variances explained by

all the selected basis vectors in the :-th class captures 99% of the total variance explained by all

the training samples in the :-th class. A 2D uniform probability density function was used as the

reference image for R-CDT computation (see equation (1.6)).

2.3.2 Datasets

To demonstrate the comparative performance of the proposed method, we identified seven

datasets for image classification: Chinese printed characters, MNIST, Affine-MNIST, optical OAM,

sign language, OASIS Brain MRI, and CIFAR10 image datasets. The Chinese printed character

dataset with 1000 classes was created by adding random translations and scalings to the images

of 1000 printed Chinese characters. The MNIST dataset contains images of ten classes of hand-

written digits which was collected from [8]. The Affine-MNIST dataset was created by adding

random translations and scalings to the images of the MNIST dataset. The optical orbital angular

momentum (OAM) communication dataset was collected from [76]. The dataset contains images

of 32 classes of multiplexed oribital angular momentum beam patterns for optical communication

which were corrupted by atmospheric turbulence. The sign language dataset was collected from
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Figure 2.5: Percentage test accuracy of different methods as a function of the number of training
images per class.

[90] which contains images of hand gestures. Normalized HOGgles images [91] of first three

classes of the original RGB hand gesture images were used. Finally, the OASIS brain MRI image

dataset was collected from [92]. The 2D images from the middle slices of the the original 3D MRI

data were used in this dissertation. Besides these six datasets, we also demonstrated the results on

the natural images of the gray-scale CIFAR10 dataset [93].

2.4 Results

In this section, we compare our method with the deep learning-based methods. The comparison

with other linear and nonlinear classification methods is provided in Appendix 2.12.3.
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2.4.1 Test accuracy
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Figure 2.6: The total number of floating point operations (FLOPs) required by the methods to
attain a particular test accuracy in the MNIST dataset (left) and the sign language dataset (right).

The average test accuracy values of the methods tested on Chinese printed character, MNIST,

Affine-MNIST, optical OAM, sign language, and OASIS brain MRI image datasets for different

number of training samples per class are shown in Fig. 2.5. Note that we did not use VGG11 in

the MNIST dataset because the dimensions of MNIST images (28 × 28) are too small for VGG11.

Overall, the proposed method outperforms other methods when the number of training images

per class is low (see Fig. 2.5). For some datasets, the improvements are strikingly significant. For

example, in the optical OAM dataset, and for learning from only one sample per class, our method

provides an absolute improvement in test accuracy of ∼ 60% over the CNN-based techniques.

Also, the proposed method offers comparable performance to its deep learning counterparts when

increasing the number of training samples.

Furthermore, in most cases, the accuracy vs. training size curves have a smoother trend in the

proposed method as compared with that of CNN-based learning. The standard deviation of test

accuracy of the proposed method is also lower than the other methods in most of the cases (see

Appendix 2.12.2). Moreover, the accuracy vs. training curves of the neural network architectures

significantly vary as a function of the choice of the dataset. For example, Shallow-CNN outper-

forms Resnet in MNIST dataset while it underperforms Resnet in Affine-MNIST dataset in terms

of test accuracy. Again, while outperforming VGG11 in the sign language dataset, the Resnet
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architecture underperforms VGG11 in the Affine-MNIST dataset.

2.4.2 Computational efficiency

Fig. 2.6 presents the number of floating point operations (FLOPs) required in the training phase

of the classification models in order to achieve a particular test accuracy value. We used the Affine-

MNIST and the sign language datasets in this experiment.
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Figure 2.7: Computational experiments under the out-of-distribution setup. The out-of-distribution
setup consists of disjoint training (‘in distribution’) and test (‘out distribution’) sets containing dif-
ferent sets of magnitudes of the confounding factors (see the left panel). Percentage test accuracy
of different methods are measured as a function of the number of training images per class under
the out-of-distribution setup (see the middle and the right panel).

The proposed method obtains test accuracy results similar to that of the CNN-based methods

with ∼ 50 to ∼ 10, 000 times savings in computational complexity, as measured by the number

of FLOPs (see Fig. 2.6). The reduction of the computational complexity is generally larger when

compared with a deep neural network, e.g., VGG11. The number of FLOPs required by VGG11 is

∼ 3, 000 to ∼ 10, 000 times higher than that required by the proposed method, whereas Shallow-

CNN is ∼ 50 to ∼ 6, 000 times more computationally expensive than the proposed method in terms

of number of FLOPs. Note that, we have included the training FLOPs only in Fig. 2.6. We also

calculated the number of FLOPs required in the testing phase. For all the methods, the number

of test FLOPs per image is approximately 5 orders of magnitude (∼ 105) lower than the number

of training FLOPs. The testing FLOPs of the proposed method depend on the number of training

samples. Despite this fact, the number of test FLOPs required by the CNN-based methods in our
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experiments is ∼ 5 to ∼ 100 times more than the maximum number of test FLOPs required by the

proposed method. These plots are not shown for brevity.

2.4.3 Out-of-distribution testing

In this experiment, we varied the magnitude of the confounding factors (e.g., translation)

to generate a gap between training and testing distributions that allows us to test the out-of-

distribution performance of the methods. Formally, let G ⊂ T define the set of confounding

factors. Let us consider two disjoint subsets of G, denoted as G8= and G>DC , such that G8= ⊂ G and

G>DC = G\G8=. Using the generative model in equation (2.2) the ‘in distribution’ image subset S(:)
8=

and the ‘out distribution’ image subset S(:)>DC are defined using the two disjoint confound subsets G8=

and G>DC as follows:

S
(:)
8=
=

{
B
(:)
9
|B(:)
9
=ℛ

−1
((
6\9

)′
ĩ(:) ◦ 6\9

)
,∀6\9 ∈ G8=

}
S
(:)
>DC =

{
B
(:)
9
|B(:)
9
=ℛ

−1
((
6\9

)′
ĩ(:) ◦ 6\9

)
,∀6\9 ∈ G>DC

}
We defined the ‘in distribution’ image subset S(:)

8=
as the generative model for the training set and

the ‘out distribution’ image subset S(:)>DC as the generative model for the test set in this modified

experimental setup (see the left panel of Fig. 2.7).

We measured the accuracy of the methods on the Affine-MNIST and the optical OAM datasets

under the modified experimental setup. The Affine-MNIST dataset for the modified setup was gen-

erated by applying random translations and scalings to the original MNIST images in a controlled

way so that the confound subsets G8= and G>DC do not overlap. The ‘in distribution’ image sub-

set S(:)
8=

consisted of images with translations by not more than 7 pixels and scale factors varying

between 0.9 ∼ 1.2. On the other hand, images with translations by more than 7 pixels and scale

factors varying between 1.5 ∼ 2.0 were used to generate the ‘out distribution’ image subset S(:)>DC .

For the optical OAM dataset, the images at turbulence level 5 (low turbulence) [76] were included

in the ‘in distribution’ subset S(:)
8=

and those at turbulence level 10 and 15 (medium and high tur-

bulence) were included in the ‘out distribution’ subset S(:)>DC . The average test accuracy results for
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different training set sizes under the out-of-distribution setup are shown in Fig. 2.7.

The proposed method outperforms the other methods by a greater margin than before under

this modified experimental scenario (see Fig. 2.7). For the Affine-MNIST dataset, the test accuracy

values of the proposed method are ∼ 2 to ∼ 85% higher than that of the CNN-based methods. For

the optical OAM dataset, the accuracy values of the proposed method are ∼ 7 to ∼ 85% higher

than those of the CNN-based methods (see Fig. 2.7).
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Figure 2.8: Comparison of the percentage test accuracy results obtained in the three ablation studies
conducted (using the MLP-based and LR classifiers in the R-CDT space and the nearest subspace
classifier in image space) with that of the proposed method.

As compared with the general experimental setup (Fig. 2.5), the test accuracy results of all the

methods mostly reduce under this challenging modified experimental setup (Fig. 2.7). The average

reduction of test accuracy of the proposed method under the modified setup is also significantly

lower than that of the CNN-based methods. For the Affine-MNIST dataset, the average reduction

of test accuracy for the proposed method is ∼ 10%. Whereas, the reduction of test accuracy for

the CNN-based methods are ∼ 36% − 42%. Similarly, for the optical OAM dataset, the average

reduction of accuracy are ∼ 0% and ∼ 9% − 12% for the proposed method and the CNN-based

methods, respectively.

2.4.4 Ablation study

To observe the relative impact of different components of our proposed method, we conducted

three ablation studies using the Affine-MNIST and the optical OAM datasets. In the first two
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studies, we replaced the nearest subspace-based classifier used in our proposed method with a

multilayer perceptron (MLP) [94] and a logistic regression (LR) classifier [95], respectively, and

measured the test accuracy of these modified models. In the third study, we replaced the R-CDT

transform representations with the raw images. We measured the test accuracy of the nearest

subspace classifier used with the raw image data. The percentage test accuracy results obtained

in these modified experiments are illustrated in Fig. 2.8 along with the results of the proposed

method for comparison. The proposed method outperforms all these modified models in terms of

test accuracy (see Fig. 2.8).
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Figure 2.9: Percentage test accuracy results in the CIFAR10 dataset. The natural images in the CI-
FAR10 dataset might not conform to the underlying generative model, and therefore, the proposed
method doesnot perform well in the CIFAR10 dataset.

2.4.5 An example where the proposed method fails

There are examples of image classification problems (e.g. natural image dataset) where the

proposed method does not perform well. One such example of this kind of dataset is CIFAR10

dataset. To demonstrate this point, we measured the test accuracies of different methods on the

gray-scale CIFAR10 dataset (see Fig. 2.9). It can be seen that, the highest accuracy of the proposed

method is lower than the CNN-based methods. All of the CNN-based methods used outperform

the proposed method in the gray-scale CIFAR10 dataset in terms of maximum test accuracy.
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2.5 Discussion

The results show that the proposed method offers a label efficient and computationally efficient

solution to a broad category of image classification problems providing competitive accuracies to

state-of-the-art neural networks, as well as other methods. The method also performs well under

certain challenging practical scenarios, e.g., the out-of-distribution setting. However, the proposed

method does not perform well in certain other problems where data at hand do not conform to the

generative model in equation (2.2).

The method is suitable for classification problems where an image class can be viewed as a

single “template” image that has been altered by one or more confounding factors to produce the

other images in the class. If these alterations can be appropriately modeled as a set of smooth, non-

linear transformations (see equation (2.2)), then different image classes become easily separable

in the transformed (R-CDT) space via the properties outlined in Lemmas 2.2.1 and 2.2.3. These

properties also allow for the approximation of image classes as convex subspaces in the R-CDT

space, providing a more appropriate data model for the nearest subspace method. The resulting

classifier can then be expected to enjoy the accuracy and computational efficiency we predict.

Test accuracy

Results shown with 6 example datasets suggest the proposed method obtains competitive accu-

racy figures as compared with state of the art techniques such as CNNs (as well as other methods

shown in Appendix 2.12.3) as long as the data at hand conform to the generative model in equa-

tion (2.2). Moreover, in these examples, the nearest R-CDT subspace method was shown to be

more data efficient: generally speaking, it can achieve higher accuracy with fewer training sam-

ples.

Computational efficiency

The proposed method obtains accuracy figures similar to that of the CNN-based methods with

∼ 50 to ∼ 10, 000 times reduction of the computational complexity. Such a drastic reduction of
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computation can be achieved due to the simplicity and non-iterative nature of the proposed solu-

tion. As opposed to the neural networks where GPU implementations are imperative, the proposed

method can efficiently be implemented in a CPU and greatly simplify the process of obtaining an

accurate classification model for the set of problems that are well modeled by our problem state-

ment defined in definition 2.1.3. We note that the proposed method can also be implemented in

parallel using a GPU, where the computation of image projections (and subsequent CDT), the com-

putation of inner products for each projection, etc., can be performed in parallel. This will further

enhance the method’s efficiency. We also note that one can further balance between accuracy and

computational complexity of the proposed method by varying the number of Radon projections.

However, the gain in accuracy or computational complexity obtained via this procedure can be

much smaller than the improvements we already found in our method.

Out-of-distribution testing

The accuracy results of the CNN-based methods drastically fall under the out-of-distribution

setting whereas the proposed method maintains its test accuracy performance. Based on the above

findings we infer that the proposed method can be suitable for both interpolation (predicting the

classes of data samples within the known distribution) and extrapolation (predicting the classes

of data samples outside the known distribution) when the data conforms to the generative model

expressed in definition 2.1.2.

The proposed method performs well under the out-of-distribution setting because it does not

only learn the data; it actually learns the underlying generative model. Specifically, the method

learns the type of deformations that might have generated the dataset by using very few training

examples. Then it can detect other magnitudes of that deformation type – including those outside

the training distribution. More precisely, the R-CDT subspace represents a mathematical group

of deformations (i.e., diffeomorphisms), in the sense that composition of these deformations is

automatically captured by the learned subspace. Hence, observing a few deformations (e.g., a

few translations) in the training set would lead to a learned subspace that represents all possible
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deformations obtained via the compositions of seen deformations (e.g., all possible translations).

The CNN-based methods underperform in this setting as their generic formulation does not learn

the deformation types.

The out-of-distribution setting for image classification also bears practical significance. For

example, consider the problem of classifying the OAM beam patterns for optical communications

(see the optical OAM dataset in Fig. 2.5). As these optical patterns traverse air with often un-

known air flow patterns, temperature, humidity, etc., exact knowledge of the turbulence level that

generated a test image may not always be at hand. Therefore, it is practically infeasible to train

the classification model with images at the same turbulence level as the test data. The out-of-

distribution setup is more practical under such circumstances.

Ablation study

Based on the ablation study results, we conclude that the proposed method of using the near-

est subspace classifier in the R-CDT domain is more appropriate for the category of classification

problems we are considering. Data classes in original image domain do not generally form a

convex set and therefore and in these instances the subspace model is not appropriate in image

domain. The subspace model is appropriate in the R-CDT domain as the R-CDT transform pro-

vides a linear data geometry. Considering the subspace model in the R-CDT space also enhances

the generative nature of the proposed classification method by implicitly including the data points

from the convex combination of the given training data points. Use of a discriminative model for

classification (e.g., MLP, LR, etc.) with the R-CDT domain representations of images does not

have that advantage.

When are G−1 and G−1 convex?

Given the performance in terms of accuracy and complexity, the R-CDT subspace model pre-

sented above seems to be an appropriate model for many applications. However, that is not always

the case, as the results with the CIFAR10 dataset show. It is thus natural to ask for what types of
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problems will the proposed method work well.

The definitions expressed in Definition 2.1.1 and 2.1.2 define the generative model for the

data classes used in our classification problem statement 2.1.3. As part of the solution to the

classification problem, it was proved in Lemma 2.2.1 that so long as G−1 or G−1 (the inverse of

the transportation subset of functions) is convex, Ŝ(:) is convex, and that is a precondition for

the proposed classification algorithm summarized in Fig. 2.3 to solve the classification problem

stated in Definition 2.1.3. A natural question to ask is when, or for what types of transportation

functions is this condition met? Certain simple examples are easy to describe. For example, when

G or G denotes the set of translations in 1 or 2D, then G−1 or G−1 can be shown to be convex.

Furthermore, when G or G refers to the set of scalings of a function, then G−1 or G−1 can be shown

to be convex. When G or G contains a set of fixed points, i.e. when 6(C8) = C8, then G−1 or G−1 can

be shown to be convex. Our hypothesis is that the 6 problems we tested the method on conform to

the generative model specifications at least in part, given that classification accuracies significantly

higher than chance are obtained with the method. A careful mathematical analysis of these and

related questions is the subject of present and future work.

Limitation: An example where the proposed method fails

The fundamental assumption of the proposed method is that the data at hand conform to an

underlying generative model (equation (2.2)). If the dataset does not conform to the generative

model, the proposed method may not perform well. The CIFAR10 dataset (Fig. 2.9) is an example

where the data classes might not follow the generative model. The proposed method underperforms

the CNN-based methods in the case of the CIFAR10 dataset.

2.6 Conclusions

We introduced a new algorithm for supervised image classification. The algorithm builds on

prior work related to the Radon Cumulative Distribution Transform (R-CDT) [71] and classifies

a given image by measuring the the distance between the R-CDT of that image and the linear
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subspaces V̂(:) , : = 1, 2, · · · , #classes estimated from the linear combination of the transformed

input training data. As distances between two images in the R-CDT space equate to the sliced

Wasserstein distances between the inverse R-CDT of the same points, the classification method

can be interpreted as a ‘nearest’ Sliced Wasserstein distance method between the input image and

other images in the generative model S(:) for each class : .

The model was demonstrated to solve a variety of real-world classification problems with ac-

curacy figures similar to or better than the state-of-the-art neural networks (including a shallow

method, VGG11 [37], and a Resnet18 [38]; see Fig. 2.5), in both low and high data regimes. The

proposed method also outperformed the methods we used other than neural networks (see Ap-

pendix 2.12.3). Furthermore, the proposed model was shown to outperform the neural networks

by a large margin in some specific practical scenarios, e.g., training with very few training samples

and testing with ‘out of distribution’ test sets. The method is also extremely simple to implement,

non-iterative, and it does not require tuning of hyperparameters. Finally, as far as training is con-

cerned the method was also demonstrated to be significantly less demanding in terms of floating

point operations relative to different neural network methods.

We remark that six datasets we used to evaluate our method are real image datasets with noise,

corruption, and degradation. Theoretical developments on the effect of noise over the CDT were

made in a recent study [96]. It was shown that the distribution for the CDT values can be approx-

imated as Gaussian at high SNR (approximately greater than zero) if the input signal is corrupted

by additive Gaussian noise [96]. The R-CDT has an additional linear operation (i.e., the Radon

transform), and therefore, should also be approximated as Gaussian. In that case, it is possible

to show that the nearest subspace, taking into account the noise co-variance, provides the max-

imum likelihood solution. However, these stochastic developments are beyond the scope of this

dissertation.

We note, however, that the method above is best suited for problems that are well modeled

by the generative model definition provided in Section 2.1. The definition is naturally tailored

towards modeling images which are segmented (foreground extracted). Examples shown here
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include classifying written Chinese characters, MNIST numerical digits, optical communication

patterns, sign language hand shapes, and brain MRIs. We also note that the model does not account

for many other variations present in many important image classification problems. Specifically,

the proposed model does not account for occlusions, introduction of other objects in the scene,

or variations which cannot be modeled as a mass (intensity) preserving transformation on a set

of templates. Computational examples using the CIFAR10 dataset demonstrate that indeed the

proposed model lags far behind, in terms of classification accuracy, the standard deep learning

classification methods to which it was compared.

Finally, we note that numerous adaptations of the method are possible. We note that the linear

subspace method (in the R-CDT space) described above can be modified to utilize other assump-

tions regarding the set that best models each class. While certain classes of problems may benefit

from a simple linear subspace method as described above, where all linear combinations are al-

lowed, other classes may be composed by the union of non-orthogonal subspaces. We also remark

that it is possible to extend the proposed method and use it on 3D images with the application of

the 3D Radon transform; in fact, this process is generalizable to d-dimensional data, where 3 ≥ 2.

The generative model can also be adapted for RGB images as the wave equation that gives rise to

the model also holds for each channel of an RGB image independently [97]. Furthermore, note

that we focus on supervised learning in this dissertation. The method can however be adapted

to be used in the context of unsupervised learning also (subspace clustering, for example). The

exploration of this and other modifications and extensions of the method are left for future work.
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Part B: Utilizing the framework in Part A to develop a method of mathematically learning

data invariances without requiring data augmentation for classification problems with lim-

ited data.

Deep convolutional neural networks (CNNs) are broadly considered to be state-of-the-art generic

end-to-end image classification systems. However, they are known to underperform when training

data are limited and thus require data augmentation strategies that render the method computation-

ally expensive and not always effective. Rather than using a data augmentation strategy to encode

invariances as typically done in machine learning, here we propose to mathematically augment a

nearest subspace classification model in sliced-Wasserstein space by exploiting certain mathemat-

ical properties of the Radon Cumulative Distribution Transform (R-CDT), a recently introduced

image transform. We demonstrate that for a particular type of learning problem, our mathemat-

ical solution has advantages over data augmentation with deep CNNs in terms of classification

accuracy and computational complexity, and is particularly effective under a limited training data

setting. The method is simple, effective, computationally efficient, non- iterative, and requires no

parameters to be tuned.

2.7 Problem statement

One attractive property of the method in part A (R-CDT-NS) is that the class generative models

become linear subspaces in R-CDT domain, and can be built from available training data, or math-

ematical knowledge of image transformations that are known to be present in a particular problem.

However, the method in part A does not entirely exploit the possibilities to utilize the mathematical

knowledge of image transformations, which were limited to a few simple transformations such as

translation and isotropic scaling only. Part of the difficulty with prescribing spatial transformations

that go beyond scaling and translation in the R-CDT domain is the fact that the mathematical for-

mulations of these in the R-CDT domain are not known. Here we aim to provide the necessary

mathematical approximation of affine transformations in the R-CDT domain, and incorporate them

in the R-CDT domain, thus greatly enhancing the performance of the method when few training
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samples are available, while maintaining the overall mathematical structure that allows the method

to perform well when numerous training examples are available. We aim to utilize the R-CDT-NS

framework and thereby propose an improved end-to-end machine learning system for the category

of classification problems outlined before. We aim to provide mathematical approximations for

the affine set of spatial transformations in the Radon CDT domain, which we then use to extend

the method proposed in Part A. Here we begin by reiterating the generative model and problem

statement specific to the types of image classification problems under consideration.

Generative model: Let G ⊂ T� be a set of smooth one-to-one transformations involving non-

singular affine transformations up to a certain degree and other possible non-linear deformations.

The mass (image intensity) preserving generative model for the :-th image class is defined to be

the set

S(:) =
{
B
(:)
9
|B(:)
9
= |det�6 9 |i(:) ◦ 6 9 ,∀6 9 ∈ G

}
, (2.9)

where, i(:) and B(:)
9

denote the template and the 9-th image, respectively, from the :-th image class

and det�6 9 denotes the determinant of the Jacobian matrix of 6 9 . In our discussion, it is useful to

state an equivalent Radon-space definition of the generative model in equation (2.9). Let G ⊂ T be

the set of smooth deformations in the Radon space. The equivalent Radon-space generative model

for the :-th image class is defined to be the set

S(:) =
{
B
(:)
9
|B(:)
9
=ℛ

−1
((
6\9

)′
ĩ(:) ◦ 6\9

)
,∀6\9 ∈ G

}
, (2.10)

where, ĩ(:) denotes the Radon transform of the template i(:) and ℛ
−1(·) denotes the inverse

Radon transform operator. With the above definition of the data generative model, we formally

define the above category of image classification problem as follows:

Classification problem: Let G ⊂ T (or G ⊂ T�) be the set of smooth deformations, and let
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the set of image classes S(:) be defined as in equation (2.10) (or equation (2.9)). Given training

samples {B(1)1 , B
(1)
2 , · · · } (class 1), {B(2)1 , B

(2)
2 , · · · } (class 2), · · · as training data, determine the class

(:) of an unknown image B.

It was demonstrated in Part A and also in [98] that image classes following the generative

model in equation (2.10) yield nonconvex data geometry, causing the above classification problem

to be difficult to solve and necessitating nonlinear classifiers. The work in [98] utilized the property

of Radon Cumulative Distribution Transform (R-CDT) [71] to simplify the classification problem

and provide a non-iterative solution. Here, we briefly explain the solution provided in [98] as

follows:

The solution in [98] begins by applying the R-CDT on the generative model in equation (2.10).

The R-CDT space generative model then becomes

Ŝ(:) = {B̂(:)
9
| B̂(:)
9
=

(
6\9

)−1
◦ î(:) ,∀6\9 ∈ G}. (2.11)

It was shown that if G ⊂ T is a convex group then Ŝ(:) is convex [98]. Also, if S(:)∩S(?) = ∅, then

Ŝ(:) ∩ Ŝ(?) = ∅. The method in [98] then proposes a non-iterative training algorithm by estimating

subspaces V̂(:) where V̂(:) denotes the subspace generated by the convex set Ŝ(:) as follows:

V̂(:) = span
(
Ŝ(:)

)
=

{∑
9∈�
U 9 B̂
(:)
9
| U 9 ∈ R, � is finite

}
. (2.12)

It was also shown in [98] that, under certain assumptions, Ŝ(:) ∩ V̂(?) = ∅, for : ≠ ?, i.e., the

subspaces V̂(:) do not overlap with the data class of another class. The method also explained

a framework to prescribe invariance with respect to the translation operation by enhancing the

subspace V̂(:) with a spanning set corresponding to the translation deformation as follows:

V̂
(:)
�
= span

(
Ŝ(:) ∪ U)

)
(2.13)
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where U) = {D1(C, \), D2(C, \)}, with D1(C, \) = cos \ and D2(C, \) = sin \, denotes the spanning

set corresponding to the translation deformation type and V̂(:)
�

denotes the enhanced subspace.

Finally, the class of an unknown test sample B was determined by solving

arg min
:
32( B̂, V̂(:)

�
). (2.14)

The method proposed in Part A is characterized by two prime aspects of it. First, once the

training examples containing a specific type of deformation are available, the method can learn

other instances of that deformation type from data. Secondly, the method can encode invariances

with respect to a few specific deformations in the model without explicit data augmentation when

the training samples are low in number or do not contain those specific deformations. For more

details, refer to [98].

2.8 Proposed solution

Here we expand upon the latter aspect of the method in Part A (or [98]). The mathemati-

cally prescribed invariances in [98] were limited to a few simple spatial transformations such as

translations and isotropic scalings (scaling by the same magnitudes in both x and y directions of the

image). We expand the extent of the method and mathematically encode invariances with respect to

a more complicated deformation set: the set of affine deformations (e.g., translation, both isotropic

and anisotropic scaling, both horizontal and vertical shear, and rotation). The detailed explana-

tions of the deformation types used to encode invariances and the corresponding methodologies

are explained as follows:

2.8.1 Deformation modeling

Translation

Let 6(x) = x − x0 be the translation by x0 ∈ R2 and B6 (x) = | det �6 |B ◦ 6 = B(x − x0). Note

that �6 denotes the Jacobian matrix of 6. Following [71] we have that B̂6 (C, \) = B̂(C, \) + x)0 b\
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where b\ = [cos(\), sin(\)]) . Therefore, as in [98], we define the spanning set for translation as

U) = {D(1)) (C, \), D
(2)
)
(C, \)}, where D(1)

)
(C, \) = cos \ and D(2)

)
(C, \) = sin \. The spanning set U)

(and the other spanning sets described below, defined for other deformation types) is then used

to enhance the subspace V̂(:) and encode invariance to the corresponding deformation type. The

methodology used to obtain the enhanced subspace V̂(:)
�

is explained in more detail in section

2.8.2.

Isotropic scaling

Let 6(x) = 0x and B6 (x) = |�6 |B ◦ 6 = 02B(0x), which is the normalized dilatation of B

by 0 where 0 ∈ R+. Then according to [71], B̂6 (C, \) = B̂(C, \)/0, i.e. a scalar multiplication.

Therefore, as in [98], an additional spanning set is not required here as the subspace containing

B̂(C, \) naturally contains its scalar multiplication. Therefore, the spanning set for isotropic scaling

is defined as U� = ∅.

Anisotropic scaling

Let 6(x) = D̆x with D̆ =


1/0, 0

0, 1/1

 , 0 ≠ 1, and B6 (x) = |�6 |B ◦ 6 = 1
01
B(D̆x), which is the

normalized anisotropic dilatation of B by 0, 1 where 0, 1 ∈ R+. We postulate that B̂6 (C, \) can be

approximated as 0B̂(C, \)+U0 sin2 \B̂(C, \), 1/0 = 1+U, for 0 ≤ 1, and as 1B̂(C, \)+V1 cos2 \B̂(C, \),

0/1 = 1 + V, for 0 > 1.

Proof. Consider two functions B6 (G, H) and B(G, H) such that B6 (G, H) = |�6 |B ◦ 6 = 1
01
B(D̆x) =

1
01
B(G/0, H/1), for some 0, 1 > 0, 0 ≠ 1. By direct computation (see Appendix 2.12.4), we have

that

B̂6 (C, \) = WB̂(C, \′), (2.15)

where W =
√
02 cos2 \ + 12 sin2 \ and \′ = tan−1

(
1
0

tan \
)
. To formulate the approximation for

44



B̂6 (C, \), we need the next two lemmas to estimate W and |\′ − \ |.

Lemma 2.8.1. For 0 ≤ 1 (i.e., U ≥ 0), |\′ − \ | ≤ 1
2 (U + U

2), and for 0 > 1 (i.e., −1 < U < 0),

|\′ − \ | ≤ 1
2 ( |U | +

U2

(1+U)2 ).

For a proof of Lemma 2.8.1, see Appendix 2.12.4. If |\′ − \ | ≤ n , where n is a small number 3,

we can approximate \′ as \. Then using equation (2.15), we have that

B̂6 (C, \) = WB̂(C, \′) ≈ WB̂(C, \) (2.16)

Lemma 2.8.2. For 0 ≤ 1 (i.e., U ≥ 0), W = (1+U sin2 \)0+O(U2), and for 0 > 1 (i.e., −1 < U < 0,

V > 0), W = 1(1 + V cos2 \) + O(V2).

For a proof of Lemma 2.8.2, see Appendix 2.12.4. From equation (2.16) and Lemma 2.8.2,

B̂6 (C, \) ≈ WB̂(C, \) = 0B̂(C, \) + U0 sin2 \B̂(C, \) + O(U2) for 0 ≤ 1 and B̂6 (C, \) ≈ WB̂(C, \) =

1B̂(C, \) + V1 cos2 \B̂(C, \) + O(V2) for 0 > 1. In summary, to model anisotropic scalings of B, we

use the set �̂ = {cos2 \B̂, sin2 \B̂} as enrichment to the training subspace in the transform space.

Therefore, we define the spanning set for anisotropic scaling asU�̆ = {D
(1)
�̆
(C, \), D(2)

�̆
(C, \)}, where

D
(1)
�̆
(C, \) = (cos2 \) B̂(C, \) and D(2)

�̆
(C, \) = (sin2 \) B̂(C, \).

�

Shear

Let 61(x) = H1x with H1 =


1, −ℎ

0, 1

 , 62(x) = H2x with H2 =


1, 0

−E, 1

 , and B61 (x) =

|�61 |B ◦ 61 = B(H1x), B62 (x) = |�62 |B ◦ 62 = B(H2x), which are the normalized horizontal and

vertical shears of B, respectively, by ℎ and E where ℎ ≠ E; ℎ, E ∈ R. We postulate that B̂61 (C, \) can

3Note that by Lemma 2.8.1, n can be estimated using U. A practical example for the choice of n is provided in
Appendix 2.12.4. For classification purposes, a larger value of n (hence U) is allowed. In addition, as the R.H.S. of the
inequalities in Lemma 2.8.1 are the upper bounds for |\ ′ − \ |, for a fixed U, |\ ′ − \ | might be much smaller than these
bounds. It can be one of the reasons why a larger U can be chosen in practice (as in Table 2.2 of parameters, a much
larger range of U is used in the dataset, and the classification accuracy is not compromised). We did not derive how
large n (hence U) is allowed, but our approximations work well for practical choices of U (see Table 2.2).
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be approximated as B̂(C, \) + 1
2 (ℎ sin(2\) + ℎ2 cos2 \) B̂(C, \) and B̂62 (C, \) can be approximated as

B̂(C, \) + 1
2 (E sin(2\) + E2 sin2 \) B̂(C, \).

Proof. Let us first consider the case of horizontal shear with two functions B61 (G, H) and B(G, H)

such that for some ℎ ∈ R, B61 (G, H) = |�61 |B◦61 = B(H1x) = B(G−ℎH, H). By direction computation

(see Appendix 2.12.5), we have that

B̂61 (C, \) = WB̂(C, \′), (2.17)

where W =
√

1 + ℎ2 cos2 \ + ℎ sin(2\) and \′ = tan−1 (tan \ + ℎ). To formulate the approximation

for B̂61 (C, \), we need the next two lemmas to estimate W and \′ − \.

Lemma 2.8.3. For ℎ ≥ 0, |\′ − \ | ≤ ℎ + 1
2ℎ

2, and for ℎ < 0, |\′ − \ | ≤ |ℎ | + ℎ2.

For a proof of Lemma 2.8.3, see Appendix 2.12.5. If |\′ − \ | ≤ n , where n is a small number 4,

we can approximate \′ as \. Then using equation (2.17), we have

B̂61 (C, \) = WB̂(C, \′) ≈ WB̂(C, \). (2.18)

Lemma 2.8.4. |W − 1| ≤ 1
2 (ℎ + ℎ

2) + 1
8 (ℎ + ℎ

2)2.

For a proof of Lemma 2.8.4, see Appendix 2.12.5. From equation (2.18) and Lemma 2.8.4,

B̂61 (C, \) ≈ WB̂(C, \) = B̂(C, \) + 1
2 (ℎ sin(2\) + ℎ2 cos2 \) B̂(C, \) + O(ℎ2). In summary, to model

small horizontal shearing of B, we add the following additional spanning set �̂ = {
(
ℎ2 cos2 \ +

ℎ sin(2\)
)
B̂} (for small ℎ) as enrichment to the training subspace in the transform space. Sim-

ilarly, to model small vertical shearing of B, we add the following additional spanning set �̂ =

4Note that by Lemma 2.8.3, n can be estimated using ℎ. A practical example for the choice of n is provided in
Appendix 2.12.5. For classification purposes, a larger value of n (hence ℎ) is allowed. In addition, as the R.H.S. of the
inequalities in Lemma 2.8.3 are the upper bounds for |\ ′ − \ |, for a fixed ℎ, |\ ′ − \ | might be much smaller than these
bounds. It can be one of the reasons why a larger ℎ can be chosen in practice (as in Table 2.2 of parameters, a much
larger range of ℎ is used in the dataset, and the classification accuracy is not compromised). We did not derive how
large n (hence ℎ) is allowed, but our approximations work well for practical choices of ℎ (see Table 2.2).
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{
(
E2 sin2 \ + E sin(2\)

)
B̂} (for small E) as enrichment to the training subspace in the transform

space. The proof for the vertical shear is available in Appendix 2.12.5. Therefore, the spanning set

for shear is defined as U� = {D(1)� (C, \), D
(2)
�
(C, \)}, where D(1)

�
(C, \) = (E2 sin2 \ + E sin 2\) B̂(C, \)

and D(2)
�
(C, \) = (ℎ2 cos2 \ + ℎ sin 2\) B̂(C, \). �

Rotation

Let 6(x) = Rx with R =


cos \0, − sin \0

sin \0, cos \0

 , and B6 (x) = |�6 |B ◦ 6 = B(Rx), which is the

normalized rotation of B by \0 where \0 ∈ [0, c]. Following [71] we have that B̂6 (C, \) = B̂(C, \−\0),

i.e., rotation in image space results in a circular translation in angle \ in the R-CDT space, whereas

our previous discussion pertains to a fixed \. Here, we encode rotation invariance in an alternate

manner, in the testing phase of the method. If data contains a rotation confound and if a test image

B belongs to the class (:) then 32
(
PU B̂, V̂

(:)
)
= 0 and 32

(
PU B̂, V̂

(;)
)
> 0; : ≠ ; where, PU

is a fixed permutation matrix that causes circular translation in \ by U ∈ [0, c] (which eventually

causes rotation in the native image space). Therefore, the class of B can be decoded by solving

arg min: minU 32
(
PU B̂, V̂

(:)
)
.

2.8.2 Training algorithm

Using the principles laid out above, the algorithm we propose estimates the enhanced subspace

V̂
(:)
�

corresponding to the transform space Ŝ(:) given sample data {B(:)1 , B
(:)
2 , · · · }. Naturally, the

first step is to transform the training data to obtain {B̂(:)1 , B̂
(:)
2 , · · · }. We then approximate V̂(:)

�
as

follows:

V̂
(:)
�
= span

({
B̂
(:)
1 , B̂

(:)
2 , · · ·

}
∪ U�

)
(2.19)

where U� = U) ∪ U� ∪ U�̆ ∪ U� denotes the combined spanning set corresponding to the trans-

lation, isotropic/anisotropic scaling, and horizontal/vertical shear deformation types; the spanning

set U� is used in equation (2.19) to obtain invariances to these deformation types. As mentioned
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Table 2.1: Training algorithm
Algorithm: Training procedure of the proposed method
Input: Training images {B(:)1 , B

(:)
2 , · · · }.

Output: The matrix of basis vectors �(:) .
for each class ::

– Transform training data to obtain
{
B̂
(:)
1 , B̂

(:)
2 , · · ·

}
.

– Orthogonalize
{
B̂
(:)
1 , B̂

(:)
2 , · · ·

}
∪ U� to obtain the set of basis vectors

{
1
(:)
1 , 1

(:)
2 , · · ·

}
,

which spans the space V̂(:)
�

(see equation (2.19)).
– Use the output of orthogonalization procedure to define the matrix �(:) containing the basis

vectors in its columns as follows: �(:) =
[
1
(:)
1 , 1

(:)
2 , · · ·

]
.

before, the invariance to the rotation deformation is obtained alternately in the testing phase of the

method (see section 2.8.3 for details). Here, U) = {D(1)) (C, \), D
(2)
)
(C, \)}, with D(1)

)
(C, \) = cos \

and D(2)
)
(C, \) = sin \, corresponds to the translation deformation type; U� = ∅ corresponds to

isotropic scaling; U�̆ = {D
(1)
�̆
(C, \), D(2)

�̆
(C, \)}, with D(1)

�̆
(C, \) = (cos2 \)

{
B̂
(:)
1 (C, \), B̂

(:)
2 (C, \), · · ·

}
and D(2)

�̆
(C, \) = (sin2 \)

{
B̂
(:)
1 (C, \), B̂

(:)
2 (C, \), · · ·

}
, corresponds to anisotropic scaling; and U� =

{D(1)
�
(C, \), D(2)

�
(C, \)}, with D(1)

�
(C, \) = (E2 sin2 \+E sin 2\)

{
B̂
(:)
1 (C, \), B̂

(:)
2 (C, \), · · ·

}
and D(2)

�
(C, \) =

(ℎ2 cos2 \ + ℎ sin 2\){
B̂
(:)
1 (C, \), B̂

(:)
2 (C, \), · · ·

}
, corresponds to the vertical and horizontal shear deformations 5.

‘

Next, we orthogonalize
{
B̂
(:)
1 , B̂

(:)
2 , · · ·

}
∪U� to obtain the set of basis vectors

{
1
(:)
1 , 1

(:)
2 , · · ·

}
,

which spans the space V̂(:)
�

. We then use the basis vectors to define the following matrix:

�(:) =
[
1
(:)
1 , 1

(:)
2 , · · ·

]
(2.20)

The proposed training algorithm is outlined as in table 2.1. Fig. 2.10 shows a system diagram

5Note that the spanning set
{
(E2 sin2 \ + E sin 2\) B̂

}
|E | ≤n

(for vertical shear, see equation (2.19)) in transform

domain for some n is not linear in the sense that it is not in the span
{
(E2

0 sin2 \ + E0 sin 2\) B̂
}

for some fixed small
E0. The situation for horizontal shear is similar. However, it is not hard to show that U� ∈ span (U�) for all
possible E, ℎ ∈ R. Indeed it can be shown that span

{
cos2 \B̂, sin2 \B̂, sin(2\) B̂

}
= span

{
cos2 \B̂, sin2 \B̂, {(E2 sin2 \ +

E sin 2\) B̂}E∈R, {(ℎ2 cos2 \ + ℎ sin 2\) B̂}ℎ∈R
}
= span

{
cos2 \B̂, sin2 \B̂, (E2

0 sin2 \ + E0 sin 2\) B̂, (ℎ2
0 cos2 \ + ℎ0 sin 2\) B̂

}
for some fixed E0, ℎ0. Therefore, in our numerical implementation choosing small fixed E0, ℎ0 in for U� (and hence
for U�) will not change the subspace V̂(:)

�
.
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Figure 2.10: System diagrams outlining the data augmentation-based methods and the proposed
method. (a) Data augmentation-based methods augment the training set by artificially applying
known transformations to the original training set. (b) The proposed invariance encoding method
models the underlying data space (represented by grey grid lines) corresponding to known trans-
formations to learn invariances to those transformations. The R-CDT renders data space convex
and enables it to be modeled with a linear subspace. The invariance encoding framework expands
the subspace to incorporate invariances to desired transformations.

outlining the main computational modeling steps in the proposed method.

2.8.3 Testing algorithm

The testing procedure consists of applying the R-CDT transform followed by a nearest sub-

space search in the R-CDT space. Let us consider a test image B whose class is to be pre-

dicted by the classification method described above. As a first step, we apply the R-CDT on B

to obtain the transform space representation B̂. We then estimate the distance 32(PU B̂, V̂(:)� ) ∼

‖PU B̂ − �(:)�(:)
)
PU B̂‖2. Here, PU is a fixed permutation matrix that causes circular translation in \

by U ∈ [0, c]. Note that �(:)�(:)) is an orthogonal projection matrix onto the space generated by

the span of the columns of �(:) (which form an orthogonal basis). The class of B̂ is then estimated
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to be

arg min
:

min
U
‖PU B̂ − �(:)PU B̂‖2; where, �(:) = �(:)�(:)

)
.

2.9 Results

2.9.1 Simulated experiment

We compared the proposed method with conventional classification methods with respect to

classification accuracy, data efficiency, computational efficiency, and out-of-distribution robust-

ness. In this respect, we have identified four state-of-the-art methods with data augmentation:

MNISTnet [99] (a shallow CNN model based on PyTorch’s official example), the standard VGG11

model [37], the standard Resnet18 model [38], and the standard k-nearest neighbors (kNN) clas-

sifier model [98]. The CNN-based methods were implemented using Adam optimizer with 50

epochs and a learning rate of 0.0005. Singular value decomposition was used to obtain the basis

vectors of the proposed method. The least possible number of basis vectors was chosen so that the

sum of variances explained by the selected basis vectors in any class is at least 99% of the total

variance in that class, and subspaces corresponding to all classes have the same dimensionality.

We generated training splits of different sizes from the original training set, trained the models on

these splits, and reported the performances on the original test set. For a training split of a partic-

ular data size, its samples were randomly drawn (without replacement) from the original training

set. The experiments for a particular size were repeated ten times, and the mean values of the

results (i.e., test accuracy, computational complexity, etc.) were reported. The upper and lower

bounds of the test accuracy estimates were also reported in terms of mean and standard deviation

(` ± f) in Appendix 2.12.6. All methods saw the same set of training and test images.

To evaluate the comparative performance of the methods, we selected the following datasets:

MNIST, Affine-MNIST, OMNIGLOT, Brain MRI, Sign language, OAM (under the regular and the

out-of-distribution setup), and FMNIST datasets. The handwritten character images of the MNIST

and OMNIGLOT datasets were selected from [8] and [101], respectively. The 2D images from the
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Table 2.2: Parameters for additional deformations added to the data
Translation
(G0, H0)

Isotropic scaling
0

Anisotropic scaling
(0, 1)

Shear
ℎ

Rotation
\0

Synthetic constrained by FoV 0.5 − 2.0 (0.5 − 2.0, 0.5 − 2.0) ±0.6 ±40◦
AffNIST (reg), FMNIST,
Brain MRI constrained by FoV 0.5 − 2.0 (0.5 − 2.0, 0.5 − 2.0) ±0.3 ±20◦

MNIST, OMNIGLOT,
OAM, Sign Lang (−,−) − (−,−) − −

AffNIST (out)
training: (0, 0) training: 1 training: (1, 1) training: 0 training: 0◦

testing: (±20,±20) testing: 0.5 − 2.0 testing: (0.5 − 2.0, 0.5 − 2.0) testing: ±0.3 ±20◦

Official Affine
MNIST [100] constrained by FoV 0.8 − 1.2 (0.8 − 1.2, 0.8 − 1.2) ±0.2 ±20◦

middle slices of the 3D MRI data of the Brain MRI dataset and normalized HOGgles images of

hand gestures of the Sign language dataset were collected from [98]. The fashion object images

(trouser, pullover, bag, ankle boot) of the FMNIST dataset were collected from [102]. The opti-

cal communication images (orbital angular momentum beam patterns) of the OAM dataset under

the influence of various atmospheric turbulence levels were collected from [103]. We tested the

methods on the OAM dataset under two experimental setups: the regular setup, where the training

and test sets contain images at the same turbulence level, and the out-of-distribution setup, where

the training and test sets contain images at different turbulence levels. We randomly selected 8

images from the OMNIGLOT dataset for training, and the rest were used for testing. The Affine-

MNIST dataset was created using random Affine transformations (translation, isotropic/anisotropic

scaling, shear, rotation) to both training and test sets of the MNIST dataset. To increase the clas-

sification complexity, random affine transformations were also added with the Brain MRI and

FMNIST datasets. We also created a synthetic dataset using randomly selected ten classes of the

OMNIGLOT dataset [101]. The training set of the synthetic dataset contains a randomly selected

1 image per class, and the test set contains 200 instances of the same image but observed un-

der random affine transformations (translation, isotropic/anisotropic scaling, shear, and rotation).

Fig. 2.11(a) illustrates the single image of the training set and a few sample images of the test set

of a random class of the synthetic dataset. Parameters for the additional deformations added to the

datasets, in addition to their natural deformations, are presented in Table 2.2. Parameters for defor-

mations used in the widely used official Affine MNIST dataset [100] are also included in Table 2.2
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Figure 2.11: The accuracy of the methods on the synthetic dataset. (a) Training and test sets of
a random class of the synthetic dataset. (b) The percentage test accuracy of methods. Aug-1,
Aug-25, and Aug-50 indicate that the corresponding methods were trained using both original
and augmented set where the sizes of the augmented set were 1, 25, and 50 times the size of
the original training set, respectively. The R-CDT-NS and the proposed method did not use any
augmented images.

for reference. When the translation is constrained by the field of view (FoV), any parameter value

is allowed as long as the object stays within the field of view of the image.

2.9.2 Effectiveness and data-efficiency

The proposed method provides an effective and data-efficient solution in the synthetic dataset

(see Fig. 2.11(b)). Note that the MNISTnet, VGG11, Resnet18, and kNN models were trained

using the original training set in addition to the augmented training set generated from the original

training set. The sizes of the augmented training set used were 1, 25, and 50 times the size of the

original training set. We also emphasize that the R-CDT-NS method and the proposed method did

not use augmented images; they were trained only using the original training set. The proposed

method provides test accuracy close to 100% using no augmented data, whereas the other methods

reach accuracy up to 40% using 50 times more augmented images (see Fig. 2.11(b)).

The classification accuracy, for different training set sizes, for the real datasets are shown in

Fig. 2.12 and Table 2.3. Note that, in the real datasets also, the MNISTnet, VGG11, Resnet18, and
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Figure 2.12: The accuracy of the methods as a function of the number of training samples on
the MNIST, AFFNIST, and OMNIGLOT datasets. Aug-1, Aug-25, and Aug-50 indicate that the
corresponding methods were trained using both original and augmented set where the sizes of the
augmented set were 1, 25, and 50 times the size of the original training set, respectively. The
R-CDT-NS and the proposed method did not use any augmented images.

kNN models were trained using the original training set in addition to the augmented training set

where the sizes of the augmented training set used were 1, 25, and 50 times the size of the original

training set. Also, note that the R-CDT-NS method and the proposed method were implemented

without using any augmented images. Results in the real datasets show that the proposed method
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Figure 2.13: Experimental results under the out-of-distribution setup, which is characterized by
the disjoint training (‘in distribution’) and test (‘out distribution’) sets containing different sets of
magnitudes of the spatial transformations (see the left panel). The percentage test accuracy values
of different methods are measured as a function of the number of training images per class.

provides accuracy better than or equivalent to the other methods without using any augmented

images, where the other methods used up to 50 times more augmented images (see Fig. 2.12). The

proposed method outperforms the other methods by a more significant margin at the low-training

sample end. Increasing the augmentation size improves the performance of the other methods, but

it significantly increases the other methods’ computational burden, as will be clarified in the next

section.

2.9.3 Out-of-distribution robustness

To compare the effectiveness of the proposed method under the out-of-distribution setting,

we generated a gap between the training and test sets with respect to the magnitudes of the

deformations. Formally, if G8= ⊂ G denotes the deformation set of the ‘in-distribution’, then

G>DC = G\G8= was used as the deformation set for the ‘out-distribution’ (see Fig. 2.13). Then we

trained the models using the ‘in-distribution’ data and tested using the ‘out-distribution’ data. We
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performed two out-of-distribution experiments. In one experiment, we used the MNIST dataset as

the ‘in-distribution’ training set and the Affine-MNIST dataset as the ‘out-distribution’ test set (see

Fig. 2.13), and in the other out-of-distribution experiment, we used the OAM images at low tur-

bulence levels as the ‘in-distribution’ training set and those at medium and high turbulence levels

as the ‘out-distribution’ test set as in [98] (see Table 2.3). The range of deformation magnitudes

used in the augmentation set was also chosen to be different from the Affine-MNIST dataset in this

out-of-distribution experiment. The results show that the proposed method outperforms the other

methods by an even more significant margin under the challenging out-of-distribution setup (see

Fig. 2.13 and Table 2.3). Under this setup, the proposed method maintains similar accuracy fig-

ures in the Affine-MNIST and OAM test data compared with the standard experimental setup (i.e.,

Affine-MNIST in Fig. 2.12 and OAM (regular) in Table 2.3). On the other hand, the other methods

decline in accuracy significantly under the out-of-distribution setup compared with the standard

experimental setup (see Affine-MNIST and OAM results in Figs. 2.12, 2.13 and Table 2.3).

2.9.4 Computational efficiency

To compare the computational efficiency of the methods, we computed the number of the

floating-point operations (FLOPs) [98] in the training phase of the methods (see the FLOPs vs.

percentage accuracy results for the MNIST dataset in Fig. 2.14). The results show that the proposed

method requires up to 6 orders of magnitude (1, 000, 000 times) less computational cost than the

other methods to achieve the same test accuracy. As in the previous experiments, we augmented

the training set for the MNISTnet, VGG11, Resnet18, and kNN methods and did not augment the

training set for the R-CDT-NS and the proposed method. The size of the augmentation set used in

this experiment was 50 times more than the original training set. The computational complexity of

other methods would potentially reduce if the augmentation set size were reduced, but that would

also aggravate their classification accuracy (see Fig. 2.12).
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Table 2.3: Accuracy of the methods (%) on images with complex foregrounds
Training set size (per class) = 1

MNISTnet VGG11 Resnet18 k-NN R-CDT NS Proposed
(Aug-1 / Aug-50) (Aug-1 / Aug-50) (Aug-1 / Aug-50) (Aug-1 / Aug-50) (Aug-0) (Aug-0)

Brain MRI 48.70 / 51.30 49.60 / 56.10 49.10 / 54.00 50.50 / 50.70 48.70 57.20
Sign Lang 68.97 / 74.29 42.53 / 46.58 40.78 / 57.78 30.85 / 32.65 83.00 87.35
OAM (reg) 5.25 / 27.18 3.02 / 16.56 5.77 / 45.98 17.31 / 19.40 80.58 81.51
OAM (out) 4.86 / 28.21 3.87 / 15.73 5.28 / 45.85 20.70 / 21.88 85.55 85.20
FMNIST 34.02 / 32.68 33.14 / 33.69 26.45 / 34.26 25.90 / 35.52 34.78 57.90

Training set size (per class) = 5
MNISTnet VGG11 Resnet18 k-NN R-CDT NS Proposed

(Aug-1 / Aug-50) (Aug-1 / Aug-50) (Aug-1 / Aug-50) (Aug-1 / Aug-50) (Aug-0) (Aug-0)
Brain MRI 54.80 / 55.40 52.80 / 52.00 50.60 / 56.30 47.20 / 49.40 47.80 62.20
Sign Lang 91.05 / 91.59 44.66 / 79.93 47.49 / 91.46 92.01 / 92.40 93.21 96.10
OAM (reg) 43.61 / 68.48 29.37 / 26.16 72.62 / 81.84 34.03 / 38.92 92.69 93.71
OAM (out) 38.78 / 56.24 25.41 / 41.32 67.70 / 58.67 37.69 / 41.83 91.20 91.44
FMNIST 43.97 / 50.92 31.87 / 65.46 31.67 / 65.22 38.69 / 42.95 54.31 82.64

Training set size (per class) = 10
MNISTnet VGG11 Resnet18 k-NN R-CDT NS Proposed

(Aug-1 / Aug-50) (Aug-1 / Aug-50) (Aug-1 / Aug-50) (Aug-1 / Aug-50) (Aug-0) (Aug-0)
MNISTnet VGG11 Resnet18 k-NN R-CDT NS Proposed

Brain MRI 50.70 / 54.10 50.40 / 57.00 50.60 / 60.00 49.00 / 50.30 52.10 62.30
Sign Lang 83.82 / 88.52 43.30 / 75.52 39.61 / 87.87 95.77 / 95.74 97.47 98.26
OAM (reg) 54.41 / 79.40 69.38 / 87.85 88.50 / 95.43 45.46 / 51.23 95.82 97.34
OAM (out) 44.27 / 60.72 57.28 / 75.06 72.38 / 79.27 46.83 / 51.28 92.76 94.16
FMNIST 37.95 / 58.62 42.42 / 74.49 37.45 / 78.38 46.55 / 49.66 75.68 86.14

2.10 Discussion

The results above show that our method’s mathematically prescribed invariance encoding tech-

nique can reasonably model the specific deformation set under consideration, i.e., the affine set.

The proposed method offers high classification accuracy using significantly less training data and

computation without explicitly using any augmented images. The method is robust under chal-

lenging experimental setups such as out-of-distribution testing cases.

Test accuracy and data efficiency

Results in synthetic and real data show that, so long as the data at and conform to the generative

model stated in equation (2.10) (or equation (2.9)), the proposed method can classify images with

high accuracy without explicitly using any augmented images. While the proposed and RCDT-NS

methods were implemented using no augmented images, the other methods we compared to were

implemented using low to high numbers of augmented images. The other methods significantly

underperform while using a low number of augmented images (see Figs. 2.11(b), 2.12, 2.13, and
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Figure 2.14: The computational complexity of the methods as measured by the total number of
floating-point operations (FLOPs) to attain a particular test accuracy in the MNIST dataset.

Table 2.3). The other methods, in some cases, offer equivalent classification accuracy to the pro-

posed method while using a significantly high number of augmented images (see Fig. 2.12 and

Table 2.3). However, this approach significantly increases the computational burden of the other

methods (see Fig. 2.14). Here we emphasize that, though the proposed method was implemented

without using any data augmentation here, data augmentation could also be used in the proposed

method as in the other methods. In that case, the accuracy of the proposed method could potentially

improve even further. We note that in some datasets in Table 2.3 (e.g., Brain MRI, FMNIST), the

classification performances of all methods are relatively lower than that in the other datasets. Clas-

sification problems involving these datasets might be more complex than the other ones, causing

relatively low classification performances of all the methods in these datasets. However, in these

datasets also, the proposed method outperforms the other methods.

Computational efficiency

The proposed method provides up to 6 orders of magnitude (1,000,000 times) savings in com-

putational cost (see Fig. 2.14) as measured by the number of floating-point operations (FLOPs)

over data augmented deep learning alternatives. Such an improvement in computational efficiency

could be achieved due to the simple and non-iterative nature of the proposed solution. The MNIST-

net, VGG11, Resnet18, and kNN methods require a high number of augmented images to achieve

reasonable accuracy figures and require iterative optimization procedures to reach a solution, con-
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tributing to high computational costs. Computational costs of these methods could be reduced by

reducing the number of augmented images used, but that would also adversely affect their classifi-

cation accuracy (see Fig. 2.12).

Out-of-distribution robustness

The proposed method maintains high classification accuracy while the accuracy figures of the

other methods fall drastically under the challenging out-of-distribution experimental setup (see

Fig. 2.13 and Table 2.3). These results suggest that the proposed method provides a better gen-

eralization of the underlying data distribution resulting in robust classification performance. The

reason for better accuracy under the out-of-distribution setup is that the proposed method does not

only learn the deformations present in the given data; it actually learns the underlying data model.

More specifically, it learns the type of deformation (such as translation, scaling, shear, and others)

present in the data. It thereby can detect the presence of different magnitudes of these deformation

types. The type of the deformation can be learned from a very few training samples containing

those deformations as well as from the mathematically prescribed invariances proposed in this

dissertation.

2.11 Conclusion

This dissertation proposes an enhanced end-to-end classification system with a mathematical

framework to attain invariances to a set of given image transformations. The proposed method

is pertinent to a specific category of image classification problems where image classes can be

thought of being an instance of a template observed under a set of spatial deformations. If these

deformations are appropriately modeled as a collection of smooth, one-to-one, and nonlinear trans-

formations (see equations (2.9) and (2.10) of the dissertation), then the image classes become eas-

ily separable in the transform space (i.e., the R-CDT space) via the properties mentioned in [98].

These properties also allow for the approximation of image classes as convex subspaces in the R-

CDT space, providing a more suitable data model for the nearest subspace method. The resulting
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classifier can then be expected to provide high accuracy, computational efficiency, and out-of-

distribution robustness, as we found in the experiments. A large number of image classification

problems can be formulated this way and thus can benefit from our proposed solution. Heuristi-

cally, any classification problem for which one image in a class can be constructed from another by

a smooth rearrangement of pixel intensities is an appropriate fit for the generative model. Obvious

examples are affine transformations (translation, scaling, shear, etc.). Less obvious examples are

distortions to images in an optical communication channel resulting from the influence of a trans-

parent medium (e.g., turbulence, see [103]) or morphological changes in the gray matter of MRI

images under the influence of a disease (see [3]).

The proposed mathematical solution attains high classification accuracy (compared with state-

of-the-art end-to-end systems), especially at the low data regime. The method was also demon-

strated to significantly improve the computational cost of classification (up to 1,000,000 times

reduction in the computational cost can be attained). The method is mathematically coherent,

understandable, non-iterative, requires no hyper-parameters to tune, and is simple enough to be

implemented without GPU support. However, the proposed method can also be implemented in

parallel using a GPU, which should further enhance the method’s efficiency. The method also

demonstrated robustness in challenging experimental scenarios, e.g., the out-of-distribution setup.

The method performs well under the out-of-distribution setup because it learns the underlying gen-

erative model of the image classes. More specifically, the method learns the type of deformations

that might have generated the dataset by using very few training examples.

We obtain superior performance by expanding upon the recently published R-CDT-NS clas-

sification method [98], which can also be interpreted as the ‘nearest’ sliced-Wasserstein distance

method. The R-CDT-NS method [98] was demonstrated to show equivalent or better classification

accuracy at both low and high data regimes. In this dissertation, we improved upon the perfor-

mance of the R-CDT-NS method at the low data regime without altering its previously superior

performance at the high data regime. The performance improvement at the low data regime was

achieved by improving the invariance prescribing framework of the R-CDT-NS method. In the
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proposed method, we encode invariances with respect to a more complicated deformation set than

the previous paper [98]: the affine deformations, i.e., translation, isotropic/anisotropic scaling,

horizontal/vertical shear, and rotation in the sliced-Wasserstein space. Though images under the

effect of these deformations are challenging to classify in native image space, the R-CDT subspace

can capture these variations and thus simplify the associated classification problems. We mathe-

matically derive approximate basis vectors corresponding to these deformations and use them to

enhance the R-CDT subspace to encode invariances instead of augmenting the individual training

images. As a result, the method can learn a specific deformation type using a few basis vectors

without requiring to use thousands of augmented images representing that deformation.

Finally, we note that the method is well-suited for the problems where the data at hand conform

to the generative model stated in equation (2.10). One example where the data do not follow the

generative model is classification problems involving natural unsegmented images (e.g., CIFAR10,

imagenet datasets). However, some datasets (such as the OAM and Sign language datasets) con-

tain unsegmented images, and the proposed method still outperforms the other methods in these

datasets. In addition, our method can potentially be extended to be suitably applied to natural

unsegmented images with more complex backgrounds. However, it would require redefining the

problem statement and the generative model. One step forward in this direction is a few recent

papers [104, 105] that consider images as a collection of patches. When an image is considered as

a collection of patches, it might be possible to adaptively assign lower weights to the background

and discard them automatically. However, these analyses require reformulation of the problem,

which we leave to future work. Another potential solution is to use an object detection and seg-

mentation method along with our proposed classification method. We also note that we used some

approximations and assumptions in the derivation for the spanning sets of shear and anisotropic

scaling. However, we showed that these approximations work reasonably for practical purposes,

as we have seen in the results provided above. In our experiments, we chose much bigger deforma-

tion parameters than the official Affine MNIST [100] and obtained good classification results. We

did not derive how much deformation is allowed and leave the robustness analysis to more extreme
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deformations for future work.
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2.12 Appendix

2.12.1 Proof of Lemma 2.2.3

Let S(:) , : = 1, 2, ..., be the generative classes with a common confound set G such that any

5 ∉ G, 5 ′i(:) ◦ 5 ∉ S(:) .6

Proposition: Ŝ(:) ∩ V̂(?) = ∅, ∀ : ≠ ?.

Assumptions:

1. S(:) ∩ S(?) = ∅.

2. { 5 (G) = 0G |0 > 0} ⊆ G.

3. G is a convex group.

4. ∀ increasing function ℎ ∉ G and 0 < U < 1, U 83 + (1 − U)ℎ ∉ G (83 denotes the identity

function, 5 (G) = G).

Proof. Before we prove the main claim, let us start by stating and proving the following claim:

Claim (1): ∀ B̂(:)
8
∈ Ŝ(:) and B̂(?)

9
∈ Ŝ(?) and 0 < U < 1,

UB̂
(:)
8
+ (1 − U) B̂(?)

9
∉ Ŝ(:) ∪ Ŝ(?) .

Proof of Claim (1): Let us prove by contradiction and assume that the claim is not true. Then,

6This condition is automatically satisfied if i (:) > 0 on R but may not hold in general if i (:) is supported on a
finite interval.
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given U ∈ (0, 1)

UB̂
(:)
8
+ (1 − U) B̂(?)

9
∈ Ŝ(:) .

=⇒ UB̂
(:)
8
+ (1 − U) B̂(?)

9
= 6−1 ◦ î(:) , (2.21)

for some 6 ∈ G.

Then, ∃ ℎ ∉ G, where ℎ ◦ B̂(:)
8
= B̂
(?)
9

. Using this fact in equation (2.21) we have that,

UB̂
(:)
8
+ (1 − U)ℎ ◦ B̂(:)

8
= 6−1 ◦ î(:)

=⇒ (U 83 + (1 − U)ℎ) ◦ 6−1
8 ◦ î(:) = 6−1 ◦ î(:); 68 ∈ G

=⇒ 5 −1 ◦ î(:) = 6−1 ◦ î(:) (2.22)

where 5 −1 = (U 83 + (1 − U)ℎ) ◦ 6−1
8

. Note that by assumption (4), U 83 + (1 − U)ℎ ∉ G. Since

68 ∈ G and G is a group, it follows that 5 −1 ∉ G and hence 5 ∉ G. By the assumption that for any

5 ∉ G, 5 ′i(:) ◦ 5 ∉ S(:) (or equivalently 5 −1 ◦ î(:) ∉ Ŝ(:)), it follows that the LHS of (2.22) does

not belong to S(:) , which is a contradiction since the RHS of (2.22) belongs to S(:) . Therefore,

UB̂
(:)
8
+ (1 − U) B̂(?)

9
∉ Ŝ(:) .

Similarly, we can show that

UB̂
(:)
8
+ (1 − U) B̂(?)

9
∉ Ŝ(?) .

In other words,

UB̂
(:)
8
+ (1 − U) B̂(?)

9
∉ Ŝ(:) ∪ Ŝ(?) .

Therefore, Claim (1) is true.
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Main claim:

Ŝ(:) ∩ V̂(?) = ∅, ∀ : ≠ ?

Proof of the main claim: Let us prove by contradiction and assume that the main claim is not true.

Then, ∃ V 9 ∈ R for some 6 ∈ G such that

∑
9∈�

V 9 B̂
(?)
9
= 6−1 ◦ î(:) (2.23)

Let us consider the case when V 9 > 0 for all 9 ∈ �. Note that the LHS of equation (2.23) is

a member of Ŝ(?) . To see this, we note that by assumption (2) and Lemma 2.2.1, any convex

combination of elements in Ŝ(?) lies in Ŝ(?) , i.e.,
∑
9∈�

V 9∑
9∈�

V 9
B̂
(?)
9
∈ Ŝ(?) . By assumption (3) and the

composition property of the CDT, we have that U−1 ◦ B̂(?) ∈ Ŝ(?) for any U > 0 and B̂(?) ∈ Ŝ(?) .

Letting U = (∑
9∈�
V 9 )−1 and B̂(?) = 1∑

9∈�
V 9

∑
9∈�
V 9 B̂
(?)
9

, we have that
∑
9∈�
V 9 B̂
(?)
9
∈ Ŝ(?) . Since the RHS

of equation (2.23) lies in Ŝ(:) , it follows that equation (2.23) cannot hold when V 9 > 0 for all 9 ∈ �

as Ŝ(?) ∩ Ŝ(:) = ∅ (by assumption (1) and Remark 1). On the other hand, equation (2.23) cannot

hold when V 9 < 0 for all 9 ∈ � since the LHS of (2.23) would be a strictly decreasing function

while the RHS is a strictly increasing function. Now, let us define the following:

�+ =
{
9 ∈ � |V 9 > 0

}
; �− =

{
9 ∈ � |V 9 < 0

}
Equation (2.23) then can be written as

1
2

∑
9∈�+

V 9 B̂
(?)
9
+ 1

2

∑
9∈�−

V 9 B̂
(?)
9
=

1
2
6−1 ◦ î(:)

1
2

∑
9∈�+

V 9 B̂
(?)
9
=

1
2

∑
9∈�−

(
−V 9

)
B̂
(?)
9
+ 1

2
6−1 ◦ î(:) (2.24)
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Now as V 9 | 9∈�+ > 0 and
(
−V 9

)
| 9∈�− > 0, by assumption (2),

∑
9∈�+ V 9 B̂

(?)
9
∈ (̂(?) and

∑
9∈�−

(
−V 9

)
B̂
(?)
9
∈

(̂(?) . Also, 6−1 ◦ î(:) ∈ Ŝ(:) . Now,

LHS of equation (2.24)

=
1
2

∑
9∈�+

V 9 B̂
(?)
9
∈ Ŝ(?)

RHS of equation (2.24)

=
1
2

∑
9∈�−

(
−V 9

)
B̂
(?)
9
+

(
1 − 1

2

)
6−1 ◦ î(:) ∉ Ŝ(:) ∪ Ŝ(?)

(by using Claim (1))

which is a contradiction. Therefore, there exists no V 9 ∈ R such that

∑
9∈�

V 9 B̂
(?)
9
= 6−1 ◦ î(:)

which implies, the main claim is true, i.e., Ŝ(:) ∩ V̂(?) = ∅, ∀ : ≠ ?. Note that, Ŝ(:) here does not

contain the origin because the generative models in equations (2.1) and (2.2) do not allow for zero

elements. �

2.12.2 Standard deviation of test accuracy
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Table 2.4: Standard deviation of percentage test accuracy in different datasets.

Chinese printed character dataset

No. of training samples (per class)
1 2 4 8 16

Resnet 0.08 0.21 2.45 4.34 0.17
Shallow-CNN 0.04 0.06 0.17 0.82 2.21

VGGnet 0 0 0.87 20.32 41.54
Proposed 0.21 0.28 0.04 0 0

MNIST dataset

No. of training samples (per class)
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Resnet 3.29 4.05 3.03 9.13 8.04 2.01 1.85 0.95 0.45 0.75 0.12 0.15 0.06
Shallow-CNN 4.08 6.89 2.64 1.12 3.90 0.96 1.42 0.49 0.31 0.23 0.09 0.09 0.07

Proposed 5.25 7.97 4.27 1.21 1.48 0.50 0.33 0.20 0.16 0.08 0.11 0.08 0.07

Affine-MNIST dataset

No. of training samples (per class)
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Resnet 1.45 1.08 0.64 1.08 6.48 3.86 3.95 1.56 0.27 0.21 0.16 0.21 0.09
Shallow-CNN 1.18 1.31 1.09 0.67 2.58 2.06 2.95 1.65 1.03 0.38 0.45 0.33 0.27

VGGnet 2.59 2.99 3.17 4.67 4.78 2.97 1.35 0.99 0.45 0.33 0.18 0.17 0.12
Proposed 3.27 5.29 2.31 2.30 1.33 0.59 0.38 0.22 0.15 0.1 0.08 0.08 0.08

Optical OAM dataset

No. of training samples (per class)
1 2 4 8 16 32 64 128 256 512

Resnet 1.71 4.31 2.60 1.39 0.84 0.78 0.22 0.05 0.04 0.16
Shallow-CNN 2.80 1.03 2.64 1.72 4.29 0.81 0.45 0.10 0.18 0.12

VGGnet 1.64 1.63 13.30 13.11 2.81 1.97 0.77 0.44 0.12 0.05
Proposed 2.40 1.73 0.66 0.54 0.28 0.09 0.02 0.01 0.01 0.01

Sign language dataset

No. of training samples (per class)
1 2 4 8 16 32 64 128 256 512

Resnet 9.08 15.14 9.24 12.26 11.80 7.02 4.94 2.03 0.76 0.05
Shallow-CNN 9.87 4.49 3.07 1.62 5.93 7.58 1.62 1.22 0.03 0

VGGnet 8.83 15.48 16.35 19.79 1.76 5.67 3.76 1.22 1.39 0.27
Proposed 12.26 9.68 6.85 4.18 1.73 0.78 0.12 0 0 0
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OASIS brain MRI dataset

No. of training samples (per class)

1 2 4 8 16 32

Resnet 4.40 11.58 11.69 12.09 12.51 7.96

Shallow-CNN 18.12 17.42 8.28 5.49 12.68 6.37

VGGnet 5.07 5.12 4.06 4.50 11.99 10.02

Proposed 7.56 5.43 3.56 2.96 2.26 0.85

2.12.3 Comparisons with methods other than the neural networks
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Figure 2.15: Comparison of the percentage test accuracy results of the proposed method with the
results obtained by applying the nearest subspace (NS), linear support vector machine (SVM-l), k-
nearest neighbor (kNN), and kernel support vector machine (SVM-k) classifiers on the raw image,
HOG, SIFT, and wavelet features of the Affine-MNIST dataset.
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Figure 2.16: Comparison of the percentage test accuracy results of the proposed method with the
results obtained by applying the nearest subspace (NS), linear support vector machine (SVM-l), k-
nearest neighbor (kNN), and kernel support vector machine (SVM-k) classifiers on the raw image,
HOG, SIFT, and wavelet features of the Optical OAM dataset.
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2.12.4 Anisotropic scaling

Let 6(x) = D̆x with D̆ =


1/0, 0

0, 1/1

 . Consider two functions B6 (G, H) and B(G, H) such

that B6 (G, H) = |�6 |B ◦ 6 = 1
01
B(D̆x) = 1

01
B(G/0, H/1), for some 0, 1 > 0, 0 ≠ 1, which is the

normalized anisotropic dilatation of B by 0, 1 where 0, 1 ∈ R+.

Proof of equation (2.15) of the dissertation

By definition of the Radon transform and then applying the change of variables formula with

G′ = G/0 and H′ = H/1, we have that

B̃6 (C, \) =
1
01

∫ ∞

−∞

∫ ∞

−∞
B( G
0
,
H

1
)X(C − G cos \ − H sin \)3G3H

=

∫ ∞

−∞

∫ ∞

−∞
B(G′, H′)X(C − 0G′ cos \ − 1H′ sin \)3G′3H′. (2.25)

Using the co-area formula and letting W =
√
02 cos2 \ + 12 sin2 \, we have that

B̃6 (C, \) =
1
W

∫ ∞

−∞

∫ ∞

−∞
B(G′, H′)X( C

W
− G′0 cos \

W
− H′1 sin \

W
)3G′3H′

=
1
W

∫ ∞

−∞

∫ ∞

−∞
B(G′, H′)X( C

W
− G′ cos \′ − H′ sin \′)3G′3H′, (2.26)

where \′ = tan−1
(
1
0

tan \
)
. Hence B̃6 (C, \) = 1

W
B̃

(
C
W
, \′

)
. Applying the scaling property of R-CDT

B̂6 (C, \) = WB̂(C, \′) (2.27)

Proof of Lemma 2.8.1

For illustration purposes, we assume without loss of generality \ ∈ [0, c2 ) and 0 ≤ 1 (i.e.,

U ≥ 0) in the following derivations. Other cases are similar. Using Taylor’s formula for tan−1(G)
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around G = tan \, we have that

\′ = tan−1 (tan \ + U tan \) = \ + U tan \
1 + tan2 \

− b

(1 + b2)2
(U tan \)2, (2.28)

where b ∈ [tan \, (1 + U) tan \]. Since 0 ≤ |b |
1+b2 ≤ 1

2 and 1
1+b2 ≤ 1

1+tan2 \
for b ≥ tan \ ≥ 0, we have

that |\′ − \ | ≤ (U sin \ cos \ + 1
2U

2 sin2 \). With the observation that | sin \ cos \ | ≤ 1
2 , it is also

easy to derive from above a bound of |\′ − \ | independent of \:

|\′ − \ | ≤ 1
2
(U + U2). (2.29)

Similarly one can show that for −1 < U < 0,

|\′ − \ | ≤ |U sin \ cos \ | + 1
2

U2 tan2 \

1 + (1 + U)2 tan2 \
) ≤ 1

2
( |U | + U2

(1 + U)2
). (2.30)

Proof of Lemma 2.8.2

Here, we aim to show an approximation for W for 0 ≤ 1. Observing that W = 0 cos \
√

1 + (1 + U)2 tan2 \ =

0 cos \√
1 + tan2 \ + (2U + U2) tan2 \ and using Taylor’s formula for

√
G around G = 1 + tan2 \, we have

that

W = 0 cos \
(√

1 + tan2 \ + (2U + U
2) tan2 \

2
√

1 + tan2 \
− (2U + U

2)2 tan4 \

8(b)3/2
)
, (2.31)

where b ∈ [1 + tan2 \, 1 + (1 + U)2 tan2 \]. Observing that
√

1 + tan2 \ = 1
cos \ and 1

b
≤ 1

1+tan2 \
for

b ∈ [1 + tan2 \, (1 + U)2 tan2 \], we obtain that

|W − 0 | ≤ 0 cos \
(
(U + U

2

2
) cos \ tan2 \ + (2U + U

2)2
8

cos3 \ tan4 \
)

= 0(U + U
2

2
) sin2 \ + 0 (2U + U

2)2
8

sin4 \. (2.32)
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Ignoring higher order terms of U, we have the following approximation

W = 0 + U0 sin2 \ + O(U2) = (1 + U sin2 \)0 + O(U2). (2.33)

Analogously, if 0 > 1, we let 0
1
= 1 + V for some V > 0 and by similar arguments we have that

|W − 1 | ≤ 1(V + V
2

2
) cos2 \ + 1 (2V + V

2)2
8

cos4 \. (2.34)

Ignoring higher order terms of V in (2.34), we have the following approximation

W = 1(1 + V cos2 \) + O(V2). (2.35)

A practical example for the choice of n

Let us consider a practical example where we choose n to be the numerical difference of con-

secutive angles used in Radon transform computation. If we choose 45 uniform angles between 0

and c, the difference of consecutive angles are c
45 ≈ 0.07. Choosing U between 0 and .12 guarantee

that |\′−\ | ≤ .068, and similarly, choosing U ∈ [−.12, 0), we have that |\′−\ | ≤ .07, which makes

the difference between \′ and \ smaller than the numerical difference of consecutive angles used

in Radon transform computation. Note that one can choose a different number of uniform angles

other than 45, and that might allow for a more relaxed choice of U. For classification purposes, a

larger value of n (hence U) is allowed. In addition, as the R.H.S. of the inequalities in Lemma 4.1

are the upper bounds for |\′ − \ |, for a fixed U, |\′ − \ | might be much smaller than these bounds.

It can be one of the reasons why a larger U (hence n) can be chosen in practice.
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2.12.5 Horizontal and vertical shear

Shear-horizontal

Let 61(x) = H1x with H1 =


1, −ℎ

0, 1

 . Consider two functions B61 (G, H) and B(G, H) such that

B61 (G, H) = |�61 |B ◦ 61 = B(H1x) = B(G − ℎH, H), for some ℎ, which is the normalized horizontal

shear of B by ℎ where ℎ ∈ R.

Proof of equation (2.17) of the dissertation

By definition of the Radon transform and the change of variables formula with G′ = G−ℎH, H′ =

H, we have that

B̃61 (C, \) =
∫ ∞

−∞

∫ ∞

−∞
B(G − ℎH, H)X(C − G cos \ − H sin \)3G3H

=

∫ ∞

−∞

∫ ∞

−∞
B(G′, H′)X(C − G′ cos \ − H′(sin \ + ℎ cos \))3G′3H′. (2.36)

Using the co-area formula and the scaling properties of the Dirac delta function and letting W =√
1 + ℎ2 cos2 \ + ℎ sin(2\), we have

B̃61 (C, \) =
∫ ∞

−∞

∫ ∞

−∞

1
W
B(G′, H′)X( C

W
− G
′ cos \ − H′(sin \ + ℎ cos \))

W
3G′3H′. (2.37)

Let \′ = tan−1( sin \+ℎ cos \
cos \ ) = tan−1(tan \ + ℎ), then cos \′ = cos \

W
and sin \′ = sin \+ℎ cos \

W
. Hence

B̃61 (C, \) =
∫ ∞

−∞

∫ ∞

−∞

1
W
B(G′, H′)X( C

W
− G′ cos \′ − H′ sin \′)3G′3H′. (2.38)

By the definition of Radon transform, we see that

B̃61 (C, \) =
1
W
B̃

(
C

W
, \′

)
; W =

√
1 + ℎ2 cos2 \ + ℎ sin(2\), \′ = tan−1 (tan \ + ℎ) . (2.39)
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Applying the scaling property of R-CDT, we have that

B̂61 (C, \) = WB̂(C, \′). (2.40)

Proof of Lemma 2.8.3

For illustration purposes, we assume without loss of generality \ ∈ [0, c2 ) and ℎ ≥ 0 in the

following derivations. Other cases are similar. Using Taylor’s formula for tan−1(G) around G =

tan \ , we have that

\′ = tan−1 (tan \ + ℎ) = \ + ℎ

1 + tan2 \
− bℎ2

(1 + b2)2
, (2.41)

where b ∈ [tan \, tan \ + ℎ]. Since 0 ≤ |b |
1+b2 ≤ 1

2 and 1
1+b2 ≤ 1

1+tan2 \
for b ≥ tan \ ≥ 0, we have that

|\′ − \ | ≤ (ℎ + 1
2
ℎ2) cos2 \. (2.42)

With the observation that | cos \ | ≤ 1, it is easy to see that

|\′ − \ | ≤ ℎ + 1
2
ℎ2. (2.43)

Similarly one can show that for ℎ < 0,

|\′ − \ | ≤ |ℎ | + ℎ2. (2.44)
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Proof of Lemma 2.8.4

Here, we show an approximation for W. Apply Taylor’s formula for
√
G around G = 1 to W, we

have that

W =
√

1 + ℎ2 cos2 \ + ℎ sin(2\)

= 1 + 1
2
(
ℎ2 cos2 \ + ℎ sin(2\)

)
−

(
ℎ2 cos2 \ + ℎ sin(2\)

)2

8b3/2 , (2.45)

where b ∈ [1, 1 + ℎ2 cos2 \ + ℎ sin(2\)]. Ignoring higher order terms we have that for ℎ ≥ 0

W = 1 + 1
2
(
ℎ sin(2\) + ℎ2 cos2 \

)
+ O(ℎ2), (2.46)

with

|W − 1| ≤ 1
2
(ℎ + ℎ2) + 1

8
(ℎ + ℎ2)2. (2.47)

One can derive similar approximations of W for ℎ < 0.

A practical example for the choice of n

Now, let us consider a practical example where we choose n to be the numerical difference

of consecutive angles used in Radon transform computation. If we choose 45 uniform angles

between 0 and c, choosing ℎ between 0 and .067 guarantee that |\′ − \ | ≤ c
45 . It is easy to see

that if −.065 ≤ ℎ < 0, then |\′ − \ | ≤ c
45 . In summary, with |ℎ | ≤ .065, the difference between

\′ and \ is smaller than the numerical difference of consecutive angles used in Radon transform

computation. Note that one can choose a different number of uniform angles other than 45, and

that might allow for a more relaxed choice of ℎ. For classification purposes, a larger value of n

(hence ℎ) is allowed. In addition, as the R.H.S. of the inequalities in Lemma 4.3 are the upper

bounds for |\′ − \ |, for a fixed ℎ, |\′ − \ | might be much smaller than these bounds. It can be one

of the reasons why a larger ℎ (hence n) can be chosen in practice.
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Shear-vertical

Let 62(x) = H2x with H2 =


1, 0

−E, 1

 . Consider two functions B62 (G, H) and B(G, H) such that

B62 (G, H) = |�62 |B ◦ 62 = B(H2x) = B(G, H − EG), for some E, which is the normalized vertical shear

of B by E where E ∈ R.

By similar arguments as horizontal shear, we have that

B̃62 (C, \) =
1
W
B̃

(
C

W
, \′

)
; W =

√
1 + E2 sin2 \ + E sin(2\),

\′ = cot−1 (cot \ + E) (2.48)

Applying the scaling property of R-CDT, we have that

B̂62 (C, \) = WB̂(C, \′). (2.49)

For illustration purposes, we assume without loss of generality \ ∈ [0, c2 ) and E ≥ 0 in the

following derivations. Other cases are similar. Using Taylor’s formula for tan−1(G) around G =

tan \ , we have that cot−1(G) around G = cot \ , we have that

\′ = cot−1 (cot \ + E) (2.50)

= \ − E

1 + cot2 \
+ bE2

(1 + b2)2
, (2.51)

where b ∈ [cot \, cot \ + E]. Since 0 ≤ |b |
1+b2 ≤ 1

2 and 1
1+b2 ≤ 1

1+cot2 \ for b ≥ cot \ ≥ 0, we have that

|\′ − \ | ≤ (E + 1
2
E2) sin2 \. (2.52)

With the observation that | cos \ | ≤ 1, it is easy to see that

|\′ − \ | ≤ E + 1
2
E2. (2.53)
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Similarly one can show that for ℎ < 0,

|\′ − \ | ≤ |E | + E2. (2.54)

If |\′ − \ | ≤ n , where n is a small number, we can approximate \′ as \. Then using equa-

tion (2.49), we have

B̂62 (C, \) = WB̂(C, \′) ≈ WB̂(C, \). (2.55)

Next we show an approximation for W. Apply Taylor’s formula for
√
G around G = 1 to W, we

have that

W =

√
1 + E2 sin2 \ + E sin(2\)

= 1 + 1
2
(
E2 sin2 \ + E sin(2\)

)
−

(
E2 sin2 \ + E sin(2\)

)2

8b3/2 , (2.56)

where b ∈ [1, 1 + E2 sin2 \ + E sin(2\)]. Ignoring higher order terms we have that for E ≥ 0

W = 1 + 1
2
(
E sin(2\) + E2 sin2 \)

)
+ O(E2), (2.57)

with

|W − 1| ≤ 1
2
(E + E2) + 1

8
(E + E2)2. (2.58)

One can derive similar approximations of W for E < 0. Hence B̂62 (C, \) ≈ WB̂(C, \) = B̂(C, \) +
1
2 (E sin(2\) + E2 sin2 \) B̂(C, \) + O(E2). In summary, to model small vertical shearing of B, we add

the following additional spanning set �̂ = {
(
E2 sin2 \ + E sin(2\)

)
B̂} (for small E) as enrichment to

the training subspace in the transform space.
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2.12.6 Percentage test accuracy of the methods (` ± f) in different datasets

Synthetic dataset

No. of training samples per class = 1

MNISTnet (Aug-1 / Aug-25 / Aug-50) 11 ± 1.3 / 13 ± 1.1 / 15 ± 1.4

VGG11 (Aug-1 / Aug-25 / Aug-50) 11 ± 1.8 / 17 ± 5.2 / 32 ± 11.9

Resnet18 (Aug-1 / Aug-25 / Aug-50) 10 ± 0.3 / 12 ± 4.2 / 42 ± 6.3

k-NN (Aug-1 / Aug-25 / Aug-50) 11 ± 0.7 / 11 ± 0.7 / 12 ± 1.1

R-CDT NS (Aug - none) 18 ± 0.0

Proposed (Aug - none) 97 ± 0.0

MNIST dataset

No. of training samples (per class)

1 2 4

MNISTnet (Aug-1 / Aug-25 / Aug-50) 25 ± 4.6 / 19 ± 5.1 / 28 ± 5.1 35 ± 5.0 / 33 ± 4.9 / 38 ± 5.4 50 ± 2.3 / 58 ± 7.2 / 62 ± 6.1

VGG11 (Aug-1 / Aug-25 / Aug-50) 13 ± 4.0 / 29 ± 8.3 / 41 ± 5.5 10 ± 2.0 / 58 ± 6.7 / 63 ± 8.5 30 ± 5.6 / 78 ± 11.4 / 79 ± 13.0

Resnet18 (Aug-1 / Aug-25 / Aug-50) 19 ± 4.3 / 27 ± 10.6 / 45 ± 5.5 29 ± 7.2 / 45 ± 9.8 / 73 ± 3.9 68 ± 1.9 / 64 ± 27.6 / 88 ± 2.6

k-NN (Aug-1 / Aug-25 / Aug-50) 25 ± 4.3 / 27 ± 4.9 / 28 ± 6.7 38 ± 4.3 / 40 ± 6.8 / 43 ± 4.6 53 ± 3.1 / 55 ± 4.4 / 55 ± 4.9

R-CDT NS (Aug - none) 44 ± 5.3 56 ± 8.0 69 ± 4.3

Proposed (Aug - none) 67 ± 4.5 76 ± 4.2 83 ± 1.8

No. of training samples (per class)

6 8 10

MNISTnet (Aug-1 / Aug-25 / Aug-50) 60 ± 3.3 / 72 ± 3.0 / 76 ± 1.5 65 ± 3.6 / 79 ± 3.4 / 80 ± 2.4 58 ± 8.9 / 73 ± 7.5 / 73 ± 8.3

VGG11 (Aug-1 / Aug-25 / Aug-50) 45 ± 5.9 / 81 ± 12.4 / 88 ± 2.8 51 ± 10.9 / 86 ± 7.7 / 87 ± 5.6 61 ± 11.2 / 87 ± 4.1 / 87 ± 6.2

Resnet18 (Aug-1 / Aug-25 / Aug-50) 74 ± 2.7 / 88 ± 6.7 / 88 ± 11.4 78 ± 1.5 / 78 ± 23.8 / 91 ± 3.5 73 ± 10.3 / 87 ± 4.1 / 89 ± 4.2

k-NN (Aug-1 / Aug-25 / Aug-50) 60 ± 1.9 / 63 ± 2.7 / 64 ± 2.1 63 ± 2.2 / 67 ± 1.9 / 68 ± 2.3 67 ± 2.7 / 70 ± 2.5 / 71 ± 2.1

R-CDT NS (Aug - none) 76 ± 2.0 80 ± 1.2 81 ± 2.3

Proposed (Aug - none) 85 ± 1.2 86 ± 1.9 87 ± 1.2
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AFFNIST (regular) dataset

No. of training samples (per class)

1 2 4

MNISTnet (Aug-1 / Aug-25 / Aug-50) 12 ± 2.0 / 12 ± 0.9 / 14 ± 1.1 13 ± 1.5 / 13 ± 1.9 / 17 ± 3.2 14 ± 1.4 / 21 ± 2.2 / 27 ± 2.7

VGG11 (Aug-1 / Aug-25 / Aug-50) 12 ± 2.3 / 14 ± 4.3 / 20 ± 6.3 13 ± 2.7 / 31 ± 12.5 / 32 ± 9.7 18 ± 3.1 / 30 ± 15.7 / 41 ± 21.5

Resnet18 (Aug-1 / Aug-25 / Aug-50) 11 ± 1.2 / 13 ± 3.5 / 24 ± 7.0 10 ± 1.3 / 13 ± 3.1 / 45 ± 10.2 19 ± 1.6 / 26 ± 23.1 / 65 ± 19.8

k-NN (Aug-1 / Aug-25 / Aug-50) 12 ± 1.8 / 14 ± 2.4 / 15 ± 2.1 13 ± 1.1 / 16 ± 1.6 / 18 ± 1.4 15 ± 1.0 / 19 ± 1.8 / 23 ± 2.2

R-CDT NS (Aug - none) 17 ± 2.1 21 ± 2.3 31 ± 2.7

Proposed (Aug - none) 40 ± 4.8 55 ± 4.4 66 ± 2.6

No. of training samples (per class)

6 8 10

MNISTnet (Aug-1 / Aug-25 / Aug-50) 15 ± 1.7 / 26 ± 2.8 / 36 ± 2.3 18 ± 1.7 / 32 ± 4.8 / 43 ± 3.7 13 ± 2.7 / 29 ± 5.4 / 38 ± 8.0

VGG11 (Aug-1 / Aug-25 / Aug-50) 19 ± 6.5 / 40 ± 24.4 / 41 ± 21.6 25 ± 7.5 / 34 ± 17.8 / 36 ± 20.1 22 ± 7.6 / 64 ± 13.0 / 78 ± 4.4

Resnet18 (Aug-1 / Aug-25 / Aug-50) 23 ± 2.6 / 59 ± 28.2 / 74 ± 21.5 26 ± 2.4 / 50 ± 33.4 / 61 ± 31.9 21 ± 7.4 / 79 ± 4.2 / 81 ± 5.2

k-NN (Aug-1 / Aug-25 / Aug-50) 16 ± 1.5 / 22 ± 1.2 / 25 ± 1.8 18 ± 1.2 / 23 ± 1.0 / 27 ± 1.4 18 ± 1.3 / 25 ± 1.4 / 28 ± 1.9

R-CDT NS (Aug - none) 45 ± 2.8 51 ± 2.3 58 ± 3.4

Proposed (Aug - none) 69 ± 2.2 71 ± 2.6 72 ± 1.8

OMNIGLOT dataset

No. of training samples (per class)

1 2 4

MNISTnet (Aug-1 / Aug-25 / Aug-50) 23 ± 2.6 / 31 ± 2.8 / 43 ± 5.6 34 ± 2.5 / 50 ± 3.9 / 59 ± 4.0 44 ± 2.0 / 71 ± 2.9 / 77 ± 2.4

VGG11 (Aug-1 / Aug-25 / Aug-50) 5 ± 2.6 / 56 ± 10.8 / 69 ± 5.5 30 ± 7.1 / 72 ± 13.7 / 76 ± 9.7 47 ± 7.4 / 82 ± 11.4 / 91 ± 3.9

Resnet18 (Aug-1 / Aug-25 / Aug-50) 6 ± 1.1 / 63 ± 29.3 / 82 ± 3.1 30 ± 3.0 / 71 ± 36.0 / 91 ± 1.7 48 ± 3.0 / 80 ± 31.3 / 95 ± 1.1

k-NN (Aug-1 / Aug-25 / Aug-50) 6 ± 2.3 / 23 ± 3.3 / 27 ± 2.2 8 ± 1.3 / 30 ± 2.7 / 37 ± 3.0 18 ± 1.7 / 39 ± 1.5 / 47 ± 2.2

R-CDT NS (Aug - none) 60 ± 4.9 70 ± 2.7 78 ± 2.5

Proposed (Aug - none) 77 ± 2.3 83 ± 2.3 90 ± 1.9

No. of training samples (per class)

6 8 -

MNISTnet (Aug-1 / Aug-25 / Aug-50) 49 ± 2.0 / 77 ± 1.2 / 82 ± 2.2 53 ± 2.5 / 81 ± 2.2 / 84 ± 2.0 -

VGG11 (Aug-1 / Aug-25 / Aug-50) 46 ± 12.7 / 93 ± 1.6 / 92 ± 3.3 65 ± 7.3 / 87 ± 22.5 / 95 ± 1.4 -

Resnet18 (Aug-1 / Aug-25 / Aug-50) 57 ± 3.6 / 63 ± 41.9 / 95 ± 1.0 68 ± 2.9 / 56 ± 45.3 / 73 ± 32.4 -

k-NN (Aug-1 / Aug-25 / Aug-50) 24 ± 1.7 / 45 ± 2.4 / 52 ± 3.5 27 ± 1.0 / 49 ± 2.9 / 55 ± 1.2 -

R-CDT NS (Aug - none) 83 ± 2.9 85 ± 1.8 -

Proposed (Aug - none) 92 ± 1.3 93 ± 1.6 -
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AFFNIST (out-of-distribution) dataset

No. of training samples (per class)

1 2 4

MNISTnet (Aug-1 / Aug-25 / Aug-50) 13 ± 2.0 / 12 ± 1.3 / 14 ± 2.3 13 ± 1.5 / 15 ± 2.1 / 21 ± 2.4 15 ± 0.7 / 23 ± 1.2 / 28 ± 1.3

VGG11 (Aug-1 / Aug-25 / Aug-50) 14 ± 2.3 / 20 ± 5.3 / 28 ± 7.7 14 ± 2.4 / 39 ± 5.9 / 33 ± 12.2 25 ± 5.1 / 48 ± 14.8 / 51 ± 13.9

Resnet18 (Aug-1 / Aug-25 / Aug-50) 12 ± 0.7 / 17 ± 4.4 / 33 ± 3.7 11 ± 0.1 / 24 ± 8.8 / 48 ± 3.8 19 ± 1.9 / 45 ± 12.4 / 63 ± 2.6

k-NN (Aug-1 / Aug-25 / Aug-50) 12 ± 1.4 / 12 ± 1.5 / 13 ± 1.7 12 ± 1.0 / 13 ± 0.9 / 15 ± 1.7 13 ± 0.5 / 15 ± 1.5 / 17 ± 1.3

R-CDT NS (Aug - none) 17 ± 2.4 16 ± 2.3 16 ± 1.8

Proposed (Aug - none) 57 ± 4.1 65 ± 4.3 71 ± 1.6

No. of training samples (per class)

6 8 10

MNISTnet (Aug-1 / Aug-25 / Aug-50) 16 ± 0.8 / 27 ± 3.0 / 37 ± 2.7 17 ± 1.1 / 34 ± 2.4 / 41 ± 2.3 16 ± 1.1 / 28 ± 3.4 / 32 ± 6.6

VGG11 (Aug-1 / Aug-25 / Aug-50) 25 ± 7.1 / 55 ± 11.6 / 58 ± 13.1 33 ± 4.4 / 53 ± 13.1 / 59 ± 25.3 35 ± 3.3 / 58 ± 7.4 / 58 ± 8.0

Resnet18 (Aug-1 / Aug-25 / Aug-50) 19 ± 1.5 / 57 ± 16.5 / 70 ± 1.6 22 ± 1.0 / 67 ± 3.8 / 74 ± 1.5 20 ± 3.2 / 56 ± 3.3 / 61 ± 12.7

k-NN (Aug-1 / Aug-25 / Aug-50) 14 ± 1.1 / 17 ± 1.2 / 19 ± 1.3 14 ± 0.7 / 18 ± 1.3 / 21 ± 0.8 14 ± 0.9 / 20 ± 1.0 / 21 ± 1.0

R-CDT NS (Aug - none) 17 ± 2.3 17 ± 1.8 18 ± 2.2

Proposed (Aug - none) 72 ± 1.9 73 ± 1.6 73 ± 2.4
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Brain MRI dataset

No. of training samples (per class)

1 5 10

MNISTnet (Aug-1 / Aug-25 / Aug-50) 49 ± 4.9 / 51 ± 4.0 55 ± 4.2 / 55 ± 9.8 51 ± 2.4 / 54 ± 5.0

VGG11 (Aug-1 / Aug-25 / Aug-50) 50 ± 5.0 / 56 ± 10.4 53 ± 6.0 / 52 ± 11.2 50 ± 2.5 / 57 ± 9.9

Resnet18 (Aug-1 / Aug-25 / Aug-50) 49 ± 1.9 / 54 ± 8.2 51 ± 3.7 / 56 ± 9.2 51 ± 1.6 / 60 ± 9.3

k-NN (Aug-1 / Aug-25 / Aug-50) 50 ± 1.6 / 51 ± 3.7 47 ± 3.0 / 49 ± 3.5 49 ± 7.0 / 50 ± 4.2

R-CDT NS (Aug - none) 49 ± 6.1 48 ± 5.3 52 ± 6.3

Proposed (Aug - none) 57 ± 11.3 62 ± 8.0 62 ± 5.8

Sign Language dataset

No. of training samples (per class)

1 5 10

MNISTnet (Aug-1 / Aug-25 / Aug-50) 69 ± 13.0 / 74 ± 11.0 91 ± 4.7 / 92 ± 7.6 84 ± 11.2 / 89 ± 7.9

VGG11 (Aug-1 / Aug-25 / Aug-50) 43 ± 9.2 / 47 ± 9.3 45 ± 10.3 / 80 ± 12.3 43 ± 6.2 / 76 ± 15.2

Resnet18 (Aug-1 / Aug-25 / Aug-50) 41 ± 7.5 / 58 ± 13.0 47 ± 10.6 / 91 ± 6.4 40 ± 12.8 / 88 ± 10.8

k-NN (Aug-1 / Aug-25 / Aug-50) 31 ± 0.0 / 33 ± 3.8 92 ± 3.3 / 92 ± 3.1 96 ± 2.6 / 96 ± 2.2

R-CDT NS (Aug - none) 83 ± 12.2 93 ± 3.0 97 ± 2.7

Proposed (Aug - none) 87 ± 8.0 96 ± 3.1 98 ± 1.6

OAM (regular) dataset

No. of training samples (per class)

1 5 10

MNISTnet (Aug-1 / Aug-25 / Aug-50) 5 ± 2.2 / 27 ± 3.3 44 ± 1.5 / 68 ± 1.6 54 ± 4.0 / 79 ± 3.2

VGG11 (Aug-1 / Aug-25 / Aug-50) 3 ± 0.2 / 17 ± 9.1 29 ± 16.1 / 26 ± 21.6 69 ± 7.3 / 88 ± 9.2

Resnet18 (Aug-1 / Aug-25 / Aug-50) 6 ± 1.3 / 46 ± 4.0 73 ± 2.4 / 82 ± 27.4 88 ± 2.9 / 95 ± 2.0

k-NN (Aug-1 / Aug-25 / Aug-50) 17 ± 1.1 / 19 ± 1.0 34 ± 1.5 / 39 ± 1.3 45 ± 1.3 / 51 ± 1.1

R-CDT NS (Aug - none) 81 ± 2.3 93 ± 0.7 96 ± 0.3

Proposed (Aug - none) 82 ± 2.0 94 ± 0.6 97 ± 0.5
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OAM (out-of-distribution) dataset

No. of training samples (per class)

1 5 10

MNISTnet (Aug-1 / Aug-25 / Aug-50) 5 ± 2.4 / 28 ± 4.2 39 ± 2.0 / 56 ± 2.8 44 ± 3.4 / 61 ± 3.9

VGG11 (Aug-1 / Aug-25 / Aug-50) 4 ± 2.1 / 16 ± 10.3 25 ± 14.1 / 41 ± 25.2 57 ± 9.1 / 75 ± 4.9

Resnet18 (Aug-1 / Aug-25 / Aug-50) 5 ± 2.0 / 46 ± 2.1 68 ± 1.1 / 59 ± 29.4 72 ± 4.1 / 79 ± 3.4

k-NN (Aug-1 / Aug-25 / Aug-50) 21 ± 1.4 / 22 ± 1.3 38 ± 0.9 / 42 ± 0.7 47 ± 0.7 / 51 ± 0.8

R-CDT NS (Aug - none) 86 ± 1.2 91 ± 0.4 93 ± 0.5

Proposed (Aug - none) 85 ± 1.1 91 ± 0.6 94 ± 0.5

FMNIST dataset

No. of training samples (per class)

1 5 10

MNISTnet (Aug-1 / Aug-25 / Aug-50) 34 ± 6.1 / 33 ± 4.1 44 ± 7.6 / 51 ± 4.0 38 ± 8.0 / 59 ± 11.5

VGG11 (Aug-1 / Aug-25 / Aug-50) 33 ± 8.6 / 34 ± 9.9 32 ± 8.4 / 65 ± 16.0 42 ± 11.2 / 74 ± 13.5

Resnet18 (Aug-1 / Aug-25 / Aug-50) 26 ± 2.2 / 34 ± 7.0 32 ± 4.5 / 65 ± 21.7 37 ± 8.5 / 78 ± 8.8

k-NN (Aug-1 / Aug-25 / Aug-50) 26 ± 3.1 / 36 ± 4.1 39 ± 5.0 / 43 ± 3.9 47 ± 2.2 / 50 ± 1.9

R-CDT NS (Aug - none) 35 ± 3.6 54 ± 4.6 76 ± 3.9

Proposed (Aug - none) 58 ± 9.8 83 ± 2.2 86 ± 2.3
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Chapter 3: Transport-based embeddings for classifying high dimensional

distributions

We introduce a new method for classifying high-dimensional distributions with potential appli-

cations in a number of fields. Our method employs the Radon Cumulative Distribution Transform

(R-CDT) and the Linear Optimal Transform (LOT) to represent high-dimensional data as a linear

embedding that is more suitable for machine learning. High-dimensional data are challenging to

model, especially for classification under spatial deformations. However, the transforms we in-

troduce can handle these variations by providing linear embeddings, resulting in a convex data

space that simplifies classification problems. By utilizing a nearest-subspace algorithm and gen-

eral machine learning techniques in the transform space, we develop a new classification approach

that is label-efficient, requires no hyper-parameter tuning, and offers a more efficient and effective

approach to classifying high-dimensional distributions. Our approach achieves competitive accura-

cies compared to state-of-the-art methods in various classification problems, while also enhancing

out-of-distribution generalization beyond test accuracy performances. Furthermore, our method is

mathematically coherent, simple to implement, and can be effectively executed without the need

for GPU acceleration.

3.1 Problem statement

To address the challenge of high-dimensional distribution modeling, we employ two distinct

methodologies. The first approach entails extending the transport-based frameworks for 1D (sig-

nals) and 2D (images) distributions to #-dimensions using the #-dimensional Radon transform.

The second methodology involves utilizing the Linear Optimal Transform (LOT) technique to

model high-dimensional distributions in the form of point-sets.
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Let us consider a general high-dimensional distribution B(x), x ∈ R! and a high-dimensional

point-set distribution %B := 1
#

∑
x∈ΩB Xx =

1
#

∑#
8=1 XB(8) . Let us also define one-to-one diffeomor-

phisms 6(x); x ∈ R! , for distributions, and 6\ (C); C ∈ R, when they need to be parameterized by

a projection angle \. The set of all possible one-to-one diffeomorphisms from R to R and from R!

to R! are denoted as T and T! , respectively. Finally, ℛ(·) and ℛ
−1(·) denote the N-dimensional

Radon transform and inverse Radon transform operators, respectively. The generative model stated

below formalizes the definition of a class of #-dimensional distributions.

Generative model: Let, G! ⊂ T! be a set of smooth one-to-one transformations. The mass

preserving generative model for the :-th distribution class is defined to be the set

S(:) =
{
B
(:)
9
|B(:)
9
= |det�6 9 |i(:) ◦ 6 9 , ∀6 9 ∈ G!

}
(3.1)

where, i(:) and B:
9

denote the template and the 9-th distribution, respectively, from the :-th class

and det�6 9 denotes the determinant of the Jacobian matrix of 6 9 . In the #-dimensional R-CDT

setting, the equivalent sliced-projection representation of the generative model is given as

S(:) =
{
B
(:)
9
|B(:)
9
=ℛ

−1
((
6\9

)′
ĩ(:) ◦ 6\9

)
, ∀6\9 ∈ G

}
(3.2)

where, ĩ(:) denotes the #-dimensional Radon transform of the template i(:) .

In the LOT setting, the representation of the mass-preserving generative model for the :-th

class is defined to be the set

S(:) =

{
%
B
(:)
9

|%
B
(:)
9

= 6 9#%i (:) , ∀6 9 ∈ G!
}

(3.3)

where %i (:) corresponds to the point-set distribution of the prototype template pattern for the :-th

class, while %
B
(:)
9

represents the point-set distribution of the 9-th sample from the :-th class in S(:) .

With these definitions, we can now construct a formal mathematical description for the generative

model-based problem statement for point-set classification.
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Classification problem: Let the set of distribution classes S(:) are given as above. Given training

distribution samples {B(1)1 , B
(1)
2 , · · · } (class 1), {B(2)1 , B

(2)
2 , · · · } (class 2), · · · as training data, de-

termine the class of an unknown distribution B.

Note that the generative models described above are generally non-convex, which poses chal-

lenges to machine learning techniques to classify them effectively. Also the generative model

in equation (3.3) describes set-structured point-set data, which makes it challenging to compare

point-sets due to the permutation-invariant nature of a set. In the subsequent sections, we present

solutions to the above classification problem using the Radon Cumulative Distribution Transform

(R-CDT) and Linear Optimal Transport (LOT) embeddings. By approximating the resulting con-

vex spaces with subspaces, as has been done in previous works on image [98, 106], signal [107,

108], and gradient distribution [104] classification problems, we obtain effective solutions to our

problem. In addition, we evaluate a general machine learning classifier (penalized linear discrimi-

nant analysis classifier [5]) in the R-CDT embedding space for the classification task.

3.2 Proposed solution

Here we attempt to simplify the classification problem above using the transport-based embed-

dings. In the #-dimensional R-CDT setting we first obtained a set of projections of the distributions

along a set of directions parameterized by \ in the high-dimensional space. Next, we obtained the

cumulative distribution (CDT) [79] transform of the projections. We postulate that, the classifi-

cation problem can be simplified by applying the #-dimensional R-CDT to the distribution. The

transform space generative model then becomes

Ŝ(:) =

{
B̂
(:)
9
| B̂(:)
9
=

(
6\9

)−1
◦ î(:) , ∀6\9 ∈ G

}
(3.4)

The CDT is a map from the space of smooth PDFs to the space of diffeomorphisms, which

can be defined as the inverse function of the cumulation of each individual PDF. The CDT en-
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hances linear separability in data by removing certain nonlinearities, renders data space convex,

and simplifies the classification problem above [79]. The CDT is an invertible, one-to-one, and

differentiable map, which enables us to interpret the trained model by visualizing the class differ-

ences obtained by the model. We propose to utilize the linear separability property of transport

transform and employ linear classifiers in the high-dimensional sliced-transform space. The so-

lution above can be utilized in solving several generic high-dimensional classification problems.

Here we illustrate an example application of detecting COVID-19 using a distribution of platelet

aggregate images. We propose to extend and improve this framework in solving imaging cytometry

applications also.

In the LOT setting, it turned out the linearization ability of LOT is closely related to the scope

of the following so-called composition property [109, 110]

)
6♯`

f = 6 ◦ ) `f , (3.5)

where 6 ∈ T! , and T! is the set of all diffeomorphisms from R! to R! . In particular, given a convex

G ⊆ T! , the LOT embedding of deformed measures via maps in G become convex 1 if all 6 ∈ G

satisfies the above composition property (3.5), which is shown more formally below.

Proposition 3.2.1 (Lemma A.2 in [110]). Let G ⊆ T! be convex. Given ` ∈ P2(R!), define

G♯` := {6♯` : 6 ∈ G}. If ∀6 ∈ G, (3.5) holds, then Ĝ♯` := {â : a ∈ G♯`} is convex in the LOT

transform domain.

When the dimension ! ≥ 2, it is shown in [109] that 6 can only be “basic" transformations

(more specifically, translations or isotropic scalings or their compositions) for the composition

property (3.5) to hold for arbitrary `’s. Luckily, [110] proposes an approximate composition prop-

erty for perturbations of the aforementioned basic transformations, the set of which we denote as

A = {ℎ(G) = 0G + 1 : 0 > 0, 1 ∈ R!}.
1Note in general G♯` is not convex as (_161 + _262)♯` ≠ _1 (61)♯` + _2 (62)♯`.
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Property 1 (Approximate composition, p.388 in [110]2) Let n ≥ 0 and ` ∈ P2(R!). Let 6 ∈ T!

such that ‖6 − ℎ‖ ≤ n for some ℎ ∈ A. Then there exists some X such that

‖)6♯`f − 6 ◦ ) `f ‖f < X, (3.6)

Remark: Using the ̂̀notation for LOT transform of `, we have

‖6̂♯` − 6 ◦ ̂̀‖f < X. (3.7)

With the above approximate composition property, one can show the following approximate

convexity analog of Proposition 3.2.1 using Lemma A.3, A.4 of [110]:

Proposition 3.2.2. Let n ≥ 0 and G ⊆ T! be convex such that for any 6 ∈ G, there exists some

ℎ ∈ A such that ‖6 − ℎ‖ ≤ n . Given ` ∈ P2(R!), we have Ĝ♯` := {â : a ∈ G♯`} is 2X-convex

in the LOT transform domain, where X is given in the above approximate composition property. In

particular, for any 2 ∈ [0, 1] and 6̂1♯`, 6̂2♯` ∈ Ĝ♯` (61, 62 ∈ G),

‖(1 − 2)6̂1♯` + 26̂2♯` − 6̂2♯`‖ < 2X, (3.8)

where 62 = (1 − 2)61 + 262 ∈ G.

The LOT transform, which was previously described in Chapter 1, can significantly simplify

the classification problem described earlier by providing a convex linear embedding for the set-

structured point-set data. Let us first investigate the generative model in equation (3.3) in the LOT

transform space.

Ŝ(:) =

{
%̂
B
(:)
9

|%̂
B
(:)
9

= 6 9#%̂i (:) , ∀6 9 ∈ G!
}

(3.9)

In this context, %̂B(:)
9

and %̂i(:) refer to the LOT embedding of %
B
(:)
9

and %i (:) , respectively, with

2This property is referred as X-compatibility in [110].
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respect to a reference structure %A (see equation (1.15)). Based on the preliminary results presented

above (Property 1, Proposition 3.2.2, and other results), it is possible to establish the convexity of

the set Ŝ(:) up to a certain bound, subject to certain constraints. Furthermore, we can show that

when S(:) ∩ S(?) = ∅, the intersection of Ŝ(:) with Ŝ(?) is empty. We use a standard machine

learning pipeline with the standard training and testing procedures in the R-CDT setting, and the

experimental details for this setting can be found in the Results section. Next, we describe the

specific training and testing procedure that we adopted in the LOT-setting.

3.2.1 Training method in the LOT space

Based on the aforementioned theoretical discussions, we put forward a straightforward non-

iterative training approach for the classification method. This involves computing a projection

matrix that maps each sample in the LOT space onto the subspace V̂(:) (as outlined in [98]),

generated by the 2X-convex set Ŝ(:) . Specifically, we estimate the projection matrix by applying

the following procedure:

V̂(:) = span
(
Ŝ(:)

)
= {

∑
9∈�
U 9 %̂B (:)

9

|U 9 ∈ R is finite}. (3.10)

Subject a given set of sample training data, denoted as {%
B
(:)
1
, %

B
(:)
2
, · · · }, the first step in our

proposed method is to apply a LOT transformation on them using a reference point %A (:) . This

results in the generation of transformed samples, denoted as {%̂
B
(:)
1
, %̂

B
(:)
2
, · · · }. The reference point

%A (:) is obtained by selecting a point-set at random from the training set, followed by the introduc-

tion of random perturbations. Subsequently, we estimate V̂(:) using the following method:

V̂(:) = span{%̂
B
(:)
1
, %̂

B
(:)
2
, · · · }. (3.11)

The proposed method also provides a structure to mathematically encode invariances with re-

spect to deformations that are known to be present in the data. In this chapter, we prescribe meth-

ods to encode invariances with respect to a set of affine transformations: translation, isotropic
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and anisotropic scaling, and shear. Let a sample point-set in LOT space is given by B̂(8) ∈

R! = (( B̂1(1), B̂2(1), · · · , !-terms), ( B̂1(2), B̂2(2), · · · , !-terms), · · · , #-terms). First, the LOT

space sample point-set is centered by subtracting the means over each of the L dimensions of the

point-set. Next, deformation spanning sets [98, 106] are defined for each of the sample point-set.

Detailed descriptions of the deformation types used for encoding invariances and the correspond-

ing methodologies are explained as follows:

1. Translation: Let 6(x) = x−x0 be the translation by x0 ∈ R! . The spanning set for translation

is defined as U) = {U)1 ∪ U)2 ∪ · · · ∪ U)! }, where U)1 = ((1, 0, 0, · · · ), (1, 0, 0, · · · ), · · · ),

U)2 = ((0, 1, 0, · · · ), (0, 1, 0, · · · ), · · · ), and other relevant elements.

2. Isotropic scaling: Let 6(x) = 0x be the normalized dilatation of B by 0, where 0 ∈ R+.

An additional spanning set for isotropic scaling is not required as the subspace containing

B̂
(:)
9

naturally contains its scalar multiplication. The spanning set for isotropic is defined as

U�0 = ∅.

3. Anisotropic scaling: Let 6(x) = D̆x with D̆ =


1/01, 0, · · ·

0, 1/02, · · ·
...

...
. . .


be the normalized

anisotropic dilatation of B, where 08 ≠ 0 9 and 08 ∈ R+. The spanning set for anisotropic scal-

ing is defined asU� = {U�1∪U�2∪· · ·∪U�! }, whereU�1 = (( B̂1(1), 0, 0, · · · ), ( B̂1(2), 0, 0, · · · ), · · · ),

U�2 = ((0, B̂2(1), 0, · · · ), (0, B̂2(2), 0, · · · ), · · · ), and other elements.

4. Shear: Let 6(x) = Hx with H =


1, :, · · ·

0, 1, · · ·
...

...
. . .


, be the normalized shear of B by : , where

the shear matrix, H , can also be constructed with the shear factor, :8, located at other non-

diagonal positions within the matrix and : ∈ R. The spanning set for shear is defined asU( =

{U(1,1∪U(2,1∪· · ·∪U(!,!−1}, whereU(1,1 = (( B̂2(1), 0, 0, · · · ), ( B̂2(2), 0, 0, · · · ), · · · ), U(1,2 =

(( B̂3(1), 0, 0, · · · ), ( B̂3(2), 0, 0, · · · ), · · · ), U(2,1 = ((0, B̂1(1), 0, · · · ), (0, B̂1(2), 0, · · · ), · · · ),

and others.

88



Finally, we can approximate V̂(:) as follows:

V̂(:) = span
(
{%̂

B
(:)
1
, %̂

B
(:)
2
, · · · } ∪ U�

)
, (3.12)

where U� = U) ∪ U�0 ∪ U� ∪ U(.

3.2.2 Testing method in the LOT space

To classify a given test sample %B, we first apply the LOT transform to %B to obtain its cor-

responding LOT space representation %̂B,A (:) with respect to the reference %A (:) (which was pre-

selected duing the training phase). Assuming that the test samples originate from the generative

model presented in equation (3.3) (or equation (3.9)), we can determine the class of an unknown

test sample %B using the following expression:

arg min
:
32

(
%̂B,A (:) , V̂

(:)
)

(3.13)

where 3 (·, ·) is the distance between the test sample and the trained subspaces in the LOT transform

space. We can estimate the distance between %̂B,A (:) and the trained subspaces using 32
(
%̂B,A (:) , V̂

(:)
)
∼

||%̂B,A (:) − �(:)�(:)) %̂B,A (:) | |2!2
, where the matrix �(:) contains the basis vectors of the subspaces

V̂(:) arranged in its columns.

3.3 Results

3.3.1 Experimental setup

Our objective is to analyze how the proposed method performs compared to state-of-the-art

approaches in terms of performance metrics such as classification accuracy, required training data,

and robustness in out-of-distribution scenarios in limited training data setting. To achieve this,

we created train-test splits of varying sizes from the original training set for each dataset under

examination. We then trained the models using these splits and assessed their performance on
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Figure 3.1: Conceptual schematic diagram of the COVID-19 detection workflow, including sample
preparation, high-throughput imaging flow cytometry (IFC) measurement, computation of mor-
phological features (area and solidity), and transport-based disease classification technique using
#-dimensional R-CDT and PLDA.

the original test set. For our experiments with the LOT-based approach, we generated each train

split by randomly selecting (without replacement) samples from the original training set. To ensure

statistical significance, we repeated the experiments for each train split size ten times. The test split

of our dataset consisted of the complete test dataset, which ensured a comprehensive evaluation

of the proposed method. For our experiments using the R-CDT-based approach, we first selected

10 random measurements of both COVID-19 and non-COVID-19 thrombosis to create a testing

dataset. Subsequently, we utilized the remaining 91 non-COVID-19 thrombosis and 171 COVID-

19 measurements to train the classification model. To ensure the robustness of our approach, we

repeated this process 1000 times and reported the mean results. The same train-test data samples

were used for all algorithms in each split.

In order to assess the effectiveness of the LOT-based approach, we utilized several comparison

methods. These included PointNet [111], DGCNN [112], and MLP in FSpool feature embedding
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Figure 3.2: Performance comparison of various methods on synthetic datasets in terms of percent-
age test accuracy.

space [113]. We also conducted a comparative analysis with various conventional machine learn-

ing techniques across different set feature embedding spaces. These included logistic regression

(LR), kernel support vector machine (k-SVM), multilayer perceptron (MLP), and nearest subspace

(NS) classifier models [114] in GeM1, GeM2, GeM4 [115], COVpool [116, 117], and FSpool

[113] embedding spaces. The performance of the proposed method was evaluated in relation to

these baselines. We conducted these evaluations in addition to performing out-of-distribution ex-

periments. In the proposed method, we selected the number of basis vectors for the subspaces V̂(:)

such that the total variance explained by the chosen basis vectors in the :-th class captured up to

99% of the total variance explained by that class.

To assess the relative performance of the methods, we evaluated them on several datasets,

including Point cloud MNIST [118, 8], ModelNet [119], and ShapeNet [120] datasets. We ad-

ditionally applied random translations, anisotropic scaling, and shear transformations to both the

training and test sets of the datasets. For the ShapeNet dataset, we tested the methods under two

experimental setups: the regular setup, where both the training and test sets contained point-sets

at the same deformation level, and the out-of-distribution setup, where the training and test sets

contained point-sets at different deformation levels.

In our R-CDT-based approach, we utilized the solution above to distinguish the COVID-

19 patients from non-COVID-19 thrombosis patients using the images of platelet aggregates.

Each patient corresponds to a set of platelet aggregate images and can be characterized by a
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Figure 3.3: The relationship between the accuracy of different methods and the number of training
samples evaluated on MNIST, ModelNet, and ShapeNet datasets.

high-dimensional distribution. Let us consider {G1, G2, · · · }(:)< , {H1, H2, · · · }(:)< , {I1, I2, · · · }(:)< , and

{F1, F2, · · · }(:)< to be the sets of the morphological feature measurements (here, # = 4) cor-

responding to the <-th subject of the :-th disease class (non-COVID-19 thrombosis/COVID-19).

Here, G, H, I, and F denote the area of platelets, the solidity of platelets, the area of platelet clusters,

and the solidity of platelet clusters, respectively. Let us also consider {B(G), B(H), B(I), B(F)}(:)<

to be the projections (sliced along the canonical axes) of the high-dimensional probability density

functions (PDF) obtained from the morphological feature measurements using a kernel density

estimation technique. The goal of the classification problem is to determine the class of a test set

{B(G), B(H), B(I), B(F)} corresponding to a subject with an unknown diagnosis. The first step is

to obtain the transformed versions of the projections of the high-dimensional PDFs, denoted as

{B̂(G), B̂(H), B̂(I), B̂(F)}(:)< , using the cumulative distribution transform (CDT) [79]. After CDT

transformation, we employed principal component analysis to reduce data dimensionality using

scikit-learn (v. 1.0.2). For classification, we employed the penalized linear discriminant analysis

(PLDA) classifier [5], which differentiates between the classes of a given dataset by obtaining the

most discriminant directions computed based on Fisher’s linear discriminant in combination with

penalized least-squares regression. We used the Python package PyTransKit (v. 0.2.3) to compute

the CDTs and train the PLDA classifier and the Python package statsmodels (v. 0.13.2) to obtain

the PDFs using the kernel density estimation technique. Fig. 3.1 shows a conceptual schematic

diagram of the method.

92



3.3.2 Accuracy in synthetic case

We first evaluated the effectiveness of the proposed method by comparing it with other state-

of-the-art techniques on two synthetic datasets. The synthetic datasets were generated by selecting

one sample per class from the point cloud MNIST and ShapeNet datasets, followed by introducing

random translations, anisotropic scaling, and shear transformations to each selected sample to

generate training and test sets. Specifically, the training set consisted of two samples per class,

while the test set comprised 25 samples per class. The obtained comparative results are displayed

in Fig. 3.2. As observed, the proposed method substantially outperformed the other methods in

this synthetic scenario.

3.3.3 Accuracy and efficiency in real datasets

We conducted the performance evaluation of the proposed method by comparing it with several

state-of-the-art techniques, including PointNet, DGCNN, and MLP in FSpool feature embedding

space, on the MNIST, ShapeNet, and ModelNet datasets. Fig. 3.3 presents the average test accu-

racy values obtained for different numbers of training samples per class. The results demonstrate

that our proposed method outperformed the other methods across the range of training sample

sizes used to train the models. Notably, the proposed method’s accuracy vs. training size curves

exhibited a smoother trend in most cases compared to the other methods.

3.3.4 Out-of-distribution robustness

To assess the effectiveness of the proposed method under the out-of-distribution setting, we in-

troduced a gap between the magnitudes of deformations in the training and test sets. Specifically,

we used G>DC as the deformation set for the ‘out-distribution’ test set, while G8= was the deforma-

tion set for the ‘in-distribution’ training set. We trained the models using the ‘in-distribution’ data

and tested using the ‘out-distribution’ data. For our out-of-distribution experiment, we used the

ShapeNet dataset with small deformations as the ‘in-distribution’ training set and the ShapeNet

dataset with larger deformations as the ‘out-distribution’ test set (see Fig. 3.4). The results showed
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Figure 3.4: Performance assessment under an out-of-distribution experimental setup with non-
overlapping training and test sets and varying degrees of spatial transformations. The accuracy
of the methods was evaluated as a percentage of test accuracy and plotted against the number of
training images per class.

that the proposed method outperformed the other methods by an even more significant margin un-

der the challenging out-of-distribution setup, as shown in Fig. 3.4. Under this setup, the proposed

method obtained accuracy figures closer to that in the standard experimental setup (i.e., ShapeNet

in Fig. 3.3). On the other hand, the accuracy of the other methods declined significantly under

the out-of-distribution setup compared to the standard experimental setup (see ShapeNet results in

Figs. 3.3 and 3.4).

3.3.5 Comparison with set-embedding-based methods

We further evaluated the proposed method against various set embedding-based approaches in

combination with classical machine learning methods. The study involved comparing the proposed

method with different classifier techniques, including LR, k-SVM, MLP, and NS [114], that were

employed with various set-to-vector embedding methods, such as GeM (1,2,4) [115], COVpool

[116, 117], and FSpool [113]. Fig. 3.5 illustrates the percentage test accuracy results obtained

from these modified experiments, along with the results of the proposed method for comparison.

As shown in Fig. 3.5, the proposed method outperformed all these models in terms of test accuracy.
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Figure 3.5: Comparative analysis of the percentage test accuracy results achieved by the proposed
method and conventional machine learning techniques implemented across various feature embed-
ding spaces.

3.3.6 Performance of the R-CDT-based approach

We compared our R-CDT-based method with a random forests-based (RF) classification method.

Normalized confusion matrix shows the disease classification performance of the proposed and the

Random Forest models on the on the testing dataset (average of 1000 iterations; see Fig. 3.6(b)).

The proposed model reached an average testing accuracy of 75.79% whereas the random forests

based model reached an average testing accuracy of 69.92%. To interpret the CDT-PLDA model,

we used one model that was trained on the entire dataset and plotted the distribution profiles

of the canonical projections along the most significant direction, as shown in Fig. 3.6(d). Blue

and magenta curves indicate distribution shapes that are typical for non-COVID-19 thrombosis

and COVID, respectively. Scatter plot of representative measurements are shown in Fig. 3.6(a).

Fig. 3.6(c) shows the distribution of the feature with highest feature importance. Stars indicate sta-

tistical significance, determined via two-sided t-test (? < 10−4). To obtain the PDF, we performed

a kernel density estimation. The distributions were sampled over a uniform grid of " = 5000

points. Next, the PDF was transformed using CDT, which returns a feature vector of length " .

To reduce data dimensionality, we used principal component analysis and selected the principal

components such that the sum of variance explained was 99% of the total variance.
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Figure 3.6: (a) Scatter plot of representative measurements. (b) The disease classification perfor-
mance of Random Forest and the proposed models on the on the testing dataset (average of 1000
iterations). (c) The distribution of the feature with highest feature importance (standard deviation
of area distribution). (d) Reconstructed distribution profiles along the most discriminant direction
in the transport space.

3.4 Discussion

This dissertation presents a new method for classifying high-dimensional distributions using

Radon-Cumulative Distribution Transform and Linear Optimal Transport Transform based models.

Our method is appropriate for problems where the data at hand can be suitably represented as an

instance of prototype template high-dimensional distribution patterns under the effect of smooth,

nonlinear, and one-to-one transformations. Our results demonstrate that our method offers an

effective and data-efficient solution for a wide range of high-dimensional distribution classification

tasks, with competitive accuracy compared to current state-of-the-art techniques. Furthermore,

our approach performs well even in challenging practical scenarios, such as out-of-distribution

situations.

The outcomes achieved with various example datasets indicate that our proposed approach can

deliver accuracy results comparable to state-of-the-art methods, provided that the data adheres to

the generative model specified in equation (3.3). Additionally, our approach was shown to be more

data-efficient in some cases, meaning that it can attain higher accuracy levels using fewer training

samples.
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Our proposed method maintains high classification accuracy, even in challenging out-of-distribution

experimental conditions, as depicted in Fig. 3.4, whereas the accuracy figures of other methods de-

cline sharply. These results indicate that our method provides a better overall representation of

the underlying data distribution, resulting in robust classification performance. The key to achiev-

ing better accuracy under out-of-distribution conditions is that our method not only learns the

deformations present in the data but also learns the underlying data model, including the type of

deformation, such as translation, scaling, and shear, and their respective magnitudes. This defor-

mation type can be learned from just a few training samples containing those deformations, as well

as potentially from the mathematically prescribed invariances proposed in [106].

Our LOT-based approach, which utilizes the nearest subspace classifier in the LOT domain,

is more suitable for classification problems in the above category compared with general set em-

bedding methods in combination with classical machine learning classifiers, as demonstrated by

its superior performance. Typically, point-set data classes in their original domain do not con-

stitute embeddings, and commonly used set-to-vector representation techniques are inadequate in

generating effective embeddings for them, as indicated by the results. This presents a significant

challenge for any machine learning approach to perform effectively. However, the subspace model

is appropriate in the LOT domain since the LOT transform provides a linear embedding and convex

data geometry. Moreover, considering the subspace model in the LOT space improves the genera-

tive nature of our proposed classification method by implicitly including the data points from the

convex combination of the provided training data points.

3.5 Conclusions

In this dissertation, we propose an enhanced end-to-end classification system designed for a

specific category of high-dimensional distribution classification problems, where data classes are

considered as instances of a template observed under a set of spatial deformations. If these defor-

mations are appropriately modeled as a collection of smooth, one-to-one, and nonlinear transfor-

mations, then the data classes become easily separable in the transform space due to the properties
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outlined in the dissertation. These properties sometimes enable the approximation of data classes

as convex subspaces, resulting in a more suitable data model for the nearest subspace method. As

we observed in our experiments, this approach yields high accuracy and robustness against out-

of-distribution conditions. Numerous high-dimensional distribution classification problems can be

formulated in this way, and therefore, our proposed solution has broad applicability.

Finally, we note that there can be many potential adaptations of the proposed method. For

instance, the linear subspace method in the presented LOT space could be adjusted to incorporate

alternative assumptions regarding the set that best represents each class. While some problems

might benefit from a linear subspace method similar to the one described earlier, where all linear

combinations are allowed, other problems may be require constraining the model using linear con-

vex hulls. Additionally, investigating the sliced-Wasserstein distance using discrete CDT transform

more elaborately (as proposed in [104]) in conjunction with subspace models is another promising

avenue for future research.

One major component of the R-CDT based approach is obtaining a set of 1D projections of the

high-dimensional distributions to apply the CDT transform on them. However, the choice of the

projection directions is a open problem and might affect the method’s performance. Currently, we

proposed to obtain projections along the canonical axis directions. However, further exploration

regarding the directions of projection might be necessary. High dimensional distribution analysis

is computationally intensive and the computational complexity grows with the dimensionality of

the distributions. Finally, we used morphological numerical features (area, solidity) for the current

analysis. Utilization of transport-based features might also benefit the analysis.

Both our R-CDT and LOT-based approaches have yielded encouraging results in classifying

high-dimensional distributions, laying a promising foundation for further exploration in this field.

As the amount of 3D (or N-D) data continues to increase and accurate object recognition and scene

understanding become more crucial, we believe that the integration of transport-based embeddings

and mathematical modeling techniques such as subspaces, convex hulls, or machine learning clas-

sifiers in the transform space will play an increasingly significant role in the classification of high-
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dimensional distributions. We anticipate that our proposed method will inspire further research in

this direction and lead to novel developments in recognizing 3D (or N-D) objects or distributions.
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Chapter 4: Quantifying nuclear structures of digital pathology images

across cancers using transport-based morphometry

Alterations in nuclear morphology are useful adjuncts and even diagnostic tools used by pathol-

ogists in the diagnosis and grading of many tumors, particularly malignant tumors. Large datasets

such as TCGA and the Human Protein Atlas, in combination with emerging machine learning and

statistical modeling methods, such as feature extraction and deep learning techniques, can be used

to extract meaningful knowledge from images of nuclei, particularly from cancerous tumors. Here

we describe a new technique based on the mathematics of optimal transport for modeling the in-

formation content related to nuclear chromatin structure directly from imaging data. In contrast to

other techniques, our method represents the entire information content of each nucleus relative to

a template nucleus using a transport-based morphometry (TBM) framework. We demonstrate that

the model is robust to different staining patterns and imaging protocols, and can be used to discover

meaningful and interpretable information within and across datasets and cancer types. In partic-

ular, we demonstrate morphological differences capable of distinguishing nuclear features along

the spectrum from benign to malignant categories of tumors across different cancer tissue types,

including tumors derived from liver parenchyma, thyroid gland, lung mesothelium, and skin ep-

ithelium. We believe these proof of concept calculations demonstrate that the TBM framework can

provide the quantitative measurements necessary for performing meaningful comparisons across a

wide range of datasets and cancer types that can potentially enable numerous cancer studies, tech-

nologies, and clinical applications and help elevate the role of nuclear morphometry into a more

quantitative science.
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4.1 Problem insights

Image data of nuclei are obtained from physical tissue specimens with the aid of microscopes.

Continuum mechanics can be used as a mathematical model for these images. Nuclei transform

themselves during carcinogenesis according to laws expressed in partial differential equations,

such as the continuity equation [72]. In other words, nuclear morphological alterations can be

mathematically described as a continuous process of rearrangement of chromatin structures un-

der the effect of biological processes. Consider the problem of modeling nuclear morphological

alterations that occur during malignant transformation in a segmented nuclei image dataset (see

Fig. 4.1). These morphological alterations can be the measurement of the rearrangement of chro-

matin structures, estimated as changes in the intensity measurements within nuclei images.

Given segmented nuclei image data, our goal here is to describe an approach to quantify nu-

clear structural changes that occur during malignant transformation that is robust to differences

in staining pattern and imaging procedures. We then utilize this approach to synthesize data

across multiple cancer tissue types to obtain nuclear morphological features of malignancy that

are shared among cancers as a proof of concept calculation such that, like in genomics and pro-

teomics, nuclear structure information can be used more generally than it is now. We utilize au-

tomatically segmented nuclei from histopathological images obtained from four tissue types (liver

parenchyma, thyroid gland, lung mesothelium, and skin epithelium [121]) each imaged at differ-

ent resolutions and with varied staining procedures (Feulgen, Diff-Quik, and Hematoxylin and

Eosin). Each dataset contained specimens from two different histological cancer grades, which we

assigned to the following classes: benign (or preneoplastic) and malignant. (see Fig. 4.2). Details

of the definitions used for each class are presented in Appendix 4.5.1.
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4.2 Proposed approach

Coupled with the concept of continuum mechanics mathematics to represent changes in nuclei

images (as described in Section 4.1) and the principles of the optimal energy solution (i.e., optimal

transport theory) [72], we propose an optimal mass transport-based approach to modeling nuclear

morphological changes in malignancy whereby mass is represented as the image intensity [72].

With the notion of a reference image (e.g., prototype nucleus), we can apply optimal transport

mathematics to represent the rearrangement of the intensity measurements of nuclear chromatin

structures in a physically meaningful way. Let B(G), G ∈ [0, 1]2 represent an image of a segmented

nucleus, which we model as a function B : [0, 1]2 → R+. As commonly assumed in transmission

and fluorescence microscopy, after appropriate preprocessing (see Appendix 4.5.2) the intensity

B(G) is approximately proportional to the amount of mass (in our case chromatin) present at pixel

location G [122]. As the proportionality (calibration) constant is typically unknown in most routine

clinical imaging procedures, we resort to normalizing it out of our analysis. That is, instead of

analyzing each segmented nucleus B(G) directly, given the absence of intensity calibration, we

instead analyze B(G)/
∫
[0,1]2 B(G)3G. Henceforth, when assume all images being analyzed have

been normalized so they integrate (sum after discretization) to 1.

Now consider two nuclear images B1(G), B0(H), with G, H ∈ [0, 1]2. We can define the "effort"

(cost) of transporting normalized intensity B1(G) from location G to location H as (G − H)2B0(H) in

units of =>A<0;8I43 8=C4=B8CH × <2. Given a function that maps each coordinate from B0 to B1,

5 (H) = G, such that the entire normalized mass B0 is transported to match B1 we can define the total

cost in re-arranging the normalized chromatin content from B1(G) onto B0(H) as

∫
[0,1]2
( 5 (H) − H)2B0(H)3H (4.1)

where the units are once again =>A<0;8I43 8=C4=B8CH×<2. We refer to functions 5 that re-arrange

chromatin content from B0 to B1 as mass preserving (MP) mappings. Using the theory of optimal

transport [72] we can thus establish a quantitative metric (Wasserstein distance) that compares the
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Figure 4.1: System diagram outlining the proposed cancer modeling approach. (a) Image segmenta-
tion techniques afford the ability to obtain a large-scale database of segmented nuclei from whole-slide
histopathology images. (b) The proposed method takes segmented nuclei datasets obtained from various tis-
sue types as inputs. (c) The proposed cancer modeling approach performs a joint regression in the transport
space. The model can be used to visualize a specific feature, obtain malignancy potential rankings within a
subset of tissue types, and classify patients, among other potential applications.

Figure 4.2: Sample nuclei from digital pathology images obtained from four tissue types: liver parenchyma,
thyroid gland, lung mesothelium, and skin epithelium.

entirety of the normalized chromatin content between two nuclear images as the solution to the
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following (continuous) optimization problem:

,2
2 (B0, B1) = inf

5 ∈"%

∫
[0,1]2
( 5 (H) − H)2B0(H)3H. (4.2)

The theory of optimal transport [72] allows us to interpret and re-write the optimization prob-

lem above in terms of fluid-dynamics formulation, where we seek for velocity vector field E(G, C)

that transports B0 onto B1 by incrementally "pushing" intensities according to the continuity equa-

tion[72] as follows:

,2
2 (B0, B1) = inf

B,E

∫ 1

0

∫
[0,1]2
|E(G, C) |2B(G, C)3G3C,

s.t.
mB

mC
+ ∇ · (EB) = d, (4.3)

where B(G, C) is the geodesic from B0 to B1. By solving the optimal transport continuity equation

above, we can obtain the model for the rearrangement of the normalized intensity measurements

from B0 to B1 as

B1(G) = � 5 (G)B0( 5 (G)). (4.4)

where, 5 (G) denotes the mass-preserving optimal transport map, and � 5 (G) denotes the determi-

nant of the Jacobian matrix of 5 (G).

Figure 4.3: Nuclei image representation using optimal transport. An image B can be written in terms of a
reference image B0 through the use of a mapping function 5 (G) (or equivalently, a velocity field E(G)). If the
mapping function is chosen to be the gradient of a convex function (potential) q then the transformation is
also a metric (Wasserstein/optimal transport) between B0 and the transported image B.
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Figure 4.4: The TBM framework can model nuclear morphology within a specific tissue type accu-
rately and efficiently. The exploratory analysis shows the main trends of nuclear structural variations in
the datasets. The discriminant analysis shows that the histograms of projections of the malignant class in
the test set are collectively localized towards the right of the projection axis (i.e., the malignant direction
obtained from the training set) with statistically significant (? < 0.05) differences in means between the be-
nign (or preneoplastic) and the malignant classes. The discriminant analysis also demonstrates high patient
classification accuracy values when obtained in the discriminant feature space.

Now, take, for example, the task of modeling the chromatin structure change between two

nuclear images B0(G) and B1(G) in Fig. 4.3 (leftmost and right most images). If we consider the

image on the left (B0) as fixed, we can represent the image on the right (or indeed any other image)

by knowing B0 (reference) as well as the velocity field E(G) = G − 5 (G) that ‘pushes’ B0 forward

onto some other image. Thus, we can represent any image as well as the corresponding changes in

nuclear structures within that image knowing the reference B0 and the map 5 (G), or equivalently,

velocity E(G) field (see Fig. 4.3).

The optimal transport-based approach has generated state of the art classification and estima-

tion results for a variety of "segmented" signals/images including images of faces [104], cells [32],

nuclei [5], digits [123], language characters [48], brain images [48], knee cartilage images [124],

ECG, physiological signals [107, 108], and numerous other applications [1, 125]. Expanding on

our previous work modeling nuclear morphological changes within a specific tissue type, this dis-

sertation aims to combine transport-based image transforms, which we denote as transport-based
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morphometry (TBM), with a set of new statistical regression methods, to synthesize and compare

nuclear morphological changes between different tissue types. Our aim is to enable meaning-

ful comparisons across a wide range of datasets, and to identify nuclear features that are shared

by different cancer types. More details regarding the TBM methodology are described in Ap-

pendix 4.5.2. Next, we will highlight a few important aspects of TBM, which will help us under-

stand its role in quantitative nuclear morphometry.

4.2.1 TBM provides standardized measurements

The TBM formulation provides us a physically meaningful metric (distance), which can be

used to compare two nuclear images. We can use the Wasserstein metric (see equation (4.2)) to

compare two nuclear images B0 and B1 and quantify the relative intensity changes between them

as a representation of changes in chromatin structures. Note that, the metric ,2 can be expressed

in terms of a well-defined unit: the unit of =>A<0;8I43 8=C4=B8CH × <2. Thus, the TBM frame-

work provides a standardized quantitative measurement of the distributions of chromatin structures

where chromatin measurements are represented by the pixel intensities in nuclear images.

Because the proposed TBM approach enables us to measure the change of chromatin structures

in terms of a well-defined unit, we can perform meaningful comparisons across a wide range

of datasets, even when imaged using different protocols, resolutions, and staining patterns. Any

nuclear morphological feature computed using the proposed approach can be expressed in terms of

the same measurement unit of =>A<0;8I43 8=C4=B8CH ×<2. On the contrary, the other approaches,

including feature engineering and end-to-end feature learning, do not usually provide well-defined

units for the computed features, which makes it challenging to perform meaningful analyses in the

joint feature space, compare information across datasets, and describe similarities or differences

across datasets imaged with different pathology staining protocols.
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4.2.2 TBM enhances interpretability

Unlike most deep learning and feature-based approaches, the TBM formulation allows us to vi-

sualize the morphological changes between two images. The TBM framework provides a geodesic

(interpolation) between images that can improve understanding of related phenomena. Take, for

example, the task of filling the gap (interpolating) between two nuclear chromatin measurements

B0(G) and B1(G) (leftmost and rightmost images in Fig. 4.3). In addition to the transformation of

the two images described by the function 5 (G), we can obtain the Wasserstein geodesic between

B0(G) and B1(G), described by the function 5C (G) = CG + (1 − C) 5 (G), 0 ≤ C ≤ 1. This enables

us to visualize the intermediate nuclei between B0(G) and B1(G) in the original image space (see

Fig. 4.3). Thus, we can visualize the process of evolution from B0(G) to B1(G), which improves

interpretability of the results and enhances our understanding of the underlying physical process.

Figure 4.5: The proposed model identifies a set of nuclear morphological features of malignancy that are
shared across cancer types (left panel). The projections of the test data in the malignant class of the four
tissue types are collectively localized towards the right of the projection axis (i.e., the malignant direction
obtained from the training set) with statistically significant (? < 0.05) differences in means between the
benign (or preneoplastic) and the malignant classes (right panel). The patient classification performances are
similar to the performances of individual tissue-specific models in Fig. 4.4, indicating high discriminating
capacity of the learned features.
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4.2.3 TBM models tissue-specific morphology

Our previous work applying TBM to tissue specimens can model nuclear morphology within

a specific tissue type accurately and efficiently [5, 126, 127, 121, 128]. Fig. 4.4 summarizes

the application of our previously described tissue-specific TBM model to each of the four tissue

datasets we used in this study. Visual representations of the principal phenotype variability in

each of the four tissue datasets (using the training set) were obtained using principal component

analysis (PCA) in the transport space. [5] We present the main trends regarding size, shape, texture,

and other nuclear structural variations in each dataset (see Fig. 4.4(a)). Using principal linear

discriminant analysis (PLDA) in the transport space [5], we can visualize the principal nuclear

morphological changes responsible for discriminating between the benign (or preneoplastic) and

the malignant classes (see Fig. 4.4(b)). In the test dataset, the histograms of the malignant class,

which are obtained as projections onto the direction of principal nuclear morphological change,

are collectively located towards the right (i.e., the malignant direction obtained from the training

set). Differences between the histograms of the benign (or preneoplastic) and the malignant classes

are statistically significant (? < 0.05). The discriminant analysis also demonstrates high patient

classification accuracy values when obtained in the discriminant feature space. Consistent with the

findings of our previous papers [5, 126, 127, 121], the tissue-specific TBM model can accurately

model nuclear morphology within a single tissue type in each of the aforementioned datasets. This

is confirmed by its meaningful visual interpretation and effective discriminatory capability in the

test dataset.

4.2.4 TBM for modeling shared cancer morphology

As discussed in the previous sections, the TBM framework has been demonstrated to perform

well in numerous applications, including the modeling of tissue-specific nuclear morphological

changes in cancer cells. We have explained that TBM can provide a physically meaningful stan-

dardized quantitative measurement metric (i.e., the Wasserstein metric) to compare nuclear struc-

tural changes in cancer. This can be used to better understand the underlying physical mechanism
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that occurs during the evolution from a benign to a malignant cell. We hypothesized that the TBM

framework has the potential to reliably synthesize and compare nuclear morphological informa-

tion across different cancer tissue types from different datasets. In this dissertation, we present the

results of an updated TBM framework utilizing optimal mass transport and a set of new statistical

regression techniques to compare information across different datasets. More details regarding the

methodology are described in Appendix 4.5.2.

4.3 Results

This section demonstrates that our proposed TBM approach can synthesize data across multi-

ple tissue types and obtain nuclear morphological features of malignancy that are shared among

different cancer types. These results validate our claim that the proposed method can provide

meaningful quantitative comparisons across datasets, even when imaged using different protocols,

resolutions, and staining patterns. We study the effectiveness of the proposed model by evaluat-

ing 1) the projections of held-out test data on the obtained model and 2) the patient classification

accuracy assessed on the held-out test data projected on the obtained model. Finally, we show an

example application where our model discovers information to rank malignancy (or histological

grade) within the sub-types of other unseen cancer datasets.

Figure 4.6: The proposed model under a modified experimental setup, where the model was trained using
any three tissue types and tested using the fourth tissue type. This modified model correctly ranks the
histological grade in the test tissue type using the nuclear morphological features learned from cancer tissues
in the training set. The differences in projection means between the benign (or preneoplastic) and the
malignant classes of the test set are statistically significant (? < 0.05).
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4.3.1 Nuclear features shared across cancer types

The proposed TBM model predicts the existence of nuclear morphological features of malig-

nancy that are shared across cancer types and our model can identify a set of shared features.

Visual representations of the identified features are shown in the left panel of Fig. 4.5. Each of

the identified features can be visualized as changes of nuclear images along a mode of variation,

whereby changes from left to right indicate changes from the benign (or preneoplastic) to the ma-

lignant class, for each mode of variations (see Fig. 4.5). The main nuclear morphological changes

described by the learned features can be visualized from the nuclear images of the above visual-

ization figure. The proposed features were obtained from the training set comprising four tissue

types (liver parenchyma, thyroid gland, lung mesothelium, and skin epithelium). Fig. 4.5 shows

the most discriminant set of nuclear morphological alterations shared between tissue types that

were obtained by the model as described in Appendix 4.5.2.

Projection of test data on the learned feature space

The histograms of the projections in the test set for each of the four tissue types (liver parenchyma,

thyroid gland, lung mesothelium, and skin epithelium), on the proposed shared discriminant fea-

ture set are also shown in the right panel of Fig. 4.5. The horizontal axis represents the spread of

projections in the unit of standard deviation. The representative image of the nuclear morpholog-

ical feature corresponding to each histogram coordinate is shown below the horizontal axis. Each

histogram bar indicates the percentage of nuclei in each class that closely resemble the nuclear

morphological feature shown beneath that bar.

We observe that the projections of the test data in the malignant class are collectively located

toward the right (i.e., the malignant direction obtained from the training set) of the projection

axis compared with the benign (or preneoplastic) class (as indicated by the location of histogram

means of these two classes). This trend of collective localization of the malignant class towards

the right is consistent among each of the four tissue types tested, demonstrating the shared dis-

criminatory capability of our learned feature model. Fig. 4.5 shows projections on the first learned
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feature, however this observation can be seen in other derived shared morphological features also.

The p-values of the differences of histogram-means between the benign (or preneoplastic) and

the malignant classes (obtained by multivariate C-test) are less than 0.05, which indicates that the

separation between the two classes is statistically significant.

We further evaluated the learned model’s performance using a modified experimental setup. In

this experiment, we trained the model using samples from three of the four tissue types comprising

liver, thyroid, lung, and skin. The model was then applied to the fourth cancer type, to predict

the relative histological grade, when defined as benign (or preneoplastic) versus malignant. We

repeated this experiment for all four tissue combinations and report the ranking results in Fig. 4.6.

The x-axis represents the spread of the projections (in the units of standard deviation) on the model

trained on three cancer types. The representative image of the nuclear morphological feature cor-

responding to each histogram coordinate is shown below the horizontal axis. Each histogram bar

indicates the percentage of nuclei from the fourth cancer type, in each class, that closely resemble

the nuclear morphological feature from the trained cancer model. In all four examples of nuclear

morphological features derived from cancers affecting three different tissue types and applied to a

fourth tissue type, we observed collective localization of the projections of the test data in the ma-

lignant class towards the right of the projection axis (i.e., the malignant direction obtained from the

training set) with statistically significant (? < 0.05) differences in means between the benign (or

preneoplastic) and the malignant classes. This cross-validation model was observed to correctly

rank the histological grade in the test tissue type using the nuclear morphological features learned

from cancer tissues in the training set. It further highlights the discriminatory ability of our shared

feature model.

Patient classification using the learned features

To evaluate the accuracy of the proposed model in ranking malignancy potential to estimate

histological cancer grade, we used the learned nuclear morphological features shared between

cancers affecting the four different tissue types to classify patients. We began by obtaining the
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Figure 4.7: Application of the learned model in ranking the malignant potential within the subtypes of
unseen cancer datasets from a particular organ: (a) malignancy ranking within the subtypes of thyroid
tissue, (b) malignancy ranking within the subtypes of liver tissue. The rankings (from less malignant to more
malignant) jointly predicted by the model are NG, FA, FC, FVPC and FNH, HCA, FHB for the thyroid and
liver test tissue types, respectively.

histograms of projections of the nuclei for each patient in the training set on the shared discrimi-

nant morphological feature space. Next, we trained classifiers using these projections of nuclei and

the corresponding histograms obtained from the training set. We obtained four sets of classifiers

corresponding to the training set for each of the four tissue types. We also obtained the histograms

of projections of the nuclei of the patients in the test set on the shared feature space (comprising

all four tissue types). We used these test set patient histograms to test the performance of the

trained classifiers in distinguishing patient samples from any of the four tissue types as benign (or

preneoplastic) versus malignant. We evaluated several classifiers, including penalized discrimi-

nant analysis (PLDA), linear discriminant analysis (LDA), random forests (RF), logistic regres-

sion (LR), linear support vector machine (SVM-l), kernel support vector machine (SVM-k), and

k-nearest neighbors (kNN). The best test accuracy values for the patient classification are provided

in Fig. 4.5. It can be seen that the proposed model provides reasonably high patient classification

test accuracy as compared with the chance accuracy (50%). The mean patient accuracy reached
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as high as 96%, 91%, 74%, and 82.% for liver, thyroid, lung, and skin tissue types, respectively.

These results are similar to the performances of the individual tissue-specific models presented

in Fig. 4.4 for cancers affecting each of liver, thyroid, lung, and skin tissue types, respectively,

which indicates high discriminating capacity of the shared cancer feature model when applied to

heterogeneous tissue data. The detailed classification results are available in Appendix 4.5.3.

4.3.2 Application: Discovery of malignancy ranking within subtypes of unseen cancer datasets

The proposed shared cancer features explained in the previous sections have the potential to

be used in many clinical and scientific applications, such as cancer screening for early diagno-

sis, prognostication, therapeutic development, biophysical studies of disease pathology, and large

database analyses. As explained before, the learned features were obtained from four datasets in

the training set. Here, we show an application where we utilize these learned features to rank the

malignant potential within the subtypes of other unseen cancer datasets from a particular organ

(e.g., thyroid and liver).

Fig. 4.7 shows the nuclear morphology-based histological grade ranking results among differ-

ent cancer types in the thyroid and the liver. The x and y axes represent the spread of the projections

(in the units of standard deviation) on a particular feature learned by the model. The images be-

neath and to the left of the x and y axes, respectively, represent the most discriminant nuclear

morphological feature corresponding to each histogram coordinate. The corresponding Gaussian

curves represent the mean and standard deviation of the projections of the test cancer types on the

nuclear morphological features of the trained cancer model. The scatter plots show the projections

of the different cancer types for each tissue (thyroid and liver) in the joint feature space. We show

the ranking results obtained from individual features as well as the results obtained jointly on the

five most discriminatory nuclear morphological features learned by the shared cancer model. The

rankings (from less malignant to more malignant) jointly predicted by the model for the thyroid test

tissue type are nodular goiter (NG), follicular adenoma (FA), follicular carcinoma (FC), and follic-

ular variant of papillary carcinoma (FVPC). The rankings (from less malignant to more malignant)
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jointly predicted by the model for the liver test tissue type is follicular nodular hyperplasia (FNH),

hepatocellular adenoma (HCA), and fetal hepatoblastoma (FHB). These results demonstrate the

potential for our model to rank or grade a spectrum of cancer types that vary in their malignant

potential. They also highlight the out-of-distribution performance of our model.

4.4 Discussion and Conclusions

Improved understanding of the molecular mechanisms underpinning carcinogenesis has led to

identification of biomarkers for risk assessment in cancer patients as we move further into the

era of personalized medicine [129, 67]. Molecular biomarkers, derived from genomic and/or pro-

teomics means primarily, are used clinically for diagnosis, prognosis, therapeutic interventions,

and following cancer progression during treatment [67, 130]. In recent years, attention has turned

towards identification of biomarkers applicable across a number of cancer types [131, 57]. Cross-

cancer or universal cancer biomarkers may permit development of cost-effective and efficient can-

cer screening methods, elucidate common carcinogenesis pathways, and identify shared resistance

and sensitivities to treatment [131, 57].

For a cancer biomarker to be clinically useful, it must address a specific stage in tumor de-

velopment, reliably estimate risk and be actionable [132, 67]. As noted, nuclear morphological

alterations are a feature commonly utilized by pathologists to grade tumors[27, 133]. By esti-

mating the degree of deviation of the nuclear appearance from a normal cell, a histological grade

is assigned and utilized to inform prognostic and therapeutic decisions [133]. Because nuclear

morphological alterations affect all tumor cells, they represent a potentially useful biomarker for

simultaneously evaluating multiple cancer types.

Computational studies using feature engineering and neural network-based methods attempting

to model nuclear morphological alterations have suffered from numerous drawbacks including a

limited knowledge of their internal workings which makes it difficult to safely implement them

into a critical system, a requirement for large amounts of training data and a lack of robustness

to adversarial information [28, 30, 31]. In addition, a reliable machine learning method has not
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yet been found that can synthesize and summarize information across different cancers. This

may be due to the lack of a quantitative metric that can be used to compare two nuclear images

of any given cancer type. In this study, we present a TBM framework that uses a standardized

quantitative metric (Wasserstein distance) to compare the entirety of the normalized chromatin

content between two nuclear images. Our method, which preserves the information content of each

image within a biologically meaningful, transport-based, representation, offers several advantages.

First, it permits visualization of the change (or evolution) in nuclear structure between benign and

malignant cells, enhancing understanding of the underlying biophysical process. Second, it detects

and interprets persistent discriminating information between benign and malignant cells. Third,

it can categorize and stratify patients or tissues by their histological grade in both known and

unknown cancer types. Fourth, not only is it robust to variations in staining protocols and image

resolutions, but it is also able to identify features shared by four different tissue types, enabling

comparisons across a range of datasets.

In this dissertation, we presented visual exploratory analyses to highlight the common nuclear

structural changes that were shared by cancers affecting the four tissue types. Our multivariate sta-

tistical analysis found a significant difference between the shared features discriminating benign

or normal from malignant nuclei. This was consistent across all four tissue types. When we exam-

ined the discriminative ability of our shared feature model in classifying patients, we found it to

estimate the tumor grade (malignancy ranking) with similar accuracy to the tissue-specific model.

We further cross-validated our model’s performance and found it to correctly estimate the tumor

grade (malignancy ranking) in a tissue sample it was not previously trained upon, further high-

lighting the out of distribution performance of our shared feature model. Finally, we demonstrated

our model’s capacity to stratify unknown cancer subtypes acquired from a single tissue type that

varied by their malignant potential. Our proposed method offers a novel approach to modeling the

nuclear structure in cancer cells. We found it to accurately identify and measure the morphological

changes that affected malignant cells, shared by the four different tissue types.

Several limitations to this work must be acknowledged. Our model was derived from a small
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cohort of patient samples acquired from a limited number of centers and used digitized histological

images from only four tissue types. In the absence of external validation, the broader generaliz-

ability of our results to a wide range of cancer types and to larger databases of patient samples

remains unknown. Our analysis was solely based upon image features and we were unable to ac-

count for potential confounders including patient demographics, medical history information and

treatment-related factors.

Our contributions in this dissertation are to (1) introduce a quantitative measurement metric that

can be reliably used to discriminate nuclear morphological features of cancer cells, accounting for

different tissue types, (2) demonstrate the potential for transport-based morphometry to overcome

the limitations inherent to current techniques in digital pathology, and (3) present preliminary

evidence that our transport-based morphometry method can make meaningful comparisons across

a wide range of nuclei data. In combination with large datasets such as the human protein atlas

and the cancer genome atlas, we believe that our proposed method has the potential to enable

numerous clinical and scientific studies in fields such as population-based screening, development

of personalized therapies, risk stratification, assessment of treatment response and understanding

of carcinogenesis by, eventually, helping to elevate the potential role of nuclear morphometry as a

universal cancer biomarker into a more quantitative science.
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4.5 Appendix

4.5.1 Computational experiments

Experimental setup

The proposed model was built using a portion of the dataset for training and evaluated using

the remaining portion as the test set. Two partitions were created using a 2-fold cross-validation

method. Then the described computations were performed using these training and test sets. The

?-values for differences in histograms between classes were obtained with a multivariate C-test.

Datasets

We utilized four cancer pathology datasets containing labeled nuclear microscopy images of

liver, thyroid, lung, and skin cells. The thyroid and liver nuclei datasets were collected from

the University of Pittsburgh Medical Center [134, 5, 126]. Cytology slides for lung tissue were

obtained from Allegheny General Hospital and West Penn Hospital [127]. Hematoxylin and eosin

(H&E) slides of skin tissue were retrieved from pathology archives [128] with Institutional Review

Board approval. Each dataset comprises benign (or preneoplastic) and malignant populations, and

class definitions are presented in Table 4.1.

Table 4.1: Details of the definitions used for each class of different tissue types
Benign (or preneoplastic) Malignant

Liver nuclei (Feulgen staining) Normal liver Hepatocellular carcinoma
Thyroid nuclei (Feulgen staining) Normal thyroid Widely invasive follicular carcinoma
Lung nuclei (Diff-Quik staining) Benign mesothelioma Malignant mesothelioma
Skin nuclei (Hematoxylin and Eosin staining) Dysplastic nevi Malignant melanoma

4.5.2 Methods

Preprocessing

To eliminate irrelevant variations in nuclei images, we normalized them before analysis fol-

lowing [135]. We translated the center of mass of each image to the center of view, aligned the
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principal axis to a predetermined angle, and flipped the images for similar intensity weight distri-

bution. We resized the data so that images from each tissue dataset have the same average area

and pixel dimensions, and normalized the images such that the intensity values of all pixels sum to

one.

Image transform: linear optimal transport

Our proposed image morphometry analysis generates unique representations for input images,

enabling both visualization and quantitative analysis. The procedure employs the LOT distance

from [73] and allows for an isometric embedding (LOT embedding [73]) of input image datasets

onto the standard Euclidean space. Mathematical descriptions of these concepts are provided be-

low:

The LOT distance: The LOT distance measures the optimal effort required to rearrange one struc-

ture to another and is constructed based on the tangent space approximation of the underlying

Riemannian manifold representing the dataset geometry. Let B =
∑
? 0?X®G? and i =

∑
@ 0

0
@X®H@ are

the particle representations of a sample image and a reference structure, respectively. The LOT

distance between B and i is given by

32
$) (B, i) = min

5 ∈Π(`,`0)

∑
?

∑
@

��®G? − ®H@ ��2 5?@ (4.5)

subject to 5?@ ≥ 0,
∑
? 5?@ = 0

0
@, and

∑
@ 5?@ = 0?. Here, 5 is the map corresponding to the optimal

mass transport (mass corresponds to the image intesity in this context) between B and i.

The LOT embedding: Using the optimal transport map from equation (4.5), the linear optimal

transport (LOT) embedding of the sample image B is defined as follows:

ŝ =
[

1√
00

1

∑
? 5?1®G?, 1√

00
2

∑
? 5?2®G?, · · ·

])
(4.6)
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Equation (4.6) was used to compute LOT embeddings for all sample images. The Euclidean aver-

age of all input training images was used to compute the reference structure i. For more details,

refer to [73, 5]. The procedure above generates linear representations of the data, significantly

simplifying the data analysis.

Statistical modeling

Composite penalized linear discriminant analysis

We introduce a modified PLDA technique called composite penalized linear discriminant anal-

ysis (cPLDA) to derive a set of shared discriminant directions for all datasets. Let
(̂
s(:)=

)
9

denotes

the LOT embedding of the =-th sample image of the :-th class of the 9-th dataset. The embed-

dings were first standardized by removing the mean and scaling to unit variance. The ‘total scatter

matrix’ for the 9-th dataset can be computed as

(S) ) 9 =
∑
:

∑
=

( (̂
s(:)=

)
9
−

(̂
s
)
9

) ( (̂
s(:)=

)
9
−

(̂
s
)
9

))
where

(̂
s
)
9
= 1

 

∑ 
:=1

1
#:

∑#:
==1

(̂
s(:)=

)
9

denotes the average of the entire set of LOT embeddings of

the 9-th dataset. The ‘within class scatter matrix’ for the 9-th cancer type is can be computed as

(S, ) 9 =
∑
:

∑
=

( (̂
s(:)=

)
9
−

(̂
s(:)

)
9

) ( (̂
s(:)=

)
9
−

(̂
s(:)

)
9

))
where

(̂
s(:)

)
9
= 1

#:

∑#:
==1

(̂
s(:)=

)
9

denotes the average of the :-th class of the 9-th dataset. The

shared discriminant direction can be obtained by maximizing the following objective function:

arg max
w

/ (w) =
w)

(∑
9 (S) ) 9

)
w

w)

(∑
9 (S, ) 9 + UI

)
w
. (4.7)

The optimization equation in equation (4.7) is equivalent to the following generalized eigen-
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Table 4.2: Patient classification in the tissue-specific feature space
Histogram means Single nucleus classification (with maximum voting) Complete histograms

LV THY LNG SKN LV THY LNG SKN LV THY LNG SKN
LDA 87 ± 8.7 72 ± 0.9 59 ± 2.9 71 ± 3.6 74 ± 4.3 80 ± 1.3 74 ± 2.9 68 ± 0.4 96 ± 4.3 68 ± 5.1 69 ± 10.3 60 ± 5.0

PLDA 91 ± 4.3 68 ± 5.1 72 ± 1.5 75 ± 1.1 74 ± 4.3 80 ± 1.3 74 ± 2.9 68 ± 0.0 89 ± 2.2 72 ± 0.9 72 ± 7.4 81 ± 1.4
RF 91 ± 0.0 83 ± 3.6 75 ± 4.4 80 ± 0.7 91 ± 0.0 72 ± 0.9 71 ± 2.9 78 ± 1.4 93 ± 2.2 91 ± 0.4 74 ± 0.0 79 ± 1.4
LR 93 ± 2.2 78 ± 0.9 69 ± 1.5 76 ± 2.9 80 ± 2.2 81 ± 5.7 72 ± 1.5 68 ± 0.7 98 ± 2.2 70 ± 3.0 75 ± 7.4 81 ± 1.4

SVM-l 93 ± 2.2 66 ± 7.2 69 ± 4.4 77 ± 1.1 74 ± 0.0 24 ± 5.5 60 ± 10.3 35 ± 1.4 87 ± 4.3 67 ± 0.8 72 ± 7.4 80 ± 1.1
SVM-k 85 ± 2.2 76 ± 7.6 75 ± 4.4 82 ± 0.4 89 ± 2.2 81 ± 5.7 72 ± 4.4 79 ± 0.4 87 ± 4.3 96 ± 0.2 75 ± 10.3 81 ± 1.8

kNN 83 ± 4.3 80 ± 1.3 71 ± 8.8 82 ± 0.7 89 ± 2.2 72 ± 5.3 71 ± 2.9 79 ± 0.4 89 ± 2.2 55 ± 4.5 78 ± 13.2 79 ± 0.0

Table 4.3: Patient classification in the shared cancer feature space
Histogram means Single nucleus classification (with maximum voting) Complete histograms

LV THY LNG SKN LV THY LNG SKN LV THY LNG SKN
LDA 85 ± 2.2 76 ± 5.5 53 ± 5.9 75 ± 0.0 74 ± 0.0 79 ± 7.8 69 ± 4.4 66 ± 0.7 93 ± 2.2 80 ± 3.0 60 ± 1.5 58 ± 1.4

PLDA 85 ± 2.2 83 ± 3.6 57 ± 1.5 76 ± 0.0 74 ± 0.0 79 ± 7.8 69 ± 4.4 66 ± 0.7 91 ± 0.0 76 ± 7.6 65 ± 0.0 78 ± 2.2
RF 91 ± 4.3 80 ± 3.0 74 ± 5.9 81 ± 0.7 89 ± 2.2 74 ± 3.2 69 ± 1.5 80 ± 0.0 89 ± 6.5 91 ± 4.7 69 ± 10.3 78 ± 0.0
LR 87 ± 0.0 83 ± 3.6 65 ± 5.9 77 ± 1.1 80 ± 2.2 81 ± 5.7 69 ± 4.4 66 ± 0.0 91 ± 0.0 74 ± 1.1 71 ± 2.9 82 ± 1.1

SVM-l 96 ± 0.0 80 ± 1.3 68 ± 5.9 79 ± 0.4 80 ± 6.5 74 ± 3.2 60 ± 4.4 37 ± 0.4 89 ± 2.2 78 ± 5.3 71 ± 0.0 78 ± 2.5
SVM-k 83 ± 0.0 80 ± 1.3 72 ± 4.4 82 ± 0.7 87 ± 0.0 81 ± 5.7 72 ± 10.3 80 ± 0.0 93 ± 2.2 91 ± 9.1 69 ± 4.4 80 ± 1.1

kNN 87 ± 0.0 83 ± 3.6 69 ± 1.5 81 ± 0.7 87 ± 4.3 68 ± 5.1 65 ± 8.8 78 ± 0.0 89 ± 2.2 61 ± 11.4 72 ± 1.5 76 ± 1.1

decomposition problem:

((
∑
9

(S, ) 9 + UI)−1(
∑
9

(S) ) 9 ))w = _w (4.8)

where, _ = maxw / (w). Let w0 is the solution of the equation (4.8) (also equation (4.7)), i.e.,

_ = / (w0). Then we removed the effect of the feature scaling from the obtained solution.

Hierarchical feature extraction

After obtaining the most discriminant direction w0, we removed the corresponding feature from

the LOT embeddings of the datasets and continued the analysis with the filtered data to determine

the other discriminant directions. Let ŝ be the LOT embedding of a sample image B, and b8 be a

basis vector spanning the ambient space. Next, we selected a basis set with b1 = w0 and defined

the filtered representation of ŝ as:

s̃ =
∑
8,8≠1

28b8; with, 28 =< b8, ŝ >
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We repeated the procedures above to obtain a set of shared discriminant features as follows:

, = {w0
(1) ,w

0
(2) ,w

0
(3) , · · · } (4.9)

The effectiveness of the computed discriminant feature-set is evaluated in the experimental section.

4.5.3 Patient classification

We began by projecting the nuclei of the patients in the training and test sets on the tissue-

specific (Table 4.2) or the shared (Table 4.3) discriminant morphological feature space. Next,

we trained the classifiers using three different descriptors: We used the means of histograms of

projections of the nuclei, the single nucleus projections, or the complete histograms of projections

of the training set to train different classifiers (see Tables 4.2 and 4.3). We obtained four sets of

classifiers corresponding to four tissue types: liver (LV), thyroid (THY), lung (LNG), and skin

(SKN). In the test phase, we used the same descriptors, i.e., the means of histograms of projections

of the nuclei, the single nucleus projections, or the complete histograms of projections of the test

set to predict the class of the patient. In the case of the single nucleus classification, we obtained

the patient class prediction by applying the maximum voting procedure to the single nucleus class

prediction results.
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Chapter 5: Conclusion and Future directions

In this dissertation, we proposed a new computational framework for pattern analysis and

recognition that can be applied in various disciplines of science and technology, including com-

puter vision, biology, and health care. Our hypothesis is that data classes can be modeled as the

instances of an unknown template (or templates) under the effect of unknown spatial deformations

in a large subcategory of pattern analysis and recognition problems. We demonstrated that clas-

sification and modeling problems, involving data obtained under our proposed generative model,

can be solved efficiently using a transport-based modeling approach in closed-form. Our approach

is well-suited for modeling a wide range of processes in computer vision, biology, and medicine

that involve some kind of movement or transport of mass or intensity of various entities, includ-

ing pixels, tissue, molecules, proteins, and more. By mathematically modeling these processes

using our proposed framework, we can gain deeper insights into their underlying mechanisms and

potentially discover new avenues for intervention and treatment. The advantages of our model-

ing approach include better accuracy, generalizability, interpretability, data efficiency, and paths

to discovering unknown processes. Furthermore, our methods can be implemented using a sim-

ple algorithm and are generally more computationally efficient than existing deep learning-based

approaches. We also developed an accompanying Python software for easy implementation of

our proposed framework. Overall, our study presents a promising opportunity to advance pattern

analysis and recognition techniques in various scientific disciplines.

In Chapter 2, we introduced a novel end-to-end system for supervised image classification.

This approach classifies images by computing the distance between the R-CDT transform of a

given image and the linear subspaces estimated from the linear combination of the R-CDT trans-

formed input training data. Our mathematical framework also enables invariances to a set of given

image transformations. The proposed method is particularly relevant for image classification prob-
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lems where image classes can be considered as an instance of a template observed under a set

of spatial deformations. If these deformations are accurately modeled as a collection of smooth,

one-to-one, and nonlinear transformations, then the image classes can be separated in the trans-

form space via the properties outlined in [98]. These properties also allow for the approximation

of image classes as convex subspaces in the R-CDT space, leading to a more suitable data model

for the nearest subspace method. Consequently, the resulting classifier can achieve high accuracy,

computational efficiency, and out-of-distribution robustness, as demonstrated in our experiments.

Our proposed solution can benefit a wide range of image classification problems that can be for-

mulated in a similar manner. For example, any classification problem where one image in a class

can be obtained from another by a smooth rearrangement of pixel intensities, such as affine trans-

formations, is a suitable fit for our generative model. More subtle examples include distortions

resulting from the influence of a transparent medium in an optical communication channel [103],

or morphological changes in MRI images due to the presence of a disease [3].

The proposed mathematical solution was shown to be highly effective in achieving accurate

image classification results in a variety of real-world scenarios, both with low and high amounts of

data. Furthermore, the method was demonstrated to significantly reduce computational costs asso-

ciated with image classification tasks, while still maintaining high accuracy. One key advantage of

this method is its mathematical coherence and simplicity, as it is non-iterative and does not require

the tuning of hyper-parameters. The approach can also be implemented without the need for GPU

support, although the method can benefit from parallelization on a GPU to further improve its com-

putational efficiency. Additionally, the method was shown to be robust in challenging experimental

scenarios, including the out-of-distribution setup. This is due to the fact that the method learns the

underlying generative model of the image classes, allowing it to identify and classify images based

on their underlying characteristics. Overall, this method provides a promising solution for a range

of image classification problems, particularly those where images can be thought of as instances

of a template observed under a set of spatial deformations.

We note that the method is well-suited for the problems where the data at hand conform to
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the generative model stated in the dissertation. However, it is worth noting that the method is

tailored towards modeling segmented images, making it less suitable for natural unsegmented im-

ages such as the CIFAR10 and imagenet datasets. Although it is possible to adapt the method

for natural unsegmented images, it would require redefining the problem statement and generative

model, which is left for future work. It is also important to note that the proposed model does

not account for occlusions, introduction of other objects in the scene, or variations that cannot be

modeled as a mass-preserving transformation on a set of templates. The results from the CIFAR10

dataset demonstrate that the proposed model lags far behind the standard deep learning classifica-

tion methods in terms of classification accuracy. However, the approximations and assumptions

made in the derivation of the spanning sets of shear and anisotropic scaling work reasonably well

for practical purposes, as shown in the results.

There are many other adaptations of the method that can be explored in the future. For instance,

the linear subspace method described above can be modified to utilize other assumptions regarding

the set that best models each class, which may benefit certain classes of problems. Additionally, the

method can be extended to be used on 3D images with the application of the 3D Radon transform,

and the generative model can also be adapted for RGB images. Furthermore, the method can be

adapted for unsupervised learning contexts such as subspace clustering. Overall, the proposed

method has shown promising results and offers several potential directions for future research.

In Chapter 3, the transport-based frameworks for 1D (signals) and 2D (images) distributions

were extended to #-dimensions and were utilized to analyze high-dimensional distributions. The

extended transport-based embeddings (high-dimensional R-CDT and LOT) were employed to de-

velop a framework for classifying high-dimensional distributions that could be used in numerous

applications. The properties of the transport-based embeddings were also utilized to develop a sim-

ple and robust classification method with high accuracy. The study began with a generative model

assumption for high-dimensional data, where data classes were modeled as the instances of an un-

known template (or templates) high-dimensional distribution under the effect of unknown spatial

deformations. A mathematical solution was then demonstrated, which showed better accuracy,
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generalizability, interpretability, and data efficiency.

The proposed framework for high-dimensional distribution is applicable to problems where

the data follows a given generative model, similar to its low-dimensional counterparts. Two ap-

proaches were attempted to solve high-dimensional classification problems, the high-dimensional

R-CDT transform and the LOT transform. The R-CDT-based method involves obtaining a set of

1D projections of the high-dimensional distributions and applying the CDT transform. However,

the choice of projection directions is an open problem that could affect performance. Currently,

projections are obtained along the canonical axis directions, but the exploration of other projection

directions may be necessary. The use of transport-based features may also benefit the analysis. For

the R-CDT-based method, morphological numerical features such as area and solidity were used.

The LOT-based method is more suitable for set-structured discrete data points, and to apply it to

continuous high-dimensional distributions, the first step is to sample the continuous distributions.

The LOT solution also requires solving a linear programming that adds to the computational cost.

Finally, analyzing high-dimensional distributions is generally computationally intensive, and the

computational complexity increases with dimensionality. Therefore, developing a more efficient

and robust algorithm might be necessary, which we leave to future work.

In Chapter 4, we presented a series of computational analyses to investigate the common nu-

clear structural changes shared among cancers that affect four different tissue types. Our multi-

variate statistical analysis revealed significant differences between shared features that discriminate

benign or normal nuclei from malignant ones, which was consistent across all tissue types. The

discriminative ability of our shared feature model in classifying patients was evaluated and demon-

strated similar accuracy in estimating the tumor grade (malignancy ranking) to the tissue-specific

model. Cross-validation was further performed to assess the model’s performance on an unseen

tissue sample, highlighting its out-of-distribution performance. Our proposed method was also

shown to have the ability to stratify unknown cancer subtypes acquired from a single tissue type

based on their malignant potential. These findings suggest that our novel approach to modeling the

nuclear structure in cancer cells can accurately identify and measure the morphological changes
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that affect malignant cells and are shared among different tissue types.

Advancements in the understanding of the molecular mechanisms involved in carcinogenesis

have led to the identification of biomarkers for risk assessment in cancer patients, particularly in

the era of personalized medicine. Molecular biomarkers, primarily derived from genomics and

proteomics, are utilized clinically for diagnosis, prognosis, therapeutic interventions, and monitor-

ing cancer progression during treatment. Recently, attention has shifted towards the identification

of biomarkers that are applicable across multiple cancer types. Universal cancer biomarkers may

enable development of cost-effective and efficient cancer screening methods, identify shared re-

sistance and sensitivities to treatment, and shed light on common carcinogenesis pathways. For a

cancer biomarker to be clinically useful, it must address a specific stage in tumor development, re-

liably estimate risk, and be actionable. Nuclear morphological alterations are a commonly utilized

feature by pathologists to grade tumors, as these alterations affect all tumor cells, making them a

potentially useful biomarker for simultaneously evaluating multiple cancer types.

Our study introduces a transport-based morphometry (TBM) framework that utilizes the Wasser-

stein distance as a standardized quantitative metric to compare the normalized chromatin content

of two nuclear images. Our method preserves the biologically meaningful information content

of each image and offers several advantages. It allows for visualization of the change in nuclear

structure between benign and malignant cells, detects persistent discriminating information, cate-

gorizes and stratifies patients or tissues by histological grade, and is robust to variations in staining

protocols and image resolutions. Furthermore, it can identify shared features across four different

tissue types, enabling comparisons across multiple datasets.

Several limitations of our work should be noted, including the small cohort of patient sam-

ples from a limited number of centers and the use of digitized histological images from only four

tissue types. Our analysis was based solely on image features and did not account for potential

confounders such as patient demographics or medical history. However, our work has introduced

a quantitative measurement metric for reliably discriminating nuclear morphological features of

cancer cells across different tissue types. Our transport-based morphometry method has the po-
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tential to enable numerous clinical and scientific studies, including population-based screening,

personalized therapies, risk stratification, treatment response assessment, and understanding of

carcinogenesis. Our proposed method has the potential to elevate the role of nuclear morphometry

as a universal cancer biomarker into a more quantitative science, particularly when combined with

large datasets such as the human protein atlas and the cancer genome atlas.
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Appendix A: Mathematical proofs and derivations

A.1 Proof of Property 1.1-A

Let B(G) denote a normalized signal and let B̂(G) be the CDT of B(G). The CDT of B6 = 6′B ◦ 6

is given by

B̂6 = 6
−1 ◦ B̂

Proof. Let A denote a reference signal. If B̂ and B̂6 denote the CDTs of B and B6, respectively, with

respect to the reference A, we have that

∫ B̂(G)

−∞
B(D)3D =

∫ B̂6 (G)

−∞
B6 (D)3D =

∫ G

−∞
A (D)3D

By substituting B6 = 6′B ◦ 6 we have

∫ B̂(G)

−∞
B(D)3D =

∫ B̂6 (G)

−∞
6′(D)B(6(D))3D (A.1.1)

By the change of variables theorem, we can replace 6(D) = E, 6′(D)3D = 3E in equation (A.1.1):

∫ B̂(G)

−∞
B(D)3D =

∫ 6( B̂6 (G))

−∞
B(E)3E (A.1.2)

From equation (A.1.2), we have that

6
(
B̂6 (G)

)
= B̂(G) =⇒ B̂6 (G) = 6−1 ( B̂(G)) or, B̂6 = 6−1 ◦ B̂

�
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A.2 Proof of Property 1.1-B

Recall that given two signals B and A, the Wasserstein metric ,2(·, ·) between them is defined

in the following way:

,2
2 (B, A) =

∫
ΩA

( B̂(G) − G)2A (G)3G, (A.2.1)

where B̂ is the CDT of B with respect to A.

Proof. Recall that an isometric embedding between two metric spaces is an injective mapping that

preserve distances. Define the embedding by the correspondence B ↦→ B̂, it is left to show that

,2
2 (B1, B2) =

����( B̂1 − B̂2)
√
A
����2
!2 (ΩA ) ,

for all signals B1, B2. Let 5 (H) be the CDT of B2 with respect to B1, then

,2
2 (B2, B1) =

∫
ΩB1

( 5 (H) − H)2B1(H)3H.

By the definition of CDT, B1 = 5 ′B2 ◦ 5 and A = B̂′1B1 ◦ B̂1. Then by the composition property,

B̂1 = 5 −1 ◦ B̂2. Here again B̂1, B̂2 are CDT with respect to a fixed reference A . Let H = B̂1(G). Using

the change of variables formula,

,2
2 (B1, B2) =

∫
ΩA

( 5 ( B̂1(G) − B̂1(G))B1( B̂1(G)) B̂′1(G)3G

=

∫
ΩA

( B̂2(G) − B̂1(G))2A (G)3G

= | | ( B̂2 − B̂1)
√
A | |2

!2 (ΩA ) .

�
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A.3 Proof of Property 1.3-A

Let B(x) denote a normalized image and let B̃(C, \) and B̂(C, \) are the Radon transform and the

R-CDT transform of B(G), respectively. The R-CDT of B6\ =ℛ
−1

( (
6\

)′
B̃ ◦ 6\

)
is given by

B̂6\ =

(
6\

)−1
◦ B̂

Proof. Let A denote a reference image. Let B̃ and B̃6\ denote the Radon transforms of B and B6\ ,

respectively, and let B̂ and B̂6\ denote the CDTs of B and B6\ , respectively, with respect to the

reference A. Then ∀\ ∈ [0, c], we have that

∫ B̂(C,\)

−∞
B̃(D, \)3D =

∫ B̂
6\
(C,\)

−∞
B̃6\ (D, \)3D =

∫ C

−∞
Ã (D, \)3D

If we substitute B6\ =ℛ
−1

( (
6\

)′
B̃ ◦ 6\

)
or, B̃6\ =

(
6\

)′
B̃ ◦ 6\ . Then ∀\ ∈ [0, c], we have

∫ B̂(C,\)

−∞
B̃(D, \)3D =

∫ B̂
6\
(C,\)

−∞

(
6\

)′
(D) B̃

(
6\ (D), \

)
3D (A.3.1)

By the change of variables theorem, we can replace 6\ (D) = E,
(
6\

)′ (D)3D = 3E in equa-

tion (A.3.1):

∫ B̂(C,\)

−∞
B̃(D, \)3D =

∫ 6\
(
B̂
6\
(C,\)

)
−∞

B̃(E, \)3E, ∀\ ∈ [0, c] (A.3.2)

From equation (A.3.2), we have that

6\
(
B̂6\ (C, \)

)
= B̂(C, \)

=⇒ B̂6\ (C, \) =
(
6\

)−1
( B̂(C, \)) or, B̂6\ =

(
6\

)−1
◦ B̂

�
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A.4 Proof of Property 1.3-B

Recall that given two images B, A, using the correspondence in equation (6) the Sliced Wasser-

stein metric (,2(·, ·) is defined as follows:

(,2
2 (B, A) =

∫
ΩÃ

( B̂(C, \) − C)2Ã (C, \)3C3\. (A.4.1)

It can be shown that the above metric is well-defined [24], and in particular

(,2
2 (B1, B2) =

∫
ΩÃ

( B̂1(C, \) − B̂2(C, \))2Ã (C, \)3C3\, (A.4.2)

for all images B1, B2, the proof of which is essentially the same as in the CDT case in Appendix

A.2.

Proof. Recall that an isometric embedding between two metric spaces is an injective mapping

that preserve distances. Define the embedding by B(x) ↦→ ŝ(t, \) and the conclusion follows

immediately from (A.4.2). �
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