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Abstract

Modern information systems, such as recommender systems, are typically characterized by
their human-centric designs and adaptiveness, where the development of Human-Feedback-
driven Learning (HFL) mechanisms is the central focus. However, most existing works
treat human feedback as readily available ground-truth data, yet numerous challenges await
dedicated resolutions: 1) From a system’s perspective, real-world human feedback, typi-
cally collected from ordinary users, often lacks rigorous quality control. This results in
feedback data that is overly noisy and requires sophisticated treatments, such as data cleans-
ing and augmentation before it can be utilized to develop robust systems. 2) From users’
perspective, disappointment arises when systems misinterpret their feedback or fail to react
to their needs, leading to lower quality future feedback and hindering system improvement
and user satisfaction. In this dissertation, we focus on modeling human feedback from both
perspectives. On the one hand, we propose novel frameworks for learning from noisy and
sparse human feedback. On the other hand, we devise algorithms that efficiently and effec-
tively learn personalized policies, enabling systems to interpret and elicit users’ interests
and intentions through their feedback. We evaluate the effectiveness of proposed methods
in various scenarios, including crowdsourcing, recommender systems, and nature language
generation.
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Chapter 1

Introduction

Modern information systems are typically characterized by their human-centric designs
and adaptiveness, such as online shopping platforms, recommender systems, etc. Evolv-
ing in tandem with human users is crucial for their success. Within this human-system
ecosystem, users are not just passive recipients of information and services; they are active
contributors. Their feedback plays a crucial role in the continuous learning and evolution
of systems. Based on this background, a new learning paradigm has emerged, known as
Human-Feedback-driven Learning (HFL). In this dissertation, we focus on developing ad-
vanced HFL techniques from both human and system perspectives. Figure 3.11 depicts the
human feedback loop between human users and systems: Human users contribute feed-
back, which serves as a foundational learning source for the systems (the upper arc). In
response, systems engage users in an interaction loop, prompting them for feedback to fur-
ther refine and personalize their experiences. HFL is extensively employed to train systems,
both by aggregating consensus from a wide range of users, such as in crowdsourcing sys-
tems [148, 172, 202], and by delivering personalized experiences, as seen in recommender
systems [120].

1.1 Challenges

However, despite the promising prospects of HFL, several oversights and challenges re-
main to be addressed. The prevalent approach to HFL has been to treat human feedback
as readily available ground-truth data [31, 156]. Yet, this perspective is overly simplistic
and fails to consider the complexities inherent in human feedback. My proposed research
focus on two interrelated challenges: (1) How do systems sieve through noisy and non-

expert feedback to extract meaningful insights? Real-world human feedback is typically

1



2

Systems Human users
Personalized
Experience

Noisy
Human 

feedback

Part A: Learn robust systems from noisy feedback

Part B: Learn personalized systems from interactive feedback

Figure 1.1: An illustration of the human feedback loop between human users and systems.
This dissertation focuses on two key areas: (1) improving the system’s ability to learn from
real-world human feedback, particularly when confronted with noise, shown as the upper
arc; (2) refining how systems interpret and elicit human feedback to provide a personalized
experience, shown as the loop.

collected from ordinary users and lacks the necessary quality control. Given the powerful
memorization capabilities of increasingly larger neural networks, this lack of quality can
lead to a fundamental conflict of knowledge and potentially ruin the learning process due
to the noisy feedback [153]. Thus, we are motivated to design more robust learning al-
gorithms capable of deriving effective models from real-world human feedback. (2) How

to facilitate sustainable human-system interaction? For human users, if systems are per-
ceived as inadequate or unresponsive for their feedback, users may become disillusioned,
leading to feedback fatigue or even disengagement [58, 111, 143], calls for more effective
and efficient feedback interpretation and elicitation approaches. Each challenge requires
specialized treatment, which will be discussed in detail in the following paragraphs.
Learning from noisy human feedback. Standard supervised learning systems are data
hungry, especially for labeled data, which unfortunately is expensive to acquire at scale.
Crowdsourcing provides a label collection schema from human users that is both cost- and
time-efficient [15], enabling the training of large-scale systems at a feasible expense. How-
ever, several practical challenges may impede training systems using such human feedback:
(1) Due to varying and unknown expertise of human annotators, crowdsourced annotations
are usually noisy. It is reported that ImageNet [45], a highly influential dataset created
through crowdsourcing, contains 5.83% label errors1. Properly modeling the generation of
noise in crowdsourcing is the first step to learn an accurate model from crowdsourced an-
notations. Thus, we propose a novel noise model accounting for the common noise based

1https://l7.curtisnorthcutt.com/tag/noisy-labels/
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on empirical analysis on real-world crowdsourcing datasets. (2) Ideally, the “wisdom of
crowds” should mitigate the noise in annotations through redundancy, i.e., by obtaining
multiple labels from different annotators for each instance. However, in practice, to min-
imize annotation cost, the instances in crowdsourced data are typically labeled by a small
number of annotators; and each annotator will only be assigned to a few instances. This in-
troduces serious sparsity in crowdsourced data, potentially compromising the effectiveness
of noise reduction. To address the issue of data sparsity, we have devised a new framework
that generates authentic-like and informative pseudo-annotations, serving to augment the
data obtained from crowdsourcing. (3) Recently, it has been shown that human-annotated
data is crucial for fine-tuning Large Language Models (LLMs) for downstream tasks [127].
However, LLMs fine-tuned with data from annotators of varying fidelities exhibit differing
performance levels. To mitigate the noise of low-fidelity data, we introduce a novel fine-
tuning framework designed to improve low-fidelity LLMs with the guidance from high-
fidelity LLMs, all without directly accessing the high-fidelity LLMs’ training data.
Learning from interactive human feedback. Human-system interactions are no longer
limited to one-way communication. It is essential to promptly and precisely comprehend
and respond to human feedback in order to foster sustainable human-system interactions.
The following challenges are needed to be resolved to provide a more personalized expe-
rience from both efficacy and efficiency perspectives: (1) How to assign credit accurately
to systems for actions that contribute to sustainable interactions? To facilitate sustainable
human-system interactions, the system must not only capture user preferences but also
ensure their satisfaction during the conversation. Appropriately rewarding the system is
crucial for it to strategically act in alignment with user interests and intentions. Thus, we
are motivated to learn the optimal reward function to effectively and efficiently elicit user
feedback in the conversation. (2) How to efficiently create personalized systems with lim-
ited human feedback? The tolerance of users about a prolonged interactions or unmet goals
is limited [58, 111, 143]. Hence, it is impractical to rely on extensive interactions to tai-
lor a system to individual preferences. We then propose to efficiently learn personalized
policies by adapting from a meta policy. (3) Also, the recent emerged LLM-based systems
[110, 119] pose new challenges in capturing user preferences in human-system interactions,
where we find LLMs are ineffective in interpreting and utilizing temporal information in
sequential user interactions. Consequently, we design a principled prompting framework
to improve the temporal awareness of LLMs.

3



1.2 Thesis Organization

The rest of this dissertation is structured as follows:
In Chapter 2, we investigate advanced approaches for learning from noisy human feed-

back. First, we introduce a novel noise model for human feedback that distinguishes be-
tween common noise shared across annotators and the individual confusions specific to
each annotator. Building on this, we develop a Common Noise Adaptation Layer (CoNAL)
designed to capture and address common noise within existing end-to-end training frame-
works. Second, to address the challenge of sparse human feedback, we employ data aug-
mentation through generative models to enrich the dataset with missing annotations. We
introduce a generative adversarial framework, named CrowdInG, specifically designed to
produce informative annotations. Third, LLMs show significant potential in generating
human-like data, offering a pathway to reduce reliance on human feedback and simplify
the data cleansing process. We propose a novel Guided Fine-Tuning (GFT) framework to
improve low-fidelity LLMs with the guidance from high-fidelity LLMs, all without directly
accessing the high-fidelity LLMs’ training data.

In Chapter 3, we study the problem of learning from interactive human feedback. We
specifically focus on the application in recommendation systems, where interactive human
feedback is ubiquitous. First, we introduce a multi-objective optimization framework to
learn the optimal rewards for conversational recommender systems (CRS). This framework
learns reward functions that foster both effective and efficient conversational policies in
interactions with human users. Second, we address the problem of CRS policy learning for
cold-start users via a novel meta-reinforcement-learning framework (MetaCRS). Third, it
is empirically found that LLMs fall short in recognizing and utilizing temporal information,
rendering poor performance in tasks that require an understanding of sequential data, such
as sequential recommendation. We design a principled prompting framework Tempura,
inspired by the human cognitive process, to interpret complex user interests and intentions.
This is achieved by leveraging the zero-shot reasoning capabilities of LLMs.

In Chapter 4, we summarize this dissertation and discuss future research directions.

4



Chapter 2

Learning from Noisy Human Feedback

The first objective of my research is to enhance the system’s ability to learn from real-world
human feedback, with the goal of significantly improving its learning performance. Due
to the varying and unknown expertise of human annotators, crowdsourced annotations are
often noisy, which poses challenges for training high-quality systems. Moreover, collecting
human annotations is both costly and time-consuming, necessitating the development of
efficient and effective learning algorithms. In this chapter, we discuss solutions to learn
from noisy human feedback.

2.1 Learning from crowds by modeling common confu-
sions

2.1.1 Introduction

The availability of large amounts of labeled data is often a prerequisite for applying super-
vised learning solutions in practice. Crowdsourcing makes it possible to collect massive
labeled data in both time- and cost-efficient manner [15]. However, because of varying and
unknown expertise of annotators, crowdsourced labels are usually noisy, which naturally
lead to an important research problem: how to train an accurate learning model with only

crowdsourced annotations?

The first step to estimate an accurate learning model from crowdsourced annotations is
to properly model the generation of such data. In this work, we focus on the crowdsourced
classification problem. The seminal work from Dawid and Skene [43] (known as the DS
model) assumes that each annotator has his/her own class-dependent confusion when pro-
viding annotations to instances. This is modeled by an annotator-specific confusion matrix,
whose entries are the probability of flipping one class into another. The DS model has be-

5



come the cornerstone of most learning from crowds solutions; and mainstream solutions
perform label aggregation prior to classifier training: their key difference lies on different
label aggregation methods based on the DS model [173, 185, 209]. Recent developments
focus more on unified solutions, where variants of the Expectation-Maximization (EM)
algorithm are proposed to integrate label aggregation and classifier training [2, 20, 133].
Typically, such solutions treat the classifier’s predictions as latent variables, which are then
mapped to the observed crowdsourced labels using individual confusion matrices of anno-
tators. Rodrigues and Pereira [138] further fuse label inference and classifier training in
an end-to-end approach using neural networks, where the gradient from label aggregation
is directly propagated to estimate the annotators’ confusion matrices. Tanno et al. [163]
propose a similar solution but encourage the annotator confusion matrix to be close to an
identity matrix by trace regularization.

All existing DS-model-based solutions assume noise in crowdsourced labels is only
caused by individual annotators’ expertise. However, it is not uncommon that different an-
notators would share common confusion about the labels. For example, when a bird in an
image is too small, every annotator has a chance to confuse it with an airplane because of
the background sky. We hypothesize that on an instance the annotator is confident about,
he/she is more likely to use his/her expertise to provide a label (i.e., introducing individu-
alized noise), while he/she would use common sense to label those unconfident ones. We
empirically evaluate this hypothesis on two public crowdsourcing datasets, one for image
labeling and one for music genre classification (more details of the datasets can be found in
the Experiment Section), and visualize the results in Figure 2.1. On both datasets, there are
quite some commonly made mistakes across annotators. For example, on the image label-
ing dataset LabelMe, 61.0% annotators mistakenly labeled street as inside city and 44.1%
of them mislabeled open country as forest; on the music classification dataset, 63.6% anno-
tators mislabeled metal as rock and 38.6% of them mislabeled disco as pop. The existence
of such shared confusions across annotators directly affects label aggregation: the majority
of annotators are not necessarily correct, as their mistakes are no longer independent (e.g.,
those large off-diagonal entries in Figure 2.1). This is against the fundamental assump-
tion in the DS model, and strongly urges new noise modeling to better handle real-world
crowdsourced data.

Moving beyond the independent noise assumption in the family of DS models [43, 138],
we decompose annotation noise into two sources, common noise and individual noise, and
differentiate the source of noise based on both annotators and instances. We refer to the
annotation confusions shared across annotators as common noise, and model it by a global

6



(a) LabelMe (b) Music

Figure 2.1: Analysis of commonly made mistakes across annotators on two real-world
crowdsourcing datasets. The value of each entry in the heatmap denotes the percentage of
annotators with this confusion pair (e.g., mistakenly label street as inside city on LabelMe
dataset).

confusion matrix shared by all annotators. In the meanwhile, we also maintain annotator-
specific confusion matrices for individual noise modeling. We still treat ground-truth labels
of instances as latent variables, but map them to noisy annotations by two parallel confusion
matrices, to capture these different sources of noise. We determine the choice of confusion
matrices on a per-instance-annotator basis, by explicitly modeling of annotator expertise
and instance difficulty [185, 198]. To leverage the power of representation learning to
model annotator expertise and instance difficulty, we realize all our model components us-
ing neural networks. In particular, we model the two types of confusion matrices as two
parallel noise adaptation layers [60]. For each annotator-instance pair, the classifier first
maps the instance to a latent class label, then an auxiliary network decides which noise
adaptation layer to map the latent class label to the observed annotation. Cross-entropy
loss is counted on the predicted annotations for end-to-end training of these components.
We name this approach CoNAL - learning from crowds with common noise adaptation
layers. Extensive experiments show considerable improvement of our new noise model-
ing approach against a rich set of baselines on two synthesized datasets, including a fully
synthesized dataset and one based on CIFAR-10 dataset with various settings of noise gen-
eration, as well as two real-world datasets, e.g., LabelMe for image classification, and
Music for music genre classification.

2.1.2 Related works

Several existing studies focused on modeling the different roles of instance and annotator
in crowdsourced data. Whitehill et al. [185] model the accuracy of each annotation, which
depends on instance difficulty and annotator expertise, to weigh each instance in final ma-
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jority vote. Welinder et al. [184] model each annotator as a multi-dimensional classifier and
consider instance difficulty as single dimension latent variable. Zhou et al. [214] propose a
minimax entropy principle on a probability distribution over annotators, instances and an-
notations, in which by minimizing entropy instance confusability and annotator expertise
are naturally inferred. Khetan and Oh [94] and Shah, Balakrishnan, and Wainwright [147]
consider generalized DS models which model the instance difficulty. Instead of simply us-
ing a single scalar to model instance difficulty and annotator expertise as in previous works,
we model them by learning their corresponding representations via an auxiliary network,
which can better capture the shared statistical pattern across observed annotations.

Our method is closely related to several existing DS-based models considering relations
among annotators; but it is also clearly distinct from them. Kamar, Kapoor, and Horvitz
[90] use a global confusion matrix to capture the identical mistakes by all annotators, and
it is designed to replace the individual matrix when observations of an annotator are rare.
Moreover, the choice of confusion matrix in this solution only depends on the number of
annotations an annotator provided. This unnecessarily reflects the annotator expertise, as
the task assignment is typically out of their control in crowdsourcing. Venanzi et al. [173]
and Imamura, Sato, and Sugiyama [86] cluster annotators to generate their own confusion
matrices from a shared community-wide confusion matrix. However, the above approaches
still assume a single underlying noise source, and thus they do not consider the difference
between global (or community-level) and individual confusions. Li, Rubinstein, and Cohn
[114] explore the correlation of annotation across annotators by classifying them into aux-
iliary subtypes under different ground-truth classes. However, the characteristics of each
annotator are missing since they are only represented by a specific subtype. In our work,
we still characterize individual annotators by modeling their own confusions.

2.1.3 Common confusion modeling in crowdsourced data

Assume we have N instances labeled by R annotators out of C possible classes. We define
xi as the feature vector of the i-th instance and yri as its label provided by the r-th annotator.
Denote zi as the unobservable ground-truth label for the i-th instance, which is considered
as a latent variable sampled from a multinomial distribution parameterized by {p(zi =

c|xi)}Cc=1. For simplicity, we collectively define X = {xi}Ni=1, Y = {yri }N,Ri=1,r=1 and
Z = {zi}Ni=1. The final goal of learning from crowds is to obtain the classifier P (Z|X)

only with crowdsourced annotations Y .
Similar to the DS-based models (see Figure 2.2a for reference), the confusion of the

r-th annotator is measured by an annotator-specific confusion matrix πr, in which the
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(a) DS model. (b) Common noise model.

Figure 2.2: Graphical model presentations of the DS model and our common noise model.

(z, z′)-element πrz,z′ denotes the probability that annotator r will label the true label z as
z′. Aside from individual confusion, the key assumption of our solution is that annotation
mistakes can also be introduced by common confusion, which is modeled by a globally
shared confusion matrix πg across all annotators. We define the confusion matrices set as
Π = {π1:R, πg}. We associate a Bernoulli random variable sri ∼ B(ωri ) with each anno-
tation yri to differentiate the source of noise on it: sri=1 if the confusion is caused by the
common noise, where wri is the probability of the global confusion matrix being chosen
by annotator r on instance i (see Figure 2.2b). Denote the set of parameters governing the
generation of sri across all annotations as Ω.

Suggested by the successful practice in modeling crowdsourced data, we also impose
the following two commonly made assumptions: 1) each annotator provides their annota-
tions independently [43]; and 2) each annotation is independent from the instance’s features
given the ground-truth labels [138, 194]. We should note the first assumption is not contra-
dicting to our common confusion modeling: as the annotators can independently choose the
shared common noise model to generate their annotations, the resulting observed annota-
tions are no longer independent across annotators. As a result, the complete data likelihood
of observed annotations under our model can be defined as,

p
(
Y, Z|X,Π,Ω

)
=

N∏
i=1

R∏
r=1

C∑
z=1

p
(
yri |zi; Π, ωri )p(zi|xi

)
, (2.1)

p
(
yri |zi; Π, ωri

)
=ωri p

(
yri |zi, πg

)
+ (1− ωri ) p

(
yri |zi, πr

)
.

Based on the above imposed problem structure, we derive an information-theoretical
lower bound about the resulting noise modeling quality. Let Ẑ be the estimated true labels
of all instances. Noise modeling quality is measured by the error rate given by L(Ẑ, Z) =
1
N

∑N
i=1 I (ẑi ̸= zi), where I(·) is an indicator function. Given the ground-truth instance-

specific class distribution ρi = {ρic}Cc=1 and confusion matrices Π, we have the following
theorem about the lower bound of minimax error rate of our model.
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Theorem 1. The minimax error rate of our model is lower bounded by

infẐsupZ∈[C]NE
[
L(Ẑ, Z)

]
≥ 1

N2logC

N∑
i=1

F (ρi,Π,Ω)−
log 2

N2logC
,

F (ρi,Π,Ω) =H(ρi)−
R∑
r=1

C∑
c=1

C∑
c′=1

ρicρic′
(
ωri KL(πgc∗ ∥ πgc′∗)

+ (1− ωri )KL
(
πrc∗ ∥ πrc′∗

) )
.

where H(ρi) = −∑C
c=1 ρiclogρic is the entropy of ground-truth class distribution and

πc∗ is the c-th row in confusion matrix π.

Proof. In our setting, the ground-truth class distribution ρi depends on the instance fea-
tures. Then the minimax error rate of the crowdsourcing problem can be lower bounded by
the following,

infẐsupZ∈[C]NE
[
L(Ẑ, Z)

]
≥ 1

N2logC

N∑
i=1

R(ρi,Π
′)− log2

N2logC
(2.2)

where

R(ρi,Π
′) = H(ρi)−

R∑
r=1

C∑
c=1

C∑
c′=1

ρicρic′KL(π′r
c∗ ∥ π′r

c′∗) (2.3)

and Π′ = {π′r}Rr=1 denotes the set of annotator-level confusion matrices. We use π′ to
differentiate with our defined individual confusion matrix in the main paper. The proof of
Eq (2.2) is similar to [86]. Based on our new noise generation assumption, the annotation
noise can be decomposed by common noise and individual noise. Thus we can further
bound the minimax error rate under this noise assumption.

Under our new noise assumption, we can evaluate the confusion matrix on a per-
instance-annotator basis. Specifically, in each annotation, the effective confusion matrix is
a weighted combination of the global and individual confusion matrices, where the weight
is wri . In a mixture model, the Kullback–Leibler divergence can be decomposed accord-
ingly by,

KL(π′r
c∗ ∥ π′r

c′∗) = KL(ωri π
g
c∗ + (1− ωri )π

r
c∗ ∥ ωri πgc′∗ + (1− ωri )π

r
c′∗)

≤ KL(ωr
i ∥ ωr

i ) + ωri KL(πgc∗ ∥ πgc′∗) + (1− ωri )KL(πrc∗ ∥ πrc′∗) (2.4)
= ωri KL(πgc∗ ∥ πgc′∗) + (1− ωri )KL(πrc∗ ∥ πrc′∗) (2.5)

where ωr
i = (ωri , 1 − ωri ). The inequality can be derived by the log-sum inequality.

Substitute Eq (2.5) back to Eq (2.3), we can get the new term F (ρ,Π,Ω) in Theorem 1.
Plug it back into Eq (2.2), we can get the refined result in Theorem 1.
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Remarks. This result extends the known lower bound result of DS models [86]. Lower
bound on the error rate measures the difficulty of a crowdsourcing problem. Theorem 1
suggests the proposed decomposition has the potential to further reduce the lower bound,
i.e., to obtain better inferred true labels. To understand this result, we should first note
that the lower bound mainly depends on the KL distance between the class distributions
conditioned on different ground-truth classes, as defined in F (ρi,Π,Ω), i.e., how two dif-
ferent classes will be confused with other classes. The more different they are (i.e., a larger
KL distance), the easier one can differentiate the two from the observed noisy labels. For
example, consider a crowdsourced dataset where an annotator labels a set of instances as
airplane; but among them, 50% cases should be bird, and the other 50% should be space-

craft. Intuitively, without any additional knowledge, it is hard to determine the true label
when he/she labels an instance as airplane. And this is asserted by Theorem 1: If we only
used a single confusion matrix for this annotator, the conditional class distributions for
bird and spacecraft will be pushed closer, because their entries on airplane are close. This
causes a smaller KL term in F (ρi,Π,Ω) between bird and spacecraft (e.g., setting ωri =0 for
all instances in annotator r). But if we knew that the confusion between bird and airplane is
caused by common noise, and the confusion between spacecraft and airplane is caused by
individual noise, these mistakes could be attributed to two confusion matrices separately,
which eliminates the misleading similarity between the conditional probabilities for bird

and spacecraft caused by airplane.

2.1.4 End-to-end learning framework

To apply our noise modeling in crowdsourced data, we need to estimate the confusion ma-
trices Π together with the classifier. Instead of building a vanilla tabular model for them, we
realize them using neural models, to take advantage of the power of representation learn-
ing. In particular, we map the output of the classifier to noisy annotations by two types of
confusion layers, which we refer to as noise adaptation layers [60]. We also introduce an
auxiliary network that takes both annotator and instance as input to predict the choice of
these two noise adaptation layers. Since we treat the ground-truth label of an instance as
a latent variable, the Expectation Maximization (EM) algorithm becomes a natural choice
for model learning, as typically done in literature [2, 12, 138]. However, the EM-based
algorithm has several clear drawbacks in our solution: 1) In crowdsourced data, because
the annotators typically only label a small proportion of instances, EM-based algorithm
becomes very sensitive to the initialization of model parameters. It can easily cause in-
stability issues in training a neural network model. 2) In every EM iteration, we need to
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retrain the neural network, which causes a huge overhead when handling large networks.
Instead, we take an end-to-end approach to jointly perform latent variable inference and
model parameter estimation. We define cross-entropy loss on the observed annotations and
use error back-propagation to update the classifier’s output and the network parameters
simultaneously.

e1:R

xi
Classifier 

θ

Aux.Net 
Wa ω1:R

i

× ω1:R
i

× (1 − ω1:R
i )

+ =
fi

Wgfi

W1:Rfi

h1:R
i

input parallel noise  
adaptation layersbackbone model predicted anno. dist.

Figure 2.3: Overview of our framework for classification with 3 classes and R annotators.

We construct a neural network classifier with non-linear intermediate layers and a soft-
max output layer. The probability distribution of the predicted true label zi given the
instance feature vector xi is thus specified as pθ(zi|xi), where θ is the network param-
eter set including the softmax layer. We denote the immediate output of the classifier as
fi = f(xi) ∈ RC . We then use noise adaptation layers to map the classifier’s output into
noisy annotations, which are implemented by introducing additional softmax output layers
on top of the output layer of the classifier (see overview in Figure 3.7). The weight matri-
ces of the noise adaptation layers resemble confusion matrices Π in a probabilistic sense.
The output of the noise adaptation layer is thus the probability distribution of predicted
annotation pW (ŷri |f(xi)), where W is the parameter set of the noise adaptation layer.

We consider two types of noise adaptation layers: one individual noise adaptation layer
for every annotator parameterized by W r, and a common noise adaptation layer shared
across all annotators parameterized by W g. The final probability distribution of annota-
tions is obtained as,

p(ŷri |xi) = ωri pW g(ŷri |f(xi)) + (1− ωri ) pW r(ŷri |f(xi)).

where ωri governs the distribution that the mistake of annotator r on instance i is caused by
common confusion πg, denoted by the noise source indicator sri .

As sri is unobservable, we introduce an auxiliary network to model sri ∼ B(ωri ) by pa-
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rameterizing it over annotator expertise and instance difficulty, both of which are modeled
via learnt representations by the auxiliary network. Specifically, as in our problem setup,
every instance is associated with raw features, the auxiliary network takes instance feature
xi as input for learning instance i’s embedding vi. The same can be applied to annotator r,
if any raw feature er is available about the annotator, otherwise we use its one-hot encoding
as input for learning annotator embedding ur. Then ωri can be obtained as follows,

vi = Wvxi + bv,ur = Wuer + bu,

ωri = σ(u⊤
r vi).

(2.6)

where (Wv, bv) and (Wu, bu) are weight matrices and bias terms for annotator and instance
embeddings, and σ is a sigmoid function. To simplify our notations, we collectively refer
the parameters in this auxiliary network as W a. To avoid the magnitude of learnt u and
v becoming extremely large or small, which causes numerical issues in estimating ωri ,
we normalize the learnt annotator and instance embeddings before computing their inner
product.

Based on the above full specifications of our probabilistic modeling using neural net-
works, we are ready to estimate the network parameters. We can easily verify that, maxi-
mizing the likelihood of observed annotations given the input feature vectors as defined in
Eq (2.1) is equivalent to minimizing the cross-entropy loss between the observed annota-
tions and predicted annotation distributions,

L(θ,W g,W 1:R,W a) = − 1

N

N∑
i=1

R∑
r=1

C∑
j=1

yrijlog pj(ŷri |xi).

where yrij = 1 if yri = j; otherwise yrij = 0; and pj(ŷri |xi) refers to the j-th entry of the
predicted annotation distribution. All parameters can be trained by back-propagation using
gradient descent techniques, such as Adam [96] and SGD [61]. Once trained, in the testing
phase, we can directly use the classifier to make predictions on new instances.

The gradient flow in back-propagation reveals how our common confusion model-
ing handles crowdsourced data. In the context of classification, we can simply view the
introduced noise adaptation layer as performing a projection of gradients; and with a
slight abuse of notations, we denote the output of our noise adaptation layers as hri =

ωriW
gfi+(1−ωri )W

rfi. Under the chain rule, the gradients are naturally decoupled with
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respect to different sources of noise,

∂L
∂fi

=
R∑
r=1

∂L
∂hri

∂hri
∂fi

=
R∑
r=1

ωri
∂L
∂hri

W g + (1− ωri )
∂L
∂hri

W r. (2.7)

It clearly shows confusion matrices reshape the gradients, which informs the classifier layer
what the true label should be on an instance given its noisy annotations. The importance of
each confusion matrix in shaping the classifier is determined by ωri , which infers the source
of noise based on annotator expertise and instance difficulty.

The gradients in Eq (2.7) also suggest a potential bottleneck of our proposed solution: if
the common and individual noise adaptation layers are unidentifiable, we cannot correctly
attribute the noise, which is the key for our solution to perform according to Theorem 1.
To avoid this, we add ℓ2-norm on the difference between the common and individual noise
adaptation layers as a regularization term, to enforce them to be different. This presents
our final loss function,

L(θ,W g,W 1:R,W a) =− 1

N

N∑
i=1

R∑
r=1

C∑
j=1

yrijlog pj(ŷri |xi)

− λ
R∑
r=1

∥W g −W r∥2

where λ is a hyper-parameter to control regularization.

Figure 2.4: Results on CIFAR-10 dataset.
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2.1.5 Experiments

We evaluate our method on both synthesized and real-world datasets. We consider a rich
set of related solutions as our baselines, which can be divided into two categories:
1) Methods with simple noise models. DL-MV: it learns a neural network classifier with
labels aggregated by majority voting. DL-CL [138]: it learns a neural classifier with des-
ignated layers to fit individual annotator confusions (so-called crowd layer). Anno-Reg
[163]: it improves DL-CL by imposing additional trace regularization on individual con-
fusion matrices. Doctor Net [66]: it learns a neural network for every annotator’s annota-
tions and aggregates the networks’ output by weighted majority voting. Max-MIG [20]: it
jointly estimates a neural classifier and a label aggregation network using an information-
theoretical loss function.
2) Methods with complex noise models. DL-GLAD: it learns a neural classifier with labels
aggregated by GLAD [185], where annotator ability and instance difficulty are modeled.
DL-WC: it learns a neural classifier with labels aggregated by WC [86], where similar
annotators are clustered to share the same confusion matrix. AggNet [2]: an EM-based
deep model considering annotator sensitivity and specificity.

Experiments on synthesized datasets

We evaluate the proposed method under various settings of synthesized data. Particularly,
we demonstrate the effectiveness of our model with different (1) common confusion types;
(2) common noise strength, which is defined as the sum of off-diagonal entries in the com-
mon confusion matrix; and (3) proportion of common noise, which reflects the percentage
of annotations introduced by common confusion.
Datasets description. We generate synthesized crowdsourced data on two datasets, where
we directly manipulate the number of annotators and annotation generation under a variety
of settings. On the Synthetic dataset, we completely synthesized everything. We first sam-
ple a mean vector for every class and then sample instance features from a multi-variate
Gaussian distribution parameterized by this mean vector. In particular, we randomly gen-
erate 10,000 instances with 6 classes, which are split into a 8,000-instance training set, a
1,000-instance validation set and a 1,000-instance testing set. The CIFAR-10 dataset is
generated based on the CIFAR-10 image classification dataset [99]. It consists of 60,000
32× 32 color images from 10 classes, which are split into a 40,000-instance training set, a
10,000-instance validation set and a 10,000-instance testing set. Image features are used to
train the neural classifier on this dataset. In both datasets, each instance in the training set
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is labeled by averaging 3 randomly selected annotators out of 30 in total.

(a) common noise (b) annotator 1 (c) annotator 2 (d) annotator 3

(e) common noise (f) annotator 1 (g) annotator 2 (h) annotator 3

Figure 2.5: Comparison between ground truth confusion matrices and learned ones on
CIFAR-10 dataset. The top row is the result of asymmetric common noise. The bottom
row is the result of symmetric common noise.

Synthesizing annotations. We consider two representative noise patterns in common
noise: (1) Asymmetric confusion. Every class is mapped to another uniformly chosen class
on both datasets. (2) Symmetric confusion. On Synthetic dataset, two random classes are
paired and flipped into each other. And on CIFAR-10 dataset, we manually paired similar
classes (e.g., bird and airplane) to be flipped with each other. For individual confusion
matrices, we use asymmetric confusion. We generate one global confusion matrix, and one
individual confusion matrix for every annotator. In our experiments, the range of common
noise strength is set to [0.4, 0.8], while the individual noise strength of annotators is fixed
to 0.7. In both noise generation patterns, the noise strength is evenly distributed among the
chosen off-diagonal entries.

To control the source of noise in each annotation, i.e., sri , we randomly generate a set
of annotator features u, which are not disclosed to the learners. Given instance feature
vector vi and annotator feature vector ur, we compute ωri by Eq (2.6) with the ground-
truth weight matrices (Wu, bu) and (Wv, bv). These weight matrices are not disclosed to
the learner. The bias terms are used to control the average proportion of common noise
across annotations into a range of [0.3, 0.7]. When we generate annotation yri for instance
i by annotator r, we first sample sri ∼ B(ωri ). If sri = 1, the common confusion matrix
πg will be used; otherwise, individual confusion matrix πr will be used. Then we sample
yri from the chosen confusion matrix based on the true label zi of this instance. We also
include a special case that the proportion is 0, where there is no common confusion.

In our experiments, when studying the influence of common noise strength on the learnt
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classifier, the average proportion of common noise is controlled to be around 0.5. When
studying the influence of the proportion of common noise in each annotation, the common
and individual noise strength is controlled to 0.4 and 0.7 respectively.
Backbone networks & training details. On the Synthetic dataset, we apply a simple
network with only one fully connected (FC) layer (with 128 units and ReLU activations),
along with a softmax output layer, using 50% dropout. On the CIFAR-10 dataset, we follow
the setting of Cao et al. [20] to use VGG-16 as the backbone network. We trained the
network using the Adam optimizer [96] with default parameters and learning rate searched
from {0.02, 0.01, 0.005}. The dimension of annotator and instance embedding is chosen
from {20, 40, 60, 80}. The regularization term λ is searched from {10−4, 10−5, 10−6}. All
experiments are repeated 5 times with different random seeds. Model selection is achieved
by choosing the model with the highest accuracy on the validation set. We report mean
and standard deviation of test accuracy on the five runs. To make the comparisons fair, all
the evaluated methods used the same backbone networks. We implement our framework
with PyTorch, and run it on a CentOS system with one NVIDIA 2080Ti GPU with 10 GB
memory.
Results. We report the results on the CIFAR-10 dataset in Figure 2.4, where our solu-
tion demonstrated consistent improvement against all baselines across all settings. All the
baselines assumed single source of noise, i.e., annotator-specific noise; as a result, they
are heavily influenced when noise become complicated, e.g., a large proportion of mis-
takes from common confusion and the strength of common noise is strong. Our solution is
less sensitive to the environment by decomposing and separately modeling the confusion.
When there is no common confusion, the empirical result shows no significant difference
between our solution and baselines in this extreme setting, which should also be expected.
But we argue that this extreme setting rarely holds in reality, as annotators always share
some commonsense about the world.

DL-MV DL-CL Doctor Net Anno-Reg Max-MIG DL-GLAD DL-WC AggNet CoNAL

LabelMe 79.83±0.34 83.27±0.52 82.12±0.43 82.77±0.48 85.33±0.61 83.12±0.34 82.74±0.33 84.75±0.27 87.12±0.55

Music 72.53±0.41 81.46±0.53 76.58±0.47 79.12±0.36 81.37±0.33 77.82±0.37 75.76±0.24 81.92±0.41 84.06±0.42

Table 2.1: Test accuracy on two real-world crowdsourcing datasets.

All models are influenced by symmetric common noise, which directly makes the
swapped classes similar. Based on the lower bound provided in Theorem 1, similar condi-
tional class distributions in the confusion matrices will make the problem more difficult, so
that the degeneration of all methods are expected under symmetric confusion. In the most
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extreme case where the proportion of common noise is set to 0.7 and the common noise
strength is set to 0.6, nearly 42% annotations are pairwise flipped. However, our method
can still outperform baselines with a large margin. Mix-MIG is believed to be robust to
correlated mistakes if high-quality annotator exists. However, our experiments show that
common confusion poisoned the classifier obtained in Max-MIG even though every an-
notator is of high quality (individual noise strength is set to 0.7). DL-CL and Anno-Reg
failed because they could not differentiate the source of noise, such that the gradients from
the modeled annotations cannot be properly adjusted to update the classifier. Both Doctor
Net and DL-MV are based on majority vote, so that they fail when the annotations across
annotators are no longer independent, i.e., caused by the common confusion. Compared to
methods with complex noise models, DL-GLAD directly models the annotation accuracy,
which is not suitable for class-dependent confusion. DL-WC clusters correlated annotators
to share confusion matrix, which can reduce the influence of common confusion. But the
expertise of each annotator is missing, which leads to its bad performance. AggNet shows
the advantage of directly learning from annotations rather than from aggregated labels. But
it still assumes the only noise source thus cannot handle common noise well.

To understand how accurate our solution can distinguish common and individual noise,
we report the learnt weights of noise adaptation layers against the ground-truth confusion
matrices on the CIFAR-10 dataset in Figure 2.5. In this experiment, we set the common
noise strength to 0.7 and the proportion of common noise to 0.5. We can find that in
most cases the ground-truth common noise pattern is well recovered, especially under the
asymmetric noise pattern.

Experiments on real-world datasets

Datasets description. We consider two real-world datasets. LabelMe [138, 141] is an
image classification dataset, consists of 2,688 images from 8 classes, where 1,000 of them
are labeled by annotators from Amazon Mechanical Turk (AMT)1 and the remainings are
used for validation and testing. Each image is labeled by an average of 2.5 annotators, with
a mean accuracy of 69.2%. Standard data augmentation techniques are used on training
data, including horizontal flips, rescaling and shearing, to enrich the training set to 10,000
images. Music [137] is a music genre classification dataset, consisting of 1,000 samples
of songs with 30 seconds length from 10 music genres, where 700 of them are labeled by
AMT annotators and the rest are used for testing. Each sample is labeled by an average of
4.2 annotators, with a mean annotation accuracy of 73.2%.

1https://www.mturk.com/
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Backbone networks & training details. For LabelMe dataset, we followed the setting
of Rodrigues and Pereira [138]: we apply a pre-trained VGG-16 network followed by a
FC layer with 128 units and ReLU activations, and a softmax output layer, using 50%
dropout. For Music dataset, we use the same FC layer and softmax layer as LabelMe.
Batch normalization [87] is performed in each layer. Other hyper-parameters are the same
as the synthesized experiments.
Results. As reported in Table 2.1, CoNAL achieved new state-of-the-art performance on
both real-world datasets. In particular, we looked into the accuracy on classes where com-
monly made mistakes across annotators are observed (see Figure 2.1). For example, for
open country on LabelMe, its accuracy in CoNAL is 67.21%, while the best baseline Max-
MIG only achieved 54.19%. The good performance aligns with our analysis in Theorem 1,
by differentiating common and individual confusions, it is easier to find the true labels.
Influence of the regularization term λ. We studied the influence of different λ in Table
2.2. The results show by enforcing the noise adaptation layers to be different, the perfor-
mance is improved on both datasets. The value of λ also matters, and 10−5 achieves best
performance empirically.

λ 0 10−4 10−5 10−6

LabelMe 85.68±0.38 86.61±0.41 87.12±0.55 86.26±0.47

Music 82.14±0.31 83.52±0.25 84.06±0.42 82.98±0.37

Table 2.2: Model performance under different λ.

2.2 Mitigating sparsity issue in crowdsourcing via gener-
ative augmentation

2.2.1 Introduction

Modern machine learning systems are data hungry, especially for labeled data, which un-
fortunately is expensive to acquire at scale. Crowdsourcing provides a label collection
schema that is both cost- and time-efficient [15]. It spurs the growing research efforts in
directly learning a classifier with only crowdsourced annotations, aka the learning from

crowds problem.
In practice, to minimize annotation cost, the instances in crowdsourced data are typi-

cally labeled by a small number of annotators; and each annotator will only be assigned to
a few instances. This introduces serious sparsity in crowdsourced data. We looked into two
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widely-used public crowdsourced datasets for multi-class classification, one for image la-
beling (referred to as LabelMe [138, 141]) and one for music genre classification (referred
to as Music [137]). On the LabelMe dataset, each instance is only labeled by 2.5 annotators
on average (out of 59 annotators), while 88% annotators provide less than 100 annotations
(out of 1,000 instances). On the Music dataset, each instance is labeled by 4.2 annotators
on average (out of 44 annotators), while 87.5% annotators provide less than 100 annota-
tions (out of 700 instances). Such severe sparsity hinders the utility of crowdsourced labels.
On the instance side, annotations provided by non-experts are noisy, which are expected to
be improved by redundant annotations. But subject to the budget constraint, redundancy
is also to be minimized. This conflict directly limits the quality of crowdsourced labels.
On the annotator side, most existing crowdsourcing algorithms model annotator-specific
confusions, which are used for label aggregation [43], task assignment [46, 107] and anno-
tator education [152]. But due to the limited observations per annotator, such modeling can
hardly be inaccurate, and thus various approximations (e.g., strong independence assump-
tions [43]) have to be devised.

A straightforward solution to address annotation sparsity is to recruit more annotators
or increase their assignments, at the cost of an increasing budget. This however is against
the goal of crowdsourcing, i.e., to collect labeled data at a low cost. We approach the prob-
lem from a different perspective: we perform data augmentation using generative models
to fill in the missing annotations. Instead of collecting more real annotations, we generate
annotations by modeling the annotation distribution on instances and annotators. Given
our end goal is to obtain an accurate classifier, the key is to figure out what annotations

best help the classifier’s training. We propose two important criteria. First, the generated
annotations should follow the distribution of authentic ones, such that they will be con-
sistent with the label confusion patterns observed in the original annotations. Second, the
generated annotations should well align with the ground-truth labels, e.g., with high mu-
tual information [73, 193], so that they will be informative about ground-truth labels to the
classifier.

We realize our criteria for annotation augmentation in crowdsourced data using Gen-
erative Adversarial Networks (GAN) [62]. The end product of our solution is a classifier,
which predicts the label of a given instance. We set a discriminative model to judge whether
an annotation is authentic or generated. Meanwhile, a generative model aims to generate
annotations following the distribution of authentic annotations under the guidance of the
discriminative model. On a given instance, the generator takes the classifier’s output and
the annotator and instance features as input to generate the corresponding annotation. To
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ensure the informativeness of generated annotations, we maximize the mutual information
between the classifier’s predicted label and the generated annotation on each instance [27].
A two-step training strategy is proposed to avoid model collapse. We name our framework
as CrowdInG - learning with Crowdsourced data through Informative Generative augmen-
tation. Extensive experiments on three real-world datasets demonstrated the feasibility of
data augmentation for the problem of learning from crowds. Our solution outperformed
a set of state-of-the-art crowdsourcing algorithms; and its advantage becomes especially
evident with extremely sparse annotations. It provides a new opportunity for low-budget
crowdsourcing in general.

2.2.2 Related works

Our work studies the learning from crowds problem. Raykar et al. [133] employed an EM
algorithm to jointly estimate the expertise of different annotators and a logistic regression
classifier on crowdsourced data. They followed the well-known Dawid and Skene (DS)
model [43] to model the observed annotations. Albarqouni et al. [2] extended this solution
by replacing the logistic classifier with a deep neural network classifier. Rodrigues and
Pereira [138] further extended the solution by replacing the confusion matrix in the DS
model with a neural network to model annotators’ expertise, and trained the model in an
end-to-end manner. Guan et al. [66] used a neural classifier to model each annotator, and
aggregated the predictions from the classifiers by a weighted majority vote. Cao et al.
[21] proposed an information-theoretical deep learning solution to handle the correlated
mistakes across annotators. However, all the mentioned solutions only use the observed
annotations, such that their practical performance is limited by the sparsity of annotations.

Another research line focuses on modeling the annotators. Whitehill et al. [185] pro-
posed a probabilistic model which considers both annotator accuracy and instance diffi-
culty. Rodrigues, Pereira, and Ribeiro [137] modeled the annotation process by a Gaussian
process. Imamura, Sato, and Sugiyama [86] and Venanzi et al. [173] extended the DS
model by sharing the confusion matrices among similar annotators to improve annotator
modeling with limited observations. Confusions of annotators with few annotations are
hard to be modeled accurately, and Kamar, Kapoor, and Horvitz [90] proposed to address
the issue with a shared global confusion matrix. Chu, Ma, and Wang [33] also set a global
confusion matrix, which is used to capture the common confusions beyond individual ones.
However, the success of the aforementioned models relies on the assumed structures among
annotators or annotations. Such strong assumptions are needed, because the sparsity in the
annotations does not support more complicated models. But they also restrict the modeling
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of crowdsourced data, e.g., introducing bias in the learnt model. We lift such restrictions
by directly generating annotations, such that our modeling of crowdsourced data even does
not make any class- or annotator-dependent assumptions.

Benefiting from their powerful modeling capabilities, deep generative models have
been popularly used for data augmentation purposes. Most efforts have been spent on prob-
lems in a continuous space, such as image and video generations. Semi-supervised GAN
[3, 126, 154] augments training data by generating new instances from labeled ones. Chae
et al. [22] employed GAN to address the data sparsity in content recommendation, with
their proposed real-value, vector-wise recommendation model training. Recently, GAN has
also been adopted in data augmentation for discrete problems. Wang et al. [180] designed
a two-step solution to perform GAN training for collaborative filtering. Wang et al. [176]
unified generative and discriminative graph neural networks in a GAN framework to en-
hance the graph representation learning. Irissappane et al. [88] reduced the needed labeled
data to fine-tune the BERT-like text classification models via GAN-generated examples.

2.2.3 Background

Generative adversarial networks [62] introduced the GAN framework for training deep
generative models as a minimax game, whose goal is to learn a generative distribution
PG(x) that aligns with the real data distribution Ptrue(x). The generative distribution is
imposed by a generative model G, which transforms a noise variable ε ∼ Pnoise(ε) into
a sample G(ε). A discriminative model D is set to distinguish between the authentic and
generated samples. The generator G is trained by playing against the discriminator D. For-
mally,G andD play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (G,D) =Ex∼Ptrue [ϕ
(
D(x)

)
] + Eε∼Pnoise [ϕ

(
1−D(G(ε))

)
],

where ϕ is a function of choice and log(·) is typically the choice. The optimal parame-
ters of the generator and the discriminator can be learned by alternately maximizing and
minimizing the value function V (G,D). In this paper, we adopt this idea to model the
annotation distribution: a generator is used to generate annotations on specific instances
and annotators; and a discriminator is set to distinguish the authentic annotations from the
generated ones.
Information maximizing generative adversarial networks [27] extended GAN with an
information-theoretic loss to learn disentangled representations for improved data gener-
ation. Aside from the value function V (G,D), InfoGAN also maximizes the mutual in-
formation between a small subset of latent variables (referred to as latent code z) and the
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Figure 2.6: Overview of CrowdInG framework. We first sample annotations from annota-
tion distributions provided by the generator. The discriminator and the auxiliary network
are trained on the selected annotations. Then, the classifier is first fixed and the generator
is updated according to LG and LI . The generator is fixed and the classifier is updated
according to LG.

generated data. The generator takes both random noise ε and latent code z as input, where
the latent code is expected to capture the salient structure in the data distribution. The
minimax game then turns into an information-regularized form,

min
G

max
D

VI(G,D) = V (G,D)− λI(z;G(ε, z)),

where I(x; y) is the mutual information between random variables x and y, and λ is the
regularization coefficient.

2.2.4 The CrowdInG framework

Let S = {xn,yn}Nn=1 denote a set of N instances labeled by R annotators out of |C|
possible classes. We define xn ∈ Rd as the feature vector of the n-th instance and yrn ∈ C
as its annotation provide by the r-th annotator. yn is thus the annotation vector (with
missing values) from R annotators for the n-th instance. When available, the feature vector
of the r-th annotator is denoted as er; otherwise, we use a one-hot vector to represent an
annotator. Each instance is associated with an unobserved ground-truth label z ∈ C. The
goal of learning from crowds is to obtain a classifier C(z|x) that is directly estimated from
S.

The framework of CrowdInG is depicted in Figure 3.12. It consists of two main com-
ponents: 1) a generative module, including a classifier and a generator; and 2) a discrimina-
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tive module, including a discriminator and an auxiliary network. In the generative module,
the classifier first takes an instance xn as input and outputs its predicted label distribution
PθC (zn|xn). For simplicity, we collectively denote classifier’s output for an instance xn

as ẑn. And then the generator takes the instance xn, annotator er, the classifier’s output
ẑn, together with a random noise vector ε, to generate the corresponding annotation distri-
bution PθG(y

r
n|xn, er, ẑn, ε). The discriminative module is designed based on our criteria

of high-quality annotations to evaluate the generations. On one hand, the discriminative
module uses a discriminator to differentiate whether the annotation triplet (xn, er, yrn) is
authentic or generated. On the other hand, the discriminative module penalizes the gen-
eration based on the mutual information between the generated annotation and classifier’s
output measured by an auxiliary network. Following the idea of InfoGAN, we treat the
classifier’s output ẑ as the latent code in our annotation generation. And the auxiliary net-
work measures the mutual information between ẑ and y. The two modules play a minimax
game in CrowdInG. A better classifier is expected as the discriminative module faces more
difficulties in recognizing the generated annotations during training.
Generative module. The output of the generative module is an annotation distribution for a
given annotator-instance pair (xn, er). Sampling is applied to obtain the final annotations.
As shown in Figure 3.12, this is a two-step procedure. First, the classifier C(zn|xn; θC)
predicts the label of a given instance xn by

PθC (zn = c|xn) ∝ exp[f(xn, zn = c)],

where f(·) is a learnable scoring function chosen according to the specific classification
tasks. Then the generator G takes the classifier’s output ẑ as input to predict the underlying
annotation distribution for the given annotator-instance pair. Moving beyond the classical
class-dependent annotation confusion assumption [43, 138], we impose a much more re-
laxed generative process about the annotations. We consider the confusions can be caused
by instance difficulty, or annotator expertise, or true labels of the instances (e.g., different
annotation difficulty in different label categories), or even some random noise. To realize
the idea, we provide the feature vector xn of the instance, the annotator er and the classi-
fier’s output ẑn to the generator as input, and the corresponding annotation distribution is
modeled as,

PθG(y
r
n = c|xn, er, ε, ẑn) ∝ exp[g(yrn = c,xn, er, ε, ẑn)], (2.8)

where ε ∼ N (0, 1) is a random noise vector, g(·) is a learnable scoring function imple-
mented via a neural network. The generated annotations are sampled from the resulting
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distribution PθG . To simplify our notations, we use G(xn, er, ε, ẑn) to represent the pre-
dicted annotation distribution; and when no ambiguity is invoked, we denote G(yrn) as its
c-th entry when yrn = c. Thanks to our data augmentation framework, we can afford a more
flexible modeling of the annotation noise, e.g., dropping the hard independence assump-
tions made in previous works [43, 138]. This in turn helps us boost the quality of generated
annotations.
Discriminative module. We realize our principles of high-quality annotations in the dis-
criminative module. First, the discriminator D aims to differentiate whether an annotation
yrn is authentic from annotator er to instance xn, i.e., D(yrn|xn, er; θD) predicts the proba-
bility of annotation yrn being authentic. In a crowdsourcing task, an annotator might con-
fuse a ground-truth label with several classes, such that all of the confused classes could be
independently authentic. For example, if an annotator always confuses “birds” with “air-
planes” in low resolution images, his/her annotations might be random between these two
categories. And thus both types of annotations should be considered as valid, as there is no
way to tell which annotation is “correct” only based on the observations of his/her anno-
tations. As a result, we realize the discriminator as a multi-label classifier, which takes an
annotation triplet (xn, er, yrn) as input and calculates the discriminative score by a bilinear
model,

D(yrn = c|xn, er; θD) = σ(u⊤
r Mcvn), (2.9)

ur = Wuer + bu,vn = Wvxn + bv,

where σ(·) is the sigmoid function, Mc is the weight matrix for class c, (Wv, bv) and
(Wu, bu) are weight matrices and bias terms for annotator and instance embedding layers.
For simplicity, we denote D(yrn) as the discriminator’s output on annotation yrn.

However, Eq (2.9) does not consider the correlation among different classes in the an-
notations, as it still evaluates each possible label independently. The situation becomes
even worse with sparse observations in individual annotators. For example, when an anno-
tator confuses “bird” with “airplanes”, the discriminator might decide the label of “bird”
is more authentic for this annotator, simply because this category appears more often in
the annotator’s observed annotations. To capture such “equally plausible” annotations, we
equip the discriminator with additional label correlation information [101]. Specifically,
we use a graph convolution network (GCN) [98] to model label correlation. Two labels are
more likely to be correlated if they are provided to the same instance (by different annota-
tors) in the authentic annotations. We calculate the frequency of label co-occurrence in the
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observed annotations to construct the adjacency matrix A. Then we extend the weight ma-
trix Mc in Eq (2.9) by M̂c = D̂− 1

2 ÂD̂− 1
2McW , with Â = A+ I where I is the identity

matrix, D̂ is the diagonal node degree matrix of Â. We name this component as the label
correlation aggregation (LCA) decoder. We also enforce sparsity on the discriminator by
applying L2 norm to its outputs.

To realize our second criterion, an auxiliary networkQ is used to measure the mutual in-
formation between the classifier’s prediction ẑn and the generated annotation yrn on instance
xn. To simplify our notations in the subsequent discussions, we denote G(xn, er, ε, ẑn) as
G(ε, ẑ) to represent the annotation distribution predicted on pair (xn, er). As our gener-
ator design is very flexible to model complex confusions, it however becomes useless for
classifier training if the learnt confusions are independent from the classifier’s outputs. For
example, if the generator learnt to generate a particular annotation only by the annotator’s
features (e.g., the most frequently observed label in this annotator), such a generation con-
tributes no information to classifier training. We propose to penalize such generations by
maximizing the mutual information between classifier’s output and the generated annota-
tions for an instance, i.e., I(ẑ;G(ε, ẑ)).

In practice, mutual information is generally difficult to optimize, because it requires
the knowledge of posterior P (ẑ|y). We follow the design in [27] to maximize the varia-
tional lower bound of I(ẑ;G(ε, ẑ)) by utilizing an auxiliary distribution PQ to approximate
P (ẑ|y):

LI(G,Q) = Eẑ∼P (ẑ),y∼G(ε,ẑ)[logPQ(ẑ|y)] +H(ẑ) (2.10)

≤ I(ẑ;G(ε, ẑ)).

We refer to LI as the information loss, which can be viewed as an information-theoretical
regularization to the original minimax game. The auxiliary distribution PQ(ẑ|y) is param-
eterized by the auxiliary network Q. In our implementation, we devise a two-step training
strategy for the entire pipeline (details in Section 2.2.5), where we fix the classifier when
updating the generator. As a result, H(ẑ) becomes a constant when updating the generator
by Eq (2.10). Since the posterior P (ẑ|y) can be different when the annotations are given
by different annotators on different instances, we also provide the instance and annotator
features to the auxiliary network,

PθQ(ẑn = c|xn, er, yrn) ∝ exp[h(ẑn = c,xn, er, y
r
n)],

where h(·) is a learnable scoring function. To reduce model complexity, we reuse the an-
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notator and instance encoding layers from the discriminator here. The class-related weight
matrix M̂c is flatten and transformed to a low-dimension embedding mc by an embedding
layer for each annotation type yrn = c.

Putting the generative and discriminative modules together, we formalize the value
function of our minimax game for learning from crowds in CrowdInG as,

min
C,G,Q

max
D

VCrowdInG(C,G,D,Q) = V (C,G,D)− λLI(G,Q) (2.11)

V (C,G,D) = Ey∼Ptrue [log
(
D(y)

)
] + Eε∼Pnoise,y∼PG(ε,ẑ)

[log
(
1−D(y)

)
],

where λ is a hyper-parameter to control the regularization. The value function is maxi-
mized by updating the discriminator to improve its ability in differentiating the authentic
annotations from the generated ones, and minimized by updating the classifier, generator
and the auxiliary network to generate more high-quality annotations.

2.2.5 Model optimization

In this section, we introduce the training strategy for CrowdInG, which cannot be sim-
ply performed via vanilla end-to-end training. First, the number of unobserved annotator-
instance pairs is much larger than the observed ones. Blindly using all the generated an-
notations overwhelms the training of our discriminative module, and simply leads to trivial
solutions (e.g., classifying all annotations as generated). As our solution, we present an
entropy-based annotation selection strategy to select informative annotations for discrim-
inative module update. Second, due to the required sampling procedure when generating
the annotations, there are non-differentiable steps in our generative module. We resort to
an effective counterfactual risk minimization (CRM) method to address the difficulty. Fi-
nally, the classifier and the generator in the generative module might change dramatically
to fit the complex training signals, which can easily cause model collapse. We propose a
two-step training strategy to prevent it in practice.
Entropy-based annotation selection. We borrow the idea from active learning [146]:
the discriminator should learn to distinguish the most difficult annotations. A generated
annotation is more difficult for the discriminator if the generator is more confident about it.
Formally, the selection strategy is designed as,

P (yrn) ∝
1

H(G(xn, er, ε, ẑn))
,

where H(G(xn, er, ε, ẑn)) is the entropy of the annotation distribution. To reduce training
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bias caused by annotation sparsity in individual annotators, we sample the same number
of generated annotations as the authentic ones in each annotator. As a by-product, our in-
stance selection also greatly reduces the size of training data for the discriminative module.
It makes discriminator training a lot more efficient. To fully utilize the power of discrimi-
native module, we use all generated annotations for the generator updating.
Gradient-based optimization. The gradient for the discriminator and the auxiliary net-
work is easy to compute by calculating the derivative on trainable parameters. How-
ever, due to the required sampling steps for generating specific annotations, there are non-
differentiable steps in the generative module. Previous works [176, 180] use Gumbel-
softmax trick or policy gradient to handle the non-differentiable functions. However, once
the generator is updated, we need to re-sample the annotations and evaluate them again us-
ing the discriminative module, which is time-consuming. To accelerate our model training,
we perform batch learning from logged bandit feedback [89, 161]. In each epoch, we treat
the generative module from the last epoch as the logging policy G0, and sample annota-
tions from it. Because the discriminator only evaluates the sampled annotations from the
(last) generative module, rather than the entire distribution of annotations predicted by the
module, training signals received on the generative module side are in the form of logged
bandit feedback.

When updating the generator, the training signals are from both the discriminator LG =

log
(
1 − D(y)

)
and the information loss −λLI . We collectively denote them as loss δ =

LG − λLI . In each epoch, we update the generator GθG as follows,

θG = argmin
θG

1

NR

N∑
n=1

R∑
r=1

(
δ(yrn)− µ

)
GθG(y

r
n)

G0(yrn)
, (2.12)

where µ is a Lagrange multiplier introduced to avoid overfitting to the logging policy [89].
The optimization of Eq (2.12) can be easily solved by gradient descent. When updating
the classifier, we only use the discriminator’s signals. Intuitively, even though annotations
should contain the information about the true labels, the inverse is not necessary. The
classifier is updated in a similar fashion,

θC = argmin
θC

1

NR

N∑
n=1

R∑
r=1

(
LG(yrn)− µ

)
GθC (y

r
n)

G0(yrn)
. (2.13)

We follow the suggestions in [89] to search the best µ in practice.
Two-step update for the generative module. The generative process is controlled by the
generator and the classifier. However, the coupling between the two components introduces
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(a) (b)

Figure 2.7: Performance of two-step strategy. (a) Mean accuracy of accumulated instances
with ascending order of entropy on three real-world datasets. (b) Comparison between
one-step and two-step strategy on LabelMe dataset.

difficulties in the estimation of them. For example, one component might overfit a partic-
ular pattern in the discriminative signal, and cause model collapse in the entire pipeline.
In our empirical studies reported in Figure 2.7(b), we observed test accuracy fluctuated a
lot when we simply used gradients calculated by Eq (2.12) and (2.13) to update these two
components together.

Based on this finding, we adopt a two-step strategy to update the generator and the
classifier alternatively. First, we found that the principle behind our annotation selection
also applied to our classifier: the entropy of the classifier’s output strongly correlates with
its accuracy. According to Figure 2.7(a), the classifier obtains higher accuracy on instances
with lower prediction entropy. Therefore, we decided to use the instances with low classifi-
cation entropy to update the generator by Eq (2.12), as there the classifier’s predictions are
more likely to be accurate. Then, we use the updated generator on the rest of instances to
update the classifier by Eq (2.13), where the classifier still has a high uncertainty to handle
them.

A threshold t is pre-selected to separate the instances; and we will discuss its influence
on model training in Section 2.2.6. Besides, to make the entire training process stable, we
pre-train the classifier with the observed annotations using neural crowdsourcing algorithm
proposed in [138], which is included as one of our baselines. With the initialized classifier,
we also pre-train the generator and discriminator to provide good initialization of these
components.

2.2.6 Experiments

In this section, we evaluate our proposed solution framework on three real-world datasets.
The annotations were originally collected from Amazon Mechanical Turk (AMT) by the
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(a) Results on LabelMe dataset.

(b) Results on Music dataset.

(c) Results on CIFAR-10H dataset.

Figure 2.8: Results on three real-world datasets. Full CrowdInG training is applied after
the dashed line.

dataset creators. We compared with a rich set of state-of-the-art crowdsourcing algorithms
that estimate the classifiers only with observed annotations. We are particularly interested
in investigating how much human labor can be saved by our data augmentation solution?
We gradually removed an increasing number of annotations and compared with baselines.
The result suggests significant annotation cost can be reduced with our generated annota-
tions, while still maintaining the quality of the learnt classifier. Besides, since our model
is the first effort to augment crowdsourced data for classifier training, we compared with
models trained with annotations from other generative models for crowdsourced data. Fi-
nally, we performed extensive ablation analysis about our proposed model components and
hyper-parameters to better understand the model’s behavior.

Main results

Datasets & implementation details. We employed three real-world datasets for evalu-
ations. LabelMe [138, 141] is an image classification dataset, which consists of 2,688
images from 8 classes, e.g., inside city, street, forest, etc. 1,000 of them are labeled by
59 AMT annotators and the rest are used for validation and testing. Each image is labeled
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by 2.5 annotators on average. To enrich the training set, standard data augmentation tech-
niques are applied on the training set, including horizontal flips, rescaling and shearing,
following the setting in [138]. We created 10,000 images for training eventually. Music
[137] is a music genre classification dataset, which consists of 1,000 samples of songs with
30 seconds in length from 10 classes, e.g., classical, country, jazz, etc. 700 of them are la-
beled by 44 AMT annotators and the rest are left for testing. Each sample is labeled by 4.2
annotators on average. Figure 2.9 shows several important statistics of these two datasets.
Specifically, we report the annotation accuracy and the number of annotations among the
annotators. Both statistics vary considerably across annotators in these two datasets, which
cause serious difficulties in classical crowdsourcing algorithms. CIFAR-10H [129] is an-
other image classification dataset, which consists of 10,000 images from 10 classes, e.g.,
airplane, bird, cat, etc., collected from the CIFAR-10 image dataset [99]. There were 2,571
annotators recruited and each annotator was asked to label 200 images. However, such
large-scale annotations are typically expensive and rare in practice. To make this dataset
closer to a realistic and challenging setting, we only selected a subset of low-quality an-
notators. The modified dataset has 8,687 images annotated by 103 AMT annotators. Each
annotator still has 200 annotations with an average accuracy of 78.2%; and each image has
2.37 annotations on average. The original 10,000 images validation set of CIFAR-10 is
used as our testing set.

(a) LabelMe (b) Music

Figure 2.9: Boxplots for the number of annotations and the accuracy of the AMT annotators
for two real-world crowdsourcing datasets.

To make the comparisons fair, all evaluated methods used the same classifier design (in
both CrowdInG and baselines). On the LabelMe dataset, we adopted the same setting as
in [138]: we applied a pre-trained VGG-16 network followed by a fully connected (FC)
layer with 128 units and ReLU activations, and a softmax output layer, using 50% dropout.
On the Music dataset, we also used a 128 units FC layer and softmax output layer. Batch
normalization was performed in each layer. We disabled LCA on Music since there is
no meaningful label correlation patterns. On the CIFAR-10H dataset, we used a VGG-16
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Figure 2.10: Test accuracy with various proportion of removed annotations.

network for the classifier. Scoring functions g(·) and h(·) are implemented by two-layer
neural networks with 64 and 128 hidden units. In each epoch, we update the generative and
discriminative modules for 5 times. With pre-training, we execute the training procedures
for CrowdInG in the last 40 epochs. All experiments are repeated 5 times with different
random seeds, and mean accuracy and standard derivation are reported.

Table 2.3: Test accuracy of different augmentation methods.

LabelMe Music CIFAR-10H
Doctor Net 82.12±0.43 75.41±0.42 67.23±0.54

DL-CL+Self 85.24±0.51 82.56±0.49 64.94±0.84

DL-CL+GCN 82.74±0.34 81.42±0.74 65.02±0.61

DL-CL+GAN 85.16±0.26 83.17±0.48 65.34±0.32

DL-CL+InG 85.42±0.57 83.38±0.59 66.17±0.35

CrowdInG 87.03±0.55 83.73±0.62 68.85±0.47

Baselines. We compared with a rich set of state-of-the-art baselines, which we briefly in-
troduce here. DL-MV: annotations are first aggregated by majority vote, and then it trains
a classifier based on the aggregated labels. DL-CL [138]: a set of designated layers that
capture annotators’ confusions (the so-called Crowd Layer) are connected to the classifier,
aiming to transform the predicted classifier’s outputs to annotation distributions. Anno-
Reg [163]: trace regularization on confusion matrices is applied to improve the confusion
estimation. Max-MIG [21]: a neural classifier and a label aggregation network are jointly
trained using an information-theoretical loss function, correlated confusions among anno-
tators are captured. AggNet [2]: an EM-based deep model considering annotator sensitivity
and specificity.
Results & analysis. The classification accuracy of the learnt classifiers from different
models on the three datasets are reported in Figure 2.8. Two things we should highlight:
1) as all models are learnt from crowdsourced data, the ground-truth labels on instances
are unrevealed to them in training. Therefore, a classifier’s accuracy on training set is
still a meaningful performance metric. 2) CrowdInG starts with the same classifier as
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obtained in DL-CL (as we used DL-CL to pre-train our classifier). On all datasets, we
observe that even though DL-CL did not outperform the other baselines, after the training
in CrowdInG starts, the classifier’s performance got significantly improved. This proves
the utility of our generated annotations for classifier training. Besides, we also looked into
the accuracy in individual classes and found by generating more annotations, CrowdInG’s
performance on those easily confused classes got more improvement than the baselines.
For example, for the class of open country on LabelMe, the original annotation accuracy
was only 51.5%. DL-CL achieved 49.6% (i.e., the starting point of CrowdInG), and it was
improved to 58.9% after CrowdInG training. Compared with models that are designed for
complex confusions, such as Max-MIG and AggNet, CrowdInG still outperformed them
with a large margin. This indicates our generator has a stronger advantage in capturing
complex confusions.

Utility of augmented annotations

Experiment setup. We study the utility of augmented annotations from CrowdInG. On
each dataset, we gradually removed an increasing number of observed annotations to in-
vestigate how different models’ performance changes. We ensure that each instance has at
least one annotation, such that we will only remove annotations rather than instances for
classifier training. We compared with two representative baselines: 1) DL-MV, a typical
majority-vote-based method, and 2) DL-CL, a typical DS-model-based method, to study
their sensitivity on the sparsity of annotations.
Results & analysis. We present the results in Figure 2.10. All models suffered from ex-
treme sparsity when we removed a large portion of annotations (e.g., 60%), but CrowdInG
still enjoyed a consistent improvement against all baselines. DL-MV performed the worst,
because with less redundant annotations, the quality of its aggregated labels deteriorated
seriously. When we looked into the detailed model update trace of CrowdInG, we found
that the performance gain became larger after CrowdInG training. Again, because we used
the classifier obtained from DL-CL as our starting point for CrowdInG, low-quality anno-
tations were generated at the beginning of CrowdInG update. However, CrowdInG quickly
improved once its discriminative module started to penalize those low-quality annotations.
The results strongly support that a great deal of human labor can be saved. On LabelMe
and CIFAR-10H, CrowdInG performed closely to the baselines’ best performance even
with 60% less annotations. Even on the most difficult dataset Music, about 10% annota-
tions can be saved by CrowdInG to achieve similar performance as DL-CL.
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Comparison with other augmentations

Baselines. As no existing method explicitly performs data augmentation for crowdsourced
data, we consider several alternative data augmentation methods using various self-training
or generative modeling techniques. Arguably, any generative model for crowdsourced data
can be used for this purpose. In particular, we chose the following baselines. Doctor Net
[66]: each annotator is modeled by an individual neural network. When testing, annota-
tions are predicted by annotator networks and then aggregated by weighted majority vote.
DL-CL+Self: we complete the missing annotations using a pre-trained DL-CL model, and
then train another DL-CL model based on the completed annotations. DL-CL+GCN: we
construct an annotator-instance bipartite graph based on the observed annotations, and fill
in the missing links using a Graph Convolution Network (GCN) [10, 98]. Then we train a
DL-CL model using the expanded annotations. DL-CL+GAN: we follow the same design
in [178], which unifies generative and discriminative models into a GAN framework. We
use DL-CL as the generative model. DL-CL+InG: we directly train a DL-CL model on the
expanded dataset provided by CrowdInG.
Results & analysis. We present the test accuracy on all three datasets in Table 2.3. Doctor
Net trains individual classifiers for each annotator, so that on datasets where annotations
from each annotator are sufficient, such as CIFAR-10H, this model obtained satisfactory
performance with the generated annotations. But on the other datasets where annotations
are sparse in each annotator, its performance dropped a lot. In DL-CL type methods, the
performance is generally improved. However, due to the simple class-dependent confusion
assumption, such models’ capacity to capture complex confusions is limited. As a result,
even though GCN could capture more complex annotator-instance interactions, DL-CL still
failed to benefit from it in DL-CL+GCN. The added discriminator in DL-CL+GAN improved
the performance; however, DL-CL still could not fully utilize the complex discriminative
signals and failed to further improve the performance. DL-CL+InG performed better than the
other baselines by directly using the annotations generated by CrowdInG, which suggests
the annotations generated under our criteria are generically helpful for other crowdsouring
algorithms.

Ablation study

Analysis of different components in CrowdInG. To show the contributions of different
components in CrowdInG, we varied the setting of our solution. We already showed the
one-step training variant in Figure 2.7, which suffered from serious model collapsing. To
investigate the other components, we created the following variants. CrowdG: the infor-
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Table 2.4: Test accuracy of different variants of CrowdInG

LabelMe Music CIFAR-10H
CrowdG 85.89±0.47 83.14±0.28 66.15±0.34

CrowdInGU 83.12±0.39 81.28±0.51 67.12±0.59

CrowdInGI 84.34±0.72 82.24±0.47 66.90±0.31

CrowdInGR 86.17±0.44 82.74±0.58 67.88±0.62

CrowdInG 87.03±0.55 83.73±0.62 68.85±0.47

mation loss defined in Eq (2.10) is removed. CrowdInGU: the generator only considers
classifier’s outputs, annotator features and random noise, but not the instance features.
CrowdInGI: the generator only considers classifier’s outputs, instance features and ran-
dom noise, but not the annotator features. CrowdInGR: the annotation selection is kept,
but instead we randomly select an equal number of generated annotations as the authentic
ones for discriminator update.

We reported the test accuracy on three datasets in Table 3.6. By maximizing the mutual
information, CrowdInG outperformed CrowdG with a considerable margin. We further
investigated the generated annotations and found the annotations generated by CrowdG
were more random, which could not be easily linked to the classifier’s output. CrowdInGU

performed poorly when the number of annotations per annotator was limited, such as on
LabelMe and Music datasets, but worked better when annotations per annotator are ade-
quate, such as on CIFAR-10H. This again proves more annotations are needed to better
model annotators’ confusions. CrowdInGI performed better because by taking instance
features, the generator can model more complicated confusions with respect to instance
features. CrowdInGR bypassed the data imbalance issue; but without focusing on difficult
annotations, it still cannot fully unleash the potential of generated annotations.

Figure 2.11: Performance under different hyper-parameter settings on LabelMe dataset.

Hyper-parameter analysis. We studied the sensitivity of hyper-parameters λ and t in
CrowdInG. Specifically, λ controls the degree of the information regularization in Eq
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(2.11), we varied it from 0.1 to 1. t controls the grouping of instances used for classi-
fier update; and we varied it from 0.2 to 0.8. Due to space limit, we only report the results
on LabelMe, similar observations were also obtained on the other two datasets.

The model’s performance under different hyper-parameter settings is illustrated in Fig-
ure 2.11. We can clearly observe that the performance is boosted when appropriate hyper-
parameters are chosen. Small λ poses weak information regularization to the generator, and
thus the generated annotations are less informative for classifier training. Large λ slightly
hurts the performance because strong regularization weakens the ability of the generator
to capture complex confusions related to instance and annotator features. We can observe
similar trend on t. To avoid model collapse, a moderate t is needed to restrict the classifier
training, but a large t will hurt the performance more. Because with a large t, very few
instances will be selected for classifier training, so that the classifier can hardly be updated.

2.3 Enhancing low-fidelity LLMs to high-fidelity perfor-
mance via weak comparisons

2.3.1 Introduction

Large Language Models (LLMs) have shown remarkable capabilities across a wide range
of domains that require intricate natural language understanding and reasoning, such as
mathematical reasoning/problem solving [40, 183], code generation/programming [5, 25],
creative writing [197], etc. A significant step in refining LLMs is the post-pretraining
alignment, which involves reinforcing behaviors highly rated by human annotators and
penalizing behaviors that evaluators rate poorly [31, 59, 127]. There are two mainstream
alignment methods: Supervised Fine-Tuning (SFT) [127, 168] based on human-written
demonstrations on given prompts, and Reinforcement Learning from Human Feedback
(RLHF) [8, 31, 127] based on human preferences on pairs of responses.

The aforementioned alignment methods require a substantial amount of high-quality
human annotated data, posing challenges for those with limited budgets and resources to
gather such data. This motivates us to study a more realistic setting where human annota-
tors exhibit different levels of fidelity (i.e., expertise), and a challenge is naturally arised:
how to improve the LLMs trained with low-fidelity data? As shown in Figure 2.12, LLMs
trained with data from annotators of varying fidelity exhibit differing performance levels.
To improve low-fidelity LLMs, we propose to utilize guidance from high-fidelity LLMs.
To simplify our discussion, we refer to the fidelity of LLMs as indicative of the fidelity
of their training data and we consider a set of LLMs with varing fidelity. To realize our
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Figure 2.12: Win rates vs. chosen responses on the Anthropic-HH dataset. An opt-1.3b
model, trained with data of varying fidelity (indicated by noise rates) using the DPO algo-
rithm [130], shows a significant drop in performance on low-fidelity datasets.

idea, we develop a Guided Fine-Tuning (GFT) framework where we derive guidance by
comparing the responses to same prompts from both low-fidelity and high-fidelity models.
And this comparative guidance is used as weak supervisions to fine-tune low-fidelity mod-
els, enhancing their performance through informed adjustments. Low-fidelity models are
anticipated to filter out noise learned from low-fidelity datasets with the guidance provided
by high-fidelity models. Experiments on the single-turn dialogue generation task shows the
effectiveness and efficiency of the proposed method.

2.3.2 Related works

Alignment from human feedback. Typical alignment methods include Supervised Fine-
Tuning (SFT) based on human-written demonstrations and Reinforcement learning from
human feedback (RLHF) based on human preferences [127]. The standard RLHF assumes
the human preferences follow a Bradley-Terry model [14] for pairwise comparisons or a
Plackett-Luce model [67] for multi-wise comparisons, and minimize the cross-entropy loss
to learn a reward model [216]. After learning the reward model, RLHF further fine-tunes
the language model using RL techniques (e.g., PPO [144]) according to the scores from the
learned reward model, aligning the model with human preferences. Rafailov et al. [130] in-
troduce direct policy optimization (DPO) which bypasses the reward model learning stage.
It optimizes an implicit reward model derived from the likelihood ratio between chosen
responses and rejected responses. Both RLHF and DPO need a reference model to avoid
large model updates. Hong, Lee, and Thorne [79] develop a reference model-free method
to learn from preference data. However, the aforementioned methods rely on either high-
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quality human-written demonstrations, human preferences, or a combination of both. In
this paper, we propose a framework to improve low-fidelity LLMs through the outputs of
high-fidelity LLMs. It requires no additional human labors for writing demonstrations or
judging LLMs’ responses.
Student-teacher training. In student-teacher training, we first train a teacher model and
then train a student model based on teacher’s pseudo-labels. This framework is widely
used in semi-supervised learning [100, 164], domain adaptation [56, 149], and knowledge
distillation [64, 78]. Recently, Burns et al. [16] discuss a specific setting where the student
is much more capable than the teacher. And they find the weak-to-strong generalization

phenomenon where the strong student can surpass the weak teacher in some scenarios. In
this work, we study the setting where the teacher model is trained on high-fidelity data,
while the student model is trained on low-fidelity data, while the teacher model is not
necessary to have more parameters than the student model. We anticipate that the noise
present in the student model can be mitigated by comparing the outputs of both the student
and teacher models, thereby refining the student model’s performance.

2.3.3 Preliminaries

We consider a large language model (LLM) fθ parameterized by θ. Essentially, fθ rep-
resents a probability distribution over a predefined vocabulary space V . The model takes
a sequence x = [x1, ..., xn] as input, commonly referred as the prompt, to generate the
corresponding response y = [y1, ..., ym]. The response y can be seen as a sample from the
conditional probability distribution fθ(·|x). The autoregressive model fθ generate tokens
sequentially for a given position, leveraging only the sequence of previously generated
tokens. This model there for constitutes a Markov process, where the log-likelihood of
generating y can be expressed as follows,

log fθ(y|x) =
m∑
j=1

log fθ(yj|x,y<j), (2.14)

where y<1 is null and y<j = [y1, ..., yj−1] for j = 2, ...,m. In the following, we review
several mainstream alignment approaches.
Supervised fine-tuning. Supervised fine-tuning (SFT) [127] is employed to tailor a pre-
trained LLM to specific downstream tasks, by leveraging a high-quality dataset DSFT =

{xi,yi}i∈[|DSFT|]. In this context, y is typically a high-quality response written by human
annotators for the corresponding prompt x. Consequently, the objective of SFT is to mini-
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mize the following negative log-likelihood loss,

LSFT(θ) = −E(x,y)∼DSFT

[
log fθ(y|x)

]
. (2.15)

After the SFT training, the LLM is expected to produce outputs similar to the responses
provided by humans. Thus, if the quality of SFT datasets is not sufficiently high, it becomes
a bottleneck for the quality of the trained LLM.

LSFT(θ) = −Ex,∼DGFT,ŷ∼gϕ(x)

[
log fθ(ŷ|x)

]
. (2.16)

Reinforcement learning from human feedback. Reinforcement learning from human
feedback (RLHF) [8, 31] offers a method to align pretrained LLMs with human prefer-
ences. A reward function rψ(x,y) is essential for RLHF, which is parameterized by ψ.
The reward function reflects human preferences for the response y given the prompt x,
where a higher value indicates a better response. The objective of the RLHF is to maxi-
mize the following objective function,

LRLHF(θ) = E(x,y)∼DRLHF

[
rψ(x,y)− λKL(fθ(y|x) ∥ fθref(y|x))

]
, (2.17)

where the Kullback-Leibler (KL) regularization term enforces the trained model fθ to be
close to the reference model fθref , and λ > 0 is the hyper-parameter to control the degree of
regularization. θref is typically set as the model parameters after the SFT training. DRLHF is
another prompt-response dataset held out for RLHF training.

To train the reward function, an additional preference dataset Dpref = {xi,ywi ,yli}i∈[|Dpref|]

is typically required. For the same prompt x, given two responses yw and yl, a human an-
notator evaluates that yw is preferred over yl. Hence, the loss function for the reward model
is,

Lrew(ψ) = −E(x,yw,yl)∼Dpref

[
log(σ(rψ(x,y

w)− rψ(x,y
l)))

]
, (2.18)

where σ is the sigmoid function. For successful RLHF training, a high-quality preference
dataset is essential.
Direct policy optimization. Rafailov et al. [130] propose the direct policy optimization
(DPO) algorithm to bypass the reward function training,

LDPO(θ) = −E(x,yw,yl)∼Dpref

[
σ(λ log

fθ(y
w|x)

fθref(y
w|x) − λ log

fθ(y
l|x)

fθref(y
l|x))

]
. (2.19)

Odds ratio preference optimization. Hong, Lee, and Thorne [79] develop a reference
model-free method ORPO to learn from preference data,
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LORPO(θ) = −E(x,yw,yl)∼Dpref

[
log fθ(y

w|x) + λ log σ
(
logORθ(y

w,yl)
)]
, (2.20)

where ORθ(y
w,yl) refers to the odds ratio, indicating the likelihood that the model θ

generates yw compared to yl. The definition can be found in the original paper [79]. From
the form of the above objective, we can see ORPO as a combination of SFT and DPO.
Discussion. From the above discussion, it becomes clear that high-quality human annota-
tors are indispensable for all fine-tuning methods, whether for demonstrations in SFT or
preference labels in preference optimization methods. However, given the high costs as-
sociated with recruiting human annotators and implementing rigorous quality control, data
quality remains a challenge for parties with limited budgets.

2.3.4 Methodology

In this section, we describe our Guided Fine-Tuning (GFT) framework (as shown in Fig-
ure 2.13) in detail. We consider a low-fidelity dataset Dlofi and the corresponding LLM
pretrained on it fθ which is parameterized by θ. Meanwhile, we have another high-fidelity
dataset Dhifi and the corresponding LLM pretrained on it gϕ which is parameterized by ϕ.
In this paper, we assume the LLMs are capable of fully learning the patterns in the datasets
in the pretraining stage, thus the fidelity of the datasets determines the fidelity of the cor-
responding LLMs. Considering data is now a vital asset for companies, which may share
trained models without revealing their datasets, we assume the pretraining data for LLMs
is inaccessible. Thus, our goal is to improve a low-fidelity LLM with the guidance from
a high-fidelity LLM. The high-fidelity model could be either an open-source model (e.g.,
LLaMA2) or a closed-source model (e.g., ChatGPT3).

We present the algorithm of GFT in Algorithm 1. As previously discussed, the high-
fidelity datasets are inaccessible, making it challenging to fine-tune low-fidelity LLMs us-
ing SFT or RLHF. Thus, we acquire a prompt dataset DGFT = {(x)i}i∈[N ]. Here, we em-
ploy the high-fidelity LLM to generate responses to the prompt x, using these predictions
to fine-tune the low-fidelity LLM.

For a given prompt dataset DGFT, we excute the following two steps:

1. Create weak supervision using the high-fidelity LLM. In line 5 of Algorithm 1,
we generate response yi to a prompt xi using gψ. These responses do not constitute
strong supervision due to potential biases and limitations inherent in gψ. However,

2https://llama.meta.com/llama2/
3https://openai.com/gpt-4
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Figure 2.13: Overview of Guided Fine-Tuning (GFT).

they can still serve as weak supervision, given their relatively better performance
compared to the low-fidelity model.

2. Train the low-fidelity LLM with weak supervision. The responses from the high-
fidelity model can be directly utilized for the SFT training. Also, we can pair the
response for the same x from the low-fidelity model as synthetic preference datasets
for the RLHF training. We report the results of a set of off-the-shelf optimization
algorithms discussed in Section 2.3.3 in this step.

As demonstrated in Algorithm 1, the procedure can be repeated for T iterations. Con-
sidering fθ is continuously improving, gψ could provide less useful training signals, thus
we set a stop criterion ϵ in line 10.
Remark. GFT is a general framework as it can pair any low-fidelity and high-fidelity
models, and improve the low-fidelity model without the need for access to high-fidelity
data or the requirement of extra human effort for data labeling. However, it also has some
limitations: 1) The potential bias and limitations of the high-fidelity model could be learned
by the low-fidelity model. 2) The high-fidelity model could not be rigorously better than
the low-fidelity model in any domains, thus the general performance of the low-fidelity
model could decrease.

2.3.5 Experiments

In this section, we empirically evaluate GFT’s ability to improve low-fidelity LLMs.
Dataset. We consider the single-turn dialogue generation task and utilize the Anthropic
Helpful and Harmless dialogue dataset (abbr., Anthropic-HH) [8]. Given a human query
x, which could be anything from a question about quantum physics to recipe of ice cream
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Algorithm 1: Guided Fine-Tuning (GFT)
1 Input:DGFT = {(xi)}i∈[N ]: Prompt dataset, fθ0: low-fidelity model with

parameter θ0, gϕ: high-fidelity model with parameter ϕ, T : Number of iterations,
ϵ: Stop criterion;

2 for t = 0, ..., T − 1 do
3 Dt = ∅;
4 for i = 1, ..., N do
5 Generate synthetic chosen response ywi ∼ gϕ(·|xi);
6 Generate synthetic rejected response yli ∼ fθt(·|xi);
7 Dt = Dt ∪ {xi,ywi ,yli};
8 end
9 Update θt+1 using SFT or preference optimization methods;

10 if ∥θt+1 − θt∥ ≤ ϵ then
// Quit the loop if the model stops updating

11 break;
12 end
13 end

cake, an LLM is expected to produce an engaging and helpful response y to the user’s
query. This dataset contains 70k dialogues between human users and an automated assis-
tant. Each dialogue ends with a pair of responses generated by a large (although unknown)
language model along with a preference label denoting the human preferred response.
Evaluation. We follow [130] to evaluate algorithms with their win rate against a baseline
policy, using GPT-4 as a proxy for human evaluation of response helpfulness. Specifically,
we use the preferred response in the test dataset as the baseline. To save the evaluation cost,
we hold out 100 samples from the test set to calculate the win rate. Besides win rate, we
also report lose rate and tie rate for a more comprehensive analysis.
Implementation details. We use a fine-tuned opt-1.3b model4 as the base model. To
simulate the low-fidelity dataset, we randomly flip the preference labels of the Anthropic-
HH dataset with a 50% probability and then fine-tune the base model on this corrupted
dataset using the DPO algorithm. We denote this model as opt-1.3b-noise. We
train another opt-1.3b on the raw dataset and use it as the high-fidelity model, denoted
by opt-1.3b-dpo. We also incorporate different optimization algorithms in GFT: We
experiment with SFT and DPO independently, and also explore a combined approach where
we first apply SFT followed by DPO (SFT+DPO). Additionally, we also report the results
with ORPO, which is another way to combine SFT and preference optimization.

4https://huggingface.co/AdamG012/chat-opt-1.3b-sft-deepspeed
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Table 2.5: Win rate on Anthropic-HH. We use opt-1.3b-noise as the low-fidelity
LLM, and opt-1.3b-dpo as the high-fidelity LLM.

Win rate Lose rate Tie rate

opt-1.3b-noise 0.32 0.44 0.24

GFT

SFT 0.39 0.41 0.20
DPO 0.43 0.35 0.22

SFT+DPO 0.44 0.36 0.20
ORPO 0.46 0.38 0.16

opt-1.3b-dpo 0.44 0.3 0.26

Table 2.6: Win rate on Anthropic-HH. We use opt-1.3b-sft as the low-fidelity LLM,
and mistral-7b-dpo as the high-fidelity LLM.

Win rate Lose rate Tie rate

opt-1.3b-sft 0.29 0.39 0.32

GFT

SFT 0.59 0.18 0.23
DPO 0.60 0.31 0.09

SFT+DPO 0.69 0.16 0.15
ORPO 0.71 0.13 0.16

mistral-7b-dpo 0.84 0.02 0.14

Results & analysis. We report the results in Table 2.5. After the GFT training, the perfor-
mance of the low-fidelity model significantly improved, even slightly surpassing that of the
high-fidelity model with respect to win rate. In GFT, we construct weak preference labels
using generated responses from the low-fidelity model, serving as a form of on-policy eval-
uation in contrast to off-policy evaluation, which would utilize rejected responses in the
original dataset. Thus our approach opens up possibilities to outperform the high-fidelity
model, especially when their capacities are comparable, as we observed in the experiments.
The experiment results indicate without denoising the raw noisy training data, GFT is able
to improve the low-fidelity model from the guidance of the high-fidelity model.
Can GFT effectively learn from more capable model? We also consider a setting where
the high-fidelity model is the more capable mistral-7b-dpo, which comprises 7 bil-
lion parameters. Concurrently, we employ opt-1.3b-sft as the low-fidelity model.
The results are reported in Table 2.6. However, a performance gap from the high-fidelity
model remains, which we hypothesize is attributable to both the capacity and the quality
of the pre-training data of the base model. We also observe that combining SFT and pref-
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erence optimization methods yields better performance than using them separately, such
as SFT+DPO and ORPO. This suggests that when the high-fidelity model is more capa-
ble than the low-fidelity model, SFT is an important step to mimic the behavior of the
high-fidelity model. After SFT, synthetic preference data play an important role to further
fine-tune the model.
Sample efficiency. We further study the sample efficiency of GFT in Figure 2.14, where
we vary the number of samples from the high-fidelity model. We report the results with
the best optimization algorithm ORPO observed in Table 2.5. The performance of the low-
fidelity model was observed to converge rapidly with just a few hundred examples provided
by the high-fidelity model. The phenomena indicates the noise contained in a low-fidelity
model can be efficiently mitigated with the guidance from a high-fiedlity model.

(a) Low-fidelity LLM is opt-1.3b-noise
and high-fidelity LLM is opt-1.3b-dpo.

(b) Low-fidelity LLM is opt-1.3b-sft and
high-fidelity LLM is mistral-7b-dpo.

Figure 2.14: Win rates w.r.t. number of samples.

2.4 Conclusion

In this chapter, we investigate the problem of learning from noisy human feedback from
various aspects. Firstly, aside from the widely employed independent noise assumptions
across annotators, in [33], we decompose annotation noise into common and individual
confusions. We used neural networks to realize our probabilistic modeling of crowdsourced
data, and estimate each component in our solution in an end-to-end fashion. Extensive
empirical evaluations confirm the advantage of our solution in learning from complicated
real-world crowdsourced data.

Secondly, data sparsity poses a serious challenge to current learning from crowds so-
lutions. In [35], we present a data augmentation solution using generative adversarial net-
works to handle the issue. We proposed two important principles in generating high-quality
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annotations: 1) the generated annotations should follow the distribution of authentic ones;
and 2) the generated annotations should have high mutual information with the ground-
truth labels. We implemented these principles in our discriminative model design. Exten-
sive experiment results demonstrated the effectiveness of our data augmentation solution in
improving the performance of the classifier learned from crowds, and it sheds light on our
solution’s potential in low-budget crowdsourcing in general.

Thirdly, data quality determines the performance of fine-tuned LLMs. We propose
leveraging the knowledge from high-fidelity LLMs to eliminate the noise present in low-
fidelity LLMs. To realize it, we develop a guided fine-tuning framework by comparing the
responses to same prompts from both low-fidelity and high-fidelity models. Experiments
on a single-turn dialogue benchmark show that our method not only effectively improves
the performance of low-fidelity models but also efficiently achieves this with only a few
samples provided by high-fidelity models.

In conclusion, our study offers valuable insights and practical techniques for addressing
challenges in learning from noisy human feedback. Through detailed analysis and investi-
gation of noise generation, issues of sparsity, and strategies for noise reduction in human
feedback, we lay the groundwork for creating algorithms that allow modern information
systems to effectively and efficiently learn from real-world human feedback.
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Chapter 3

Learning from Interactive Human
Feedback

As we discussed in Chapter 1, human users play a more important part in modern human-
system ecosystems. A system’s ability to remain competitive in the market is significantly
dependent on its mechanism for interpreting and eliciting user feedback. Without this,
the system risks losing efficacy over time. In this chapter, we focus on improving the
the sustainability of human-system interactions. Our approaches involve the development
of more sophisticated and efficient algorithms designed to learn and adapt personalized
systems, aiming to optimize user engagement and system responsiveness over time.

3.1 Multi-objective intrinsic reward learning for conver-
sational recommendation systems

3.1.1 Introduction

Conversational recommender systems (CRS) leverage interactive conversations to delin-
eate a user’s preferences [37, 105, 208]. The conversations revolve around questions aimed
at discerning users’ preferences on specific item attributes (e.g., music genres). Through an
interactive process of questions and answers, a profile about a user’s intended item can be
depicted. Numerous CRS formulations have been proposed [26, 29, 30]. In this work, we
investigate a prevalent CRS setting known as the multi-round conversational recommenda-
tion [47, 105], where a CRS agent can ask a question or recommend an item in consecutive
rounds of conversations. The conversation continues until the user accepts the recommen-
dation (indicating a successful conversation) or quits the conversation (considered as a
failed conversation).

CRS fundamentally embodies a sequential decision making problem, for which numer-

46



ous reinforcement learning (RL)-based solutions have been proposed [37, 105]. However,
as the users only provide textual or binary responses (e.g., accepting or rejecting the in-
quired attributes), existing RL-based solutions heavily rely on heuristic reward functions
that are manually defined to train CRS policies. These reward functions, such as promot-
ing attributes accepted by a user and penalizing those rejected, may not accurately reflect
user intent due to their heuristic nature. This becomes problematic since the effective-
ness of CRS policy learning largely depends on the quality of pre-defined reward function
– an inadequately designed reward function can lead to solutions that significant deviates
from optimality. Additionally, these arbitrary reward functions can inadvertently distort the
modeling of conversation states, influencing the subsequent actions taken by the RL agent.

Arguably, an effective reward function should promote actions that lead to more precise
modeling of users’ preferences. As a result, different attributes or items, including those
rejected, can each uniquely contribute to user preference modeling. As an example illus-
trated in Figure 3.1, even though Heavy metal rock is rejected by the user, it still, to certain
extent, contributes to identifying the target item, Hey Jude. However, existing handcrafted
heuristic reward functions fall short in delivering information at this granularity, as they
assign uniform rewards to all accepted or rejected actions. This motivates us to learn a

reward function that enables more fine-grained policy learning.

Yes!

Do you like Pop music? 

Do you like Britpop? 

I suggest Hey Jude.

I like it!

Yes!

Accepted, but too general
Preference: [Pop]

Accepted, and helpful
Preference: [Pop, Britpop]

Correct recommendation

Do you like Rock music? 

No!

Rejected, but helpful
Preference: [Rock, Britpop, Rock, 

¬Heavy metal Rock]

Actions should be encouraged 

Do you like Heavy
metal rock? 

Yes!

Accepted, and helpful
Preference: [Pop, Britpop, Rock]

Figure 3.1: Motivating example of intrinsic reward learning.

Instead of manually define reward functions, we introduce a principled approach to re-
ward learning for CRS, where we learn a intrinsic reward for each action taken by the agent
utilizing the optimal rewards framework [150]. This framework delineates the optimal in-
trinsic reward function as the one that, when employed by an RL agent, fosters behaviors
that optimize the task-specific or extrinsic rewards – in the case of CRS, successful recom-
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mendations.
Two notable technical challenges stand out when learning intrinsic rewards for CRS.

First, explicit extrinsic rewards in CRS are extremely sparse, which complicates the intrin-
sic reward learning. Despite that the agent interacts with the user in each round, the only
clear extrinsic reward signal, which is whether the overall conversation is successful or not,
is only revealed from the user at the conclusion of the conversation. The significance of
each accepted or rejected attribute/item prior to the conversation’s ends remain ambiguous.
For instance, an inquired attribute that is rejected by the user does not necessarily imply a
negative reward for policy learning, as it can signify what the user is not looking for. Sec-
ond, the assessment of CRS is multi-dimensional, entailing various factors that contribute
to the overall effectiveness and user experience, such as recommendation quality and user
effort. On the one hand, asking more questions may be necessary to accurately profile user
preferences to facilitate a successful recommendation. On the other hand, reducing user
effort in conversations (i.e., fewer conversation turns) is essential to ensure users’ engage-
ment and maintain their satisfaction. Balancing these factors is a delicate task.

To tackle the challenges for improving CRS from a reward learning perspective, we
develop an online algorithm for learning intrinsic reward functions via multi-objective bi-
level optimization. We name the proposed solution CRSIRL, meaning CRS with Intrinsic
Reward Learning. In the inner loop of CRSIRL, the policy is optimized with the learned
intrinsic reward function. In the outer loop, the intrinsic reward function is updated to
satisfy two specific criteria designed for CRS. The first criterion aims to maximize the
sparse extrinsic reward, augmented by a reward shaping strategy to encourage actions that
promote the target item as quickly as possible. The second criterion involves tailoring the
learnt reward function to promote successful trajectories over the failed ones. The results
of our extensive experiments demonstrate that CRSIRL not only improves the success rate
of CRS but also achieves it with shorter conversations.

3.1.2 Related works

Conversational Recommder Systems. Christakopoulou, Radlinski, and Hofmann [30] pi-
oneered the concept of Conversational Recommender Systems (CRS). Their approach pri-
marily focused on determining which items to solicit feedback on and applied off-the-shelf
metrics such as the upper confidence bound [4] for this purpose. This laid the groundwork
for reinforcement learning (RL) based methods, which have recently become the prevalent
solutions for CRS. For example, Sun and Zhang [159] developed a policy network to de-
cide whether to recommend an item or inquire about an item attribute at each conversation
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turn. However, these initial studies terminated the conversation upon making a recommen-
dation, regardless of user acceptance. Lei et al. [105] studied multi-round conversational
recommendation, where CRS can ask a question or recommend an item in multiple rounds
before the user accepts the recommendation or quits. This is also the setting of our work in
this paper. To better address multi-round CRS, Lei et al. [106] leveraged knowledge graphs
to select more relevant attributes to ask across turns. Xu et al. [191] extended [105] by re-
vising user embeddings dynamically based on users’ feedback on attributes and items. And
Deng et al. [47] unified the question selection module and the recommendation module in
an RL-based CRS solution. However, all the aforementioned works depend on heuristically
crafted reward functions, which may lead policies to deviate from the optimal solution. In
this work, we propose to learn intrinsic rewards which can maximize the recommendation
performance.
Intrinsic Reward Learning in Reinforcement Learning. Intrinsic reward learning has
emerged as a promising approach to enhance the performance and efficiency of reinforce-
ment learning algorithms. Singh et al. [150] introduced the Optimal Reward Framework
which aims to find a good reward function that allows agents to solve a distribution of tasks
using exhaustive search. Pathak et al. [128] introduced the concept of curiosity-driven
intrinsic rewards, where the agent is rewarded for actions that lead to novel states, improv-
ing its ability to explore complex environments. Zheng, Oh, and Singh [213] proposed a
meta-gradient method named LIRPG to learn intrinsic rewards via a bi-level optimization
framework. Zheng et al. [212] extended LIRPG by learning intrinsic rewards on a distri-
bution of tasks. Liu et al. [118] developed another meta-gradient method to learn intrinsic
rewards from trajectory preferences. In this work, we propose a novel intrinsic reward
learning framework designed for CRS, where we learn intrinsic reward functions to satisfy
multiple CRS-sepcific objectives from users’ extremely sparse explicit reward feedback.

3.1.3 Preliminaries

In this section, we define the notations to be used in our technical discussions and some
basic notions in multi-objective optimization.
Problem definition. Similar to traditional recommender systems, CRS serves a set of users
U with a set of items V; and we denote a specific user as u and an item as v. Each item
v is associated with a set of pre-defined attributes Pv. Attributes describe basic proper-
ties of the items, such as genres in movie recommendations and cuisine type in restaurant
recommendations.

We formulate the CRS problem using a Markov decision process (MDP) [36, 47, 106],
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which can be fully described by a tuple (S,A, T ,R). S denotes the state space, which sum-
marizes the conversation between the system and user so far. A denotes the action space
for the system, which includes recommending a particular item or asking for feedback on
a specific attribute. T : S ×A → S is the state transition function, and R : S ×A → R is
a reward function.

With this formulation, a conversation in CRS can be represented as d = {(a1, r1), ...(aT , rT )},
where T is the maximum number of allowed turns. A conversation (or an episode in the
language of RL, which we will use exchangeablely) terminates when: (1) the user accepts
the recommended item; or (2) the CRS agent runs out of maximum number of allowed
turns. At each time step t, the CRS agent, which follows a policy πθ(at|st) parameterized
by θ, selects an action at based on the current state st. The training objective of a CRS
policy is to maximize the expected cumulative rewards over the set of observed episodes
D, i.e., minimizing the loss

L(π) = − E
d∼P (D)

[ T∑
t=0

Rt

]
, (3.1)

where Rt =
∑T

t′=t γ
T−t′r(at) is the accumulated reward from turn t to the final turn T , and

γ ∈ [0, 1] is a discount factor to emphasize rewards collected in a near term.
Instead of using handcrafted reward functions R as in previous works [37, 47, 105],

we learn an intrinsic reward function defined as rinϕ (s, a) parameterized by ϕ to enhance
CRS policy learning. In this context, the original CRS-specific reward is referred to as
the extrinsic reward, denoted as rex(s, a). The extrinsic reward is inherently sparse, as the
only discernible and useful reward signal is the success or failure of an episode, with the
intermediate actions’ contributions remaining ambiguous. We assign a positive extrinsic
reward at the conclusion of a successful episode and a negative reward otherwise. All
intermediate actions are assigned a zero extrinsic reward.
Multi-objective optimization. We utilize multi-objective optimization (MOO) to achieve
the multi-dimensional goal of CRS, i.e., maximizing the success rate and reducing the
length of conversations. MOO aims to simultaneously optimize multiple objectives, possi-
bly conflicting ones. This results in a trade-off among objectives, making the CRS problem
more complex and challenging to solve. In these cases, the Pareto-optimal solutions repre-
sent different optimal trade-offs between the objectives [44].

ConsiderM objective functions {L1, ...,LM}, a model parameterized by θ is optimized
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Figure 3.2: Overview of CRSIRL,which consists of two modules, a policy parameterized
by θ and an intrinsic reward function parameterized by ϕ. The optimization of CRSIRL
has two levels. In the inner level, a policy is trained to maximize the return defined by both
intrinsic and extrinsic rewards. In the outer level, the intrinsic reward function is trained to
optimize two CRS-specific objectives realized by the learnt policy’s behaviors.

towards them. We specify the multi-objective optimization using a vector valued loss L,

min
θ

L(θ) = min
θ

(
L1(θ), ...,LM(θ)

)⊤ (3.2)

The goal of multi-objective optimization is achieving Pareto optimality.

Definition 1 (Pareto optimality).

(a) A solution θ dominates a solution θ̄ if Lt(θ) ≤ Lt(θ̄) under all objectives and L(θ) ̸=
L(θ̄).

(b) A solution θ∗ is called Pareto optimal if there exists no solution θ that dominates θ∗.

The set of Pareto optimal solutions is called the Pareto front Pθ.

3.1.4 Methodology

To tackle the challenges for improving CRS from a reward learning perspective, we develop
an online algorithm for learning intrinsic reward functions via multi-objective bi-level opti-
mization. As shown in Figure 3.2, CRSIRL operates on two tiers of optimization: the inner
optimization, which improves the policy using both the extrinsic reward and the learned
intrinsic rewards, and the outer optimization, which refines the intrinsic reward function
based on the policy assessment derived from the inner optimization. Given the absence of
supervision for the intrinsic reward function, we establish the relationship between it and
the refined policy via gradient descent in the inner optimization. Specifically, we compute
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meta-gradient for the intrinsic reward function using chain rule in the outer optimization.
In the outer optimization, we design a point-wise objective striving to enhance extrinsic
rewards in the learnt intrinsic reward function, through the use of hindsight reward shaping
(HRS). This objective aids in pinpointing pivotal actions that significantly improve the tar-
get item’s ranking, thereby shortening the conversation length. In parallel, we introduce a
pair-wise objective that favors successful trajectories over unsuccessful ones, which assists
in identifying actions that result in preferred conversations. This objective is named as rec-
ommendation preference matching (RPM). Finally, we introduce a holistic multi-objective
bi-level optimization framework that optimizes intrinsic rewards to meet both objectives.

Hindsight reward shaping

As we discussed before, the extrinsic reward is extremely sparse in CRS. The only clear
and informative signal from the extrinsic reward is whether the conversation is successful,
making it hard to judge the progress of user preference elicitation during the conversation.
Reward shaping, as proposed by Ng, Harada, and Russell [122], serves as a valuable tool
for incorporating task-specific knowledge to estimate the reward function. We leverage
reward shaping within the outer loop of our model to imbue the process of intrinsic reward
learning with more nuanced, task-specific guidance. We use the following hindsight reward
shaping to augment the extrinsic reward,

r̃ex(st, at) = rex(st, at) + γw(st+1, v)− w(st, v), (3.3)

where w is a scoring function, v is the target item and γ is a discount factor. r̃ex(st, at)
encourages actions which promote the target item. In turn, it helps shorten the conversation
length. In our experiments, we usew = log(ρ(st, v)+1), where ρ(st, v) is the rank of target
item v under state st.

Lemma 2. Consider any reward shaping function F : S × A × S → R, we say F is
a potential-based reward shaping function (PBRS) if there exists a real-valued function
Φ : S → R satisfying,

F(s, a, s′) = γΦ(s′)− Φ(s), (3.4)

Then F being PBRS is a necessary and sufficient condition for it to guarantee the consis-
tency of the optimal policy, i.e., the optimal policy of (S, A, T , R+F) is the same as (S,
A, T , R).

The proof is based on [122] and omitted in this paper. By matching the form of Eq.(3.4)
and Eq.(3.3), we can conclude the hindsight reward shaping satisfies the PBRS condition,
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and thus the optimal policy is consistent. The resulted objective induced by HRS is

Lex(θ) = −E
[ T∑
t=0

R̃ex
t

]
, (3.5)

where R̃ex
t =

∑T
t′=t γ

T−t′ r̃ext′ . Note that the information of target item is unknown before-
hand, we can only use HRS after the target item is hit, which is why we call it hindsight.
Otherwise HRS degenerates to the original extrinsic reward.

Recommendation preference matching

Even though the contributions of intermediate actions to a conversation are undefined in
the extrinsic reward, it is still feasible to discern valuable intermediate actions that could
potentially lead to a successful conversation, and the learned intrinsic reward should help
us identify them. We realize this by contrasting successful and failed episodes by the learnt
intrinsic reward: a preferred episode should have a higher likelihood under the optimal
policy, comparing to a less preferred one; and this optimal policy should be achieved by the
correct reward function. Given a policy πθ, the probability of conversation τ 0 is preferred
over τ 1 is computed based on the likelihood of the trajectories,

Pθ
[
τ 0 ≻ τ 1

]
=

exp
∑

t∈τ0 log πθ(at|st)
exp

∑
t∈τ0 log πθ(at|st) + exp

∑
t∈τ1 log πθ(at|st)

, (3.6)

Assume τ 0 is preferred over τ 1, the resulting loss function is given by,

Lp(θ) = −E
[ ∑
τ0≻τ1

logPθ
[
τ 0 ≻ τ 1

]]
, (3.7)

where τ 0, τ 1 ∈ B are sampled from a buffer storing past trajectories. This follows the
Bradley-Terry model [14] for estimating score functions from pairwise preferences. In
the context of CRS, the preference is naturally defined by whether the recommendation is
successful or not; and among successful recommendations, we prefer the one shorter. We
truncate the failed trajectory to match the length of the successful trajectory.

Multi-objective bi-Level optimization

The intrinsic reward function is expected to lead to a policy satisfying the above two objec-
tives. This translates to a bi-level optimization procedure for policy learning: first update
the policy with learned intrinsic rewards, and then improve the intrinsic rewards to help the
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resulting policy better satisfy the above two objectives. More formally, we define,

min
ϕ

L(θ′),

s.t. θ′ = argmin
θ

Lex+in(θ, ϕ).
(3.8)

where L(θ′) =
(
Lex(θ′),Lp(θ′)

)
and Lex+in(θ, ϕ) is the negative cumulative reward calcu-

lated with weighted sum rex + λrinϕ , λ is a hyper-parameter to balance two rewards. In the
inner loop, we optimize the policy with both the extrinsic reward and the learned intrinsic
reward function. In the outer loop, we optimize the intrinsic reward function to minimize
the vector value loss. To derive the gradients for optimization, we first build the connection
between θ and ϕ in the inner loop, and then derive the gradients on ϕ in the outer loop.
Inner Loop: Optimizing θ, building the connection between θ and ϕ. We update θ as
follows,

θ′ = θ − η · ∇θLex+in(θ, ϕ), (3.9)

where ∇θLex+in(θ, ϕ) can be calculated by the policy gradient theorem [160] and η is
the learning rate used in the inner loop. In this way, the updated parameter θ′ becomes a
function of ϕ. With the built connection, we are able to compute the gradient of ϕ by taking
the gradient of gradient on θ′, i.e., the meta-gradient.
Outer Loop: Optimizing ϕ. In the outer loop, we optimize the vector value loss L(θ′) to
satisfy aforementioned two CRS-specific objectives. Even though we do not have supervi-
sion on ϕ, the gradient of ϕ can still be derived using the chain rule,

g(ϕ) =
∂L(θ′)
∂θ′

· ∂θ
′

∂ϕ
(3.10)

Different from single objective optimization, the first part of Eq.(3.13) is the derivative
w.r.t. the multi-objective function L(θ′). [145] adopt the multiple gradient descent algo-
rithm (MDGA) [48] to find a Pareto stationary point for a MOO problem. We follow their
approach to solve the following optimization problem,

min
α·∈[0,1]

{∥∥∥α∇θ′Lex(θ′) + (1− α) · ∇θ′Lp(θ′)
∥∥∥2

2

}
, (3.11)

where α has the following analytical solution,

α =

[
∇θ′Lp(θ′)−∇θ′Lex(θ′)⊤∇θ′Lp(θ′)∥∥∇θ′Lex(θ′)−∇θ′Lp(θ′)

∥∥
]
+,1⊤

, (3.12)

where [·]+,1⊤ represents clipping to [0, 1] as [a]+,1⊤ = max(min(a, 1), 0). The resulted meta-
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Table 3.1: Summary statistics of datasets.

LastFM LastFM* Yelp*

#Users 1,801 1,801 27,675
#Items 7,432 7,432 70,311
#Attributes 33 8,438 590
#Interactions 76,693 76,693 1,368,606

gradient of ϕ becomes,

g(ϕ) = α · ∂L
ex(θ′)

∂θ′
· ∂θ

′

∂ϕ
+ (1− α) · ∂L

p(θ′)

∂θ′
· ∂θ

′

∂ϕ
. (3.13)

Thus ϕ is updated by,
ϕ′ = ϕ− β · g(ϕ), (3.14)

where β is the learning rate used in the outer loop. We can conclude the optimization in the
outer loop as an automatic trade-off between two objectives, and thus the resulted intrinsic
reward function is expected to strike a good balance between two CRS objectives.
Training procedure. In the inner loop, we first rollout an episode to calculate Lex+in.
In the outer loop, we also rollout an episode to calculate Lex and sample a pair from the
trajectory buffer B to calculate Lp. We run the inner loop and outer loop alternately until
the model convergence.

3.1.5 Experiments

In this section, we conduct extensive experiments on three widely-used CRS benchmarks
to study the following research questions: (1) Can CRSIRL achieve better performance
than state-of-the-art CRS solutions? (2) How does each proposed component contribute to
the final performance of CRSIRL? (3) How does the degree of intrinsic rewards affect the
policy learning?

Main results

Datasets & baselines. We evaluate CRSIRL on three multi-round CRS benchmarks [47,
105]. The LastFM dataset is for music artist recommendation. Lei et al. [105] manually
grouped the original attributes into 33 coarse-grained attributes. The LastFM* dataset
is the version where attributes are not grouped. The Yelp* dataset is for local business
recommendation. We summarize their statistics in Table 3.1. Training and evaluating CRS
through direct user interactions can be prohibitively expensive at scale. We address this by
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employing the user simulator approach from [105], simulating a conversation session for
each observed user-item interaction pair (u, v). In this simulation, item v is considered the
target item, and its attribute set Pv is treated as the oracle set of attributes preferred by user
u. The session begins with the simulated user specifying an attribute, randomly selected
from Pv. This simulation adheres to the “System Ask, User Respond” paradigm in CRS,
as described in [208].

We consider a rich set of state-of-the-art CRS solutions. Max Entropy chooses to se-
lect an attribute with maximum entropy based on the current state, or to recommend the top
ranked item. Abs Greedy [30] continues to suggest items until it either makes a success-
ful recommendation or reaches the maximum number of allowed attempts. CRM [159]
is an RL-based solution. It integrates user preferences into a belief tracker, which then
guides the decision-making process regarding when to ask which attribute. EAR [105]
proposes a three-stage RL solution consisting of estimation, action and reflection. SCPR
[106] reconceptualizes the CRS problem as an interactive path reasoning process within a
user-item-attribute graph. It selects candidate attributes and items based on their relation-
ship to attributes that have already interacted with users within this graph. FPAN [191]
extends the EAR model by utilizing a user-item-attribute graph to enhance offline repre-
sentation learning. User embeddings are revised dynamically based on users’ feedback on
items and attributes in the conversation. UNICORN [47] merges the conversation and rec-
ommendation components into a unified RL agent. To streamline the RL training process,
it proposes two heuristic strategies for pre-selecting attributes and items at each turn.
Evaluation metrics. We follow previous works on multi-round CRS to evaluate the per-
formance of CRS with success rate at turn T (SR@T ) and average turns (AT) of conver-
sations. SR@T is the average ratio of successful episodes with T turns, while AT is the
average number of turns for all conversations. We also report the two-level hierarchical
normalized discounted cumulative gain [47] defined as

hDCG@(T,K) =
T∑
t=1

K∑
k=1

r(t, k)

[
1

log2(t+ 2)
+

(
1

log2(t+ 1)
− 1

log2(t+ 2)

)
1

log2(k + 1)

]
,

where T and K represent the number of conversation turns and recommended items in
each turn, r(t, k) denotes the relevance of the results at the turn t and position k. Intu-
itively, successful sessions with fewer turns are preferable for CRS. Also, the target item
is expected to be ranked higher on the recommendation list at the success turn. We report
hDCG@(15, 10) by default.
Training details. All datasets are split by 7:1.5:1.5 ratio for training, validation and test-
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Table 3.2: Main results. For SR@15 and hDCG, higher is better. For AT, lower is better. †

represents the improvement over baselines is statistically significant with p-value < 0.01.

LastFM LastFM* Yelp*

SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG

Abs Greedy 0.222 13.48 0.073 0.635 8.66 0.267 0.189 13.43 0.089
Max Entropy 0.283 13.91 0.083 0.669 9.33 0.269 0.398 13.42 0.121

CRM 0.325 13.75 0.092 0.580 10.79 0.224 0.177 13.69 0.070
EAR 0.429 12.88 0.136 0.595 10.51 0.230 0.182 13.63 0.079
SCPR 0.465 12.86 0.139 0.709 8.43 0.317 0.489 12.62 0.159
FPAN 0.630 10.16 0.224 0.667 7.82 0.407 0.236 12.77 0.116
UNICORN 0.535 11.82 0.175 0.788 7.58 0.349 0.520 11.31 0.203

CRSIRL 0.772† 10.12† 0.231† 0.913† 6.79† 0.431† 0.622† 10.61† 0.228†

ing. We used the Transformer-based state encoder proposed in [37]. We adopt TransE
[13] to pretrain the node embeddings on the training set, and use the user simulator de-
scribed before for online policy learning on the validation set. We first pretrain the pol-
icy with only extrinsic reward using policy gradient and then apply CRSIRL to fine-tune
the pretrained policy. The learning rates in the inner and outer loop are searched from
{1e−5, 5e−5, 1e−4} with Adam optimizer. The coefficient of intrinsic reward λ is searched
from {0.05, 0.1, 0.5, 1.0}. The discount factor γ is set to 0.999. All experiments are run
on an NVIDIA Geforce RTX 3080Ti GPU with 12 GB memory. RL-based baselines rely
on handcrafted rewards, we follow Lei et al. [105] to set (1) rrec suc = 1 for successful
recommendation; (2) rrec fail = −0.1 for failed recommendation; (3) rask suc = 0.1 when the
inquired attribute is confirmed by the user; (4) rrec fail = −0.1 when the inquired attribute
is dismissed by the user; (5) rquit = −0.3 when the user quits the conversation without
a successful recommendation. We set the maximum turn T as 15 and the size K of the
recommendation list as 10. We provide more implementation details in the supplementary
material.
Results & analysis. We present the main results in Table 3.2. We can clearly observe the
CRSIRL outperformed all baselines with a large margin. Both FPAN and EAR are policy
gradient based methods, but they pretrain their policies using conversation history gener-
ated by a rule-based strategy via supervised learning. This training approach biases policies
towards pre-set rules, limiting the performance of policy learning on datasets with larger
action spaces (like LastFM* and Yelp*), where more exploration is necessary. SCPR and
UNICORN have relatively stable performance on all the datasets. Our CRSIRL outper-
forms all baselines significantly with its learned intrinsic rewards. Rather than arbitrarily
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Table 3.3: Ablation study of different components of CRSIRL.

LastFM LastFM* Yelp*

SR@15 AT hDCG SR@15 AT hDCG SR@15 AT hDCG

PG 0.724 10.42 0.217 0.882 7.41 0.401 0.598 10.95 0.186
¬HRS 0.732 10.58 0.219 0.898 7.16 0.401 0.602 11.21 0.196
¬RPM 0.754 10.14 0.227 0.904 6.89 0.415 0.606 10.81 0.213
MTL 0.768 10.09 0.224 0.908 6.92 0.426 0.613 10.73 0.207

CRSIRL 0.772 10.12 0.231 0.913 6.79 0.431 0.622 10.61 0.228

assigning the reward values, we dynamically optimize them in CRSIRL. Any action that
contributes to a final successful recommendation should receive credit and thus be pro-
moted by policy learning, regardless of whether it involves a rejected attribute or a failed
recommendation.

Ablation study

Contributions of each component in CRSIRL. We evaluate different variants of CR-
SIRL to study the contributions of each proposed component. Firstly, we disable the fine-
tuning with CRSIRL and directly report the results after the policy gradient pretraining
with only extrinsic rewards, denoted as PG. Secondly, we remove HRS and RPM to eval-
uate their individual effectiveness. In both variants, the outer loop degenerates to a single
objective optimization problem. Finally, we conduct an experiment where instead of up-
dating the objectives with MOO, we treat the two objectives as distinct tasks and assign
them equal weights, a process referred to as Multi-Task Learning (MTL).

We present the results in Table 3.6. Interestingly, we observe that directly optimizing
the extrinsic rewards with policy gradient already outperformed most of baselines. It is
worth noting that PG uses sparser rewards than other baselines in Table 3.2 with manually-
defined rewards for intermediate actions. However, the exploratory behavior of PG enables
it to outperform these baselines. We can observe that without HRS, the AT metric degen-
erated on all three datasets. HRS prefers actions which can increase the rank of the target
item, which is the most direct metric of action utilities in CRS. Even though the asked ques-
tions could still be helpful without HRS, HRS provides explicit hints about how to ask the
most useful questions, leading to a smaller AT. Besides, the performance decreases after
removing RPM, which finds actions leading to successful recommendations by comparing
successful and failed trajectories. Lastly, MTL shows a significant improvement compared
to PG, and it occasionally outperforms CRSIRL (e.g., AT on LastFM). However, MTL
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Yes!

Do you like Rock? 

Do you like pop? 

I suggest Franz Ferdinand.

I like it!

Yes!

Do you like good vocalist? 

No!

Do you like good Indie? 

Do you like Punk? 
Yes!

Yes!

Intrinsic R: 0.022

-0.082

0.043

0.167

0.224

Figure 3.3: Conversations generated by CRSIRL. The values of the learned intrinsic re-
wards are marked in red.

has difficulty balancing the two objectives, generally resulting in worse performance than
CRSIRL.

Case Study

Additionally, we performed a qualitative study to analyze the learned intrinsic rewards of
CRSIRL (shown in Figure 3.3) on the LastFM dataset. The natural language questions
and user responses are generated by predefined templates. We observe that the intrinsic
rewards depend not only on whether the user accepts or rejects the action, but also on how
well the action contributes to the final recommendation. Even though the user accepts pop,
the intrinsic reward for this action remains negative. This is because pop is a very gen-
eral attribute and contributes little to modeling the user’s preference. Conversely, although
vocalist is rejected by the user, it still carries a small positive value as it aids in identify-
ing the target artist. Finally, Indie and Punk are two attributes that are accepted and best
describe the target artist, Franz Ferdinand1 (a band known for indie rock and post-punk

revival). Consequently, they carry relatively large positive intrinsic rewards. This case
shows the CRSIRL can provide more fine-grained reward signals, leading to better final
performance.

1https://en.wikipedia.org/wiki/Franz_Ferdinand_(band)
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3.2 Meta policy learning for cold-start conversational rec-
ommendations

3.2.1 Introduction

While traditional recommendation solutions infer a user’s preferences only based on her
historically interacted items [17–19, 75, 134, 142, 187], conversational recommender sys-
tems (CRS) leverage interactive conversations to adaptively profile a user’s preference [30,
105, 159]. The conversations in CRS focus on questions about users’ preferences on item
attributes (e.g., brands or price range), in the form of pre-defined question templates [47,
105, 159] or timely synthesized natural language questions [112, 215]. Through a series
of question answering, a profile about a user’s intended item can be depicted, even when
the user is new to the system [30], i.e., the cold-start users, which gives CRS an edge in
providing improved recommendations.

Christakopoulou, Radlinski, and Hofmann [30] first proposed the idea of CRS. Their
solution focused on deciding what item to ask for feedback; and off-the-shelf metrics,
such as upper confidence bound [4], were leveraged for the purpose. Following this line,
reinforcement learning (RL) based methods become the mainstream solution recently for
CRS. Sun and Zhang [159] built a policy network to decide whether to recommend an item,
or otherwise which item attribute to ask about in each turn of a conversation. However, in
these two early studies, the conversation is terminated once a recommendation is made, no
matter whether the user accepts it or not. Lei et al. [105] studied multi-round conversational
recommendation, where CRS can ask a question or recommend an item multiple times
before the user accepts the recommendation (considered as a successful conversation) or
quits (considered as a failed conversation). This is also the setting of our work in this paper.
To better address multi-round CRS, Lei et al. [106] leveraged knowledge graphs to select
more relevant attributes to ask across turns. Xu et al. [191] extend [105] by revising user
embeddings dynamically based on users’ feedback on attributes and items. And Deng et al.
[47] unified the question selection module and the recommendation module in an RL-based
CRS solution, which simplifies the training of CRS. However, all aforementioned RL-based
methods rely on existing user embeddings to conduct conversations and recommendations,
which are not applicable to new users.

Although CRS is expected to address the cold-start problem in recommendation, by
profiling a new user via eliciting her preference about item attributes, how to acquire the
most effective feedback to profile a single user still encounters the cold-start problem. More
specifically, due to the heterogeneity of different users’ preferences, the same policy can
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Figure 3.4: Example of cold-start CRS.

hardly be optimal in finding the sequence of interactions (asking questions or making rec-
ommendations) for all users, especially for those who do not contribute to the policy train-
ing. Consider the example shown in Fig.3.4, a policy trained with a population of Chinese
food lovers cannot effectively serve new users who do not have any preferences on Chinese
food. Once the interaction trajectory deviates from those often encountered during training,
the effectiveness of the globally learnt CRS policy deteriorates, so does the quality of its
recommendations.

We attribute this new challenge as cold-start policy learning in CRS, which is com-
pletely non-trivial but unfortunately ignored in most previous CRS studies. The goal is
clear, i.e., adapt a CRS policy for each new user; but there are at least three main technical
barriers blocking us from the goal. Firstly, how to efficiently adapt a policy to new users?

The tolerance of users about a prolonged conversation or bad recommendations is limited
[34, 35, 58, 111, 143], since all users wish to get high-quality recommendations with the
least effort (e.g., shorter conversations) [165]. Hence, one cannot expect a large number of
observations for CRS policy learning in a single user. Secondly, how to effectively explore

user preferences for policy adaptation? As shown in Fig.3.4, successfully adapting a CRS
policy to a new user depends on the user’s preference, which however is elicited by the
policy itself. This forms a chicken-and-egg dilemma [115] and adds another layer of con-
sideration when acquiring user feedback: before identifying what item the user is looking
for, one first needs to figure out what policy best suits for the inquiry. Thirdly, how to de-

couple the adaptation of the conversation component and recommendation component in

a CRS policy? The conversation component (i.e., conversational policy) in CRS is to pro-
file a user by actively eliciting her feedback, while the recommendation component (i.e.,
item recommender) is to identify the most relevant recommendations based on the profile.
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Adaptation in both components is needed for new users, but the strategy for adapting them
could be different for respective goals.

In this paper, we address the problem of CRS policy learning for cold-start users via
meta reinforcement learning [85, 115, 177], and name the proposed solution MetaCRS.
For the first challenge, we propose to learn a meta policy for CRS from a population of
users and adapt it to new users with only a few trials of conversational recommendations.
The meta policy can be viewed as a starting point close to every single user’s personal-
ized policy. It thus builds the basis for efficient policy adaptation with only a handful of
observations in each new user. Secondly, to acquire the most informative feedback for
policy adaptation, we design a meta-exploration policy to identify user preferences via a
few exploratory conversations. Thirdly, in addition to the CRS policy, we also adapt the
recommendation module in each user to maximize the recommendation quality. To support
such a decoupled adaptation strategy, we design a Transformer-based [171] state encoder
as the backbone, which communicates the training signals between the conversation and
recommendation components.

To evaluate the effectiveness of the proposed model, we compared MetaCRS with sev-
eral state-of-the-art baselines for CRS on three public datasets. The results strongly demon-
strated the advantage of our solution in making satisfactory recommendations to new users
in CRS with a reduced number of conversations. We also conducted extensive ablation
analysis on each proposed component to inspect its contribution on the improved perfor-
mance: 1) the meta-exploration policy elicit informative user feedback for fast policy adap-
tation; and 2) the adapted recommendation component makes better recommendations by
cooperating with the adapted conversation component.

3.2.2 Related works

Exploration-exploitation trade-off in CRS. CRS take advantage of conversations with
users to elicit their preferences in real time for improved recommendations. The main
research effort in CRS focuses on addressing the explore-exploit trade-off in collecting
user feedback. The first attempt made by Christakopoulou, Radlinski, and Hofmann [30]
employed multi-armed bandit models to acquire users’ feedback on individual items. A
follow-up study [206] set an additional bandit model to select attributes to collect user
feedback and employed a manually crafted function to decide when to ask questions or
make recommendations. Li et al. [113] unified attributes and items in the same arm space
and let a bandit algorithm determine when to do what. Follow-up works [188, 210] also
explored clustered and knowledge-aware conversational bandits.
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Meta learning for recommendation. Meta learning [24, 54] has been widely used to
solve the cold-start problem in recommender systems. Vartak et al. [170] studied the item
cold-start problem (i.e., how to recommend new items to users). They proposed two adap-
tation approaches. One learns a linear classifier whose weights are determined by the items
represented to the user before and adapts the classifiers’ weights for each user. Another
one learns user-specific item representations and adapts the bias terms in a neural net-
work recommender for the purpose. Lee et al. [103] separated the representation layer and
decision-making layer in a neural recommendation model, and executed local adaptation
on the decision-making layer for each new user. Zou et al. [218] focused on interactive
item recommendation, where the meta model is optimized by maximizing the cumulative
rewards in each user. Kim et al. [95] deployed meta learning to online update recommender,
where the meta learning rates are adaptively tuned on a per parameter and instance basis.
To the best of our knowledge, we are the first to propose to tackle with cold-start CRS
policy learning using meta reinforcement learning.

3.2.3 Preliminaries

In this section, we first formulate the problem of multi-round CRS as a reinforcement
learning problem, and then illustrate the concept of meta reinforcement learning and how
we use it to address the cold-start challenge in CRS.
Problem definition. In this work, we study the problem of multi-round conversational
recommendation [105], where CRS can ask questions or make recommendations multiple
times before the user accepts the recommendation or quits the conversation. Similar to
traditional recommender systems, CRS face a set of users U and a set of items V; and we
denote a specific user as u and a specific item as v. Each item v is associated with a set
of pre-defined attributes Pv. Attributes describe basic properties of items, such as movie
genres in movie recommendations and authors in book recommendations.

We formulate the CRS problem by a Markov decision process (MDP) [47, 84, 106,
195], which can be fully described by a tuple (S,A, T ,R). S denotes the state space,
which summarizes the conversation between the system and user so far. A denotes the
action space for the system, which includes recommending a particular item or asking a
specific attribute for feedback. T : S × A → S is the state transition function, and
R : S × A → [−Rmax, Rmax] is a bounded reward function suggesting a user’s feedback
on the system’s actions. As we focus on meta policy learning for CRS in this work, how
to best define reward is not our objective. We follow the reward function defined in [47,
105, 106]. In particular, we include the following rewards: (1) rrec suc, a large positive
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reward when the recommended item is accepted; (2) rrec fail, a negative reward when the
recommended item is rejected; (3) rask suc, a positive reward when the inquired attribute is
confirmed by the user; (4) rask fail, a negative reward when the inquired attribute is dismissed
by the user; (5) rquit, a large negative reward when the user quits the conversation without
a successful recommendation.

With this formulation, a conversation in CRS can be represented as d = {(a1, r1), ...(aT , rT )},
where T is the maximum number of allowed turns. A conversation (or an episode in the
language of RL, which we will use exchangeablely) will terminate when (1) the user ac-
cepts the recommended item; or (2) the agent runs out of maximum allowed turns. At each
time step t, the CRS agent, which can be fully described by a policy π(at|st), selects an ac-
tion at based on the current state st. The training objective of a CRS policy is to maximize
the expected cumulative rewards over the set of observed episodes D, i.e.,

L(π) = − E
d∼P (D)

[ T∑
t=0

Rt

]
,

where Rt =
∑T

t′=t γ
T−t′r(at) is the accumulated reward from turn t to the final turn T , and

γ ∈ [0, 1] is a discount factor to emphasize rewards collected in a near term.
Meta Reinforcement Learning for CRS. Instead of learning a single global policy π, we
propose to learn personalized policy πu for each user u (new or existing) to address the
cold-start challenge for CRS. The fundamental reason that almost all previous works [47,
105, 106] focused on global policy learning is that they (implicitly) assumed users know all
attributes of their desired items and share the same responses over those attributes; in other
words, user feedback is fully determined by the item. This assumption is unrealistically
strong and naive, since different users can describe the same item very differently, because
of their distinct knowledge and preferences. For example, some users choose a mobile
phone for its appearance while others choose it because of its brand. As a result, a global
policy can hardly be optimal for every single user, especially the new users whose pref-
erences are not observed during global policy training. In this work, we impose a weaker
and more realistic assumption about users’ decision making by allowing user-specific feed-
back RU , which calls for personalized policies. Therefore, a personalized policy for user u
should minimize,

Lu(π) = − E
d∼P (Du)

[ T∑
t=0

Ru(at)
]
, (3.15)

where Du is a collection of conversations from user u and Ru(at) =
∑T

t′=t γ
T−t′ru(at′).

To find the best personalized policy πu (parameterized by θu) for each new user u, instead
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of learning from scratch every time, we choose to learn a meta policy parameterized by θ
and use it as a starting point to look for θu. Following the convention of meta learning, we
assume a set of conversations Ds

u (i.e., the support set) for policy adaptation , in addition
to the set Dq

u (i.e., the query set) for policy evaluation. Hence, the size of support set Ds
u

in each user u denotes the conversation budget for us to find θu when serving a single
user. Given limited tolerance of an ordinary user to prolonged conversations, a performing
solution should find the optimal θu with the size of Ds

u as small as possible. In the meta-
train phase, we conduct local adaptation from the meta policy on the Ds

u of the existing
users (i.e., training users), and then evaluate and update the meta policy on training users’
Dq
u. In the meta-test phase, we test the meta policy on the new users (i.e., testing users) by

executing local adaptation on their support sets, and then test the obtained local policy on
their query sets.

Figure 3.5: The workflow of MetaCRS training. Each user’s support set is separated into
the exploration stage and conversational recommendation stage. The last hidden state from
the previous episode is passed to the next episode as its initial state throughout the course
of MetaCRS in each user.

3.2.4 Methodology

In this section, we describe the design of MetaCRS in detail. We first introduce our two-
stage meta policy learning framework designed for cold-start CRS. Then, we describe the
details of the state-based item recommender, which is separately adapted to maximize the
recommendation quality. The Transformer-based state encoder, which aims to rapidly cap-
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ture a user’s preference from her both positive and negative feedback in a conversation, is
lastly explained. Fig.3.12 shows the overview of MetaCRS.

Two-stage Meta Policy Learning for CRS

Motivated by the seminal work Model-Agnostic Meta-Learning (MAML) [54], we propose
to first learn a meta CRS policy from a population of users; and then for each individual
user, we adapt the meta policy to a user-specific policy with only a few trails of conver-
sational recommendations with the user. We obtain the meta policy by maximizing the
policy adaptation performance in a given set of training users. Specifically, in each user
u, we perform policy adaptation on her support set Ds

u, where θu is initialized with θ and
then updated by optimizing Eq.(3.15) via gradient descent. The gradient for Eq.(3.15) is
computed by the REINFORCE [186] algorithm,

∇θuLu(πθu) = −E
[ T∑
t=0

Ru(at)∇θu log πθu(at|st)
]
. (3.16)

The gradient of the meta policy with respect to θ (i.e., ∇θLu(θu)) is computed in the same
way as Eq.(3.16), but on the corresponding query set Dq

u. In this way, the meta policy is
optimized for generalization, akin to cross-validation. Note that to exactly compute the
gradient for θ, we need to take a higher-order derivative in ∇θuLu(θu) with respect to θ on
the support set as well, since θu is a function of θ. In this work, we followed the the first-
order approximation methods proposed in [54, 124] to simplify the gradient computation.

In meta-learning for supervised learning tasks, e.g., image classification [54, 124, 174],
the support set and query set are predefined and thus not affected by the learnt models.
Therefore, gradient-based optimization alone is sufficient for meta model learning and
adaptation. But in our problem, what we will observe in Ds

u and Dq
u are completely de-

termined by the employed policy πθu , which however is supposed to be derived from Ds
u

and Dq
u. This causes the so-called chicken-and-egg dilemma [115] for meta policy learn-

ing which we discussed in the introduction, and calls for additional treatments beyond
gradient-based policy optimization.

Potential bias in the currently learnt policy prevents it from being effective in acquiring
the most informative feedback for meta policy learning and adaptation. Hence, we propose
to separate policy adaptation in each user into an exploration stage and a conversational

recommendation stage, and design their corresponding policies. To avoid ambiguity, we
refer to the policy for the exploration stage as the meta-exploration policy (denoted as πθe),
and the policy for the conversational recommendation stage as the CRS policy (denoted
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as πθu). This is similar to the explore-then-commit strategy [57, 102] in bandit literature.
But note that our meta-exploration policy is not personalized, as its sole goal is to quickly
identify what kind of user the system is interacting with. Hence, we choose to estimate it
from the whole set of training users. In particular, we reserve the first few episodes in each
user’s support set for our exploration stage, denoted as the exploration set De

u. The size of
De
u is a hyper-parameter to be tuned for different CRS applications. De

u will only be used
to estimate the meta-exploration policy πθe .

In MetaCRS, the meta-exploration policy πθe , meta CRS policy πθ and personalized
CRS policies {πθu}u∈U are realized by the same RNN-based policy network architecture
[51, 80, 177] with Gated Recurrent Units (GRUs) [7, 51] to better encode the conversation
history, but we estimate different parameters for them respectively. To avoid ambiguity,
we will use the learning of meta-exploration policy πθe as an illustrating example; and the
same procedure applies to the learning of other policies.

Specifically, at the t-th turn of an episode, we observe a new state and encode it using
a state encoder. We leave the discussion about our state encoding in Section 3.2.4. The
encoded state st is provided as input to the policy network. The output ht of the GRU
is fed to a fully connected layer followed by a softmax function to produce the action
distribution for πθe(at|st). In each user, by the end of each episode, the GRU’s last output
hidden state hT 2 is passed to the user’s next episode as its initial state, such that this
user’s conversation history with the system can be continuously used to jump start her next
conversation. Enabled by this design, information collected from the exploration stage is
passed over to the conversational recommendation stage to profile who the user is (denoted
as he), and then to the query set (denoted as hr) to suggest what the user’s preference could
be. This sequential process is depicted in Fig.3.12.

The policy networks for πθ and {πθu}u∈U are trained via the meta learning procedure
described at the beginning of this section, on top of the rewards defined in Section 3.2.3.
But the meta-exploration policy πθe is trained with a specially designed reward function,
as its sole purpose is to identify what kind of user the system is serving. Inspired by [85,
91, 115], we adopt pre-trained user embeddings {eu}u∈U obtained on users with historical
observations (i.e., training users) to design the exploration reward,

re(st) = logP (eu|st)− logP (eu|st−1), (3.17)

where P (eu|st) =
exp(h⊤t eu)∑
u∈U exp(h⊤t eu)

. Note here we use the GRU’s output hidden state ht to

2If the conversation ends before the maximum turn, hT stands for the latent state at the successful recom-
mendation.
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predict the user embedding, just as how we use it to construct the policies. Specifically,
we obtain {eu}u∈U from a Factorization Machine model [105] trained on observed user-
item interactions in training users. The insight behind our exploration reward design is that
we promote the actions that help us identify a specific user during the exploration stage.
Following the suggestion from [85, 91, 115], we also add a cross entropy loss on the meta-
exploration policy network’s latent state ht to regularize the estimation of θe,

Le(πθe) = −E
[ T∑
t=0

Re(st) +
T∑
t=0

logP (eu|ht)
]
, (3.18)

where Re(st) is the accumulated discounted reward based on Eq.(3.17) from turn t. The
gradient of the first term is also computed by the REINFORCE algorithm.

State-aware Item Recommender

Previous studies use a pre-trained recommender through the course of CRS [105, 106, 191],
as their focus is mostly on deciding when to make a recommendation or otherwise what
question to ask, i.e., the conversation component. A pre-trained recommender restricts the
CRS policy to accommodate the recommender’s behavior, which adds unnecessary com-
plexity for policy adaptation. Such a black box design slows down personalized policy
learning. For example, a user wants a phone of a specific brand, but the recommender
regards brand as an unimportant attribute. It is difficult for CRS to recommend success-
fully even though the policy already elicits her preferences, which will in turn hurts the
policy adaptation since the episode is failed. Hence, it is crucial to also local adapt the
recommender to learn to make high-quality recommendations in cooperation with the con-
versation component.

In MetaCRS, we set a learnable item recommender to rank candidate items based on
the state embedding from the state encoder, which will be explained in Section 3.2.4. The
ranking score of an item v is calculated by,

wt(v) = e⊤v (W1st + b1),

where {W1, b1} are learnable parameters for the recommender, collectively denoted as θr;
st is the state embedding obtained from the state encoder. We perform local adaptation on
θr to obtain a personalized recommender, by minimizing the following cross-entropy loss

68



once a successful conversation concludes,

Lr(θr) = − 1

Ts
I(Ts ≤ T )

Ts∑
t=0

log
exp(wt(vs))∑
|V+
t | exp(wt(v))

, (3.19)

where Ts is the index of the successful turn and vs is the accepted item. This loss function
encourages the adapted recommendation component to identify the finally accepted item
as early as possible in a conversation. We denote the meta parameters of θr as θR.

TransGate State Encoder

Previous solutions [191, 207, 211] have shown the power of negative feedback in CRS state
modeling. It is even more important for cold-start CRS, especially in the early stage of
policy adaptation when the policy is more likely to collect negative feedback. Ineffective
modeling of negative feedback will slow down policy adaption. Moreover, positive and
negative feedback posits distinct information about users’ preference, and thus calls for
different treatments. We employ a Transformer to model such complicated relations in an
ongoing conversation into a state, with a cross gate mechanism to differentiate the impact
from positive and negative feedback. We name this state encoder as TransGate.

At turn t, we accumulate four kinds of feedback from a user in this conversation: (1)
P+
t , attributes confirmed by the user; (2) V+

t , candidate items satisfying all accepted at-
tributes; (3) P−

t , attributes dismissed by the user; (4) V−
t , items rejected by the user. Col-

lectively, we denote St = {P+
t ,V+

t ,P−
t ,V−

t }. We first map elements in St into vectors e
with an embedding layer, where attribute and item embeddings are pre-trained with training
users’ historical observations. Candidate items and rejected items are aggregated separately
to reduce the sequence length,

e+V =
1

|V+
t |

∑
v∈V+

t

e+v , e
−
V =

1

|V−
t |

∑
v∈V−

t

e−v .

In the original Transformer [171], elements are encoded with position embeddings. In our
case, the order among the elements is not important, but encoding the sign of user feed-
back (i.e., accepted or rejected) is critical. Inspired by position embeddings, we propose
to encode user feedback into signed embeddings {e+, e−}. We add e+ to positive elements
and e− to negative elements in St. We use the current candidate items to provide positive
context. Then, we feed the obtained embeddings into L Transformer layers. For simplicity,
we keep the notations of transformed embeddings unchanged. We then aggregate the posi-
tive and negative elements separately to obtain an embedding for positive feedback and an
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embedding for negative feedback,

s+t =
1

1 + |P+
t |

(
e+V +

∑
p∈P+

t

e+p

)
, s−t =

1

1 + |P−
t |

(
e−V +

∑
p∈P−

t

e−p

)
.

The positive and negative feedback embeddings may contain overlapped information,
which will confuse policy learning. For example, an item that already satisfies all confirmed
attributes so far can still be rejected by the user. We propose a cross gate mechanism to
further differentiate the positive and negative information s+′

t = s+t ⊙ g−, s−′
t = s−t ⊙ g+,

where ⊙ denotes the element-wise product and {g+, g−} are defined as

g+ = σ(W2s
+
t + b2), g

− = σ(W3s
−
t + b3),

where σ(·) is the sigmoid function and {W2,W3, b2, b3} are learnable parameters. We
obtain the final state by st = s+′

t − s−′
t . The set of parameters for the TransGate encoder

is denoted as θT , which is learnt from the conversations with training users. We should
note once learnt this encoder is shared globally by all users without personalization. The
state embedding is then concatenated with the encoding of ⟨at−1, rt−1⟩ as the input to the
RNN-based policy network. In particular, the action embedding is directly read off based
on the pre-trained attribute and item embeddings, and we set a linear layer to encode the
reward.

Algorithm 2: Optimization algorithm of MetaCRS
1 Input: User population U , learning rates α, β, meta parameters θ, θe, θR, θT ;
2 while not Done do
3 Sample a batch of users Ub ∼ P (U);
4 for each u ∈ Ub do
5 Collect De

u and he by executing πθe ;
6 Initialize θu = θ, θr = θR;
7 Collect Ds

u and hr by executing πθu with he;
8 Evaluate ∇θuLu and ∇θrLr using Ds

u;
9 Compute adapted parameters with gradient descent: θu = θu − α∇θuLu,

θr = θr − α∇θrLr ;
10 Collect Dq

u by executing πθu with hr;
11 end
12 Update θ, θR, θT using each Dq

u by minimizing Lu, Lr;
13 Update θe, θT using each De

u by minimizing Le;
14 end
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Optimization Algorithm

Now we are finally equipped to illustrate the complete learning solution for MetaCRS in
Algorithm 2. In the inner for-loop, we perform policy adaption to obtain the personalized
CRS policy (including item recommender). In the outer while-loop, we update all meta
parameters. To simplify the gradient computation, we stop the gradients on the inherited
initial hidden state hT from the latest episode in back-propagation. In practice, we update
the local parameters once an episode is executed, as we find empirically it works better
than updating once after the whole Ds

u is finished. When serving new users in the meta-
test phase, we fix {θe, θT} and only execute local adaptation (the inner for-loop part in
Algorithm 2) with the corresponding parameters initialized by {θ, θR}.

In each turn, we use all the candidate items Vcand (i.e., V+
t ) and attributes Pcand to

construct the action space, where Pcand is the entire attribute set excluding P+
t and P−

t .
Deng et al. [47] reported that a very large action space always slowed down policy learning.
To generate a reasonable action space, we follow the manually crafted rules from [47] to
select KA attributes from Pcand and select the top-KI items provided by the state-based
item recommender.

3.2.5 Experiments

To fully demonstrate the effectiveness of MetaCRS in solving the cold-start CRS problem,
we conduct extensive experiments and study the following four research questions (RQ):

• RQ1: Can MetaCRS achieve better performance than state-of-the-art CRS solutions
when handling new users?

• RQ2: Does our meta reinforcement learning based adaptation strategy work better than
other adaptation strategies?

• RQ3: How quickly can MetaCRS obtain a good personalized policy for each user?
• RQ4: How does each proposed component contribute to the final performance of MetaCRS?

Experiment Settings

Datasets. We evaluate MetaCRS on three multi-round conversational recommendation
benchmark datasets [47, 105, 106, 207] and summarize their statistics in Table 3.4. LastFM
[11] is for music recommendation. Lei et al. [105] manually grouped the original attributes
into 33 coarse-grained attributes. BookRec [74] is for book recommendation. We further
processed it by selecting top 35 attributes according to their TF-IDF scores across items
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Table 3.4: Summary statistics of datasets.

LastFM BookRec MovieLens

#Users 1,801 1,891 3,000
#Items 7,432 4,343 5,974
#Attributes 33 35 35
#Interactions 72,040 75,640 120,000

Avg. |Pu| 7 8 12
Avg. |Pv| 4.07 8.15 5.02
Avg. |Po| 5.44 5.30 4.25

Table 3.5: Comparison of CRS performance among models on three datasets. * stands for
the best performance in each group.

MaxE EAR SCPR UNI ConUCB ConTS FPAN UR F-FT F-IA UR-FT UR-IA MetaCRS

LastFM
SR@10 0.137 0.428 0.432 0.441∗ 0.237 0.270 0.508 0.641∗ 0.533 0.529 0.613 0.678∗ 0.713

AT 9.71 8.62 8.70 8.52∗ 8.69 8.93 8.08 7.02∗ 8.01 8.13 7.19 6.85∗ 6.18

BookRec
SR@10 0.206 0.320 0.329 0.358∗ 0.181 0.243 0.397∗ 0.384 0.405 0.411 0.417 0.420∗ 0.487

AT 9.64 9.01 9.11 9.00∗ 9.52 9.17 8.31∗ 8.55 8.36∗ 8.52 8.54 8.41 8.06

MovieLens
SR@10 0.262 0.552 0.545 0.596∗ 0.272 0.434 0.589 0.681∗ 0.603 0.612 0.677 0.704∗ 0.745

AT 9.46 7.98 7.89∗ 8.01 8.36 8.08 7.81 7.00∗ 7.78 7.69 7.14 6.88∗ 6.27

and filter out items with too few attributes. MovieLens [71] is for movie recommendation.
We performed the same pre-processing as on the BookRec dataset.

We randomly split users for training, validation and testing with the ratio 8:1:1, such
that the evaluation set only contains new users. On each benchmark dataset, we obtained
user, item and attribute embeddings (denoted as eU , eV , eP) using a variant of Factorization
Machine (FM) proposed in [105] on observed user-item interactions in the training set.
Similar to [47, 105, 106], we developed a user-simulator to generate conversations based
on the observed user-item interactions in the dataset. However, the number of observed
interactions in each user is not even, which may cause the learned meta policy biased
toward users with more observed interactions. To better study the problem of personalized
CRS policy learning, as part of our simulation, we generated 40 user-item interactions
for each user by sampling items proportional to the score e⊤u ev to augment the interaction
data for our evaluation purpose. We should note such simulation design will not ease the
necessity of personalized CRS policy learning, since eu is never directly disclosed to the
policy. We provide our code and generated data to facilitate follow-up research and ensure
the producibility of our reported results 3.
User simulator. CRS needs to be trained and evaluated via interactions with users. Pre-

3https://github.com/zdchu/MetaCRS.git
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vious simulator designs are item-centric [47, 105, 106], enforcing all users to respond in
the same way to all attributes of target item v (i.e., confirming every entry in Pv). This
setting is unrealistically restrictive and eliminates the necessity of personalized policies.
To demonstrate the utility of personalized CRS policy learning, we design a user-centric

simulator that supports user-specific feedback in each conversation.
In detail, we used the pre-trained user and attribute embeddings to generate each user’s

preferred attribute set {Pu}u∈U , by selecting the top-ranked attributes for each user based
on the score e⊤u ep. During the course of CRS, the simulated user will only confirm the
overlapped attributes in Po = Pu ∩ Pv, and dismiss all others. On the BookRec dataset,
because the original entries in Pv is too generic to be informative, i.e., too many attributes
appear in almost all items, we decided to also increase Pv on this dataset by adding top-
ranked attributes for each item based on the score e⊤v ep. We report the mean value of |Pu|,
|Pv| and |Po| resulted from our simulation on each dataset in Table 3.4.
Baselines. To fully evaluate the effectiveness of MetaCRS, we compared it with a set
of representative baselines. We categorized the baselines into three groups for different
comparison purposes. In the first group, we compared MetaCRS with a rich set of state-of-
the-art CRS methods to answer RQ1:
• Max Entropy (MaxE) is a rule-based method suggested in [105]. In each turn, the at-

tribute with maximum entropy is to be asked or top-ranked items are to be recommended
based on the rule.

• EAR [105] is a three-stage solution consisting estimation, action and reflection steps. It
updates the conversation and recommendation components using reinforcement learning.

• SCPR [106] reformulates the CRS problem as an interactive path reasoning problem on
the user-item-attribute graph. Candidate attributes and items are selected according to
their relations with collected user feedback on the graph.

• UNICORN (UNI) [47] integrates the conversation and recommendation components
into a unified RL agent. Two heuristics for pre-selecting attributes and items in each
turn are proposed to simplify its RL training.

Baselines in this group rely on pre-trained user embeddings to make recommendations
or compute states, which are not available in new users. To apply them to new users, we
used the average embedding of all training users as the embedding for new users. This
group of baselines are learnt on training users and then evaluated on the testing users.

In the second group, we compared MetaCRS with solutions which handle new users by
updating user embeddings dynamically within a conversation, such that they can provide
adaptive recommendations. We consider the following algorithms:
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• ConUCB [206] introduces the concept of super arms (i.e., attributes) to traditional bandit
algorithms. Items and attributes with the highest upper confidence bound are selected.
The attributes are asked in a fixed frequency by a hand-crafted function.

• ConTS [113] overcomes ConUCB’s limitation by replacing the hand-crafted function
with a Thompson sampling procedure. The user embeddings of cold-start users are up-
dated with users’ feedback on the asked attributes and items.

• FPAN [191] extends the EAR model by utilizing a user-item-attribute graph to enhance
offline representation learning. User embeddings are revised dynamically based on users’
feedback on items and attributes in the conversation.

Our TransGate and state-based item recommender can also dynamically capture user pref-
erences, and provide adaptive recommendations within a conversation. To further study
their value in learning personalized CRS policies, we integrated them with UNICORN,
and denoted this variant as UR, which is also included in the second group. All baselines
in this group used the same pre-trained embeddings as MetaCRS. To improve the practical
performance of ConUCB and ConTS, we adopted the heuristics in [47] to pre-select arms
according to the similarity with accepted attributes.

To answer RQ2, we equip FPAN and UR with the ability to adapt policies on new users
via the following two widely used strategies, which forms the third group of baselines:

• Fine-tuning (FT): We first pre-train a global policy on all training users. During testing,
we fine-tune the policy on the whole support set of all new users.

• Independent adaptation (IA): We first pre-train a global policy on all training users. For
each new user, we perform continual training on her support set to obtain a personalized
policy.

We denoted the resulted variants as F-FT, F-IA and UR-FT, UR-IA respectively. As
we found policy gradient was more effective and efficient than UNICORN’s original Q-
learning based algorithm in our experiments, we applied policy gradient for model update
in all UNICORN-based baselines.
Evaluation metrics. We followed the widely-used metrics in previous works [47, 105,
106] to evaluate the CRS solutions. We evaluated the average ratio of successful episodes
within T turns by success rate (SR@T ). We also evaluated average turns in episodes (AT).
A better policy is expected to recommend successfully with less turns. The length of failed
conversations is counted as T .
Implementation details. We performed the training of meta policy on training users, and
local adaptation on validation and testing users. We selected the best model according
to its validation performance. The query sets of testing users are used to obtain the final
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performance for comparison. We set the rewards as: rrec suc = 1, rrec fail = −0.1, rask suc =

0.1, rrec fail = −0.1, rquit = −0.3. The action embedding size and the hidden size are set
to be 64 and 100, while reward embedding size is set to 10. We set 1 Transformer layer in
the TransGate encoder. In MetaCRS, we took 5 episodes in the exploration stage and 10
episodes in the conversational recommendation stage by default. We set KI , KA and Krec

to 10. We performed standard gradient decent in local adaptation with a learning rate of
0.01, and updated the meta parameters using the Adam optimizer with a learning rate of
0.005 and L2 regularization coefficient 1e-6. The discount factor γ is set to 0.999. To make
a fair comparison, we run 15 episodes in new user for adaptation in the second group of
baselines. The size of query set is fixed to 10. The maximum turn T in each episode is set
to 10. We sample 5 users in each epoch when training MetaCRS. For all baselines, we used
implementations provided by the papers and modified them as described before to support
cold-start evaluation.

Overall Performance

We report the comparison results across all methods in Table 3.5. We can clearly observe
that MetaCRS outperformed all baselines with large margins. First of all, the results of
the first group of baselines confirmed a single global policy cannot handle new users. By
learning personalized policies, MetaCRS showed advantages in the final recommendation
performance. In the second group of baselines, bandit-based algorithms select actions ac-
cording to simple linear models, which are not capable to capture complicated relations
between the algorithms’ actions and user feedback, especially when positive rewards are
discrete and sparse. Hence, such solutions performed much worse than other deep learning
based methods. Both FPAN and UR can provide adaptive recommendations like MetaCRS,
and thus they outperformed all baselines in the first group. Interestingly, we observe that
FPAN outperformed EAR considerably. Different from EAR, FPAN updates user embed-
dings dynamically with users’ positive and negative feedback on attributes and items by
two gate modules, which enable dynamic item recommendation as in MetaCRS. This im-
proved performance proves the necessity of adaptive recommendation during the course of
CRS. UR showed general improvement against UNICORN and FPAN, both of which rely
on a fixed FM model to recommend items (UNICORN also uses the FM model to pre-select
items as actions) when performing policy training. Our state-based item recommender is
able to provide improved recommendations at each time step by utilizing training signal
from accepted items, which brings concrete benefits.

In the third group, with the adaptation on new users, FT and IA led to general im-
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provement, which indicates the necessity of policy adaptation in new users. Specifically,
IA outperformed FT in most cases, which again proves that personalized polices are bene-
ficial. Even though FPAN is able to dynamically capture users’ preference with its gating
modules, such knowledge did not generalize well on new users, which limited the improve-
ment in F-FT and F-IA. By adapting both conversation and recommendation components in
CRS, MetaCRS and UR-IA showed improvements against other baselines, which validates
the necessity of our decoupled adaptation strategy. But as UR is not trained for general-
ization, it is hard to find optimal personalized policies for new users starting from such a
global policy in UR-FT and UR-IA, while the meta model in MetaCRS is trained for gen-
eralization. In addition, the meta-exploration policy provides useful information for fast
adaptation. Thus MetaCRS is able to perform better even with fewer adaptation episodes
(first 5 episodes are used to explore user preferences).

Ablation Study

Impact of support set size. Since policy adaptation is performed on the support set, it
is important to study how many episodes are needed to obtain a good personalized policy
(RQ3). In this experiment, we gradually increased the size of support sets with a step size
5. We kept the size of exploration episodes unchanged since 5 episodes are empirically
sufficient for pinning down the target user’s preference. We reported the results on the
LastFM and BookRec dataset in Figure 3.6. With a larger support set, the success rate
increases considerably and the number of average turn also reduces. This is expected since
more observations can be collected to better adapt the meta policy for each user. And this
result also demonstrates the promise of personalized CRS policy learning: the quality of
recommendation increases rapidly as the users get engaged with the system, which leads to
a win-win situation for both users and system.

Figure 3.6: Performance comparisons w.r.t. size of support set.

Impact of different MetaCRS components. In this section, we study the contribution
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of different components in MetaCRS to answer RQ4. Firstly, we evaluated the model’s
performance without local adaptation, which essentially evaluated the learnt meta policy.
Secondly, we removed the meta-exploration policy and directly executed policy adaptation.
This setting shows how a dedicated exploration strategy affects policy adaptation. Finally,
we replace the TransGate module with a linear layer similar to [211] to study how state
representation learning affects the CRS performance. In particular, the positive and nega-
tive embeddings are obtained by taking the average of all positive and negative feedback
separately.

Table 3.6: Ablation analysis in MetaCRS.

LastFM BookRec MoiveLens
SR@10 AT SR@10 AT SR@10 AT

¬adaptation 0.632 6.68 0.378 8.56 0.630 7.31
¬exploration 0.677 6.64 0.411 8.37 0.738 6.65
¬TransGate 0.678 6.41 0.428 8.51 0.724 6.95
MetaCRS 0.713 6.18 0.487 8.06 0.745 6.27

We present the results in Table 3.6. Firstly, we can observe the performance before
adaptation is not bad, or even better than most of our baselines in Table 3.5, which suggests
the meta policy in MetaCRS already captured some important patterns for interacting with
users. We can further compare the learnt meta policy with UR in Table 3.5, which shares
the same state encoder and item recommender, but was trained globally. UR is slightly
better than the meta policy in MetaCRS. The reason is UR is trained to maximize perfor-
mance on training users and generalized by the i.i.d. assumption. But the meta policy is
trained to maximize the adapted policies’ performance, not its own performance on new
users. Hence, when testing users share reasonable similarity with training users, UR can
be effective in serving the testing users. But we can observe a large performance gain after
adaptation, which proves the meta policy successfully serves as a good starting point for fast
adaptation. Next, it is clear that without the exploration stage the performance degenerates.
It confirms recognizing who the system is serving is critical for a successful adaptation.
We finally evaluate the effectiveness of TransGate, without which the performance degen-
erates on all three datasets. This demonstrates the necessity of fine-grained modeling of
user feedback, especially the negative feedback, for understanding users’ preferences.
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3.3 Meta-reinforcement learning via exploratory task clus-
tering

3.3.1 Introduction

Conventional reinforcement learning (RL) is notorious for its high sample complexity,
which often requires tremendous amount of interactions with an environment to learn a
performing policy for a new task [84, 195]. Inspired by the learning process of humans,
meta-reinforcement learning (meta-RL) is proposed to quickly learn new tasks by leverag-
ing knowledge shared by related tasks [51, 54, 177]. The key research question in meta-RL
is task modeling for identifying transferable knowledge among tasks. For example, Finn,
Abbeel, and Levine [54] proposed to learn a set of shared meta parameters which are used
to initialize the local policy when a new task arrives. Duan et al. [51] and Wang et al. [177]
trained an RNN encoder to characterize prior tasks according to the interaction history in
those tasks.

Little attention has been paid to the structures in the transferable knowledge resulted
from task distributions. Aforementioned methods implicitly assume tasks follow a uni-
modal distribution, and thus the knowledge, once identified, can be broadly shared across
all tasks. However, heterogeneity among tasks is not rare in practice. It therefore dwarfs
simple sharing of global knowledge, but instead imposes subtle structures for identifying
relatedness among tasks at a finer granularity, e.g., groups of tasks. For instance, the general
skills required for the Go game and Gomoku game are related, such as familiarity with
the board layout and stone colors. But to achieve mastery in either game, policies must
acquire and internalize game-specific knowledge/rules to effectively navigate subsequent
matches. For example, experience about competing against different human players in Go
games can be shared within, but not over to Gomoku games. This heterogeneity motivates
us to formulate a more delicate but also more general meta-RL setting where tasks are
originated from various but a finite number of distributions, i.e., tasks are clustered. Hence,
knowledge that benefits learning in new tasks becomes cluster-specific. We refer to this
as structured heterogeneity among tasks, and propose to explicitly model it to facilitate
cluster-level knowledge sharing4.

Structured heterogeneity among tasks has been studied in supervised meta-learning
[196]; but it is a lot more challenging to be handled in meta-RL, where the key bottleneck
is how to efficiently discover task relatedness in a population of RL tasks. Different from

4We do not assume the knowledge in different clusters is exclusive, and thus each cluster can still contain
overlapping knowledge, e.g., motor skills in locomotion tasks.
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supervised learning tasks where static task-specific data is available for task relatedness in-
ference before any learning starts, observations about RL tasks are collected by an agent’s
interactions with the task environment. As a result, successfully adapting an RL policy
to a new task depends on accurate profiling of the task, which however is elicited by the
policy itself. Task inference becomes a major bottleneck of sample efficiency in meta-RL
[115]. Previous methods [37, 51] focus on task embedding learning under the uni-modal
task distribution assumption, which are inefficient to infer clustered tasks. But structured
heterogeneity provides new opportunities for efficient task inference: instead of directly
identifying the new task, the coarse-grained cluster membership can be first inferred with
a few observations; within the located task cluster, task inference can be performed in a
designated search space, i.e., divide-and-conquer task inference.

To realize our idea of utilizing structured heterogeneity among tasks in meta-RL, we
develop MILET: Meta reInforcement Learning via Exploratory Task clusTering. To the
best of our knowledge, we are the first to propose a method for improving sample efficiency
in meta-RL by utilizing cluster structures in the task distribution. Specifically, we perform
cluster-based variational inference (CBVI) [49, 132] to infer the cluster of a new task ac-
cording to its ongoing trajectory. To facilitate cluster inference, at the meta-train phase,
we optimize a dedicated exploration policy based on a divide-and-conquer strategy: it first
quickly explores the task’s cluster assignment, and then refines its task modeling in the
narrowed search space given the identified cluster. An exploitation policy is then trained to
maximize the task rewards based on the refined task model from the exploration trajectory.
We compare MILET against a rich set of state-of-the-art meta-RL solutions on various Mu-
JoCo environments [166] with varying cluster structures in both reward and state dynamics.
To test the generality of MILET, we further evaluate it on environments characterized by
non-parametric cluster structures among tasks, i.e., the Meta-World tasks [201]. The ex-
periment results confirm MILET can effectively discover clusters among tasks and then
benefit fast adaptation to new tasks.

The main contributions of this paper are three-fold,

1. We present MILET, a novel approach to improve meta-RL by explicitly modeling
cluster structures inherent in the task distribution.

2. We introduce a dedicated cluster-level exploratory policy, which employs a divide-
and-conquer strategy, ensuring robust and effective discovery of task clusters.

3. We evaluate MILET on a rich set of environments with both parametric and non-
parametric task clusters. The empirical results prove the effectiveness of MILET.
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3.3.2 Related works

Task modeling in meta-learning. Task modeling is important to realize fast adaptation
in new tasks in meta learning. Finn, Abbeel, and Levine [54] first proposed the model-
agnostic meta learning (MAML) aiming to learn a shared model initialization, i.e., the meta
model, given a population of tasks. MAML does not explicitly model tasks, but it expects
the meta model to be only a few gradient updates away from all tasks. Later, an array of
methods extend MAML by explicitly modeling tasks using given training data under the
supervised meta-learning setting [104, 174]. Yao et al. [196] adopted a hierarchical task
clustering structure, which enables cluster-specific meta model. Such a design encourages
the solution to capture locally transferable knowledge inside each cluster, similar to our
MILET model. However, task information is not explicitly available in meta-RL: since
the true reward/state transition functions are not accessible to the agent, the agent needs
to interact with the environment to collect observations about the tasks, while maximizing
its return from the interactions. MILET models posterior distribution of a task’s cluster
assignment based on its ongoing trajectory; better yet, it is designed to behave exploratorily
to quickly identify tasks’ clustering structures, and then refine the task modeling in the
narrowed search space conditional on the identified cluster.
Exploration in meta-reinforcement learning. Exploration plays an important role in
meta-RL, as the agent can only learn from its interactions with the environment. In gradient-
based meta-RL [54], the local policy is trained on the trajectories collected by the meta pol-
icy, and thus the exploration for task structure is not explicitly handled. Stadie et al. [155]
and Rothfuss et al. [139] computed gradients with respect to the sampling distribution of
the meta policy, in addition to the collected trajectories. Gupta et al. [69] also extended
MAML by using learnable latent variables to control different exploration behaviors. The
context-based meta-RL algorithms [51, 177] automatically learn to trade off exploration
and exploitation by learning a policy conditioned on the current context. Zintgraf et al.
[217] explicitly provided the task uncertainty to the policy to facilitate exploration. Zhang
et al. [204] and Liu et al. [115] developed a separate exploration policy by maximizing
the mutual information between task ids and inferred task embeddings. However, because
all the aforementioned methods operate under the uni-modal assumption about the task
distribution, their exploration strategy also becomes inferior to profile a given task under
a heterogeneous task distribution. MILET first explores to identify the cluster of a task,
which is expected to require fewer samples than detailed task identification; then the agent
can explore task information within a refined search space for better sample efficiency.
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3.3.3 Background

Meta-reinforcement learning. We consider a family of Markov decision processes (MDPs)5

p(M), where an MDP Mi ∼ p(M) is defined by a tuple Mi = (S,A, Ri, Ti, Ti,0, γ,H)

with S denoting its state space, A as its action space, Ri(rt+1|st, at) as its reward function,
Ti(st+1|st, at) as its state transition function, Ti,0(s0) as its initial state distribution, γ as a
discount factor, andH as the length of an episode. The index i represents the task id, which
is provided to agents in some works [115, 131, 204]. We consider a more general setting
where the task id is not provided to the agent [217], as in general we should not expect
the task id to encode any task-related information. Tasks sampled from p(M) typically
differ in the reward and/or transition functions. In each task, we run a trial consisting of
1 + N episodes [51]. Following the evaluation settings in previous works [54, 115, 139],
the first episode in a trial is reserved as an exploration episode to gather information for
task modeling, and an agent is evaluated by the returns in the following N exploitation

episodes.
Inside a trial, we denote the agent’s interaction with the MDP at time step n as τn =

{sn, an, rn, sn+1}, and τ:t = {s0, a0, r0, ..., st} denotes the interaction history collected be-
fore time t. In the exploration episode, an agent should form the most informative trajectory
τψ by rolling out an exploration policy πψ parameterized by ψ. In the exploitation episodes,
the agent executes the exploitation policy πϕ parameterized by ϕ (in some prior work, πψ
and πϕ are the same [217]) conditioned on τψ and, optionally, the history collected in the
exploitation episodes τϕ. The returns in exploitation episodes are computed as,

J (πψ, πϕ) = EMi∼p(M),τψ∼πψ

N×H∑
t=0

Ri

(
πϕ(τ

ψ; τϕ:t )
) , (3.20)

where Ri

(
πϕ(τ

ψ; τϕ:t )
)

is the return of πϕ conditioned on τψ and τϕ:t at time step t in task
Mi.
Clustered RL tasks. In this paper, we consider a more general and realistic setting, where
the task distribution is multi-modal and thus forms a mixture,

p(M) =
C∑
c=1

wc · pc(M), (3.21)

where C is the number of mixing components (i.e., clusters) and wc is the corresponding

5The terms of environment, task and MDP are used interchangeably in this paper, when no ambiguity is
incurred.
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Figure 3.7: MILET architecture. The encoder processes ongoing trajectories and performs
CBVI for qθ(z|c, hβ). The exploration policy πψ is trained to find the most certain cluster
assignment c when interacting with the environment. The explored information is passed
to the exploitation policy πϕ to facilitate fast adaptation in task Mi.

weight of component c, such that
∑C

c=1wc = 1. Thus, every task is sampled as follows,

1. Sample a cluster c according to the multinomial distribution of Mul(w1, ..., wC);

2. Sample a reward function R or a transition function T or both from pc(M).

The knowledge shared in different clusters could be different. For example, two clusters of
distinct target positions can exist in a navigational environment, e.g., top-left vs., bottom-
right. The knowledge about how an agent reaches the top-left target positions in the first
cluster cannot help tasks in the second cluster; but it is crucial for learning different tasks
in the first cluster. In this example, when handling a new task, a good exploration strategy
should first recognize the task cluster (i.e., to move top-left or bottom-right), as it is much
easier to recognize than individual tasks, and then identify the specific target position in the
corresponding region of the map. This coarse-to-fine identification allows more efficient
exploration of task information.

3.3.4 Methodology

In this section, we present MILET in detail, which consists of two complementary compo-
nents. First, we introduce how to infer population-level task structures using the collected
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trajectories via cluster-based variational inference (CBVI). Then, we explain the explo-
ration policy trained by the exploration-driven reward, which is designed to quickly identify
the cluster assignment of a new task. At a high level, in each task MILET first executes the
exploration policy to collect the coarse-grained cluster information; then it adapts the task
policy with the help of inferred posterior cluster distribution. The architecture of MILET

is shown in Figure 3.7.

Cluster-based Variational Inference with Consistency Regularization

Since the reward and transition functions are unknown to the agent, we estimate a latent
random variable ci to infer the cluster assignment of current task Mi ∼ pc(M). Based
on ci, we infer another latent random variable zi carrying task-level information, i.e., zi
suggests the reward/transition functions that define the task. For simplicity, we first drop
the subscript i in this section, as we will only use one task as an example to illustrate our
model design.

In meta-RL, all information about a given task can be encoded by z. But inferring z
can be sample inefficient, as the task space can be very large. Thanks to the structured
heterogeneity among tasks, inferring a task’s cluster assignment c can be more sample
efficient, since we should expect a much smaller number of task clusters than the number
of tasks. Once c is identified, z can be more efficiently identified, i.e., divide and conquer.
Hence, in MILET, when a new task arrives, we decode its characteristics by the posterior
distribution p(z, c|τ:t) = p(z|τ:t, c)p(c|τ:t) with respect to the interaction history up to time
t. The inferred task information zc, which refers to z conditioned on c, is then provided to
the policy πψ/ϕ(at|st, zc).

Exact posterior of p(z, c|τ:t) defined by Eq.(3.21) is intractable. Instead, we learn an
approximated variational posterior qθ(z, c|τ:t) = qθ(z|τ:t, c)qθ(c|τ:t), in which we estimate
two dependent inference networks and collectively denote their parameters as θ. On top of
the inference networks, we learn a decoder pω to reconstruct the collected trajectories. The
whole framework is trained by maximizing the following objective,

Eρπ(M,τ+)

[
log p(τ+|π)

]
, (3.22)

where ρπ is the distribution of trajectories induced by the policies π = {πψ, πϕ} within the
task, and τ+ = {τψ, τϕ} denotes all trajectories collected in a trial, the length of which
is denoted as H+ = (N + 1)H . We choose to use trajectories from both exploration
and exploitation episodes to best leverage information about the same underlying MDP.
We omit the dependencies on π to simplify our notations in later discussions. Instead of
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optimizing the intractable objective in Eq.(3.22), we optimize its evidence lower bound
(ELBO) w.r.t. the approximated posterior qθ(z, c|τ:t) estimated via Monte Carlo sampling
[132],

ELBOt = Eρ
[cluster-specific reconstruction likelihood︷ ︸︸ ︷

Eqθ(z,c|τ:t)
[
ln pω(τ

+|z̃c)
]

−
cluster-specific regularization︷ ︸︸ ︷

Eqθ(c|τ:t)
[
KL(qθ(z|c, τ:t) ∥ pω(z|c))

]
−

cluster regularization︷ ︸︸ ︷
KL(qθ(c|τ:t) ∥ p(c))

]
, (3.23)

where pω(z|c) = N
(
µω(c), σ

2
ω(c)

)
is a learnable cluster-specific prior, which is different

from the simple Gaussian prior used in single-mode VAE [97]. This prior allows MILET to
capture unique characteristics of each cluster. pω(z|c)’s parameters are included in ω since
the cluster structure is also part of the environment. z̃c is the latent variable sampled from
qθ(z|c, τ:t) = N

(
µθ(c, τ:t), σ

2
θ(c, τ:t)

)
, using the reparameterization trick [97]. qθ(c|τ:t)

outputs the approximated posterior cluster distribution given τ:t6. p(c) is the prior cluster
distribution of tasks; when no specific prior knowledge is known about the task, we choose
a fixed non-informative multinomial distribution for it. Intuitively, if discrete structures
(i.e., clusters) exist in the task distribution, a uniform qθ(c|τ:t) will cause low reconstruction
likelihood; thus collapsed posterior, i.e., clustering, is preferred.

Similar to [217], the first term ln pω(τ
+|z̃c) in Eq.(3.23) can be further factorized as,

ln pω(τ
+|z̃c) = ln p(s0|z̃c) +

H+−1∑
i=0

[
ln pω(si+1|si, ai, z̃c)

+ ln pω(ri+1|si, ai, si+1, z̃c)
]
,

where p(s0|z̃c) is the initial state distribution in a task, and we consider it as a constant by
assuming identical distribution of the initial states across clusters. The second and third
terms are likelihood derived from the decoders for transition and reward functions. The
density functions of pω(si+1|si, ai, z̃c) and pω(ri+1|si, ai, si+1, z̃c) are difficult to estimate in
continuous state and action spaces. Following [6, 204], we use L2 distance to approximate
the log-likelihood functions.

In the inference networks qθ(z|τ:t, c) and qθ(c|τ:t), we follow [51, 217] to encode the
history τ:t by Gated Recurrent Units (GRUs) [19, 39, 187]. We propose a stacked GRU

6We use the Gumbel-softmax trick to simplify the calculation.
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structure (shown in Figure 3.7) to differentiate the information for cluster and task inference
in the hidden space. Specifically, we set a task-GRU (T-GRU) and a cluster-GRU (C-
GRU), both of which encode the history τ:t, but with different levels of granularity. T-
GRU is set to capture fine-grained task-specific patterns in the history, as it is optimized to
reconstruct trajectories of a specific task. C-GRU captures coarser-grained patterns beyond
tasks, as it is set to help T-GRU reconstruct all trajectories within a cluster. To realize
this difference, the output hβ of T-GRU is only provided to qθ

(
z|hβ(τ:t, hα), c

)
, while the

output hα of C-GRU is passed to both cluster inference qθ
(
c|hα(τ:t)

)
and task inference

qθ
(
z|hβ(τ:t, hα), c

)
. This also reflects our dependency assumption about the task structure:

cluster assignment determines tasks. We denote h = {hα, hβ}, which is passed across
episodes in a trial.

The trajectory data is incrementally collected by the agent in meta-RL, which brings
both challenges and opportunities for cluster inference. First, inside a trial, the inference
improves as more observations are collected, which means the agent’s belief about the
ongoing task could change thereby. This is problematic, since the cluster inference result
should stay consistent within a given task, no matter how trajectory changes over episodes.
We attribute this property as in-trial consistency, which is measured by KL(q(c|τ:t1) ∥
q(c|τ:t2)), where t1 and t2 refer to two arbitrary timestamps in a trial. We enforce the
notion of cluster inference consistency via the following regularizer,

LI =
1

H+ − 1

H+−1∑
t=0

KL
(
qθ(c|τ:t) ∥ qθ(c|τ:t+1)

)
. (3.24)

Similarly, since the cluster-specific prior pω(z|c) is learnable, the task inference can be-
come inconsistent if pω(z|c) changes drastically across training epochs. More seriously,
oscillation in the inference of latent variable z can cause the collapse of policy training,
as tasks across clusters might be assigned with the same latent variable z across different
training epochs. We conclude it as the prior consistency requirement and enforce it via the
following regularization,

LP =
1

C

C∑
c=1

KL
(
pω(z|c) ∥ ptgt(z|c)

)
, (3.25)

where ptgt(z|c) is a target network and its parameters are the same as pω(z|c) but updated
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in a much slower pace. We finally obtain the objective in CBVI as follows,

J (θ, ω) = Ep(M)

[ H+∑
t=0

ELBOt − λILI − λPLP

]
, (3.26)

where λI and λP are hyper-parameters to control the strength of two regularizers.

Exploration via Reducing Inference Uncertainty

In MILET, policy adaptation in a new task has two objectives: (1) explore cluster structure;
(2) explore task-specific information to solve the task. As we explained before, MILET fol-
lows a divide-and-conquer principle to realize these two objectives, which is implemented
by learning two separate policies as shown in Figure 3.7. One takes exploratory behav-
iors to collect cluster and task information, i.e., the exploration policy πψ. The other is
optimized to solve the task with the collected information, i.e., the exploitation policy πϕ.

We train a dedicated exploration policy to provide a good basis for task-solving, where
cluster structures provide informative hints about task relatedness. The quality of explo-
ration is evaluated by two principles. First, whether the trajectory of an exploration episode
can reduce the uncertainty of cluster inference. Second, whether the inference result is
consistent. We conclude them as certain and consistent exploration. To realize these two
principles, we introduce two intrinsic rewards to encourage certain and consistent inference
results. First, we use the entropy of cluster inference network qθ(c|τψ:H) to measure the un-

certainty of the inferred cluster. For a new task, we look for trajectories that provide the
most certain cluster inference. We formalize the objective as follows, omitting the subscript
θ and ψ for simplicity,

H(q(c|τ:H)) = −E
[
ln q(c|τ0) +

H−1∑
t=0

ln
q(c|τ:t+1)

q(c|τ:t)
]
.

We then define an intrinsic reward of each action by telescoping the second term similar to
[115, 204],

rh(at) =E
[
ln
q(c|τ:t+1 = [st+1; at; rt; τ:t])

q(c|τ:t)
]

=H(q(c|τ:t))−H(q(c|τ:t+1)).

This reward favorites actions which can reduce the entropy of cluster inference; and there-
fore, a trajectory leading to a consistent cluster inference is preferred. To more explicitly
measure the divergence between the posterior cluster distributions in two steps, we define
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another reward encouraging consistent cluster inference,

rc(at) = −KL(q(c|τ:t) ∥ q(c|τ:t+1)).

Intuitively, given the inferred cluster, the exploration policy can focus on identifying task-
level information within a narrowed search space, i.e., divide-and-conquer. We define the
following composed reward to encourage this coarse-to-fine exploration behavior,

re(at) = r(at) + γh(t)rh(at) + γc(t)rc(at), (3.27)

where r(at) is the environment reward. γh(t) and γc(t) are two temporal decaying func-
tions,

γh(t) = bh − ah exp(−sh(H − t)), (3.28)

γc(t) = −bc + ac exp(−sc(H − t)), (3.29)

where {a, b, s}h,c are hyper-parameters controlling the rate of decay. γh(t) should gradually
decrease to 0, which encourages the policy to find a certain cluster at the early stage. γc(t)
gradually increases from a negative value to positive. At the early stage, a negative γc(t)
encourages the policy to try different clusters. Later, a positive γc(t) enforces the policy to
stick to the current cluster and focuses more on discovering task information by maximizing
raw rewards.

Finally, the exploitation policy πϕ inherits the hidden state hπψH , which encodes knowl-
edge collected by the exploration policy, and is then trained to maximize the expected
reward defined in Eq.(3.20).

3.3.5 Experiments

In this section, we conduct extensive experiments to study the following research questions:
(1) Can MILET achieve better performance than state-of-the-art meta-RL algorithms by
exploring structured heterogeneity in the task distribution? (2) Can MILET effectively
discover cluster structures in both rewards and state dynamics? (3) How does the number
of clusters affect the final performance of MILET?
Environment setup. We evaluated MILET on two continuous control tasks with clustered

reward functions, simulated by MuJoCo [166]. In Ant-Goal, the ant robot is set to move
to a predetermined goal position. We created 4 clusters of the goal positions in 4 different
centered areas. In Humanoid-Dir, the human-like robot is controlled to move towards
different target directions. We created 4 clusters by distributing target directions along
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(a) Environments with clustered reward functions.

(b) Environments with clustered state transition functions.

Figure 3.8: Average test performance for 2 episodes on MuJoCo environments.

4 farthest apart directions in a 2D space. We also created environments with clustered

transition functions by adopting two movement environments Hopper-Rand-Params and
Walker-Rand-Params, also simulated by MuJoCo. The physical parameters of the robot,
including body mass, damping on degrees of freedom, body inertia and geometry friction,
were manipulated to realize different transition functions of the robot’s movement. The
hopper and walker robots are set to move smoothly under different parameter settings. We
created 4 clusters by manipulating one of the parameters at a time and keeping the others
to the default parameters.
Baseline setup. We compared MILET with several representative meta-RL baselines, in-
cluding RL2 [51], PEARL [131], VariBAD [217], MetaCURE [204], ProMP [139] and
MMAML [174]. We also included an Oracle model, where we trained a separate VariBAD
model for each ground-truth cluster. We used implementations of baselines provided by the
original papers. For each environment, we created 500 tasks for meta-train and hold out
32 new tasks for meta-test. We report the performance on test tasks during the meta-train
phase. In the meta-test phase, we executed 2 episodes in each new task. For algorithms
with an explicit exploration policy, i.e., MILET and MetaCURE, we run their exploration
policy in the first episode and exploitation policy in the second episode. We trained MILET

via Proximal Policy Optimization (PPO) [144] and set the default cluster number C to 4.
Because PEARL and MetaCURE are based on off-policy algorithms [70], they need less
frames of data to converge in meta-train. We terminated them once the algorithm was con-
verged and reported the final performance obtained by the moment. We report the averaged
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(a) MiLEt traces. (b) VariBAD traces. (c) NMI score.

Figure 3.9: Qualitative analysis of MILET. (a) Traces of MILET on the meta-test tasks
of Ant-Goal. Cross marks represent goal positions, and the colors represent the clusters
assigned by MILET. The dashed lines suggest the optimal traces to the centers of ground-
truth clusters. (b) Traces of VariBAD on the same meta-test tasks of Ant-Goal. The traces
are in the same color as VariBAD is unaware of clusters. (c) NMI of MILET’s inferred
clusters in the exploration episode of meta-test tasks.

performance over 3 random seeds.
Results and analysis. Figure 3.8 shows the test performance of all evaluated meta-RL
algorithms. We also provide qualitative analysis in Figure 3.9, including visualization of
the models’ behaviors and the clustering performance of MILET in the exploration episode,
measured by the normalized mutual information score (NMI).

First, we clearly observed Oracle performed the best in both episodes. By directly uti-
lizing shared knowledge within correct clusters, Oracle is able to fast adapt to individual
tasks. It shows the necessity of accurate cluster modeling for fast adaptation. MILET

showed significant improvement against baselines in the second episode in testing, ap-
proaching the performance of Oracle. Interestingly, we can observe even though the first
episode of MILET was reserved for exploration, it still performed comparably to other
methods in all four different environment setups. In the first episode, MILET behaved
exploratorily to find the most probable cluster of the current task, and thus its traces in
Figure 3.9a look like spirals from the starting point. VariBAD is also designed to explore
by uncertainty in task inference, but its traces were close to random walk at the early stage,
which is less effective. In Figure 3.9c, we can observe the NMI scores of the MILET’s in-
ferred tasks have almost converged in 20 steps, which means the cluster inference became
stable in an early stage and can thereby provide the agent helpful cluster-level information
to gain fine-grained task information. This also explains how MILET obtained comparable
performance in the first episode. In the second episode, with cultivated task information,
MILET is able to move towards the targets directly, showing significant improvements
against baselines. MetaCURE guides the exploration by task IDs, which in fact provides
more information of environment than what MILET can access. However, the exploration
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Ant-Goal Ant-U
VariBAD -168.6±9.6 -162.4±9.2

MILET-2 -132.3±7.6 -128.6±8.8

MILET-4 -125.4±5.1 -113.7±4.8

MILET-6 -123.6±4.4 -99.7±5.2

MILET-8 -124.2±4.7 -117.9±5.7

MILET-10 -128.6±5.2 -142.7±10.4

Table 3.7: Results on Ant-Goal and Ant-U.

empowered by task IDs does not explicitly explore the coarser but useful information at
the cluster level. Both ProMP and MMAML are gradient-based methods, we found they
need 5 times samples to converge, thus we also reported the final performance. Impor-
tantly, MMAML, tailored for multi-modal tasks, faces challenges during exploration. It
relies heavily on its meta-policy to explore task-specific information and then formulates
task embeddings. If exploration is suboptimal, the final performance suffers.
Influence of the number of clusters. We also studied how the number of clusters C set
by the agent influences the final performance, especially when there is a mismatch between
the ground-truth cluster size andC set by the agent. We setC to different values and denote
it in suffixes of MILET. We additionally created a set of tasks on Ant-Goal, where the goal
positions were uniformly sampled. We denote it as Ant-U.

(a) MILET-2 on Ant-G. (b) MILET-6 on Ant-U.

Figure 3.10: Traces of MILET-2 and -6 in exploration episodes. Colors represent the
assigned clusters.

The average final returns are shown in Table 3.7. Interestingly, we observe MILET can
perform well even though there is no explicit cluster structure in Ant-U. By looking into the
detailed trajectories, we found MILET segmented the circle into different parts as shown
in Figure 3.10b such that knowledge from nearby tasks can be effectively shared. VariBAD
mistakenly assumed all tasks can share knowledge and thus failed seriously. When C is set
smaller than the ground-truth number of clusters, MILET-2 discovered more general struc-
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Figure 3.11: LLM-based sequential recommendation baselines show comparable per-
formance even when historical interactions (Sequential) order is randomized (Random).
Tempura significantly boosts performance by utilizing historical orders, i.e., temporal in-
formation.

tures (as shown in Figure 3.10a). However, transferable knowledge within such structures
is limited as distinct clusters are merged, causing the performance drop. Also, it does not
mean more clusters than necessary is helpful, as less knowledge could be shared in each
cluster.

3.4 Improve temporal awareness of LLMs for sequential
recommendation

3.4.1 Introduction

Large language models (LLMs) such as ones with commercially available APIs including
ChatGPT [1] and Claude7 have emerged as one of the primary, if not the de facto, choices in
a wide range of applications thanks to their remarkable capabilities in dealing with natural
language and generalizing to various domains without further fine-tuning. In deed, an
emerging trend is to use natural language as a uniform interface and leverage the LLMs to
complete a task.

Following this trend, recent research has been exploring the use of LLMs for pro-
cessing sequential data, with applications such as sequential recommendation (SRS) [9,
83], which require LLMs to comprehend temporal patterns within user historical inter-
actions. In the case of sequential movie recommendation, historical interactions such as
users’ movie watching records can be represented as natural language (i.e., movie titles
and other meta data) for the LLMs to process and recommend the next movie, instead of
item identifiers which are typically used in traditional recommender systems [92, 158].

7https://www.anthropic.com/index/claude-2
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The extensive generalization ability and vast world knowledge [151, 175] of LLMs en-
dow them with the potential to serve as a single model for many recommendation domains
without fine-tuning, making it a general, capable, and easy-to-use alternative to traditional
recommender systems that usually specialize in one selected domain and require extensive
training or fine-tuning.

However, recent research shows that LLMs exhibit a limited sensitivity to temporal in-
formation in the input text, particularly in discerning changes in user interests [83]. In Fig-
ure 3.11, we compare the recommendation performance of LLM-based methods using ran-
domized (denoted as Random) versus correctly ordered (denoted as Sequential) historical
interactions on two widely-used SRS datasets. Both methods show similar performance,
suggesting that LLMs are not effectively utilizing the temporal information present in the
input text. This limitation stems from a lack of specialized mechanisms within LLMs to au-
tomatically recognize and utilize temporal information, which is crucial for understanding
the context and progression within the data.

In this paper, we focus on improving LLMs’ awareness and interpretation of tempo-
ral information, particularly within the SRS scenario. Temporal information is ubiquitous
in real-world applications, such as recommender systems [120], intelligent document pro-
cessing [55] and financial market analysis [167]. By effectively capturing and integrating
this temporal aspect, we have the opportunity to significantly enhance the understanding of
user preferences via LLMs, thus providing users with better recommendations that suit their
backgrounds, needs, and preferences. This improvement is also important for boosting the
effectiveness of LLMs in downstream applications, where accurate user preference mod-
eling is crucial [120]. To this end, we design a principled prompting framework inspired
by human cognitive process, which is training-free and domain agnostic. We name our
approach as Tempura (phonetically similar to Temporal Prompt). Our main contributions
are:

• We propose a principled method to construct in-context examples [121] for sequential
recommendation, by analyzing how Transformer-based SRS models (e.g., Kang and
McAuley [92]) learn to utilize temporal information.

• Inspired by the results in neuroscience [65, 125], we add explicit structure analysis in
input sequences as additional prompts, particularly temporal cluster analysis, to enhance
the temporal understanding capabilities of LLMs.

• We emulate the process of divergent thinking [140] by aggregating ranking results de-
rived from various prompting strategies.

• We evaluate our method on MovieLens-1M and Amazon Review datasets, the results

92



Proximal temporal demos: 
I have watched these movies in 
order: [item 1, item 2, ... item n-k], 
you should recommend item n-k+1, 
now I have watched item n-k+1, …

Structure analysis: 
Cluster 1: [items in the cluster]; 
Cluster 2: [items in the cluster].

1 2 … M

Candidate Set

Ranking 1

Ranking 3

Final Ranking

Ensemble

Template

LLM Generate

Ranking 2

Global interest demos:
Given [item 1, … item n-2], you 
should recommend item n-1 next.

Figure 3.12: An illustrative overview of Tempura. We learn sequential recommendation
via two kinds in-context demonstrations. Explicit cluster structure analysis is conducted to
improve the temporal understanding capabilities of LLMs. Each prompting strategy inde-
pendently generates a respective ranking by LLMs (marked by different colors). Rankings
from different prompting strategies are aggregated to form the final ranking.

show that our proposed method significantly enhances the zero-shot capabilities of LLMs
in sequential recommendation tasks.

3.4.2 Related Works

LLMs for recommendation. Recently, the use of LLMs in recommendation systems has
garnered significant research interest due to their capability to comprehend and encapsu-
late a user’s preferences and past interactions through natural language [53, 76]. Current
LLM-based recommender systems are primarily designed for rating prediction [9, 93] and
sequential recommendation tasks [83, 179, 192]. In both tasks, a user’s previous interac-
tions with items, along with other optional data like the user profile or item attributes, are
concatenated to formulate a natural language prompt. This is then fed into an LLM with op-
tions for no fine-tuning [179], full-model fine-tuning [28] or parameter-efficient fine-tuning
[9]. Liu et al. [116] designs a series of prompts to evaluate ChatGPT’s performance over
five recommendation tasks. Wang et al. [181] develops a ChatGPT-based agent to improve
recommendation ability by using tools such as SQL and Web search. Contrary to exist-
ing works that focus on the tentative evaluation of LLMs’ ability in recommendation, we
focus on improving the LLM’s inefficacy of utilizing temporal information by designing
temporal-aware prompting strategies.
Sequential recommendation. Sequential recommendation (SRS) [77, 92] aims to predict
the next interacted items based on historical interaction sequences. Early works follow
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the Markov assumption [135], by designing various neural network models to capture user
preference within interaction sequences, including Recurrent Neural Network [77, 109],
Convolutional Neural Network [162], Transformer [92, 158], Graph Neural Network [23,
190]. However, most of these approaches are developed based on item IDs [92] or attributes
[205] defined on specific domains, making it difficult to be generalized to other domains.
Recently, Hou et al. [81], Hou et al. [82] and Li et al. [108] propose to learn unified item
representations for SRS based on pretrained language models. They follow the paradigm
that pretraining an unified text-based sequence encoder on source domains and then fine-
tune the encoder on the target domain. However, all aforementioned methods need massive
user interaction sequences on a specific domains and can not be easily transfer to unseen
domains. In contrast, we propose utilizing LLMs to establish a domain-agnostic learning
process for sequential recommendation systems. Our approach is training-free and readily
generalizable to unseen domains using only prompts.

3.4.3 Methodology

In this section, we introduce Tempura in detail. As shown in Figure 3.12, Tempura
consists of three major components: 1) a in-context learning module that learns sequential
recommendation tasks from sequences of historical interactions; 2) a temporal structure
analysis module that enhances the model’s understanding by explicitly integrating cluster
structures within the sequences; 3) a prompt ensemble module that aggregates recommen-
dation results from various prompting strategies. We begin with the definition of notations
to be used in our technical discussions.

Problem Definition

Given a user’s historical interactions H = {ij}nj=1, ordered chronologically up to times-
tamp n, the task of sequential recommendation involves ranking a set of candidate items
C = {ij}mj=1 for the subsequent timestamp n + 1. Items of higher interest are expected to
be ranked at more prominent positions. In practice, candidate items are typically selected
from the entire item set I, where m≪ |I|, through candidate generation models [41]. Fur-
ther, we follow the approach of Hou et al. [82] by associating each item i with a descriptive
text ti, which could be the item’s name and its attributes or properties.

Different from training-based SRS models, we leverage general-purpose LLMs (e.g.,
ChatGPT) to solve the recommendation task in an instruction-following paradigm [182].
Specifically, for each user, we construct a history prompt from the user’s historical interac-
tions H, and a candidate item prompt from the candidate item set C. The aforementioned
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prompts are concatenated along with an instruction that explicitly describes the recommen-
dation task, forming the final prompt for LLMs. LLMs are anticipated to generate rankings
of C, reflecting user preferences, in accordance with the format specified by the instruction.
A post-hoc text parser is employed to convert the natural language rankings generated by
LLMs into structured ranked lists, which is used to calculate the ranking metrics [83].

Sequential Recommendation via In-Context Learning

Given the vast scale of LLMs, fine-tuning domain-specific models becomes impractical.
Thus, we propose to learn sequential recommendation via in-context learning, offering a
training-free approach that can be easily adapted across various domains by leveraging the
world knowledge and comprehension capabilities of LLMs [72, 83]. To this end, we first
analyze the learning process of training-based SRS models, and then mapping it onto the
principles of constructing effective in-context demonstrations.

The key distinction between SRS and other recommender systems lies in the SRS
model’s requirement to not only identify a user’s preferences based on historical user-item
interactions but also to track the evolution of the user’s interests over time. Training-based
SRSs depend on learning from large-scale user-item interaction data via GRUs [77] or
Transformers [158]. We utilize In-Context Learning (ICL) [121] as a training-free alter-
native to learn a SRS model. We follow Dai et al. [42] to analyze the learning process
of training-based SRSs. Given the historical interaction sequence of an user, a trained
Transformer-based SRS, such as SASRec [92], can be represented as,

FSASRec(xn) = (W0 +∆W )xn. (3.30)

where W0 is the initialized parameter matrix, ∆W is the update matrix and xn is the repre-
sentation of a candidate item. The output of FSASRec is the score of the examined candidate
item. In the back-propagation algorithm, ∆W is computed by accumulating the outer
products of historic item representations x′T

i and the error signals ei of their corresponding
outputs:

∆W =
n−1∑
i=1

ei ⊗ x′
i, (3.31)

where error signals ei is the prediction error on the historic item x′
i. Thus, the trained
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SASRec can also be rewritten into,

FSASRec(xn) = (W0 +∆W )xn

= W0xn +
n−1∑
i=1

(ei ⊗ x′
i)xn

= W0xn + LinAtt(E,X ′,xn),

where LinAtt(V,K,q) denotes the linear attention operation, in which we regard error sig-
nals E as values and interacted itemsX ′ as keys, and the current input xn as the query. The
learning process of the SASRec model can be expained as the model predicting the next
item in a sequence based on preceding items and updating itself based on the prediction
error. The trained SASRec model is designed to update user preferences as the sequence
expands, effectively tracking the evolution of the user’s interests.

Let q = WQxn represent the attention query vector for the input candidate item xn. An
ICL-based SRS can be represented as,

FICL(q) = (WZSL +∆WICL)q

where WZSL = WVX(WKX)T is the initialized parameters to be updated and WZSLq is the
attention result in zero-shot learning (ZSL) setting, where no demonstration are given. X
denotes the input representations of query tokens before xn, such as the task description of
sequential recommendation. Based on the results of Dai et al. [42], the second term can be
rewritten into,

∆WICLq = LinAtt(WVX
′,WKX

′,q),

where X ′ denotes the input representations of demonstrations. Here we observe a similar
form between FSASRec and FICL, where WVX

′ can be explained as the error signal from
historic items. This analogy illustrates that by utilizing historic items as in-context demon-
strations, an LLM can learn to capture the temporal information within the sequence of
historical interactions. Hou et al. [83] discussed using the last item in the history as an
in-context demonstration. Based on our analysis, this method is equivalent to training the
SASRec model solely with the last historical interaction, a practice insufficient for captur-
ing the dynamic nature of historical interactions. Thus, we are motivated to use several
historical interactions as demonstrations to improve the temporal awareness of LLMs.
Proximal temporal demonstrations (PCL). Based on the above principle, we design the
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following prompt to learn to capture temporal information via ICL,

3

Proximal temporal demonstrations
I have watched these movies in order: [item 1, 
item 2, ... item n-k], you should recommend item 
n-k+1, now I have watched item n-k+1, …
Now recommend a new movie to me.

Placeholders, highlighted in orange, structure the input for our model. The first place-
holder captures the initial n − k historic items, serving as the context for inferring user
preferences. The subsequent placeholder is designated for the n − k + 1 item, illustrating
the next item to be recommended based on the current context. Following this, we inform
the LLM that the n−k+1 item has been interacted with, indicating that the n−k+2 item
is the next recommendation target. This setup is repeated to create k-shot demonstrations.
We utilize the most recent k items as demonstrations to capture the proximal interest of the
user. We denote this prompting strategy as PCL.
Global interest demonstrations. In previous studies [83, 92], the number of historic items
was constrained by the limited input length of models. Thus the whole interaction history is
typically truncated and the most recent items are remained. Empirically, we also observed
that extending the context window has limited impact on improving performance and may
even detract from it. The reason could be: 1) the prolong context distract LLMs [117]; 2)
too old history has little impact on the current user interest in the SRS scenario. However,
simply omitting distant historic items risks overlooking users’ long-term interests. Hence,
we randomly sample a subset of historic items from the whole history sequence to retain
user’s global interest. Specifically, we use the same template as PCL, but the context is
filled with randomly sampled historic items. Similarly, we incorporate the most recent
items as in-context examples. We denote this prompting strategy as GCL.

Temporal Structure Analysis

It has been recognized in the neuroscience area that the human brain is more sensitive to
temporal structures [65, 125] - “Embedded relationships among the attributes of events over

different timescales carry predictions that guide proactive sensory and motor preparation

in the brain”. Only providing item sequences may make it difficult for LLM to identify and
utilize temporal patterns inside the sequence. Thus, we are motivated to explicitly provide
temporal structures to LLM. Specifically, we conduct cluster analysis on the item sequence
according to two criteria: items that are (1) temporally proximate and (2) share similar

features should be clustered. In practice, we also use LLMs to complete the cluster tasks
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and find it can provide reasonable cluster results. The results are used as additional input
to the LLM for ranking.

3.4.4 Prompt Ensemble

The most straightforward way to combine various prompting strategies is to concatenate
them and use the resulted long prompt. However, this approach risks exceeding the context
length limitations of LLMs. Moreover, it has been observed that LLMs may lose important
information within overly lengthy prompts [117]. To effectively utilize different prompt-
ing strategies, we propose ensembling the respective ranking outcomes derived from each.
In this approach, we create several LLM sessions and obtain ranking lists with different
prompts. Following Hou et al. [83], we explicitly define the output format for the rank-
ing results produced by LLMs, and subsequently extract the ranking list using a post-hoc
text parser. These ranking lists are aggregated to obtain the final ranking, as the process
shown in Figure 3.12. Existing research also highlights the benefits of collaboration among
multiple LLMs [189]. Specifically, we assign scores to each rank in the ranking list. For
instance, in a ranking list of 20 items, the item in the 1st place receives 20 points, the 2nd
place item gets 19 points, and so on, decreasing by one point per rank. Finally, we sum the
scores for each item across all rankings.

3.4.5 Experiments

In this section, to fully demonstrate the effectiveness of Tempura in improving tempo-
ral awareness of LLMs, we conduct a set of extensive experiments to study the following
research questions: (1) Can Tempura improve LLM’s performance on sequential rec-
ommendation compared to other methods? (2) Can Tempura enhance the sensitivity of
LLMs to temporal information in the input data? (3) How do factors like history length, the
number of in-context examples or the choice of backbone LLMs influence the effectiveness
of Tempura?
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Table 3.8: Performance comparison on ML-1M and Amazon Review datasets. We high-
light the best performance in bold. N@K denotes NDCG@K.

Method
ML-1M Games Kindle

N@1 N@5 N@10 N@1 N@5 N@10 N@1 N@5 N@10

BM25 4.00 13.14 20.53 16.50 30.09 37.19 6.50 18.07 24.96
UniSRec 9.00 20.08 26.72 19.50 34.86 40.82 5.00 16.21 25.03
VQ-Rec 9.50 19.52 27.11 5.50 16.76 25.27 4.30 14.22 23.58

Sequential 21.43 42.57 48.59 24.12 47.26 53.03 10.20 27.96 33.72
RF 26.56 45.99 51.27 25.63 50.02 53.72 11.11 28.77 35.71
ICL 26.40 47.51 53.32 26.00 49.68 53.63 13.07 30.82 36.41

Cluster 27.00 45.82 52.04 26.15 47.41 52.39 13.20 25.77 34.07
PCL 29.16 48.44 54.21 29.00 51.56 55.11 11.55 29.45 36.46
GCL 30.50 48.53 53.26 32.00 51.61 56.63 10.00 31.45 36.67

PCL + Cluster 30.50 48.35 54.88 35.50 53.89 58.74 12.00 30.15 38.23
Tempura 31.50 48.64 54.49 39.00 56.51 60.95 14.00 32.17 37.59

Main result

Datasets. The experiments are conducted on three widely-used public sequential recom-
mendation datasets: (1) the movie rating dataset MovieLens-1M [71] (ML-1M) where
user rated movies are regarded as interactions, (2) one category from the Amazon Review
dataset [123] named Games where reviews are regarded as interactions, and (3) another
category from Amazon Review dataset named Kindle. We sort the interactions of each
user by timestamp, with the oldest interactions first, to construct the corresponding inter-
action sequences. The movie or product titles are used as the descriptive text of an item.
Evaluation configurations. Following existing works [83, 92, 158], we apply the leave-
one-out strategy for evaluation. For each interaction sequence, the last item is used as the
ground-truth item. We adopt the widely used metric NDCG@N to evaluate the ranking
performance over the given candidate set C where N ≤ |C|. In the remainder of this paper,
unless otherwise specified, |C| is set to 20. The candidate set consists of one ground-truth
item and 19 randomly sampled negative items.
Baselines. We consider three prompt-based baselines discussed in [83]: Sequential prompt-
ing: Arrange the historical interactions in chronological order. Recency-focused prompt-
ing (RF): In addition to the sequential interaction records, a sentence is additionally added
to emphasize the most recent interaction. In-context learning (ICL): Similar to PCL, but
only use the most recent historic item as the in-context example. We also consider three
methods designed for domain generalization: BM25 [136] ranks items according to the
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Figure 3.13: Performance vs. history length |H| (ML-1M).

textual similarity between candidates and historic items. UniSRec [82] equips textual item
representations with an MoE-enhanced adaptor for domain fusion and adaptation. VQ-Rec
[81] learns vector-quantized item representations, which can map item text into a vector of
discrete indices (i.e., item codes) and use them to retrieve item representations from a code
embedding table in recommendations. Additionally, we report the results with each single
prompting strategy, as well as the results from ensembling PCL and cluster analysis.

Training-based methods such as Kang and McAuley [92] and Sun et al. [158] are not
considered as baselines because: (1) They are designed based on item IDs, which can not
be generalized to new domains with new ID spaces. (2) Our research focuses on improving
the temporal awareness of LLMs, as evidenced by improved performance in sequential
recommendations. Thus, our goal is not necessarily to develop a state-of-the-art sequential
recommendation method.
Implementation details. Considering economic and efficiency factors, we follow [83,
192] to randomly sample 200 users along with their historical interactions for each dataset.
Unless specified, we use the Azure OpenAI API gpt-3.5-turbo8. We set history length
|H| as 15 and use the most recent 5 interactions as demonstrations in PCL. We found the
length of the history significantly affects performance; therefore, we also searched for the
optimal |H| for baselines. Empirically, |H| = 10 yielded the best results for baselines in
general. All the reported results are the average of three repeat runs to reduce the effect of
randomness.
Results & analysis. We present the results on three datasets in Table 3.8. We can observe
our prompting strategies in the third group improves upon existing baselines across all
metrics. It is interesting to observe that PCL outperforms ICL significantly, where more
demonstrations are used in PCL but ICL only use the last interaction as demonstration. This

8https://azure.microsoft.com/en-us/pricing/details/cognitive-services/
openai-service/
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observation align with our analysis that more demonstrations are needed to learn to utilize
temporal information in historical interaction sequences. Although the Cluster strategy
exhibits limited performance on its own, it can significantly enhance performance when
combined with other strategies in an ensemble. Additionally, we provide a case study of
cluster analysis results in Section 3.4.5. By comparing individual prompting strategies with
two ensemble-based methods, we find that ensembling consistently enhances performance
by leveraging the strengths of different strategies. This suggests that different strategies
emphasize various aspects, resulting in complementary results.

Figure 3.14: Impact of #in-context examples in PCL. Several more examples can improve
performance.

Table 3.9: Case study of structure analysis in the historical interaction sequence.

Cluster 1: [Mad Max - PlayStation 4, Metal Gear Solid V: The Phantom Pain - PlayStation 4].
Cluster summary: Action games on PlayStation 4.
Cluster 2: [Star Wars: Battlefront - Standard Edition - PlayStation 4, Fallout 4 - PlayStation 4,
Just Cause 3 - PlayStation 4, Far Cry Primal - PlayStation 4 Standard Edition].
Cluster summary: Open-world action games on PlayStation 4.
Cluster 3: [Tom Clancyś The Division - PlayStation 4, Uncharted 4: A Thiefś End - PlayStation 4,
Homefront: The Revolution - PlayStation 4, Deus Ex: Mankind Divided - PlayStation 4].
Cluster summary: Action games with a focus on story and/or multiplayer on PlayStation 4.
Cluster 4: [Rise of the Tomb Raider: 20 Year Celebration - PlayStation 4, Dishonored 2 - PlayStation 4,
Resident Evil 7: Biohazard - PS4 Digital Code, Horizon Zero Dawn - PlayStation 4, Tom Clancy’s
Ghost Recon Wildlands - PlayStation 4].
Cluster summary: Single-player action shooting games with a focus on exploration and/or stealth on PS4.

Target item: Prey - Pre-load - PS4 Digital Code First-person action-adventure shooting game

Ablation Study

Impact of history length. It has been reported in Hou et al. [83] that increasing the
number of historical user behaviors does not improve the ranking performance, but even
negatively impacts the ranking performance. To study the impact of history length on
Tempura, we vary the history length |H| used for constructing the prompt from 15 to
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50. We compare Tempura with the standard baseline Sequential and the best performing
baseline ICL. Here history length |H| is the maximum allowed history length, the real
history length could be shorter. We did not include the results on Games and Kindle since
the user interaction history on these two datasets is short.

The results are reported in Figure 3.13. We observe that utilizing a longer history
does not improve performance; in fact, it results in decreased performance on the ML-1M
dataset. We hypothesize that the extensive history distracts LLMs, making it difficult for
baselines to understand the evolution of user interests. By using temporal-aware prompts
and the prompt ensemble strategy, Tempura demonstrates robust performance even with
long historical interaction sequences.
Impact of the number of in-context examples. We utilize a user’s historic items as in-
context demonstrations to understand the temporal information in his / her behavior se-
quence. It is important to understand how many examples are needed. To this end, we
study the performance with different number of examples in PCL. We keep the total length
of the user’s history as 15 and use the latest k items as examples, setting k to values in the
set [1, 3, 5, 7]. We report the results on the ML-1M and Games datasets in Figure 3.14. We
can observe more examples can boost the performance significantly than only one demon-
stration. As we analyzed in Section 3.4.3, LLMs learn to utilize temporal information by
learning to predict a series of historical items. However, it is not always the case that more
is better. It is observed that a slight performance drop with more examples. We speculate
that longer prompts may cause distraction for LLMs.
Results on GPT-4. More advanced LLMs, like GPT-4 [1], demonstrate enhanced capa-
bilities in knowledge, understanding, and reasoning. Therefore, we evaluate the sequential
recommendation performance using GPT-4 to determine if Tempura can also augment
GPT-4’s capabilities. We present the results in Table 3.10. It has been observed that GPT-4
exhibits a robust capacity for sequential recommendation, even when employing the most
standard prompting strategy, Sequential. Notably, the improvement is most significant on
the Kindle dataset, leading to the hypothesis that GPT-4 possesses extensive knowledge
about Kindle books. The performance improvement with GPT-4 shows its strong ability
in understanding and utilizing temporal information. By applying Tempura, the perfor-
mance can be further improved when the backbone LLM is more powerful.

Case Study

We present an example result from the cluster analysis conducted on the Games dataset. We
employ gpt-3.5-turbo to cluster historic items using the prompt discussed in Section
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Table 3.10: Performance with GPT-4 (NDCG@10). Tempura can further improve the
performance when the backbone LLM is more powerful.

Method ML-1M Games Kindle

Sequential 55.75 66.43 57.65

ICL 54.82 67.84 54.72

Tempura 58.39 68.13 58.59

3.4.3. The historic items was successfully clustered into 4 clusters, accompanied by a
generated summary for each cluster. It can be easily observed that the user’s most recent
interest lies in action shooting games. With this analysis, the target item can be easily
identified since it is a first-person action-adventure shooting game, aligning with the user’s
latest interest.

3.5 Conclusion

In this chapter, we investigate learning from interactive human feedback approaches. Firstly,
in [38], we study an important but largely under-explored problem in conversational recom-
mendation systems (CRS), i.e., reward function design. We present a principled solution
for reward learning for CRS and formulate an online algorithm to learn intrinsic rewards via
bi-level multi-objective optimization. The results on three CRS benchmarks demonstrated
the effectiveness of learned intrinsic rewards.

Secondly, in [32, 37], we present meta-reinforcement-learning based solutions to han-
dle cold-start policy learning for new users. In general, we learn a meta policy for general-
ization and fast adapt it on new users. Specifically, we have developed two strategies aimed
at accelerating the exploration of user preferences, leveraging pre-trained user embeddings
and clustering techniques to categorize user preferences.

Thirdly, we leverage the world knowledge and natural language understanding abilities
of LLMs to interpret user preferences embedded in their sequential feedback. We intro-
duce two kinds of prompting strategies: one to learn to track user preference changes via
in-context learning and another to explicitly analyze the temporal structures in historical
interaction sequences. Our study demonstrates that by incorporating specific prompting
strategies, LLMs can significantly improve in capturing user preferences in the sequential
human feedback.

Overall, we develop approaches to promptly and precisely comprehend and respond to
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human feedback from the perspectives of reward assignment, efficient personalized pol-
icy learning and feedback understanding. In conclusion, the advancements presented in
this chapter contribute significantly toward the overarching aim of developing systems that
engage users more effectively. By enhancing our understanding of user feedback and fos-
tering more engaging conversations, these systems are better equipped to retain users and
meet their needs.
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Chapter 4

Conclusion and Future Work

In this dissertation, we explore the problem of Human-Feedback-driven Learning from both
human and system perspectives. This research aims to deliver an in-depth examination of
the characteristics of real-world human feedback within the context of machine learning,
along with advanced methodologies to address the identified challenges.

4.1 Conclusion

In Chapter 2, we investigate advanced approaches for learning from noisy human feedback.
To model the noise in human feedback, we propose a novel noise model distinguishes be-
tween common noise shared across annotators and the individual confusions specific to
each annotator (Section 2.1 [34]). To address the challenge of sparse human feedback, we
employ data augmentation through generative models to enrich the dataset with missing an-
notations (Section 2.2 [35]). Human feedback is essential to align Large Language Models
(LLMs) with human values and needs. To mitigate the impact of noisy human feedback,
we further design a fine-tuning framework to improve low-fidelity LLMs with the guidance
from high-fidelity LLMs (Section 2.3).

In Chapter 3, we study the problem of learning from interactive human feedback. Our
goal is to promptly and precisely comprehend and respond to human feedback. First, we in-
troduce a multi-objective optimization framework designed to learn the assignment of cred-
its to conversation policies, thereby enhancing the elicitation of human feedback (Section
3.1 [38]). Second, we address the problem of conversational policy learning for cold-start
users via meta-reinforcement-learning frameworks (Section 3.2 [37] and 3.3 [32]). Third,
we design a principled prompting framework Tempura to interpret complex user interests
and intentions by leveraging the zero-shot reasoning capabilities of LLMs (Section 3.4).

Overall, this dissertation solves several key challenges in learning from real-world hu-
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man feedback problems. The key contribution of the research lies in offering practical
solutions that are specifically tailored to the unique characteristics of real-world human
feedback scenarios, including learning from noisy human feedback and interactive human
feedback. This is substantiated by rigorous theoretical analysis and extensive empirical
evaluations conducted on public benchmarks, demonstrating the applicability and robust-
ness of our research. This line of research will promote more robust and practical learning
from human feedback solutions. Our research is dedicated to attaining precise alignment
with human needs and values, with the expectation that such alignment will not only foster
more human-centric systems but also enhance their utility for both humans and systems
alike. More generally, our research has empowered a wide spectrum of important real-
world applications such as recommender systems [35], crowdsourcing platforms [63, 169],
online education [68], healthcare [157], ethical AI [200] and many more.

4.2 Future Work

Data privacy and security. It is important to consider potential privacy breaches in HFL-
based systems, particularly those that collect users’ personal information, such as medical
records in smart healthcare systems. Differential privacy [52] is a promising technique to
protect users’ data privacy. For example, introducing randomness into human feedback to
ensure that individual entries cannot be identified. Moreover, federated learning algorithms
[203] can be utilized as they enable learning from human feedback without the need to
centralize sensitive information, thus reducing privacy risks. Furthermore, secure multi-
party computation (SMC) [50] could be useful in collaborative HFL systems where data
come from a pool of users. By employing SMC, HFL systems can aggregate insights from
distributed feedback without exposing the underlying data, further mitigating the risk of
privacy breaches.
Interactive and multimodal feedback systems. Leveraging multiple modes of feedback
(e.g., voice, video, touch signals) can provide richer information for machine learning mod-
els. For example, voice intonations can convey emotions more effectively than text, and
video can provide contextual cues that are absent in other forms of feedback. Future re-
search could focus on developing models that can integrate and interpret these diverse data
types to gain a more nuanced understanding of user feedback. For example, multimodal
large language models [199] are highly effective in integrating feedback from both im-
ages and text. Also, HFL is highly related to the Human-Computer Interaction (HCL)
community, which employs design principles and usability studies to craft user interfaces
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capable of effectively eliciting and managing multimodal feedback. HCI techniques can be
leveraged to develop HFL systems that are not only intuitive but also engaging, ensuring a
seamless and user-friendly experience.
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