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Abstract 

Much research was done to improve the efficiency of the experimental design 

process through methods that improve and extend response surface methods (RSM). This 

research will take ideas used in two different areas of research and combine these ideas 

and apply them unconventionally to a new area. The first idea comes from the medical 

research community where there is a need for the efficient conduct of clinical trials 

accomplished through interim data monitoring and analysis. (Jennison and Turnbull, 

2006, Karrison, Hua, and Chappell, 2003, Burington and Emerson, 2004) The second 

idea comes from the area of industrial processes where there is a desire to increase 

productivity efficiently through the use of Evolutionary Operation (EVOP). (Box and 

Draper, 1969) RSM is the vehicle primarily used in industrial processes to achieve this 

efficiency. Methods used in these two areas provide the basic methodology in which to 

improve the efficiency of simulation experimentation, where complex systems are 

examined. 

The purpose of this dissertation is to develop a new experimental design process 

for large, complex stochastic simulations that maximizes one or more output performance 

measures while meeting constraints for cost, time and number of replications required for 

maintaining an absolute error of at most β. The number of replications constraint will 

save time by reaching a near optimal solution and may result in allowing the experiment 

to end early, start follow-up studies earlier or to terminate futile studies. This research 

develops of a new methodology termed the Efficient Computer Experiment Methodology 

(ECEM) and is shown to achieve efficiencies in replications of 40% or greater when 

compared to traditional methods. 
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 This methodology achieves efficiencies in several areas. First, establishing a data 

monitoring plan and using power analysis ensures that only the necessary replications are 

conducted to achieve statistically significant results. EVOP, a method traditionally used 

in the industrial process, is used to improve factor settings during the course of 

simulation experimentation in order to improve the response(s) and allow greater 

experimental efficiency. The use of orthogonal and nearly orthogonal Latin hypercube 

designs (OLHD/NOLHDs) is advantageous and efficient as they are a form of stratified 

random sampling which gains efficiencies through minimizing variance. A Gaussian 

process model is fit in order to use simulated annealing (SA) to optimize the response 

prediction formula which results in another savings in replications. Interim analysis, used 

during the conduct of clinical trials, is inserted throughout simulation experimentation in 

order to determine when to end an experiment so as not to waste resources and to 

effectively draw conclusions through the sequential analysis of hypotheses. This 

methodology is a new approach to efficient experimentation and uses a new EVOP 

approach using OLHDs/NOLHDs.  
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1 Introduction 

Systems in a variety of fields to include production, transportation, economics, 

biology, ecology, law enforcement, military operations, behavioral and social sciences 

and in the medical field (Graham, 2004) have become extremely complex and 

increasingly expensive to develop. In order to avoid wasting resources while maintaining 

the ability to draw meaningful conclusions, the need for efficient experimentation 

developed. A recent trend in experimentation is the use of computer simulation. (Fang, 

Li, and Sudjianto, 2006) As computing capabilities increased, the application of computer 

simulation grew as did the demand for greater fidelity representation in models. As a 

result, model complexity has increased. The increased complexity resulted in an increase 

in required resources and also the need for efficient design in computer simulation 

experimentation. (Giunta, Wojtkiewicz and Eldred, 2003) The effort to model real-world 

phenomena as closely as possible has resulted in large scale computer simulations that 

are time consuming to run and involve a large number of input variables. The original 

problem that occurred with traditional experimentation now exists and there is a need for 

even greater efficiency when using computer simulation experimentation. (Fang et al., 

2006) 

Schamburg (2004) states that, “current approaches to analysis are not well 

structured for human learning through the use of complex simulations. For analysis, often 

times the systems engineer is forced to make numerous simplifying assumptions and then 

select a few variables over a limited domain”. This dissertation will address how the 

analyst can structure the experimental design process with a general approach that will 

improve analytical methods for complex, stochastic computer simulation experiments and 
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create an efficient computer experiment methodology (ECEM). This research extends 

current research in several areas and focuses on stochastic computer simulations with 

multiple responses. The methodology starts by specifying the level of accuracy desired 

and aims to achieve results while meeting the desired accuracy in an efficient manner 

through power analysis. Orthogonal or nearly orthogonal Latin hypercube designs 

(OLHD/NOLHD) are applied and the results are modeled with Gaussian process models 

during the Evolutionary Operation (EVOP) process. The response prediction formula 

found through Gaussian Process modeling is optimized with simulated annealing (SA) 

and multiple objective optimization. Interim data monitoring and analysis typically found 

during the conduct of clinical trials is applied to guide the experimentation process. The 

methodology presented here is referred to as the efficient computer experiment 

methodology (ECEM). 

This dissertation is laid out as follows. Chapter 2 defines the problem and gives 

the problem statement and scope. Chapter 3 provides background information and a 

literature review on efficient experimentation and discusses the main components of the 

methodology developed. Chapter 4 explains the steps of the methodology and the 

necessary assumptions of the ECEM. Chapter 5 presents the properties of the ECEM. 

Chapter 6 demonstrates the methodology on the application of a chemical mixing 

experiment and on a police staffing study. Chapter 7 states the conclusions and 

contributions of this research. Chapter 8 addresses future work in this area. 
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2 Problem Statement and Scope 

Current methods for improving the efficiency of computer simulation 

experimentation include methods that improve and extend response surface methods 

(RSM) and methods that find the global optimum while decreasing the number of 

replications. This dissertation will seek to develop alternative methods to supplement 

current methodologies to accomplish this objective. The alternative methods involve the 

use of EVOP while using OLHDs/NOLHDs, using RSM and applying SA and multiple 

objective optimization to the response prediction formulas, and using interim data 

monitoring and analysis tools typically used in the conduct of clinical trials. The 

applications tested are large, complex, stochastic computer simulations with multiple 

responses. 

The purpose of this dissertation is to develop a new methodology that analyzes 

stochastic computer simulations efficiently while optimizing one or more output 

performance measures and meeting constraints such as cost, time and\or number of 

replications required for maintaining an absolute error of at most β. The number of 

replications constraint will save time by reaching a near optimal solution that is within 

tolerance of the upper bound of the optimal solution and may result in allowing the 

experiment to end early, start follow-up studies earlier or to terminate futile studies. This 

will be accomplished through the application of interim data monitoring and analysis 

employed during the conduct of clinical trial analysis. In addition, response surface 

methods will be employed during the EVOP process with OLHD/NOLHD schemes while 

applying SA to the response prediction formula in order to find the factor settings that 

optimize the responses under study. 
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The stochastic optimization in this work will use the following notation:  

Maximize\Minimize E(R(v1, v2, …vk))      (2.1) 

Where 

E(R(v1, v2, …vk)) is the expected value of R given input factors vk 

such that 

l1 ≤ v1 ≤ u1 

l2 ≤ v2 ≤ u2 

    . 

    . 

lk ≤ vk ≤ uk 

t i-1, 1-α/2 in /)(S2
 ≤ β       

ln ≤ n ≤ un 

g (n) ≤ g  

c(n) ≤ c 

 

R = output performance measure(s)  

vf = value of input factors where f = 1..k 

lf = lower bound on the factors where f = 1..k 

uf = upper bound on the factors where f = 1..k 

n = number of replications 

nl = lower bound on (n) number of replications required 

nu= upper bound on (n) number of replications required 

S
2
(n) = variance estimate of R based on n 

i = increment (replication) number 
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α = significance level (Type I error) 

β = maximum absolute error (Type II error) 

t i-1, 1-α/2 = test statistic 

g(n) = time to meet objective function in n replications 

g = time constraint  

c(n) = cost ($) of n replications 

c = total amount budgeted  

 

In matrix form this problem can be expressed as follows: 

Maximize E[R(V)]          (2.2) 

Where  

E[R(V)] is the expected value of R given input factors V 

such that  

L ≤ V ≤ U 

t i-1, 1-α/2 in /)(S2
 ≤ β  

ln ≤ n ≤ un 

and\or g (n) ≤ g  

and\or c(n) ≤ c 

where 

R = output performance measure(s) 

V = value of input factors 1..k 

L = lower bound on factors 1..k 

U = upper bound on factors 1..k 
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n = number of replications 

nl = lower bound on (n) number of replications required 

nu= upper bound on (n) number of replications required 

S
2
(n) = variance estimate of R based on n 

i = increment (replication) number  

α = significance level (Type I error) 

β = maximum absolute error (Type II error) 

t i-1, 1-α/2 = test statistic 

g(n) = time to meet objective function in n replications 

g = time constraint  

c(n) = cost ($) of n replications 

c = total amount budgeted 

 

The single objective problem is difficult to solve because if the number of factors 

k is large, then searching for an optimal solution in k-dimensions increases the size of the 

experimental design as a power or two or more. This involves evaluating the objective 

function many times and could become very costly. Where the objective function is 

evaluated and how many times it is evaluated needs to be determined. As a result of the 

complexity of the problem, the objective function cannot be evaluated by simply 

plugging a set of possible decision variables into a closed-form equation. The simulation 

must be run to produce an output R. If the simulation is stochastic, replications are 

required to evaluate the objective function. For complex systems, this means complex 

simulations with a large number of input variables and would therefore require an 
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extremely large number of replications. (Law and Kelton, 2000) 

There is significant literature on the design and analysis of experiments with 

computer simulations and on stochastic computer simulations which contain references to 

how efficiencies can be gained. Many of the techniques and assumptions rely heavily on 

replications in order to get an accurate estimate of the variance and these methods could 

result in a lot of costly simulation time to achieve these estimates. This research extends 

the literature in the area of the design and analysis of stochastic computer simulation 

experiments and presents an efficient computer experiment methodology (ECEM). This 

dissertation will demonstrate the new methodology’s applicability to a chemical mixing 

process simulation as well as to a police staffing simulation study. 

This dissertation will seek to answer the following research questions: 1) Will the 

statistical analysis tools employed during clinical trials and applied to stochastic 

simulation experiments improve the process? 2) How can complex, stochastic simulation 

computer experiments be conducted efficiently? 3) Can current EVOP and RSM be 

extended to apply more sophisticated DOE to gain efficiency?  
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3  Background 

This literature review includes a review of efficient methods that are currently 

available in the design of experiments (DOE) and RSM. EVOP is reviewed to give the 

background behind this method that was established in the 1950’s. Techniques for model 

fitting are addressed as well as alternative methods to search the design space and 

optimize the responses. Finally, clinical trial analysis is reviewed with the intentions that 

this research will leverage the use of a data monitoring plan, error spending functions and 

stopping boundaries such as those developed by Pocock, and O’Brien, and Flemming 

(Dmitrienko, Molenberghs, Chuang-Stein and Offen, 2007) to determine how many 

replications need to be done to meet desired accuracy and if and when the experiment 

should be stopped while using the EVOP process.  

3.1 Efficient Experimental Design  

The following four sections describe how efficiencies can be gained during the  

experimental design process. The selection of the experimental design, sampling 

techniques, variance reduction methods and model fitting are addressed with respect to 

how efficiencies can be gained in each of these areas. 

3.1.1 Designs of Experiment 

Experimental designs are considered efficient when they maximize information 

gained from an experiment with as few experimental trials as possible. This is important 

to achieve when the trials are expensive or the experiment trial runs are time-consuming. 

Experimental designs that have been developed for efficiency include two- and three-

level fractional factorial designs, Plackett-Burman designs, and response surface designs 
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such as Box-Behnken and Central Composite designs. (Myers and Montgomery, 2002) In 

the case where there are restrictions on randomization, nested and split-plot designs are 

used. Additionally, RSM and methods to extend or improve RSM have been the primary 

means to improve upon the efficiency of experimentation. (Myers et al., 2002, and 

Schamburg, 2004) These techniques include the use of meta-models, variable screening, 

domain reduction and the use of space-filling designs. 

Variable screening is accomplished either with individual or group screening 

techniques and allows one to determine which factors are significant so that the 

experiment can focus on the factors which cause the greatest effect on the responses 

studied. An individual screening technique is one-at-a-time (OAT) variable screening. 

(Box et al., 1969) Given many factors, this method would be highly resource intensive. 

Group screening techniques, also referred to as supersaturated designs; include iterated 

fractional factorial design and sequential bifurcation (SB) where interaction effects are 

only important if the corresponding main effects are important. Some screening designs 

are fractional factorials and Plackett-Burman designs. (Meyers et al., 2002) 

Domain reduction is the process of testing smaller regions within the initial design 

space to gain knowledge about the entire region. This is a sequential procedure where 

successive tests of the design region may lead to discovering the global optimum. Section 

3.3 will elaborate on some techniques to conduct the search of the design region while 

finding global optimums. 

Space-filling designs scatter the design points within the design region rather than 

in clusters, at corners or on the surface such as is seen in classical designs. (Cioppa, 

2002) The space-filling design is a new DOE concept used for modeling deterministic 
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systems when there is little or no information about the effects of the factors on the 

responses and the relationship is thought to be non-linear. (Santner, et al., 2003) The aim 

of space-filling designs is to spread the points as evenly as possible around the operating 

space. These designs fill out the n-dimensional space with points that are in some way 

regularly spaced. According to Husslage, Rennen and VanDam (2006), deterministic 

computer experiment designs should be space-filling. Section 3.1.2 describes sampling 

techniques and space-filling designs in more detail. 

This research will use space-filling designs to analyze stochastic computer 

experiments. Space-filling designs employ sampling techniques such as Latin square 

sampling, orthogonal sampling, simple random sampling, stratified random sampling and 

uniform sampling. Some space-filling designs are distance-based designs such as 

maximin and minimax designs. Space-filling designs are desirable for computer 

experiments when prediction accuracy is of importance. (Santner, et al., 2003) The 

various sampling techniques are reviewed next. 

3.1.2 Sampling Techniques 

Simple random sampling consists of randomly selecting design points within the 

design region. Each design point has an equal probability of being selected and, therefore, 

it is possible that the design points could reside next to each other or in the same row or 

column of another design point since the columns and rows are not specified within the 

random design. Figure 3.1 demonstrates an example of simple random sampling within a 

design space and how it is the least restrictive of all the sampling techniques discussed 

here. 
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Figure 3.1 Simple random sampling within a design space randomly selects points 

with no regard as to where the previous design points were selected. 

 

Latin square sampling is a statistical sampling technique where a square grid 

containing sample points contains only one sample in each row and each column. This 

differs from simple random sampling as the design points are guaranteed to be distributed 

across the region since the entire region is divided into grids and selected randomly 

within each row and column only once. Latin square sampling is more restricted than 

random sampling. Figure 3.2 shows a sample space divided into rows and columns and 

how samples can be taken from this space and exhibit the properties of Latin square 

sampling.  

 

    

    

    

    

 

Figure 3.2 This is an example of a sampling technique called Latin Square Sampling 

where only one sample is contained in each row and in each column. 

 

Orthogonal sampling is a result of sampling evenly over the entire region by 
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dividing the region into equally probable subsections and taking one sample point from 

each section as demonstrated in Figure 3.3. Orthogonality is more difficult to achieve as 

orthogonal sampling ensures that the selection of random design points is a very good 

representative of the real variability. (Steinberg and Lin (2006), Tang (1993), and Cioppa 

(2002) This is similar to Latin squares in that one sample comes from each row and 

column, however the grid is further divided into sections where only one point resides in 

the subsection as well as only one point in each row and column. Orthogonal sampling is 

more restricted than Latin square sampling. 

 

    

    

    

    

 

Figure 3.3 Demonstration of orthogonal sampling within a design space. The bold 

lines shows the addition of subspaces which further restrict where the design points 

are taken.  

 

Stratified random sampling (Figure 3.4.) obtains a set of design points as a result 

of equally dividing the experimental region into n strata and randomly selecting one point 

from each stratum. Equally spaced points are selected across the experimental region 

using a uniform distribution. (Santner et al., 2003) This is similar to Latin squares in that 

sampling is done only once from within each stratum. The rows or columns of the Latin 

square are considered to be strata. This differs from Latin squares as row or column 

independence may not exist as is found in Latin squares.  
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Figure 3.4 Stratified random sampling where the design space is divided into 

sections and one design point is selected within each stratum. 

 

Uniform sampling distributes the design points uniformly across the design space. 

The distribution of the design points are compared to the uniform distribution. (Santner et 

al., 2003) One of the major disadvantages of uniform designs is difficulty in finding a 

design for many combinations of variables and runs, thus severely restricting the number 

of uniform designs readily available for use. (Cioppa, 2002) Santner et al. (2003) 

discusses work by Fang et al., (2006) where it is shown that uniform designs may be 

orthogonal thus making them attractive for use in computer experiments. Uniform 

sampling differs from simple random sampling in that uniform sampling guarantees that 

the design points are uniform across the sample space by design and not as a result of 

chance that could occur in simple random sampling. 

Distance-based designs are based on the actual distance between design points. 

These designs ensure that no one point is too close to another point. Two distance based 

designs are maximin and minimax designs. In the maximin distance design the minimal 

distance between any two points is maximized. Maximin designs have good space-filling 

properties but are not always non-collapsing. (Husslage et al., 2006) The minimax 

distance design is where the maximum distance between any two points is minimized. 
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(Santner, et al., 2003) These designs are similar to Latin squares but the design points are 

spread evenly by a distance measure rather than by generic rows and columns. This 

distance measure can be considered as a way to delineate rows and columns. Some 

measurement criteria in evaluating the distribution of design points across the design 

region are: maximin and minimax distances, maximum entropy and discrepancy. The 

latter two are very difficult to calculate. For a more detailed description of these concepts 

see Santner, et al. (2003). 

Other space-filling designs discussed by Santner et al. (2003) include grid 

designs, lattice designs and nets. All of these designs are beneficial when the sample size 

is large. These all appear similar to Latin square sampling in the sense that the design 

region is being divided into equal regions and then being sampled based on these regions 

and whether they are on a grid, lattice or net. 

An experimental design which makes use of one of these sampling techniques is 

the Latin hypercube design (LHD) which employs Latin squares in “n” dimensions. In a 

Latin hypercube design, only one design point is taken in each row and column but also 

only within each plane in the n-dimensional design space. Not all LHD’s are space-filling 

and there are actually only subsets of these designs that are considered space-filling. 

Santner et al. (2003), Schamburg (2004) and Cioppa (2002) summarize LHD’s. 

Improvements to these space-filling designs are called orthogonal LHD’s (OLHD) (Ye, 

1998) and nearly orthogonal LHD’s (NOLHD) (Cioppa, 2002). Due to the issues with 

multi-collinearity that arise with LHD’s (Cioppa, 2002) this research will seek to 

leverage the benefits of OLHDs/NOLHDs.  

In implementation, one must decide in advance how many sample points to take 
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and then record from which rows and columns they are taken. For each input variable, vk, 

the range is divided into “n” strata all of equal marginal probability and each stratum are 

sampled only once. (Cioppa, 2002) An example of a space-filling LHD in two 

dimensions is shown in Figure 3.5. It is similar to Latin square sampling. As the third 

dimension is added, design points cannot come from the same strata as the other planes. 

 

 

Figure 3.5 A space-filling LHD is similar to Latin square sampling and looks 

identical when viewing in two dimensions. As the third dimension is added the 

design points cannot overlap. 

 

Figure 3.6 shows an example of a non-space-filling LHD in two dimensions. Note the 

presence of an apparent pattern in this non-space-filling design. To be space-filling the 

sampling should not exhibit any type of pattern and should appear random. (Santner, et 

al., 2003) 

 
 

Figure 3.6 A Non-space-filling LHD exhibits a pattern as shown here with the design 

points lined up along the diagonal of the design space. 
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Orthogonal Latin hypercube design (OLHD) is an extension of the LHD where 

the orthogonality minimizes variance and ensures independence among the coefficient 

estimates in a regression model. (Ye, 1998) Cioppa (2002) states that “orthogonality 

enhances the ability to analyze and estimate as many effects, interactions, and jump 

discontinuities as possible.” Orthogonal LHD’s employ the concepts behind orthogonal 

sampling and are therefore more restricted than Latin squares or LHS. (Ye, 1998) 

3.1.3 Variance Reduction 

Reducing variance gains greater precision given the same amount of simulation 

time or achieves a specified precision with less simulation time. (Law and Kelton, 2000) 

There are several variance reduction techniques in the literature concerning stochastic 

simulation. Asmussen and Glynn (2007) and Ripley (1987) discuss the use of variance 

reduction techniques and how applying these techniques can greatly increase the 

efficiency of the simulation. Some of these techniques include control variates, antithetic 

sampling, common random numbers, importance sampling and stratification,. According 

to Ripley (1987), using more than one variance reduction technique may actually counter 

act the effects of the other or cause a larger variance and therefore it is not recommended 

to use multiple variance reduction techniques. 

The use of control variates is the most widely used variance reduction technique 

where the expected value is known and correlated with the response Y. A sufficient 

number of replications should be completed so that the response Y and control variates 

distribution is normal. Caris and Janssens (2005) discuss how control variates can be used 

in a multiple response simulation with a small number of replications. Antithetic 

sampling forces the selection of samples so that they are not identically and 
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independently distributed (iid). A large number of samples are needed to get accurate 

results. Common random numbers utilizes a common stream of random numbers to cause 

correlation in the model and to reduce noise and improve computational efficiency.  

Importance sampling and stratification are reviewed here as they are similar to the 

concepts of Latin square sampling that is used in this research. Importance sampling 

simply means that the samples are drawn from the state space where the most 

contribution to the response is found. Therefore some prior knowledge of the state space 

is required or is found through screening, pilot runs or previous trials. As discussed in the 

previous section, stratification is similar to Latin square sampling; the former is just 

slightly more restrictive in that the points cannot lie in the same rows or columns. Ripley 

(1987) states that it is the experimenter’s responsibility to consider employing variance 

reduction during the course of a large simulation study. Given this information, this 

research achieves variance reduction through the inherent properties found when using 

OLHDs/NOLHDs and therefore gains efficiency and is discussed in more detail in 

section 5.2.2. 

3.1.4 Model Fitting 

After the design has been determined and the response data collected, a predictive 

model is fit to the data. Traditional methods of model fitting include linear regression 

where parameters are estimated using least squares, cubic and quadratic fits (polynomial 

RSM). More advanced methods include multiple regression analysis, multivariate 

adaptive regression splines (MARS), classification and regression trees (CART) meta-

model, general linear models (GLM), Gaussian process models, Spatial correlation 

models such as Kriging, neural networks (NN), radial basis functions (RBF), support 
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vector machines (SVM) and moving least squares method (MLSM). Others who have 

applied meta-modeling techniques are Simpson, Korte and Mistree, 1998; Wang, 2003; 

Schamburg, 2004 and Crino, 2006. All have shown some success in improving 

experimental results although have not been entirely efficient. 

The method of least squares estimates the linear coefficients of the response 

prediction formulas that minimize the sum of squared errors between the regression 

model and the prediction formula. First-order response prediction formulas are: 

 

 ̂                          (3.1) 

 

and second-order response prediction formulas are: 

 

 ̂     ∑     
 
    ∑    

 
     

  ∑∑        
 
      (3.2) 

 

Where  ̂ is the predicted response, the factors are denoted by xi and b0, bi and bij are the 

regression coefficients which are unbiased estimators of the true parameters β0, βi, βij. 

Cubic, quadratic and higher order polynomials are derived from the Taylor series 

expansion and are detailed in Myers and Montgomery (2002). 

CART analysis is used to better understand the relationship between factors and 

responses and to assist in the selection of the next design region to explore. The responses 

are prioritized resulting in a CART for each response of interest where new and 

sometimes conflicting design regions are identified. Schamburg (2004) applies this meta-

modeling technique in his dissertation where an enormous number of runs were 
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completed and efficiency was not addressed. 

Space-filling designs are often analyzed through kriging (spatial correlation or 

Gaussian) models. (Crino, 2006) When the simulation is deterministic and the function is 

known, kriging gives an exact interpolator which results in the kriging prediction equal to 

the observed output. 

Neural networks are mathematical models inspired by biological neural networks 

of the central nervous system. Nodes are connected together to form a network where a 

function approximation is capable of learning from observed data. Training an algorithm 

however on a new data set is not efficient and may require a significant amount of 

experimentation. (Stern, 1996) Neural networks are applicable when prediction is more 

important and there is no mathematical formula that relates the input factors to the output 

variables. (Samoilenko and Osei-Bryson, 2010) 

Multivariate adaptive regression splines (MARS) was introduced by Friedman 

(1991) and is a linear model with a forward stepwise algorithm to select model terms 

followed by a backward procedure to prune the model. The approximation bends to 

model curvature at "knot" locations, and one of the objectives of the forward stepwise 

algorithm is to select appropriate knots. After selection of the basis function is completed, 

smoothness to achieve a certain degree of continuity is applied. (Crino, 2006) 

Gaussian process models are interpolation models that develop a probability 

model through Bayesian prediction in order to model the relationship between the inputs 

and outputs. Gaussian process models are well suited for computer experiments where 

the response and predictors are continuous. There is much literature on the use of 

Gaussian process models for deterministic computer simulations. (Santner, et al., 2003) 
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The parameters of a Gaussian process model are fit through maximum likelihood and use 

the product exponential covariance or correlation function with a power of two as the 

estimated model. The assumption in using this model is that the response Y is normally 

distributed with mean μ and standard deviation σ
2
M. The M matrix is composed of 

elements as shown in Equation 3.3. 

 

       ( ∑   (       )
 

 )              (3.3) 

Where 

θk =correlation parameters 

xik and xjk = elements of the covariate matrix X 

 

In order to predict the value of y(xnew), the process must exhibit some regularity 

over the design space therefore a space-filling design is preferred. All pairs of locations 

x1 and x2 must have a common orientation so that the inter-point distance will have the 

same covariance. “The Gaussian process model is an example of a probabilistic non-

parametric model that provides information about prediction uncertainties which are 

difficult to evaluate appropriately in non-linear parametric models.” (Kocijan, Murray-

Smith, Rasmussen and Girard, 2004) Santer et al. (2003) states that deterministic 

computer experiments are well suited for a Gaussian process model. The use of Gaussian 

process models will be explored for the stochastic computer experiments examined in this 

dissertation. 

It is important to select a model that will appropriately fit the data. This model can 

be used for predicting the response without having to conduct any replications to find the 
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results. The more appropriate the model fit the better the prediction results. In general, it 

is recommended that the simplest model be used to fit the data in order to avoid over 

fitting the data. This also reduces the level of error and can increase statistical power. 

This research will use Gaussian process modeling in an effort to gain efficiencies by 

developing good response prediction formulas. These response prediction formulas will 

be optimized using SA and multiple objective optimization to find factor settings that 

optimize the responses. This will result in a decrease in the number of trials that will need 

to be conducted to find these same factor settings. Both Gaussian process modeling and 

SA are part of the methodology presented here and are discussed in more detail in section 

3.3. 

3.2 Evolutionary Operation (EVOP) 

The concept of EVOP was introduced by Box and Draper in 1957 (Meyers et al., 

2002), although Box et al. (1969) state that EVOP was actually established as early as 

1954. EVOP is a method permanently applied to a full scale process in order to 

continually monitor and improve the operating parameters of the process in order to 

produce improved operating conditions. EVOP is a systematic way of conducting 

experimentation that is similar to the ideas of sequential analysis. Box el al. (1969) cite 

that one drawback of EVOP is that it must rely on many replications to separate the 

signal from the noise. Perhaps by employing an efficient OLHD/NOLHD a tradeoff can 

be made between the increase in the number of replications required by the EVOP 

process and the stochastic nature of the computer simulation. Additionally, applying 

power analysis and interim data monitoring and analysis ensures that only the necessary 

number of replications needed for statistical analysis will be completed thus helping to 
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gain efficiencies. The process of power analysis and interim data monitoring and analysis 

is discussed in detail in section 3.4. 

3.2.1 EVOP Techniques 

EVOP can be applied to a number of process variables, however only two or three 

variables are usually considered. While examining all the variables at one time is an 

efficient methodology, Box et al. (1969) discourages the use of too many variables 

because “in actual operation, the making of changes on too large a number of variables 

can merely lead to chaos”. Given the improved computing capabilities of today, this 

research will explore a large number of variables while employing EVOP and 

demonstrate that it is possible to go beyond the two or three variables recommended by 

Box, et al. (1969).  

 

 

 

 

 

 

 

Figure 3.7 Location of the design points for a 2
3
 factorial depicted on the unit cube. 

 

Typically EVOP designs use a 2
k
 factorial design as shown in Figure 3.7. Box and 

Draper (1969) discuss the advantages of using simple factorials during the EVOP process 

and layout the steps for conducting the process. Given that the analysis of the EVOP 
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process was conducted manually when Box and Draper wrote about this procedure in the 

1950’s and 1960’s, it is apparent why this conclusion is made about using simple 

factorials. 

In an attempt to explore more complex EVOP procedures, other EVOP techniques 

employed in an attempt to optimize include Rotating Square EVOP (ROVOP), Random 

EVOP (REVOP) and Simplex EVOP. (Box et al., 1969) RSM is discussed in conjunction 

with EVOP to “be too complicated to be used under the circumstances in which EVOP is 

employed but can be utilized if a proficient technician is available”. (Box et al., 1969) 

With today’s computing resources this challenge is not as daunting as originally proposed 

in 1954. These more complex EVOP techniques are described next. 

The ROVOP (Figure 3.8) was developed by Dr. Edwin Harrington in 1964 for use 

with only two variables. Cycle one consists of square 1. If no improvements are detected, 

then you rotate the square 45 degrees from the original square and fit square 1 into square 

2. If no improvements are detected then cycle 3 repeats in the same manner as cycle 2. 

The process repeats itself until an improvement is detected and the process moves in the 

direction of the improvement. (Box et al., 1969) REVOP by Satterthwaite (1959), makes 

use of completely random points rather than a planned factorial design. (Box et al., 1969) 
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Figure 3.9 Three successive ROVOP 

patterns 

 
 

 

 

 

 

 

 

Figure 3.8 Location of the design points on the unit square for three successive 

ROVOPs. 

 

Meyers and Montgomery (2002) discuss a Simplex EVOP process (Figure 3.9) 

however it is not a recommended design. In the Simplex EVOP, the initial design forms 

an equilateral triangle. A new vertex is added opposite the lowest yield forming a new 

equilateral triangle after each cycle. The process continues until an improved response is 

no longer achieved or the process results in a return to the same vertex repeatedly. 

(Spendley, Hext and Himsworth, 1962) 

 

 

 

 

 

 

Figure 3.9 Location of the design points in a Simplex EVOP design in 2 Dimensions. 

 

(1) 

(4) (2) 

(5) (3) 
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3.2.2 The EVOP Process 

An experimental design is selected and the process or simulation is run at these 

design points and is called a cycle. After at least two cycles, the range of produced values 

provides the estimate for the standard deviation () which is updated with each 

subsequent EVOP cycle. A cycle can consist of a single simulation run, multiple 

simulation runs or batched simulation runs. These runs are all conducted at the same 

operating conditions leading to an average response representative of the operation at 

those fixed conditions. It may be necessary to complete some initial simulation runs to 

get an estimate of . In an industrial process, this initial estimate of  can be obtained 

from plant records, therefore it may be possible to obtain an estimate based on previous 

simulation runs or pilot runs during the course of the same study. Variable screening as 

discussed in the Chapter 3.1.1 can help narrow the pool in determining which factors are 

significant. (Butler, 2001)  

As EVOP is used throughout the study and goes through these cycles and phases, 

estimates of the effects, variables, function and the region will begin to take shape and 

morph as the process continues in the direction of improvement using the statistical 

techniques of RSM and other methods of searching the design region. Box and Draper 

caution about making comparisons of EVOP to optimization techniques because EVOP 

“is an experimental technique for seeking the preferable” factor settings that achieve 

desired response objectives. Optimization is therefore not a goal of the EVOP process. 

Rather than seeking the optimal solution, EVOP is concerned with finding solutions that 

are an improvement over current operating conditions and are conducted sequentially to 

continue to find further improvements. In EVOP, it is desirable to find continuous 
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improvement without the pressure of promising to find the absolute best settings. EVOP 

usually starts with a process that has variables of “interest”. The EVOP process begins by 

examining these variables. As the EVOP program evolves, “the dimensionality of the 

experimental space develops in ways that could not have been predicted” initially. (Box 

et al., 1969) It may be possible that as the process moves in the direction of improvement, 

the original limits of the variables are tested and result in going beyond the preconceived 

limits. Additional variables of interest may even be found that weren’t initially thought to 

be significant. 

New literature on EVOP is basically non-existent. Some believe that EVOP was 

abandoned as a result of RSM and Taguchi methods made popular in the 70’s. (Holmes 

and Mergen, 2006) When EVOP was first introduced, the method was conducted using a 

worksheet methodology with manual calculations. If computers were available, the 

EVOP calculations could be handled with computer automation. This dissertation will 

seek to develop new interest in EVOP, while analyzing more than three factors, through 

the use of sophisticated experimental designs and aided by today’s use of computers. 

3.3 Optimization 

While EVOP was not intended as an optimization technique, this research will 

leverage optimization techniques to find the best factor settings that optimize the 

response prediction formulas found through Gaussian process modeling within the EVOP 

process. There are several techniques that can be used. (Ghani, 1995, Barton and Ivey, 

1996, Humphrey and Wilson, 2000; and Meyers et al., 2002) The method of steepest 

ascent, tabu search (TS), simulated annealing (SA), the genetic algorithm (GA), and the 

Nelder-Mead simplex search (NMSS) algorithms are examples of local and global search 
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techniques. (Shang, Wan, Fromherz and Crawford, 2001) 

The method of steepest ascent is one of the methods which use the gradient of the 

function to determine the direction in which to search for maxima. One disadvantage of 

this method is in the case of a discontinuous function where the derivative cannot be 

computed and no new search direction can be determined. This method typically works 

well only on functions that are unimodal. On multimodal functions this method may not 

be able to escape a local maxima to check for other maxima in the function to find a 

global optima. 

Tabu search (TS) is a pseudo random, deterministic search algorithm. The TS 

algorithm has memory to store past solutions and the history of the swaps that were 

made. A pointer indicates past changes and keeps track of the swaps. This memory forces 

the search to explore new areas within the space and is not constrained to local optimums 

like the method of steepest ascent. (Michalewicz and Fogel, 2000) 

SA was inspired by the heating and cooling of metals to reduce defects and is a 

pseudo random, stochastic search algorithm that finds optimal values numerically. It is a 

search method as opposed to a strictly gradient based algorithm. It chooses a new point 

where all uphill points are accepted and while some downhill points are also accepted 

depending on probabilistic criteria. This iterative algorithm randomly generates a solution 

and then moves probabilistically to new solutions. SA may move to solutions of lesser 

quality so that the search can move to new areas thus allowing a better quality solution. 

Moves are done probabilistically according to a temperature procedure, where the higher 

the temperature value the more likely the lesser solution is accepted. SA has many 

strengths, among them are 1) it can deal with highly nonlinear models, chaotic and noisy 
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data and many constraints, 2) it is a robust and general technique and has main 

advantages over other local search methods, 3) it is flexible and has the ability to seek out 

global optimal solutions. (Michalewicz et al., 2000) Figure 3.10 outlines the heuristic for 

conducting SA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 The steps for applying the simulated annealing heuristic to find the 

global optimal solution to a problem. 

 

A genetic algorithm (GA) is a global search technique that finds optimal solutions 

and is derived from the processes of natural evolution. A GA allows for a large number 

of parameters and can deal with noisy data. Weaknesses of a GA’s are their inaccuracies 
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and that they are computationally intense to implement. (Michalewicz et al., 2000) 

The Nelder-Mead simplex search (NMSS) method was originally designed for 

unconstrained optimization of deterministic functions but it can also be applied to 

optimize stochastic simulations. (Barton et al., 1996) According to Barton and Ivey this is 

the most popular direct search method. Barton et al. (1996) describe 1) the original 

Nelder-Mead method, 2) the Nelder-Mead Simplex Method, and 3) a modification to the 

Nelder-Mead Simplex Method which shows greater improvements over the two previous 

methods. 

The advantages of SA over the other methods discussed, especially the ability to 

escape local optima, make it an ideal choice for use within the ECEM. Once the factor 

settings that result in an optimal response have been found using SA, they are used in the 

computer simulation experiment to collect data and are the “treatment” under 

investigation. Initially n replications are completed to collect an adequate amount of data 

to base the first interim analysis. The variable n is determined through the use of power 

analysis which is completed during the development of the monitoring plan. These 

concepts are discussed in Section 3.4. 

3.4 Clinical Trial Analysis 

There are similarities that can be made during the course of planning and executing 

a clinical trial and planning and executing a stochastic simulation experiment. The 

selection of participants, monitoring the results and analyzing the data are all common 

tasks. While the simulation experiment under study may not be a matter of life and death, 

it is of great concern to be efficient especially when the simulation is complex and 

resource intensive. Efficiencies during the conduct of clinical trials are a result of 
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planning for the experiment, statistically monitoring the data collection process and 

conducting analysis so that as soon as results become apparent during the conduct of the 

trials, the experiment can either be stopped early or a decision can be made to continue 

the experiment based on the results gathered. This plan and how the data are monitored 

and analyzed are discussed in Section 3.4.1. 

3.4.1 The Monitoring Plan and Protocols 

The conduct of interim data monitoring and analysis is based on the monitoring 

plan or protocol developed. This plan specifies: 1) The hypotheses to be tested; 2) 

significance level α (Type I error probability); 3) maximum number of planned analyses 

so that the maximum sample size can be determined; 4) best sample size using power 

analysis and, therefore, determining the Type II error probability, ß; 5) an estimate of the 

effect of the protocol on the outcome and its associated p-value; and 6) the type of 

stopping boundary to be applied. (Everitt, 2004) These boundaries are summarized in 

section 4.2.7 and are used for testing hypotheses and summarizing evidence 

simultaneously. The process is fully sequential as the evidence is assessed after each 

patient/observation or groups of patients/observations. “…a clinical trial is stopped as 

soon as enough information is accumulated to reach a conclusion …whether the drug is 

superior or inferior to the control”. (Dmitrienko et al., 2007) 

Power analysis is used to compute sample size through the proper design of the 

experiment and has been in use long before clinical trial analysis was developed. One 

must select the appropriate power for the situation as too high a power can result in trivial 

effects becoming too significant during testing and too low a power will cause the 

erroneous rejection even though the data fit perfectly. Section 5.1 discusses the properties 
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of power analysis and how it leads to efficiencies through determining the appropriate 

sample size. 

 

3.4.2 Interim Data Monitoring and Analysis 

Medical researchers conduct “clinical trials which are a type of research study that 

uses human volunteers to test new methods of screening, prevention, diagnosis, or 

treatment of a disease to answer specific health questions”. (Jennison et al., 2006; 

Karrison et al., 2003) Statistical methods have been developed in the biostatistics field to 

reduce the number of required subjects, save time and money and to improve the 

outcomes of treatment protocols. (Hagino et al., 2004) Group sequential methods (GSM) 

were developed to allow early termination of studies on the basis of interim comparisons 

known as interim efficacy analysis. (Burington et al., 2004) In clinical trials, interim data 

monitoring and analysis is performed after study groups of subjects have completed the 

trial. GSM may allow early closure of one or more treatment arms based on the results of 

interim analyses. The GSM approach defines a critical value to be used for each interim 

analysis so that the overall Type I error rate is maintained at a level defined in the clinical 

trial protocol. By enabling early closure, GSM protects patients from unnecessary 

exposure to a potentially unfavorable treatment. (Whitehead, 1999) During the course of 

the sequential testing the trial is ended when sufficient data have been collected to 

determine if one treatment protocol is better than another protocol or if a protocol is 

found to be unsafe to the patient. 

Sequential data monitoring strategies consist of repeated significance tests and 

stochastic curtailment tests. Repeated significance tests are used a great deal in clinical 
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trials during interim data monitoring and analysis. These tests make use of error spending 

functions which determine the shape of the stopping boundaries. Error spending functions 

are discussed in detail in section 3.4.3. Stochastic curtailment tests focus on futility and 

are based on the likelihood of observing a given treatment effect based on predictive 

inference. These tests span the realm of frequentist in nature to Bayesian while some are 

mixed frequentist and Bayesian. (Dmitrienko et al., 2007) The repeated significance test 

may use a variety of possible error spending approaches such as design-based, ten-look, 

Lan-DeMets, the Jennison-Turnbull, and the Hwang-Shih-DeCani family of error 

spending functions. Stochastic curtailment futility rules, based on conditional power, 

were established by Lan-Simon-Halperin and Pepe-Anderson-Betensky. Futility rules, 

based on predictive power, were established by Dmitrienko et al. (2007) and Wang 

(2003). Dmitrienko et al. (2007) describes the use of each of these methods in great 

detail. 

There are several concerns with interim data monitoring. First, the preservation of 

Type I error can be an issue but can be controlled through the use of an alpha spending 

function which will then specify how the Type I error will be spent. Second, there may be 

a penalty for taking interim looks such as a stricter p-value required or a larger sample 

size. Again, this can be controlled by the choice of error spending function used. Lastly, 

if the trial requires a rigid schedule with respect to the number and timing of interim 

looks, than the timing of the interim looks may need to be specified over the course of the 

trial as opposed to being determined statistically. 

3.4.3 Stopping Criteria 

There is much literature on the use of stopping criteria for an experiment. Some 
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criteria are simply when a threshold has been reached or when a goal such as a percent 

achievement has been reached. Using interim data monitoring and repeatedly testing data 

can result in an inflated false positive error rate if not conducted properly. Clinical trials 

use group sequential methods and the application of stopping boundaries. An error 

spending function, a frequentist approach, is used to define the stopping boundary in 

order to control this error rate. The selection of an error spending function should be 

appropriate to the needs of the trial. The error spending function should be conservative 

when its use is not intended for early efficacy stopping but is appropriate for 

administrative looks, futility stopping or sample size adjustment. The error spending 

function should be aggressive primarily when early efficacy stopping is desired. The 

important quantities to fix in the design are the choice of error spending function and the 

maximum sample size. Formal futility boundaries are an alternative approach. The β-

spending function allows for the preservation of the Type II error. “Interim data 

monitoring allows us to estimate the current information about the treatment effect, δ, 

from the actual data of the trial, re-estimate sample size, and preserve the power of the 

study”. (Mehta, 2004) 

Error spending functions determine the rate at which Type I or Type II errors are 

spent. This is achieved by designing the stopping boundary in the design stage based on 

an error spending function. This function is used to generate adjusted critical values at the 

specified points in time. Some common stopping boundaries and error spending functions 

used in clinical trials are reviewed. The following variables are defined: 

α(t) = Type I error spending function 

t = Total sample size 
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α = Prespecified Type I error rate 

Φ(x) = Cumulative probability function of the standard normal distribution 

z = z-statistic 

ρ = Shape parameter (Can only be a positive numbers, larger values result in a 

lower Type I error spending rate at the beginning of the experiment.) 

 

1) Design-based error spending functions allow for the selection of the  

number and timing of the interim analyses. 

2) Ten-look error spending functions are simply ten equally spaced interim  

analyses. 

3) The O’Brien-Flemming boundary is characterized by a non-constant 

critical value applied at each interim analysis and is more desirable since it is 

conservative in continuing the clinical trial. 

4) The Pocock boundary maintains a constant critical value at each interim 

analysis and requires the largest sample size in order to achieve the desired power. The p-

value used depends upon the number of interim analyses. 

5) Lan-DeMets 1 (1983) generates conservative boundaries that are similar to 

the O’Brien-Fleming through applying the error spending function in Equation 3.4. 

α(t) = 4 − 4Φ (
    

  
)                   (3.4) 

6) Lan-DeMets 2 (1983) generates aggressive boundaries that are similar to 

the Pocock (1977) boundaries through applying the error spending function in Equation 

3.5. 

α(t) = α log{1 + (e − 1)t}    (3.5) 
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7) Jennison-Turnbull error spending functions are summarized in Equation 

3.6. Note that when ρ = 3 this error spending function is identical to the O’Brien-

Flemming plan and when ρ = 1 approximately, this error spending function is identical to 

the Pocock plan. 

α(t) = αt
ρ      

(3.6) 

 

8) Hwang-Shih-DeCani error spending function is described in Equation 3.7.  

 

 ( )   
 (      )

(     )
 if ρ≠0 and     ( )= α(t) if ρ = 0   (3.7) 

 

Every time data are evaluated to determine if the clinical trial protocol should be 

halted, the chance of falsely rejecting the null hypothesis is introduced or a chance of 

introducing a Type I error. If the data is looked at multiple times, and α = 0.05 as the 

criterion for significance, then there is a 5% chance of stopping each time. Heuristically, 

a “statistical boundary” is established and the trial is stopped if that boundary is crossed. 

Other statistical boundaries are the Pampallona, Tsiatis and Kim, and Lan-Simon-

Halperin. (Dmitrienko et al., 2007) Application of an error spending function to a 

statistical boundary was introduced by Lan-DeMets, Jennison-Turnbull and Hwang-Shih-

DeCani and is discussed in more detail in Everitt (2004), Dmitrienko et al. (2007) and 

Cook et al. (2007). This research will apply stopping boundaries that will use efficacy 

and futility monitoring simultaneously. 
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3.5 Frequentist and Bayesian Views 

The frequentist view for interpreting probability is defined as the limiting frequency 

of occurrence of an event in an infinite number of trials. This approach avoids the use of 

prior probabilities and thus avoids the use of Bayes’ rule for the purpose of assigning 

probabilities to parameters. θ is considered fixed in the frequentist view while it is a 

random variable in the Bayesian view. Frequentists focus on planning an experiment and 

choosing an appropriate sample size. 

Bayesian statistics attempts to treat all statistical inference as a probabilistic 

inference. The Bayesian view of probability is that the probability of an event occurring 

is subjective based on a personal belief of that event occurring. The Bayesian method 

implements the notation using Bayes’ rule. 

 

 (   )  
 (   ) ( )

 ( )
            (3.8) 

 

Where p(θ) is the prior probability, p(θ|x) is the posterior probability and p(x|θ) is the 

likelihood function. 

 Clinical trial statistics deal primarily in the frequentist view although new 

research in the conduct of clinical trials is also using the Bayesian view or in some cases 

mixing both Bayesian and frequentist views. The methodology presented here leverages 

both frequentist and Bayesian views in order to gain efficiencies. Discussing frequentist 

and Bayesian views are addressed here because in the past statistician seemed to take a 

stance in one view or the other and stuck with it. In today’s complex world it is no longer 

sufficient to be versed in one view or the other. Today’s modern problems benefit from 
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the application of both the frequentist and Bayesian approaches in order to find solutions 

and this research has applications in both the frequentist and Bayesian views. 

3.6 Summary 

This section reviewed literature on experimental designs and model fitting, 

EVOP, global optimization techniques, and statistical methods used during the conduct of 

clinical trials. Sufficient evidence exists to support the use of OLHDs/NOLHD’s during 

an EVOP scheme that is designed to analyze large, complex, stochastic simulation 

experiments with multiple responses especially given the improved computing 

capabilities of today’s computers. The Gaussian process model is a powerful 

interpolation tool for non-linear model fitting and has been cited as a good tool for 

deterministic computer experiments. The use of SA as a global optimizer and the 

application of power analysis and interim data monitoring and analysis are tools that can 

help gain efficiencies during the experimentation process. Each of these tools reviewed 

provide a benefit that could also be advantageous to improving efficiency in stochastic 

simulation experimentation. 

The literature reviewed lacks a comprehensive plan for optimizing stochastic 

computer simulation experiments. Most comparable studies focus on one aspect or 

another within the experimentation process working with computer experiments. Saab 

and Rao (1991) developed the stochastic evolutionary (SE) algorithm which uses local 

and global searches within an inner and outer loop heuristic for an optimal design. Jin, 

Chen and Sudjanto (2003) extend the SE algorithm with the enhanced stochastic 

evolutionary (ESE) algorithm which finds an efficient global optimal search algorithm by 

constructing an optimal LHD and evaluates optimality criteria. Chantarawong, 
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Rungrattanaubol and Na-udom (2012) further extend ESE with their “Enhancement of 

ESE” called EESE where SA is applied. 

This research proposes an end to end methodology for completing a large 

stochastic computer simulation experiment efficiently. The use of EVOP with 

OLHDs/NOLHDs is not discussed in the current literature and the application of clinical 

trial statistical tools, in particular the unique stopping boundaries and error spending 

function approach found in clinical trials is not found anywhere outside the clinical trial 

literature. This methodology is unique in that it walks the experimenter through the 

process of determining how many replications are needed, use of OLHDs/NOLHDs 

during the EVOP process and application of clinical trial stopping boundaries and error 

spending functions to determine whether or not to stop the experiment or to continue 

based on the planned protocol. 

The next chapter describes how Gaussian process modeling, SA, and interim data 

analysis with clinical trial type stopping boundaries are employed in a methodology for 

efficient stochastic computer experiments and chapter 5 discusses the theoretical 

properties of the methodology. 
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4 The Efficient Computer Experimentation Methodology (ECEM) 

This section lays out the steps to the ECEM and addresses the tools and assumptions 

made in conjunction with using the methodology. 

4.1 The Process 

The following methodology is developed to pursue efficient stochastic computer 

simulation experimentation. This approach consists of the best procedures to gain 

efficiencies while achieving good results. The methodology consists of first planning the 

experiment through the development of the interim data monitoring plan. This plan 

determines the number of interim analyses, the maximum sample size needed, and states 

the hypotheses to be tested. Next, the OLHD/NOLHD is selected based on the range of 

feasible factor settings and the necessary replications are completed. A Gaussian process 

model is fit and the response surfaces are generated. SA and multiple response 

optimization are applied to the response prediction formulas and these factor settings are 

analyzed in the response surface plots to select regions of interest that optimize all 

responses. This process continues while conducting interim data monitoring and analysis 

to determine if and when to terminate the experiment. In the case of a simulation 

experiment not applied to a clinical trial, efficacy is defined as the desired improvement 

in the response as a result of the treatment. Efficacy is given by: 

P{Zk > uk for any k = 1,…,m | µ1 - µ2 = 0} = α (reject Ho)    (4.1) 

Where  

P = Probability 

Zk = Test statistic on the kth look 
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uk = Upper stopping boundary on the kth look 

k = Number of times the data is looked at 

m = Number of the last look 

α = Prespecified Type I error 

Ho = Null hypothesis 

 μ1 = True Mean for treatment #1 

μ2 = True Mean for treatment #2 

In this case, there is a treatment difference and the treatment that yields the better results 

should be used to continue the experiment and seek further improvements. Futility is 

given by: 

P{Zk < lk for any k = 1,…,m | µ1 - µ2 ≠ 0} = β (do not reject Ho)   (4.2) 

Where  

lk = the lower stopping boundary on the kth look 

β = Prespecified Type II error 

In this instance, there is not a treatment difference and the new treatment applied did not 

result in a statistical improvement over the current treatment. Stop the trial so as not to 

continue to waste resources. 

The detailed steps to the general methodology are: 

1) Develop the monitoring plan or protocol. (Includes doing the power 

analysis, determining n and establishing the stopping criteria for the interim analysis). If 

current factor settings exist these settings are treatment #1, go to step 8. 

2) Select the range of factor settings to explore. (The DOE) 

3) Set up and run the simulation given the EVOP experimental design 
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chosen. (constitutes a complete cycle) 

4) Run x cycles based on time and budget constraints of the EVOP 

experimental design. (constitutes the first phase) 

5) Fit model to the data and estimate the parameters in the Gaussian process 

model.  

6) Apply simulated annealing to optimize each of the responses given the 

response surfaces from 5 and apply multiple response optimization.  

7) Examine the response surface of the design and select a new range for the 

factor settings based on these results.  

8) Repeat steps 2 – 6. The new factor settings found at step 6 constitute 

Treatment #2. 

9) Given Treatment #1 and the new factor settings found as Treatment #2, 

conduct n replications of each treatment as prescribed in the monitoring plan. 

10) Conduct interim analysis as prescribed in the monitoring plan until the 

stopping criteria has been met. Once the stopping criteria has been met, assign the better 

of the two treatments to Treatment #1 and go to step 2. 

 

 Figure 4.1 summarizes the heuristic for the methodology. The boxes in yellow and 

orange are the steps that constitute Phase P and Phase P + 1 respectively of the EVOP 

process. The blue boxes are the steps where the concepts from examining clinical trials 

are completed or where the data is examined to determine if the experiment should 

continue. 
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Figure 4.1 ECEM for Analysis of Stochastic Computer Simulation 
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 As the methodology repeats, the design region morphs as depicted in Figure 4.2. The 

interim analysis completed determines whether or not there is a statistical difference 

between the two treatments and if the search of the design region for additional 

improvements to the responses should be continued. 

 
Figure 4.2 Morphing of the Design Region 

 

4.2 Tools and Assumptions 

 The tools used within the methodology consists of: sample size determination with 

power analysis, hypothesis testing, DOE and RSM, sequential analysis using EVOP, 

model fitting with Gaussian process modeling, optimizing the response prediction 

formula, and interim data monitoring and analysis to determine if the stopping criteria is 
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met. The following assumptions are made with respect to the application of the ECEM 

and each tool inherent in the methodology. 

4.2.1 Sample Size Determination and Power Analysis 

 First, to determine the sample size, the Type I error is assumed and the effect is 

estimated to be low, medium or high. Section 5.1 discusses sample size determination 

and effect size through the use of power analysis. Once results are obtained, the estimated 

effect can be checked to determine if the original estimate was accurate. If the effect 

estimate is not correct, the sample size can be recalculated based on the actual effect. If 

the new sample size is larger, the trial should continue using the larger sample size. The 

Type II error is calculated using power analysis. 

 “Power is a function of the significance level, reliability and variability of the sample 

data and the size of the treatment effect”. (Everitt, 2004) In comparing the effectiveness 

of two treatments, assume the response is normally distributed with expected values of µ1 

and µ2 respectively. The outcome variable is assumed to be normally distributed and has 

constant variance. If this is not the case, transform the data. The most common 

transformation that can be applied is logistic regression which will result in a more 

realistic assumption about the distribution.  

4.2.2 Hypothesis Testing 

 The assumptions for hypothesis testing and data analysis are that randomization is 

met, the experiment is reproducible and the data meet the normality assumption where 

decisions are based on tests of hypotheses as well as the reliability of estimates where 

confidence intervals are used.  
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Assume the state for Ho and H1. It will be assumed here that: 

Ho: µ1 = u2 (no treatment difference)      (4.3) 

H1: µ1 ≠ u2         (4.4) 

In hypothesis testing: Ho: μ1= μ2 has three assumptions:  

1) There are two independent populations where equal sample sizes are drawn. 

This is important in having homogeneous variance. 

2) The dependent variable is continuous. 

3) All samples are randomly selected from the population and randomly assigned 

to the different condition. Each of them appears in one and only one 

combination of conditions and the samples come from normal distributions. In 

conducting the simulation experiment, the OLHD/NOLHD schemes are 

employed as the sampling methodology. 

 

 Clinical trials are often times not reproducible, however this is not the case with 

computer experiments where the results can be reproduced and replications can be 

completed. The basic assumptions within clinical trials are as follows: 1) the random 

samples from treatment one,                  are from a population with mean µ1 

and variance   
  2) the random samples from treatment two,                 , are from 

a population with mean µ2 and variance   
  and 3) the samples from treatment one and 

two are independent of one another. It is assumed that each treatment has an equal 

number of samples taken. In order to estimate µ1 - µ2, use  ̅   ̅, the difference between 

the corresponding sample means, as a natural estimator. It is proposed that the expected 

value of  ̅   ̅ is µ1 - µ2, so  ̅   ̅ is an unbiased estimator of µ1 - µ2. The standard 
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deviation of  ̅   ̅ is given by 

 

       ̅  ̅  √  
 

 
 

   
 

 
      (4.5) 

 

 The Central Limit Theorem (CLT) provides support to the normality assumption. The 

CLT states that as the sample size n becomes sufficiently large, the sampling distribution 

of the mean tends towards a normal distribution. The problem with applying the CLT is 

determining when n is large enough. If the underlying distribution is close to a normal 

density curve than the CLT approximation will be sufficient for a small n. If the 

distribution is far from normal, then a large n is required. Therefore, the probabilities of 

the errors of Type I and Type II are not affected severely by moderate departures from 

normality.  

 In the case where the sampling distribution of the mean is not normal, a 

transformation of the data is done to ensure near normality for the distribution of the 

transformed data. In this research, power analysis is done to ensure that n is sufficient. 

Power analysis is accomplished as part of the planning phase to the experimentation 

process and therefore n is determined such that these assumptions are not violated. 

Significance level, α, is specified along with the effect size to determine the appropriate 

sample size that supports the assumptions discussed above. This is discussed in more 

detail in section 5.1. 

4.2.3 DOE and RSM  

 DOE is a systematic approach to examining the effects of many factors on a 
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response(s). An empirical model is fit and the analysis of variance (ANOVA) helps 

determine what the significant factors are on the response(s). RSM is a “collection of 

statistical and mathematical techniques for developing, improving and optimizing 

processes.” (Meyers et al., 2002) The analysis is enhanced through the use of a graphical 

representation of the relationship between the factors and the response(s). 

 DOE and RSM assume that there is white noise. White noise implies that the error is 

normally distributed with constant variance. This assumption is often unrealistic as the 

experimental output may have variability that is not constant when the input combination 

changes. It is important to test that the white noise assumption holds. This is done by 

examining a plot of the residuals and verifying that the distribution of the residuals is 

normal. “If the assumption does not hold, the analysis methods may need to be adapted 

using, for example, weighted least squares (WLS), which weights the experimental 

outputs based on their variability. Further analysis is also possible through computer-

intensive methods, such as ‘bootstrapping’ and ‘cross-validation’ ”. (Kleijnen, 2008)  

 The errors are also assumed to be identically and independently distributed. That is, 

the error of an observation is not correlated with that of another error. This can be 

achieved with the use of proper randomization of the design points. The use of 

OLHD\NOLHD achieves this result and is shown is section 5.2.1.  

 Employing a LHD is an ideal design to ensure the proper random sampling and 

assists in the reduction of errors through the employment of a properly planned 

randomized design. The advantages of LHDs help gain efficiencies as they require fewer 

subjects and eliminate systematic biases through counterbalancing. If necessary, the 

removal of error variances can be accomplished through two-way blocking. (Hoshmand, 
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2006) 

 Homogeneous variance between treatment groups is assumed. Applying the 

treatments uniformly to the treatment groups leads to the tendency to stabilize the 

variances between treatment groups. Minor departures from these assumptions do not 

greatly impact conclusions drawn. Should major departures from these assumptions exist, 

again a data transformation is necessary. In increasing the accuracy of the experiment, the 

number of replications can be increased which will also decrease the error variance. 

4.2.4 Sequential Analysis and EVOP 

 Sequential analysis is the statistical theory and methods where the sample size is 

determined based on the accumulation of data. EVOP is a sequential analysis procedure 

in the area of industrial processes where DOE is incorporated into the sequential 

procedure. The DOE assumptions therefore apply to the EVOP process. 

 Group sequential methods (GSM), developed for clinical trial analysis, are where 

groups of accumulated data are analyzed. GSM use can be traced back to the 1920’s 

(Ghosh, 1970) and is utilized in the EVOP process as described by Box, et al. GSM were 

later employed in multi-stage plans developed by Columbia University Research Group 

to accept or reject batches of items in proportion to defective items found. This became 

the United States Military Standard MIL-STD105D. GSM in clinical trials didn’t come 

into favor until the 1970’s. Pocock is credited with energizing the use GSM’s in clinical 

trials in 1977, followed by O’Brien and Flemming shortly after. (Dmitrienko et al., 2007) 

 Group sequential tests (GST) are centered on the sum of observations collected and 

the Central Limit Theorem (CLT) as the observation sums are typically approximately 

normally distributed. GSTs are applied when a sequence of statistics can be fixed in a 
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Brownian motion. A Brownian motion is a mathematical model used to describe the 

random movement of particles in a liquid or gas and this concept is extended to other real 

world stochastic processes. The accumulation of data in groups and analyzing it after 

each group is collected is referred to as interim analysis. (Ghosh, 1970) 

 In the ECEM, interim analyses are accomplished in comparing two treatment designs. 

Simulation batch runs are completed on each design and the results are compared using 

the test for hypotheses described in section 4.2.2.  

4.2.5 Gaussian Process Modeling 

 Gaussian processes are a stochastic process that when applied to a sampling function 

will give normally distributed results. This model is used for deterministic simulation as 

discussed by Santner et al. (2003) and handles the output as a random multivariate 

normal stochastic process.  

 A Gaussian process model is given by: (Jones and Johnson, 2009) 

     ( )        (     
  (   ))    (4.6) 

Where  

     Y is n x 1 vector of data 

     X is n x p matrix of continuous covariates 

     μ and σ are scalar mean and variance parameters 

     θ is a p x 1 vector of correlation parameters 

     M(X, θ) is an n x n correlation matrix 
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The model correlation function is 

 

       (   )     ( ∑   (       )
 

 )   (4.7) 

 

where θk ≥ 0. 

 

 If θk = 0, then the correlation is 1 across the range of the kth factor and the fitted 

surface is flat. Large θk corresponds to low correlation in the ith factor and the fitted 

function exhibits many humps in that direction. Maximum likelihood (ML) is a 

generalization of least squares used to estimate parameters from a wide class of models 

and μ,σ, and θ may benefit with maximum likelihood. 

 Gaussian process modeling is used to find a response prediction formula. Model 

fitting assumptions that must hold are that the response(s) must be continuous in order to 

model continuous predictors. Observing the actual versus predicted plots, goodness of fit 

can be measured by checking that a linear relationship between the actual and predicted 

responses exists. In applying Equation 3.3 as the estimated model, it is assumed that the 

responses are normally distributed with mean µ and standard deviation σ
2
M. The output 

of the model report is essentially an analysis of variance table, but the variation is 

computed using a function-driven method. 

4.2.6 Optimization of the Response Prediction Formulas 

 SA is used to optimize the response prediction formula. When there are multiple 

responses, multiple response optimization is used in conjunction with SA. It must be 
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assumed that the response prediction formula is continuous and concave or convex over 

the interval so that a global optimum can be located. The response prediction formula as a 

result of Gaussian process modeling has the form (Jones et al., 2009) 

 

     ̂( )   ̂     (   ̂)   (   ̂)(   ̂  )   (4.8) 

 

Where,   (   ̂) is an n x 1 vector of estimated correlations of the unobserved y(x) at a 

new value of the explanatory variables with the observations in the data, y(x). The form 

of   (   ̂) is 

 

      (   ̂)     { ∑   (
 
         )

 }   (4.9) 

 

where m has the same form as the correlation matrix. Replacing the x vector with the X 

data matrix, m becomes M which cancels with M
-1

. Therefore,  ̂( )    and the 

Gaussian process models interpolates the data.  

 The prediction variance, discounting error in estimating the parameters, is 

 

  
   ( ̂( ))

  
     (   ̂)   (   ̂)  

(       (   ̂) (   ̂))
 

     (   ̂) 
   (4.10) 

 

 In the case of multiple objectives, the criteria or objectives are often times in conflict 

with each other. In this case, the design which is the Pareto optimal design is chosen as 

the best design. Multiple objective optimization methods include multiple objective linear 
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or non-linear programming, preemptive optimization, weighted sum and goal 

programming. (Lee, 2002) 

 Multiple objective linear programming results in the formation of an efficient frontier. 

The efficient frontier consists of all the solutions that meet the criteria of the multiple 

objective problem. This strategy is used when the constraints and objectives are linear. 

There is not usually a unique solution but rather a preferred solution. Linearity requires 

the following assumptions. 1) A change in a variable is proportionate to the change in the 

variables contribution to the value function. 2) Additivity of each term in the value 

function. 3) The decision variables are non-integer. If this assumption does not hold, then 

integer programming techniques must be used. 4) The coefficients are known and 

constant. If linearity does not exist, then non-linear programming is used. (Lee, 2002) 

 Preemptive optimization considers each objective one at a time based on established 

priorities. Once the objective is optimized, a bound or optimal objective value is obtained 

and is used to set that objective to this constant. This process is repeated on all the 

objectives. The final solution is an efficient point of the original multiple objective 

model. (Lee, 2002) 

 Weighted sum strategy converts multiple objectives into a single objective using 

weights and sums. Again the objectives are prioritized and weighted accordingly and then 

summed. It is assumed that the single objective value function exists. (Lee, 2002) 

  Goal programming converts the objective function from a minimization or 

maximization problem and sets a target value to each objective. These goals have 

adjustable constraints and can be altered if needed. (Lee, 2002) 

 Given the many applications of this methodology, it is left to the discretion of the 
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analyst which multiple objective optimization strategy to use. The selection of the 

strategies used in this research is identified for each application in Chapter 6. 

4.2.7 Interim Data Monitoring and Analysis 

 In conducting interim data monitoring and analysis, the following assumptions are 

made. This research will use a sequential design that combines efficacy and futility 

testing. The O’Brien-Flemming stopping boundary is used for efficacy, upper stopping 

boundary, and the Pocock boundary is used for futility, lower stopping boundary. A 

design based error spending function is applied. The use of stopping boundaries and error 

spending functions were discussed in more detail in section 3.4.3. 

 The assumptions that were presented with respect to hypothesis testing hold for 

interim monitoring and analysis with the application of stopping boundaries. Futility and 

efficacy testing relies on comparing the Z-statistic to a critical value. Futility is defined 

when the Z-statistic is compared to a critical value that becomes a lower stopping 

boundary. Efficacy testing compares the Z-statistic to a critical value that becomes the 

upper stopping boundary. The two designs are compared and the following rules are 

given: 1) if Zk > uk(α, ß), reject the hypothesis Ho, 2) if lk (α, ß) ≤ Zk ≤ uk(α, ß), continue 

the experiment and collect additional observations, 3) if Zk < lk(α, ß), fail to reject the 

hypothesis Ho. Chapter 5 discusses the properties of the methodology in more detail. 
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5 Properties of the Methodology 

This chapter addresses the properties of the methodology which make the ECEM 

more efficient than traditional methods of computer experimentation analysis. Efficiency 

is defined as follows. In statistics, efficiency is used to compare various statistical 

procedures. In experimental design or hypothesis testing, efficiency refers to a measure of 

optimality. A more efficient estimator or hypothesis test needs less samples to achieve a 

given performance. In experimental design, variance or mean squared error defines 

efficiency. In significance testing, sample size to achieve a given power defines 

efficiency. 

There are several techniques used throughout the methodology that lends itself to the 

efficiency of the methodology. The efficiencies within the methodology come from 1) 

hypothesis testing and minimizing sample size through power analysis, 2) space-filling 

experimental design allowing for the inclusion of the global optimum, 3) variance 

reduction through stratification (OLHDs/NOLHDs), 4) interim data monitoring and 

analysis, and 5) EVOP and sequential analysis.  

Section 5.1 addresses power analysis and determining minimum sample size which 

is conducted during the development of the monitoring plan. Section 5.2 discusses the 

selection of a space-filling design, the LHD and its properties and finding the global 

optimum. This section also addresses the normality assumptions and minimizing 

variance. Section 5.3 explains RSM with fitting the Gaussian process model in order to 

obtain the response prediction formula. This formula is optimized to find the best factor 

settings thereby reducing the number of replications needed. RSM is extended by using 

SA to optimize the response prediction formula. Section 5.4 addresses the conduct of 
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sequential analysis (EVOP) and the tools found during the conduct of clinical trial 

analysis. (Interim data monitoring and analysis) Each of these techniques is discussed in 

detail and how efficiencies are gained as a result of their implementation. Finally, the 

methodology is used on known test functions (section 5.5) and on a test function with 

noise (section 5.6) and compared to SA and GA in order to demonstrate the efficiency of 

the ECEM. 

5.1 Minimum Sample Size  

The monitoring plan consists of the following steps: 

1. Specify the hypotheses to be tested. 

2. Define the significance level 

3. Define the maximum number of planned analyses and the maximum sample size 

possible based on resources. 

4. Compute the best sample size using power analysis. 

Power analysis is used to compute the minimum number of samples that must be 

collected in order to detect an effect. The alternative is to calculate the effect based on the 

given sample size. Power analysis can be done either at the beginning of the study or at 

the end. This research will conduct power analysis at the beginning in order to determine 

the number of replications necessary. Power analysis is dependent on 1) statistical 

significance level desired, 2) the magnitude of the effect and 3) sample size. Detailed 

discussions about power analysis can be found in Cohen (1988), Murphy, Myors and 

Wolach (2009). 

Significance level is selected based on the strength of evidence the experimenter 

wishes, i.e. the Type I error, α, and Type II error, β to determine the confidence interval 
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to base the results. Effect size is the degree to which the observable fact is present in the 

population. The larger the effect size stated, the smaller the sample size needed to detect 

it. The effect size, d, can be estimated or if the mean and standard deviation is known, it 

can be calculated as shown in Equation 5.1. This equation assumes equal variance of the 

two populations and independent samples. 

 

  
     

 
                 (5.1) 

 

The non-centrality parameter δ is given by Equation 5.2. When determining n, δ is found 

using a table based on the desired power and the experimenter’s specified significance 

level α. 

 

   √
 

 
 where             (5.2) 

 

The desired n is then found by Equation 5.3. 

 

         (
 

  )
 

      (5.3) 

 

When the mean and standard deviation or variance is not known such as during the 

planning for an experiment and no prior information is known, the effect size, d, is 

estimated. Cohen (1988), Dattalo (2008), Murphy, et al. (2009) each addresses effect 

size, how to estimate it and the meaning of small, medium and large effect size. Sample 
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size should be appropriate so that statistical analysis of the results is valid. 

A power of 0.8 is the typical standard for most practitioners when the primary 

concern is to correctly reject the null hypothesis. (Gehan and Lemak, 1994) By 

conducting power analysis, the sample size can be determined so that the statistical 

results are valid. Note that if the sample size exceeds the maximum sample size possible 

based on available resources, the power would have to be decreased or additional 

resources used so that power can be preserved and the maximum sample size can meet 

the necessary sample size. Power analysis will force the researcher to consider not only if 

the statistics are significant but also quantifies the strength of the effect. (Murphy, et al., 

2009)  

5.2 Experimental Design Properties 

Two experimental design properties are discussed here and include the 

experimental design coverage in the unit cube and the normality assumption and 

minimum variance as a result of employing LHD.  

5.2.1 Experimental Design Coverage 

 This section compares the proposed methodology’s LHD to the experimental designs 

used with traditional DOE. LHDs are space-filling designs that span the unit hypercube 

with an equal number of design points while traditional experimental designs cover only 

a subspace of the unit hypercube with a varying number of design points depending upon 

the type of experimental design chosen. Both Schamburg (2004) and Crino (2006) show 

that the coverage of the design space for a space-filling design is greater than the 

coverage offered by traditional experimental design. The notation from Schamburg 



58 

 

 

(2004) is used here where the fractional coverage coefficient δ is defined as the portion of 

the edge length that each design point should cover, given the desired number of 

observed levels m and edge length c,   
 

 
.  

 The methodology using LHD proposes model development over domain   while the 

traditional experimental design uses domain  , where both of these domains exist in Ψ 

and the methodology presented here initially considers   = Ψ. 

 

Lemma 1 (Schamburg) (Experimental Design Coverage in the Unit Cube): For the unit 

cube, let H equal the fractional hyper-volume coverage of the traditional experimental 

design. Also for the same unit cube, let V equal the fractional hyper-volume coverage of 

the space-filling experimental design. Let n (=m) represent the number of levels observed 

for each variable in the Latin-Hypercube Design and o represent the number of levels 

observed by the traditional experimental design, therefore assuming m ≥ n, then 

      V ≥ H.       (5.4) 

 

See Schamburg (2004) for the proof. 

 

Lemma 2 (Schamburg) (Inclusion of the Global Optimal within the Experimental 

Design): Let   
      

  represent the global optimal solution in domain space Ψ . If an 

optimal exists, the probability of covering the optimal with the LHD is greater than or 

equal to the probability of covering it in the traditional experimental design. 

Furthermore, the LHD is certain to cover the optimal when the LHD considers the full 
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decision space   when compared to the traditional, smaller, experimental design 

space  . Therefore, assuming c ≥ b,  

 

[  (  
      

    )   ]  [  (  
      

    )     ]    (5.7) 

 

 

See Schamburg (2004) for the proof.   

 This property is important to the methodology as SA is applied to the response 

prediction formula in searching for the global optima. Therefore, having good coverage is 

a necessary condition for the success of the methodology. LHD therefore results in the 

desirable properties of good coverage of the unit cube so that the chances of finding the 

global optimal are improved.  

5.2.2 Normality and Minimum Variance  

 LHS provides additional properties as defined in Santner et al. (2003) and supports 

the assumptions of normality discussed in section 4.2. 

 

Definition 1: 

 

  ∫  ( )  ( )
 

        (5.12) 

 

and   (  )  ∫ [ ( )   ]    (   )    
    (5.13) 

 

For 1 ≤ j ≤ d. Then µ is the overall mean, the {αj(xj)} are the main effect functions 

corresponding to the coordinates of x, and 
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r(x)=y(x)-µ-∑   (  )
 
         (5.14) 

 

is the residual (from additivity) of y(x). 

 

 The following theorem compares Latin hypercube sampling (LHS) to simple random 

sampling (SRS) in order to show that a LHS scheme results in a smaller variance than 

just employing a SRS scheme.  

 

Theorem 1 (Santner): As n ∞, under Latin hypercube sampling (LHS) and simple 

random sampling (SRS) 

VarLHS { ̅} = 
 

 
∫   ( )  ( )   (   )
 

     (5.15) 

and 

VarSRS{ ̅}= 
 

 
∫   ( )  ( )  

 

 
∑ ∫   

 (  )   (  )  
  

  

 
    (   ) 

 
 (5.16) 

respectively. 

 

This theorem states that unless all αj(•) are identically 0 in the limit, then LHS has a 

smaller variance than SRS. Stein (1987) provides the proof. 

 

Theorem 2: (Santner) If y(x) is bounded under LHS Minimizes , then   ( ̅   ) tends in 

distribution to  

N(0,∫   ( )  )
 

 as n  ∞      (5.17) 
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The selection of LHS supports the assumption that the samples are independent and the 

above theorems support the assumptions that the distribution is normal distributed with a 

small variance. Owen (1992) provides the proof. 

 

Given definition 1 an theorem 1 and 2, it follows that the use of LHS results in a 

distribution that is normal and a smaller variance over a SRS scheme. Having a smaller 

variance improves efficiency and helps minimize the number of samples needed. Having 

a distribution that is normal is a prerequisite for many statistical analysis tools as shown 

in section 4.2. 

 

5.3 Optimization Properties 

In the ECEM, RSM is extended with the use of SA and multiple objective 

optimization. After the Gaussian process model is fit to the data, SA is applied to the 

response prediction formula. Using SA to find the factor settings that optimize the 

response(s) minimizes the number of experimental runs as the prediction model is used 

rather than running additional experimental runs. SA also helps determine the optimal 

response which can be used as an upper or lower bound in applying linear or non-linear 

optimization. 

Given the case of multiple objectives, the analyst must determine the decision 

maker’s priorities in optimizing the output variables. Tradeoffs and compromises must be 

made in coming up with these preferences. The optimization may result in a set of 

possible solutions. Figure 5.1 shows the best solutions within this set of solutions which 

make up the Pareto set, an efficient frontier of solutions within the set of possible 
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solutions. 

 

Figure 5.1 Multiple objective optimization requires tradeoffs. Identifying the 

efficient frontier helps define the best solution given these tradeoffs. 

For a problem with more than two objectives, the efficient frontier is considered for 

each pair of objectives. This can be complex as the number of objectives grows and 

therefore the analyst should consider one of the four methods identified for multiple 

objective optimization in section 4.2.6. 

Since this methodology makes use of Gaussian process modeling, we know the 

general form for the prediction formula and know that it is a second order model. As a 

result we must use a nonlinear optimizer. Using the upper or lower bound determined 

through the application of SA, the highest priority objective is optimized while the other 

objectives are soft constraints for the non-linear programming problem. 

If preemptive optimization or goal programming is the chosen optimization 

method, SA can be the optimization tool in which to optimize each objective while 

carrying out the preemptive or goal programming process. Similar to its use in the case of 

applying non-linear optimization, SA provides the bound in order to convert the objective 
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into a constraint. Applying the weighted sum strategy, the objectives should first be made 

into a single objective function which can then be optimized using SA. Once the 

optimized solution is determined, it becomes the treatment under investigation and the 

treatment that additional simulation runs are spent. 

5.4 Properties of Sequential Analysis  

Sequential analysis began with the efficient testing of anti-aircraft gunnery and 

other weapon systems during WWII. Due to time constraints, it was highly desirable to 

conduct fewer inspections but still achieve accurate results. The use of these methods 

were classified in the mid 1940’s, however after the war these methods were expanded to 

inventory, queuing, reliability, lifecycle tests, quality control, design of experiments and 

multiple comparison problems. (Mukhopadhyay and de Silva, 2009) These methods came 

into favor during the conduct of clinical trials in the 1960’s and 1970’s and incorporated 

adaptive designs and optimal stopping rules. 

Wald developed the traditional methods of sequential analysis after coworkers 

suggested a general approach which resulted in Wald’s book on sequential analysis in 

1947. Wald (1947) states that the use of sequential analysis helps minimize sample size. 

Table 5.1 and Table 5.2 show the average sample size savings given α and β. 
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Table 5.1 Average % savings in sample size when H1 is true 

α\β .01 .02 .03 .04 .05 

.01 58 60 61 62 63 

.02 54 56 57 58 59 

.03 51 53 54 55 55 

.04 49 50 51 52 53 

.05 47 49 50 50 51 

 

Table 5.2 Average % savings in sample size when Ho is true 

α/β .01 .02 .03 .04 .05 

.01 58 54 51 49 47 

.02 60 56 53 50 49 

.03 61 57 54 51 50 

.04 62 58 55 52 50 

.05 63 59 55 53 51 

  

In the 1950’s, modifications to Wald’s sequential probability ratio test (SPRT) 

were made to make use of sequential analysis during the conduct of clinical trials. The 

alternative to the SPRT is the repeated significance test (RST). Interim analysis methods 

became more powerful based on stochastic curtailment and statistical tests using the 

O’Brien-Flemming statistical boundaries. (Lai, 2001) Both the RST and stochastic 

curtailment test are used in this methodology during the sequential analysis of the data 

using interim data monitoring. 

 

5.5 Test Functions  

The ECEM was applied to four nonlinear test functions in eight dimensions. These 
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test functions are commonly used in testing global optimization methods. The results 

were compared to traditional response surface design and global optimization techniques.  

The four test functions are described in Molga and Smutnicki (2005) and are summarized 

below. 

DeJong’s first function is the simplest of the four functions. It is unimodal and 

convex and has the form shown in equation 5.18. 

 

 ( )  ∑   
  

   , where                  (5.18) 

 

The global minimum is f(x) = 0 when xi = 0, i = 1,…,n.. 

 

 Rosenbrock’s valley, also known as the banana function or DeJong’s second 

function, has a long parabolic shaped valley which makes convergence to the global 

optimum difficult. The function is of the form shown in equation 5.19. 

 

 ( )  ∑ [   (       
 )  (    )

 ]   
   , where                 (5.19) 

 

The global minimum is f(x) = 0 for xi = 1, i = 1,…,n. 

 

 Rastrigin’s function is a modification of DeJong’s with a cosine function to 

replicate multiple local minima. The function is shown in equation 5.20. 

 

 ( )      ∑ [  
       (    )]

 
    , where                (5.20) 
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The global minimum is f(x) = 0 for xi = 0. i = 1,…,n. 

 

 Schwefel’s function is multimodal and function evaluations usually converge in 

the wrong direction. The function is of the form shown in equation 5.21. 

 

 ( )  ∑ [      (√    )]
 
   , where                (5.21) 

 

The global minimum is f(x) = -418.9829n for xi = 420.9687, i = 1,…,n. 

 

These functions were evaluated using SA, GA, the EVOP with an NOLHD and 

SA, EVOP with NOLHD and GA, EVOP with full factorial design and SA and EVOP 

with full factorial design and GA. The results of applying each of the above to the four 

test functions are summarized in Table 5.3. Each of these results is discussed in detail 

below. 
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Table 5.3 Test functions summary of results 

Test Function  SA  
 

GA  
 

EVOP 

NOLHD 

SA 

EVOP 

NOLHD 

GA 

EVOP 

Full 

Factorial 

SA 

EVOP 

Full 

Factorial 

GA 

DeJong’s Fcn Optimal 

fcn eval 

0.0205 0.0150 1.85E-10 0.00807 32 

 

32 

 

iterations 261 83 33 33 512 512 

error 0.0205 0.0150 1.85E-10 0.00807 32 32 

Rosenbrock’s 

Valley 

Optimal 

fcn eval 

3.4412 2.0222 -55.202 -52.714 ∞ ∞ 

iterations 444 96 66 66 512 512 

error 3.4412 2.0222 55.202 52.714 ∞ ∞ 

Rastrigins 

Fcn 

Optimal 

fcn eval 

41.5076 2.8664 -8.81E-13 7.16E-4 156.624 

 

156.624 

 

iterations 424 104 66 66 512 512 

error 41.5076 2.8664 -8.81E-13 7.16E-4 156.624 156.624 

Schwefels 

Fcn 

Optimal 

fcn eval 

-1416.62 -31.5621 -1492.74 -622.166 ∞ ∞ 

iterations 2110 54 66 66 512 512 

error 0.1546 0.9806 0.1092 0.6284 ∞ ∞ 

DeJong’s Fcn 

With Noise 

Optimal 

fcn eval 

0.8049 -2.7019 -0.2037 -0.2032 ∞ ∞ 

iterations 1013 1013 66 66 512 512 

error 0.8049 2.7019 0.2037 0.2032 ∞ ∞ 

 

First, each test function was optimized with SA and GA and the results show that 

SA has a comparable or lower error with comparable iterations except in the case of 

Rastrigin’s functions where GA had better results. When NOLHD and SA where applied 

to the functions, the errors were improved over the SA and GA results with far fewer 

experimental iterations. One benefit of applying the methodology is that the response 

surfaces generated helps to narrow the search area in which SA or GA is applied, 

therefore focusing the search to the global optimum as indicated on the response surface. 

Next, each test function was evaluated by applying the iterative process of EVOP 

with the NOLHD and full factorial design schemes. In applying the EVOP process with 
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NOLHD, the significant factors can be found and the model is reduced to few factors thus 

simplifying the model and the optimization process as well. The NOLHD prediction 

formula resulted in less significant factors than the full factorial design in both the phase I 

and phase II design process. Table 5.4 shows the significant factors for each design given 

the test functions. Note that there were no significant factors in the full factorial for 

Rastrigin’s function. This is a result of the same function evaluation for each of the 

design points and therefore a constant plane for each of the pairwise response surfaces. 

 

Table 5.4 Phase I significant factors for each test function 

Test 

Function 

NOLHD  Full Factorial 

Significant 

Factors 

# Significant Factors # 

DeJong’s Fcn x1, x5, x6, x8 4 x1,x2,x3,x4,x5,x6,x7,x8 8 

Rosenbrock’s 

Valley 

x2,x4,x5,x8 4 x1,x2,x3,x4,x5,x6,x7,x8 8 

Rastrigin’s 

Fcn 

x3,x4,x8 3 none 0 

Schwefels 

Fcn 

x1,x4,x5,x8 4 x1,x2,x3,x4,x5,x6,x7,x8 8 

DeJong’s Fcn 

w\noise 

x1,x3,x4,x8 4 x1,x2,x3,x4,x5,x6,x7,x8 8 

 

Each of these designs were then optimized with SA and GA. Table 5.5 

summarizes the Phase I function evaluation results which show that the NOLHD design 

with SA and GA found similar optimal function evaluations, however SA resulted in 

factor settings that were closer to the actual optimal factor settings and was therefore 

more accurate in finding the global minimum design points. It was also found that 

Rosenbrock’s valley and Schwefel’s function did not converge to a solution given the full 

factorial design and Rastrigin’s function using the NOLHD did not converge when GA 
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was applied. 

Table 5.5 Phase I global optimization of common test functions using NOLHD and 

Full Factorial designs and SA and GA optimization techniques 

Test Function NOLHD 

SA  
Fcn eval 

NOLHD 

GA  
Fcn eval 

FF SA 
Fcn eval 

FF GA 
Fcn eval 

DeJong’s Fcn 1.85E-10 0.00807 209.72 209.72 

Rosenbrock’s 

Valley 

1396.40 1396.44 ∞ ∞ 

Rastrigins 

Fcn 

1.98 ∞ 231.40 231.40 

Schwefels 

Fcn 

-1033.83 -936.11 ∞ ∞ 

DeJong’s Fcn 

w\noise 

-0.7778 -0.7940 ∞ ∞ 

 

The four evaluated test functions were compared to the actual optimal function 

evaluation and the error was calculated by equation 5.22.  

 

           
| ( )   ̂( )|

     ( ) 
         (5.22) 

 

The results summarized in Table 5.6 show that the NOLHD design resulted in a smaller 

error. The SA and GA errors are close but the SA optimal solution was more accurate in 

that it found the optimal factor settings in the DeJong’s and Rastrigin’s function.  

 

 

 

 

 

 



70 

 

 

Table 5.6 SA and GA error comparisons for phase I global optimization of common 

test functions using NOLHD and Full Factorial designs. 

Test Function NOLHD 

SA 

error 

NOLHD 

GA  
error 

FF SA 
error 

FF GA 
error 

DeJong’s Fcn 1.85E-10 0.00807 209.72 

 

209.72 

 

Rosenbrock’s 

Valley 

1396.40 1396.44 ∞ ∞ 

Rastrigins 

Fcn 

1.98 

 

1.98 231.40 

 

231.40 

Schwefels Fcn 0.3829 0.4412 ∞ ∞ 

DeJong’s Fcn 

w\noise 

0.7778 0.7940 ∞ ∞ 

 

The response surfaces generated in Phase I were examined and new factor ranges were 

selected for the new factor settings. New NOLHD and full factorial designs were 

generated and Table 5.7 summarizes the factors that were found to be significant in Phase 

II. 

 

Table 5.7 Phase II Significant factors 

Test 

Function 

NOLHD  Full Factorial 

Significant 

Factors 

# Significant Factors # 

DeJong’s Fcn x1,x2,x5,x6,x7 5 x1,x2,x3,x4,x5,x6,x7,x8 8 

Rosenbrock’s 

Valley 

x1,x2,x3,x6,x8 5 x1,x2,x3,x4,x5,x6,x7,x8 8 

Rastrigins 

Fcn 

x2,x5,x6,x7 4 none 0 

Schwefels 

Fcn 

x1,x4,x5,x8 5 x1,x2,x3,x4,x5,x6,x7,x8 8 

DeJong’s Fcn 

w\noise 

x2,x4,x5,x7,x8 5 x1,x2,x3,x4,x5,x6,x7,x8 8 

 

Table 5.8 summarizes the Phase II function evaluation results which show that the 

NOLHD design with SA achieved a lower error and was more accurate in finding the 
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global minimum design points over the full factorial design.  

Table 5.8 Phase II global optimization of common test functions using NOLHD and 

Full Factorial designs and SA and GA optimization techniques 

Test Function NOLHD 

SA  
Fcn eval 

NOLHD 

GA  
Fcn eval 

FF SA  
Fcn eval 

FF GA 
Fcn eval 

DeJong’s Fcn 0.00186 0.0128 32 

For all xi 

32 

For all xi 

Rosenbrock’s 

Valley 

-55.202 -52.714 ∞ ∞ 

Rastrigins 

Fcn 

-8.81E-13 7.16E-4 156.624 

For all xi 

156.624 

For all xi 

Schwefels 

Fcn 

-1492.74 -622.166 

 

∞ ∞ 

DeJong’s Fcn 

w\noise 

-0.2037 -0.2032 ∞ ∞ 

 

Table 5.9 shows a decrease for the error in achieving the global optimum function 

evaluations as the factor settings are narrowed in phase II. 

 

Table 5.9 SA and GA error comparisons for phase II global optimization of common 

test functions using NOLHD and Full Factorial designs. 

Test Function NOLHD 

SA 

error 

NOLHD 

GA  
error 

FF SA 
error 

FF GA 
error 

DeJong’s Fcn 0.00186 0.0128 32 

 

32 

 

Rosenbrock’s 

Valley 

55.202 52.714 ∞ ∞ 

Rastrigins 

Fcn 

-8.81E-13 7.16E-4 156.62 156.62 

 

Schwefels Fcn 0.1092 0.6284 ∞ ∞ 

DeJong’s Fcn 

w\noise 

0.2037 0.2032 ∞ ∞ 
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5.6 Interim Analysis and Test Function with Noise  

To demonstrate the interim analysis portion of the methodology, the DeJong test 

function modified by adding a noise term with a low signal to noise ratio is examined and 

is shown in equation 5.22. 

 

 ( )  ∑   
  

             (   ), where                  (5.22) 

 

The global minimum is E[f(x)] = 0 when xi = 0, i = 1,…,n. 

 

The ECEM was applied to the function. The NOLHD was simulated with five 

replications and a response prediction formula was found. SA was applied to the response 

prediction formula to find the optimal factor settings that optimize the formula. These 

factor settings became the phase I results. The factor settings were then narrowed as a 

result of examining the response surface and a new NOLHD was found and simulated 

with five replications. A new response prediction formula was found and SA was applied. 

The optimal factor settings became the phase II results. The phase I and phase II results 

were then used in the stochastic DeJong test function and simulated while interim 

analysis was applied. Table 5.10 summarizes the results for the data collected after ten 

and 20 replications. 
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Table 5.10 The data collected on the noisy DeJong’s test function for phase I and 

phase II given ten and 20 replications. 

n Phase I 

Mean  

Phase I 

standard dev 

Phase II 

Mean 

Phase II 

standard dev 

10 -1.04 3.97 -0.37 2.79 

20 -0.35 3.33 .77 3.5 

 

After 20 replications the stopping criteria was met and the trial was stopped for 

futility. While there was an improvement in the optimal value from phase I to phase II, 

the statistics indicate that there is not a statistical difference between the phase I and 

phase II results. Table 5.11 shows the test statistic at each interim analysis and the upper 

and lower stopping boundaries.  

 

Table 5.11 Interim analysis results after ten and 20 replications. 

Analysis Test statistic 
Lower stopping 
boundary (test 
statistic scale) 

Upper stopping 
boundary (test 
statistic scale) 

Decision 

1 -.4366 -1.046 3.6321 Continue 

2 -1.037 -.4576 3.6084 Stop trial for futility 

 

Figure 5.2 graphically depicts the interim analysis results and that the trial should 

be stopped for futility as the phase I and phase II results are not statistically different. 
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Figure 5.2 Efficacy and Futility Monitoring Boundaries for the interim analysis of 

the noisy DeJong test function. 

5.7 Summary 

The theoretical properties discussed in this chapter provide sufficient evidence for the 

use of the ECEM. Each of the areas discussed either provide necessary conditions for 

statistical analysis or help achieve efficiency in time, cost or number of replications. It 

was shown here that the ECEM uses techniques that help minimize sample size with 

power analysis and the use of a space filling design, the NOLHD. The experimental 

design also achieves efficiency as it also minimizes variance. 

The ECEM was demonstrated on four test functions plus the DeJong’s test 

function with noise. The results are compared and show the ECEM to be more efficient 

over SA and GA. Interim analysis is demonstrated on The DeJong’s test function to 

demonstrate how the ECEM applies to a stochastic process. This methodology is an 

improvement over traditional methods and is demonstrated in Chapter 6 with a chemical 

mixing experiment and a police staffing simulation.  
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6  Application of the Methodology 

Section 6.1 describes the chemical mixing problem simulation used to initially test 

the ECEM. The methodology is applied and the results are discussed. Section 6.2 

describes the police staffing study simulation. The methodology is applied to this 

simulation and results are presented. 

6.1 The Chemical Mixing Problem 

The methodology developed in this research was applied to the simulation of a 

chemical mixing process. (Hill, 1998) The output of a chemical process in pounds per 

hour is thought to be influenced by a subset of five factors: temperature, reactant 

concentration, catalyst feed rate, pressure, and reaction time. The range of operation for 

each of these factors is shown in Table 6.1: 

Table 6.1 Phase I Feasible Factor Settings 

Process variable Minimum Maximum 

Temperature (°C) 200 450 

Concentration (g\l) 100 500 

Catalyst feed rate (g\m) 200 600 

Pressure (psi) 140 200 

Reaction time (hrs) 1 6 

 

These limits represent the absolute limits of operation for this process. Outside 

these limits the process is likely to produce unacceptable results or unsafe operating 

conditions for plant personnel. However, large segments of this region are unexplored, 

and since this is a full-scale process, care must be taken in adjusting any of these 

variables. 

The current operating conditions on these variables are summarized in Table 6.2. 
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Table 6.2 Current Operating Condition Factor Settings. 

Process variable Setting 

Temperature (°C) 262.5 

Concentration (g\l) 200 

Catalyst feed rate (g\m) 300 

Pressure (psi) 155 

Reaction time (hrs) 2.25 

Simulated Avg Yield (lbs\hr) 33.43 

Simulated Avg Viscosity 0.78 

Simulated Avg. Molecular Weight 350.78 

 

This is a multiple objective problem with the following objectives for the three 

responses: 

Table 6.3 Response Objectives 

Yield Viscosity Molecular Weight 

Maximize < 450 350 ≤ Molecular Weight ≤ 550 

 

Yield is defined as the output in pounds of the chemical mixture per hour, 

viscosity is the thickness of the resulting chemical mixture and molecular weight is the 

sum of the atoms of the molecules in the chemical mixture. The simulation is run at faster 

than real time so the issue with this experiment and being too time consuming or using 

too much computing resources is not an issue. Three replications at each design point are 

completed in order to get the average output. The expected value for each output would 

be the long-run average value over many independent replications of the experiment. 

Attempting to predict results in as few replications as possible it is not likely that the 

average value is the expected value, but as the design region is morphed and the factor 

ranges are reduced it is likely that the average could approach the expected value as the 

number of times the process is replicated. If the simulation is capable of reaching steady-
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state conditions, then this would be the expected value for the output parameters. The 

chemical mixing problem being investigated has a fixed time interval. 

6.1.1 Application of the Methodology to the Chemical Mixing Problem 

The steps for the methodology are presented with the resulting work shown. In 

step 1, the monitoring plan or protocol is developed. This plan consists of the following 

six steps:  

1) Choose the group sequential plan that reflects the objectives of the experiment 

and specify the hypotheses to be tested: Ho: µ1 = u2 (no treatment difference) 

and H1: µ1 ≠ u2 (meaningful treatment difference). Examine the current 

treatment and the subsequent treatment with hypothesis testing. Once the 

hypothesis Ho is met, the experiment is terminated. Expanding the hypotheses 

to account for the multiple responses use the terminology Ho: µ1 = u2 and H1: 

µ1 ≠ u2 where Ho, H1, µ1 and u2 is the matrix notation for the set of null and 

alternative hypotheses and mean values for all the responses under 

consideration and the subscript 1 and 2 refer to the current and improved data 

sets respectively under comparison. 

2) A two-sided test with a significance level of α = 0.05 

3) The maximum number of planned analyses and the maximum sample size are 

determined based on available resources such as time and\or money. 

4) The best sample size is computed based on power analysis and is dependent 

on the estimate of the treatment effect. Figure 6.1 shows the results of the 

power analysis. 
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Figure 6.1 Total Sample Size vs. Power 

 

5) Estimate the treatment effect. The results of these calculations are shown in Table 

6.4. To start this process a “medium” treatment effect is assumed. Figure 6.2 

depicts the distribution of the errors.  

 

Table 6.4 A Priori Required Sample Size 

Analysis: A priori Compute required sample size 

Input: Tail(s) 2 

Effect size d 0.5 (assumed medium) 

Α error probability 0.05 

Power (1- β error probability) 0.90 

Allocation ratio N2/N1 1 

Output: Noncentrality parameter δ 3.278719 

Critical t 1.974017 

Df 170 

Sample size treatment 1 86 

Sample size treatment 2 86 

Total sample size 172 
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Figure 6.2 Error Distribution 

 

 As a result of the power analysis and estimating the treatment effects, 

conducting three interim analyses with 29 samples for each treatment would 

achieve 174 total samples. 

6) The type of stopping boundary and the stopping criteria. A group sequential 

design that combines efficacy and futility testing is selected. The O’Brien-

Flemming stopping boundary is used for efficacy, upper stopping boundary, 

and the Pocock boundary is used for futility, lower stopping boundary. A 

design based error spending function is applied. Stopping boundaries are 

selected to protect Type I and Type II error. Simultaneous efficacy and futility 

is applied as follows: 

1) Stop the trial for efficacy if Zk > uk(α, ß) 

2) Continue the trial if lk(α, ß) ≤ Zk ≤ μk(α, ß) 

3) Stop the trial for futility if Zk < lk(α, ß) 

For the first treatment, the current operating conditions will be applied as shown in Table 

6.2. 
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Step 2, select the DOE (range of factor settings to explore). The OLHD will be 

used due to its efficiency and space-filling properties. The OLHD uses the full range of 

allowable factor settings in order to initially examine the entire region of feasible 

operating conditions since there is no prior knowledge on how the process performs over 

varying operating conditions. Given the five factors, the OLHD EVOP has only 17 

design points. 

  Step 3, the experiment is set up and run given the EVOP experimental design 

chosen (constitutes a complete cycle).  

Step 4, three replications are conducted and the data are collected. (constitutes the 

phase). Replications are needed as a result of the stochastic nature of the simulation and 

ensure the fitted model is accurate and will have higher predictive power.  

Next in step 5, a Gaussian process model is fit to the results given the three 

responses and the response prediction formula for each of these is estimated. Appendix A 

details the response prediction formula for each response as a result of fitting the 

Gaussian process model. A Gaussian process model is applied to the collected data and 

results in a prediction formula for each of the three responses: yield, viscosity and 

molecular weight. The Gaussian process model report can be found in Appendix B. This 

report highlights the significant factors and interactions. It was found that temperature, 

concentration and the temperature * concentration interactions were the most significant 

factors affecting the yield of the product. Temperature, feed rate, time and their 

interactions were the most significant factors affecting the viscosity of the product. 

Temperature, concentration, feed rate, pressure and all of their interactions were the most 

significant factors affecting the molecular weight. Table 6.5 summarizes the significant 
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factors for each response. 

 

Table 6.5 Phase II Significant Factors by Response 

Response/Factor Yield Viscosity Molecular Weight 

Temperature X X X 

Concentration X  X 

Feed Rate  X X 

Pressure   X 

Time  X  

Temp*Conc X  X 

Temp*Feed Rate  X X 

Temp*Time  X  

Temp*Press   X 

Conc*Feed Rate   X 

Conc*Press   X 

Feed Rate*Time  X  

Feed Rate*Press   X 

 

All of the RSMs with respect to the responses and their significant factor 

interactions were examined. The following Treatment #1 RSMs for each response with 

respect to temperature and concentration are demonstrated in Figure 6.3. These response 

surfaces can be used to find the temperature and concentration settings that optimize each 

of the three responses based on the objectives in Table 3. 
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Figure 6.3 Phase II OLHD RSM 

 

Figure 6.4, Figure 6.6 and Figure 6.8 demonstrates the adequacy of the model fit to the 

data. The model appears to be a good fit for the data for each response and no 

transformations of the data are needed. 

 

 

Figure 6.4 Phase II Yield Actual by Predicted Plot 

 

The prediction profiler can be used to help optimize the yield and shows where 

the response is optimized given the varying factor settings. Figure 6.5, Figure 6.7 and 

Figure 6.9 shows the prediction profiler for each response. 
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Figure 6.5 Phase II Yield Prediction Profiler 

 

 
 

 

Figure 6.6 Phase II Viscosity Actual by Predicted Plot 

 

 

 

 

Figure 6.7 Phase II Viscosity Prediction Profiler 
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Figure 6.8 Phase II Molecular Weight Actual by Predicted Plot 

 

 

Figure 6.9 Phase II Molecular Weight Prediction Profiler 

 

Step 6 optimizes the response prediction formula using SA. The response 

prediction formulas are optimized using SA to maximize the responses and obtain the 

optimal solution and factor settings for this model. Applying SA to the yield prediction 

formula indicates that a temperature of 407 
◦
C and a concentration of 401 g\l will result in 

a maximum yield of 312.92 lbs\hr. In checking these factor settings in Figure 6.3 it can 

be seen that these are solutions that also meet the viscosity and molecular weight 

objectives as well. The three response prediction formulas, with the constraints on the 

responses, are solved simultaneously using non-linear programming to find a solution 
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that meets the three response objectives. Observing the three response surfaces aids in 

determining this result. The results of multi-objective optimization of the three response 

prediction formulas are shown in Table 6.6.  

 

Table 6.6 Phase II Multi-Objective Optimization of Response Prediction Formulas 

Response Predicted Value 

Average Yield (lbs\hr) 312.92 

Average Viscosity 325.09 

Average Molecular Weight 479.92 

 

Step 7) Now that an optimal solution for treatment #2 is found, this step allows a 

new treatment to be chosen to see if the results can be improved upon. Search the design 

region by examining the response surface of this design and select a new range for the 

factor settings based on these results. A search of the design region was accomplished 

using RSM and a visual inspection of the response surfaces. Keeping in mind the three 

objectives (Table 6.3) for the three responses, these RSMs can help locate the feasible 

factor settings that meet each of the three objectives. The response surfaces help 

visualization of the feasible areas that meet the objectives of each of the responses 

simultaneously. 

Step 8) The current operating conditions are designated as treatment #1. Steps 3 – 

6 above define treatment #2. Go to step 9. 

Step 9) Treatment #1 and treatment #2 are replicated 29 times. The results are 

summarized in Table 6.7. 
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Table 6.7 Comparison of Treatment Results 

 Temperature 
◦
C 

Concentration 

g\l 

Average 

Yield 

lbs\hr 

Average 

Viscosity 

Average 

Molecular 

weight. 

Treatment #1 

Results 

262.5 200 33.4202 .7872 350.7872 

Treatment #2 

Results 

407 401 306.2495 276.2684 499.7740 

 

In step 10, interim analysis is applied to the data with the following results. After 

the first interim analysis, the trial continued and each treatment was replicated 29 times 

more. After the second interim analysis the trial was stopped for efficacy. Treatment #2 

was clearly superior to Treatment #1 and resulted in a much higher yield while also 

meeting the viscosity and molecular weight constraints. After the second interim analysis 

it was concluded that the experiment can be terminated due to efficacy of Treatment #2 

over Treatment #1. The results of the interim analyses are summarized in Table 6.8. 

Table 6.8 Interim Analysis Results 

Analysis Test Statistic Lower Stopping 

Boundary 

Upper Stopping 

Boundary 

Decision 

1 after 29 trials 2.2454 1.0992 2.3861 Continue 

2 after 58 trials 2.25 1.9600 2.0726  Stop trial for 

efficacy 
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Figure 6.10 Phase I and Phase II Efficacy and Futility Monitoring Boundaries 

 

Next, it is considered if the experiment should be continued or not. Given the 

results of step 7 of examining the response surfaces, it is concluded that a new range of 

factor settings be explored to see if greater yields can be achieved. Table 6.9 summarizes 

the new factor ranges in which to explore. 

Table 6.9 Factor Setting Ranges for Phase III 

Factor Name Temperature 

°C 

Concentration 

g\l 

Feed Rate 

g\m 

Pressure 

psi 

Time 

hrs 

Low Level 375 200 200 140 1 

High Level 450 500 600 200 6 

 

After setting up the design, the simulation was run with replications and, once 

again, a Gaussian process model was fit to the data (steps 2 – 5). Table 6.10 shows the 

significant factors by responses. Note there are addition and omission of factors as 

significant factors with respect to each response as from what was seen with Phase 1. An 

addition is annotated with an X*, an omission is annotated with brackets, ( ). The addition 
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of pressure as a significant factor with respect to yield was determined with Phase III. 

Although the effect is statistically significant it is small in comparison to the other factors 

that were determined significant. The response of molecular weight had the most 

significant change with respect to the significant factors and interactions.  

 

Table 6.10 Phase III Significant Factors by Response 

Response/Factor Yield Viscosity Molecular Weight 

Temperature X X ( ) 

Concentration X  X 

Feed Rate  X X 

Pressure X*  ( ) 

Time  X X* 

Temp*Conc X  ( ) 

Temp*Feed Rate  X ( ) 

Temp*Time  X  

Temp*Press X*  ( ) 

Conc*Feed Rate   X 

Conc*Press X*  ( ) 

Conc*Time   X 

Feed Rate*Time  X X 

Feed Rate*Press   ( ) 

 

Figure 6.11 shows the results of the RSM for each of the three responses. The 

figure shows a dramatic increase in the level of detail in each of the response surfaces 

over the selected factor ranges and gives a more accurate representation of the RSM. This 

will help further define the area of study with respect to improving the range over which 

to examine the factor settings. 
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Figure 6.11 Phase III OLHD RSM 

 

Again, the actual by predicted plots are examined to ensure the adequacy of the model fit. 

Figure 6.12, Figure 6.14 and Figure 6.16 shows the actual by predicted plot for each 

response respectively. Figure 6.13, Figure 6.15 and Figure 6.17 show the prediction 

profiler for each response. 

 

 

Figure 6.12 Phase III Yield Actual by Predicted Plot 
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Figure 6.13 Phase III Yield Prediction Profiler 

 
 

 

Figure 6.14 Phase III Viscosity Actual by Predicted Plot 

 

 

 
 

Figure 6.15 Phase III Viscosity Prediction Profiler 
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Figure 6.16 Phase III Molecular Weight Actual by Predicted Plot 

 

 
Figure 6.17 Phase III Molecular Weight Prediction Profiler 

 

Step 6 optimizes the response prediction formulas using SA. Applying SA to the 

yield prediction formula indicates that a temperature of 412 
◦
C and a concentration of 413 

g\l will result in a maximum yield of 317.30 lbs\hr. In checking these factor settings in 

Figure 6.11 it can be seen that these are solutions that also meet the viscosity and 

molecular weight objectives as well. The three response prediction formulas, with the 

constraints on the responses, are solved simultaneously using non-linear programming to 

find a solution that meets the three response objectives. The results of multi-objective 

optimization of the three response prediction formulas are shown in Table 6.11.  
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Table 6.11 Phase III Multi-Objective Optimization of Response Prediction Formulas 

Response Predicted Value 

Average Yield (lbs\hr) 317.30 

Average Viscosity 264.64 

Average Molecular Weight 484.35 

 

Step 9, replications are conducted to collect the data to do the interim analysis on 

the current factor settings, Treatment #1, and the new factor settings, Treatment #2. The 

results of the two treatments after 29 replications are shown in Table 6.12.  

 

Table 6.12 Comparison of Treatment Results 

 Temperature 
◦
C 

Concentration 

g\l 

Average 

Yield 

lbs\hr 

Average 

Viscosity 

Average 

Molecular 

weight. 

Treatment #1 

Results 

407 401 306.2495 276.2684 499.7740 

Treatment #2 

Results 

413 412 305.5582 227.69 500.24 

 

In step 10, interim analysis is applied to the data with the following results. The 

first interim analysis shows that each treatment should be replicated 29 more times for a 

total of 87 replications each. After the second interim analysis it was concluded that the 

experiment can be terminated due to a lack of Treatment #2 benefit over Treatment #1. 

The results of the interim analyses are summarized in Table 6.13. 

Table 6.13 Interim Analysis Results 

Analysis Test Statistic Lower Stopping 

Boundary 

Upper Stopping 

Boundary 

Decision 

1 after 58 trials 2.2454 1.0992 2.3861 Continue 

2 after 87 trials 1.4554 1.9600 2.0726  Stop trial for 

futility 

 



93 

 

 

Treatment 2Treatment 1

320

315

310

305

300

295

290

D
a

ta

Boxplot of Treatment 1, Treatment 2

As described in section 6.1.1, stop the trial for efficacy if Zk > uk(α, ß), continue the trial 

if lk (α, ß) ≤ Zk ≤ μk(α, ß) and stop the trial for futility if Zk < lk(α, ß). Figure 6.18 

graphically depicts the interim analysis results which show after the second interim 

analysis the trial should be stopped for futility as Zk < lk(α, ß). 

 

 

Figure 6.18 Efficacy and Futility Monitoring Boundaries 

 

A box plot is used to graphically summarize and compare groups of data. Figure 6.19 

shows a comparison of Treatment #1 and Treatment #2 after 87 trials.  

 

 

 

 

 

 

Figure 6.19 Phase III Box Plots 
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The ECEM results were compared to the full factorial EVOP scheme where after 

two full EVOP phases and two interim analyses in the second phase, the stopping criteria 

are not met and the maximum yield for the “best” treatment at that point is 240 lbs\hr. 

Measures of performance also include a comparison of the number of total design points, 

achievement or percent improvement of the objective function, and measurement error 

between the simulation results and the SA results. 

6.1.2 Results of the Chemical Mixing Problem  

 

The 2
5
 full factorial has 32 design points compared to 17 design points in the OLHD. 

This is a 47% savings in the number of design points and replications if each design used 

the same number of replications. This is not the case however as the 2
5
 full factorial 

requires additional replications and still does not achieve the same results as in the OLHD 

EVOP scheme. The 2
5
 full factorial phase III EVOP scheme is run with an additional 154 

replications, thus the savings in replications with the OLHD EVOP is really 64% to 

achieve similar results. After two EVOP phases and two interim analyses, the OLHD 

EVOP scheme improved the yield response from the initial operating conditions by 48% 

with a final average yield of 316.67 lbs\hr  whereas the 2
5
 full factorial resulted in an 

average yield of only 214.32 lbs\hr. The 2
5
 full factorial improved the yield response by 

34%. The OLHD resulted in a 32% improvement in the yield over the 2
5
 full factorial. 

The approved solution presented for this problem is given by a   
    with 4 center points. 

This design uses 20 design points and results in an average yield of 316.43 lbs\hr. The 

OLHD is a 15% savings in design points over this fractional factorial. 

While both the OLHD and 2
5
 full factorial EVOP schemes are clearly an 

improvement over the current operating conditions, the OLHD EVOP scheme resulted in 
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greater efficiency through achievement of a higher mean yield in fewer replications than 

the 2
5
 full factorial EVOP scheme. The proposed methodology shows great potential and 

efficiency for application to stochastic computer experiments with a large number of 

factors and multiple responses. 

6.2 The Police Staffing Simulation Study 

The efficient computer simulation methodology is applied to a simulation that 

examines the staffing of police patrols in the City of Charlottesville, Virginia. This 

simulation is based on a prototype of RepastCity (Java Repast 1.2). (Malleson) 

RepastCity is an agent based simulation within a virtual city with a road network. ArcGIS 

was used to display the City of Charlottesville and its road network. The City of 

Charlottesville Police Department provided the crime data for the city from 2001 through 

2006 which is used to simulate the calls for service within the simulation. The City 

currently consists of eight districts in which one police patrol is assigned for each shift. 

This simulation study will analyze various patrol policies with the current patrol policy to 

see if the performance of the police patrols can be improved. The performance output 

examined is the average response time, the percent of the total time the patrols are 

occupied and the cost of the patrols in terms of the distances driven and the number of 

cars. Minimizing the number of cars also leads to a minimal cost solution and will be 

taken into account during the evaluation of the competing alternatives. When the average 

response time and the percent of the total time the patrols are occupied are not 

statistically significant between competing policies, the policy which minimizes the 

number of cars is preferred as there are less cars to purchase and maintain and fewer 

patrols to pay wages. There are eight regions within the city that the patrols may be 
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deployed to. These regions are depicted by the eight districts shown in Figure 6.20. 

 

Figure 6.20 Charlottesville Police Patrol Regions 

 

The City currently employs one patrol for each district per shift for a total of eight 

patrols per shift. Given the current calls for service data, Figure 6.21 depicts the 

probability of a crime occurring within each district. District 3 has the highest crime 

probability followed by district 5 and 2. Districts 4, 7 and 8 have the lowest probabilities 

of crime. 
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Figure 6.21 City of Charlottesville Crime Probability by District 

 

This study will examine the effects of varying the number of patrols from zero to 

four in each district and examine the effects on the three outputs. The region of 

operability for these factors is shown in Table 6.14: 

 

Table 6.14 Phase I Factor Settings 

Factor Minimum Maximum 

Number of Patrols in District 1 0 4 

Number of Patrols in District 2 0 4 

Number of Patrols in District 3 0 4 

Number of Patrols in District 4 0 4 

Number of Patrols in District 5 0 4 

Number of Patrols in District 6 0 4 

Number of Patrols in District 7 0 4 

Number of Patrols in District 8 0 4 
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These limits represent the number of patrols that can be assigned to any one 

district. Given the size of these districts, it is assumed that placing more than four patrols 

in any one area would be exorbitant and would greatly exceed the need given the current 

levels of crime in these areas. Having as many as four patrols however gives a broad 

enough range in which to examine these factors and therefore a broader response surface 

in which to examine the factors and there interactions.  

This is a multiple objective problem with the following goals for the three 

responses (Table 6.15): 

 

Table 6.15 Response Objectives 

Average Response Time Average % Time Occupied  Average Total Cost 

Minimize Maximize Minimize 

 

Average response time is the average response time of all the calls the patrols 

respond to within the simulation and is measured by the time it takes the patrol to arrive 

at the scene once a call is received. The average percent total time occupied is the total 

time the patrol is busy conducting its duties during the course of the simulation run. The 

average total cost is measured by adding the entire distance all patrols cover over the 

entire city over the course of the simulation run. The end result of applying the factor 

settings will be to recommend how many patrols to position in each of the eight districts 

that best meets the response objectives. Initially, three replications at each design point 

are completed in order to get the average performance output. The expected value for 

each output would be the long-run average value over many independent replications of 

the experiment. Each simulation has a warm up period that allows the patrols to travel to 

their assigned district prior to receiving any calls. The experiment under investigation 
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here is configured to run for the same fixed time interval for each policy under 

investigation. 

6.2.1 Application of the Methodology to the Police Staffing Study 

The steps for the methodology are presented with the resulting work shown. In 

step 1, the monitoring plan or protocol is developed. This plan consists of the following 

six steps:  

1) Choose the group sequential plan that reflects the objectives of the experiment 

and specify the hypotheses to be tested: Ho: µ1 = u2 (no treatment difference) 

and H1: µ1 ≠ u2. Examine the current treatment and the subsequent treatment 

with hypothesis testing. In this problem, the current treatment of one patrol in 

each district is used and is compared to the results the methodology produces 

in Phase I. Once the stopping boundaries are met for either efficacy or futility, 

the experiment is terminated. Expanding the hypotheses to account for 

multiple responses, the following terminology is used: Ho: µ1 = u2 and H1: µ1 

≠ u2 where Ho, H1, µ1 and u2 is the matrix notation for the set of null and 

alternative hypotheses and mean values for all the responses under 

consideration and the subscripts 1 and 2 refer to the two treatments under 

comparison. 

2) A two-sided test with a significance level of α = 0.05 

3) The maximum number of planned analyses and the maximum sample size are 

determined based on available resources such as time and/or money. 
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4) The best sample size is computed based on power analysis and is dependent 

on the estimate of the treatment effect. Figure 6.22 shows the results of the 

power analysis. 

Figure 6.22 Total Sample Size vs. Power 

 

5) Estimate the treatment effect. The results of these calculations are shown in 

Table 6.16. To start this process a “medium” treatment effect is assumed. 

Figure 6.23 depicts the distribution of the errors.  

 

Table 6.16 A Priori Required Sample Size 

Analysis: A priori Compute required sample size 

Input: Tail(s) 2 

Effect size d 0.5 (assumed medium) 

Α error probability 0.05 

Power (1- β error probability) 0.90 

Allocation ratio N2/N1 1 

Output: Noncentrality parameter δ 3.278719 

Critical t 1.974017 

Df 170 

Sample size treatment 1 86 

Sample size treatment 2 86 

Total sample size 172 
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Figure 6.23 Error Distribution 

 

As a result of the power analysis and estimating the treatment effects, conducting three 

interim analyses with 29 samples for each treatment would achieve 174 total samples. 

6) Select the type of stopping boundary and the stopping criteria. A group 

sequential design that combines efficacy and futility testing is selected. The 

O’Brien-Flemming stopping boundary is used for efficacy, upper stopping 

boundary, and the Pocock boundary is used for futility, lower stopping 

boundary. A design based error spending function is applied. Stopping 

boundaries are selected to protect Type I and Type II error. Simultaneous 

efficacy and futility is applied as follows: 

1) Stop the trial for efficacy if Zk > uk(α, ß) 

2) Continue the trial if lk(α, ß) ≤ Zk ≤ μk(α, ß) 

3) Stop the trial for futility if Zk < lk(α, ß) 

In step 2, select the DOE (range of factor settings to explore). For the first 

treatment, the current operating conditions will be applied which employs one patrol in 

each district. The NOLHD design will be used due to its efficiency and space-filling 
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properties. The NOLHD uses the full range of allowable factor settings in order to 

initially examine the entire region of feasible operating conditions since there is no prior 

knowledge of how the process performs over varying operating conditions. Given the 

eight factors, the NOLHD EVOP has 33 design points. Table 6.17 shows the Phase I 

design for each design point. 

 In step 3, the Police Staffing Simulation is set up and run given the EVOP 

experimental design chosen. (Constitutes a complete cycle.)  

In step 4, two replications are conducted and the data are collected. (Constitutes 

the phase.) 

In step 5, a Gaussian process model is fit to the results given the three responses 

and the response prediction formula for each of these is estimated. See Appendix C for 

the response prediction formula for each response as a result of fitting the Gaussian 

process model. The Gaussian process model report can be found in Appendix D. The 

model report highlights the significant factors and interactions. It was found that all 

factors except for District 6 are significant as well as their interactions in determining the 

average response time and average occupied time. Districts 4, 5, 7 and 8 are the 

significant factors in determining cost, none of the interactions are significant in 

determining cost. 
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Table 6.17 Phase I NOLHD EVOP Design 

Low 
Level # 

of 
Patrols 0 0 0 0 0 0 0 0 

Low 
Level # 

of 
Patrols 0 0 0 0 0 0 0 0 

High 
Level # 

of 
Patrols 4 4 4 4 4 4 4 4 

High 
Level # 

of 
Patrols 4 4 4 4 4 4 4 4 

District /  
Design 
Point 1 2 3 4 5 6 7 8 

District /  
Design 
Point 1 2 3 4 5 6 7 8 

1 4 0 2 1 4 3 3 2 18 0 4 2 3 1 2 1 2 

2 4 4 1 2 2 1 2 3 19 0 0 4 3 2 3 2 1 

3 4 2 4 1 0 2 4 2 20 1 2 0 3 4 2 0 3 

4 2 4 4 2 4 1 0 1 21 2 1 0 2 0 3 4 3 

5 4 0 2 1 3 3 1 3 22 0 4 2 3 1 1 4 1 

6 4 4 1 1 2 1 2 3 23 0 0 3 3 2 3 2 1 

7 3 2 4 1 0 3 0 1 24 1 2 0 3 4 1 4 3 

8 2 3 4 1 4 1 4 1 25 2 1 0 3 0 3 0 3 

9 3 1 1 2 3 1 2 0 26 1 3 3 2 1 3 2 4 

10 3 3 1 3 1 2 1 0 27 1 1 3 1 3 2 3 4 

11 3 1 3 4 1 0 3 3 28 1 3 1 0 3 4 2 1 

12 3 3 3 4 3 4 1 2 29 1 1 1 0 1 0 3 2 

13 2 1 1 2 2 1 1 0 30 2 3 3 2 2 4 3 4 

14 3 2 2 4 1 2 3 1 31 1 2 3 1 3 2 1 4 

15 3 1 3 4 2 0 1 4 32 2 3 1 0 3 4 3 0 

16 3 3 2 4 3 4 3 2 33 1 2 2 0 1 0 1 2 

17 2 2 2 2 2 2 2 2          

 

Table 6.18 summarizes the significant factors by response but doesn’t include the 

interactions for brevity. See Appendix D for the complete model report. 
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Table 6.18 Phase I Significant Factors by Response 

Response/Factor Avg Response Time Avg % Time 

Occupied  

Avg Total Cost 

1 X X  

2 X X  

3 X X  

4 X X X 

5 X X X 

6    

7 X X X 

8 X X X 

 

All of the response surfaces with respect to the response and their significant 

factor interactions were examined. The following Phase I RSMs for each response with 

each of the factor interactions are shown in Figure 6.24, Figure 6.27, and Figure 6.30: 
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Figure 6.24 Phase I Average Response Time NOLHD RSM 

 

Figure 6.25, Figure 6.28 and Figure 6.31, demonstrates the adequacy of the model fit to 

the data. For the average response time and the total time occupied the data falls further 

from the line as the average response time increases. Figure 6.31 gives us no information 

on the cost, therefore in subsequent analyses; the number of replications will be increased 

to five to obtain better fits and reduce variance. 
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Figure 6.25 Phase I Average Response Time Actual by Predicted Plot 

 

The prediction profiler for each response is also examined to help find the best 

factor settings to optimize the responses. Figure 6.26, Figure 6.29 and Figure 6.31 helps 

predict the best settings to achieve the optimal responses. 

 

 
Figure 6.26 Phase I Average Response Time Prediction Profiler 

 

  



107 

 

 

 

 1 2 3 4 5 6 7 

2 

 

      

3 

  

     

4 

   

    

5 

    

   

6 

     

  

7 

      

 

8 

       

Figure 6.27 Phase I Percent Occupied Time NOLHD RSM 

 

 

 
 

Figure 6.28 Phase I Average Percent Total Time Occupied Actual by Predicted Plot 
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Figure 6.29 Phase I Average Percent Total Time Occupied Prediction Profiler 
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Figure 6.30 Phase I Average Total Cost NOLHD RSM 
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Figure 6.31 Phase I Average Total Cost Actual by Predicted Plot 

 

 

Figure 6.32 Phase I Average Total Cost Prediction Profiler 

 

In step 6, optimize the response prediction formula using SA and multiple 

objective optimizations. The response prediction formulas are optimized using SA in 

order to maximize the responses and get the optimal solution and factor settings for this 

model. SA also gives us the bounds on the optimal responses for average % time 

occupied and average total cost in order to apply non-linear programming. Applying SA 

to the average response time response prediction formula indicates a minimum average 

response time when 2 – 3 patrols are assigned in each area. Applying SA to the average 

percent time occupied response prediction formula indicates a maximum average percent 
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time occupied is when the overall number of patrols is minimized. Applying SA to the 

average total cost response prediction formula indicates a minimum average total cost 

when the overall number of patrols is minimized especially in districts 4, 5, 7 and 8.  

The SA results are shown in Table 6.19. Next, the three response prediction 

formulas, given the constraints on the responses, are solved simultaneously to find a 

solution that meets the three response objectives. This is done by prioritizing the average 

response time response as the main response to minimize and the other two responses are 

set to meet a goal. The goal is set based on the best results achieved thus far. The 

optimization problem and the constraints are as follows: 

 

Minimize Average Response Time      (6.1) 

 such that 

                

 Total # patrols ≤ 9 

 average total time occupied ≥ 0.85 

 cost ≤ 15 

 

While the current policy uses 8 patrols, the goal of nine or fewer is used in the event that 

significant results for minimizing the response time can be achieved with nine cars over 

the eight cars while incurring a minimal additional cost. 
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Table 6.19 First Multi-Objective Optimization of Response Prediction Formulas 

Optimal Patrol Policy 

(Obj) 

Avg Response 

Time Predicted 

Value 

Avg % Time 

Occupied 

Predicted 

Value 

Avg Total 

Cost 

Predicted 

Value 

SA Results 

2 3 2 2 3 4 4 2 

(Min response 

Time) 

130.42 0.817 20.21 

1 1 1 0 0 0 0 1 

(Max Percent 

Occupied 

Time) 

190.19 0.923 20.18 

1 3 0 0 1 2 3 2 

(Min Cos) 

 

183.54 0.914 11.35 

Multiple 

Objective 

Optimization 

0 4 0 0 1 0 1 2 183.59 0.92 11.39 

4 1 0 0 1 0 1 2 192.42 0.93 20.21 

3 1 0 0 1 0 1 2 169.51 0.89 11.39 

  

Step 7) From the above information, Treatment #2 is selected. Policies with more 

than nine cars are ruled out due to the expense of adding additional patrols (Nine patrols 

will be examined later). It is assumed that consideration for adding one more patrol for a 

total of nine cars could be beneficial if a drastically reduced response time over the eight 

car policy can be achieved in spite of the slightly higher cost. Strategy 3 1 0 0 1 0 1 2 is 

assigned to Treatment #2 as a result of its lower response time and relatively low cost 

than the other policies. 

Step 8) The current staffing policy of one patrol in each district is assigned as 

Treatment #1. 

In step 9, ten replications are conducted to collect the data to do the interim 
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analysis on the current factor settings, Treatment #1, and the new factor settings, 

Treatment #2. The two treatment results follow in Table 6.20.  

 

Table 6.20 First Comparison of Treatment Results After 10 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Average 

% Time 

Occupied 

(STD) 

Average 

Total 

Cost 

(STD) 

Treatment #1  

10 Reps Simulation 

Results 

1 1 1 1 1 1 1 1 
194.68 

(109.52) 

0.937 

(0.017) 

10.23 

(0.061) 

Treatment #2  

10 Reps Simulation 

Results 

3 1 0 0 1 0 1 2 
217.56 

(129.34) 

0.978 

(0.019) 

10.37 

(0.070) 

 

In step 10, interim analysis is applied to the Treatment #1 and Treatment #2 data. 

The interim analysis indicates that further replications are needed to reach a conclusion 

about the average response time. It also indicates that the stopping boundary for futility is 

reached with respect to the % time occupied and the average cost responses as the lower 

stopping boundary is crossed. Each treatment is run for ten additional replications for a 

total of 20 replications (results in Table 6.21) and the interim analysis is repeated.  

 

Table 6.21 First Comparison of Treatment Results After 20 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Treatment #1  

20 Reps Simulation 

Results 

1 1 1 1 1 1 1 1 
191.74 

(108.43) 

Treatment #2  

20 Reps Simulation 

Results 

3 1 0 0 1 0 1 2 
218.46 

(128.93) 
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After 20 replications the trial is stopped for futility with regards to the average 

response time as the lower stopping boundary is crossed. The results of the interim 

analyses are summarized in Table 6.22. 

 

Table 6.22 First Interim Analysis Results 

Analysis Response Test Statistic Lower 

Stopping 

Boundary 

Upper 

Stopping 

Boundary 

Decision 

1 

(10 reps) 

Average 

Response 

Time 

-0.4269 -1.046 3.6321 Continue 

Average 

% Time 

Occupied 

-5.085 -1.046 3.6321 
Stop trial for 

futility 

Average 

Total 

Cost 

-4.768 -1.046 3.6321 
Stop trial for 

futility 

2 

(20 reps) 

Average 

Response 

Time 

-0.7093 -.4576 3.6084 
Stop trial for 

futility 

  

 

As described in section 6.1.1, the interim analysis results are interpreted as 

follows: stop the trial for efficacy if Zk > uk(α, ß), continue the trial if lk (α, ß) ≤ Zk ≤ 

μk(α, ß) and stop the trial for futility if Zk < lk(α, ß). Figure 6.33 graphically depicts the 

interim analysis results, which show after the second analysis that the trial is stopped for 

futility as Zk < lk(α, ß). These results indicate a failure to reject the null hypothesis of no 

statistical difference between Treatment #1 and Treatment #2 for all three responses. 

The trial comparing Treatment #1 and #2 is stopped and the response surface is 

analyzed to see if there are improvements that can be made elsewhere in the design 

region and if a phase II EVOP design can be selected.  
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Figure 6.33 Police Staff Study Efficacy and Futility Monitoring Boundaries 

 

For the phase II analysis, the factor levels are reduced between zero and three 

patrols per district and the process is repeated. The current condition of one car per 

district, Treatment #1, remains the benchmark for comparison since phase I failed to 

produce a better result. The process starts again beginning at step 3 and a new EVOP 

scheme is found and applied. The Police Staffing Simulation is set up and run given the 

EVOP experimental design shown in Table 6.23. 
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Table 6.23 Phase II NOLHD EVOP Design 

Low Level 
# of 

Patrols 0 0 0 0 0 0 0 0 

Low 
Level # 

of 
Patrols 0 0 0 0 0 0 0 0 

High Level 
# of 

Patrols 3 3 3 3 3 3 3 3 

High 
Level # 

of 
Patrols 3 3 3 3 3 3 3 3 

District /  
Design 
Point 1 2 3 4 5 6 7 8 

District 
/  

Design 
Point 1 2 3 4 5 6 7 8 

1 3 0 1 1 3 2 2 2 18 0 3 2 2 0 1 1 1 

2 3 3 0 1 1 1 1 3 19 0 0 3 2 2 2 2 0 

3 3 1 3 0 0 2 3 1 20 0 2 0 3 3 1 0 2 

4 2 3 3 1 3 0 0 1 21 1 0 0 2 0 3 3 2 

5 3 0 1 1 2 2 0 2 22 0 3 2 2 1 1 3 1 

6 3 3 1 1 1 1 2 2 23 0 0 2 2 2 2 1 1 

7 2 1 3 1 0 2 0 1 24 1 2 0 2 3 1 3 2 

8 2 2 3 1 3 1 3 1 25 1 1 0 2 0 2 0 2 

9 2 1 1 2 2 1 2 0 26 1 2 2 1 1 2 1 3 

10 2 2 1 2 1 2 1 0 27 1 1 2 1 2 1 2 3 

11 2 1 2 3 1 0 2 2 28 1 2 1 0 2 3 1 1 

12 2 2 2 3 2 3 0 2 29 1 1 1 0 1 0 3 1 

13 2 0 1 2 2 0 1 0 30 1 3 2 1 1 3 2 3 

14 3 2 1 3 0 2 2 0 31 0 1 2 0 3 1 1 3 

15 2 1 3 3 1 0 1 3 32 1 2 0 0 2 3 2 0 

16 2 2 2 3 2 3 2 2 33 1 1 1 0 1 0 1 1 

17 2 2 2 2 2 2 2 2          

 

Five replications of the EVOP design are conducted. A new Gaussian process 

model is fit and new response prediction formulas are found for each response. See 

Appendix C for the response prediction formula for each response as a result of fitting the 

Gaussian process model. The Gaussian process model report can be found in Appendix 

D. It was found that for the average Response Time, district 2 and 4 are not significant. 
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For the average % time occupied, district 1, 3 and 6 are not significant. All districts are 

significant and contribute to the average total cost formula. Table 6.24 summarizes the 

significant factors by response but doesn’t include the interactions for brevity. 

 

Table 6.24 Phase II Significant Factors by Response 

Response/Factor Avg Response Time Avg % Time 

Occupied  

Avg Total Cost 

1 X  X 

2  X X 

3 X  X 

4  X X 

5 X X X 

6 X  X 

7 X X X 

8 X X X 

 

All of the response surfaces with respect to the response and their significant 

factor interactions were examined. The RSMs for each response and factor interactions 

are demonstrated in Figure 6.34, Figure 6.37, and Figure 6.40:  
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Figure 6.34 Phase II Average Response Time NOLHD RSM 

 

Figure 6.35, Figure 6.38 and Figure 6.41 demonstrates the adequacy of the model fit to 

the data. As can be seen, the model appears to be a good fit for the data for each response. 

The prediction profiler for each response is shown in Figure 6.36, Figure 6.39 and Figure 

6.42. 
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Figure 6.35 Phase II Average Response Time Actual by Predicted Plot 

 

 
Figure 6.36 Phase II Average Response Time Prediction Profiler 
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Figure 6.37 Phase II Average Percent Occupied Time NOLHD RSM 

 

 

 

Figure 6.38 Phase II Average Percent Total Time Occupied Actual by Predicted Plot 
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Figure 6.39 Phase II Average Percent Total Time Occupied Prediction Profiler 
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Figure 6.40 Phase II Average Total Cost NOLHD RSM 
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Figure 6.41 Phase II Average Total Cost Actual by Predicted Plot 

 

 

Figure 6.42 Phase II Average Total Cost Prediction Profiler 

 

The response prediction formulas are optimized using SA and non-linear 

programming. The best results for each response are summarized in Table 6.25.  
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Table 6.25 Phase II Multi-Objective Optimization of Response Prediction Formulas 

Optimal Patrol Policy by Obj 

Avg 

Response 

Time 

Predicted 

Value 

Avg %Time 

Occupied 

Predicted 

Value 

Avg Total 

Cost 

Predicted 

Value 

SA Results 

2 1 2 0 3 1 3 3 

(Min Avg 

Response 

Time)  

152.74 0.908 14.19 

2 2 1 1 1 1 1 3 

(Max % Time 

Occupied) 

173.48 1.27 17.78 

0 1 0 0 0 0 0 0 

(Min Total 

Cost) 

204.03 0.897 4.03 

Multiple 

Objective 

Optimization 

2 0 2 02 1 1 0 162.32 0.943 9.65 

2 0 2 0 2 1 0 0 165.14 0.912 9.02 

2 0 2 0 1 1 0 0 170.21 0.908 7.67 

  

The best strategy for Treatment #2 is 2 0 2 0 2 1 1 0. The current staffing policy 

of one patrol in each district remains as Treatment #1. Ten replications are conducted 

with the new factor settings and assigned as Treatment #2. The results follow in Table 

6.26.  
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Table 6.26 Second Comparison of Treatment Results After 10 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Average 

% Time 

Occupied 

(STD) 

Average 

Total 

Cost 

(STD) 

Treatment #1 10 Reps 

Simulation Results 
1 1 1 1 1 1 1 1 

194.68 

(109.52) 

0.937 

(0.017) 

10.23 

(0.061) 

Treatment #2 10 Reps 

Simulation Results 
2 0 2 0 2 1 1 0 

199.56 

(96.28) 
0.944 

(0.014) 

10.25 

(0.056) 

 

After ten replications, the interim analysis results indicate that no conclusions can 

be drawn for any of the responses and the trial should continue to collect more data. Ten 

additional replications are run and the results are shown in Table 6.27.  

 

Table 6.27 Second Comparison of Treatment Results After 20 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Average 

% Time 

Occupied 

(STD) 

Average 

Total 

Cost 

(STD) 

Treatment #1 20 Reps 

Simulation Results 
1 1 1 1 1 1 1 1 

191.74 

(109.52) 

0.931 

(0.019) 

10.21 

(0.072) 

Treatment #2 20 Reps 

Simulation Results 
2 0 2 0 2 1 1 0 

198.93 

(96.52) 
0.943 

(0.016) 

10.24 

(0.066) 

 

The interim analysis results indicate that the trial should continue to further 

evaluate the response time. The interim analysis results also indicate that the trial should 

be stopped for futility in further evaluating the average % time occupied and average total 

cost. Ten more replications are conducted for a total of 30 replications. The results for the 

average response time are shown in Table 6.28. 
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Table 6.28 Second Comparison of Treatment Results After 30 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Treatment #1 30 Reps 

Simulation Results 
1 1 1 1 1 1 1 1 

192.31 

(105.05) 

Treatment #2 30 Reps 

Simulation Results 
2 0 2 0 2 1 1 0 

200.96 

(96.70) 

 

These results indicate that the trial should be stopped for futility as the null 

hypothesis cannot be rejected. There is no statistical difference between Treatment #1 

and Treatment #2 for all three responses. The results of the interim analyses are 

summarized in Table 6.29. 

Table 6.29 Second Interim Analysis Results 

Analysis Response Test Statistic Lower 

Stopping 

Boundary 

Upper 

Stopping 

Boundary 

Decision 

1 

(10 reps) 

Average 

Response 

Time 

-0.1058 -1.046 3.6321 Continue 

Average 

% Time 

Occupied 

-1.005 -1.046 3.6321 Continue 

Average 

Total 

Cost 

-0.7638 -1.046 3.6321 Continue 

2 

(20 reps) 

Average 

Response 

Time 

-0.2215 -0.4576 3.6084 Continue 

Average 

% Time 

Occupied 

-2.160 -0.4576 3.6084 
Stop trial for 

futility 

Average 

Total 

Cost 

-1.374 -0.4576 3.6084 
Stop trial for 

futility 

3 

(30 reps) 

Average 

Response 

Time 

-0.3318 0.0114 3.6921 
Stop trial for 

futility 

  



125 

 

 

The trial comparing Treatment #1 and Treatment #2 is stopped and the response 

surface is analyzed to see if there are improvements that can be made elsewhere in the 

design region. Figure 6.43 graphically depicts these results. 

 

 

Figure 6.43 Second Efficacy and Futility Monitoring Boundaries 

 

 The Phase III EVOP design narrows the factors between zero and two patrols in each 

district and is shown in Table 6.30.  
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Table 6.30 Phase III NOLHD EVOP Design 

Low Level 
# of 

Patrols 0 0 0 0 0 0 0 0 

Low 
Level # 

of 
Patrols 0 0 0 0 0 0 0 0 

High Level 
# of 

Patrols 2 2 2 2 2 2 2 2 

High 
Level # 

of 
Patrols 2 2 2 2 2 2 2 2 

District /  
Design 
Point 1 2 3 4 5 6 7 8 

District 
/  

Design 
Point 1 2 3 4 5 6 7 8 

1 2 0 1 0 2 1 1 1 18 0 2 1 2 0 1 1 1 

2 2 2 0 1 1 0 1 2 19 0 0 2 1 1 2 1 0 

3 2 1 2 0 0 1 2 1 20 0 1 0 2 2 1 0 1 

4 1 2 2 1 2 0 0 0 21 1 0 0 1 0 2 2 2 

5 2 0 1 0 1 1 0 1 22 0 2 1 2 1 1 2 1 

6 2 2 1 1 1 0 1 2 23 0 0 1 1 1 2 1 1 

7 1 1 2 1 0 1 0 1 24 1 1 0 2 2 1 2 1 

8 1 1 2 1 2 1 2 0 25 1 1 0 1 0 2 0 2 

9 1 1 0 1 1 1 1 0 26 1 2 2 1 1 1 1 2 

10 2 1 1 1 0 1 0 0 27 1 1 1 1 2 1 2 2 

11 1 0 2 2 1 0 1 1 28 1 2 1 0 1 2 1 1 

12 2 1 1 2 2 2 0 1 29 0 1 1 0 1 0 2 1 

13 1 0 0 1 1 0 1 0 30 1 2 2 1 1 2 1 2 

14 2 1 1 2 0 1 2 0 31 0 1 1 0 2 1 0 2 

15 1 0 2 2 1 0 1 2 32 1 2 0 0 1 2 1 0 

16 2 1 1 2 2 2 2 1 33 0 1 1 0 0 0 1 1 

17 1 1 1 1 1 1 1 1          

 

Five replications are conducted and the data are collected, a Gaussian process 

model is fit to the results given the three responses and the response prediction formula 

for each of these is estimated. (See Appendix C and D) In phase III all factors are found 

to be significant for all responses and are summed up on Table 6.31.  
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Table 6.31 Phase III Significant Factors by Response 

Response/Factor Avg Response Time Avg % Time 

Occupied  

Avg Total Cost 

1 X X X 

2 X X X 

3 X X X 

4 X X X 

5 X X X 

6 X X X 

7 X X X 

8 X X X 

 

All of the RSMs with respect to the response and their significant factor 

interactions were examined. The following RSMs for each response are demonstrated in 

Figure 6.44, Figure 6.47 and Figure 6.50: 
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Figure 6.44 Phase III Average Response Time NOLHD RSM 

 

Figure 6.45, Figure 6.48 and Figure 6.51 demonstrates the adequacy of the model 

fit to the data. As can be seen, the model appears to be a good fit for the data for each 

response. The prediction profiler for each response is shown in Figure 6.46, Figure 6.49 

and Figure 6.52. 
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Figure 6.45 Phase III Average Response Time Actual by Predicted Plot 

 

 
Figure 6.46 Phase III Average Response Time Prediction Profiler 
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Figure 6.47 Phase III Average Percent Occupied Time NOLHD RSM 

 

 

 

 

Figure 6.48 Phase III Average Percent Total Time Occupied Actual by Predicted 

Plot 

 

 



131 

 

 

 

Figure 6.49 Phase III Average Percent Total Time Occupied Prediction Profiler 

 

 1 2 3 4 5 6 7 

2 
 

 

 

 

 

 

 

3 
  

4 
   

5 

    

6 

     

7 
      

8 
       

 

Figure 6.50 Phase III Average Total Cost NOLHD RSM 
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Figure 6.51 Phase III Average Total Cost Actual by Predicted Plot 

 

 

Figure 6.52 Phase III Average Total Cost Prediction Profiler 

 

SA and multiple response optimization of the three response prediction formulas 

are shown in Table 6.32.  
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Table 6.32 Phase III Multi-Objective Optimization of Response Prediction Formulas 

Optimal Patrol Policy by Obj 

Avg 

Response 

Time 

Predicted 

Value 

Avg % Time 

Occupied 

Predicted Value 

Avg Total 

Cost 

Predicted 

Value 

SA Results 

1 1 2 2 1 1 0 1 

(Min Avg 

Response Time) 

176.79 0.90 11.34 

0 1 0 0 2 0 2 1 

(Max Avg % 

Time Occupied) 

208.31 0.96 8.28 

0 1 0 0 2 0 2 1 

(Min Avg Total 

Cost) 

208.31 0.96 8.28 

Multiple 

Objective 

Optimization 

0 1 2 0 2 1 2 1 173.51 0.90 11.05 

0 1 1 0 2 1 2 1 185.29 0.92 10.09 

0 1 2 0 2 0 2 1 184.68 0.92 10.07 

  

The best policy is 0 1 2 0 2 0 2 1. Ten replications are conducted to collect the 

data to do the interim analysis on the current factor settings, Treatment #1, and the new 

factor settings, Treatment #2. Interim analysis indicates that more replications are needed 

for all three responses and the trial continues. The two treatment results follow in Table 

6.33.  
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Table 6.33 Third Comparison of Treatment Results After 10 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Average 

% Time 

Occupied 

(STD) 

Average 

Total 

Cost 

(STD) 

Treatment #1 10 Reps Simulation 

Results 
1 1 1 1 1 1 1 1 

194.68 

(109.52) 

0.937 

(0.017) 

10.23 

(0.061) 

Treatment #2 10 Reps Simulation 

Results 
0 1 2 0 2 0 2 1 

190.61 

(103.02 
0.931 

(0.014) 

10.19 

(0.056) 

 

After ten additional replications, the interim analysis results again indicate that the 

trial should continue and no conclusions can be made for any of the three responses. The 

results of the interim analyses are summarized in Table 6.34.  

 

Table 6.34 Third Comparison of Treatment Results After 20 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Average 

% Time 

Occupied 

(STD) 

Average 

Total 

Cost 

(STD) 

Treatment #1 20 Reps Simulation 

Results 
1 1 1 1 1 1 1 1 

191.74 

(109.52) 

0.931 

(0.019) 

10.21 

(0.072) 

Treatment #2 20 Reps Simulation 

Results 
0 1 2 0 2 0 2 1 

190.61 

(103.02 
0.931 

(0.014) 

10.19 

(0.056) 

 

After ten additional replications, the interim analysis results again indicate that the 

trial should be stopped for futility for the average total cost response. The trial should 

continue and no conclusions can be made for the average response time and the average 

% time occupied responses. The results of the interim analyses are summarized in Table 

6.35. 
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Table 6.35 Third Comparison of Treatment Results After 30 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Average 

% Time 

Occupied 

(STD) 

Average 

Total 

Cost 

(STD) 

Treatment #1 30 Reps Simulation 

Results 
1 1 1 1 1 1 1 1 

192.31 

(105.05) 

0.932 

(0.018) 

10.16 

(0.090) 

Treatment #2 30 Reps Simulation 

Results 
0 1 2 0 2 0 2 1 

191.15 

(101.56) 
0.928 

(0.16) 

10.18 

(0.071) 

  

After an additional ten replications for a total of 40 replications the stopping 

boundary for futility is crossed for the average response time and the average % time 

occupied response. The results of the interim analyses are summarized in Table 6.36. 

Table 6.36 Third Comparison of Treatment Results After 40 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Average 

% Time 

Occupied 

(STD) 

Treatment #1 40 Reps Simulation 

Results 
1 1 1 1 1 1 1 1 

191.71 

(109.92) 

0.930 

(0.012) 

Treatment #2 40 Reps Simulation 

Results 
0 1 2 0 2 0 2 1 

191.71 

(109.90) 
0.930 

(0.019) 

 

Table 6.37 summarizes all the interim analysis results.  
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Table 6.37 Third Interim Analysis Results 

Analysis Response Test Statistic Lower 

Stopping 

Boundary 

Upper 

Stopping 

Boundary 

Decision 

1 

(10 reps) 

Average 

Response 

Time 

0.0856 -1.046 3.6321 Continue 

Average 

% Time 

Occupied 

0.8615 -1.046 3.6321 Continue 

Average 

Total 

Cost 

1.5275 -1.046 3.6321 Continue 

2 

(20 reps) 

Average 

Response 

Time 

0.0536 -0.4576 3.6084 Continue 

Average 

% Time 

Occupied 

0.5542 -0.4576 3.6084 Continue 

Average 

Total 

Cost 

0.9157 -0.4576 3.6084 Continue 

3 

(30 reps) 

Average 

Response 

Time 

0.0435 0.0114 3.6921 Continue 

Average 

% Time 

Occupied 

0.9097 0.0114 3.6921 Continue 

Average 

Total 

Cost 

-0.1213 0.0114 3.6921 
Stop trial for 

futility 

4 

(40 reps) 

Average 

Response 

Time 

0.0000 0.3132 2.8605 
Stop trial for 

futility 

Average 

% Time 

Occupied 

0.0000 0.3132 2.8605 
Stop trial for 

futility 

  

 

The trial is stopped for futility as Zk < lk(α, ß). Figure 6.53 graphically depicts the 

interim analysis results which show the lower boundary being crossed by all three 

responses.  
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Figure 6.53 Efficacy and Futility Monitoring Boundaries 

  

Thus far, no statistical difference has been found in any of the selected new 

policies that improve the responses over the current policy. Adding patrols improves the 

average response time and increases the average total cost. A policy with nine patrols is 

examined next to see if the improvement over response time is significant. The policy, 

previously found in Table 6.32, 0 1 2 0 2 1 2 1 patrol cars in each district is analyzed 

next. Interim analysis results after 10 replications found that the trial is stopped for 

efficacy for the average % time occupied and stopped for futility for the average total 

cost. The trial continues for the average response time response. Table 6.38 shows the 

results of the responses after ten replications. 
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Table 6.38 Nine Patrols Comparison of Treatment Results After 10 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Average 

% Time 

Occupied 

(STD) 

Average 

Total 

Cost 

(STD) 

Treatment #1 10 Reps Simulation 

Results 
1 1 1 1 1 1 1 1 

194.68 

(109.52) 

0.937 

(0.017) 

10.23 

(0.061) 

Treatment #2 10 Reps Simulation 

Results 
0 1 2 0 2 1 2 1 

182.62 

(96.96) 

0.911 

(0.014) 

11.30 

(0.053) 

 

 After 20 total replications no conclusions can be made about the average response 

time response and the trial continues (Table 6.39). 

 

Table 6.39 Nine Patrols Comparison of Treatment Results After 20 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Treatment #1 20 Reps Simulation 

Results 
1 1 1 1 1 1 1 1 

191.74 

(109.52) 

Treatment #2 20 Reps Simulation 

Results 
0 1 2 0 2 1 2 1 

184.39 

(97.81) 

 

After 30 total replications no conclusions can be made about the average response 

time response and the trial continues (Table 6.40). 

 

Table 6.40 Nine Patrols Comparison of Treatment Results After 30 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Treatment #1 30 Reps Simulation 

Results 
1 1 1 1 1 1 1 1 

192.31 

(105.05) 

Treatment #2 30 Reps Simulation 

Results 
0 1 2 0 2 1 2 1 

185.16 

(99.86) 

 

After 40 total replications the trial is stopped for futility as the lower stopping 
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boundary is crossed for the average response time response (Table 6.41). 

 

Table 6.41 Nine Patrols Comparison of Treatment Results After 40 Replications 

Results Police Staffing 

Policy 

Average 

Response 

Time 

(STD) 

Treatment #1 40 Reps Simulation 

Results 
1 1 1 1 1 1 1 1 

191.71 

(109.92) 

Treatment #2 40 Reps Simulation 

Results 
0 1 2 0 2 1 2 1 

184.77 

(99.86) 

 

Table 6.42 summarizes the interim analysis results. 

 

Table 6.42 Nine Patrols Interim Analysis Results 

Analysis Response Test Statistic Lower 

Stopping 

Boundary 

Upper 

Stopping 

Boundary 

Decision 

1 

(10 reps) 

Average 

Response 

Time 

0.2607 -1.046 3.6321 Continue 

Average 

% Time 

Occupied 

3.7334 -1.046 3.6321 
Stop trial for 

efficacy 

Average 

Total 

Cost 

-41.87 -1.046 3.6321 
Stop trial for 

futility 

2 

(20 reps) 

Average 

Response 

Time 

0.2239 -0.4576 3.6084 Continue 

3 

(30 reps) 

Average 

Response 

Time 

0.2702 0.0114 3.6921 Continue 

4 

(40 reps) 

Average 

Response 

Time 

0.2956 0.3132 2.8605 
Stop trial for 

futility 

 

Figure 6.54 graphically depicts the results of the interim analysis. 
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Figure 6.54 Efficacy and Futility Monitoring Boundaries 

 

Further analysis indicates that in order for a policy to prove better than the current 

policy the response time would need to be around 115 time units. To achieve this result 

there would need to be a large number of patrols greater than ten and would more than 

likely prove to be too costly.  

6.2.2 Results of the Police Staffing Simulation Study 

The traditional 2
8
 full factorial has 256 design points compared to 33 design points in 

the NOLHD. This is an 87% savings in the number of design points. The NOLHD EVOP 

scheme resulted in greater efficiency. The proposed methodology shows great potential in 

the application of efficient stochastic computer experiments with a large number of 

factors and multiple responses. The NOLHD ensures that the design is space-filling and 

therefore minimizes variance and maintains the assumption of normality. 
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 The concept of EVOP is an ideal strategy for combating crime. As the patrols 

adjust to fight the crime, it is likely that the patterns in crime will change as well. By 

continually monitoring the crime, the patrols can be adjusted to change with the changing 

crime patterns. These adaptive patrols can deter crime as the patrols are unpredictable to 

the criminals. It is the intent that this ECEM process be continually applied as the crime 

adapts to the patrols and the patrols adapt to the new crime patterns. This is the original 

intent behind employing the EVOP process and therefore this problem is well suited for 

this methodology. 

7 Conclusion 

Section 7.1 summarizes the research that was presented here. Section 7.2 revisits the 

research questions and recaps how they were answered. Section 7.3 addresses the 

theoretical and applied research contributions. 

7.1 Summary 

This dissertation shows how a stochastic simulation, with many factors and 

multiple responses, can be solved in an efficient manner. The results of this research are 

an efficient computer experimentation methodology called the ECEM which leverages 

procedures used during the conduct of clinical trials such as the use of a monitoring plan 

and interim analysis, utilizes the EVOP concept while applying sophisticated 

experimental designs of OLHDs/NOLHDs, applies Gaussian process models to find the 

response prediction formulas and makes use of SA and multiple objective optimization 

on the response prediction formula in order to locate the local\global optimum.  

Chapter 3 reviewed the literature in the following areas. First, experimental designs 
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and sampling techniques are reviewed and the current methods of gaining efficiency are 

addressed. Next, the EVOP concept is introduced and explained, optimization and how it 

can be employed during the experimental design process is shown and clinical trial 

analysis and procedures are reviewed.  

Chapter 4 and 5 explains the ECEM developed for this research. Chapter 4 details 

the assumptions that go with each tool employed in the methodology while chapter 5 

addresses the properties of the methodology which make it efficient. Chapter 6 applies 

the methodology to two areas. First the chemical mixing problem and second the police 

staffing simulation to demonstrate how this methodology can be applied to continuous 

time problems and solve them efficiently. 

7.2 Research Questions Answered 

The research questions posed are: 1) Will the statistical analysis tools employed 

during clinical trials and applied to stochastic simulation experiments improve the 

process? 2) How can complex, stochastic simulation computer experiments be conducted 

efficiently? 3) Can current EVOP and RSM be extended to apply more sophisticated 

DOE to gain efficiency? 

This research has shown that developing a monitoring plan such as is done in the 

conduct of clinical trials, one can determine the accuracy desired and then plan the 

number of replications required to reach this accuracy. Given a budget, the experiment 

can also stay within this budget by planning the number of replications that are feasible 

given this budget and then reporting the results to a certain precision as a result of this 

constraint. This helps quantify the uncertainty given the stochastic nature of the 

experiment. Additionally, applying interim analysis during this sequential process allows 
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for the monitoring of the confidence interval and potentially terminating the study once 

the precision requirements are met.  

When the simulation is complex and stochastic, OLHDs/NOLHDs greatly improve 

the efficiency without sacrificing results. These space-filling designs give greater fidelity 

in the response surface and therefore a better response prediction formula. The use of 

analyses typically found during the conduct of clinical trial also ensures that only 

necessary replications are completed to facilitate the analysis.  

With today’s computing power, advanced EVOP schemes can be utilized thus 

enabling efficiency through the use of these sophisticated designs. Where the practitioner 

relied on a statistician to manually compute the statistics of the factor analysis, this is 

now easily accomplished with today’s computers and software. 

RSM can be extended to include the use of a local\global optimizer such as SA and 

multiple response optimization in order to locate the local\global optimizer. Optimizing 

the response prediction formula using SA and multiple objective optimization may lead 

to finding optimal factor settings without actually conducting additional simulation runs. 

The application of Gaussian process modeling to a stochastic simulation is a viable 

modeling method for modeling the outputs of the simulation. This research demonstrated 

that these models are well suited for use given a stochastic computer simulation. 

7.3 Contributions 

This dissertation examined the design and analysis of large, complex stochastic 

computer simulations with multiple responses to develop a methodology to gain 

efficiency. It was demonstrated that efficiencies can be gained through the use of 

conducting experimental design and RSM with OLHD/NOLHD and Gaussian process 
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modeling while optimizing with the use of SA and multiple objective optimization. 

Additionally, statistical analysis applying futility and efficacy monitoring, interim 

analysis and application of error spending functions and stopping criteria found in clinical 

trial analysis was applied to large, complex, stochastic simulation model. 

7.3.1 Theoretical Contributions 

The ECEM shows several areas where efficiencies are gained. The theoretical 

contributions and hence the areas where efficiencies were gained are 1) the use of clinical 

trial procedures, 2) use of OLHDs and NOLHDs 3) Extension of RSM using optimization 

techniques on the response prediction equations and 4) use of sequential analysis and the 

EVOP process. 

Clinical trial procedures employed are the development of a monitoring plan; the 

use of power analysis; stopping boundaries and error spending functions typically found 

in clinical trial; and the use of interim analysis to monitor these stopping boundaries. 

Beginning with a monitoring plan allows the experimenter to define the required 

precision and therefore determine how many replications are necessary to meet this 

precision, thus preserving the use of limited resources such as time and money. The use 

of clinical trial error spending functions and stopping boundaries helps accomplish the 

objectives laid out in the monitoring plan by preserves type I and II error while only 

using necessary replications. Additionally the experimenter can choose how the error is 

“spent” throughout the process thus maintaining the integrity of the experiment. These 

procedures help maintain the minimum sample size. 

The use of OLHDs/NOLHDs helps maintain our assumptions of normality and 

minimum variance through their use of LHS. LHS has been shown to produce 
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distributions that are normal and have a smaller variance over SRS schemes as a result of 

the employment of stratification. This improves efficiency and helps minimize the 

number of samples needed.  

The selection of the experimental design as OLHDs/NOLHDs ensures good 

coverage of the design space thus leading to the inclusion of the global optimal within the 

experimental design. This is important as the methodology relies on the use of Gaussian 

process modeling to produce the response prediction formulas in which the global 

optimum is sought. SA and multiple objective optimization are applied to these response 

prediction formulas that result in the selection of the treatment that will compete with the 

prior treatment to determine if one treatment results in better performance over the other. 

This process reduces the number of experimental runs as the prediction model is used 

rather than running additional experiments. The use of the response surfaces helps to 

define the starting location and focuses the global search thus also reducing the number 

of experimental runs. 

The use of sequential analysis and EVOP helps gain much needed efficiency 

given the stochastic nature of the simulations and helps minimize sample size. Using 

EVOP, a sequential process, while employing today’s sophisticated, efficient designs, is 

an improvement over traditional methods.  

7.3.2 Applied Contributions 

This research has applied contributions in many areas where stochastic simulations 

are utilized and events evolve over time. This research specifically demonstrates applied 

contributions to the areas of industrial engineering, the chemical mixing problem, and the 

assignment problem, such as the police staffing simulation. 
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This research applies the ECEM to a chemical process simulation and extends the 

use of EVOP to include the use of modern experimental designs while defining a 

procedure for ensuring that the experiment is efficient by making use of procedures found 

in the conduct of clinical trials. 

Applying the ECEM to the police staff study demonstrated that patrols can be 

assigned to optimize output parameters and can help better understand the distribution of 

crime across a given area. This research has applications in related fields where in 

general a resource is assigned to an area to perform a function or service and it is desired 

that the resource is allocated as efficiently as possible. While the application in this 

research was to assign police patrols, the simulation and methodology used to evaluate 

the simulation could easily extend to the assignment of military patrols in a region, 

ambulance and fire-fighting services assignment, establishing hunting zones in wildlife 

preserves, meals on wheels and pizza delivery. 

8 Future Work 

This work concentrated on comparing the results from applying OLHD’s\NOLHD’s 

to full factorials. Since there were no interior points in the full factorial design, the 

response prediction formulas found applying the full factorials were significantly worse 

than the OLHD’s\NOLHD’s. The next step would be to see how the OLHD’s\NOLHD’s 

compare to designs with center points or interior points such as central composite and 

Box-Behnkin designs.  

The research presented here touches on the use of clinical trial stopping boundaries 

and error spending functions. There are many different boundaries and error spending 

functions to explore and to determine how best to use each of these given different 
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problems. Other areas for future work includes the application of a Bayesian approach to 

futility and efficacy monitoring and predictive power analysis; application of adaptive 

trial designs; and examination of the error rates with respect to interim monitoring and 

analysis.  

Having demonstrated this methodology on the chemical mixing problem and 

employment of police patrols, future work should apply this methodology to the other 

application areas discussed in Chapter 7 as well as in other disciplines to show that the 

ECEM is not only efficient but also versatile across a wide range of problems. 
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Appendix A: Chemical Mixing Experiment Response Prediction Formul 

 

Equation A.1 Response Prediction Formula for Yield given Treatment #1 

 

Yield=(-54.97)+(-2367.07*Exp(-(0.00011*(Temp-278)^2+0.0000040*(Conc-

500)^2))+1066.85*Exp(-(0.00011*(Temp-216)^2+0.0000040*(Conc-200)^2))+-

2587.57*Exp(-(0.00011*(Temp-231)^2+0.0000040*(Conc-275)^2))+3880.11*Exp(-

(0.00011*(Temp-247)^2+0.0000040*(Conc-350)^2))+-448.45*Exp(-(0.00011*(Temp-

388)^2+0.0000040*(Conc-475)^2))+-554.20*Exp(-(0.00011*(Temp-

450)^2+0.0000040*(Conc-225)^2))+1039.14*Exp(-(0.00011*(Temp-

356)^2+0.0000040*(Conc-175)^2))+1296.57*Exp(-(0.00011*(Temp-

341)^2+0.0000040*(Conc-450)^2))+-3383.61*Exp(-(0.00011*(Temp-

325)^2+0.0000040*(Conc-300)^2))+-1042.76*Exp(-(0.00011*(Temp-

372)^2+0.0000040*(Conc-100)^2))+-408.65*Exp(-(0.00011*(Temp-

434)^2+0.0000040*(Conc-400)^2))+1238.66*Exp(-(0.00011*(Temp-

419)^2+0.0000040*(Conc-325)^2))+594.92*Exp(-(0.00011*(Temp-

403)^2+0.0000040*(Conc-250)^2))+-1177.73*Exp(-(0.00011*(Temp-

263)^2+0.0000040*(Conc-125)^2))+-563.03*Exp(-(0.00011*(Temp-

200)^2+0.0000040*(Conc-375)^2))+1877.32*Exp(-(0.00011*(Temp-

294)^2+0.0000040*(Conc-425)^2))+1539.47*Exp(-(0.00011*(Temp-

309)^2+0.0000040*(Conc-150)^2))) 

 

Equation A.2 Response Prediction Formula for Viscosity given Treatment #1 

 

Viscosity=92.82+(1039.82033640314*Exp(-(0.00012*(Temp-

278)^2+0.000011*(FeedRate-525)^2+0.0027*(Time-2)^2))+-1028.19*Exp(-

(0.00012*(Temp-216)^2+0.000011*(FeedRate-550)^2+0.0027*(Time-1)^2))+-

1240.40*Exp(-(0.00012*(Temp-231)^2+0.000011*(FeedRate-225)^2+0.0027*(Time-

4)^2))+2089.03*Exp(-(0.00012*(Temp-247)^2+0.000011*(FeedRate-

325)^2+0.0027*(Time-4)^2))+512.99*Exp(-(0.00012*(Temp-

388)^2+0.000011*(FeedRate-375)^2+0.0027*(Time-3)^2))+0.57*Exp(-

(0.00012*(Temp-450)^2+0.000011*(FeedRate-350)^2+0.0027*(Time-

1)^2))+30.21*Exp(-(0.00012*(Temp-356)^2+0.000011*(FeedRate-

600)^2+0.0027*(Time-5)^2))+-1585.17*Exp(-(0.00012*(Temp-

341)^2+0.000011*(FeedRate-500)^2+0.0027*(Time-5)^2))+3255.16*Exp(-

(0.00012*(Temp-325)^2+0.000011*(FeedRate-400)^2+0.0027*(Time-
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4)^2))+161.02*Exp(-(0.00012*(Temp-372)^2+0.000011*(FeedRate-

275)^2+0.0027*(Time-5)^2))+-666.46*Exp(-(0.00012*(Temp-

434)^2+0.000011*(FeedRate-250)^2+0.0027*(Time-6)^2))+-899.27*Exp(-

(0.00012*(Temp-419)^2+0.000011*(FeedRate-575)^2+0.0027*(Time-

3)^2))+1229.26*Exp(-(0.00012*(Temp-403)^2+0.000011*(FeedRate-

475)^2+0.0026*(Time-3)^2))+-2424.05*Exp(-(0.00012*(Temp-

263)^2+0.000011*(FeedRate-425)^2+0.0027*(Time-4)^2))+1419.53*Exp(-

(0.00012*(Temp-200)^2+0.000011*(FeedRate-450)^2+0.0027*(Time-

6)^2))+1136.33*Exp(-(0.00012*(Temp-294)^2+0.000011*(FeedRate-

200)^2+0.0027*(Time-2)^2))+-3030.35*Exp(-(0.00012*(Temp-

309)^2+0.000011*(FeedRate-300)^2+0.0027*(Time-2)^2))) 

 

Equation A.3 Response Prediction Formula for Molecular Weight given Treatment 

#1 

 

Molecularweight=342.05+(-2612.89*Exp(-(0.000000026*(Temp-

278)^2+0.000033*(Conc-500)^2+0.00000034*(FeedRate-525)^2+0.0000082*(Pressure-

163)^2))+-1246.907*Exp(-(0.000000026*(Temp-216)^2+0.000034*(Conc-

200)^2+0.00000034*(FeedRate-550)^2+0.0000082*(Pressure-174)^2))+4445.48*Exp(-

(0.000000026*(Temp-231)^2+0.000034*(Conc-275)^2+0.00000034*(FeedRate-

225)^2+0.0000082*(Pressure-155)^2))+4867.78*Exp(-(0.000000026*(Temp-

247)^2+0.000034*(Conc-350)^2+0.00000034*(FeedRate-325)^2+0.0000082*(Pressure-

200)^2))+4488.40*Exp(-(0.000000026*(Temp-388)^2+0.000034*(Conc-

475)^2+0.00000034*(FeedRate-375)^2+0.0000082*(Pressure-148)^2))+-376.034*Exp(-

(0.000000026*(Temp-450)^2+0.000034*(Conc-225)^2+0.00000034*(FeedRate-

350)^2+0.0000082*(Pressure-189)^2))+-369.41*Exp(-(0.000000026*(Temp-

356)^2+0.000034*(Conc-175)^2+0.00000034*(FeedRate-600)^2+0.0000082*(Pressure-

159)^2))+-570.048*Exp(-(0.000000026*(Temp-341)^2+0.000034*(Conc-

450)^2+0.00000034*(FeedRate-500)^2+0.0000082*(Pressure-196)^2))+-9906.25*Exp(-

(0.000000026*(Temp-325)^2+0.000034*(:Conc-300)^2+0.00000034*(FeedRate-

400)^2+0.0000082*(Pressure-170)^2))+-2632.26*Exp(-(0.000000026*(Temp-

372)^2+0.000034*(Conc-100)^2+0.00000034*(FeedRate-275)^2+0.0000082*(Pressure-

178)^2))+-5651.40*Exp(-(0.000000026*(Temp-434)^2+0.000034*(Conc-

400)^2+0.00000034*(FeedRate-250)^2+0.0000082*(Pressure-166)^2))+2634.30*Exp(-

(0.000000026*(Temp-419)^2+0.000034*(Conc-325)^2+0.00000034*(FeedRate-

575)^2+0.0000082*(Pressure-185)^2))+1889.66*Exp(-(0.000000026*(Temp-



155 

 

 

403)^2+0.000034*(Conc-250)^2+0.00000034*(FeedRate-475)^2+0.0000082*(Pressure-

140)^2))+3479.56*Exp(-(0.000000026*(:Temp-263)^2+0.000034*(Conc-

125)^2+0.00000034*(FeedRate-425)^2+0.0000082*(Pressure-193)^2))+1138.21*Exp(-

(0.000000026*(Temp-200)^2+0.000034*(Conc-375)^2+ 

0.00000034*(FeedRate-450)^2+0.0000082*(Pressure-151)^2))+797.31*Exp(-

(0.000000026*(Temp-294)^2+0.000034*(Conc-425)^2+0.00000034*(FeedRate-

200)^2+0.0000082*(Pressure-181)^2))+-375.50*Exp(-(0.000000026*(Temp-

309)^2+0.000034*(Conc-150)^2+0.00000034*(FeedRate-300)^2+0.0000082*(Pressure-

144)^2))) 

 

Equation A.4 Response Prediction Formula for Yield given Treatment #2  

 

Yield=231.019+(101.53*Exp(-(0.0024*(Temp-398)^2+0.000015*(Conc-

500)^2+0.000033*(Pressure-163)^2))+85.82*Exp(-(0.0024*(Temp-

380)^2+0.000015*(Conc-319)^2+0.000033*(Pressure-174)^2))+-98.11*Exp(-

(0.0024*(Temp-384)^2+0.000015*(Conc-364)^2+0.000033*(Pressure-

155)^2))+192.70*Exp(-(0.0024*(Temp-389)^2+0.000015*(Conc-

410)^2+0.000033*(Pressure-200)^2))+-103.19*Exp(-(0.0024*(Temp-

431)^2+0.000015*(Conc-485)^2+0.000033*(Pressure-148)^2))+-129.77*Exp(-

(0.0024*(Temp-450)^2+0.000015*(Conc-334)^2+0.000033*(Pressure-189)^2))+-

419.55*Exp(-(0.0024*(Temp-422)^2+0.000015*(Conc-304)^2+0.000033*(Pressure-

159)^2))+-290.63*Exp(-(0.0024*(Temp-417)^2+0.000015*(Conc-

470)^2+0.000033*(Pressure-196)^2))+-10.73*Exp(-(0.0024*(Temp-

413)^2+0.000015*(Conc-380)^2+0.000033*(Pressure-170)^2))+101.95*Exp(-

(0.0024*(Temp-427)^2+0.000015*(Conc-259)^2+0.000033*(Pressure-

178)^2))+359.53*Exp(-(0.0024*(Temp-418)^2+0.000015*(Conc-

440)^2+0.000033*(Pressure-166)^2))+275.11*Exp(-(0.0024*(Temp-

419)^2+0.000015*(Conc-395)^2+0.000033*(Pressure-185)^2))+163.60*Exp(-

(0.0024*(Temp-436)^2+0.000015*(Conc-349)^2+0.000033*(Pressure-140)^2))+-

100.94*Exp(-(0.0024*(Temp-394)^2+0.000015*(Conc-274)^2+0.000033*(Pressure-

193)^2))+-81.90*Exp(-(0.0024*(Temp-375)^2+0.000015*(Conc-

425)^2+0.000033*(Pressure-151)^2))+-194.35*Exp(-(0.0024*(Temp-

403)^2+0.000015*(Conc-455)^2+0.000033*(Pressure-181)^2))+148.93*Exp(-

(0.0024*(Temp-408)^2+0.000015*(Conc-289)^2+0.000033*(Pressure-144)^2))) 
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Equation A.5 Response Prediction Formula for Viscosity given Treatment #2  

 

(-922.44)+(115588.30*Exp(-(0.000040*(Temp-398)^2+0.0000034*(FeedRate-

525)^2+0.000047*(Time-2)^2))+-22988.19*Exp(-(0.000040*(Temp-

380)^2+0.0000034*(FeedRate-550)^2+0.000047*(Time-1)^2))+-986.79*Exp(-

(0.000040*(Temp-384)^2+0.0000034*(FeedRate-225)^2+0.000047*(Time-

4)^2))+52185.83*Exp(-(0.000040*(Temp-389)^2+0.0000034*(FeedRate-

325)^2+0.000047*(Time-4)^2))+-38384.33*Exp(-(0.000040*(Temp-

431)^2+0.0000034*(FeedRate-375)^2+0.000047*(Time-3)^2))+4165.95*Exp(-

(0.000040*(Temp-450)^2+0.0000034*(FeedRate-350)^2+0.000047*(Time-

1)^2))+1544.97*Exp(-(0.000040*(Temp-422)^2+0.0000034*(FeedRate-

600)^2+0.000047*(Time-5)^2))+-2887.89*Exp(-(0.000040*(Temp-

417)^2+0.0000034*(FeedRate-500)^2+0.000047*(Time-5)^2))+-25098.64*Exp(-

(0.000040*(Temp-413)^2+0.0000034*(FeedRate-400)^2+0.000047*(Time-4)^2))+-

12152.59*Exp(-(0.000040*(Temp-427)^2+0.0000034*(FeedRate-

275)^2+0.000047*(Time-5)^2))+42727.88*Exp(-(0.000040*(Temp-

418)^2+0.0000034*(FeedRate-250)^2+0.000047*(Time-6)^2))+-53182.25*Exp(-

(0.000040*(Temp-419)^2+0.0000034*(FeedRate-575)^2+0.000047*(Time-

3)^2))+37425.37*Exp(-(0.000040*(Temp-436)^2+0.0000034*(FeedRate-

475)^2+0.000047*(Time-3)^2))+-60380.42*Exp(-(0.000040*(Temp-

394)^2+0.0000034*(FeedRate-425)^2+0.000047*(Time-4)^2))+-17342.29*Exp(-

(0.000040*(Temp-375)^2+0.0000034*(FeedRate-450)^2+0.000047*(Time-6)^2))+-

36979.32*Exp(-(0.000040*(Temp-403)^2+0.0000034*(FeedRate-

200)^2+0.000047*(Time-2)^2))+16744.41*Exp(-(0.000040*(Temp-

408)^2+0.0000034*(FeedRate-300)^2+0.000047*(Time-2)^2))) 

 

Equation A.6 Response Prediction Formula for Molecular Weight given Treatment 

#2 

 

467.24+(-6.37*Exp(-(0.00013*(Concentration-500)^2+0.000010*(FeedRate-

525)^2+0.0614495575950812*(Time-2)^2))+-10.76*Exp(-(0.00013*(Concentration-

319)^2+0.000010*(FeedRate-550)^2+0.06*(Time-1)^2))+-21.45*Exp(-

(0.00013*(Concentration-364)^2+0.000010*(FeedRate-225)^2+0.06*(Time-

4)^2))+34.83*Exp(-(0.00013*(Concentration-410)^2+0.000010*(FeedRate-

325)^2+0.061*(Time-4)^2))+23.68*Exp(-(0.000128434001278437*(Concentration-

485)^2+0.000010*(FeedRate-375)^2+0.06*(Time-3)^2))+-24.25*Exp(-
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(0.00013*(Concentration-334)^2+0.000010*(FeedRate-350)^2+0.06*(Time-

1)^2))+28.14*Exp(-(0.00013*(Concentration-304)^2+0.000010*(FeedRate-

600)^2+0.06*(Time-5)^2))+-16.02*Exp(-(0.00013*(Concentration-

470)^2+0.000010*(FeedRate-500)^2+0.06*(Time-5)^2))+-7.62*Exp(-

(0.00013*(Concentration-380)^2+0.000010*(FeedRate-400)^2+0.06*(Time-

4)^2))+3.07*Exp(-(0.00013*(Concentration-259)^2+0.000010*(FeedRate-

275)^2+0.06*(Time-5)^2))+43.99*Exp(-(0.00013*(Concentration-

440)^2+0.000010*(FeedRate-250)^2+0.06*(Time-6)^2))+9.04*Exp(-

(0.00013*(Concentration-395)^2+0.000010*(FeedRate-575)^2+0.06*(Time-

3)^2))+63.37*Exp(-(0.00013*(Concentration-349)^2+0.000010*(FeedRate-

475)^2+0.06*(Time-3)^2))+-98.96*Exp(-(0.00013*(Concentration-

274)^2+0.000010*(FeedRate-425)^2+0.06*(Time-4)^2))+-39.25*Exp(-

(0.00013*(Concentration-425)^2+0.000010*(FeedRate-450)^2+0.06*(Time-6)^2))+-

27.06*Exp(-(0.00013*(Concentration-455)^2+0.000010*(FeedRate-200)^2+0.06*(Time-

2)^2))+45.61*Exp(-(0.00013*(Concentration-289)^2+0.000010*(FeedRate-

300)^2+0.061*(Time-2)^2))) 
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Appendix B: Chemical Mixing Experiment Gaussian Process Model Reports 

 

Table B.1 Model Report Phase I Gaussian Process Model – Yield 

 
 

Table B.2 Model Report Phase I Gaussian Process Model – Viscosity 

 

 

Table B.3 Model Report Phase I Gaussian Process Model – Molecular Weight 

 
 

 

Table B.4 Model Report Phase II Gaussian Process Model – Yield 
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Table B.5 Model Report Phase II Gaussian Process Model – Viscosity 

 

 

Table B.6 Model Report Phase II Gaussian Process Model – Molecular Weight 
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Appendix C: Police Staffing Study Response Prediction Formulas 

 

Equation C.1 Phase I Response Prediction Formula for Average Response Time 

 

-(167.31+(-3.15*exp(-(0.25*(dist(1)-4)^2+0.045*dist(2)^2+0.11*(dist(3)-

2)^2+0.03*(dist(4)-1)^2+0.23*(dist(5)-4)^2+0.0075*(dist(7)-3)^2+0.32*(dist(8)-

2)^2))+135.33*exp(-(0.25*(dist(1)-4)^2+0.045*(dist(2)-4)^2+0.11*(dist(3)-

1)^2+0.03*(dist(4)-2)^2+0.23*(dist(5)-2)^2+0.0075*(dist(7)-2)^2+0.32*(dist(8)-3)^2))+-

11.43*exp(-(0.25*(dist(1)-4)^2+0.045*(dist(2)-2)^2+0.11*(dist(3)-4)^2+0.031*(dist(4)-

1)^2+0.23*dist(5)^2+0.0075*(dist(7)-4)^2+0.32*(dist(8)-2)^2))+-12.66*exp(-

(0.25*(dist(1)-2)^2+0.04*(dist(2)-4)^2+0.116*(dist(3)-4)^2+0.03*(dist(4)-

2)^2+0.23*(dist(5)-4)^2+0.0075*dist(7)^2+0.32*(dist(8)-1)^2))+17.49*exp(-

(0.25*(dist(1)-4)^2+0.045*dist(2)^2+0.11*(dist(3)-2)^2+0.031*(dist(4)-

1)^2+0.23*(dist(5)-3)^2+0.0075*(dist(7)-1)^2+0.32*(dist(8)-3)^2))+-132.26*exp(-

(0.25*(dist(1)-4)^2+0.04*(dist(2)-4)^2+0.11*(dist(3)-1)^2+0.03*(dist(4)-

1)^2+0.23*(dist(5)-2)^2+0.0075*(dist(7)-2)^2+0.32*(dist(8)-3)^2))+27.43*exp(-

(0.25*(dist(1)-3)^2+0.045*(dist(2)-2)^2+0.11*(dist(3)-4)^2+0.03*(dist(4)-

1)^2+0.23*dist(5)^2+0.0075*dist(7)^2+0.32*(dist(8)-1)^2))+-6.63*exp(-(0.25*(dist(1)-

2)^2+0.045*(dist(2)-3)^2+0.11*(dist(3)-4)^2+0.03*(dist(4)-1)^2+0.23*(dist(5)-

4)^2+0.0075*(dist(7)-4)^2+0.32*(dist(8)-1)^2))+3.18*exp(-(0.25*(dist(1)-

3)^2+0.045*(dist(2)-1)^2+0.11*(dist(3)-1)^2+0.031*(dist(4)-2)^2+0.23*(dist(5)-

3)^2+0.0075*(dist(7)-2)^2+0.32*dist(8)^2))+-4.54*exp(-(0.25*(dist(1)-

3)^2+0.045*(dist(2)-3)^2+0.11*(dist(3)-1)^2+0.030*(dist(4)-3)^2+0.23*(dist(5)-

1)^2+0.0075*(dist(7)-1)^2+0.32*dist(8)^2))+3.17*exp(-(0.247455342005525*(dist(1)-

3)^2+0.045*(dist(2)-1)^2+0.11*(dist(3)-3)^2+0.031*(dist(4)-4)^2+0.23*(dist(5)-

1)^2+0.0075*(dist(7)-3)^2+0.32*(dist(8)-3)^2))+7.79*exp(-(0.25*(dist(1)-

3)^2+0.045*(dist(2)-3)^2+0.11*(dist(3)-3)^2+0.031*(dist(4)-4)^2+0.23*(dist(5)-

3)^2+0.0075*(dist(7)-1)^2+0.32*(dist(8)-2)^2))+23.81*exp(-(0.25*(dist(1)-

2)^2+0.045*(dist(2)-1)^2+0.11*(dist(3)-1)^2+0.031*(dist(4)-2)^2+0.23*(dist(5)-

2)^2+0.0075*(dist(7)-1)^2+0.32*dist(8)^2))+0.98*exp(-(0.25*(dist(1)-

3)^2+0.045*(dist(2)-2)^2+0.11*(dist(3)-2)^2+0.031*(dist(4)-4)^2+0.23*(dist(5)-

1)^2+0.0075*(dist(7)-3)^2+0.32*(dist(8)-1)^2))+2.060*exp(-(0.25*(dist(1)-

3)^2+0.045*(dist(2)-1)^2+0.11*(dist(3)-3)^2+0.031*(dist(4)-4)^2+0.23*(dist(5)-

2)^2+0.0075*(dist(7)-1)^2+0.32*(dist(8)-4)^2))+-24.68*exp(-(0.25*(dist(1)-

3)^2+0.045*(dist(2)-3)^2+0.11*(dist(3)-2)^2+0.031*(dist(4)-4)^2+0.23*(dist(5)-

3)^2+0.0075*(dist(7)-3)^2+0.32*(dist(8)-2)^2))+-43.69*exp(-(0.25*(dist(1)-
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2)^2+0.045*(dist(2)-2)^2+0.11*(dist(3)-2)^2+0.031*(dist(4)-2)^2+0.23*(dist(5)-

2)^2+0.0075*(dist(7)-2)^2+0.32*(dist(8)-2)^2))+30.20*exp(-

(0.25*dist(1)^2+0.045*(dist(2)-4)^2+0.11*(dist(3)-2)^2+0.031*(dist(4)-

3)^2+0.23*(dist(5)-1)^2+0.0075*(dist(7)-1)^2+0.32*(dist(8)-2)^2))+-69.020*exp(-

(0.25*dist(1)^2+0.045*dist(2)^2+0.11*(dist(3)-4)^2+0.031*(dist(4)-3)^2+0.23*(dist(5)-

2)^2+0.0075*(dist(7)-2)^2+0.32*(dist(8)-1)^2))+35.78*exp(-(0.25*(dist(1)-

1)^2+0.045*(dist(2)-2)^2+0.11*dist(3)^2+0.031*(dist(4)-3)^2+0.23*(dist(5)-

4)^2+0.0075*dist(7)^2+0.32*(dist(8)-3)^2))+16.11*exp(-(0.25*(dist(1)-

2)^2+0.045*(dist(2)-1)^2+0.11*dist(3)^2+0.031*(dist(4)-

2)^2+0.23*dist(5)^2+0.0075*(dist(7)-4)^2+0.32*(dist(8)-3)^2))+-33.050*exp(-

(0.25*dist(1)^2+0.045*(dist(2)-4)^2+0.11*(dist(3)-2)^2+0.031*(dist(4)-

3)^2+0.23*(dist(5)-1)^2+0.0075*(dist(7)-4)^2+0.32*(dist(8)-1)^2))+81.65*exp(-

(0.25*dist(1)^2+0.045*dist(2)^2+0.11*(dist(3)-3)^2+0.031*(dist(4)-3)^2+0.23*(dist(5)-

2)^2+0.0075*(dist(7)-2)^2+0.32*(dist(8)-1)^2))+-32.14*exp(-(0.25*(dist(1)-

1)^2+0.045*(dist(2)-2)^2+0.11*dist(3)^2+0.031*(dist(4)-3)^2+0.23*(dist(5)-

4)^2+0.0075*(dist(7)-4)^2+0.32*(dist(8)-3)^2))+2.28*exp(-(0.25*(dist(1)-

2)^2+0.045*(dist(2)-1)^2+0.11*dist(3)^2+0.031*(dist(4)-

3)^2+0.23*dist(5)^2+0.0075*(dist(7)^2+0.32*(dist(8)-3)^2))+-24.76*exp(-

(0.25*(dist(1)-1)^2+0.045*(dist(2)-3)^2+0.11*(dist(3)-3)^2+0.031*(dist(4)-

2)^2+0.23*(dist(5)-1)^2+0.0075*(dist(7)-2)^2+0.32*(dist(8)-4)^2))+-61.17*exp(-

(0.25*(dist(1)-1)^2+0.045*(dist(2)-1)^2+0.11*(dist(3)-3)^2+0.031*(dist(4)-

1)^2+0.23*(dist(5)-3)^2+0.0075*(dist(7)-3)^2+0.32*(dist(8)-4)^2))+-12.11*exp(-

(0.25*(dist(1)-1)^2+0.045*(dist(2)-3)^2+0.11*(dist(3)-

1)^2+0.031*dist(4)^2+0.23*(dist(5)-3)^2+0.0075*(dist(7)-2)^2+0.32*(dist(8)-

1)^2))+10.80*exp(-(0.25*(dist(1)-1)^2+0.045*(dist(2)-1)^2+0.11*(dist(3)-

1)^2+0.031*dist(4)^2+0.23*(dist(5)-1)^2+0.0075*(dist(7)-3)^2+0.32*(dist(8)-2)^2))+-

17.89*exp(-(0.25*(dist(1)-2)^2+0.045*(dist(2)-3)^2+0.11*(dist(3)-3)^2+0.031*(dist(4)-

2)^2+0.23*(dist(5)-2)^2+0.0075*(dist(7)-3)^2+0.32*(dist(8)-4)^2))+70.87*exp(-

(0.25*(dist(1)-1)^2+0.045*(dist(2)-2)^2+0.11*(dist(3)-3)^2+0.031*(dist(4)-

1)^2+0.23*(dist(5)-3)^2+0.0075*(dist(7)-1)^2+0.32*(dist(8)-4)^2))+-4.73*exp(-

(0.25*(dist(1)-2)^2+0.045*(dist(2)-3)^2+0.11*(dist(3)-

1)^2+0.031*dist(4)^2+0.23*(dist(5)-3)^2+0.0075*(dist(7)-

3)^2+0.32*dist(8)^2))+25.01*exp(-(0.25*(dist(1)-1)^2+0.045*(dist(2)-

2)^2+0.11*(dist(3)-2)^2+0.031*dist(4)^2+0.23*(dist(5)-1)^2+0.0075*(dist(7)-

1)^2+0.32*(dist(8)-2)^2))))) 
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Equation C.2 Phase I Response Prediction Formula for Average Percent Time 

Occupied 

 

0.88+(-0.0057*exp(-(0.25*(dist(1)-4)^2+0.046*dist(2)^2+0.088*(dist(3)-

2)^2+0.020*(dist(4)-1)^2+0.27*(dist(5)-4)^2+0.0055*(dist(7)-3)^2+0.34*(dist(8)-

2)^2))+0.267*exp(-(0.25*(dist(1)-4)^2+0.046*(dist(2)-4)^2+0.088*(dist(3)-

1)^2+0.019*(dist(4)-2)^2+0.27*(dist(5)-2)^2+0.0055*(dist(7)-2)^2+0.34*(dist(8)-

3)^2))+(-0.025)*exp(-(0.25*(dist(1)-4)^2+0.046*(dist(2)-2)^2+0.088*(dist(3)-

4)^2+0.020*(dist(4)-1)^2+0.27*dist(5)^2+0.0055*(dist(7)-4)^2+0.34*(dist(8)-2)^2))+(-

0.023)*exp(-(0.25*(dist(1)-2)^2+0.046*(dist(2)-4)^2+0.088*(dist(3)-

4)^2+0.019*(dist(4)-2)^2+0.27*(dist(5)-4)^2+0.0055*dist(7)^2+0.34*(dist(8)-

1)^2))+0.032*exp(-(0.25*(dist(1)-4)^2+0.046*dist(2)^2+0.088*(dist(3)-

2)^2+0.019*(dist(4)-1)^2+0.27*(dist(5)-3)^2+0.0055*(dist(7)-1)^2+0.34*(dist(8)-

3)^2))+(-0.26)*exp(-(0.25*(dist(1)-4)^2+0.046*(dist(2)-4)^2+0.088*(dist(3)-

1)^2+0.019*(dist(4)-1)^2+0.27*(dist(5)-2)^2+0.0055*(dist(7)-2)^2+0.34*(dist(8)-

3)^2))+0.050*exp(-(0.25*(dist(1)-3)^2+0.046*(dist(2)-2)^2+0.088*(dist(3)-

4)^2+0.019*(dist(4)-1)^2+0.27*dist(5)^2+0.0055*dist(7)^2+0.34*(dist(8)-1)^2))+(-

0.012)*exp(-(0.25*(dist(1)-2)^2+0.046*(dist(2)-3)^2+0.088*(dist(3)-

4)^2+0.020*(dist(4)-1)^2+0.27*(dist(5)-4)^2+0.0055*(dist(7)-4)^2+0.34*(dist(8)-

1)^2))+0.012*exp(-(0.25*(dist(1)-3)^2+0.046*(dist(2)-1)^2+0.088*(dist(3)-

1)^2+0.019*(dist(4)-2)^2+0.27*(dist(5)-3)^2+0.0055*(dist(7)-2)^2+0.34*dist(8)^2))+(-

0.0058)*exp(-(0.25*(dist(1)-3)^2+0.046*(dist(2)-3)^2+0.088*(dist(3)-

1)^2+0.019*(dist(4)-3)^2+0.27*(dist(5)-1)^2+0.0055*(dist(7)-

1)^2+0.34*dist(8)^2))+0.0083*exp(-(0.25*(dist(1)-3)^2+0.046*(dist(2)-

1)^2+0.088*(dist(3)-3)^2+0.019*(dist(4)-4)^2+0.27*(dist(5)-1)^2+0.0055*(dist(7)-

3)^2+0.34*(dist(8)-3)^2))+0.015*exp(-(0.25*(dist(1)-3)^2+0.046*(dist(2)-

3)^2+0.088*(dist(3)-3)^2+0.019*(dist(4)-4)^2+0.27*(dist(5)-3)^2+0.0055*(dist(7)-

1)^2+0.34*(dist(8)-2)^2))+0.048*exp(-(0.25*(dist(1)-2)^2+0.046*(dist(2)-

1)^2+0.088*(dist(3)-1)^2+0.019*(dist(4)-2)^2+0.27*(dist(5)-2)^2+0.0055*(dist(7)-

1)^2+0.34*dist(8)^2))+(-0.0043)*exp(-(0.25*(dist(1)-3)^2+0.046*(dist(2)-

2)^2+0.088*(dist(3)-2)^2+0.019*(dist(4)-4)^2+0.27*(dist(5)-1)^2+0.0055*(dist(7)-

3)^2+0.34*(dist(8)-1)^2))+0.0045*exp(-(0.25*(dist(1)-3)^2+0.046*(dist(2)-

1)^2+0.088*(dist(3)-3)^2+0.019*(dist(4)-4)^2+0.27*(dist(5)-2)^2+0.0055*(dist(7)-

1)^2+0.34*(dist(8)-4)^2))+(-0.039)*exp(-(0.25*(dist(1)-3)^2+0.046*(dist(2)-

3)^2+0.088*(dist(3)-2)^2+0.019*(dist(4)-4)^2+0.27*(dist(5)-3)^2+0.0055*(dist(7)-

3)^2+0.34*(dist(8)-2)^2))+(-0.083)*exp(-(0.25*(dist(1)-2)^2+0.046*(dist(2)-
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2)^2+0.088*(dist(3)-2)^2+0.019*(dist(4)-2)^2+0.27*(dist(5)-2)^2+0.0055*(dist(7)-

2)^2+0.34*(dist(8)-2)^2))+0.051*exp(-(0.25*dist(1)^2+0.046*(dist(2)-

4)^2+0.088*(dist(3)-2)^2+0.019*(dist(4)-3)^2+0.27*(dist(5)-1)^2+0.0055*(dist(7)-

1)^2+0.34*(dist(8)-2)^2))+(-0.14)*exp(-(0.25*dist(1)^2+0.046*dist(2)^2+0.088*(dist(3)-

4)^2+0.019*(dist(4)-3)^2+0.27*(dist(5)-2)^2+0.0055*(dist(7)-2)^2+0.34*(dist(8)-

1)^2))+0.069*exp(-(0.25*(dist(1)-1)^2+0.046*(dist(2)-

2)^2+0.088*dist(3)^2+0.019*(dist(4)-3)^2+0.27*(dist(5)-

4)^2+0.0055*dist(7)^2+0.34*(dist(8)-3)^2))+0.037*exp(-(0.25*(dist(1)-

2)^2+0.046*(dist(2)-1)^2+0.088*dist(3)^2+0.019*(dist(4)-

2)^2+0.27*dist(5)^2+0.0055*(dist(7)-4)^2+0.34*(dist(8)-3)^2))+(-0.059)*exp(-

(0.25*dist(1)^2+0.046*(dist(2)-4)^2+0.088*(dist(3)-2)^2+0.019*(dist(4)-

3)^2+0.27*(dist(5)-1)^2+0.0055*(dist(7)-4)^2+0.34*(dist(8)-1)^2))+0.16*exp(-

(0.25*dist(1)^2+0.046*dist(2)^2+0.088*(dist(3)-3)^2+0.019*(dist(4)-3)^2+0.27*(dist(5)-

2)^2+0.0055*(dist(7)-2)^2+0.34*(dist(8)-1)^2))+(-0.064)*exp(-(0.25*(dist(1)-

1)^2+0.046*(dist(2)-2)^2+0.088*dist(3)^2+0.019*(dist(4)-3)^2+0.27*(dist(5)-

4)^2+0.0055*(dist(7)-4)^2+0.34*(dist(8)-3)^2))+0.0012*exp(-(0.25*(dist(1)-

2)^2+0.046*(dist(2)-1)^2+0.088*dist(3)^2+0.019*(dist(4)-

3)^2+0.27*dist(5)^2+0.0055*dist(7)^2+0.34*(dist(8)-3)^2))+(-0.044)*exp(-

(0.25*(dist(1)-1)^2+0.046*(dist(2)-3)^2+0.088*(dist(3)-3)^2+0.019*(dist(4)-

2)^2+0.27*(dist(5)-1)^2+0.0055*(dist(7)-2)^2+0.34*(dist(8)-4)^2))+(-0.13)*exp(-

(0.25*(dist(1)-1)^2+0.046*(dist(2)-1)^2+0.088*(dist(3)-3)^2+0.019*(dist(4)-

1)^2+0.27*(dist(5)-3)^2+0.0055*(dist(7)-3)^2+0.34*(dist(8)-4)^2))+(-0.011)*exp(-

(0.25*(dist(1)-1)^2+0.046*(dist(2)-3)^2+0.088*(dist(3)-

1)^2+0.019*dist(4)^2+0.27*(dist(5)-3)^2+0.0055*(dist(7)-2)^2+0.34*(dist(8)-1)^2))+(-

0.00092)*exp(-(0.25*(dist(1)-1)^2+0.046*(dist(2)-1)^2+0.088*(dist(3)-

1)^2+0.019*dist(4)^2+0.27*(dist(5)-1)^2+0.0055*(dist(7)-3)^2+0.345*(dist(8)-2)^2))+(-

0.040)*exp(-(0.25*(dist(1)-2)^2+0.046*(dist(2)-3)^2+0.088*(dist(3)-

3)^2+0.019*(dist(4)-2)^2+0.27*(dist(5)-2)^2+0.0055*(dist(7)-3)^2+0.34*(dist(8)-

4)^2))+0.15*exp(-(0.25*(dist(1)-1)^2+0.046*(dist(2)-2)^2+0.088*(dist(3)-

3)^2+0.019*(dist(4)-1)^2+0.27*(dist(5)-3)^2+0.0055*(dist(7)-1)^2+0.34*(dist(8)-

4)^2))+(-0.023)exp(-(0.25*(dist(1)-2)^2+0.046*(dist(2)-3)^2+0.088*(dist(3)-

1)^2+0.019*dist(4)^2+0.27*(dist(5)-3)^2+0.0055*(dist(7)-

3)^2+0.34*dist(8)^2))+0.066*exp(-(0.25*(dist(1)-1)^2+0.046*(dist(2)-

2)^2+0.088*(dist(3)-2)^2+0.019*dist(4)^2+0.27*(dist(5)-1)^2+0.0055*(dist(7)-

1)^2+0.34*(dist(8)-2)^2))) 
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Equation C.3 Phase I Response Prediction Formula for Average Total Cost 

 

-(20.21+(2.95*exp(-(4.38*(dist(4)-1)^2+6.7*(dist(5)-4)^2+1.31*(dist(7)-

3)^2+4.23*(dist(8)-2)^2))+2.87*exp(-(4.38*(dist(4)-2)^2+6.7*(dist(5)-

2)^2+1.31*(dist(7)-2)^2+4.23*(dist(8)-3)^2))+2.91*exp(-(4.388*(dist(4)-

1)^2+6.7*dist(5)^2+1.31*(dist(7)-4)^2+4.233*(dist(8)-2)^2))+1.631*exp(-(4.38*(dist(4)-

2)^2+6.7*(dist(5)-4)^2+1.31*dist(7)^2+4.23*(dist(8)-1)^2))+0.60*exp(-(4.38*(dist(4)-

1)^2+6.79*(dist(5)-3)^2+1.31*(dist(7)-1)^2+4.233*(dist(8)-3)^2))+1.68*exp(-

(4.38*(dist(4)-1)^2+6.79*(dist(5)-2)^2+1.31*(dist(7)-2)^2+4.23*(dist(8)-3)^2))+(-

2.92)*exp(-(4.38*(dist(4)-1)^2+6.79*dist(5)^2+1.31*dist(7)^2+4.23*(dist(8)-

1)^2))+3.99*exp(-(4.38*(dist(4)-1)^2+6.79*(dist(5)-4)^2+1.31*(dist(7)-

4)^2+4.23*(dist(8)-1)^2))+(-4.17)*exp(-(4.387*(dist(4)-2)^2+6.79*(dist(5)-

3)^2+1.31*(dist(7)-2)^2+4.23*dist(8)^2))+(-2.95)*exp(-(4.388*(dist(4)-

3)^2+6.79*(dist(5)-1)^2+1.31*(dist(7)-1)^2+4.23*dist(8)^2))+1.71*exp(-(4.38*(dist(4)-

4)^2+6.79*(dist(5)-1)^2+1.31*(dist(7)-3)^2+4.233*(dist(8)-3)^2))+7.57*exp(-

(4.38*(dist(4)-4)^2+6.79*(dist(5)-3)^2+1.313*(dist(7)-1)^2+4.23*(dist(8)-2)^2))+(-

7.67)*exp(-(4.38*(dist(4)-2)^2+6.79*(dist(5)-2)^2+1.31924103818723*(dist(7)-

1)^2+4.23*dist(8)^2))+1.82*exp(-(4.3878*(dist(4)-4)^2+6.79*(dist(5)-

1)^2+1.31*(dist(7)-3)^2+4.23*(dist(8)-1)^2))+1.67*exp(-(4.387*(dist(4)-

4)^2+6.79*(dist(5)-2)^2+1.31*(dist(7)-1)^2+4.23*(dist(8)-4)^2))+8.76*exp(-

(4.387*(dist(4)-4)^2+6.79*(dist(5)-3)^2+1.31*(dist(7)-3)^2+4.23*(dist(8)-2)^2))+(-

0.803111671064)*exp(-(4.38*(dist(4)-2)^2+6.79*(dist(5)-2)^2+1.31*(dist(7)-

2)^2+4.23*(dist(8)-2)^2))+(-1.68)*exp(-(4.38*(dist(4)-3)^2+6.79*(dist(5)-

1)^2+1.31*(dist(7)-1)^2+4.23*(dist(8)-2)^2))+(-1.17451931854076)*exp(-

(4.38*(dist(4)-3)^2+6.79*(dist(5)-2)^2+1.31*(dist(7)-2)^2+4.23*(dist(8)-1)^2))+(-

1.81)*exp(-(4.38*(dist(4)-3)^2+6.79*(dist(5)-4)^2+1.31*dist(7)^2+4.23*(dist(8)-

3)^2))+(-1.66)*exp(-(4.387*(dist(4)-2)^2+6.79*dist(5)^2+1.31*(dist(7)-

4)^2+4.23*(dist(8)-3)^2))+(-0.60)*exp(-(4.38*(dist(4)-3)^2+6.79*(dist(5)-

1)^2+1.31*(dist(7)-4)^2+4.23*(dist(8)-1)^2))+(-1.17)*exp(-(4.38*(dist(4)-

3)^2+6.79*(dist(5)-2)^2+1.31*(dist(7)-2)^2+4.23*(dist(8)-1)^2))+1.74*exp(-

(4.387*(dist(4)-3)^2+6.79*(dist(5)-4)^2+1.31*(dist(7)-4)^2+4.23*(dist(8)-3)^2))+(-

5.24)*exp(-(4.38*(dist(4)-3)^2+6.79*dist(5)^2+1.31*dist(7)^2+4.23*(dist(8)-

3)^2))+2.79*exp(-(4.38*(dist(4)-2)^2+6.79*(dist(5)-1)^2+1.31*(dist(7)-

2)^2+4.23*(dist(8)-4)^2))+1.71*exp(-(4.38706943003598*(dist(4)-1)^2+6.79*(dist(5)-

3)^2+1.31*(dist(7)-3)^2+4.23*(dist(8)-4)^2))+(-1.88)*exp(-
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(4.387*dist(4)^2+6.79*(dist(5)-3)^2+1.31*(dist(7)-2)^2+4.23*(dist(8)-1)^2))+(-

8.814)*exp(-(4.38*dist(4)^2+6.79*(dist(5)-1)^2+1.31*(dist(7)-3)^2+4.23*(dist(8)-

2)^2))+7.58*exp(-(4.38*(dist(4)-2)^2+6.79*(dist(5)-2)^2+1.31924103818723*(dist(7)-

3)^2+4.23*(dist(8)-4)^2))+0.56*exp(-(4.38*(dist(4)-1)^2+6.79*(dist(5)-

3)^2+1.31*(dist(7)-1)^2+4.23*(dist(8)-4)^2))+(-0.69)*exp(-

(4.38*dist(4)^2+6.79*(dist(5)-3)^2+1.31*(dist(7)-3)^2+4.23*dist(8)^2))+(-

8.77797460735803)*exp(-(4.38*dist(4)^2+6.79*(dist(5)-1)^2+1.31*(dist(7)-

1)^2+4.23*(dist(8)-2)^2)))) 

 

Equation C.4 Phase II Response Prediction Formula for Average Response Time 

 

-(186.21+(2.21*exp(-(0.158*(dist(1)-3)^2+0.25*(dist(3)-1)^2+0.05*(dist(5)-

3)^2+0.56*(dist(6)-2)^2+0.01*(dist(7)-2)^2+0.0096*(dist(8)-2)^2))+14.013*exp(-

(0.158*(dist(1)-3)^2+0.25*dist(3)^2+0.058*(dist(5)-1)^2+0.561*(dist(6)-

1)^2+0.01*(dist(7)-1)^2+0.0096*(dist(8)-3)^2))+4.34923840641689*exp(-

(0.15*(dist(1)-3)^2+0.25*(dist(3)-3)^2+0.05*dist(5)^2+0.56*(dist(6)-

2)^2+0.013*(dist(7)-3)^2+0.00963*(dist(8)-1)^2))+(-8.91)*exp(-(0.15*(dist(1)-

2)^2+0.25*(dist(3)-3)^2+0.05*(dist(5)-

3)^2+0.56*dist(6)^2+0.01*dist(7)^2+0.0096*(dist(8)-1)^2))+20.80*exp(-(0.155*(dist(1)-

3)^2+0.256*(dist(3)-1)^2+0.053*(dist(5)-2)^2+0.56*(dist(6)-

2)^2+0.01*dist(7)^2+0.00963*(dist(8)-2)^2))+(-36.97)*exp(-(0.15*(dist(1)-

3)^2+0.25*(dist(3)-1)^2+0.053*(dist(5)-1)^2+0.561*(dist(6)-1)^2+0.013*(dist(7)-

2)^2+0.0096*(dist(8)-2)^2))+8.58*exp(-(0.15*(dist(1)-2)^2+0.25*(dist(3)-

3)^2+0.053*dist(5)^2+0.56*(dist(6)-2)^2+0.013*dist(7)^2+0.0096*(dist(8)-1)^2))+(-

8.40)*exp(-(0.15*(dist(1)-2)^2+0.25*(dist(3)-3)^2+0.05*(dist(5)-3)^2+0.56*(dist(6)-

1)^2+0.01*(dist(7)-3)^2+0.0096*(dist(8)-1)^2))+4.798*exp(-(0.15*(dist(1)-

2)^2+0.25*(dist(3)-1)^2+0.053*(dist(5)-2)^2+0.56*(dist(6)-1)^2+0.013*(dist(7)-

2)^2+0.0096*dist(8)^2))+10.62*exp(-(0.15*(dist(1)-2)^2+0.25*(dist(3)-

1)^2+0.053*(dist(5)-1)^2+0.56*(dist(6)-2)^2+0.0131*(dist(7)-

1)^2+0.0096*dist(8)^2))+(-9.268)*exp(-(0.15*(dist(1)-2)^2+0.25*(dist(3)-

2)^2+0.053*(dist(5)-1)^2+0.56*dist(6)^2+0.013*(dist(7)-2)^2+0.0096*(dist(8)-

2)^2))+4.69*exp(-(0.15*(dist(1)-2)^2+0.25*(dist(3)-2)^2+0.053*(dist(5)-

2)^2+0.56*(dist(6)-3)^2+0.013*dist(7)^2+0.0096*(dist(8)-2)^2))+17.98*exp(-

(0.15*(dist(1)-2)^2+0.25*(dist(3)-1)^2+0.053*(dist(5)-

2)^2+0.56*dist(6)^2+0.013*(dist(7)-1)^2+0.0096*dist(8)^2))+8.90*exp(-(0.155*(dist(1)-

3)^2+0.25*(dist(3)-1)^2+0.053*dist(5)^2+0.56*(dist(6)-2)^2+0.013*(dist(7)-
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2)^2+0.0096*dist(8)^2))+4.30*exp(-(0.15*(dist(1)-2)^2+0.25*(dist(3)-

3)^2+0.053*(dist(5)-1)^2+0.56*dist(6)^2+0.013*(dist(7)-1)^2+0.0096*(dist(8)-3)^2))+(-

30.394)*exp(-(0.15*(dist(1)-2)^2+0.25*(dist(3)-2)^2+0.053*(dist(5)-2)^2+0.56*(dist(6)-

3)^2+0.013*(dist(7)-2)^2+0.0096*(dist(8)-2)^2))+(-39.94)*exp(-(0.15*(dist(1)-

2)^2+0.25*(dist(3)-2)^2+0.053*(dist(5)-2)^2+0.56*(dist(6)-2)^2+0.013*(dist(7)-

2)^2+0.0096*(dist(8)-2)^2))+9.72*exp(-(0.15*dist(1)^2+0.25*(dist (3)-

2)^2+0.053*dist(5)^2+0.56*(dist(6)-1)^2+0.013*(dist(7)-1)^2+0.0096*(dist(8)-1)^2))+(-

3.08)*exp(-(0.15*dist(1)^2+0.25*(dist(3)-3)^2+0.053*(dist(5)-2)^2+0.56*(dist(6)-

2)^2+0.013*(dist(7)-2)^2+0.00963*dist(8)^2))+10.37*exp(-

(0.15*dist(1)^2+0.25*dist(3)^2+0.053*(dist(5)-3)^2+0.56*(dist(6)-

1)^2+0.013*dist(7)^2+0.0096*(dist(8)-2)^2))+(-7.33)*exp(-(0.155*(dist(1)-

1)^2+0.25*dist(3)^2+0.053*dist(5)^2+0.56*(dist(6)-3)^2+0.013*(dist(7)-

3)^2+0.0096*(dist(8)-2)^2))+11.35*exp(-(0.15*dist(1)^2+0.25*(dist(3)-

2)^2+0.053*(dist(5)-1)^2+0.56*(dist(6)-1)^2+0.013*(dist(7)-3)^2+0.0096*(dist(8)-

1)^2))+1.23*exp(-(0.15*dist(1)^2+0.25*(dist(3)-2)^2+0.05*(dist(5)-2)^2+0.56*(dist(6)-

2)^2+0.013*(dist(7)-1)^2+0.0096*(dist(8)-1)^2))+(-25.93)*exp(-(0.15*(dist(1)-

1)^2+0.25*dist(3)^2+0.053*(dist(5)-3)^2+0.56*(dist(6)-1)^2+0.01*(dist(7)-

3)^2+0.0096*(dist(8)-2)^2))+(-8.21)*exp(-(0.15*(dist(1)-

1)^2+0.25*dist(3)^2+0.053*dist(5)^2+0.56*(dist(6)-

2)^2+0.013*dist(7)^2+0.0096*(dist(8)-2)^2))+31.77*exp(-(0.15*(dist(1)-

1)^2+0.25*(dist(3)-2)^2+0.05*(dist(5)-1)^2+0.56*(dist(6)-2)^2+0.013*(dist(7)-

1)^2+0.0096*(dist(8)-3)^2))+(-42.28)*exp(-(0.15*(dist(1)-1)^2+0.25*(dist(3)-

2)^2+0.05*(dist(5)-2)^2+0.56*(dist(6)-1)^2+0.013*(dist(7)-2)^2+0.0096*(dist(8)-

3)^2))+(-13.10)*exp(-(0.15*(dist(1)-1)^2+0.25*(dist(3)-1)^2+0.053*(dist(5)-

2)^2+0.56*(dist(6)-3)^2+0.013*(dist(7)-1)^2+0.0096*(dist(8)-1)^2))+8.30*exp(-

(0.15*(dist(1)-1)^2+0.25*(dist(3)-1)^2+0.053*(dist(5)-

1)^2+0.56*dist(6)^2+0.013*(dist(7)-3)^2+0.0096*(dist(8)-1)^2))+(-4.72)*exp(-

(0.15*(dist(1)-1)^2+0.25*(dist(3)-2)^2+0.053*(dist(5)-1)^2+0.56*(dist(6)-

3)^2+0.013*(dist(7)-2)^2+0.0096*(dist(8)-3)^2))+14.51*exp(-

(0.15*dist(1)^2+0.25*(dist(3)-2)^2+0.053*(dist(5)-3)^2+0.56*(dist(6)-

1)^2+0.013*(dist(7)-1)^2+0.0096*(dist(8)-3)^2))+30.1863420257917*exp(-

(0.15*(dist(1)-1)^2+0.25*dist(3)^2+0.053*(dist(5)-2)^2+0.56*(dist(6)-

3)^2+0.013*(dist(7)-2)^2+0.0096*dist(8)^2))+19.82*exp(-(0.15*(dist(1)-

1)^2+0.25*(dist(3)-1)^2+0.053*(dist(5)-1)^2+0.56*dist(6)^2+0.013*(dist(7)-

1)^2+0.0096*(dist(8)-1)^2)))) 
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Equation C.5 Phase II Response Prediction Formula for Average Percent Time 

Occupied 

 

0.90+(-0.0076*exp(-(73.86*dist(2)^2+0.00015*(dist(4)-1)^2+73.059*(dist(5)-

3)^2+32.29*(dist(7)-2)^2+0.17*(dist(8)-2)^2))+0.0058*exp(-(73.86*(dist(2)-

3)^2+0.00015*(dist(4)-1)^2+73.059*(dist(5)-1)^2+32.29*(dist(7)-1)^2+0.17*(dist(8)-

3)^2))+(-0.0068)*exp(-(73.86*(dist(2)-

1)^2+0.00015*dist(4)^2+73.05*dist(5)^2+32.29*(dist(7)-3)^2+0.17*(dist(8)-1)^2))+(-

0.016)*exp(-(73.86*(dist(2)-3)^2+0.000154*(dist(4)-1)^2+73.05*(dist(5)-

3)^2+32.29*dist(7)^2+0.17*(dist(8)-1)^2))+0.0081*exp(-

(73.86*dist(2)^2+0.00015*(dist(4)-1)^2+73.059*(dist(5)-

2)^2+32.299*dist(7)^2+0.17*(dist(8)-2)^2))+(-0.020)*exp(-(73.866*(dist(2)-

3)^2+0.00015*(dist(4)-1)^2+73.05*(dist(5)-1)^2+32.29*(dist(7)-2)^2+0.17*(dist(8)-

2)^2))+(-0.051)*exp(-(73.86*(dist(2)-1)^2+0.00015*(dist(4)-

1)^2+73.059*dist(5)^2+32.29*dist(7)^2+0.17*(dist(8)-1)^2))+(-0.13)*exp(-

(73.86*(dist(2)-2)^2+0.00015*(dist(4)-1)^2+73.05*(dist(5)-3)^2+32.29*(dist(7)-

3)^2+0.17*(dist(8)-1)^2))+(-0.00953771987572999)*exp(-(73.8663234706366*(dist(2)-

1)^2+0.00015*(dist(4)-2)^2+73.05*(dist(5)-2)^2+32.29*(dist(7)-

2)^2+0.17*dist(8)^2))+(-0.07)*exp(-(73.8663234706366*(dist(2)-

2)^2+0.00015*(dist(4)-2)^2+73.059*(dist(5)-1)^2+32.29*(dist(7)-

1)^2+0.17*dist(8)^2))+0.0044*exp(-(73.86*(dist(2)-1)^2+0.00015*(dist(4)-

3)^2+73.059*(dist(5)-1)^2+32.29*(dist(7)-2)^2+0.17*(dist(8)-2)^2))+(-0.034)*exp(-

(73.86*(dist(2)-2)^2+0.00015*(dist(4)-3)^2+73.059*(dist(5)-

2)^2+32.29*dist(7)^2+0.17*(dist(8)-2)^2))+0.093*exp(-

(73.86*dist(2)^2+0.00015*(dist(4)-2)^2+73.059*(dist(5)-2)^2+32.29*(dist(7)-

1)^2+0.17*dist(8)^2))+0.012exp(-(73.86*(dist(2)-2)^2+0.00015*(dist(4)-

3)^2+73.059*dist(5)^2+32.29*(dist(7)-2)^2+0.17*dist(8)^2))+(-0.04)*exp(-

(73.86*(dist(2)-1)^2+0.00015dist(4)-3)^2+73.059*(dist(5)-1)^2+32.299*(dist(7)-

1)^2+0.17*(dist(8)-3)^2))+(-4.64)*exp(-(73.86*(dist(2)-2)^2+0.00015*(dist(4)-

3)^2+73.05*(dist(5)-2)^2+32.29*(dist(7)-2)^2+0.17*(dist(8)-2)^2))+4.567*exp(-

(73.86*(dist(2)-2)^2+0.00015*(dist(4)-2)^2+73.059dist(5)-2)^2+32.29*(dist(7)-

2)^2+0.17*(dist(8)-2)^2))+(-0.15)*exp(-(73.86*(dist(2)-3)^2+0.00015*(dist(4)-

2)^2+73.059*dist(5)^2+32.29*(dist(7)-1)^2+0.17*(dist(8)-1)^2))+(-0.18)*exp(-

(73.86*dist(2)^2+0.00015*(dist(4)-2)^2+73.05*(dist(5)-2)^2+32.29*(dist(7)-

2)^2+0.17*dist(8)^2))+0.01*exp(-(73.86*(dist(2)-2)^2+0.00015*(dist(4)-

3)^2+73.05*(dist(5)-3)^2+32.29*dist(7)^2+0.17*(dist(8)-2)^2))+0.019*exp(-
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(73.86*dist(2)^2+0.00015*(dist(4)-2)^2+73.05*dist(5)^2+32.29*(dist(7)-

3)^2+0.17*(dist(8)-2)^2))+0.021*exp(-(73.86*(dist(2)-3)^2+0.00015*(dist(4)-

2)^2+73.058*(dist(5)-1)^2+32.29*(dist(7)-3)^2+0.17*(dist(8)-1)^2))+(-0.069)*exp(-

(73.86*dist(2)^2+0.00015*(dist(4)-2)^2+73.059*(dist(5)-2)^2+32.29*(dist(7)-

1)^2+0.17*(dist(8)-1)^2))+0.10*exp(-(73.8663234706366*(dist(2)-

2)^2+0.00015*(dist(4)-2)^2+73.05*(dist(5)-3)^2+32.29*(dist(7)-3)^2+0.17*(dist(8)-

2)^2))+0.06*exp(-(73.86*(dist(2)-1)^2+0.00015*(dist(4)-

2)^2+73.059*dist(5)^2+32.29*dist(7)^2+0.17*(dist(8)-2)^2))+0.37*exp(-(73.86*(dist(2)-

2)^2+0.00015*(dist(4)-1)^2+73.059*(dist(5)-1)^2+32.29*(dist(7)-1)^2+0.17*(dist(8)-

3)^2))+(-0.029)*exp(-(73.86*(dist(2)-1)^2+0.00015*(dist(4)-1)^2+73.05*(dist(5)-

2)^2+32.29*(dist(7)-2)^2+0.172004439961235*(dist(8)-3)^2))+(-0.0048)*exp(-

(73.86*(dist(2)-2)^2+0.00015*dist(4)^2+73.059*(dist(5)-2)^2+32.29*(dist(7)-

1)^2+0.172004439961235*(dist(8)-1)^2))+0.047*exp(-(73.86*(dist(2)-

1)^2+0.00015*dist(4)^2+73.05*(dist(5)-1)^2+32.29*(dist(7)-3)^2+0.17*(dist(8)-

1)^2))+(-0.011)*exp(-(73.86*(dist(2)-3)^2+0.00015*(dist(4)-1)^2+73.059*(dist(5)-

1)^2+32.29*(dist(7)-2)^2+0.172004439961235*(dist(8)-3)^2))+0.0092*exp(-

(73.86*(dist(2)-1)^2+0.00015*dist(4)^2+73.059*(dist(5)-3)^2+32.29*(dist(7)-

1)^2+0.17*(dist(8)-3)^2))+0.073*exp(-(73.86*(dist(2)-

2)^2+0.00015*dist(4)^2+73.059*(dist(5)-2)^2+32.29*(dist(7)-

2)^2+0.17*dist(8)^2))+0.072*exp(-(73.86*(dist(2)-

1)^2+0.00015*dist(4)^2+73.059*(dist(5)-1)^2+32.29*(dist(7)-1)^2+0.17*(dist(8)-1)^2))) 

 

Equation C.6 Phase II Response Prediction Formula for Average Total Cost 

 

-(13.24+(30.26*exp(-(0.018*(dist(1)-3)^2+0.11*dist(2)^2+0.010*(dist(3)-

1)^2+0.0085*(dist(4)-1)^2+0.062*(dist(5)-3)^2+0.011*(dist(6)-2)^2+0.0090*(dist(7)-

2)^2+0.16*(dist(8)-2)^2))+(-12.45)*exp(-(0.018*(dist(1)-3)^2+0.11*(dist(2)-

3)^2+0.010*dist(3)^2+0.0085*(dist(4)-1)^2+0.062*(dist(5)-1)^2+0.011*(dist(6)-

1)^2+0.0090*(dist(7)-1)^2+0.16*(dist(8)-3)^2))+2.59423691511974*exp(-

(0.018*(dist(1)-3)^2+0.11*(dist(2)-1)^2+0.010*(dist(3)-

3)^2+0.0085*dist(4)^2+0.062*dist(5)^2+0.011*(dist(6)-2)^2+0.0091*(dist(7)-

3)^2+0.16*(dist(8)-1)^2))+5.38*exp(-(0.018*(dist(1)-2)^2+0.11*(dist(2)-

3)^2+0.010*(dist(3)-3)^2+0.0085*(dist(4)-1)^2+0.062*(dist(5)-

3)^2+0.011*dist(6)^2+0.0090*dist(7)^2+0.16*(dist(8)-1)^2))+(-25.10)*exp(-

(0.018*(dist(1)-3)^2+0.11*dist(2)^2+0.010*(dist(3)-1)^2+0.0085*(dist(4)-

1)^2+0.062*(dist(5)-2)^2+0.0118490768935915*(dist(6)-
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2)^2+0.0090*dist(7)^2+0.16*(dist(8)-2)^2))+23.16*exp(-(0.018*(dist(1)-

3)^2+0.11*(dist(2)-3)^2+0.010*(dist(3)-1)^2+0.0085*(dist(4)-1)^2+0.062*(dist(5)-

1)^2+0.011*(dist(6)-1)^2+0.0090*(dist(7)-2)^2+0.16*(dist(8)-2)^2))+12.27*exp(-

(0.018*(dist(1)-2)^2+0.11*(dist(2)-1)^2+0.010*(dist(3)-3)^2+0.0085*(dist(4)-

1)^2+0.062*dist(5)^2+0.011*(dist(6)-2)^2+0.0090*dist(7)^2+0.16*(dist(8)-

1)^2))+11.39*exp(-(0.018*(dist(1)-2)^2+0.11*(dist(2)-2)^2+0.010*(dist(3)-

3)^2+0.0085*(dist(4)-1)^2+0.0622*(dist(5)-3)^2+0.011*(dist(6)-1)^2+0.0090*(dist(7)-

3)^2+0.16*(dist(8)-1)^2))+14.38*exp(-(0.018*(dist(1)-2)^2+0.11*(dist(2)-

1)^2+0.010*(dist(3)-1)^2+0.0085*(dist(4)-2)^2+0.062*(dist(5)-2)^2+0.011*(dist(6)-

1)^2+0.0090*(dist(7)-2)^2+0.16*dist(8)^2))+1.11*exp(-(0.018*(dist(1)-

2)^2+0.11*(dist(2)-2)^2+0.010*(dist(3)-1)^2+0.0085*(dist(4)-2)^2+0.062*(dist(5)-

1)^2+0.011*(dist(6)-2)^2+0.0090*(dist(7)-1)^2+0.165*dist(8)^2))+7.39*exp(-

(0.018*(dist(1)-2)^2+0.11*(dist(2)-1)^2+0.010*(dist(3)-2)^2+0.0085*(dist(4)-

3)^2+0.0622*(dist(5)-1)^2+0.011*dist(6)^2+0.0090*(dist(7)-2)^2+0.16*(dist(8)-

2)^2))+(-33.54)*exp(-(0.018*(dist(1)-2)^2+0.11*(dist(2)-2)^2+0.010*(dist(3)-

2)^2+0.0085*(dist(4)-3)^2+0.062*(dist(5)-2)^2+0.0118490768935915*(dist(6)-

3)^2+0.0090*dist(7)^2+0.16*(dist(8)-2)^2))+(-6.15)*exp(-(0.018*(dist(1)-

2)^2+0.11*dist(2)^2+0.010*(dist(3)-1)^2+0.0085*(dist(4)-2)^2+0.062*(dist(5)-

2)^2+0.011*dist(6)^2+0.0090*(dist(7)-1)^2+0.16*dist(8)^2))+7.55*exp(-(0.018*(dist(1)-

3)^2+0.11*(dist(2)-2)^2+0.010*(dist(3)-1)^2+0.0085*(dist(4)-

3)^2+0.062*dist(5)^2+0.011*(dist(6)-2)^2+0.0090*(dist(7)-2)^2+0.16*dist(8)^2))+(-

7.22)*exp(-(0.018*(dist(1)-2)^2+0.11*(dist(2)-1)^2+0.010*(dist(3)-

3)^2+0.0085*(dist(4)-3)^2+0.062*(dist(5)-1)^2+0.011*dist(6)^2+0.0090*(dist(7)-

1)^2+0.165*(dist(8)-3)^2))+94.80*exp(-(0.018*(dist(1)-2)^2+0.11*(dist(2)-

2)^2+0.010*(dist(3)-2)^2+0.0085*(dist(4)-3)^2+0.062*(dist(5)-2)^2+0.011*(dist(6)-

3)^2+0.0090*(dist(7)-2)^2+0.16*(dist(8)-2)^2))+(-84.90)*exp(-(0.018*(dist(1)-

2)^2+0.11*(dist(2)-2)^2+0.010*(dist(3)-2)^2+0.0085*(dist(4)-2)^2+0.062*(dist(5)-

2)^2+0.011*(dist(6)-2)^2+0.0090*(dist(7)-2)^2+0.16*(dist(8)-2)^2))+(-40.082)*exp(-

(0.018*dist(1)^2+0.11*(dist(2)-3)^2+0.010*(dist(3)-2)^2+0.0085*(dist(4)-

2)^2+0.062*dist(5)^2+0.011*(dist(6)-1)^2+0.0090*(dist(7)-1)^2+0.16*(dist(8)-1)^2))+(-

27.76)*exp(-(0.018*dist(1)^2+0.11*dist(2)^2+0.010*(dist(3)-

3)^2+0.00853818830964748*(dist(4)-2)^2+0.062*(dist(5)-2)^2+0.011*(dist(6)-

2)^2+0.0090*(dist(7)-2)^2+0.165*dist(8)^2))+9.959*exp(-

(0.018*dist(1)^2+0.11*(dist(2)-2)^2+0.010*dist(3)^2+0.00853*(dist(4)-

3)^2+0.062*(dist(5)-3)^2+0.011*(dist(6)-1)^2+0.0090*dist(7)^2+0.16*(dist(8)-2)^2))+(-

10.32)*exp(-(0.018*(dist(1)-1)^2+0.11*dist(2)^2+0.010*dist(3)^2+0.0085*(dist(4)-
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2)^2+0.0622055731237769*dist(5)^2+0.0118490768935915*(dist(6)-

3)^2+0.0090*(dist(7)-3)^2+0.16*(dist(8)-2)^2))+30.144940129768*exp(-

(0.018*dist(1)^2+0.11*(dist(2)-3)^2+0.01*(dist(3)-2)^2+0.0085*(dist(4)-

2)^2+0.062*(dist(5)-1)^2+0.011*(dist(6)-1)^2+0.0090*(dist(7)-3)^2+0.16*(dist(8)-

1)^2))+35.57*exp(-(0.018*dist(1)^2+0.11*dist(2)^2+0.01*(dist(3)-

2)^2+0.00853818830964748*(dist(4)-2)^2+0.062*(dist(5)-2)^2+0.011*(dist(6)-

2)^2+0.0090*(dist(7)-1)^2+0.16*(dist(8)-1)^2))+(-21.84418476183)*exp(-

(0.018*(dist(1)-1)^2+0.11*(dist(2)-2)^2+0.010*dist(3)^2+0.0085*(dist(4)-

2)^2+0.06*(dist(5)-3)^2+0.011*(dist(6)-1)^2+0.0090*(dist(7)-3)^2+0.16*(dist(8)-

2)^2))+(-1.83)*exp(-(0.018*(dist(1)-1)^2+0.11*(dist(2)-

1)^2+0.010*dist(3)^2+0.0085*(dist(4)-2)^2+0.062*dist(5)^2+0.011*(dist(6)-

2)^2+0.0090*dist(7)^2+0.16*(dist(8)-2)^2))+76.97*exp(-(0.018*(dist(1)-

1)^2+0.11*(dist(2)-2)^2+0.010*(dist(3)-2)^2+0.0085*(dist(4)-1)^2+0.062*(dist(5)-

1)^2+0.011*(dist(6)-2)^2+0.0090*(dist(7)-1)^2+0.16*(dist(8)-3)^2))+(-24.70)*exp(-

(0.018*(dist(1)-1)^2+0.11*(dist(2)-1)^2+0.010*(dist(3)-2)^2+0.0085*(dist(4)-

1)^2+0.062*(dist(5)-2)^2+0.011*(dist(6)-1)^2+0.0090*(dist(7)-

2)^2+0.165702986391966*(dist(8)-3)^2))+(-8.31)*exp(-(0.018*(dist(1)-

1)^2+0.11*(dist(2)-2)^2+0.010*(dist(3)-1)^2+0.0085*dist(4)^2+0.062*(dist(5)-

2)^2+0.011*(dist(6)-3)^2+0.0090*(dist(7)-1)^2+0.16*(dist(8)-1)^2))+10.22*exp(-

(0.018*(dist(1)-1)^2+0.11*(dist(2)-1)^2+0.010*(dist(3)-

1)^2+0.0085*dist(4)^2+0.062*(dist(5)-1)^2+0.011*dist(6)^2+0.0090*(dist(7)-

3)^2+0.16*(dist(8)-1)^2))+(-28.5205512161643)*exp(-(0.018*(dist(1)-

1)^2+0.11(dist(2)-3)^2+0.010*(dist(3)-2)^2+0.008*(dist(4)-1)^2+0.06*(dist(5)-

1)^2+0.011*(dist(6)-3)^2+0.0090*(dist(7)-2)^2+0.16*(dist(8)-3)^2))+(-0.81)*exp(-

(0.018*dist(1)^2+0.11*(dist(2)-1)^2+0.010*(dist(3)-

2)^2+0.0085*dist(4)^2+0.062*(dist(5)-3)^2+0.0118490768935915*(dist(6)-

1)^2+0.0090*(dist(7)-1)^2+0.16*(dist(8)-3)^2))+(-5.94)*exp(-(0.018*(dist(1)-

1)^2+0.11*(dist(2)-2)^2+0.010*dist(3)^2+0.0085*dist(4)^2+0.062*(dist(5)-

2)^2+0.011*(dist(6)-3)^2+0.0090*(dist(7)-2)^2+0.165702986391966*dist(8)^2))+(-

33.65)*exp(-(0.018*(dist(1)-1)^2+0.11*(dist(2)-1)^2+0.0103143784510041*(dist(3)-

1)^2+0.0085*dist(4)^2+0.062*(dist(5)-1)^2+0.011*dist(6)^2+0.0090*(dist(7)-

1)^2+0.16*(dist(8)-1)^2)))) 

 

Equation C.7 Phase III Response Prediction Formula for Average Response Time 

-(326.80+(777.45*exp(-(0.010*(dist(1)-2)^2+0.03*dist(2)^2+0.0049*(dist(3)-

1)^2+0.02*dist(4)^2+0.03*(dist(5)-2)^2+0.024*(dist(6)-1)^2+0.010*(dist(7)-
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1)^2+0.036*(dist(8)-1)^2))+(-2472.59)*exp(-(0.010*(dist(1)-2)^2+0.035*(dist(2)-

2)^2+0.0049*dist(3)^2+0.025*(dist(4)-1)^2+0.032*(dist(5)-

1)^2+0.024*dist(6)^2+0.0107*(dist(7)-1)^2+0.036*(dist(8)-2)^2))+(-620.56)*exp(-

(0.010*(dist(1)-2)^2+0.03*(dist(2)-1)^2+0.004*(dist(3)-

2)^2+0.025*dist(4)^2+0.03*dist(5)^2+0.024*(dist(6)-1)^2+0.010*(dist(7)-

2)^2+0.036*(dist(8)-1)^2))+(-135.54)*exp(-(0.010*(dist(1)-1)^2+0.0355*(dist(2)-

2)^2+0.0049*(dist(3)-2)^2+0.025*(dist(4)-1)^2+0.032*(dist(5)-

2)^2+0.024*dist(6)^2+0.010*dist(7)^2+0.036*dist(8)^2))+(-322.859595254887)*exp(-

(0.010*(dist(1)-2)^2+0.03*dist(2)^2+0.0049*(dist(3)-

1)^2+0.025*dist(4)^2+0.032*(dist(5)-1)^2+0.024*(dist(6)-

1)^2+0.010*dist(7)^2+0.036*(dist(8)-1)^2))+2825.79*exp(-(0.010*(dist(1)-

2)^2+0.035*(dist(2)-2)^2+0.0049*(dist(3)-1)^2+0.025*(dist(4)-1)^2+0.032*(dist(5)-

1)^2+0.024*dist(6)^2+0.010*(dist(7)-1)^2+0.036*(dist(8)-2)^2))+(-333.73)*exp(-

(0.010*(dist(1)-1)^2+0.035*(dist(2)-1)^2+0.0049*(dist(3)-2)^2+0.025*(dist(4)-

1)^2+0.032*dist(5)^2+0.0240*(dist(6)-1)^2+0.010*dist(7)^2+0.036*(dist(8)-1)^2))+(-

743.758)*exp(-(0.010*(dist(1)-1)^2+0.03*(dist(2)-1)^2+0.0049*(dist(3)-

2)^2+0.025*(dist(4)-1)^2+0.032*(dist(5)-2)^2+0.0240451012885587*(dist(6)-

1)^2+0.010*(dist(7)-2)^2+0.036*dist(8)^2))+(-3460.35484340777)*exp(-

(0.010*(dist(1)-1)^2+0.03*(dist(2)-1)^2+0.0049*dist(3)^2+0.025*(dist(4)-

1)^2+0.032*(dist(5)-1)^2+0.024*(dist(6)-1)^2+0.010*(dist(7)-1)^2+0.036*dist(8)^2))+(-

327.68)*exp(-(0.010*(dist(1)-2)^2+0.035*(dist(2)-1)^2+0.0049*(dist(3)-

1)^2+0.025*(dist(4)-1)^2+0.032*dist(5)^2+0.024*(dist(6)-

1)^2+0.010*dist(7)^2+0.036*dist(8)^2))+(-451.74)*exp(-(0.010*(dist(1)-

1)^2+0.035*dist(2)^2+0.0049*(dist(3)-2)^2+0.025*(dist(4)-2)^2+0.032*(dist(5)-

1)^2+0.0240*dist(6)^2+0.010*(dist(7)-1)^2+0.0360*(dist(8)-1)^2))+(-789.790)*exp(-

(0.010*(dist(1)-2)^2+0.035*(dist(2)-1)^2+0.0049*(dist(3)-1)^2+0.0259*(dist(4)-

2)^2+0.032*(dist(5)-2)^2+0.0240*(dist(6)-2)^2+0.010*dist(7)^2+0.0360*(dist(8)-

1)^2))+1532.14*exp(-(0.010*(dist(1)-1)^2+0.035*dist(2)^2+0.0049*dist 

(3)^2+0.025*(dist(4)-1)^2+0.032*(dist(5)-1)^2+0.024*dist(6)^2+0.010*(dist(7)-

1)^2+0.036*dist(8)^2))+562.13*exp(-(0.010*(dist(1)-2)^2+0.035*(dist(2)-

1)^2+0.0049*(dist(3)-1)^2+0.025*(dist(4)-

2)^2+0.0324943350254703*dist(5)^2+0.024*(dist(6)-1)^2+0.010*(dist(7)-

2)^2+0.036*dist(8)^2))+(-778.90)*exp(-(0.010*(dist(1)-

1)^2+0.03*dist(2)^2+0.0049*(dist(3)-2)^2+0.02*(dist(4)-2)^2+0.032*(dist(5)-

1)^2+0.0240*dist(6)^2+0.010*(dist(7)-1)^2+0.036*(dist(8)-2)^2))+552.37*exp(-

(0.010*(dist(1)-2)^2+0.035*(dist(2)-1)^2+0.0049*(dist(3)-1)^2+0.025*(dist(4)-
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2)^2+0.0324943350254703*(dist(5)-2)^2+0.024*(dist(6)-2)^2+0.010*(dist(7)-

2)^2+0.036*(dist(8)-1)^2))+2952.57*exp(-(0.010*(dist(1)-1)^2+0.035*(dist(2)-

1)^2+0.0049*(dist(3)-1)^2+0.025*(dist(4)-1)^2+0.032*(dist(5)-1)^2+0.024*(dist(6)-

1)^2+0.010*(dist(7)-1)^2+0.036*(dist(8)-1)^2))+(-1153.45)*exp(-

(0.010*dist(1)^2+0.035*(dist(2)-2)^2+0.0049*(dist(3)-1)^2+0.025*(dist(4)-

2)^2+0.032*dist(5)^2+0.024*(dist(6)-1)^2+0.0107588794338961*(dist(7)-

1)^2+0.036*(dist(8)-1)^2))+1287.91*exp(-

(0.0109660143774632*dist(1)^2+0.035*dist(2)^2+0.0049*(dist(3)-2)^2+0.025*(dist(4)-

1)^2+0.032*(dist(5)-1)^2+0.024*(dist(6)-2)^2+0.010*(dist(7)-

1)^2+0.036*dist(8)^2))+1473.71*exp(-(0.010*dist(1)^2+0.035*(dist(2)-

1)^2+0.0049*dist(3)^2+0.025*(dist(4)-2)^2+0.03*(dist(5)-2)^2+0.024*(dist(6)-

1)^2+0.010*dist(7)^2+0.036*(dist(8)-1)^2))+551.86*exp(-(0.010*(dist(1)-

1)^2+0.035*dist(2)^2+0.0049*dist(3)^2+0.025*(dist(4)-

1)^2+0.032*dist(5)^2+0.024*(dist(6)-2)^2+0.010*(dist(7)-2)^2+0.036*(dist(8)-

2)^2))+1180.67*exp(-(0.010*dist(1)^2+0.035*(dist(2)-2)^2+0.00492*(dist(3)-

1)^2+0.025*(dist(4)-2)^2+0.032*(dist(5)-1)^2+0.024*(dist(6)-1)^2+0.010*(dist(7)-

2)^2+0.036*(dist(8)-1)^2))+(-2251.17)*exp(-

(0.010*dist(1)^2+0.035*dist(2)^2+0.0049*(dist(3)-1)^2+0.025*(dist(4)-

1)^2+0.032*(dist(5)-1)^2+0.024*(dist(6)-2)^2+0.010*(dist(7)-

1)^2+0.0360617360074524*(dist(8)-1)^2))+(-775.85)*exp(-(0.010*(dist(1)-

1)^2+0.035*(dist(2)-1)^2+0.0049*dist(3)^2+0.025*(dist(4)-2)^2+0.032*(dist(5)-

2)^2+0.024*(dist(6)-1)^2+0.010*(dist(7)-2)^2+0.036*(dist(8)-1)^2))+421.35*exp(-

(0.010*(dist(1)-1)^2+0.035*(dist(2)-1)^2+0.0049*dist(3)^2+0.025*(dist(4)-

1)^2+0.0324943350254703*dist(5)^2+0.024*(dist(6)-

2)^2+0.010*dist(7)^2+0.03*(dist(8)-2)^2))+(-1116.81)*exp(-(0.010*(dist(1)-

1)^2+0.035*(dist(2)-2)^2+0.0049*(dist(3)-2)^2+0.025*(dist(4)-1)^2+0.032*(dist(5)-

1)^2+0.024*(dist(6)-1)^2+0.010*(dist(7)-1)^2+0.036*(dist(8)-2)^2))+386.077*exp(-

(0.010*(dist(1)-1)^2+0.035*(dist(2)-1)^2+0.0049*(dist(3)-1)^2+0.025*(dist(4)-

1)^2+0.03*(dist(5)-2)^2+0.024*(dist(6)-1)^2+0.010*(dist(7)-2)^2+0.036*(dist(8)-

2)^2))+(-2151.67)*exp(-(0.010*(dist(1)-1)^2+0.03*(dist(2)-2)^2+0.0049*(dist(3)-

1)^2+0.025*dist(4)^2+0.032*(dist(5)-1)^2+0.024*(dist(6)-2)^2+0.010*(dist(7)-

1)^2+0.0360617360074524*(dist(8)-1)^2))+(-1620.42)*exp(-

(0.010*dist(1)^2+0.035*(dist(2)-1)^2+0.0049*(dist(3)-

1)^2+0.025*dist(4)^2+0.032*(dist(5)-1)^2+0.024*dist(6)^2+0.010*(dist(7)-

2)^2+0.036*(dist(8)-1)^2))+823.63*exp(-(0.010*(dist(1)-1)^2+0.035*(dist(2)-

2)^2+0.0049*(dist(3)-2)^2+0.025*(dist(4)-1)^2+0.032*(dist(5)-1)^2+0.024*(dist(6)-
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2)^2+0.010*(dist(7)-1)^2+0.036*(dist(8)-2)^2))+(-46.48)*exp(-

(0.010*dist(1)^2+0.035*(dist(2)-1)^2+0.0049*(dist(3)-

1)^2+0.025*dist(4)^2+0.032*(dist(5)-2)^2+0.024*(dist(6)-

1)^2+0.010*dist(7)^2+0.036*(dist(8)-2)^2))+2331.62*exp(-(0.010*(dist(1)-

1)^2+0.035*(dist(2)-2)^2+0.0049*dist(3)^2+0.025*dist(4)^2+0.032*(dist(5)-

1)^2+0.024*(dist(6)-2)^2+0.010*(dist(7)-1)^2+0.036*dist(8)^2))+1894.10*exp(-

(0.010*dist(1)^2+0.035*(dist(2)-1)^2+0.0049*(dist(3)-

1)^2+0.025*dist(4)^2+0.032*dist(5)^2+0.024*dist(6)^2+0.010*(dist(7)-

1)^2+0.036*(dist(8)-1)^2)))) 

 

Equation C.8 Phase III Response Prediction Formula for Average Percent Time 

Occupied 

 

1.23+(0.30*exp(-(0.0063*(dist(1)-2)^2+0.027*dist(2)^2+0.0034*(dist(3)-

1)^2+0.024*dist(4)^2+0.025*(dist(5)-2)^2+0.018*(dist(6)-1)^2+0.010*(dist(7)-

1)^2+0.031*(dist(8)-1)^2))+(-4.66)*exp(-(0.00634274625236588*(dist(1)-

2)^2+0.027*(dist(2)-2)^2+0.0034*dist(3)^2+0.024*(dist(4)-1)^2+0.025*(dist(5)-

1)^2+0.018*dist(6)^2+0.010*(dist(7)-1)^2+0.031*(dist(8)-2)^2))+(-2.13)*exp(-

(0.0063*(dist(1)-2)^2+0.027*(dist(2)-1)^2+0.0034*(dist(3)-

2)^2+0.024*dist(4)^2+0.025*dist(5)^2+0.018*(dist(6)-1)^2+0.010*(dist(7)-

2)^2+0.031*(dist(8)-1)^2))+(-0.26)*exp(-(0.0063*(dist(1)-1)^2+0.027*(dist(2)-

2)^2+0.0034*(dist(3)-2)^2+0.02*(dist(4)-1)^2+0.025*(dist(5)-

2)^2+0.018*dist(6)^2+0.010*dist(7)^2+0.031*dist(8)^2))+1.61*exp(-(0.0063*(dist(1)-

2)^2+0.0270651681789687*dist(2)^2+0.0034*(dist(3)-

1)^2+0.024*dist(4)^2+0.025*(dist(5)-1)^2+0.018*(dist(6)-

1)^2+0.010*dist(7)^2+0.031*(dist(8)-1)^2))+4.79*exp(-(0.0063*(dist(1)-

2)^2+0.027*(dist(2)-2)^2+0.0034*(dist(3)-1)^2+0.024*(dist(4)-1)^2+0.025*(dist(5)-

1)^2+0.018*dist(6)^2+0.010*(dist(7)-1)^2+0.031*(dist(8)-2)^2))+(-1.48)*exp(-

(0.0063*(dist(1)-1)^2+0.027*(dist(2)-1)^2+0.0034*(dist(3)-2)^2+0.024*(dist(4)-

1)^2+0.025*dist(5)^2+0.018*(dist(6)-1)^2+0.010*dist(7)^2+0.031*(dist(8)-1)^2))+(-

0.97)*exp(-(0.0063*(dist(1)-1)^2+0.027*(dist(2)-1)^2+0.0034*(dist(3)-

2)^2+0.024*(dist(4)-1)^2+0.025*(dist(5)-2)^2+0.018*(dist(6)-1)^2+0.010*(dist(7)-

2)^2+0.031*dist(8)^2))+(-11.04)*exp(-(0.00634*(dist(1)-1)^2+0.027*(dist(2)-

1)^2+0.0034*dist(3)^2+0.024*(dist(4)-1)^2+0.025*(dist(5)-1)^2+0.018*(dist(6)-

1)^2+0.010*(dist(7)-1)^2+0.031*dist(8)^2))+(-1.53)*exp(-(0.00634*(dist(1)-

2)^2+0.027*(dist(2)-1)^2+0.00345210627022864*(dist(3)-1)^2+0.024*(dist(4)-
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1)^2+0.025*dist(5)^2+0.018*(dist(6)-1)^2+0.010*dist(7)^2+0.031*dist(8)^2))+(-

1.231)*exp(-(0.0063*(dist(1)-1)^2+0.027*dist(2)^2+0.0034*(dist(3)-

2)^2+0.024*(dist(4)-2)^2+0.025*(dist(5)-1)^2+0.018*dist(6)^2+0.010*(dist(7)-

1)^2+0.031*(dist(8)-1)^2))+(-2.57)*exp(-(0.0063*(dist(1)-2)^2+0.027*(dist(2)-

1)^2+0.0034*(dist(3)-1)^2+0.024*(dist(4)-2)^2+0.025*(dist(5)-2)^2+0.0183*(dist(6)-

2)^2+0.010*dist(7)^2+0.031*(dist(8)-1)^2))+3.98*exp(-(0.0063*(dist(1)-

1)^2+0.027*dist(2)^2+0.0034*dist(3)^2+0.024*(dist(4)-1)^2+0.025*(dist(5)-

1)^2+0.0189*dist(6)^2+0.0103*(dist(7)-1)^2+0.031*dist(8)^2))+2.42*exp(-

(0.0063*(dist(1)-2)^2+0.0270*(dist(2)-1)^2+0.0034*(dist(3)-1)^2+0.024*(dist(4)-

2)^2+0.025*dist(5)^2+0.018*(dist(6)-1)^2+0.010*(dist(7)-2)^2+0.031*dist(8)^2))+(-

2.41)*exp(-(0.00634*(dist(1)-1)^2+0.027*dist(2)^2+0.00345*(dist(3)-

2)^2+0.024*(dist(4)-2)^2+0.025*(dist(5)-1)^2+0.018*dist(6)^2+0.010*(dist(7)-

1)^2+0.031*(dist(8)-2)^2))+1.70*exp(-(0.0063*(dist(1)-2)^2+0.027*(dist(2)-

1)^2+0.0034*(dist(3)-1)^2+0.024*(dist(4)-2)^2+0.025*(dist(5)-2)^2+0.018*(dist(6)-

2)^2+0.010*(dist(7)-2)^2+0.031*(dist(8)-1)^2))+8.025*exp(-(0.0063*(dist(1)-

1)^2+0.027*(dist(2)-1)^2+0.00345*(dist(3)-1)^2+0.024*(dist(4)-1)^2+0.025*(dist(5)-

1)^2+0.018*(dist(6)-1)^2+0.010*(dist(7)-1)^2+0.031*(dist(8)-1)^2))+(-0.71)*exp(-

(0.00634274625236588*dist(1)^2+0.0270*(dist(2)-2)^2+0.0034*(dist(3)-

1)^2+0.0246*(dist(4)-2)^2+0.025*dist(5)^2+0.018*(dist(6)-1)^2+0.010*(dist(7)-

1)^2+0.031*(dist(8)-1)^2))+3.0398*exp(-

(0.0063*dist(1)^2+0.027*dist(2)^2+0.0034*(dist(3)-2)^2+0.024*(dist(4)-

1)^2+0.025*(dist(5)-1)^2+0.018*(dist(6)-2)^2+0.010*(dist(7)-

1)^2+0.031*dist(8)^2))+4.89*exp(-(0.0063*dist(1)^2+0.027*(dist(2)-

1)^2+0.00345*dist(3)^2+0.024*(dist(4)-2)^2+0.025*(dist(5)-2)^2+0.018*(dist(6)-

1)^2+0.010*dist(7)^2+0.031*(dist(8)-1)^2))+1.42*exp(-(0.0063*(dist(1)-

1)^2+0.027*dist(2)^2+0.0034*dist(3)^2+0.024*(dist(4)-

1)^2+0.025*dist(5)^2+0.018*(dist(6)-2)^2+0.010*(dist(7)-2)^2+0.031*(dist(8)-2)^2))+(-

0.261)*exp(-(0.0063*dist(1)^2+0.027*(dist(2)-2)^2+0.0034*(dist(3)-

1)^2+0.024*(dist(4)-2)^2+0.0256974880147803*(dist(5)-1)^2+0.018*(dist(6)-

1)^2+0.010*(dist(7)-2)^2+0.031*(dist(8)-1)^2))+(-5.45)*exp(-

(0.0063*dist(1)^2+0.027*dist(2)^2+0.0034*(dist(3)-1)^2+0.024*(dist(4)-

1)^2+0.025*(dist(5)-1)^2+0.018*(dist(6)-2)^2+0.01*(dist(7)-1)^2+0.031*(dist(8)-

1)^2))+(-1.66)*exp(-(0.0063*(dist(1)-1)^2+0.027*(dist(2)-

1)^2+0.0034*dist(3)^2+0.024*(dist(4)-2)^2+0.025*(dist(5)-2)^2+0.018*(dist(6)-

1)^2+0.010*(dist(7)-2)^2+0.031*(dist(8)-1)^2))+0.32*exp(-(0.0063*(dist(1)-

1)^2+0.027*(dist(2)-1)^2+0.00345*dist(3)^2+0.0246764144934028*(dist(4)-
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1)^2+0.0256974880147803*dist(5)^2+0.018*(dist(6)-

2)^2+0.010*dist(7)^2+0.031*(dist(8)-2)^2))+(-1.055)*exp(-(0.0063*(dist(1)-

1)^2+0.027*(dist(2)-2)^2+0.0034*(dist(3)-2)^2+0.024*(dist(4)-1)^2+0.025*(dist(5)-

1)^2+0.018*(dist(6)-1)^2+0.010*(dist(7)-1)^2+0.031*(dist(8)-2)^2))+1.69*exp(-

(0.0063*(dist(1)-1)^2+0.027*(dist(2)-1)^2+0.0034*(dist(3)-1)^2+0.02*(dist(4)-

1)^2+0.025*(dist(5)-2)^2+0.01*(dist(6)-1)^2+0.010*(dist(7)-2)^2+0.031*(dist(8)-

2)^2))+(-5.73)*exp(-(0.00634*(dist(1)-1)^2+0.027*(dist(2)-2)^2+0.0034*(dist(3)-

1)^2+0.024*dist(4)^2+0.025*(dist(5)-1)^2+0.018*(dist(6)-2)^2+0.010*(dist(7)-

1)^2+0.031*(dist(8)-1)^2))+(-3.20)*exp(-(0.0063*dist(1)^2+0.027*(dist(2)-

1)^2+0.0034*(dist(3)-1)^2+0.024*dist(4)^2+0.025*(dist(5)-

1)^2+0.018*dist(6)^2+0.010*(dist(7)-2)^2+0.031*(dist(8)-1)^2))+2.12*exp(-

(0.0063*(dist(1)-1)^2+0.027*(dist(2)-2)^2+0.0034*(dist(3)-2)^2+0.024*(dist(4)-

1)^2+0.025*(dist(5)-1)^2+0.0189*(dist(6)-2)^2+0.010*(dist(7)-1)^2+0.031*(dist(8)-

2)^2))+(-1.086)*exp(-(0.0063*dist(1)^2+0.027*(dist(2)-1)^2+0.0034*(dist(3)-

1)^2+0.024*dist(4)^2+0.025*(dist(5)-2)^2+0.018*(dist(6)-

1)^2+0.010*dist(7)^2+0.031*(dist(8)-2)^2))+6.64*exp(-(0.0063*(dist(1)-

1)^2+0.027*(dist(2)-2)^2+0.0034*dist(3)^2+0.024*dist(4)^2+0.025*(dist(5)-

1)^2+0.018*(dist(6)-2)^2+0.010*(dist(7)-1)^2+0.031*dist(8)^2))+4.50*exp(-

(0.0063*dist(1)^2+0.0270*(dist(2)-1)^2+0.0034*(dist(3)-

1)^2+0.024*dist(4)^2+0.025*dist(5)^2+0.018*dist(6)^2+0.010*(dist(7)-

1)^2+0.031*(dist(8)-1)^2))) 

 

Equation C.9 Phase III Response Prediction Formula for Average Total Cost 

 

-(10.56+(0.273*exp(-(0.0560*(dist(1)-2)^2+0.058*dist(2)^2+0.05*(dist(3)-

1)^2+0.057*dist(4)^2+0.051*(dist(5)-2)^2+0.049*(dist(6)-1)^2+0.05*(dist(7)-

1)^2+0.053*(dist(8)-1)^2))+0.25*exp(-(0.056*(dist(1)-2)^2+0.058*(dist(2)-

2)^2+0.052*dist(3)^2+0.057*(dist(4)-1)^2+0.051*(dist(5)-

1)^2+0.0498*dist(6)^2+0.051*(dist(7)-1)^2+0.053*(dist(8)-2)^2))+1.40*exp(-

(0.056*(dist(1)-2)^2+0.058*(dist(2)-1)^2+0.052*(dist(3)-

2)^2+0.0573*dist(4)^2+0.05*dist(5)^2+0.049*(dist(6)-1)^2+0.051*(dist(7)-

2)^2+0.053*(dist(8)-1)^2))+(-0.2067)*exp(-(0.056*(dist(1)-1)^2+0.058*(dist(2)-

2)^2+0.052*(dist(3)-2)^2+0.057*(dist(4)-1)^2+0.051*(dist(5)-

2)^2+0.049*dist(6)^2+0.051*dist(7)^2+0.053*dist(8)^2))+(-1.576)*exp(-(0.056*(dist(1)-

2)^2+0.0586*dist(2)^2+0.052*(dist(3)-1)^2+0.057*dist(4)^2+0.051*(dist(5)-

1)^2+0.049*(dist(6)-1)^2+0.051*dist(7)^2+0.0532843606093131*(dist(8)-
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1)^2))+1.087*exp(-(0.0560*(dist(1)-2)^2+0.058*(dist(2)-2)^2+0.0529*(dist(3)-

1)^2+0.057*(dist(4)-1)^2+0.051*(dist(5)-1)^2+0.049*dist(6)^2+0.051*(dist(7)-

1)^2+0.053*(dist(8)-2)^2))+(-0.94)*exp(-(0.056*(dist(1)-1)^2+0.058*(dist(2)-

1)^2+0.052*(dist(3)-2)^2+0.057*(dist(4)-1)^2+0.05*dist(5)^2+0.049*(dist(6)-

1)^2+0.051*dist(7)^2+0.053*(dist(8)-1)^2))+1.34*exp(-(0.056*(dist(1)-

1)^2+0.058*(dist(2)-1)^2+0.052*(dist(3)-2)^2+0.0573961760206857*(dist(4)-

1)^2+0.051*(dist(5)-2)^2+0.049*(dist(6)-1)^2+0.051*(dist(7)-2)^2+0.053*dist(8)^2))+(-

0.71)*exp(-(0.056*(dist(1)-1)^2+0.058*(dist(2)-1)^2+0.052*dist(3)^2+0.057*(dist(4)-

1)^2+0.051*(dist(5)-1)^2+0.049*(dist(6)-1)^2+0.05*(dist(7)-1)^2+0.053*dist(8)^2))+(-

1.97)*exp(-(0.056*(dist(1)-2)^2+0.058*(dist(2)-1)^2+0.052*(dist(3)-

1)^2+0.057*(dist(4)-1)^2+0.051*dist(5)^2+0.049*(dist(6)-

1)^2+0.051*dist(7)^2+0.0532*dist(8)^2))+(-0.53)*exp(-(0.056*(dist(1)-

1)^2+0.058*dist(2)^2+0.052*(dist(3)-2)^2+0.0573961760206857*(dist(4)-

2)^2+0.051*(dist(5)-1)^2+0.049*dist(6)^2+0.051*(dist(7)-1)^2+0.053*(dist(8)-

1)^2))+2.73*exp(-(0.056*(dist(1)-2)^2+0.058*(dist(2)-1)^2+0.0529*(dist(3)-

1)^2+0.057*(dist(4)-2)^2+0.051*(dist(5)-2)^2+0.049*(dist(6)-

2)^2+0.051*dist(7)^2+0.053*(dist(8)-1)^2))+(-3.95)*exp(-(0.056*(dist(1)-

1)^2+0.058*dist(2)^2+0.052*dist(3)^2+0.057*(dist(4)-1)^2+0.051*(dist(5)-

1)^2+0.049*dist(6)^2+0.051*(dist(7)-1)^2+0.053*dist(8)^2))+0.400*exp(-

(0.056*(dist(1)-2)^2+0.058*(dist(2)-1)^2+0.052*(dist(3)-1)^2+0.057*(dist(4)-

2)^2+0.051*dist(5)^2+0.049*(dist(6)-1)^2+0.051*(dist(7)-

2)^2+0.053*dist(8)^2))+1.076*exp(-(0.056*(dist(1)-

1)^2+0.058*dist(2)^2+0.052*(dist(3)-2)^2+0.0573961760206857*(dist(4)-

2)^2+0.051*(dist(5)-1)^2+0.049*dist(6)^2+0.051*(dist(7)-1)^2+0.053*(dist(8)-

2)^2))+4.62*exp(-(0.056*(dist(1)-2)^2+0.0586531559842805*(dist(2)-

1)^2+0.052*(dist(3)-1)^2+0.057*(dist(4)-2)^2+0.051*(dist(5)-2)^2+0.049*(dist(6)-

2)^2+0.051*(dist(7)-2)^2+0.053*(dist(8)-1)^2))+(-0.77)*exp(-(0.056*(dist(1)-

1)^2+0.058*(dist(2)-1)^2+0.0529924836217211*(dist(3)-1)^2+0.057*(dist(4)-

1)^2+0.051*(dist(5)-1)^2+0.049*(dist(6)-1)^2+0.051*(dist(7)-1)^2+0.053*(dist(8)-

1)^2))+(-0.46)*exp(-(0.056*dist(1)^2+0.058*(dist(2)-2)^2+0.052*(dist(3)-

1)^2+0.057*(dist(4)-2)^2+0.051*dist(5)^2+0.049*(dist(6)-1)^2+0.051*(dist(7)-

1)^2+0.053*(dist(8)-1)^2))+(-0.99)*exp(-

(0.056*dist(1)^2+0.058*dist(2)^2+0.052*(dist(3)-2)^2+0.057*(dist(4)-

1)^2+0.051*(dist(5)-1)^2+0.049*(dist(6)-2)^2+0.051*(dist(7)-1)^2+0.053*dist(8)^2))+(-

1.561)*exp(-(0.056*dist(1)^2+0.058*(dist(2)-1)^2+0.052*dist(3)^2+0.057*(dist(4)-

2)^2+0.051*(dist(5)-2)^2+0.049*(dist(6)-1)^2+0.051*dist(7)^2+0.0533*(dist(8)-



177 

 

 

1)^2))+0.14*exp(-(0.056*(dist(1)-1)^2+0.058*dist(2)^2+0.052*dist(3)^2+0.057*(dist(4)-

1)^2+0.051*dist(5)^2+0.049*(dist(6)-2)^2+0.051*(dist(7)-2)^2+0.053*(dist(8)-

2)^2))+1.63*exp(-(0.056*dist(1)^2+0.058*(dist(2)-2)^2+0.052*(dist(3)-

1)^2+0.057*(dist(4)-2)^2+0.051*(dist(5)-1)^2+0.0498927610443326*(dist(6)-

1)^2+0.051*(dist(7)-2)^2+0.053*(dist(8)-1)^2))+(-0.49)*exp(-

(0.056*dist(1)^2+0.058*dist(2)^2+0.052*(dist(3)-1)^2+0.057*(dist(4)-

1)^2+0.051*(dist(5)-1)^2+0.049*(dist(6)-2)^2+0.051*(dist(7)-1)^2+0.053*(dist(8)-

1)^2))+0.40*exp(-(0.0560*(dist(1)-1)^2+0.058*(dist(2)-

1)^2+0.0529924836217211*dist(3)^2+0.057*(dist(4)-2)^2+0.051*(dist(5)-

2)^2+0.049*(dist(6)-1)^2+0.051*(dist(7)-2)^2+0.053*(dist(8)-1)^2))+(-1.364)*exp(-

(0.056*(dist(1)-1)^2+0.058*(dist(2)-1)^2+0.052*dist(3)^2+0.057*(dist(4)-

1)^2+0.051*dist(5)^2+0.049*(dist(6)-2)^2+0.051*dist(7)^2+0.053*(dist(8)-

2)^2))+1.266*exp(-(0.056*(dist(1)-1)^2+0.058*(dist(2)-2)^2+0.052*(dist(3)-

2)^2+0.057*(dist(4)-1)^2+0.051*(dist(5)-1)^2+0.049*(dist(6)-1)^2+0.051*(dist(7)-

1)^2+0.053*(dist(8)-2)^2))+1.30*exp(-(0.056*(dist(1)-1)^2+0.058*(dist(2)-

1)^2+0.052*(dist(3)-1)^2+0.057*(dist(4)-1)^2+0.051*(dist(5)-2)^2+0.049*(dist(6)-

1)^2+0.051*(dist(7)-2)^2+0.053*(dist(8)-2)^2))+0.56*exp(-(0.056*(dist(1)-

1)^2+0.058*(dist(2)-2)^2+0.052*(dist(3)-1)^2+0.057*dist(4)^2+0.0515*(dist(5)-

1)^2+0.049*(dist(6)-2)^2+0.051*(dist(7)-1)^2+0.0532*(dist(8)-1)^2))+(-1.46)*exp(-

(0.056*dist(1)^2+0.0585*(dist(2)-1)^2+0.052*(dist(3)-

1)^2+0.057*dist(4)^2+0.051*(dist(5)-1)^2+0.049*dist(6)^2+0.051*(dist(7)-

2)^2+0.053*(dist(8)-1)^2))+4.078*exp(-(0.056*(dist(1)-1)^2+0.0586*(dist(2)-

2)^2+0.052*(dist(3)-2)^2+0.0573*(dist(4)-1)^2+0.051*(dist(5)-1)^2+0.049*(dist(6)-

2)^2+0.051*(dist(7)-1)^2+0.05*(dist(8)-2)^2))+(-0.687)*exp(-

(0.0560*dist(1)^2+0.0585*(dist(2)-1)^2+0.052*(dist(3)-

1)^2+0.0573*dist(4)^2+0.051*(dist(5)-2)^2+0.049*(dist(6)-

1)^2+0.051*dist(7)^2+0.053*(dist(8)-2)^2))+(-1.087)*exp(-(0.056*(dist(1)-

1)^2+0.058*(dist(2)-2)^2+0.052*dist(3)^2+0.057*dist(4)^2+0.051*(dist(5)-

1)^2+0.049*(dist(6)-2)^2+0.051*(dist(7)-1)^2+0.053*dist(8)^2))+(-3.80)*exp(-

(0.056*dist(1)^2+0.058*(dist(2)-1)^2+0.0529924836217211*(dist(3)-

1)^2+0.057*dist(4)^2+0.051*dist(5)^2+0.049*dist(6)^2+0.051*(dist(7)-

1)^2+0.053*(dist(8)-1)^2)))) 
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Appendix D: Police Staffing Study Gaussian Process Model Reports 

 

Table D.1 Phase I Gaussian Process Model – Avg Response Time 

 
 

Table D.2 Phase I Gaussian Process Model – Avg % Time Occupied 

 
 

Table D.3 Phase I Gaussian Process Model – Avg Total Cost 

 
 

Table D.4 Phase II Model Report Gaussian Process Model – Avg Response Time 
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Table D.5 Phase II Model Report Gaussian Process Model – Avg % Time Occupied 

 

 

Table D.6 Phase II Model Report Gaussian Process Model – Avg Total Cost 

 

Table D.7 Phase III Model Report Gaussian Process Model – Avg Response Time 

 

 

Table D.8 Phase III Model Report Gaussian Process Model – Avg % Time Occupied 
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Table D.9 Phase III Model Report Gaussian Process Model – Avg % OCCT 

 


