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by Erik P. Vargo

Partially observable Markov decision processes, or pomdps, are used extensively in mod-

eling the complex interactions between an agent and a dynamic, stochastic environment.

When all model parameters are known, near-optimal solutions to the reward maximization

problem can be obtained through approximate value iteration. Unfortunately, in many

real-world applications a pomdp formulation may not be justified due to uncertainty in

the underlying hidden Markov model parameters. However, if model uncertainty can be

characterized by a prior distribution over the state-transition and observation-emission

probabilities, it is natural to seek Bayes optimal policies which maximize the expected

reward subject to this distribution. The coupling of a pomdp with a model prior was

recently formalized as the Bayes-adaptive pomdp (bapomdp) and various online and

offline algorithms have since been proposed for this class of problems, the most popular

of which are inspired by approximate pomdp value iteration. Despite its success when

applied to small benchmark bapomdps, empirical results suggest that value iteration

may be inadequate as the degree of model uncertainty increases. As an alternative, in

this dissertation we explore expectation-maximization approaches to solving bapomdps,

which have the potential to scale more gracefully with both the number of uncertain

model parameters and their assumed variability.



Acknowledgements

I would like to thank my committee for their service during the completion of my dis-

sertation. In particular, the direction and guidance of my advisor, Dr. Randy Cogill, has

been indispensable both in regards to my research endeavors and broader postgraduate

goals. The freedom I have had to explore unfamiliar yet exciting topics has undoubtedly

contributed to my growth as an independent researcher. I also extend my gratitude to

Dr. Ellen J. Bass, who served as my advisor and mentor during my first two years at the

University of Virginia, helped me to develop as a technical writer, and played a major

role in my decision to enroll in the program. Last but not least, I would like to thank

my parents, Tom and Jo, for their unconditional support throughout my academic career

and beyond.

iii



Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures x

List of Tables xi

List of Algorithms xii

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Formalizing the bapomdp . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Evaluating bapomdp policies . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Why expectation-maximization? . . . . . . . . . . . . . . . . . . . 6

1.2 A case study in manufacturing . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15

2.1 Expectation-maximization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Monotonicity of convergence . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Acceleration methods . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Solving pomdps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



Contents v

2.2.1 Value function optimization . . . . . . . . . . . . . . . . . . . . . 20

2.2.1.1 Exact methods . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1.2 Approximate methods . . . . . . . . . . . . . . . . . . . 23

2.2.2 Policy optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2.1 Finite-state controllers . . . . . . . . . . . . . . . . . . . 25

2.2.2.2 Exact methods . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2.3 Approximate methods . . . . . . . . . . . . . . . . . . . 28

2.3 Existing bapomdp algorithms . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Point-based solutions . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 bapomdps as augmented pomdps . . . . . . . . . . . . . . . . . . 30

2.3.3 Online reinforcement learning . . . . . . . . . . . . . . . . . . . . 32

2.4 Our contributions in context . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 An argument for the Bayesian control of ♣♦♠❞♣s 35

3.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 An argument for Bayesian control . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Case 1: No observations . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Case 2: Informative observations . . . . . . . . . . . . . . . . . . 43

3.3 Bayes optimal control via dynamic programming . . . . . . . . . . . . . . 49

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Expectation-maximization for ❜❛♣♦♠❞♣s 52

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 em for bapomdps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 e-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 m-step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 A sampling-based approach . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Variational Bayes em for bapomdps . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Variational Bayes e-step . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Variational Bayes m-step . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 A critique of vb-em . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Constrained vb-em . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.1 Constrained e-step . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.2 Computing β∗ via fixed-point iteration . . . . . . . . . . . . . . . 72

4.6.3 Characterization of β∗ . . . . . . . . . . . . . . . . . . . . . . . . 73



Contents vi

4.6.4 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 An empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7.1 Problem definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Application: A case study in manufacturing . . . . . . . . . . . . . . . . 81

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Improving ❡♠ performance 89

5.1 Accelerating convergence with parameterized em . . . . . . . . . . . . . . 89

5.2 Escaping local optima with forward-search . . . . . . . . . . . . . . . . . 92

5.3 An empirical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Closing remarks 104

Appendix 110

References 136



List of Figures

1.1 Diagram of the pomdp from the Rolls-Royce case study. Arcs are labeled

with their corresponding state-transition probabilities and the associated

rewards follow in parentheses. Solid arcs indicate state-transitions without

replacement, and dashed arcs indicate broach replacement. For simplicity,

the observation-emission distributions are not included. . . . . . . . . . . 12

1.2 Performance plots for the Rolls-Royce case study using synthetic broaching

data for model training. Solid lines indicate performance of policies derived

from the true model θ∗, dashed lines indicate performance of policies de-

rived from the mode point estimates, and dotted lines indicate performance

of policies derived from the mean point estimates. Each plot corresponds

to a unique set of training data generated by θ∗. . . . . . . . . . . . . . . 14

2.1 Representation of an optimal value function Vt when |X| = 2. The value

function (in bold) is the upper envelope of a collection of linear segments,

which establishes its piecewise-linear convexity. . . . . . . . . . . . . . . . 23

2.2 Bayesian network of a pomdp subject to a finite-state controller. . . . . . 26

3.1 A comparison of point-based (threshold) policy performance to Bayes op-

timal performance with α = 10, β = 2, r = 0.058, c = 0.5, µ1 = 0.5,

µ2 = 1.5, σ = 0.8. We highlight three threshold policies in particular,

corresponding to the mean estimator (⋆), mode estimator (•), and the es-

timator that assumes uninformative features from Case 1 (N). Dashing

indicates Bayes optimal performance (Section 3.3). . . . . . . . . . . . . 45

vii



List of Figures viii

3.2 A comparison of point-based (threshold) policy performance to Bayes opti-

mal performance with α = 10, β = 2, r = 0.07, c = 0.5, µ1 = 0.5, µ2 = 1.5,

σ = 0.6. We highlight three threshold policies in particular, corresponding

to the mean estimator (⋆), mode estimator (•), and the estimator that

assumes uninformative features from Case 1 (N). Dashing indicates Bayes

optimal performance (Section 3.3). . . . . . . . . . . . . . . . . . . . . . 46

3.3 A comparison of point-based (threshold) policy performance to Bayes opti-

mal performance with α = 10, β = 2, r = 0.05, c = 0.5, µ1 = 0.5, µ2 = 1.5,

σ = 0.75. We highlight three threshold policies in particular, correspond-

ing to the mean estimator (⋆), mode estimator (•), and the estimator that

assumes uninformative features from Case 1 (N). Dashing indicates Bayes

optimal performance (Section 3.3). . . . . . . . . . . . . . . . . . . . . . 47

3.4 A comparison of point-based (threshold) policy performance to Bayes op-

timal performance with α = 10, β = 2, r = 0.055, c = 0.5, µ1 = 0.6,

µ2 = 0.9, σ = 0.35. We highlight three threshold policies in particular,

corresponding to the mean estimator (⋆), mode estimator (•), and the es-

timator that assumes uninformative features from Case 1 (N). Dashing

indicates Bayes optimal performance (Section 3.3). . . . . . . . . . . . . 48

4.1 A factor graph representation of p̃(T, xT , nT , aT , oT |θ,Λ)γ−T when T = 2. 58

4.2 Diagram of the bapomdp Shuffle from Section 4.7.1. Rewards associ-

ated with each transition are indicated in parentheses. For simplicity, the

observation-emission distributions are not included. . . . . . . . . . . . . 76

4.3 Performance plot for algorithms cvb-em, pbvi-mean, and pbvi-mode

when applied to the Stop instance of Section 4.7.2. . . . . . . . . . . . . 82

4.4 Performance plot for algorithms cvb-em, pbvi-mean, and pbvi-mode

when applied to the Shuffle instance of Section 4.7.2. . . . . . . . . . . . 83



List of Figures ix

4.5 Performance plots for the Rolls-Royce case study using synthetic broaching

data for model training. Solid lines indicate performance of policies derived

from the generative model, dashed lines indicate performance of policies

derived from the mode point estimates, dotted lines indicate performance

of policies derived from the mean point estimates, and gray lines indicate

fsc performance resulting from the sampling-based em algorithm applied

to 100 models drawn via Gibbs’ procedure from the model posterior. Each

plot corresponds to a unique set of training data generated by the true

model θ∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 A performance comparison of parameterized em and ordinary em for an

instance of the Shuffle pomdp. Solid lines indicate the use of parameter-

ized em, dashed lines indicate non-parameterized em, and the dotted line

denotes the Gapmin upper bound. . . . . . . . . . . . . . . . . . . . . . 98

5.2 A run-time comparison of parameterized em and ordinary em for an in-

stance of the Shuffle pomdp. Solid lines indicate the use of parameterized

em and dashed lines indicate non-parameterized em. . . . . . . . . . . . 99

5.3 A comparison of fsc performance over time for an instance of the Shuffle

pomdp with |N | = 10. Solid lines indicate the use of parameterized em,

dashed lines indicate non-parameterized em, and the dotted line denotes

the Gapmin upper bound. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 A performance comparison of parameterized em and ordinary em for the

Machine pomdp. Solid lines indicate the use of parameterized em, dashed

lines indicate non-parameterized em, and the dotted line denotes the Gap-

min upper bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 A run-time comparison of parameterized em and ordinary em for the Ma-

chine pomdp. Solid lines indicate the use of parameterized em and dashed

lines indicate non-parameterized em. . . . . . . . . . . . . . . . . . . . . 102



List of Figures x

5.6 A comparison of fsc performance over time for the Machine pomdp with

|N | = 10. Solid lines indicate the use of parameterized em, dashed lines

indicate non-parameterized em, and the dotted line denotes the Gapmin

upper bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 An illustration of vb-em behavior when applied to the bamdp of the

Appendix (Example A). For this problem, πs1 = 0 is optimal, and vb-em

converges to the optimal policy only when the variance of the model prior

p ∼ Beta(α1, α2) is sufficiently small, here corresponding to the Beta(45, 9),

Beta(75, 15), and Beta(200, 40) cases. . . . . . . . . . . . . . . . . . . . . 113



List of Tables

4.1 Performance comparison of the em and pbvi sampling-based algorithms

for bapomdps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xi



List of Algorithms

3.1 Approximating the Bayes optimal policy for the two-state problem . . . . 51

4.1 Computing the forward messages µθ for fixed θ ∈ Θ . . . . . . . . . . . . 58

4.2 Computing the backward messages µ̄θ for fixed θ ∈ Θ . . . . . . . . . . . 59

5.1 A parameterized em algorithm for bapomdps. . . . . . . . . . . . . . . . 92

5.2 Forward-search for finite-horizon bapomdps . . . . . . . . . . . . . . . . 95

5.3 Forward-search for infinite-horizon bapomdps . . . . . . . . . . . . . . . 96

xii



Chapter 1

Introduction

Markov decision processes, or mdps, provide a general framework for modeling the com-

plex interactions between an agent and a dynamic, stochastic environment. As such, the

applications of mdps are broad, spanning the disciplines of machine learning, artificial

intelligence, operations research, and many others. Informally, a Markov decision process

is a discrete-time, stochastic process that transitions among a finite number of states

subject to the control of an agent. The agent’s action and system’s state parameterize

the immediate state-transition probabilities, which by assumption of the Markov property

are independent of all previously visited states. Furthermore, during each time period the

agent’s action and system’s state generate a reward via a deterministic reward function.

With this in mind, an optimal mdp policy is a state-to-action mapping that maximizes

the discounted expected reward over a possibly infinite horizon. In this dissertation

we restrict our attention to stationary Markov processes, for which the state-transition

probabilities are time-invariant.

Efficient polynomial-time algorithms, such as value iteration and policy iteration, ex-

ist for solving large-scale mdps (Bertsekas, 1995). However, in many applications the

1



Chapter 1. Introduction 2

system’s state is not directly visible to the agent and hence an mdp formulation is not

appropriate. Consider the manufacturing problem of tool replacement, for example, where

the goal is to replace a machining tool only once accrued wear significantly affects product

quality (Fish, 2001; Fish et al., 2003; Cetin and Ostendorf, 2004; Kunpeng, 2007; Wang

and Wang, 2012). While a tool’s condition at any time is not visible to the agent—and is

therefore said to be “hidden”—observations that are correlated with tool condition can

usually be derived from force, acoustic, and temperature signals captured in real-time

from the machining surface. Subsequently, these observations can be used to infer a

tool’s condition via statistical methods in an online setting. In a more general sense, if

the relationships between states and observations can be formally characterized by proba-

bility densities, then the resulting observation-emission and state-transition distributions

define a hidden Markov model (hmm); and when these distributions are allowed to vary

subject to the control of an agent and a reward function is introduced, the result is a par-

tially observable Markov decision process (pomdp). Because pomdps can be interpreted

as mdps with a continuous belief space, the value iteration and policy iteration algo-

rithms of mdps have natural extensions to the pomdp setting. However—with more to

be said in the literature review of Chapter 2—the introduction of a continuous belief space

significantly complicates the analysis of pomdps, which have been classified as pspace-

complete (Papadimitriou and Tsitsiklis, 1987). In particular, exact implementations of

pomdp policy iteration and value iteration have a worst-case exponential complexity and

are only tractable for problems of a trivial size, so that approximate variations must be

employed.

To further complicate matters, the underlying hmm parameters—that is, the state-

transition and observation-emission probabilities—are generally not known a priori. A

common simplification is to form an hmm point estimate given historical training data
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and a prior belief over the unknown model parameters. Once a point estimate is ob-

tained, a policy is then derived via standard pomdp methods under the assumption that

the fitted model is true. This approach has two primary shortcomings. First, estimating

the usual mean and mode point estimates is itself non-trivial: In partially observable

settings, training data will often be in the form of unsupervised observation-action tra-

jectories. As such, the posterior probability function over hmm parameters will generally

be multimodal so that hill climbing procedures for computing the mode—such as gradi-

ent ascent (Baldi and Chauvin, 1994; Bagos et al., 2004) and expectation-maximization

(Baum et al., 1970; Dempster et al., 1977)—will only return locally optimal parameter

estimates. Alternatively, Gibbs’ procedure (Cappé et al., 2005; Rydén, 2008) can be used

to estimate the mean hmm given a prior distribution and training data, but such Markov

chain Monte-Carlo algorithms are known for their notoriously slow convergence. Second,

and perhaps more importantly, the “point-based” policies generated via this two-stage

approach of (i) model fitting and (ii) subsequent policy optimization lack robustness with

respect to prior model uncertainty. In particular, a point-based policy will only perform

well when its corresponding point estimate is “close” to the true model. A natural al-

ternative that fully accounts for model uncertainty in the optimization phase is to seek

the Bayes optimal policy with respect to the full model prior. The resulting decision

problem—recently formalized as the Bayes-adaptive pomdp (bapomdp)—is the primary

focus of this dissertation.

1.1 Problem statement

In this section we define the bapomdp, justify our convention for evaluating bapomdp

policies, and discuss why we have chosen expectation-maximization as our approach to

solving this class of decision problems.
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1.1.1 Formalizing the ❜❛♣♦♠❞♣

bapomdps are pompds coupled with a prior distribution over the hmm parameters.

Whereas optimal pomdp policies can be sufficiently defined by maintaining a belief over

the state space, optimal bapomdp policies—or Bayes optimal policies—must operate on

a belief over both the state space and the model space. Intuitively, this is so because

process information acquired over time updates the model posterior (or model belief),

which in turn influences the perceived effect of future actions on expected reward. In this

sense, Bayes optimal policies are model-adaptive. By quantifying the value of information

in this way, Bayes optimal policies provide an unambiguous answer to the fundamental

problem of reinforcement learning, that of balancing “exploration” against “exploitation”.

Here exploration refers to decision-making with the goal of increasing one’s knowledge

of the system, and exploitation refers to decision-making with the immediate goal of

maximizing one’s reward given current system knowledge. While there exist both offline

and online approaches to reinforcement learning under conditions of model uncertainty,

only offline policies—which can potentially plan for all possible histories a priori—are

capable of achieving a truly optimal balance in the Bayesian sense. As such, we devote

our attention to offline approaches in this dissertation, but for the interested reader we

provide a brief review of online methods for bapomdps in Section 2.3.3.

To construct a bapomdp, we begin with a pomdp for which the underlying hidden

Markov model is composed of discrete state, action, and observation spaces denoted byX,

A, and O, respectively. The collection of all parameters for the underlying hmm is denoted

by the vector θ, which consists of state-transition and observation-emission probabilities

such that θx
′

x,a = pθ(xt+1 = x′|xt = x, at = a) and θo
′

x′,a = pθ(ot+1 = o′|xt+1 = x′, at = a).

Here the subscript represents a conditional dependence on θ, and we use pθ(·) to denote a

prior distribution over models θ ∈ Θ. We assume that the initial state distribution p0(·)

is fixed, although the extension to the more general case is straightforward. In each time
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period, a reward u(xt, at) is earned based on the current state and action. We assume,

without loss of generality, that the reward function u : A ×X 7→ R is nonnegative. We

denote an instance of a bapomdp by P = {X,A,O, u, γ, T, pθ}, where 0 ≤ γ ≤ 1 is a

discount factor that will be applied when evaluating the reward earned over the finite

planning horizon T ≥ 0.

The objective of P is to find a policy that maximizes the discounted, finite-horizon

expected reward for the stochastic process. A sufficient statistic for optimal behavior in

this domain is the history of observations and actions realized by the current time. Let

ot = (o1, o2, . . . , ot) and at = (a0, a1, . . . , at)

denote sequences of observations and actions up to time t, and let Ot and At denote the

set of all possible observation and action sequences up to time t. In the most general

setting, a policy is a sequence of mappings π = {π0, . . . , πT}, where πt : O
t × At−1 → A

is the observation-action mapping used at time t. Therefore, the objective is to find a

policy π that maximizes

J(π) =
T
∑

t=0

Eθ

[

γtu
(

πt(o
t, at−1), xt

)]

=

∫

θ

pθ(θ)
T
∑

t=0

E
[

γtu
(

πt(o
t, at−1), xt

)

| θ
]

dθ. (1.1)

Of course, it is well-known that optimal (ba)pomdp policies can be represented more

compactly, for example, by collections of α-vectors over the corresponding belief space

(see Section 2.2.1). Note that when γ < 1 we can also consider the infinite-horizon

variation to the above problem by letting T → ∞. Furthermore, given this definition of
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bapomdp, a pomdp can be interpreted as a special case where the model prior pθ places

all mass on a single hmm θ, which we denote by P = {X,A,O, u, γ, T, θ}.

1.1.2 Evaluating ❜❛♣♦♠❞♣ policies

Recall that a bapomdp arises when a prior distribution pθ is used to represent a belief

over the unknown model parameters θ. Historically, the standard for evaluating bapomdp

policies is to solve the bapomdp subject to the prior pθ, and then evaluate via Monte-

Carlo simulation how well the resulting policy performs over time with respect to a single

chosen model θ∗ ∈ Θ, by comparing its performance to that of the optimal policy under

θ∗ over a succession of “episodes” (Wang et al., 2012; Ross et al., 2011). However, the

choice of θ∗ here is rather arbitrary and a positive result only indicates adaptivity with

respect to θ∗, rather than adaptivity with respect to all models possible under pθ. In other

words, this metric is generally a poor indicator of robustness against model uncertainty,

which is the desired characteristic of bapomdp policies. We do concede that empirical

evaluation with respect to a single model θ∗ is justified when θ∗ and the bapomdp prior

pθ are coupled in a natural way, for example, when pθ is conditioned on historical training

data generated by θ∗. In fact, we adopt this convention in the case study introduced in

Section 1.2. Elsewhere, though, our convention will instead be to evaluate policies with

respect to the full model prior pθ, that is, subject to the actual bapomdp objective (1.1).

1.1.3 Why expectation-maximization?

Notably, any bapomdp can be formulated as an equivalent pomdp in which the uncer-

tain model parameters are explicitly embedded in the pomdp state space, a construction

first proposed by Duff (2002) in the context of Bayes-adaptive mdps and later extended
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to partially observable domains by Ross et al. (2008). It follows that, at least in the-

ory, pomdp value iteration can be adapted to solve bapomdps. Unfortunately, exact

value iteration has a worst-case exponential complexity that is further compounded by

the augmented state space introduced in the bapomdp-to-pomdp conversion. Still, the

underlying principles of dynamic programming have motivated both offline and online

algorithms for approximate planning in bapomdps, such as point-based value iteration

(pbvi) (Wang et al., 2012) and related heuristics which operate on local approximations

to the model posterior (Doshi et al., 2008; Dallaire et al., 2009; Dearden et al., 1999; Duff

and Barto, 1997; Ross et al., 2011). A more thorough review of these approaches can be

found in Chapter 2.

A property shared by the vast majority of approximate value iteration algorithms is

that the underlying (ba)pomdp belief space must be discretized to maintain tractability,

thus requiring the modeler to define a mechanism for sampling beliefs given a predefined

granularity. This leads to a general class of algorithms in which the value iteration backup

is performed over a finite set of beliefs. Belief sampling poses a significant challenge since

performance will likely be sensitive to the chosen mechanism of discretization, the most

appropriate of which is certain to vary from one application to another. As evidence to

this, in the standard pomdp setting an empirical study comparing various belief point

expansion heuristics for pbvi algorithms (Pineau et al., 2006) suggests that a heuris-

tic’s performance will be a function of both the problem domain and various tunable

parameters, but not necessarily in a predictable way.

An alternative to pomdp value iteration is motivated by the fact that optimal finite-

horizon pomdp policies can be encoded as finite-state controllers, or fscs (Kaelbling et al.,

1998; Hansen, 1998b), which provide an automated approach to belief space discretization.

Loosely speaking—with a formal definition provided in Chapter 2—a bounded finite-state

controller is a graphical model defined on a finite set of abstract “belief nodes” that are
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analogous to a discrete approximation of the continuous pomdp belief space. The agent’s

current position in the graph dictates the (possibly stochastic) mechanism by which the

next action is chosen, and each new observation results in a (possibly stochastic) transition

from the current node to an adjacent node. fsc optimization, then, amounts to jointly op-

timizing the conditional action and transition distributions at each node in the graphical

model. Importantly, the behavior at each node in an optimal fsc is determined solely by

the pomdp parameters and requires no additional belief sampling, parameter tuning, or

other modeler intervention. Furthermore, stochastic finite-state controllers are generally

more parsimonious than deterministic value iteration-based policies, which could require

hundreds (if not thousands) of multi-dimensional α-vectors to achieve near-optimal per-

formance. Because the optimization of bounded fscs is np-hard in the pomdp setting

(Meuleau et al., 1999), existing approaches limit their search to locally optimal controllers.

The most popular approaches of this type are policy-gradient (that is, gradient ascent

with respect to the fsc parameters) (Meuleau et al., 1999) and expectation-maximization

(Toussaint et al., 2010; Barber and Furmston, 2009), which casts the reward maximiza-

tion problem as one of likelihood maximization. While both em and policy-gradient

have a polynomial-time iteration complexity, Toussaint et al. (2010) show that em scales

more gracefully with problem size in an empirical study. Furthermore, em guarantees a

monotonic improvement to the objective without the additional overhead of a line search.

Recently, em has emerged as a scalable, lightweight approach to solving moderately

sized benchmark pomdps that is competitive with state-of-the-art pbvi algorithms when

coupled with subroutines for escaping local optima (Poupart et al., 2011b). This result,

and the ability to convert any bapomdp into an equivalent pomdp, suggest that em could

also compete with value iteration in the more general bapomdp setting. While pbvi

is arguably the preferred method for solving standard pomdps—owing to the success

of heuristic belief sampling strategies in large domains—we will show that em offers
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several advantages when applied to bapomdps. In particular, by casting the reward

maximization problem as one of likelihood maximization, various probabilistic inference

techniques can be applied to ensure the comparative scalability of em with respect to the

degree of model uncertainty.

We now take a step back and introduce a manufacturing case study that shows the

unreliability of point-based policies and supports our adoption of the Bayes-adaptive

pomdp framework. After developing theoretical tools to solve bapomdps via expectation-

maximization in subsequent chapters, we return to this case study in Section 4.8 to

demonstrate the success of our algorithms in a more realistic setting.

1.2 A case study in manufacturing

In this case study we were tasked with improving the current broach replacement strat-

egy for a machining process at the Rolls-Royce facility in Indianapolis. A broach is a

sophisticated tool used to machine complex patterns in metal with a single cutting pass.

The development of successful broach replacement strategies is a non-trivial task: direct

assessment of wear after each cutting pass is not practical due to the high cost of stopping

production, by which the decision to replace a broach must be made subject to uncer-

tainty in the broach’s condition. The current replacement strategy at Rolls-Royce uses a

broach for an a priori fixed number of cutting passes, K, before replacing it with a new

piece. This deterministic strategy has two notable shortcomings. First, the broach is of-

ten in a good condition after K cutting passes and does not need to be replaced. Second,

it is possible for the broach to become sufficiently worn (e.g., chipping, dulling) prior to

the completion of K cuts, leading to an unacceptable final product with continued use.

Fortunately, sensor measurements in the form of signals (e.g., force, vibration, acoustic

emissions) can be collected from the machining surface during each cutting pass, from
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which various useful features can be derived. Features could include a signal’s root mean

square value, maximum absolute value, or other statistics derived from the frequency

domain, such as the sum of log energies or maximum energy. If correlations can be es-

tablished between features and broach quality, then these features can be used to infer

the broach’s condition in real-time and inform more sophisticated adaptive replacement

strategies, which can potentially maximize a broach’s yield by replacing it only once it

has outlived its useful life.

Initially, we sought to construct adaptive broach replacement strategies by casting

the problem as a pomdp. Motivated by recent tool condition monitoring studies (Fish,

2001; Fish et al., 2003; Cetin and Ostendorf, 2004; Kunpeng, 2007; Wang and Wang,

2012), we modeled broach wear via a left-to-right hidden Markov model on n states—

which enforces the physical constraint of nondecreasing wear—and derived sensor-based

features to serve as informative observation-emissions. A reward structure was imposed

such that: a reward of r > 0 is received when the broach is used in one of the first n− 1

states, all of which indicate an acceptable condition; a cost of c1 > 0 is incurred when

the broach is replaced; and a cost of c2 > c1 is incurred when the broach is used in the

nth state, which indicates an unacceptable condition. When the broach is replaced the

Markov chain transitions deterministically to state 1, indicating that a new broach has

been mounted. Assuming an infinite horizon and a discount factor of γ < 1, the hmm and

reward function define a pomdp, the solution of which is an optimal broach replacement

policy. See Figure 1.1 for a graphical illustration of the broach replacement problem.

Initially, we adopted the ubiquitous approach of forming point estimates of the unknown

hmm and subsequently deriving policies from these fitted models, as we now describe.

To formulate a pomdp for the replacement problem we trained an hmm from historical

broaching data. While the initial data provided by our sponsor was inadequate for this
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purpose, it inspired a simulation-based approach to generating synthetic data more appro-

priate for model training and validation in the short-term. The synthetic data consisted

of feature sequences collected over K cutting passes—as required by current operating

procedures at Rolls-Royce—where the same broach (initially fresh) was used for each cut.

Furthermore, each sequence was partially supervised with a single binary value indicating

whether the broach was in the unacceptable wear state (xK−1 = n) during the Kth and

final cutting pass. In each trial the same generative hmm θ∗—naturally, hidden from our

learning algorithm—was used to produce the training data. Furthermore, we imposed un-

informative, independent Dirichlet priors on the state-transition and observation-emission

probability vectors. Given the prior distribution and training data, two approaches were

considered for learning an hmm: (i) we employed a variation of Baum-Welch (a form of

expectation-maximization) to approximate the maximum a posteriori (map) hmm from

the model posterior; and (ii) we used Gibbs’ procedure to approximate the mean hmm

from the model posterior. Both training algorithms were modified to account for the

partial supervision with respect to the Kth cutting pass in each trial.

Next, we used a standard implementation of point-based value iteration (Cassandra,

2009) to approximate optimal policies under the mean and mode point estimates assuming

an infinite horizon and a discount factor of γ = 0.99, with r = 1, c2 ∈ {5, 10, 15} and

c1 =
1
2
c2. The values of r, c1, and c2 used here had no real-world origin, but were otherwise

reasonable given the application. Importantly, the infinite planning horizon allowed for

adaptive replacement strategies in which the broach could be used beyond the default K

cutting passes. In this study the model posterior (and hence the mean and mode point

estimates) were naturally coupled to the generative model θ∗ via training data, which

justified evaluating policy performance with respect to the single model θ∗ (recall the

discussion of Section 1.1.2).

The generative hmm θ∗ for our empirical study was defined as follows. First, we set
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n = 7 and px|x = 0.8 for all x < n. For simplicity, we assumed a single feature that could

take on |O| = |X| discrete values, and for each state x′ = 1, 2, . . . , n the feature density

p(·|x′) was distributed according to the rule p(o′|x′) ∝ n−|o′−x′| for each possible feature

value o′ = 1, 2, . . . n. This convention served to correlate more highly states and features

that were closer in index. As indicated above, only the final observation in each sequence

was supervised to indicate whether the final broach condition was acceptable (xK−1 < n)

or unacceptable (xK−1 = n).

2 n31 n− 1

p1|1 (r) p2|2 (r) p3|3 (r)

p3|2 (r)p2|1 (r)

pn−1|n−1 (r)

pn|n−1 (r)
1 (−c1)

1 (−c1)

1 (−c1)

1 (−c1)

1 (−c1)

1 (−c2)

Figure 1.1: Diagram of the pomdp from the Rolls-Royce case study. Arcs are labeled
with their corresponding state-transition probabilities and the associated rewards follow
in parentheses. Solid arcs indicate state-transitions without replacement, and dashed arcs
indicate broach replacement. For simplicity, the observation-emission distributions are
not included.

Figure 1.2 contains performance plots for nine independent trials of the experiment,

where in each case the same generative hmm θ∗ was used to produce L = 20 independent

observation sequences of length K = 30 for model training. The plots in Figure 1.2

indicate that both the mean and mode point-based policies are generally inadequate

when compared to those derived from the true hmm θ∗ (with their performance indicated

by dashed, dotted, and solid lines, respectively), and that neither the mean nor the mode

point estimate is exclusively preferred over the other. The poor performance of the mean
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and mode point-based policies suggests that the modeling error introduced by the a priori

resolution of parameter uncertainty onto a single hmm can be prohibitive. As a result,

our attention turned towards the construction of model-adaptive policies which—given

a model prior—resolve uncertainty through an optimal Bayesian interaction with the

system.

1.3 Outline

The outline of this dissertation is as follows: In Chapter 2 we provide relevant background,

including a summary of progress in the area of bapomdp research and a discussion on

the limitations of existing approaches. In Chapter 3 we demonstrate through a tractable

yet non-trivial bapomdp that even the best point-based policy can significantly under-

perform the Bayes optimal, model-adaptive policy. Having argued for the superiority of

Bayes optimal policies in this way, we proceed to derive an em algorithm for bapomdps

in Chapter 4. Due to the intractability of the m-step in the general case, we propose two

efficient alternatives. The first is a sampling-based em algorithm that operates on a dis-

crete subset Θ̃ of the model space Θ, and the second is a variational Bayes em algorithm

that accommodates a model prior given by a product of independent Dirichlet distribu-

tions. Furthermore, these approaches are evaluated against approximate value iteration

in an empirical study, which includes a return to the Rolls-Royce broach replacement

problem. We consider various practical techniques for addressing the slow convergence

rate of em and the local optimality of em fixed points in Chapter 5. Finally, we close

with a summary and suggestions for future work in Chapter 6.
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Figure 1.2: Performance plots for the Rolls-Royce case study using synthetic broaching
data for model training. Solid lines indicate performance of policies derived from the
true model θ∗, dashed lines indicate performance of policies derived from the mode point
estimates, and dotted lines indicate performance of policies derived from the mean point
estimates. Each plot corresponds to a unique set of training data generated by θ∗.



Chapter 2

Background

In this chapter we present background material which motivates our approach and pro-

vides a suitable context for the dissertation. To begin, we review the expectation-

maximization algorithm in its most general form, as it features prominently in our original

contributions. Then, we summarize existing pomdp solution techniques before examining

the current state-of-the-art for solving bapomdps. We close by placing our contributions

within the context of existing literature.

2.1 Expectation-maximization

Expectation-maximization is an iterative algorithm for maximizing a likelihood that is

marginalized over a set of latent variables. em has been used extensively in statistical

inference applications—such as computing the maximum likelihood parameters for hid-

den Markov models (Rabiner, 1989; Cappé et al., 2005) and Gaussian mixture models

(Bilmes, 1998)—and is often preferred to other approaches owing to its simplicity and

ease of implementation. In particular, em offers an efficient alternative to gradient ascent,

15
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which requires expensive gradient computations and a line search procedure to guaran-

tee monotonicity. During each iteration, em forms a lower bound to the likelihood in the

neighborhood of the current parameter estimate via Jensen’s inequality (e-step) and then

maximizes this lower bound to obtain parameter updates that monotonically improve the

original objective (m-step). Importantly, analytical parameter updates can often be de-

rived when the lower bound is concave. We now provide a more detailed description of

the em algorithm along with a self-contained proof of monotonicity.

2.1.1 Monotonicity of convergence

Consider a statistical process characterized by latent variables z, observables x, and a

collection of free parameters π that describe how x and z are generated. Suppose that

our goal is to maximize the likelihood

L(x; π) = p(x|π)

with respect to the free parameters π, and that direct maximization of this quantity is not

tractable. Let q(z) be an arbitrary distribution over the latent variables z, and consider

the Kullback-Leibler (kl) divergence (Kullback, 1968) between q(z) and p(z|x, π). Noting

the non-negativity of kl divergence, we have

KL(q(z), p(z|x, π)) = 〈log q(z)〉q − 〈log p(x, z|π)〉q + 〈log p(x|π)〉q

= 〈log q(z)〉q − 〈log p(x, z|π)〉q + log p(x|π) (2.1)

≥ 0.
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We can rearrange the terms in the above inequality to obtain

log p(x|π) ≥ −〈log q(z)〉q + 〈log p(x, z|π)〉q. (2.2)

This suggests that in place of optimizing L(x; π) = p(x|π) directly, we can instead

optimize the lower bound (2.2). To this end, we adopt the coordinate ascent approach of

Neal and Hinton (1998) and iteratively (i) maximize the lower bound (2.2) with respect

to q for fixed π (e-step), and then (ii) maximize the lower bound (2.2) with respect to π

for fixed q (m-step).

When carrying out the e-step for fixed π, maximizing the lower bound is equivalent

to minimizing KL(q(z), p(z|x, π)) with respect to q. By properties of kl divergence, the

global minimizer is q(z) = p(z|x, π). In the m-step, the goal is to maximize the lower

bound (2.2) with respect to π given fixed q, that is, we solve maxπ〈log p(x, z|π)〉q, which

often admits analytical solutions when the objective is concave in π. Furthermore, when

the e-step and m-step are carried out exactly, em guarantees a monotonically increasing

objective with respect to consecutive parameter updates π′ and π′′.

Proposition 1: If π′ and π′′ are consecutive parameter updates generated by the em

algorithm, then logL(x; π′′) ≥ logL(x; π′).

Suppose that π′ is the current parameter estimate, and let qπ′ denote the subsequent

e-step update to q. Given an arbitrary π, let pπ(z) = p(z|x, π) and define

H(π, π′) = KL(qπ′ , pπ) (2.3)
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Q(π, π′) = 〈log p(x, z|π)〉qπ′
. (2.4)

From the identity in equation (2.1) we can write

log p(x|π)− log p(x|π′) = [〈log p(x, z|π)〉qπ′
− 〈log p(x, z|π′)〉qπ′

] +

[KL(qπ′ , pπ)−KL(qπ′ , pπ′)]

= [Q(π, π′)−Q(π′, π′)] + [H(π, π′)−H(π′, π′)]

= [Q(π, π′)−Q(π′, π′)] +H(π, π′),

where we use the fact that H(π′, π′) = 0. The m-step maximizes Q(π, π′) with respect

to π, so that by definition π′′ = argmaxπQ(π, π
′). Clearly Q(π′′, π′)−Q(π′, π′) ≥ 0, and

H(π, π′) ≥ 0 by properties of kl divergence, so that logL(x; π′′) ≥ logL(x; π′). Therefore

each iteration of em results in a monotonic increase to the objective L(x; π). �

This result is quite general, and in cases where logL(x; π) satisfies mild smoothness

conditions we can often make the stronger claim that logL(x; π′′) > logL(x; π′) (Wu,

1983; Little and Rubin, 1987). For example, we will find the em algorithm for bapomdps

to have this stronger characterization (Chapter 4). Unfortunately, even when a strict

improvement is guaranteed the convergence rate can be slow and, moreover, the corre-

sponding em fixed point may be of poor quality relative to the global optimum. Regarding

the latter concern, a multi-start approach in which em is initialized in different regions of

the parameter space can be useful for uncovering multiple fixed points, from which the

best is then selected. While to our knowledge multi-start is the only general approach

for addressing the local optima issue, we will later consider subroutines for escaping local
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optima in the specific context of em for bapomdps (Chapter 5). On the other hand,

there do exist a variety of general strategies for accelerating em convergence, which we

now take a moment to review.

2.1.2 Acceleration methods

Various methods have been developed to accelerate the slow convergence rate of em.

Arguably the simplest, parameterized em updates the current parameter estimate π(k) by

first computing the subsequent em update π
(k+1)
em and selecting π(k+1) such that

π(k+1) = π(k) +∆(k)(π
(k+1)
em − π(k)), (2.5)

for some appropriately chosen positive scalar ∆(k) (Ortiz and Kaelbling, 1999). (Note

that D(k) = 1 in (2.5) recovers the ordinary em algorithm.) In this way, the difference

π
(k+1)
em −π(k) approximates the true gradient of the likelihood in the neighborhood of π(k).

While the optimal step-size at each iteration can be obtained via spectral analysis of

the em update’s Jacobian matrix, the required computations are generally intractable

(Roland, 2010).

The expectation-conjugate gradient (ecg) algorithm (Jamshidian and Jennrich, 1993)

refines this approach by using a generalized conjugate gradient to choose the optimal

step-size ∆(k) in the direction of the em update π
(k)
em . While conjugate gradient methods

typically require the computation of second-order derivatives, ecg avoids this compli-

cation by leveraging the em search direction. However, a line search is still required

to optimize ∆(k), which can be prohibitive. As a result, it is of interest to determine

when the solution quality of an ecg update outweighs the efficiency of an em update.
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Salakhutdinov et al. (2003) identified a connection between the convergence rate of em

and the ratio of missing information to complete information in the neighborhood of a

local optimum. When the ratio is large, em convergence will be slow; when the ratio is

small, em will exhibit super-linear, Quasi-Newton convergence. With this in mind, a hy-

brid em-ecg algorithm is proposed that switches from ordinary em updates to conjugate

gradient updates when the ratio of missing information exceeds a threshold. An alter-

native to hybrid em-ecg is scaled ecg (Fischer and Kersting, 2003), which circumvents

the complexity of the ecg line search via the introduction of a scaled conjugate gradient.

In particular, scaled ecg requires only a single evaluation of the likelihood during each

iteration. Empirical results suggest that scaled ecg compares favorably to em-ecg in

solution quality while offering considerable gains in efficiency. Ortiz and Kaelbling (1999)

offer a more complete review and empirical comparison of accelerated em algorithms. To

our knowledge, no substantial effort has been made to accelerate the convergence of em

for (ba)pomdps, and we address this matter in Section 5.1.

2.2 Solving ♣♦♠❞♣s

While solving bapomdps is our goal, it is worth reviewing standard pomdp solution tech-

niques due to the close relationship between the two problem types. Generally, existing

approaches for solving pomdps can be grouped into two categories: (i) value function

optimization, and (ii) direct policy optimization.

2.2.1 Value function optimization

Value function approaches seek to determine or approximate the optimal pomdp value

function, from which a policy can then be extracted. Let P = {X,A,O, u, γ, T, θ} be
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a standard pomdp corresponding to a known hmm θ. We use b to denote the belief

state vector of dimension |X|, so that b(x) is the probability that the system is in state

x ∈ X given the history of observations and actions. It is well-known that the belief

state is a sufficient statistic for computing optimal pomdp policies. Furthermore, let

ū(b, a) =
∑

x b(x)u(x, a) be the immediate expected reward associate with taking action

a in belief state b.

The Bellman optimality equations associated with the T -horizon pomdp P are given

by

Vt(b) = max
a

ū(b, a) + γ
∑

o′

τ(o′|b, a)Vt−1(b
o′

a ), (2.6)

where τ(o′|b, a) is the probability of observing o′ after taking action a in belief state b,

bo
′

a is the updated belief after taking action a and observing o′, and Vt(b) is the expected

reward associated with following the optimal policy for the t-horizon subproblem when

starting in belief state b. More explicitly,

τ(o′|b, a) =
∑

x

b(x)
∑

x′

p(x′|x, a)p(o′|x′, a) (2.7)

and

bo
′

a (x
′) =

p(o′|x′, a)
∑

x b(x)p(x
′|x, a)

τ(o′|a, b)
. (2.8)
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The goal of value function optimization is to compute the optimal t-horizon value func-

tions Vt via the dynamic programming recursions (2.6). Existing methods can be catego-

rized as either exact or approximate.

2.2.1.1 Exact methods

Given the initial zero-horizon value function V0, the exact dynamic programming backups

(2.6) can be executed recursively for each 1 ≤ t ≤ T , and the optimal actions enumerated

over the set of reachable beliefs. Unfortunately, this brute force approach is intractable in

the general case, as the set of reachable beliefs grows exponentially in the time horizon.

The efficiency of the backup operations can be improved considerably by noting that

the optimal finite-horizon value functions Vt will be piecewise linear and convex (pwlc)

over the space of beliefs. In particular, if Vt−1 is pwlc then it follows from the backup

operation (2.6) that Vt can be represented as the upper envelope of a collection of α-

vectors Γt, thus establishing the piecewise-linear convexity of Vt. See Figure 2.1 for an

illustration. Each linear segment of Vt corresponds to a unique action, and this action is

optimal for all belief states that fall within the segment’s support. As a result, instead of

explicitly computing the optimal action for all possible belief states in each time period, it

is sufficient to compute the collection of α-vectors that define Γt along with the support

over which each is active. Generally, the α-vector representation will be much more

parsimonious than enumeration over all reachable beliefs.

Various subroutines exist for computing Vt from Vt−1, such as incremental pruning (Cas-

sandra et al., 1997), Monahan’s algorithm (Monahan, 1982), Witness (Littman, 1994),

Sondik’s one-pass algorithm (Sondik, 1971), and Cheng’s linear support (Cheng, 1988).

These are all exact approaches, so that despite leveraging the pwlc nature of the opti-

mal value function, they are only tractable for pomdps of a trivial size. In particular,

if Γt−1 is the current set of α-vectors then the backup operation (2.6) has a worst-case
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Figure 2.1: Representation of an optimal value function Vt when |X| = 2. The value
function (in bold) is the upper envelope of a collection of linear segments, which establishes
its piecewise-linear convexity.

exponential complexity of O(|X|2|A||Γt−1|
|O|), which corresponds to the addition of at

most |A||Γt−1|
|O| α-vectors to the set Γt (Pineau et al., 2003).

2.2.1.2 Approximate methods

There exist numerous approximate variations to value iteration that scale more grace-

fully with problem size. Generally, all such approaches simplify the recursions of equation

(2.6) by replacing the full set of belief states with a finite approximation. Grid-based ap-

proaches sample a finite set B of points from the belief simplex and the backup operation

is limited to updating the value function at each point in the grid, and hence gradient in-

formation typically encoded by the α-vectors is not computed. As a result, interpolation

must be used to approximate the value function at all non-grid points. The efficiency
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and accuracy of interpolation are related to the grid’s regularity and resolution, respec-

tively. Brafman (1997) proposes a variable resolution, non-regular grid, which allows

for a higher concentration of grid points in targeted regions of the belief simplex. This

approach was later improved via the introduction of a variable resolution, regular grid

(Zhou and Hansen, 2001).

Point-based value iteration (pbvi), unlike grid-based approaches, leverages the convex-

ity of the optimal value function in its backup operation by updating both the value

function and gradient information at each belief state in B. While the resulting backup

is more expensive than the grid-based alternative, good results can be obtained with a

significantly smaller set B. As one might expect, the error of approximating the optimal

value function is related to density of B within the belief simplex (Pineau et al., 2003).

In pbvi, B is usually constructed to include belief states that are encountered during

a Monte-Carlo exploration of the system. The rationale is that the space of reachable

beliefs is typically sparse, so that regions of the belief simplex that are unlikely to be

encountered can be ignored without significant consequence to performance. Although

the belief set B can be fully constructed prior to running pbvi, more sophisticated “any-

time” variants begin with a small set B and intermittently expand its size with provable

reductions in the error between the pbvi value function and the optimal value function

(Pineau et al., 2006). A standard pbvi implementation is described by Pineau et al.

(2003). Here, a backup operation is performed on all belief states in B during each itera-

tion, resulting in the construction of |B| α-vectors in polynomial time (in contrast to the

exponential complexity of the exact backup operation). Alternatively, it has been shown

that value iteration for infinite-horizon pomdps will still converge to the optimal value

function provided that Vt is an upper bound to Vt−1 from the previous iteration (Zhang

and Zhang, 2001). Leveraging this fact, pbvi variations have been developed that succeed

in computing an upper bound Vt ≥ Vt−1 by performing backups on a small subset of B
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(Spaan and Spaan, 2004; Vlassis and Spaan, 2004; Spaan and Vlassis, 2005).

Lastly, heuristic search value iteration (hsvi) (Smith and Simmons, 2004) is an ap-

proach that, like pbvi, maintains a lower bound to the optimal value function by per-

forming backups over a finite set of beliefs B. Unlike pbvi, hsvi also maintains an upper

bound to the optimal value function. Whereas the lower bound encodes policy informa-

tion, the upper bound is used to guide exploration and expansion of the belief set B.

Furthermore, from the nature of this expansion various convergence results can be de-

rived. While improvements to the upper bound are expensive and require solving linear

programs, empirical results comparing solution time and quality suggest that hsvi is a

viable alternative to pbvi for larger pomdps. A more detailed description of pbvi and

related algorithms is beyond the scope of this dissertation, so we refer the reader to a

survey by Pineau et al. (2006) for an in-depth review and empirical comparison of popular

pbvi algorithms and strategies for belief selection and expansion.

2.2.2 Policy optimization

The above approaches search the space of value functions, and once the optimal value

function (or an approximation) is obtained, a policy can then be extracted from the value

function representation. Alternatively, one may search the policy space directly. We now

review some common approaches to direct policy optimization.

2.2.2.1 Finite-state controllers

Most policy iteration algorithms for pomdps constrain their search to policies with a

special structure, namely finite-state controllers (fscs). fscs use a finite set of belief

nodes, N , to summarize the information conveyed by historical observation and action
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Figure 2.2: Bayesian network of a pomdp subject to a finite-state controller.

sequences about the hidden state at each time t. In time period t = 0, the initial

belief node n0 is drawn from a probability mass function (pmf) ν(·) with support N .

More generally, the belief node nt at time t > 0 is drawn from the conditional pmf

λ(·|nt−1, ot), which depends on both the previous belief node nt−1 and the most recent

observation ot. Once a belief node has been selected, an action at is then drawn from

the conditional pmf π(·|nt). Therefore, a complete finite-state controller is specified by

Λ = (ν, π, λ). Although an fsc may generate belief nodes and actions randomly, this

class of policies includes all possible deterministic finite-state controllers as well. In fact,

fscs are sufficient for the optimal control of any finite-horizon pomdp, although the

controller’s size, |N |, may be intractable. Figure 2.2 shows the Bayesian network of a

pomdp subject to a finite-state controller.
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2.2.2.2 Exact methods

Sondik (1978) presented the first exact policy iteration algorithm for infinite-horizon

pomdps. His approach—which is prohibitively complicated—iteratively refines a parti-

tion of the belief simplex, where each region corresponds to a unique action. Hansen

(1998a,b) noted that any pwlc value function can be encoded as an equivalent finite-

state controller, and used this fact to develop a more tractable policy iteration algorithm.

Hansen’s policy iteration converges to an optimal fsc through an iterative process of

policy evaluation and policy improvement. The policy evaluation step reduces to solving

a system of linear equations, which generates an α-vector representation of the current

fsc’s pwlc value function. The bottleneck of Hansen’s algorithm is the policy improve-

ment step, which transforms the current fsc into an improved fsc by backing up the

current value function V to produce V ′, and then adding a new node to the fsc for each

linear segment in V ′. After this update, dominated nodes can be pruned to help moderate

the fsc’s size. Further details are beyond the scope of this dissertation, but monotonic

convergence to an ε-optimal fsc is guaranteed after a finite number of iterations.

Hansen found policy iteration to outperform exact value iteration on a number of bench-

mark pomdps. Generally speaking, value iteration requires more dynamic programming

backups than policy iteration before convergence is achieved. In the mdp setting, the

efficiency of the backup operation relative to policy evaluation makes value iteration the

more efficient alternative. However, in the pomdp setting the worst-case exponential

complexity of the backup operation, compared to the polynomial time complexity of pol-

icy evaluation, suggests that policy iteration should be preferred. Despite the improved

efficiency of Hansen’s approach over Sondik’s, exact policy iteration—much like exact

value iteration—is only tractable for prohibitively small pomdps. Next, we discuss ap-

proximate alternatives to Hansen’s algorithm that scale more gracefully with problem

size.
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2.2.2.3 Approximate methods

We now review approximate methods for optimizing finite-state controllers. The opti-

mization of bounded fscs for pomdps is np-hard (Meuleau et al., 1999) so that existing

methods limit their search to locally optimal controllers. Given an fsc Λ = {ν, π, λ},

the gradient of the objective—as a function of the parameters of Λ—can be computed in

polynomial time for the purpose of gradient ascent (Meuleau et al., 1999). This policy-

gradient approach has been used to generate locally optimal fscs to problems that are

well beyond the reach of exact value iteration and policy iteration algorithms, for example

where |X| = O(1000). Poupart and Boutilier (2003) supplement policy gradient with a

policy iteration subroutine, which escapes local optima by adding nodes to the current

fsc in a manner similar to Hansen’s policy improvement step.

An em approach to optimizing bounded fscs was recently explored by Toussaint et al.

(2010). So that em can be applied, policy optimization must be recast as probabilistic

inference. To this end, the total discounted reward for an infinite-horizon pomdp is

expressed as an infinite mixture of finite-horizon pomdps, where a single binary reward

is received (with some probability) at the termination of each process. The resulting

mixture can be interpreted as a likelihood over the space of fscs. It is shown that

the maximum-likelihood fsc is optimal for the original infinite-horizon pomdp, and an

em algorithm is derived for maximizing this likelihood. An alternative, but related,

approach to solving finite-horizon pomdps constructs a reward-weighted path distribution,

the normalizing constant of which is equal to the performance of the parameterizing fsc

(Barber and Furmston, 2009). A lower bound to this normalizing constant is obtained

by applying Jensen’s inequality, and an em algorithm naturally arises by maximizing

this lower bound, analogously to the coordinate ascent approach used in our proof of

Proposition 1. While both em and policy gradient have a polynomial-time iteration

complexity, Toussaint et al. (2010) show that em scales more gracefully with problem
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size in an empirical study. Furthermore, em guarantees a monotonic improvement to the

objective without the additional overhead of a line search. We adopt the em approach

of Barber and Furmston (2009) in this dissertation due to its comparative simplicity

and because it is easily extended to the infinite-horizon case (Appendix, Proposition A).

Because em for pomdps is a special case of em for bapomdps, we postpone a detailed

account of this approach until Chapter 4.

2.3 Existing ❜❛♣♦♠❞♣ algorithms

We now review the current state-of-the-art for solving bapomdps and highlight the lim-

itations of existing methods. This serves to both motivate and justify our adoption of

em-based alternatives.

2.3.1 Point-based solutions

The most common approach to generating policies for bapomdps is composed of two

stages. The first stage artificially resolves model uncertainty by choosing a point estimate

from the model prior (e.g., mean, mode). In other words, an operatorM maps the model

prior pθ to a single model θ̂ = Mpθ. For example, the operator M̄ defined such that

M̄pθ = Epθ [θ] returns the mean model θ̄. In general, the result is a standard pomdp

characterized by the hmm θ̂. The second stage then selects the policy that is optimal for

this pomdp via existing pomdp algorithms.

The point-based policies constructed in this manner will by definition operate on a belief

over the state alone and hence will not be model-adaptive. Of course, the appeal of this

two-stage approach is its comparative tractability, that is, the pomdp characterized by θ̂

is easier to solve than the original bapomdp. However, as we demonstrate in Chapter 3,
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even the best point-based policy can significantly underperform the Bayes optimal, model-

adaptive policy. We now review some existing approaches that are capable of generating

model-adaptive policies for bapomdps, albeit at a greater computational expense.

2.3.2 ❜❛♣♦♠❞♣s as augmented ♣♦♠❞♣s

State space augmentation is an exact approach to solving bapomdps that explicitly

embeds model uncertainty into the state space itself (Wang et al., 2012). This is done by

constructing a new state space Y = X ×Θ that is the cross-product of the original state

space X and the space of model parameters Θ. The cross-product state space imposes

transformed state-transition and observation-emission distributions, which define a new

“augmented” pomdp P̃ . To see how, let y, y′ ∈ Y such that y = (x, θ), y′ = (x′, θ′), and

let o′ ∈ O, a ∈ A. Then,

p̃(x′, θ′|x, θ, a) =















pθ(x
′|x, a), θ = θ′

0, otherwise

(2.9)

p̃(o′|x′, θ, a) = pθ(o
′|x′, a) (2.10)

are the corresponding state-transition and observation-emission distributions. In this way,

the belief vector over the augmented state space Y naturally maintains a joint belief over

the state x ∈ X and the model θ ∈ Θ. This ensures the model-adaptivity of solutions to

P̃ .
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For the sake of tractability, Wang et al. (2012) restrict their attention to a finite set

of models Θ = {θ1, θ2, . . . , θK}, so that the resulting augmented pomdp P̃ can be solved

with pbvi. However, state space augmentation is limited in scalability: if the θk are

a discrete approximation to a continuous prior pθ, it is not clear how large K must be

so that the sampled models adequately reflect prior uncertainty; and as K grows, the

computational expense of using pbvi to solve P̃ will quickly become infeasible. As evi-

dence to this, an empirical study showed that policies generated via this sampling-based

pbvi approach were competitive with existing offline and online reinforcement learning

algorithms when only a few model parameters were unknown, but underperformed as the

number of uncertain model parameters increased, indicating that state space augmen-

tation does not scale to domains with large amounts of parameter uncertainty (Wang

et al., 2012). This is expected, since the size of the cross-product state space Y limits the

number of sampled models that can be considered during the offline planning phase.

Ross et al. (2008) consider a variation to the augmentation approach for when the model

prior given by a product of independent Dirichlet distributions. Because the Dirichlet is

the conjugate prior to the categorical distribution, the Θ component of the cross-product

state space can be represented via a compact factored form, involving pseudo-count vec-

tors for the state-transitions and observation-emissions. Even though the resulting aug-

mented pomdp has a countably infinite state space in the infinite horizon (with the

number of reachable states growing exponentially with time), it is shown that ε-optimal

solutions can be obtained by approximating the infinite state space with a finite set. As

the accuracy goal increases, however, the size of this finite set grows considerably so that

exact offline planning must be replaced by belief tracking—a form of online Monte-Carlo

reinforcement learning—for the sake of tractability.
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2.3.3 Online reinforcement learning

In addition to the belief tracking approach of Ross et al. (2008) for the special case of

Dirichlet priors, a number of additional online reinforcement learning algorithms have

been proposed for bapomdps. We now briefly describe two of the more well-known

approaches of this type.

Dallaire et al. (2009) assume that the bapomdp is a Gaussian process, for which the

state, action, and observation spaces are represented by Gaussian mixtures. At each

decision epoch, the map state sequence is computed given appropriately chosen priors

and a history of observations and actions, and the final state in the sequence is used to

approximate the current belief. While the underlying state-transition and observation-

emission kernels are unknown, the Gaussian process model admits map estimates of

these quantities as well. Given the map estimates, a sampling-based look-ahead is used

to approximate the effect of immediate actions on future reward and hence inform the

agent’s decision. Naturally, this approach is limited to bapomdps with continuous state,

action, and observation spaces; and even in cases where the Gaussian process model is

relevant, we suspect that using a map state estimate for the current belief and Gaussian

process kernels would not sufficiently capture model uncertainty, a concern expressed by

the authors themselves. Finally, there is significant overhead associated with the look-

ahead procedure, rendering this algorithm inappropriate for time-sensitive applications.

A similar approach is taken by Doshi et al. (2008), but instead of representing the

bapomdp as a Gaussian process, the algorithm operates on a finite number of pomdps

sampled from an unconstrained model posterior. Given a history of actions and obser-

vations, the immediate action is chosen by minimizing the Bayes risk over the set of all

possible actions. To derive the Bayes risk criterion, one must be able to solve (or approx-

imate) an optimal policy for each of the sampled pomdps. As exploration proceeds and
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new data is acquired, the posterior is intermittently updated and a new set of pomdps is

sampled. However, the convergence properties of this method require that the agent can

query an oracle (at a cost) to reveal the optimal action at any time, which is not consis-

tent with our general bapomdp framework. Furthermore, the computational expense of

intermittently re-solving a collection of pomdps would be prohibitive in an online setting.

2.4 Our contributions in context

As first stated in Section 1.1.1, our focus in this dissertation is on offline policies for

bapomdps. By planning for all possible histories a priori, offline policies can—at least

in theory—achieve Bayes optimality, in contrast to online planning. Of course, the of-

fline computation of Bayes optimal policies is not tractable in the general case so that

online reinforcement learning merits consideration, especially for larger problems when

scalability is a concern. While an empirical comparison of offline and online approaches

is necessary, such a study is beyond the scope of this dissertation. Rather, our aim is to

show that fscs optimized via expectation-maximization can outperform common point-

based policies and also address the deficiencies of existing offline approaches for solving

bapomdps. In particular, we extend the em algorithm for standard pomdps (Toussaint

et al., 2010; Barber and Furmston, 2009) to the bapomdp setting by introducing the

uncertain model parameters θ as a latent variable in the underlying stochastic process,

in a manner similar to Furmston and Barber (2010) in the more restricted bamdp set-

ting. We also show that the m-step computations (the algorithm’s bottleneck) can be

naturally distributed over multiple concurrent threads. With this in mind, we present a

sampling-based em algorithm that is amenable to a higher discretization granularity than

the sampling-based pbvi approach of Wang et al. (2012), the primary limitation of which

is scalability with respect to the model space. We stress that while model discretization
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is not an ideal approach to solving bapomdps, it is likely unavoidable in certain cases. In

the manufacturing case study of Section 1.2, for example, the posterior model distribution

that arises from unsupervised training data (which would serve as the bapomdp prior

pθ) has no analytical form, and hence discretization of the posterior via Gibbs’ sampling

is one of the few viable alternatives.

Recall that when pθ is given by a product of independent Dirichlet distributions, a com-

pact state representation—consisting of pseudo-count vectors for the state-transitions and

observation-emissions—can be adopted to simplify the value iteration backup procedure

(Ross et al., 2008). Still, the offline version of this approach is only tractable for small

problems due to the exponential growth of reachable states in the planning horizon T .

To address this deficiency, we derive a variational Bayes em algorithm—inspired by the

work of Furmston and Barber (2010)—that efficiently handles the continuous prior while

avoiding model discretization. Despite the strong assumptions required by the variational

Bayes formulation, we show that it can outperform common point-based methods and

compete with the sampling-based versions of em and pbvi.

Expectation-maximization algorithms are often criticized for their slow convergence

rates and the local optimality of their fixed points, and this dissertation would not be

complete without addressing these concerns in the context of em for bapomdps. To this

end, we show that the convergence rate of ordinary em can be accelerated by adjusting

the em step-size via a simple parameterized update. In addition, we extend the forward-

search procedure of Poupart et al. (2011b) for escaping locally optimal fscs in the pomdp

setting to the more general bapomdp setting and, furthermore, derive a finite-horizon

analog to the original infinite-horizon subroutine.

In the following chapter, we further justify the consideration of model-adaptive policies

by demonstrating that even the best point-based policy can significantly underperform

the Bayes optimal policy.
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An argument for the Bayesian

control of ♣♦♠❞♣s

An operative assumption in the bapomdp literature is that the expense of computing

model-adaptive policies is justified by their superior performance. However, to our knowl-

edge no example has been formally proposed that illustrates a significant performance

gap between simple point-based policies and Bayes optimal, model-adaptive policies. Our

contribution in this chapter is to demonstrate, through a tractable yet nontrivial example,

that even the best point-based policy can significantly underperform the Bayes optimal

policy. As a result, we can make the stronger claim that point-based policies are not

only suboptimal, but can be prohibitively so. This chapter is outlined as follows: We

introduce a two-state Bayes-adaptive pomdp in Section 3.1, derive optimal point-based

policies in Section 3.2, and demonstrate how Bayes optimal policies can be computed via

dynamic programming in Section 3.3. We conclude with a brief discussion in Section 3.4.

35
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3.1 Problem description

In this section we introduce a tractable yet nontrivial Bayes-adaptive pomdp. We begin

by defining the standard pomdp P , and then construct the Bayes-adaptive pomdp P ′ by

introducing uncertainty into the model parameter space.

Consider a Markov decision process that is characterized by two states (1 and 2) and left-

to-right transition dynamics. Under the left-to-right assumption, state 1 can transition

to either state, and state 2 is an absorbing state. The process always begins in state 1 at

time t = 0, and this is known to the agent. At each discrete time, the agent must take

one of two possible actions: “stop” or “go”. The “stop” action terminates the process,

and the “go” action allows one more transition to occur before the next action is taken.

A reward r > 0 is received when the “go” action is taken in state 1, and a cost of c > 0

is incurred when the “go” action is taken in state 2.

The goal is to maximize the expected reward that is accumulated prior to the process’

termination via the “stop” action. In a fully observable environment, the agent would

simply stop the process after state 2 was entered for the first time, but here we assume

that the agent is limited by imperfect state information: While x0 = 1 is known to the

agent, the current state xt at time t ≥ 1 is hidden. However, upon transitioning from the

current state, the subsequent state xt+1 emits a scalar observation yt+1, which follows a

Gaussian distribution with common standard deviation σ and means µ1 and µ2 for states

1 and 2, respectively. As such, the observation yt+1 can be used to infer the current

state xt+1 and inform the action at+1 taken at time t+ 1. Without loss of generality, we

assume that µ1 < µ2. In addition to these observations, the agent also has delayed state

information of one time unit. In other words, the true state of the system at time t is

revealed to the agent at time t+1. Note that a discount factor is not required due to the

absorbing nature of state 2 and the effect of action “stop”. The policy that maximizes the
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infinite-horizon expected reward for this process can be recovered by solving the pomdp

P = {X,A,R, u, θ}, where θ = (p, µ1, µ2, σ),

X = {1, 2} is the set of states,

A = {g, s} is the set of available actions: “go” and “stop”,

p = p11 is the probability of self-transition for state 1,

f1 ∼ N(µ1, σ) is the observation distribution for state 1,

f2 ∼ N(µ2, σ) is the observation distribution for state 2 (3.1)

and u : A × X → R is the reward function. By the above description, u(g, 1) = r,

u(g, 2) = −c, and u(s, ·) = 0.

If the model parameters θ = (p, µ1, µ2, σ) are known, then the optimal policy can be

obtained by applying standard pomdp algorithms to P . However, our problem is more

complex than P since we assume the model parameters θ are not known to within a

sufficient degree of certainty. Fundamental to our approach is the assumption of a prior

distribution h(θ) on θ, so that a discussion of model uncertainty is meaningful. This prior

implies a Bayes-adaptive form of the pomdp P which we will refer to as the bapomdp

P ′.

Let yt = (y1, y2, . . . , yt) and a
t = (a0, a1, . . . , at) denote sequences of observations and

actions up to time period t, and let Y t and At denote the sets of all possible observation

and action sequences up to time period t. In the most general setting, a policy is a

sequence of mappings π = {π0, π1, . . .}, where πt : Y
t×At−1 → A is the mapping used in

each time period. A Bayes optimal policy for P ′ solves the following:
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max
π

Eθ[R|π] = max
π

∫

θ

h(θ)E[R|θ, π] dθ, (3.2)

where R is a random variable representing the total accumulated reward until the stopping

action s is taken. For the remainder of this paper, we limit uncertainty to the transition

probability p and assume that σ, µ1, and µ2 are known to the agent. Note that if the

agent has not taken action s by time t ≥ 1, the vector (yt, t − 1)—consisting of the

current observation yt and the number t − 1 of self-transitions from state 1 that have

been revealed via delayed state information—defines a sufficient statistic for P ′, which

simplifies the form of an optimal policy for the control problem.

3.2 An argument for Bayesian control

The objective is to determine the stopping policy that maximizes the expected reward

(3.2). In Section 3.2.1 we assume that no observations are available for inferring the

true system state, and we show that there does in fact exist a Bayes optimal point-based

policy. However, in Section 3.2.2 we reintroduce the observation distributions f1 and f2

and demonstrate that even the best point-based policy can significantly underperform the

Bayes optimal policy.

Hereafter, our uncertainty regarding p is characterized by a Beta(α, β) prior with α > 1

and β > 1, so that

h(p) =
pα−1(1− p)β−1

B(α, β)
, 0 < p < 1, (3.3)
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where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the Beta function and Γ is the Gamma function

(Davis, 1972). The Beta distribution—a special case of the Dirichlet—is the conjugate

prior to the Bernoulli (Johnson et al., 2002). As such, imposing a Beta prior on p simplifies

the posterior update given observed self-transitions from state 1.

3.2.1 Case 1: No observations

In this case we simplify the analysis by assuming that no observations are available for

inferring the true system state. For the moment, let us assume a known p. Because

x0 = 1 is also known, an optimal policy will certainly take action a0 = g at time t = 0.

Now consider the following two policies: (a) take action g and then immediately take

action s; and (b) take action g until, via delayed state information, it is revealed that the

process has entered state 2. We now show that one of these two policies must be optimal.

Proposition 2: If p is known, then either policy (a) or policy (b) is optimal.

We wish to show that either policy (a) or policy (b) is optimal. Equivalently, we show

that if policy (a) is not optimal, then policy (b) must be optimal. To this end, suppose

that policy (a) is not optimal.

By definition of P we have x0 = 1. Because policy (a) is not optimal, it must be optimal

to take action g at time t = 1. Action g results in a transition from state x1 to state x2,

after which x1 is revealed to the agent. If x1 = 2, then action s is optimal at time t = 2,

which agrees with policy (b). Otherwise, x1 = 1 is revealed at time t = 2 and the agent’s

belief at time t = 2 is identical to its belief at time t = 1, by which action g is optimal at

time t = 2. Therefore by induction it is optimal to take action g at all times t ≥ 1 until

delayed state information reveals that the system has entered state 2. This is precisely
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what policy (b) prescribes. Therefore either policy (a) or policy (b) must be optimal. �

The expected reward V a associated with policy (a) is trivially V a = r. The expected

reward V b(p) associated with policy (b) is

V b(p) =
r

1− p
− c, (3.4)

so that policy (b) is optimal if and only if V b(p) > V a, that is,

p >
c

r + c
. (3.5)

Now let us consider the Bayes-adaptive case where p ∼ h(p). In fact, just as in the case

where p is known, either policy (a) or policy (b) must be optimal.

Proposition 3: If p ∼ Beta(α, β), then either policy (a) or policy (b) is optimal.

We first note the following useful fact. Under any optimal policy, if action s has not

been taken prior to time t ≥ 1, then t − 1 self-transitions from state 1 will have been

revealed via delayed state information. The Beta(α, β) prior implies that the model

posterior at time t can be compactly summarized by the Beta(α+ t− 1, β) distribution.

Let Vt denote the expected reward associated with following the optimal policy from

time t ≥ 1, assuming that action s has not been taken prior to time t. Note that by

definition Vt conditions on the event that t − 1 self-transitions from state 1 have been
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recorded, which implies xt−1 = 1. Furthermore, let Vt(s) and Vt(g) denote the expected

rewards associated with taking immediate actions s and g, respectively, at time t and

following the optimal policy thereafter.

We wish to show that either policy (a) or policy (b) is optimal. Equivalently, we show

that if policy (a) is not optimal, then policy (b) must be optimal. To this end, suppose

that policy (a) is not optimal. Then necessarily action g is optimal at time t = 1, which

agrees with policy (b). Furthermore, this implies V1 = V1(g) > 0, or more specifically,

V1 = V1(g) = (r + V2)
α

α + β
− c

β

α + β
> 0.

Now we consider the optimal action at time t = 2. If x1 = 2 is revealed at time t = 2,

then action s is clearly optimal, which agrees with policy (b). Suppose instead that x1 = 1

is revealed at time t = 2. Our goal is to show that action g is optimal. We assume to

the contrary that action s is optimal and proceed by contradiction. The optimality of s

implies V2 = V2(s) = 0. This and the above condition on V1 imply that rα > cβ. But

then, noting the updated Beta(α + 1, β) posterior on p,

V2(g) = (r + V3)
α + 1

α + β + 1
− c

β

α + β + 1

≥ r
α + 1

α + β + 1
− c

β

α + β + 1
(by V3 ≥ 0)

> 0 (by rα > cβ),

so that V2(g) > V2(s) = 0, which contradicts the optimality of action s. Therefore action

g is optimal at time t = 2 given delayed state information x1 = 1, which agrees with

policy (b). By induction we can extend this result to all t. To summarize, when policy
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(a) is not optimal, we have shown that the optimal policy agrees with policy (b). It

follows that either policy (a) or policy (b) must be optimal. �

We now compare the expected rewards associated with policies (a) and (b). The ex-

pected reward V̄ a associated with policy (a) is trivially V̄ a = r. The expected reward V̄ b

associated with policy (b) is, using the result (3.4) for fixed p,

V̄ b =

∫

p

h(p)V b(p) dp

= −c+ r
α + β − 1

β − 1
. (3.6)

Therefore policy (b) is Bayes optimal if and only if V̄ b > V̄ a, or equivalently

α

α + β − 1
>

c

r + c
. (3.7)

Comparing (3.7) to (3.5), we see that the point-based policy corresponding to point

estimate p̂ = α/(α + β − 1) is, in fact, Bayes optimal. In other words, the optimal

policy obtained by assuming p = p̂ is also the Bayes optimal policy for the case of

p ∼ Beta(α, β). It is interesting to note that this point estimate is different than the

more common mean and mode point estimates of the Beta distribution, given by α/(α+β)

and (α− 1)/(α+ β − 2), respectively. We now consider a more realistic case in which no

point-based policy is Bayes optimal.
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3.2.2 Case 2: Informative observations

Now we consider the case where observations are available for inferring the true system

state. For the moment, assume that p is known. As with pomdps in general, a sufficient

statistic for defining an optimal policy is the belief state. Because |X| = 2, we may simply

maintain the state 2 belief, call it δt, for time t ≥ 0. For example, δ0 = 0 since the process

is known to begin in state 1. Recall that the observations follow Gaussian distributions

with means µ1 < µ2 and common standard deviation σ. This fact and the assumption

of delayed state information together imply a one-to-one correspondence between beliefs

δt and observations yt for all times t ≥ 1. To see why, suppose that at time t the agent

observes yt and it is revealed that xt−1 = 1 at time t− 1. Computing the state 2 belief δt

at time t, we find

δt =
(1− p)f2(yt)

(1− p)f2(yt) + pf1(yt)
=

1

1 + p

1−p
e−

(yt−µ1)
2

2σ2 +
(yt−µ2)

2

2σ2

=
1

1 + p

1−p
e−

(µ2−µ1)(2yt−µ1−µ2)

2σ2

,

which is strictly increasing as a function of yt since µ2 > µ1. This establishes the one-

to-one correspondence between δt and yt. Note that as yt → ∞ the belief δt approaches

1, so that action s is optimal. Likewise, as yt → −∞ the belief δt approaches 0, so that

action g is optimal. Finally, the convexity of optimal pomdp value functions over the

belief space (Cassandra, 1998) implies that an optimal policy will be a “threshold” policy

on the current belief δt—or equivalently the current observation yt—such that for the

optimal threshold y∗, action g is taken when yt < y∗ and action s is taken when yt > y∗.

Let V (p, y) denote the expected reward associated with threshold policy y and fixed

probability p. By this definition, V (p, y) has an equivalent interpretation as the expected

reward of taking action g when x = 1, and following threshold policy y thereafter, given
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p. As such, we can write V (p, y) = r + pF1(y)V (p, y) − c(1 − p)F2(y), where F1 and F2

are the cdfs of the conditional observation distributions for states 1 and 2, respectively.

Solving for V (p, y), we obtain

V (p, y) =
r − c(1− p)F2(y)

1− pF1(y)
. (3.8)

Therefore, given a point estimate p̂ from the model prior h(p), the corresponding point-

based policy maximizes the expected reward (3.8) for p = p̂ and so is given by the

threshold ŷ = argmaxy V (p̂, y). Using (3.8), the point-based performance V̄ (y) associated

with threshold y when p ∼ h(p) is

V̄ (y) =

∫

p

h(p)V (p, y) dp

=

∫

p

pα−1(1− p)β−1

B(α, β)

{

r − c(1− p)F2(y)

1− pF1(y)

}

dp. (3.9)

In Figures 3.1–3.4 we plot the expected reward associated with a range of point-based

(threshold) policies when p ∼ h(p) over four problem instances. Plot windows were

chosen to include the best achievable point-based performance. Note that in Figures 3.1

and 3.4, point-based performance is bounded by 0.138 and 0.105, respectively. These

bounds were obtained by taking the limit of (3.9) as y → ∞, or equivalently evaluating

(3.6). We highlight three point-based policies, which are derived from the mean estimator

p̂ = α/(α+β), the mode estimator p̂ = (α−1)/(α+β−2), and the optimal estimator from

Case 1, p̂ = α/(α+β−1). We also indicate Bayes optimal performance, the computation

of which is described in Section 3.3. We see that in each problem instance even the best
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point-based policy can significantly underperform the Bayes optimal policy due to a lack

of model-adaptivity.

ææ

øø

òò

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.08

0.10

0.12

0.14

0.16

0.18

0.20

y

E
x
p
ec
te
d
re
w
ar
d

Figure 3.1: A comparison of point-based (threshold) policy performance to Bayes optimal
performance with α = 10, β = 2, r = 0.058, c = 0.5, µ1 = 0.5, µ2 = 1.5, σ = 0.8. We
highlight three threshold policies in particular, corresponding to the mean estimator (⋆),
mode estimator (•), and the estimator that assumes uninformative features from Case 1
(N). Dashing indicates Bayes optimal performance (Section 3.3).
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Figure 3.2: A comparison of point-based (threshold) policy performance to Bayes optimal
performance with α = 10, β = 2, r = 0.07, c = 0.5, µ1 = 0.5, µ2 = 1.5, σ = 0.6. We
highlight three threshold policies in particular, corresponding to the mean estimator (⋆),
mode estimator (•), and the estimator that assumes uninformative features from Case 1
(N). Dashing indicates Bayes optimal performance (Section 3.3).
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Figure 3.3: A comparison of point-based (threshold) policy performance to Bayes optimal
performance with α = 10, β = 2, r = 0.05, c = 0.5, µ1 = 0.5, µ2 = 1.5, σ = 0.75. We
highlight three threshold policies in particular, corresponding to the mean estimator (⋆),
mode estimator (•), and the estimator that assumes uninformative features from Case 1
(N). Dashing indicates Bayes optimal performance (Section 3.3).
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Figure 3.4: A comparison of point-based (threshold) policy performance to Bayes optimal
performance with α = 10, β = 2, r = 0.055, c = 0.5, µ1 = 0.6, µ2 = 0.9, σ = 0.35. We
highlight three threshold policies in particular, corresponding to the mean estimator (⋆),
mode estimator (•), and the estimator that assumes uninformative features from Case 1
(N). Dashing indicates Bayes optimal performance (Section 3.3).
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3.3 Bayes optimal control via dynamic programming

Recall from Section 3.1 that a sufficient statistic for optimal control within the Bayes-

adaptive pomdp P ′ is (yt, t−1). As a result, the Bayes optimal policy can be characterized

as a “time-varying” threshold policy on the most recent observation yt. To see why,

suppose that at time t it is revealed that xt−1 = 1, so that the posterior belief on p

follows a Beta(α + t − 1, β) distribution. Let Vt denote the expected reward associated

with following the optimal policy from time t ≥ 1, and let Vt(g|y) denote the expected

reward associated with taking action g when yt = y and following the optimal policy

thereafter. If we define δ̃t = P (xt = 2|yt, α + t− 1, β) then

Vt(g|y) = (1− δ̃t)(r + Vt+1)− cδ̃t.

Note that Vt+1 is independent of yt since the revelation of xt = 1 decouples yt from this

future expectation. Now suppose for some yt = y′ that Vt(g|y
′) > 0, by which action g is

optimal at time t given y′. Analogously to the known p case, it is straightforward to show

that δ̃t is a strictly increasing function of y. Therefore Vt(g|y) is a strictly decreasing

function of y, by which Vt(g|y) > Vt(g|y
′) > 0 for all y < y′, and hence action g is

optimal given all y < y′. Since action s is clearly optimal as yt →∞, it follows that the

optimal decision rule at time t is a threshold on the observation yt. However, the optimal

threshold will now vary as a function of the current time.

With this in mind, let y = (y1, y2, . . .) denote an arbitrary time-varying threshold policy,

such that the agent takes action g at time t ≥ 1 if yt < yt, and takes action s otherwise.

Recall that the agent will always take action g at time t = 0 since the system is known

to begin in state 1. While it is not obvious how to compute the Bayes optimal y in the

infinite-horizon, we can compute the optimal y for an arbitrarily large finite-horizon T ,
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as we now describe. Let T > 0 be a finite planning horizon, and fix yt = ∞ for t > T .

We say that this time-varying threshold policy is “truncated”, since the thresholds are

fixed for t > T . The optimal thresholds yt for 1 ≤ t ≤ T can be computed in a finite

number of recursions. Let Jt denote the expected reward associated with following the

optimal (truncated) time-varying threshold policy y = (y1, y2, . . . , yT ,∞, . . .) beginning

at time t ≥ 1, after t− 1 self-transitions from state 1 have been recorded. It follows that

JT+1 =

∫

p

h̃(p)

{

rp− c(1− p)

1− p

}

dp, (3.10)

where h̃(p) ∼ Beta(α + T, β). Then, we can recursively compute

Jt = max
yt

α + t− 1

α + t− 1 + β
F1(y

t)(r + Jt+1)−
β

α + t− 1 + β
F2(y

t)c (3.11)

for 1 ≤ t ≤ T , where the maximizing argument yt is the optimal threshold on the

observation at time t, given that t − 1 self-transitions from state 1 have been recorded.

Because the system is known to start in state 1, it follows that the expected reward J∗

associated with the optimal (truncated) time-varying threshold policy is J∗ = r + J1.

This procedure is summarized in Algorithm 3.1. As T → ∞, J∗ will converge to the

Bayes optimal expected reward for P ′. This limiting process was used to compute the

Bayes optimal performance in Figures 3.1–3.4. In all four of these experiments, T > 10

was sufficient for J∗ to reach ninety-nine percent of the Bayes optimal expected reward.
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Algorithm 3.1 Approximating the Bayes optimal policy for the two-state problem

1: Initialize JT+1 =
∫

p
h̃(p)

{

rp−c(1−p)
1−p

}

dp.

2: t← T
3: while t ≥ 1 do

4: Compute yt and Jt from:

Jt = max
yt

α+t−1
α+t−1+β

F1(y
t)(r + Jt+1)−

β

α+t−1+β
F2(y

t)c.

5: t← t− 1
6: end while

7: J∗ ← r + J1

3.4 Summary

Through a tractable yet nontrivial example, we justified the search for Bayes optimal

policies under conditions of model uncertainty by demonstrating that that even the best

point-based policy can significantly underperform the Bayes optimal, model-adaptive pol-

icy. While exact bapomdp solutions are unobtainable in the general case, our results

suggest that even suboptimal bapomdp solutions could dominate point-based policies in

a more general setting. In the following chapter, we explore expectation-maximization as

a scalable approach to approximating model-adaptive policies through the optimization

of a bounded finite-state controller.



Chapter 4

Expectation-maximization for

❜❛♣♦♠❞♣s

4.1 Introduction

In this chapter we present an expectation-maximization approach to solving bapomdps

via finite-state controller optimization. However, in the most general case the m-step

requires the evaluation of an intractable integral. Recently this issue was addressed in

the more restricted Bayes-adaptive mdp setting by introducing a variational Bayes (vb)

approximation to the em algorithm under the assumption of independent Dirichlet priors

on the model parameters (Furmston and Barber, 2010). Here, we extend vb-em to the

full bapomdp case and derive a novel constrained vb-em algorithm, which addresses

an unfavorable preference that can arise toward a certain class of fscs in the standard

vb-em implementation. In addition, we present a sampling-based em algorithm for the

case when the model prior does not have this convenient Dirichlet form. Through an

empirical study we show that finite-state controllers generated by em can compete with

52
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more conventional value iteration-based policies, and we argue that em has the potential

to scale more gracefully as model uncertainty increases.

4.2 ❡♠ for ❜❛♣♦♠❞♣s

We proceed by deriving a general em algorithm for maximizing the expected reward

associated with the bapomdp P over the set of all possible bounded fscs Λ of some a

priori fixed size, |N |, subject to a finite planning horizon T ≥ 0. The approach taken here

can be seen as a generalization of em for Bayes-adaptive mdps (Furmston and Barber,

2010). First, we define the reward-weighted path distribution

p̂(t, θ, xt, nt, at, ot|Λ) =
ut(at, xt)p(θ, x

t, nt, at, ot|Λ)

J(Λ)
, (4.1)

where ut(a, x) = γtu(a, x), J(Λ) is a normalizing constant equal to the expected reward

associated with fsc Λ, xt = (x0, x1, . . . , xt) is a trajectory of hidden states x ∈ X, and

nt, at, and ot are defined similarly. If we let z = (t, xt, nt, at, ot), it is straightforward

to verify that p̂ is a valid density function over the latent variables (z, θ) by computing
∫

θ

∑

z p̂(z, θ) = 1.

Let q be an arbitrary distribution over the latent variables (z, θ) and for notational con-

venience define p̃(z, θ|Λ) = p̂(z, θ|Λ)J(Λ). Consider the kl divergence KL(q, p̂) between

q and p̂:

KL(q, p̂) = 〈log q(z, θ)〉q − 〈log p̂(z, θ|Λ)〉q
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= 〈log q(z, θ)〉q − 〈log p̃(z, θ|Λ)〉q + log J(Λ)

≥ 0. (4.2)

Rearranging terms in the above inequality, we find

log J(Λ) ≥ −〈log q(z, θ)〉q + 〈log p̃(z, θ|Λ)〉q. (4.3)

The direct optimization of log J(Λ) is not tractable in general, so a natural approach

is to instead optimize the lower bound (4.3). An em algorithm arises if we alternate

the following two steps: (i) optimize (4.3) with respect to q given a fixed Λ (e-step),

and (ii) optimize (4.3) with respect to Λ for fixed q (m-step). If both the e-step and

m-step are executed exactly, then it can be shown—analogously to the coordinate ascent

interpretation of em (Neal and Hinton, 1998)—that each update of Λ will result in a

strict increase in the objective J(Λ) until convergence to a local optimum.

4.2.1 ❡-step

In the e-step the lower bound (4.3) is maximized with respect to q given a fixed Λ. This

is equivalent to minimizing KL(q, p̂) with respect to q. Therefore, by properties of kl

divergence q(z, θ) = p̂(z, θ|Λ) is the unique maximizer of the lower bound.

4.2.2 ♠-step

Subsequently, the m-step maximizes the lower bound (4.3) with respect to Λ given a fixed

q. This reduces to maximizing 〈log p̃(z, θ|Λ)〉q over the parameters ν, π, and λ. We can
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write

〈log p̃(z, θ|Λ)〉q =

∫

θ

T
∑

t=0

∑

xt,nt,at,ot

q(z, θ) log νn0 dθ +

∫

θ

T
∑

t=0

∑

xt,nt,at,ot

q(z, θ)
t
∑

τ=0

log πaτnτ
dθ

+

∫

θ

T
∑

t=1

∑

xt,nt,at,ot

q(z, θ)
t−1
∑

τ=0

log λnτ+1nτoτ+1 dθ + C,

where C is a constant independent of Λ. From the above form, it is clear that we can

optimize the lower bound independently with respect to ν, π, and λ. The component

dependent on ν can be written as

∫

θ

T
∑

t=0

∑

xt,nt,at,ot

q(z, θ) log νn0 dθ =
∑

n

log νn

∫

θ

T
∑

t=0

q(t, n0 = n, θ) dθ.

Similarly, for the components dependent on π and λ we can write

∫

θ

T
∑

t=0

∑

xt,nt,at,ot

q(z, θ)
t
∑

τ=0

log πaτnτ
dθ =

∑

a,n

log πan

∫

θ

T
∑

t=0

t
∑

τ=0

q(t, aτ = a, nτ = n, θ) dθ

and

∫

θ

T
∑

t=1

∑

xt,nt,at,ot

q(z, θ)
t−1
∑

τ=0

log λnτ+1nτoτ+1 dθ =
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∑

n′,n,o′

log λn′no′

∫

θ

T
∑

t=1

t−1
∑

τ=0

q(t, nτ+1 = n′, nτ = n, oτ+1 = o′, θ) dθ,

respectively. Subject to normalization constraints of the form
∑

n νn = 1,
∑

a πan = 1,

and
∑

n′ λn′no′ = 1, the method of Lagrange multipliers can be used to solve for the

optimal parameter updates. We find that

ν∗n ∝

∫

θ

T
∑

t=0

q(t, n0 = n, θ) dθ (4.4)

π∗
an ∝

∫

θ

T
∑

t=0

t
∑

τ=0

q(t, aτ = a, nτ = n, θ) dθ (4.5)

λ∗n′no′ ∝

∫

θ

T
∑

t=1

t−1
∑

τ=0

q(t, nτ+1 = n′, nτ = n, oτ+1 = o′, θ) dθ, (4.6)

so that the fsc updates require computing marginals of the distribution q obtained in

the e-step.

4.3 A sampling-based approach

While the integrals required by the m-step in (4.4)–(4.6) are not tractable in the general

case, a smaller representative subset of models can be sampled to approximate the true

prior as done in the pbvi approach of Wang et al. (2012). Sampling-based approaches

are not ideal—particularly when the dimensionality of uncertain parameters is large—but

may be unavoidable when the bapomdp prior is not of a convenient form. Suppose, for

example, that our initial uncertainty with respect to the model parameters θ is expressed

as a product of independent Dirichlet distributions, and that additional training data is
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available in the form of unsupervised action-observation trajectories. The resulting pos-

terior distribution—which serves as the bapomdp prior—will generally be multi-modal

with no analytical expression. However, a Markov chain Monte-Carlo algorithm such as

Gibbs’ procedure (Cappé et al., 2005) could be used to sample models from the posterior,

which would then serve as a finite approximation to the bapomdp prior.

In light of this, let us reconsider the m-step updates when Θ contains a finite number

of models. From (4.4)–(4.6) and the definition of p̃ we immediately obtain

ν∗n ∝
∑

θ

pθ(θ)
T
∑

t=0

p̃(t, n0 = n|θ,Λ) (4.7)

π∗
an ∝

∑

θ

pθ(θ)
T
∑

t=0

t
∑

τ=0

p̃(t, aτ = a, nτ = n|θ,Λ) (4.8)

λ∗n′no′ ∝
∑

θ

pθ(θ)
T
∑

t=1

t−1
∑

τ=0

p̃(t, nτ+1 = n′, nτ = n, oτ+1 = o′|θ,Λ). (4.9)

Note that if the models Θ are sampled from some other continuous prior, then we should

have pθ(θ) = 1/|Θ| in the above expressions. From the finite-horizon update equations,

we find that the required marginals of p̃ for fixed θ ∈ Θ can be computed independently

from all other θ′ ∈ Θ—for instance, by running the forward-backward algorithm on the

factor graph of p̃—and hence can be distributed over multiple concurrent threads. This

is a useful insight, since the forward-backward procedure used to compute the marginals

for fixed θ is the bottleneck of the em algorithm. It is also worth noting that there is

no clear analogous parallelization within the pbvi framework, since all model parameters

jointly mix within the same augmented belief vector.

We now describe how the marginals of p̃ required by the m-step updates (4.7)–(4.9)

can be computed efficiently. To this end, we begin by running sum-product (Kschischang
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Figure 4.1: A factor graph representation of p̃(T, xT , nT , aT , oT |θ,Λ)γ−T when T = 2.

et al., 2001) on the factor graph of p̃(T, xT , nT , aT , oT |θ,Λ)γ−T for each θ ∈ Θ. As

an illustration, Figure 4.1 contains the corresponding factor graph when T = 2. Note

that because the factor graph is a chain, sum-product reduces to the familiar forward-

backward algorithm. Algorithms 4.1 and 4.2 summarize how the forward messages µθ

and the backward messages µ̄θ are computed for fixed θ ∈ Θ.

Algorithm 4.1 Computing the forward messages µθ for fixed θ ∈ Θ
Input: fsc Λ
Output: Forward messages µθ

1: Initialize µ0,θ(x, n) = νnp0(x) for all x ∈ X,n ∈ N .
2: for t = 1 to t = T do

3: for all x′ ∈ X,n′ ∈ N do

4: Set µt,θ(x
′, n′) =

∑

x,n,a,o′ µt−1,θ(x, n)πanλn′no′pθ(x
′|x, a)pθ(o

′|x′, a).
5: end for

6: end for

Given a fixed θ ∈ Θ, the marginals of p̃ can then be derived from the forward messages

µθ and backward messages µ̄θ. We obtain
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Algorithm 4.2 Computing the backward messages µ̄θ for fixed θ ∈ Θ
Input: fsc Λ
Output: Backward messages µ̄θ

1: Initialize µ̄0,θ(x, n) =
∑

a πanu(a, x) for all x ∈ X,n ∈ N .
2: for t = 1 to t = T do

3: for all x ∈ X,n ∈ N do

4: Set µ̄t,θ(x, n) =
∑

x′,n′,a,o′ µ̄t−1,θ(x
′, n′)πanλn′no′pθ(x

′|x, a)pθ(o
′|x′, a).

5: end for

6: end for

p̃(t, n0 = n|θ,Λ) =
∑

x

µ0(x, n)µ̄t,θ(x, n)γ
t (4.10)

p̃(t, aτ = a, nτ = n|θ,Λ) =


















∑

x,x′,n′,o′
µτ,θ(x, n)πanpθ(x

′|x, a)pθ(o
′|x′, a)λn′no′µ̄t−τ−1,θ(x

′, n′)γt, τ < t

∑

x

µτ,θ(x, n)πanu(a, x)γ
τ , τ = t

(4.11)

p̃(t, nτ+1 = n′, nτ = n, oτ+1 = o′|θ,Λ) =

∑

x,x′,a

µτ,θ(x, n)πanpθ(x
′|x, a)pθ(o

′|x′, a)λn′no′µ̄t−τ−1,θ(x
′, n′)γt. (4.12)

fsc performance can then be computed via the formula

J(Λ) =
∑

θ

pθ(θ)
T
∑

t=0

∑

x,n

νnp0(x)µ̄t,θ(x, n)γ
t. (4.13)

Furthermore, the infinite-horizon fsc updates can be derived by taking the limit of the

summations in (4.7)–(4.9) as T →∞ (Appendix, Proposition A). We obtain
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∞
∑

t=0

p̃(t, n0 = n|θ,Λ) =
∑

x

µ0(x, n)Bθ(x, n) (4.14)

∞
∑

t=0

t
∑

τ=0

p̃(t, aτ = a, nτ = n|θ,Λ) =

πan
∑

x

u(a, x)Fθ(x, n) + γ
∑

x,x′,n′,o′

πanpθ(x
′|x, a)pθ(o

′|x′, a)λn′no′Fθ(x, n)Bθ(x
′, n′)

(4.15)

∞
∑

t=1

t−1
∑

τ=0

p̃(t, nτ+1 = n′, nτ = n, oτ+1 = o′|θ,Λ) =

γ
∑

x,x′,a

πanpθ(x
′|x, a)pθ(o

′|x′, a)λn′no′Fθ(x, n)Bθ(x
′, n′), (4.16)

where Fθ(x, n) = limt→∞F
t
θ(x, n) and Bθ(x, n) = limt→∞ B

t
θ(x, n) can be computed for

fixed θ ∈ Θ by initializing F0
θ (x, n) and B0

θ(x, n) arbitrarily and applying the recursive

formulas

F tθ(x
′, n′) = νn′p0(x

′) + γ
∑

x,n,a,o′

F t−1
θ (x, n)πanλn′no′pθ(x

′|x, a)pθ(o
′|x′, a) (4.17)

Btθ(x, n) =
∑

a

πanu(a, x) + γ
∑

x′,n′,a,o′

Bt−1
θ (x′, n′)πanλn′no′pθ(x

′|x, a)pθ(o
′|x′, a), (4.18)

until convergence to a unique fixed point. fsc performance in the infinite horizon can be

computed via the following formula:
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J(Λ) =
∑

θ

pθ(θ)
∑

x,n

p0(x)νnBθ(x, n). (4.19)

4.4 Variational Bayes ❡♠ for ❜❛♣♦♠❞♣s

We now consider the case where the model prior pθ is given by a product of independent

Dirichlet distributions (Johnson et al., 2002), i.e.,

pθ(θ) ∝
∏

x,a

Dir(θx
′

x,a|α
x′

x,a)
∏

x′,a

Dir(θo
′

x′,a|α
o′

x′,a), (4.20)

where the vectors α parameterize the Dirichlet distributions and hence can be inter-

preted as pseudo-counts. Generally speaking, if θ = (θ1, θ2, . . . , θn) ∼ Dir(α) for α =

(α1, α2, . . . , αn) with n ≥ 2, then the multivariate density of θ is given by

Dir(θ|α) =
Γ(Σαi)
∏

Γ(αi)

∏

i

θαi−1
i

for all θ such that 0 < θi < 1 and
∑

i θi = 1, where Γ is the Gamma function (Davis,

1972). As before, we begin by considering the T -horizon problem since the infinite-horizon

version can be derived by taking the limit as T →∞.

In the more restricted Bayes-adaptive mdp setting (Furmston and Barber, 2010), the

following assumption is made to obtain a tractable m-step: constrain the distribution q

to have the factored representation q = qzqθ, that is, q can be written as a product of

distributions over the latent variables z and the unknown model parameters θ. Recall
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that when q is unconstrained, choosing q to be the maximizer of the lower bound (4.3) in

the e-step guarantees that any increase to the lower bound in the m-step likewise implies

a strict increase to J(Λ). Once we constrain q = qzqθ, however, we lose this guarantee.

Given the general complexity of bapomdps, we see this as an acceptable concession for

the sake of tractability.

We now derive the em algorithm resulting from this factorization of q in the bapomdp

case, and highlight an unfavorable preference toward a certain class of fscs that can

arise.

4.4.1 Variational Bayes ❡-step

We now constrain q to have the factored form

q(z, θ) = qz(z)qθ(θ). (4.21)

The lower bound of log J(Λ) in (4.3) then becomes

L(qz, qθ) = −〈log qz(z)〉qz − 〈log qθ(θ)〉qθ + 〈log pθ(θ)〉qθ + 〈log p̃(z|Λ, θ)〉qzqθ . (4.22)

The e-step consists of optimizing (4.22) with respect to the factored distribution q given

a fixed fsc Λ. We adopt the coordinate ascent approach of Furmston and Barber (2010)

and alternate between (i) maximizing (4.22) with respect to qθ for fixed qz and Λ, and

(ii) maximizing (4.22) with respect to qz for fixed qθ and Λ.
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Maximizing (4.22) with respect to qθ using the calculus of variations, we find the optimal

qθ update to be

qθ(θ) ∝ pθ(θ) exp〈log p̃(z|θ,Λ)〉qz . (4.23)

The details of this derivation are provided in the Appendix (Lemma A). Expanding the

right-hand side of (4.23),

qθ(θ) ∝ pθ(θ) exp〈log p̃(z|θ,Λ)〉qz

∝ pθ(θ) exp

(

∑

z

qz(z) log p̃(z|θ,Λ)

)

∝ pθ(θ) exp

(

∑

z

qz(z)
t−1
∑

τ=0

log θxτ+1
xτ ,aτ

)

exp

(

∑

z

qz(z)
t−1
∑

τ=0

log θoτ+1
xτ+1,aτ

)

∝ pθ(θ) exp

(

∑

x′,x,a

log θx
′

x,a

T
∑

t=1

t−1
∑

τ=0

qz(t, xτ+1 = x′, xτ = x, aτ = a)

)

exp

(

∑

o′,x′,a

log θo
′

x′,a

T
∑

t=1

t−1
∑

τ=0

qz(t, xτ+1 = x′, oτ+1 = o′, aτ = a)

)

. (4.24)

For fixed x′, o′, x, a let

qx
′

x,a =
T
∑

t=1

t−1
∑

τ=0

qz(t, xτ+1 = x′, xτ = x, aτ = a)

qo
′

x′,a =
T
∑

t=1

t−1
∑

τ=0

qz(t, xτ+1 = x′, oτ+1 = o′, aτ = a), (4.25)
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which can be computed by applying the forward-backward algorithm to the factor graph

of qz. Then, working with the final line of (4.24) we obtain

qθ(θ) ∝ pθ(θ) exp

(

∑

x′,x,a

qx
′

x,a log θ
x′

x,a

)

exp

(

∑

o′,x′,a

qo
′

x′,a log θ
o′

x′,a

)

∝ pθ(θ)
∏

x′,x,a

θx
′

x,a

qx
′

x,a
∏

o′,x′,a

θo
′

x′,a

qo
′

x′,a

∝
∏

x,a

Dir(θx
′

x,a|α
x′

x,a + qx
′

x,a)
∏

x′,a

Dir(θo
′

x′,a|α
o′

x′,a + qo
′

x′,a)

=
∏

x,a

Dir(θx
′

x,a|β
x′

x,a)
∏

x′,a

Dir(θo
′

x′,a|β
o′

x′,a), (4.26)

where for notational convenience we have defined βx
′

x,a = αx′

x,a + qx
′

x,a and βo
′

x′,a = αo′

x′,a +

qo
′

x′,a. Therefore, the update to qθ(θ) reduces to computing Dirichlet pseudo-count vectors

of the form q, which are derived from the current estimate of qz.

Next, we maximize (4.22) with respect to qz using the calculus of variations and find

the optimal qz update to be

qz(t, x
t, nt, at, ot) ∝ exp〈log p̃(t, xt, nt, at, ot|θ,Λ)〉qθ . (4.27)

The details of this derivation are provided in the Appendix (Lemma A). Expanding the

right-hand side of (4.27),

qz(t, x
t, nt, at, ot) ∝ exp 〈log p̃(t, xt, nt, at, ot|θ,Λ)〉qθ
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= p0(x0)νn0πatnt
ut(at, xt)

t−1
∏

τ=0

πaτnτ
λnτ+1nτoτ+1

t−1
∏

τ=0

exp 〈log θxτ+1
xτ ,aτ
〉qθ

t−1
∏

τ=0

exp 〈log θoτ+1
xτ+1,aτ

〉qθ . (4.28)

In particular, we see that the only quantities dependent on qθ—and hence must be updated

with each iteration on qz—are

exp 〈log θx
′

x,a〉qθ and exp 〈log θo
′

x′,a〉qθ . (4.29)

In the Appendix (Lemma B), we prove that these state-transition and observation-

emission parameters are sub-stochastic. For simplicity, we will refer to these quantities

collectively as the “qz parameters”.

Because the update to qθ can be written as a product of independent Dirichlets (4.26)

with pseudo-count parameters β, the qz parameters can be computed efficiently using

the Digamma function ψ (Medina and Moll, 2009). Without loss of generality, if θ ∼

Dir(α1, α2, . . . , αn), then

E[log θi] = ψ(αi)− ψ(Σαj).

It follows that

exp 〈log θx
′

x,a〉qθ =
expψ(βx

′

x,a)

expψ(
∑

x′′ β
x′′
x,a)

and exp 〈log θo
′

x′,a〉qθ =
expψ(βo

′

x′,a)

expψ(
∑

o′′ β
o′′

x′,a)
. (4.30)
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The conditional updates to qz (4.27) and qθ (4.23) are iterated until sufficient conver-

gence is obtained, thus concluding the e-step.

4.4.2 Variational Bayes ♠-step

Given the factorization q = qzqθ, the m-step updates to Λ take the following form:

ν∗n ∝
T
∑

t=0

qz(t, n0 = n) (4.31)

π∗
an ∝

T
∑

t=0

t
∑

τ=0

qz(t, aτ = a, nτ = n) (4.32)

λ∗n′no′ ∝

T
∑

t=1

t−1
∑

τ=0

qz(t, nτ+1 = n′, nτ = n, oτ+1 = o′), (4.33)

which can be derived by maximizing the lower bound (4.22) with respect to Λ, given fixed

q = qzqθ. Note that since we have approximated q by a factored distribution of the form

qzqθ, the marginalization of qz is now trivial in contrast to the updates (4.4)–(4.6) when

q is not constrained, which require integrating over the continuous model parameters θ.

4.5 A critique of ✈❜✲❡♠

We now offer a critique of the vb-em algorithm just presented that is consistent with

observations made by Furmston and Barber (2010) pertaining to the more restricted

Bayes-adaptive mdp setting.

When the exact m-step updates are carried out as in (4.4)–(4.6), the marginals of

q are reward-weighted and capture the relative worth of fsc policy decisions, thereby
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informing fsc updates that are guaranteed to improve the controller with each iteration.

In vb-em, however, the fsc updates are computed using marginals of qz. While these

marginals are also reward-weighted—as can be seen from (4.28)—they also differ in an

important way. Recall that qz is defined in terms of sub-stochastic state-transition and

observation-emission parameters (4.30). In other words,

∑

x′

expψ(βx
′

x,a)

expψ(
∑

x′′ β
x′′
x,a)

< 1 and
∑

o′

expψ(βo
′

x′,a)

expψ(
∑

o′′ β
o′′

x′,a)
< 1, (4.34)

where the level of sub-stochasticity will be greater for smaller sums
∑

x′ β
x′

x,a and
∑

o′ β
o′

x′,a,

corresponding to larger variances in the independent Dirichlets that define qθ. Due to

the form of qz (4.28), computing its marginals requires partitioning over all possible

state-transitions and observation-emissions whenever an action at is drawn from π·nt
. Be-

cause the state-transition and observation-emission parameters are sub-stochastic, this

partitioning effectively discounts the future expected reward associated with the current

controller Λ; and the greater the sub-stochasticity, the larger this discount will be. As a re-

sult, controllers Λ that tend to “activate” model parameters with greater sub-stochasticity

are discriminated against in the m-step updates, and hence an unfavorable preference can

arise toward controllers Λ′ that activate fewer sub-stochastic model parameters yet per-

form worse, that is, J(Λ′) < J(Λ). This phenomenon—which we will hereafter refer to as

“variance-based discounting”—is particularly problematic when P contains some actions

that cause deterministic state-transitions and/or observation-emissions and others that

do not. In the Appendix (Example A), we show that vb-em’s variance-based discounting

can lead to exceptionally poor fscs even in the case of a trivial Bayes-adaptive mdp.

One approach to eliminating the undesirable effects of variance-based discounting is to

simply choose a single model θ̂ (e.g., mean, mode) from the continuous prior pθ and solve



Chapter 4. Expectation-maximization for bapomdps 68

the resulting standard pomdp with an existing pomdp algorithm. However, empirical

results presented by Wang et al. (2012) and Ross et al. (2008, 2011), along with our

analysis of the two-state problem in Chapter 3, suggest that such point-based policies can

significantly underperform model-adaptive policies in a Bayesian setting. In the following

section we propose a novel generalization of vb-em that allows for tunable control over

the effect of model variance on the m-step updates. Our approach—which we refer to

as constrained vb-em (cvb-em)—strikes a balance between point-based methods and

the vb-em algorithm of Section 4.4. In particular, we (i) retain the general structure

of vb-em so that robustness against model uncertainty is preserved via the continuous

qθ distribution; and (ii) constrain the e-step so that qθ is more concentrated on a single

model, thus reducing the influence of variance-based discounting in the m-step.

4.6 Constrained ✈❜✲❡♠

For clarity of presentation, we now assume that the uncertain model parameters θ consist

of a single probability vector θ = (θ1, θ2, . . . , θn) such that n ≥ 2, with prior distribution

pθ(θ) ∼ Dir(θ|α). In this context, θ could represent either a state-transition distribution

or an observation-emission distribution. Note that the extension to the full bapomdp

case is straightforward due to the independence assumption on the full set of Dirichlets

that define the model prior pθ in (4.20). Furthermore, we now explicitly constrain the

update qθ to have the convenient Dirichlet form, that is, qθ ∼ Dir(β). For convenience,

we reproduce the lower bound L(qz, qθ) originally defined in (4.22):

L(qz, qθ) = −〈log qz(z)〉qz − 〈log qθ(θ)〉qθ + 〈log pθ(θ)〉qθ + 〈log p̃(z|Λ, θ)〉qzqθ .

Let C denote any constant independent of β. Due to the Dir(β) form of qθ, we can write
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〈log qθ(θ)〉qθ =

∫

θ

qθ(θ) log

(

Γ(Σβi)
∏

Γ(βi)

∏

i

θβi−1
i

)

dθ

=

∫

θ

qθ(θ)
∑

i

(βi − 1) log θi dθ + log
Γ(Σβi)
∏

Γ(βi)

=
∑

i

(βi − 1)

∫

θ

qθ(θ) log θi dθ + log
Γ(Σβi)
∏

Γ(βi)

=
∑

i

(βi − 1)
(

ψ(βi)− ψ(Σβj)
)

+ log
Γ(Σβi)
∏

Γ(βi)
.

In a similar fashion, we find that

〈log pθ(θ)〉qθ =
∑

i

(αi − 1)
(

ψ(βi)− ψ(Σβj)
)

+ C

〈log p̃(z|Λ, θ)〉qzqθ =
∑

i

qi
(

ψ(βi)− ψ(Σβj)
)

+ C,

where the qi are uniquely determined scalars such that exp〈log p̃(z|Λ, θ)〉qz ∝
∏

j θ
qj
j ,

analogous to (4.25), with the specific formula depending on whether β corresponds to

a state-transition distribution or an observation-emission distribution. Given the above

expressions, the lower bound L(qz, qθ) can be expressed as

L(qz, qθ) =
∑

i

(αi + qi − βi)
(

ψ(βi)− ψ(Σβj)
)

− log
Γ(Σβi)
∏

Γ(βi)
+ C. (4.35)
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4.6.1 Constrained ❡-step

Recall that the m-step of vb-em favors policies that tend to activate lower-variance model

parameters. A natural approach to reduce this effect is to reward updates to qθ that result

in lower degrees of sub-stochasticity in qz. In the most extreme case, we want to enforce

the constraint
∑

i e
ψ(βi)−ψ(Σβj) = 1. This gives rise to a constrained e-step, where the

update to qθ solves the following optimization problem:

max
β

∑

i

(vi − βi)
(

ψ(βi)− ψ(Σβj)
)

− log
Γ(Σβi)
∏

Γ(βi)
(4.36)

s.t.
∑

i

eψ(βi)−ψ(Σβj) = 1

βi > 0 for all i,

where we have defined vi = αi + qi for notational convenience. However, by Lemma B

in the Appendix the strict inequality
∑

i e
ψ(βi)−ψ(Σβj) < 1 holds for all β > 0, so that

(4.36) has no feasible solutions. As an alternative, we introduce a Lagrangian relaxation

to (4.36) by incorporating the stochasticity constraint as a penalty term in the objective.

Let

L̃(β) =
∑

i

(vi − βi)
(

ψ(βi)− ψ(Σβj)
)

− log
Γ(Σβi)
∏

Γ(βi)
− κ
(

1−
∑

i

eψ(βi)−ψ(Σβj)
)

, (4.37)

where the scalar multiplier κ > 0 indicates the strength of our aversion to sub-stochasticity

in the qz parameters. The Lagrangian relaxation to (4.36) is then
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max
β

L̃(β) (4.38)

s.t. βi > 0 for all i.

A necessary condition for optimality in (4.38) is given by ∂L̃/∂βi = 0 for all i = 1, . . . , n.

From these conditions, it can be shown (Appendix, Lemma C) that any optimal β must

satisfy either

βi = vi + κeψ(βi)−ψ(Σβj) for all i, (4.39)

or

ψ′(Σβj)
∑

j

1

ψ′(βj)
= 1. (4.40)

Furthermore, it can be shown that condition (4.40) will never hold since ψ′(Σβj)
∑

j
1

ψ′(βj)
<

1 for all β > 0 (Appendix, Lemma D). Therefore any critical point must satisfy the system

of equations in (4.39). In the following section we prove that there is a unique solution β∗

to this system, and that it can be obtained via fixed-point iteration. Once established,

the uniqueness of β∗ implies that it must also be a global maximizer of (4.38), that is,

qθ ∼ Dir(β∗) is the optimal constrained Dirichlet update in the cvb-em algorithm.
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4.6.2 Computing β∗ via fixed-point iteration

From this point forward, we restrict our consideration to v such that vi ≥ 1 for all i.

This is a very mild restriction, since the components of v are at least as large as the

corresponding pseudo-counts αi from the model prior pθ, which we should expect to be

no less than one in any instance we consider. We now prove that there exists a unique

Dirichlet distribution satisfying the system of equations (4.39), and that this solution can

be obtained via fixed-point iteration.

Theorem: The system of equations given by βi = vi + κeψ(βi)−ψ(Σβj) for all 1 ≤ i ≤ n

has a unique solution, which can be obtained via fixed-point iteration.

Proof outline: We express the system of equations as G(β) = β, where G : B 7→ B

is a vector-valued function satisfying G(β) = (g1(β), g2(β), . . . , gn(β)) with gi(β) =

vi + κeψ(βi)−ψ(Σβj). Here B is an appropriately defined compact, convex set that is closed

under the continuous mapping G, and includes all possible solutions to the nonlinear

system. By Brouwer’s fixed-point theorem (Istratescu, 2002) there must exist at least

one solution β∗ ∈ B such that G(β∗) = β∗. We then show that the spectral radius

ρ(G′(β)) of the Jacobian matrix G′(β) satisfies ρ(G′(β)) < 1 for all β ∈ B. This proves

that G is a contraction (Schwarz and Waldvogel, 1989) so that the fixed-point iteration

β(k+1) = G(β(k)) converges to a unique solution β∗. �

The full proof of this theorem can be found in the Appendix (Theorem A).
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4.6.3 Characterization of β∗

In the Appendix (Lemma E), we show that any β satisfying the system of equations

(4.39) also satisfies

βi = vi + κ
βi
Σβj
− di (4.41)

for all 1 ≤ i ≤ n, where each di is a scalar (not necessarily unique) such that 0 < di < 1/2.

Solving (4.41) for κ, we obtain

κ = Σβj −
Σβj
βi

(vi − di).

Equating the right-hand side of the above expression for i and some l 6= i, we find that

βl = βi

(

vl − dl
vi − di

)

,

and therefore by substitution

βi
Σβj

=
vi − di

∑

j vj − dj
. (4.42)

From this expression, we see that the mean of the updated Dirichlet qθ ∼ Dir(β∗) has a

consistent and non-degenerate form for any κ > 0.



Chapter 4. Expectation-maximization for bapomdps 74

Let us consider the behavior of cvb-em as κ→∞, corresponding to a tightening of the

soft constraint on qθ. First, it is straightforward to show via summation of the right-hand

and left-hand sides of (4.41) that the fixed point β∗ satisfies Σβ∗
j > κ. Therefore κ→∞

implies Σβ∗
j →∞, by which Var[qθ]→ 0. As a result, as κ tends to infinity the updated

qθ ∼ Dir(β∗) will become increasingly concentrated towards a mean of the form (4.42).

4.6.4 Practical considerations

We have described how the unfavorable variance-based discounting of certain policies can

be mitigated by imposing a soft constraint on the form of the update to qθ. The soft

constraint is tightened by increasing the penalty multiplier κ, which can be distinct for

each of the independent Dirichlets in the model prior pθ. Furthermore, as an alternative

to simply choosing a point estimate θ̂ from the model prior, the effect of variance-based

discounting can be eliminated completely by considering the limiting case as κ→∞.

The cvb-em algorithm of Section 4.6 requires the modeler to select a κ for each Dirichlet

composing the distribution pθ a priori, but does not prescribe how the κ parameters

should be chosen to maximize the performance J(Λ) of the resulting fsc Λ. As a rule

of thumb, the κ parameters should be large enough to mitigate the undesirable effect of

variance-based discounting, while not so large that the peakedness of qθ fails to capture

the uncertainty given by the model prior pθ. When the standard vb-em algorithm fails

to generate good policies, this is likely because increases in the vb-em lower bound (4.22)

do not correspond to significant increases in log J(Λ). This suggests that cvb-em will

perform best when the κ parameters are chosen to more tightly couple the cvb-em lower

bound (4.37) to the true objective log J(Λ). Because there is no obvious mechanism for

the optimal selection of these parameters, in the empirical study that follows we simply

run cvb-em over a range of multipliers κ, where the same κ is used for each Dirichlet
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distribution in the prior. In Section 4.9 we revisit this issue and outline a possible heuristic

for the more sophisticated selection of the κ parameters.

4.7 An empirical study

In this section we apply the cvb-em algorithm to a pair of test problems. We compare

the performance of fscs generated by cvb-em to policies derived from the mean and

mode point estimates of the prior pθ, and we compare the sampling-based em algorithm

of Section 4.3 to the sampling-based pbvi approach of Wang et al. (2012). Historically,

bapomdp policies have been evaluated assuming that a single model from the prior pθ

is true, so that empirical performance captures how well the bapomdp policy adapts to

this single model over time. However, the selection of a single model from the prior is

somewhat arbitrary and policy performance will likely be sensitive to this choice (recall

the discussion of Section 1.1.2). As a result, we adopt the actual bapomdp objective

(1.1) as our performance criterion, which we believe to be a more robust measure of

policy performance given prior model uncertainty.

4.7.1 Problem definitions

Let P = {X,A,O, u, γ, pθ} be an infinite-horizon bapomdp with the following properties:

First, the state space is defined such that X = {1, . . . , n}, and the process always begins

in state 1. The agent has two actions at its disposal, “go” (g) and “shuffle” (s), so that

A = {g, s}. Under action g, each model θ ∈ Θ defines a left-to-right hmm on the states

1 ≤ x ≤ n, where n is an absorbing state. In particular, for states 1 ≤ x < n, the

probability of self-transition under action g is pg and the probability of transitioning to

state x+1 is 1−pg. Furthermore, u(g, x) = r > 0 for all 1 ≤ x < n and u(g, n) = −c2 < 0.
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2 n3 n− 11

1 (−c2)pg (r) pg (r) pg (r)

ps
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(−c1)ps

n−1 (−c1)ps3 (−c1)ps2 (−c1)ps1 (−c1)

1− pg (r) 1− pg (r) 1− pg (r)

pg (r)

Figure 4.2: Diagram of the bapomdp Shuffle from Section 4.7.1. Rewards associated
with each transition are indicated in parentheses. For simplicity, the observation-emission
distributions are not included.

When action s is taken, the current state is “shuffled” by transitioning from this state to

any of the n states with probabilities psx for 1 ≤ x ≤ n, and a reward of u(s, ·) = −c1 is

received for taking this action. Generally, we assume that −c2 ≤ −c1 ≤ 0.

When the goal is to maximize the discounted reward over an infinite horizon, we refer

to this problem as Shuffle. In a fully observable setting, an optimal Shuffle policy would

take action g in all states 1 ≤ x < n and take action s in state n. However, to make the

problem challenging we assume that the true state is not directly visible to the agent.

Rather, each state x emits a discrete observation o ∼ p(·|x) that can be used to infer the

hidden state. Problem Shuffle is summarized by the diagram in Figure 4.2. Note that

the state-transition and observation-emission probabilities described above are implicitly

parameterized by the model θ ∼ pθ(·). We will also consider a T -horizon variation of

problem Shuffle, which we refer to as Stop. Problem Stop differs from problem Shuffle in

that action s now terminates the reward process with an immediate reward of 0.

Recall that u must satisfy u ≥ 0 to apply the em algorithms. A Shuffle bapomdp, for

example, can be transformed into the equivalent bapomdp P ′ = {X,A,O, u′, γ, pθ},

where we set u′ = u + c2 ≥ 0. In the following section we conduct an algorithm

performance comparison by choosing specific inputs to parameterize Shuffle and Stop
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bapomdps, including model priors pθ given by products of independent Dirichlet distri-

butions.

4.7.2 Numerical results

The instances of Stop and Shuffle that we examine include a larger number of uncertain

model parameters than the problems typically encountered in the bapomdp literature,

and by necessity are generally smaller in size than the problems typically encountered

as well (as judged by the number of states, actions, and observations). By restricting

our attention to smaller bapomdps, our performance comparison is more attuned to

evaluating the overarching goal of bapomdp policies, that is, robustness against model

uncertainty.

First, we consider a bapomdp parameterization of Stop given by n = 5, r = 1, c = 5,

T = 20, and γ = 1. The self-transition probability pg follows a Beta(4, 2) prior and is

shared by all states 1 ≤ x < n. Furthermore, we assume |O| = |X| and that for each state

x′ = 1, . . . , n the observation-emission probabilities p(·|x′)—which are here independent

of the action—follow a Dir(α) prior, where α = (α1, . . . , αn) and αi = n − |i − x′|. This

serves to correlate more highly states and observations that are closer in index.

Next, we consider a bapomdp parameterization of Shuffle given by n = 5, r = 5, c1 =

c2 = 10, γ = 0.95. As with problem Stop, the self-transition probability pg under action g

follows a Beta(4, 2) prior and is shared by all states 1 ≤ x < n. Also as before, we assume

|O| = |X| and that for each state x′ = 1, . . . , n the observation-emission probabilities

p(·|x′) follow a Dir(α) prior, where α = (α1, . . . , αn) and αi = n− |i− x′|. Under action

“shuffle” (s), the conditional transition probabilities follow a Dir(n, n − 1, . . . , 1) prior

that is shared by all n states.
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We now apply the cvb-em algorithm to the instances of Stop and Shuffle defined above.

To this end, we run the cvb-em algorithm over a range of κ values, using the same κ for

each Dirichlet in the model prior. For each κ ≥ 0 considered, cvb-em is run to conver-

gence over five independent trials, each seeded with a random fsc Λ(0) where |N | = 30

for Stop and |N | = 60 for Shuffle. To better gauge the effectiveness of cvb-em, we

compare its performance to that of existing bapomdp algorithms. As one alternative, we

compute the mean and mode point estimates of the prior pθ, and then approximate the

optimal policy via a standard implementation of point-based value iteration (Cassandra,

2009), assuming that the point estimate is the true model (algorithms pbvi-mean and

pbvi-mode, respectively). Policies constructed in this way are by definition not model-

adaptive and hence serve as crude lower bounds to Bayes optimal performance. Note

that algorithms pbvi-mean and pbvi-mode are run only once, since we found the poli-

cies generated to be relatively insensitive to random belief point selection. As a second

alternative, we sample 10, 100, and 1000 models Θ̃ from the prior pθ and then apply the

sampling-based em algorithm of Section 4.3 (algorithm em-sample) and the sampling-

based pbvi approach of Wang et al. (2012) (algorithm pbvi-sample) to the resulting

discrete bapomdp. For each finite sample Θ̃ of size |Θ̃| = 10, 100, 1000 drawn from pθ,

algorithms em-sample and pbvi-sample are run to convergence using the same uniform

discrete prior over Θ̃, and this experiment is repeated five times for each sample size. As

with cvb-em, algorithm em-sample is initialized with random fscs of sizes |N | = 30

and |N | = 60 for Stop and Shuffle, respectively.

Additionally, we supplement em-sample with a forward-search subroutine for escap-

ing locally optimal fscs, originally proposed by Poupart et al. (2011b) in the context of

standard pomdps and extended herein (with some additional modifications) to the more

general bapomdp setting. Essentially, forward-search grows the current fsc via explo-

ration from the initial belief, during which new nodes are added to the controller when
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suboptimal actions and/or successor nodes are encountered. In this way, forward-search

has the potential to improve locally optimal fscs by inserting sequences of nodes that

are explicitly model-adaptive. A formal statement of the forward-search subroutine can

be found in Section 5.2. Our convention in this study was to run forward-search as an

intermediate procedure during em whenever a locally optimal fsc was reached, adding

no more than O(500) new nodes to the controller in total. As such, the fscs generated

by em with forward-search were more parsimonious than the policies generated by pbvi-

sample, which required O(1000) α-vectors at each decision epoch to attain the levels of

performance cited below.

It should also be noted that we adopt a parameterized m-step update to accelerate the

convergence of all em algorithms considered in this study. With a more detailed descrip-

tion to follow in Section 5.1—along with a performance comparison of parameterized em

to ordinary em—the parameterized m-step essentially leverages the standard em update

to approximate the objective function’s gradient in the neighborhood of the current so-

lution Λ(k) during each iteration k, which is then used to potentially improve Λ(k) by

pushing the update even further in the direction of the approximated gradient.

The performance of each policy generated in this study is approximated via Monte-

Carlo simulation subject to the continuous model prior pθ. Performance plots comparing

algorithm cvb-em to algorithms pbvi-mean and pbvi-mode can be found in Figures 4.3

and 4.4 for problems Stop and Shuffle, respectively. For each κ, the cvb-em performance

curve is centered at the mean of five independent trials, with a vertical bar used to denote

the best and worst controllers obtained over these trials. Table 4.1 contains various

statistics comparing the performance of algorithms em-sample and pbvi-sample.

First, let us consider the performance plot in Figure 4.3. While not pictured, when κ

is sufficiently small (e.g., κ < 200) we find that cvb-em converges to the trivial stop-

ping policy in which action s is taken at time t = 0, corresponding to an expected
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reward of zero. The explanation for this phenomenon is analogous to that of Example

A in the Appendix: Low-variance priors on the state-transition and observation-emission

probabilities lead to variance-based discounting of policies that include action g, so that

the trivial stopping policy is preferred in the m-step updates. As κ increases, however,

the variance-based discounting effect is dampened and cvb-em performance improves

dramatically before tapering off with performance comparable to that of pbvi-mean as

κ → ∞. cvb-em performance attains a maximum of 6.56 near κ = 340 following a

steep rise in performance after κ = 220. Notably, for κ > 240 cvb-em dominates both

pbvi-mean (6.3) and pbvi-mode (5.32). Figure 4.3 suggests the general conclusion that

cvb-em is most successful when a balance is struck between ordinary vb-em—which

arises as κ→ 0 and maintains a robustness against uncertainty via qθ—and point-based

optimization—which is approximated as κ → ∞ and does not suffer from the effects of

variance-based discounting.

Comparing Figure 4.3 to Table 4.1, we find that cvb-em outperforms em-sample

and pbvi-sample for |Θ̃| = 10, but is inferior to the sampling-based approaches for

|Θ̃| = 100 and 1000. Intuitively, this is so because the variational Bayes approximation

to the model prior is inadequate relative to the sampled approximation for larger |Θ̃|.

The superiority of pbvi-sample to em-sample for |Θ̃| = 100 and 1000 is an expected

result: the α-vector policy generated by pbvi-sample is large relative to the fsc of sizes

|N | = 30 and |N | = 60 optimized via em-sample, and is also explicitly model-adaptive by

virtue of the backup operation executed during each iteration over the joint model-state

belief vector. While em-sample lacks the explicit model-adaptivity of pbvi-sample, it

succeeds in generating fscs that display model-adaptive behavior and perform well “in the

average case”, as judged by their superiority to pbvi-mode and pbvi-mean. Moreover,

the statistics in Table 4.1 indicate that by injecting explicit model-adaptivity into the

fsc via forward-search, fsc performance is comparable to that of pbvi-sample while
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maintaining a parsimonious size. Of course, the performance of all em-based algorithms

can be marginally improved by increasing the number of belief nodes |N |, albeit at a

greater computational cost.

The analysis of the infinite-horizon Shuffle instance is similar. Algorithm cvb-em

performance increases sharply near κ = 20 and reaches its peak at approximately κ =

1100 before leveling off as κ → ∞ (see Figure 4.4). The cvb-em algorithm achieves a

maximum performance of 40.81, exceeding the pbvi-mode and pbvi-mean performances

of 39.0 and 40.7, respectively. Although, there is very little separating cvb-em and

pbvi-mean performance for κ > 900, indicating that the fscs generated by cvb-em

may lack robustness against model uncertainty in this infinite-horizon setting. One likely

explanation is that the infinite planning horizon of problem Shuffle magnifies the variance-

based discounting effect, which can only be mitigated by choosing a large κ. (Here

κ ≈ 1100 produces the best performance, as compared to κ ≈ 340 for the finite-horizon

problem Stop.) Large κ implies that qθ will be highly concentrated on a single model and

hence fscs generated by cvb-em will effectively be point-based. Note, however, that

cvb-em remains a significant improvement to standard variational Bayes em for problem

Shuffle, which corresponds to κ → 0 in Figure 4.4. As expected, the sampling-based

algorithms perform better as |Θ̃| increases. em-sample is generally superior to both

point-based algorithms and cvb-em, and inferior to the approaches that display explicit

model-adaptivity, that is, pbvi-sample and em-sample with forward-search.

4.8 Application: A case study in manufacturing

We now return to the manufacturing case study first introduced in Section 1.2. There we

demonstrated the unpredictable performance of the mean and mode point-based policies,
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Figure 4.3: Performance plot for algorithms cvb-em, pbvi-mean, and pbvi-mode when
applied to the Stop instance of Section 4.7.2.

Algorithm |Θ̃| Min. Mean Max.

em-sample
10 6.20 6.32 6.40
100 6.49 6.54 6.60
1000 6.55 6.58 6.60

em-sample
+

forward-search

10 6.16 6.30 6.42
100 6.58 6.60 6.65
1000 6.57 6.63 6.67

pbvi-sample
10 6.10 6.29 6.44
100 6.59 6.63 6.67
1000 6.67 6.68 6.69

Problem Stop

Algorithm |Θ̃| Min. Mean Max.

em-sample
10 38.30 39.30 40.84
100 41.41 41.45 41.49
1000 41.49 41.52 41.55

em-sample
+

forward-search

10 38.35 39.40 40.92
100 41.52 41.60 41.64
1000 41.62 41.70 41.81

pbvi-sample
10 37.94 39.08 40.80
100 41.71 41.73 41.78
1000 41.72 41.78 41.85

Problem Shuffle

Table 4.1: Performance comparison of the em and pbvi sampling-based algorithms for
bapomdps.
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Figure 4.4: Performance plot for algorithms cvb-em, pbvi-mean, and pbvi-mode when
applied to the Shuffle instance of Section 4.7.2.

and their inferiority to the optimal policy under the true, generative hmm θ∗. Our objec-

tive in this section is to show that fscs generated by applying expectation-maximization

to an appropriate bapomdp can outperform the mean and mode point-based policies on

a consistent basis.

To this end, we must first define the model prior pθ. Recall that our convention in

this study was to assume an uninformed Dirichlet prior over the state-transition and

observation-emission probabilities, which was then updated via Bayes rule given inde-

pendent, partially supervised training sequences. A natural approach is to use the re-

sulting posterior distribution as the model prior pθ in a bapomdp formulation. Because

the training sequences are only partially supervised—recall that each training sequence
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consisted only of observed features and a binary value indicating whether the broach is

in a good (xK−1 < n) or bad (xK−1 = n) condition during the Kth and final cutting

pass—the model posterior will not be a product of independent Dirichlets and hence

the constrained vb-em algorithm of Section 4.6 is not applicable. However, we can ran-

domly draw a large number of models Θ̃ ⊂ Θ from the posterior pθ via Gibbs’ procedure

(Cappé et al., 2005; Rydén, 2008) and then apply the sampling-based em algorithm to

the discretized bapomdp using a discrete uniform prior over Θ̃.

Recall that each panel in Figure 1.2 corresponds to a unique set of training data arising

from the same generative tool wear hmm. Here we repeat these experiments and include

performance of the sampling-based em algorithm applied to 100 models Θ̃ drawn via

Gibbs’ procedure from the model posterior, which is a function synthetic training data

unique to the trial. In each case, the em algorithm is initialized with a random fsc

of size |N | = 60. We adopt the parameterized em approach to accelerate convergence,

but forego the application of forward-search both for simplicity and, more importantly,

to demonstrate that em alone is capable of dominating point-based performance in this

context.

The results in Figure 4.5 show that controllers generated by sampling-based em do, in

fact, dominate the mean and mode point-based policies. While em performance is only

marginally superior to mean model performance in panels 3, 6, 7, and 8 (from left to right,

and top to bottom) in the remaining five cases em significantly outperforms both point-

based policies and compares favorably to optimal performance under the generative model

θ∗. Surprisingly, this holds despite the local optimality of em solutions, the comparatively

parsimonious fsc size, and the lack of explicit model-adaptivity inherent in the m-step

updates. Of course, em performance could be further improved in this application by

increasing the controller size, |N |, and injecting explicit model-adaptivity via forward-

search, as supported by the empirical results in Section 4.7.
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Figure 4.5: Performance plots for the Rolls-Royce case study using synthetic broaching
data for model training. Solid lines indicate performance of policies derived from the
generative model, dashed lines indicate performance of policies derived from the mode
point estimates, dotted lines indicate performance of policies derived from the mean point
estimates, and gray lines indicate fsc performance resulting from the sampling-based em
algorithm applied to 100 models drawn via Gibbs’ procedure from the model posterior.
Each plot corresponds to a unique set of training data generated by the true model θ∗.
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4.9 Summary

In this chapter we presented a general expectation-maximization algorithm for solving

bapomdps via finite-state controller optimization and proposed two alternatives for ad-

dressing the intractable integral that arises in the m-step. The first is a sampling-based

algorithm that optimizes an fsc subject to a finite number of models drawn from the

bapomdp prior distribution. Here the integral is replaced by a summation that can be

distributed over multiple concurrent threads. Notably, there is no analogous paralleliza-

tion in the pbvi framework due to the mixing of model parameters in the augmented

belief vector. As a second alternative, we derived a variational Bayes em algorithm that

permits efficient m-step updates when the model prior is given by a product of indepen-

dent Dirichlet distributions. However, as described in Section 4.5 and demonstrated by

example in the Appendix (Example A), the vb-em factorization of q = qzqθ discrimi-

nates against policies that activate higher-variance model parameters, as a result of sub-

stochasticity in the state-transition and observation-emission quantities defining qz. This

phenomenon can be detrimental, causing vb-em to generate policies of monotonically

decreasing reward before converging to a sub-optimal controller. To mitigate the effects

of variance-based discounting we proposed a constrained vb-em algorithm, which reduces

sub-stochasticity in the qz parameters by rewarding lower-variance updates to qθ. By pre-

serving the Dirichlet form in the update to qθ—as opposed to optimizing with respect to

a single point estimate from the model prior—the cvb-em algorithm maintains a robust-

ness against model uncertainty. Our empirical study supports this claim, demonstrating

that cvb-em can significantly outperform policies derived from the mean and mode of pθ

and is far superior to the standard vb-em algorithm (κ→ 0). While the sampling-based

approaches of em and pbvi generally outperformed cvb-em, their success owed in part to

the relatively small problem instances considered, and as the space of uncertain model pa-

rameters increases, the curse of dimensionality will render the sampling-based algorithms
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impractical. In particular, explicit model-adaptive control (achieved via the augmented

model-state belief in the pbvi context and via forward-search in the em context) will no

longer be feasible. It is in these settings where the optimization of bounded fscs via

cvb-em or sampling-based em (without forward-search) will be most attractive, striking

a balance between computational tractability and robustness against model uncertainty.

For simplicity, our cvb-em implementation used same κ parameter for all Dirichlet

distributions in the model prior pθ. Our experiments suggest that cvb-em will perform

best when κ is large enough to mitigate the ill effects of variance-based discounting, while

not so large that the update to qθ resolves uncertainty in pθ to a single point estimate.

Unfortunately, this conclusion does not provide much insight into how the κ parameters

should be chosen to optimize cvb-em performance. At a high level, our goal should be

to choose these parameters so that increases to the cvb-em lower bound are more tightly

coupled to increases in the true objective log J(Λ). While a rigorous analysis of this

relationship could be fruitful, we leave this as question for future research and conclude

the discussion by offering the following (untested) heuristic for adaptively setting the κ

parameters:

Suppose that our goal is optimize a bounded fsc for some bapomdp. Let us consider

the optimal fsc Λ∗ and assess how vb-em might discriminate against this policy, and

how we could correct this behavior with cvb-em. Say, for example, that Λ∗ tends to take

action a in state x, but that the corresponding prior on the state-transition distribution

p(·|x, a) is highly variable. Consequently, the fsc returned by vb-em might avoid this

action altogether as a result of variance-based discounting. In theory, we could mitigate

this unfavorable discounting by choosing a large enough κ multiplier for p(·|x, a) in a cvb-

em implementation. Assuming Λ∗ was known, the relative frequency with which action

a is taken in state x could be approximated by running forward-backward on the factor

graph corresponding to Λ∗ and, say, the mean hmm θ̄ of the prior pθ. The κ multiplier for



Chapter 4. Expectation-maximization for bapomdps 88

each Dirichlet could be set proportionally to its corresponding frequency so that policies

consistent with Λ∗ are favored. With respect to the observation-emission distributions,

we would similarly have to assess the frequency with which, for example, taking action a

causes a transition to a state x′, thereby activating the observation-emission distribution

p(·|x′, a). Of course, Λ∗ will not be known and hence a heuristic alternative is required.

One approach is to do what is prescribed above, but replace Λ∗ with an fsc obtained

by optimizing the pomdp corresponding to the hmm θ̄. If the resulting fsc is “close

enough” to Λ∗, then a rough approximation of the desired frequencies could be obtained

by running forward-backward on the factor graph corresponding to this fsc and the mean

hmm θ̄. Open questions still remain, however, such as the specific mechanism by which

the frequencies described above should be converted into proportional κ weights. As one

alternative, the trace over κ in the experiments of Section 4.7 could be replaced by a

trace over a proportionality constant that maps the distinct frequency for each state-

transition and observation-emission distribution to a unique κ value. In this way—at the

very least—we overcome the limitation of using the same κ for all Dirichlets, while still

only having to trace over a single dimension.



Chapter 5

Improving ❡♠ performance

Expectation-maximization is often criticized for its slow rate of convergence and the

local optimality of its fixed points. In this chapter we develop techniques to address

these criticisms in the context of em for (ba)pomdps and provide empirical results to

demonstrate their usefulness.

5.1 Accelerating convergence with parameterized ❡♠

In this section we derive an efficient parameterized em algorithm for (ba)pomdps that

improves the convergence rate by facilitating greedier updates to the fsc parameters.

Parameterized em for (ba)pomdps updates the current fsc Λ(k) at iteration k by first

computing the subsequent ordinary em update Λ
(k+1)
em , and then selecting Λ(k+1) such that

Λ(k+1) = Λ(k) +∆(k)(Λ
(k+1)
em − Λ(k)), (5.1)

89
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for some appropriately chosen positive scalar ∆(k). In this way, the difference Λ
(k+1)
em −Λ(k)

is used to approximate the true gradient of log J(Λ) in the neighborhood of Λ(k). Note

that when ∆(k) = 1 we have Λ(k+1) = Λ
(k+1)
em , so that parameterized em reduces to ordinary

em.

The success of parameterized em is determined by the choice of step-size ∆(k). When the

ratio of missing information to complete information is small, em will exhibit super-linear,

Quasi-Newton convergence (Salakhutdinov et al., 2003), and hence executing an ordinary

em iteration with ∆(k) = 1 should be sufficient. When this ratio is large, however, em

will often require an inordinate number of iterations before a significant improvement to

fsc performance is realized. In the latter case, consecutive iterations will tend to shift

the fsc in a similar direction and by a similar magnitude, so that considerable gains in

efficiency can be obtained by choosing ∆(k) ≫ 1 with no negative effect on performance.

With this in mind, we now build a simple parameterized em algorithm for fsc opti-

mization. Let Λ(k) be the fsc at the beginning of some iteration k ≥ 0. Our goal is to

choose a step-size ∆(k) > 0 that can improve the resulting fsc Λ(k+1) beyond the ordinary

em update. To this end, we must first take care to disregard infeasible step-sizes ∆(k). In

particular, the components of ν(k+1), π
(k+1)
·n and λ

(k+1)
·no′ must be nonnegative and sum to

one. Given the current fsc Λ(k) and a step-size ∆(k) > 0, it is straightforward to verify

that the components of ν(k+1) will sum to one:

∑

n

ν(k+1)
n =

∑

n

ν(k)n +∆(k)(ν
(k+1)
em,n − ν

(k)
n )

=
∑

n

ν(k)n +∆(k)
∑

n

(ν
(k+1)
em,n − ν

(k)
n )

= 1 + ∆(k) · 0

= 1,
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and the same can be shown for all other pmfs defining Λ(k+1). Therefore, to maintain

feasibility in the updated fsc it is sufficient to bound ∆(k) < ∆̄(k), where ∆̄(k) is the

smallest step-size for which some component of the updated fsc Λ(k+1) becomes negative.

With this in mind, the parameterized em update at iteration k ≥ 0 proceeds as follows:

Given a set D(k) of feasible step-sizes, the subsequent fsc Λ(k+1) is chosen according to

the rule

Λ(k+1) = argmax
∆∈D(k)

J
(

Λ(k) +∆(Λ
(k+1)
em − Λ(k))

)

= argmax
∆∈D(k)

J(Λ
(k)
∆ ). (5.2)

The parameterized em update (5.2) requires a comparison of J(Λ
(k)
∆ ) over all ∆ ∈ D(k).

To this end, we run the forward algorithm (Algorithm 4.1) for each ∆ and compute J(Λ
(k)
∆ )

using the forward messages µ as described by equation (4.13). Ideally, our choice of D(k)

will (i) maintain the monotonicity property of em, (ii) allow for accelerated iterations,

and (iii) admit a tractable fsc update via (5.2). A simple choice of D(k) that satisfies all

three conditions is

D(k) = {1, d · ∆̄(k)} (5.3)

for some 0 < d < 1. Monotonicity is guaranteed by 1 ∈ D(k), acceleration is permitted

by inclusion of the feasible (and possibly large) step-size d · ∆̄(k), and |D(k)| = 2 ensures

the tractability of the parameterized em update. As an added benefit, parameterized em

can also be useful for avoiding locally optimal solutions. For instance, if the update at
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iteration k + 1 satisfies J(Λ(k+1)) > J(Λ
(k+1)
em ), then the em trajectory could “overshoot”

the nearest local optimum in the direction of a more favorable solution. A simple approach

to fsc optimization with parameterized em is summarized in Algorithm 5.1.

Algorithm 5.1 A parameterized em algorithm for bapomdps.

Input: Initial fsc Λ(0), ε > 0
Output: Local optimum Λ∗

1: k ← 0
2: converged← false
3: while ¬converged do

4: e-step: Compute the marginals of q given Λ(k)

5: m-step: Compute Λ
(k+1)
em using the marginals of q

6: Λ(k+1) ← argmax∆∈D(k) J(Λ
(k)
∆ )

7: if ||J(Λ(k+1))− J(Λ(k))|| < ε then

8: converged← true
9: end if

10: k ← k + 1
11: end while

5.2 Escaping local optima with forward-search

Poupart et al. (2011b) evaluate two novel alternatives for escaping locally optimal fscs

in the pomdp setting. The first, node-splitting, is a subroutine for the em algorithm

that independently copies each node n ∈ N and reruns em to convergence by warm-

starting from the current fsc. The split resulting in the best fsc is retained, thus

adding a single node to the controller with each iteration. This process is repeated

until the gain in performance associated with the most recent split is sufficiently small.

The second, forward-search, is a subroutine for infinite-horizon pomdps that performs

a depth-constrained search through the fsc starting from the initial belief. When a

suboptimal action or successor node is encountered, a new node is added to the fsc

with the optimal action and successor node distributions. The authors evaluate both
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node-splitting and forward-search as supplements to the ordinary em algorithm. To this

end, em performance is compared to that of state-of-the-art pbvi algorithms, such as

heuristic search value iteration (hsvi, see Section 2.2.1.2), when applied to a variety of

challenging benchmark pomdps. While both subroutines were successful in generating

fscs competitive with pbvi policies, the authors found node-splitting to be comparatively

intractable due to the number of times, |N |, that em must be run to convergence when

the subroutine is called. For this reason we focus exclusively on forward-search from this

point onward.

Forward-search can be used as an intermediate procedure to supplement the em algo-

rithm when a local optimum is encountered. In particular, the addition of a small number

of well-chosen nodes may be sufficient to escape the optimum, after which em can renew

its ascent towards the globally optimal solution with ordinary updates. Unfortunately,

this use of forward-search is less effective for larger bapomdps, since an inordinate num-

ber of nodes may need to be added to achieve the same effect, thus rendering subsequent

em iterations intractable. In this case forward-search could be used as a terminal pro-

cedure to improve fsc performance through the one-time addition of a large number of

nodes.

Owing to the success of forward-search for pomdps, we have extended this subroutine

(with some additional modifications) to the more general bapomdp setting and also

derived a variation for finite-horizon problems, as this case is not addressed by Poupart

et al. (2011b) but is still of general interest. The finite-horizon and infinite-horizon

forward-search procedures for bapomdps are given in Algorithm 5.2 and Algorithm 5.3,

respectively. Note that both algorithms assume a model prior pθ for which |Θ| < ∞

and are therefore only suitable when used in conjunction with the sampling-based em

algorithm of Section 4.3.
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The finite-horizon and infinite-horizon versions differ only in how the forward and back-

ward messages are used to compute future expectations given our current position in the

search tree, so that without loss of generality we limit the following description to the

infinite-horizon forward-search procedure of Algorithm 5.3. In words, the procedure be-

gins at the initial joint model-state belief vector b = b0 and some fsc node n for which

νn > 0. All combinations of actions a that can be selected by node n and all observations

o that can subsequently be observed at the next time-step are considered in turn. The

updated model-state belief b′ is computed, from which the value, Vmax, of the future ex-

pected reward given the current fsc is derived. The following questions are then asked:

Is it possible to improve upon the current fsc at belief b′ if we define a new node n′ to

be the immediate successor to n given observation o ? And if so, what is the optimal

action a∗ to take at node n′ and what are the optimal successor nodes to n′—belonging

to the initial fsc Λ—given subsequent observations o′ ? Algorithm 5.3 provides answers

to these questions, and a new node n′ is added to the current controller only when do-

ing so guarantees improvement to the objective (Line 18). Note that when successor

nodes are evaluated for the candidate n′, only those nodes included in the initial fsc Λ

are considered, that is, nodes added to the controller during calls of a lesser depth are

ignored (Line 12). This preserves the tractability of forward-search, since then (i) the

backward messages need not be updated during the execution of forward-search, and (ii)

the calculation of quantities V (a′) can be done without accounting for cycling back to

candidate nodes n′. Furthermore, to increase the tractability of exploring greater depths,

we can limit the nodes added at each depth to those K which produce the largest gains

in controller performance.
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Algorithm 5.2 Forward-search for finite-horizon bapomdps

Input: fsc Λ, node indices N , node n, belief b, messages µ̄t = (µ̄t,θ)θ∈Θ, depth d ≥ 1
Output: Improved fsc Λ

1: for all (a, o) ∈ A×O such that πan > 0 do

2: b′θ ← boθ,a for each θ ∈ Θ
3: b′ ← (b′θ)θ∈Θ
4: Vmax ←

∑

n′∈N

∑T−d
t=0

∑

θ,x λn′nob
′
θ(x)µ̄t,θ(x, n

′)γt

5: V ∗ ← −∞
6: for all a′ ∈ A do

7: V (a′)←
∑

θ,x u(a
′, x)b′θ(x)

8: for all o′ ∈ O do

9: b′′θ ← b′o
′

θ,a′ for each θ ∈ Θ
10: b′′ ← (b′′θ)θ∈Θ
11: V (a′)← V (a′) + τ(o′|b′, a′)maxn′∈N

∑

θ,x b
′′
θ(x)

∑T−d−1
t=0 µ̄t,θ(x, n

′)γt+1

12: successor(a′, o′)← argmaxn′∈N

∑

θ,x b
′′
θ(x)

∑T−d−1
t=0 µ̄t,θ(x, n

′)γt+1

13: end for

14: if V (a′) > V ∗ then

15: V ∗ ← V (a′)
16: end if

17: end for

18: if V ∗ > Vmax s.t. a∗ = argmaxa′ V (a′) then
19: Create a copy ñ of node n in Λ
20: Split ñ into ñ1 and ñ2 s.t. πañ1 = 1, πañ2 = 0, and πa′′ñ2 ∝ πa′′n for a′′ 6= a
21: if d = 0 then

22: νñ1 ← νnπan and νñ2 ← νn(1− πan)
23: νn ← 0
24: end if

25: Add a node n′ to Λ s.t. πa∗n′ = 1 and λn′n′′o′ = 1 where n′′ = successor(a∗, o′)
26: λñ1n′o ← 1 and λñ1n′′o ← 0 for all n′′ 6= n′

27: Λ← forward_search(Λ, N, n′, b′, µ̄t, d+ 1)
28: end if

29: end for

5.3 An empirical study

In this study we limit our consideration to parameterized em, since forward-search for

bapomdps was already evaluated in Section 4.7. Here we apply parameterized em to

two pomdps: the well-known Machine problem (Cassandra, 2009)—an infinite horizon

pomdp with 256 states, 16 observations, and 4 actions—and the Shuffle problem from
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Algorithm 5.3 Forward-search for infinite-horizon bapomdps

Input: fsc Λ, node indices N , node n, belief b, messages B = (Bθ)θ∈Θ
Output: Improved fsc Λ

1: for all (a, o) ∈ A×O such that πan > 0 do

2: b′θ ← boθ,a for each θ ∈ Θ
3: b′ ← (b′θ)θ∈Θ
4: Vmax ←

∑

n′∈N

∑

θ,x λn′nob
′
θ(x)Bθ(x, n

′)
5: V ∗ ← −∞
6: for all a′ ∈ A do

7: V (a′)←
∑

θ,x u(a
′, x)b′θ(x)

8: for all o′ ∈ O do

9: b′′θ ← b′o
′

θ,a′ for each θ ∈ Θ
10: b′′ ← (b′′θ)θ∈Θ
11: V (a′)← V (a′) + τ(o′|b′, a′)maxn′∈N

∑

θ,x b
′′
θ(x)Bθ(x, n

′)γ
12: successor(a′, o′)← argmaxn′∈N

∑

θ,x b
′′
θ(x)Bθ(x, n

′)γ
13: end for

14: if V (a′) > Vmax then

15: V ∗ ← V (a′)
16: end if

17: end for

18: if V ∗ > Vmax s.t. a∗ = argmaxa′ V (a′) then
19: Create a copy ñ of node n in Λ
20: Split ñ into ñ1 and ñ2 s.t. πañ1 = 1, πañ2 = 0, and πa′′ñ2 ∝ πa′′n for a′′ 6= a
21: if d = 0 then

22: νñ1 ← νnπan and νñ2 ← νn(1− πan)
23: νn ← 0
24: end if

25: Add a node n′ to Λ s.t. πa∗n′ = 1 and λn′n′′o′ = 1 where n′′ = successor(a∗, o′)
26: λñ1n′o ← 1 and λñ1n′′o ← 0 for all n′′ 6= n′

27: Λ← forward_search(Λ, N, n′, b′,B)
28: end if

29: end for

Section 4.7.1, parameterized by n = 5, r = 1, c = 10, γ = 0.99, pii = 0.75 for all

i = 1, 2, . . . , n− 1, and p0(1) = 1. The discrete observation-emission distributions for the

Shuffle instance are defined as follows: let |O| = |X| and for each state x′ ∈ {1, 2, . . . , n},

we set p(o′|x′) ∝ n − |o′ − x′| for each o′ ∈ O. In this way, states and features that are

closer in index are more highly correlated. Moreover, the “shuffle” action (s) results in a

deterministic transition to state x = 1.
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We compared parameterized em performance to that of ordinary em when applied

to the Machine and Shuffle pomdps. Note that em for pomdps is a special case of

em for bapomdps (Section 4.2), where all prior mass pθ is placed on the known hmm

θ. We considered finite-state controllers of sizes |N | = 5, 10, . . . , 30 for Shuffle and

|N | = 2, 5, 10, 15, 20 for Machine. For each version of em and for each |N |, we ran em

to convergence over 10 independent trials. Here, convergence was defined such that the

marginal improvement in fsc performance was less than ε = 1×10−5 units. To reduce the

variance in our comparisons, the same random fsc Λ(0),i was used to initialize the ith trial

of both parameterized and ordinary em. Furthermore, at each iteration k of parameterized

em, we set D(k) = {1, 0.5 ·∆̄(k)}. For reference, we used the Gapmin algorithm (Poupart

et al., 2011a)—which is closely related to pbvi and iteratively minimizes the gap between

upper and lower value function bounds for infinite-horizon pomdps—to compute upper

bounds to the Shuffle and Machine problem objectives. These bounds were found to be

22.17 and 64.24, respectively.

We compare terminal fsc performance and convergence time for both the ordinary

and parameterized versions of em applied to problem Shuffle in Figures 5.1 and 5.2,

respectively. Each data point in the graphs is centered at the mean of ten independent

trials, with vertical bars indicating the minimum and maximum values achieved for the

statistic over all runs. From Figure 5.1, we see that parameterized em performance

dominates that of ordinary em for all |N |. Because both em variations are started from

the same initial fsc in all trials, we conclude that parameterized em succeeds in avoiding

local optima in the direction of more favorable fscs. Furthermore, from Figure 5.2 it

is clear that parameterized em converges more quickly than ordinary em by orders of

magnitude. To illustrate the contrast in convergence rates, in Figure 5.3 we plot fsc

performance versus time for both em algorithms over a single trial with |N | = 10. Note

also that parameterized em achieves near-optimal performance for |N | ≥ 20, as indicated
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by the upper bound of 22.17.
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Figure 5.1: A performance comparison of parameterized em and ordinary em for an
instance of the Shuffle pomdp. Solid lines indicate the use of parameterized em, dashed
lines indicate non-parameterized em, and the dotted line denotes the Gapmin upper
bound.

Now we turn our attention to the Machine problem. In the performance comparison

of Figure 5.4, we find that average parameterized em performance dominates that of or-

dinary em, although best-achieved performance is comparable for all |N |. Generally, we

find that ordinary em algorithm is more susceptible to becoming trapped at poor local

optima, as evidenced by its worst-achieved performances in Figure 5.4. From Figure 5.5,

we once again find that em run-time can be reduced considerably by taking a parameter-

ized approach, a point that is made more explicit in the comparison of em performance

trajectories over time in Figure 5.6, where |N | = 10.
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Figure 5.2: A run-time comparison of parameterized em and ordinary em for an instance
of the Shuffle pomdp. Solid lines indicate the use of parameterized em and dashed lines
indicate non-parameterized em.

5.4 Summary

In this chapter we explored techniques for addressing the slow convergence rate of em

and the local optimality of em fixed points in the context of (ba)pomdps. Through an

empirical study, we demonstrated that parameterized em can accelerate convergence by

orders of magnitude in both the finite-horizon and infinite-horizon domains. Moreover, by

taking larger step-sizes than ordinary em, parameterized em can avoid poor local optima

by escaping towards more favorable regions of the parameter space.

Recall that in the above experiments we used a fixed step-size multiplier d = 0.5 for

all iterations of parameterized em. The convergence rate could be further improved by

considering adaptive multipliers d(k) that vary from one iteration to the next. Related to
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Figure 5.3: A comparison of fsc performance over time for an instance of the Shuffle
pomdp with |N | = 10. Solid lines indicate the use of parameterized em, dashed lines
indicate non-parameterized em, and the dotted line denotes the Gapmin upper bound.

this idea, we have found that any multiplier d sufficiently greater than zero will accelerate

em to within a small percentage of the nearest local optimum very quickly. However,

attaining these last few percentage points typically requires a disproportionate number

of iterations even when parameterized em is used, likely owing to the number of fsc

parameters that are nearly zero at this juncture and hence restrict the parameterized em

step-size. To increase the convergence rate in this setting it might be useful to explicitly

“zero out”, and thereafter ignore, parameters that are within some threshold of zero so

that future parameterized em updates are less constrained. Of course, care must be taken

to ensure that nodes which become unreachable as a result are removed from the fsc

so that numerical instabilities (e.g., division by zero) do not occur during subsequent

m-steps.
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Figure 5.4: A performance comparison of parameterized em and ordinary em for the
Machine pomdp. Solid lines indicate the use of parameterized em, dashed lines indicate
non-parameterized em, and the dotted line denotes the Gapmin upper bound.

In their current form, the forward-search procedures of Algorithm 5.2 and Algorithm

5.3 are quite useful (as indicated by the performance comparison of Table 4.1) but leave

much room for improvement. Given an fsc Λ, the procedures add optimal action and

successor nodes at increasing depths, which requires computing future expected rewards

when positioned at newly added nodes. These computations can be done efficiently

when cycles are prohibited among the nodes added during forward-search. To facilitate

this, we require successor nodes to be members of the original fsc Λ, which guarantees

that nodes added during the procedure will not be revisited. As such, it is sufficient

to compute future expectations via a single-step look-ahead using only the backward

messages µ̄ (finite-horizon) or B (infinite-horizon). If instead cycles were permitted among

new nodes, then the conditional expectations at these nodes would have to be stored
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Figure 5.5: A run-time comparison of parameterized em and ordinary em for the Machine
pomdp. Solid lines indicate the use of parameterized em and dashed lines indicate non-
parameterized em.

and updated during the procedure, adding considerable overhead to the algorithm due

to recursive dependencies introduced by the cyclic structure. We revisit this idea in the

closing remarks of Chapter 6 and further discuss the issues that would have to be resolved

if cycles were allowed.
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Figure 5.6: A comparison of fsc performance over time for the Machine pomdp with
|N | = 10. Solid lines indicate the use of parameterized em, dashed lines indicate non-
parameterized em, and the dotted line denotes the Gapmin upper bound.



Chapter 6

Closing remarks

Broadly speaking, the aim of this dissertation was to both justify the superiority of model-

adaptive policies under conditions of model uncertainty and, once established, develop

algorithms for solving Bayes-adaptive pomdps, which naturally arises when model un-

certainty is characterized by a prior distribution over the underlying state-transition and

observation-emission probabilities. Our focus was on offline policies in particular, since

only by planning for all possible histories a priori can Bayes optimal control truly be

achieved.

We first introduced a manufacturing case study to demonstrate the inconsistency and

unpredictability of policies derived from the mean and mode point estimates of the model

prior, which motivated the search for robust model-adaptive policies. To further justify

this search, we analyzed a tractable two-state bapomdp and showed that even the best

point-based policy can significantly underperform the Bayes optimal policy. Next, we

derived a general framework for the em-based optimization of fscs in the bapomdp

setting. Due to intractable integrals that arise in the m-step updates, we offered two

tractable alternatives for approximate inference. The first is a sampling-based approach

104
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that optimizes with respect to a finite subset of models Θ̃ ⊂ Θ that are randomly drawn

from the bapomdp prior. As such, the m-step integral is replaced by summation, where

the |Θ̃| summands can be computed in parallel with multiple concurrent threads, one

for each model θ ∈ Θ̃. The second approach—a form a variational Bayes em—replaces

the em lower bound with a variational approximation, such that the m-step integrals

are replaced by an update corresponding to a single “model” qz, which is composed of

sub-stochastic state-transition and observation-emission parameters. Unfortunately, this

sub-stochasticity can lead to an undesirable variance-based discounting of certain policies

in the vb-em algorithm. We introduced the novel constrained vb-em algorithm, which

mitigates the variance-based discounting phenomenon by reducing sub-stochasticity in the

qz parameters of the factored variational distribution q = qzqθ. By altering the cvb-em

multipliers κ, a balance can be struck between ordinary vb-em—which arises as κ → 0

and maintains a robustness against uncertainty via qθ—and point-based optimization—

which is emulated as κ → ∞ and does not suffer from the effects of variance-based

discounting.

Through the empirical study of Section 4.7 and the manufacturing case study of Sec-

tion 4.8, we demonstrated the superiority of model-adaptive fscs generated by em to the

more ubiquitous point-based policies and, moreover, showed em to be competitive with

an existing offline value iteration algorithm. As the space of uncertain model parameters

grows, value iteration may no longer be able to capture the nuances of the bapomdp

objective when optimizing over a tractable subset of beliefs (Wang et al., 2012). In con-

trast, the scalability of sampling-based em is limited only by the number of available

computational threads, and the scalability of cvb-em follows from the variational lower

bound, which eliminates the m-step integral over model parameters. Unfortunately, the

Monte-Carlo simulation used to evaluate the bapomdp objective is computationally in-

feasible for problems much larger than those considered in this dissertation, so that we are
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currently unable to validate em’s scalability in an empirical sense, and we leave this as an

open question. In future studies involving larger problem domains, it may be necessary

to evaluate policies with respect to a single model. This approach is not ideal, however,

because the choice of model is somewhat arbitrary and can have a profound impact on

the performance evaluation (see Section 1.1.2). A more justified scalable alternative is to

evaluate bapomdp policies as in our manufacturing case study—that is, evaluating with

respect to a single model that generates training data to inform the bapomdp prior—

so that there is some connection between the bapomdp prior and the generative model

against which policies are judged.

Despite the encouraging results of em, our current implementations can be improved.

With respect to the sampling-based em algorithm, the major limitations remain the slow

rate of convergence and the local optimality of solutions. Both of these issues were

addressed in Chapter 5, the former with a simple parameterized acceleration scheme

and the latter with a forward-search subroutine. While convergence to the vicinity of a

local optimum is accelerated considerably by parameterized em, slow convergence often

persists within a small neighborhood of the optimum. This behavior is due in part to

fsc parameters that are driven toward extreme values (0 or 1) by early iterations and

later constrain the parameterized em step-size ∆(k). One way to mitigate this behavior

is to round such parameters to their nearest extreme value, effectively eliminating their

influence on the choice of ∆(k). As such, subsequent accelerated iterations will focus

on adjusting those parameters in the interior of the simplex, which stand to have a

greater marginal effect on fsc quality. As outlined in the literature review (Section

2.1.2), there are more sophisticated means of accelerating em convergence that have

not been formally evaluated within the bapomdp setting, for instance certain gradient-

based approaches. In our opinion, the additional overhead of a gradient calculation

coupled with a line search compromises em’s efficiency, thus rendering most gradient
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ascent algorithms impractical. However, scaled expectation-conjugate gradient (Fischer

and Kersting, 2003)—which requires only a single likelihood evaluation with each iteration

and no gradient calculations in addition to the em search direction—could prove useful

for accelerating em in the neighborhood of a local optimum, at least to an extent not

achievable by our parameterized approach.

In Section 5.2 we presented forward-search subroutines for both finite-horizon and

infinite-horizon bapomdps. Forward-search can either be used as an intermediate pro-

cedure to escape a local optimum through the addition of a small number of well-chosen

nodes, or as a terminal procedure to improve fsc performance through the addition of a

large number of nodes. The forward-search implementations used in our experiments—

see Algorithms 5.2 and 5.3—take as input a locally optimal fsc and the initial joint

model-state belief b0. Starting from b0 and the initial node distribution ν, optimal ac-

tion and successor nodes are added in an acyclic fashion when the current fsc can be

improved. Otherwise, the current branch is terminated by returning control to the ini-

tial fsc. Despite the empirical success of forward-search in Section 4.7, open questions

remain:

First, recall that future expected rewards are easily computed during forward-search

due to the acyclic addition of nodes, which avoids circular dependencies in the expec-

tation equations. On the other hand, this convention is somewhat inflexible and the

introduction of cycles could potentially improve fsc performance while allowing for a

more parsimonious controller. If cycling was permitted, however, then a node n added

during forward-search could be revisited, by which its conditional expectation would have

to be updated and stored whenever a component of the fsc reachable from n was altered,

for example when a new successor node was appended to the search tree. In particular,

the addition of a new node would require (i) the back-propagation of expectations to

nodes at lesser depths, and (ii) the resolution of circular dependencies in the expectation
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equations if a cycle was introduced. The former could be handled via message passing,

and the latter could be accomplished by either solving a system of Bellman-like equations

or through approximate iterative methods, but the computational expense of each pro-

cedure could be prohibitive if the current fsc is large. Second, in our empirical studies

the forward-search parameters—namely, the number of nodes added, the search depth,

and the threshold indicating when a new node should be added versus returning control

to the initial fsc—were chosen on an ad hoc basis. While there is certainly no general

rule for parameter selection that will always lead to the best performance, an additional

sensitivity analysis of performance to these parameters might suggest a more informed

heuristic.

Among the approaches considered in this dissertation, the cvb-em algorithm has the

greatest potential for scalability with respect both the number of uncertain model param-

eters and their assumed variability, since discretization of the model space is avoided by

means of the factored variational distribution. In the empirical study of Section 4.7, cvb-

em performance was far superior to that of the point-based policies for the finite-horizon

problem Stop. On the other hand, when applied to problem Shuffle, best-achieved cvb-

em performance was comparable to that of the mean model’s point-based policy, likely

due to the magnified effects of variance-based discounting in the infinite-horizon. How-

ever, it must be noted that the best-achieved cvb-em performance was still far superior

to standard vb-em and, moreover, for both problem instances the best-achieved cvb-

em performance was within a few percentage points of the best-achieved performance

among the sampling-based em and pbvi algorithms. Also, recall that for simplicity we

used the same weight κ for all Dirichlets in pθ when running cvb-em, even though op-

timal cvb-em performance will surely be achieved when the κ weights are allowed to

vary independently for each Dirichlet. Intuitively, these weights should be chosen so that

increases to the cvb-em lower bound are more tightly coupled to increases in the true
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objective log J(Λ). At the very least, further analysis of the cvb-em lower bound should

suggest more sophisticated heuristics for choosing the κ weights (see Section 4.9 for a

more detailed discussion).

To summarize, this dissertation concerns the justification of bapomdp policies and

algorithms for computing such policies offline. Existing offline approaches are inspired

by approximate value iteration for pomdps and include the sampling-based approach of

Wang et al. (2012) and the factored state approach of Ross et al. (2008, 2011) when the

bapomdp prior is given by a product of independent Dirichlet distributions. Arguably,

approximate value iteration scales more gracefully than em with respect to the action,

observation, and state space sizes—|A|, |O|, and |X|, respectively—owing to the success

of approximating the convex optimal value function with a finite number of well-chosen

belief points, and the comparatively large number of iterations required for em to con-

verge. However, the scalability of sampling-based pbvi does not extend to the number

of uncertain model parameters and their assumed variability, due to the cross-product

state space introduced during the bapomdp-to-pomdp conversion. Likewise, when the

model prior is given by a product of independent Dirichlet distributions, the number of

reachable factored states—represented by pseudo-count vectors—remains exponential in

the time-horizon, so that optimal offline planning must be replaced by online heuristics

for tractability. Offline sampling-based em and cvb-em, on the other hand, have the

potential to scale more gracefully with respect to model uncertainty, the former owing

to the distributed m-step and the latter owing to the factored variational distribution,

which eliminates the m-step integral over the model prior.
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Example A: In Section 4.5 we describe how the vb-em algorithm can discriminate

against policies that activate high-variance model parameters. We now demonstrate this

phenomenon by applying vb-em to a Bayes-adaptive mdp with an analytically tractable

m-step. We show that under certain conditions each update can produce a controller

that is strictly worse than the previous iteration’s. This result serves to motivate the

constrained vb-em approach of Section 4.6.

Consider an instance of the Shuffle bapomdp defined in Section 4.7.1 with n = 2 and

a discount factor of γ < 1, such that a reward of r > 0 is received if action g is taken

in state x = 1, a cost of c2 < 0 is incurred if action g is taken in state x = 2, and

the “shuffle” action (s) results in a deterministic transition to state x = 1 at a cost of

c1 = 0. Furthermore, we assume the states are fully observable so that the problem is

more accurately classified as a bamdp. Due to the full observability of states, the only

uncertainty in our model is the probability p of self-transition from state 1, which we

assume follows a Beta(α1, α2) prior. Despite this model uncertainty, the Bayes optimal

policy is clear: When xt = 1 take action g, and when xt = 2 taken action s. This policy

can be captured by the fsc π such that πs1 = 0 and πs2 = 1. Note that here the fully

observable states, x, play the role of the belief nodes, n, from the more general bapomdp

setting.
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We initialize the vb-em algorithm with an fsc π satisfying πs2 = 1 and 0 < πs1 < 1.

As such, the state 2 action is optimal and will not be altered by vb-em so that the success

of vb-em is determined solely by the updates to πs1. Given this initial π, we execute the

e-step to optimize the factored distribution q = qzqθ via coordinate ascent as described

in Section 4.4.1. Suppose that at the e-step’s termination qθ(p) ∼ Beta(p|β1, β2) so that

the relevant parameters in the corresponding distribution qz are

p̄1 = eψ(β1)−ψ(β1+β2) and p̄2 = eψ(β2)−ψ(β1+β2),

which are the sub-stochastic state-transition quantities—that is, p̄1+p̄2 < 1—from state 1

to states 1 and 2, respectively. Here overbars are used to emphasize that these quantities

are not true probabilities. The optimal m-step update to πs1 is given by

π∗
s1 ∝

∞
∑

t=0

t
∑

τ=0

qz(t, aτ = s, xτ = 1).

Because this update is independent of qθ, the required marginals can be computed using

formulas from the em-based fsc optimization of infinite-horizon bapomdps presented in

Section 4.3. While the details are beyond the scope of this example, it can be shown that

π∗
s1 = πs1 ·

rγπg1 + c2(1− γπg1(1− p̄1))

rπg1 + c2(1− γπg1p̄2)
. (6.1)
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Since πs1 = 0 is optimal, the m-step will make an improving move with respect to the

target objective J(π) if and only if π∗
s1 < πs1. However, it is easy to choose problem

parameters such that π∗
s1 > πs1, corresponding to a decrease in J(π). For example, r = 1,

c2 = 2, πg1 = πs1 = 1/2, β1 = 10, β2 = 2, and γ = 0.99 yield π∗
s1 ≈ 0.5054 > πs1 = 0.5.

In general, we find that when p̄1+p̄2 is sufficiently small, the variance-based discounting of

policy πs1 = 0 causes the m-step to favor the trivial, suboptimal stopping policy πs1 = 1,

which is not affected by such a discount.

Now, let us consider the behavior of the update in the limit as p̄1 + p̄2 → 1. By

substitution, it is straightforward to verify that

lim
p̄1+p̄2→1

π∗
s1 = πs1 · lim

p̄1+p̄2→1

rγπg1 + c2(1− γπg1(1− p̄1))

rπg1 + c2(1− γπg1p̄2)

= πs1 ·
rγπg1 + c2(1− γπg1p̄2)

rπg1 + c2(1− γπg1p̄2)

< πs1.

This implies that improving updates to πs1 are guaranteed as the sub-stochasticity of the

state-transition quantities p̄1 and p̄2 decreases.

Next, we explored this result numerically by running vb-em to convergence on six

problem instances. In each case, we set r = 1, c2 = 2, γ = 0.99, and initialized

the fsc with πs1 = 0.5. Of primary interest was investigating m-step behavior un-

der varying conditions of sub-stochasticity in the parameters p̄1 and p̄2. Noting from

(4.26) that (β1, β2) ≥ (α1, α2) for any update qθ, the effect of variance-based discount-

ing in the m-step will generally decrease as the prior Beta(α1, α2) becomes more con-

centrated on a single model. With this in mind, we chose the (α1, α2) pseudo-count

vectors of (10, 2), (35, 7), (40, 8), (45, 9), (75, 15), and (200, 40) for our experiments.
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Figure 6.1: An illustration of vb-em behavior when applied to the bamdp of the Ap-
pendix (Example A). For this problem, πs1 = 0 is optimal, and vb-em converges to the
optimal policy only when the variance of the model prior p ∼ Beta(α1, α2) is sufficiently
small, here corresponding to the Beta(45, 9), Beta(75, 15), and Beta(200, 40) cases.

In Figure 6.1 we plot the value of πs1 recorded over 3000 iterations for each problem

instance, and we find that πs1 converged to the least desirable policy πs1 = 1 when

p ∼ Beta(10, 2), Beta(35, 7), Beta(40, 8), and converged to the optimal policy πs1 = 0

when p ∼ Beta(45, 9), Beta(75, 15), Beta(200, 40). This is intuitive given our discus-

sion above, since the variance-based discounting of policy πs1 = 0 is smallest in the

p ∼ Beta(45, 9), Beta(75, 15), Beta(200, 40) instances. However, in most real-world ap-

plications the model prior pθ will have considerably more variance than these three Beta

distributions, and hence the undesirable effects of variance-based discounting may persist.

In Section 4.6, we introduce constrained vb-em as one approach to addressing this issue.

�
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Theorem A: The system of equations given by βi = vi+κe
ψ(βi)−ψ(Σβj) for all 1 ≤ i ≤ n

has a unique solution, which can be obtained via fixed-point iteration.

Let

B = {β|Σβj ≥ κ+ 1} ∩ {β|β ≥ v} ∩ {β|β ≤ κ1+ v}.

and letG : Rn 7→ R
n be a vector-valued function satisfyingG(β) = (g1(β), g2(β), . . . , gn(β))

with gi(β) = vi + κeψ(βi)−ψ(Σβj).

First we prove that B must contain all solutions to G(β) = β, and that B is closed under

the mapping G. In Lemma E (see Appendix), we show that any β satisfying G(β) = β

also solves the system of equations βi = vi + κβi/Σβj − di for i = 1, 2, . . . , n, where

each di is a scalar satisfying 0 < di < 1/2. Summing up the left-hand and right-hand

sides, we find that Σβj = Σvj + κ − Σdj ≥ κ + n/2. Since n ≥ 2, we obtain the bound

Σβj ≥ κ+ 1. Given this bound, it should be clear that any solution β to G(β) = β must

be a member of the set B defined above. Now suppose that β ∈ B and consider the

vector β′ = G(β). We want to show β′ ∈ B so that G : B 7→ B. Clearly we must have

β′ ∈ {β|β ≥ v} ∩ {β|β ≤ κ1+ v}, so it remains to show Σβ′
j ≥ κ+1. Using the bounds

x − 1/2 ≤ eψ(x) ≤ x + e−ξ − 1 for x ≥ 1 (Batir, 2005), where ξ is the Euler-Mascheroni

constant and −1 + e−ξ ≈ −0.44, we have

Σβ′
j = Σvj + κe−ψ(Σβj)

∑

j

eψ(βj)

≥ n+ κ

(

−n/2 + Σβj
e−ξ − 1 + Σβj

)
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≥ n+ κ

(

−n/2 + Σβj
Σβj

)

= n+ κ−
κ

Σβj

n

2

≥ κ+ n/2,

where the final line is obtained using the lower bound Σβj ≥ κ+1. Therefore Σβ′
j ≥ κ+1

for all n ≥ 2, and hence β′ ∈ B. This establishes that B is closed under the mapping G.

Furthermore, note that G(β) = β must have at least one solution β ∈ B by Brouwer’s

fixed-point theorem (Istratescu, 2002), due to the compactness and convexity of B and

the continuity of G.

Now we will show that the spectral radius of the Jacobian G′(β) satisfies ρ(G′(β)) < 1

for all β ∈ B. Computing the entries of G′(β), we find that

∂gi
∂βi

= κeψ(βi)−ψ(Σβj)[ψ′(βi)− ψ
′(Σβj)] and

∂gi
∂βj

= −κeψ(βi)−ψ(Σβj)ψ′(Σβj),

so that—setting w = κe−ψ(Σβj) for notational convenience—

G′(β) = w



















eψ(β1)[ψ′(β1)− ψ
′(Σβj)] −eψ(β1)ψ′(Σβj) . . . −eψ(β1)ψ′(Σβj)

−eψ(β2)ψ′(Σβj) eψ(β2)[ψ′(β2)− ψ
′(Σβj)] . . . −eψ(β2)ψ′(Σβj)

...
...

. . .
...

−eψ(βn)ψ′(Σβj) −eψ(βn)ψ′(Σβj) . . . eψ(βn)[ψ′(βn)− ψ
′(Σβj)]



















.

Furthermore, we can express G′ in the form G′ = D −H, where
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D = w



















eψ(β1)ψ′(β1) 0 . . . 0

0 eψ(β2)ψ′(β2) . . . 0

...
...

. . .
...

0 0 . . . eψ(βn)ψ′(βn)



















H = wψ′(Σβj)



















eψ(β1) eψ(β1) . . . eψ(β1)

eψ(β2) eψ(β2) . . . eψ(β2)

...
...

. . .
...

eψ(βn) eψ(βn) . . . eψ(βn)



















.

As such, G′(β) is given by a positive diagonal matrix D minus a rank-one adjustment H.

We now seek to bound the eigenvalues of G′(β). We begin by proving that G′(β) is an

M -matrix, which guarantees that all real eigenvalues of G′(β) are positive (Plemmons,

1977). To see this, first note that the entries of H are strictly positive so that the off-

diagonals of G′(β) are negative and therefore G′(β) is a Z-matrix. It has been shown

that if A is a Z-matrix, then A is an M -matrix if and only if A has a convergent regular

splitting, i.e., A can be expressed in the form M −N , where M and N have nonnegative

entries and ρ(M−1N) < 1 (Plemmons, 1977). We claim that D − H is a convergent

regular splitting of G′(β). Clearly, the entries of D and H are nonnegative, so it remains

to show that ρ(D−1H) < 1. We have
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D−1H = ψ′(Σβj)



















1
ψ′(β1)

1
ψ′(β1)

. . . 1
ψ′(β1)

1
ψ′(β2)

1
ψ′(β2)

. . . 1
ψ′(β2)

...
...

. . .
...

1
ψ′(βn)

1
ψ′(βn)

. . . 1
ψ′(βn)



















which has eigenvalues of zero (with multiplicity n − 1) and ψ′(Σβj)
∑

j
1

ψ′(βj)
, which

we have proven to be strictly less than one in the Appendix (Lemma D). Therefore

ρ(D−1H) < 1 and hence G′(β) is a M -matrix. By an equivalent characterization of

M -matrices (Plemmons, 1977), it follows that the real eigenvalues of G′(β) are positive.

We now show that all eigenvalues of G′(β) are real and strictly less than one. Because

G′(β) is the difference of a diagonal matrix D and a rank-one adjustment H = heT , where

h is any column of H and e is a column vector of ones, the following holds (Anderson,

1996): If λ is not an eigenvalue of D, then λ is an eigenvalue of G′(β) if and only if λ is

a solution to the “secular equation”

1 =
∑

j

hj
Dj − λ

, (6.2)

where Dj is the j
th diagonal element of D and all solutions λ are real. Furthermore, any

remaining eigenvalues of G′(β) will necessarily be diagonals of D (possibly of multiplicity

greater than one).

From this result, it immediately follows that all eigenvalues of G′(β) are real. Recall

that the diagonals Di of D are of the form
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Di =
(

κe−ψ(Σβj)
)(

ψ′(βi)e
ψ(βi)

)

.

It is known that ψ′(x)eψ(x) < 1 for all x > 0 (Batir, 2005), so that ψ′(βi)e
ψ(βi) < 1.

Since β ∈ B, we have Σβj ≥ κ + 1. By applying this bound and the Digamma bound

e−ψ(x) < 1/(x − 1 + e−ξ) (Batir, 2005), we readily obtain κe−ψ(Σβj) < 1. As a result,

Di < 1 for all i = 1, 2, . . . , n. By examination of the secular equation (6.2), we see that

all solutions λ must be strictly less than one, otherwise the right-hand side of the equation

would be negative. Furthermore, by the theorem cited above, all remaining eigenvalues of

G′(β) must be diagonals of D, which were just shown to be less than one. Since we have

already established that the eigenvalues of G′(β) are positive, it follows that 0 < λ < 1

for all eigenvalues λ of G′(β) and hence ρ(G′(β)) < 1. From a contraction result stated

by Schwarz and Waldvogel (1989), it follows that—starting with any initial β(0) ∈ B—

the fixed-point iteration β(k+1) = G(β(k)) will converge to the unique β∗ ∈ B satisfying

G(β∗) = β∗. �

It is worth noting that the contraction result stated by Schwarz and Waldvogel (1989)

is not proven; rather, the authors simply state that it follows “by means of sophisticated

methods of linear algebra.” For completeness, we provide an alternative proof that any

fixed-point β∗ ∈ B of G must be unique.

The claim of Schwarz and Waldvogel (1989) aside, our work above still proves that

starting with any initial β(0) ∈ B, the fixed-point iteration β(k+1) = G(β(k)) will converge

to a β∗ ∈ B satisfying G(β∗) = β∗, provided that β(0) is chosen sufficiently close to β∗.

This follows because ρ(G′(β∗)) < 1 and the continuity of G imply that G is a contraction

with respect to some matrix norm in a ball around β∗. We will now show that any β ∈ B

satisfying G(β) = β is unique.
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To this end, let the vector-valued function F be defined such that F (β) = β − G(β).

Then any solution to the system G(β) = β is a solution to F (β) = 0. First, let us consider

the Jacobian matrix F ′(β) of F . By definition, F ′(β) = I − G′(β). Recall that the off-

diagonals of G′(β) are strictly negative, and furthermore our analysis above implies that

the diagonals of G′(β) are both positive and less than the diagonals Di of D, which are

strictly less than 1. Therefore the entries of the Jacobian F ′(β) are strictly positive.

Now let β, β̃ ∈ B such that F (β) = F (β̃) = 0. We now show that β = β̃. We partition

our proof over the cases Σβj = Σβ̃j and Σβj > Σβ̃j. First, suppose that Σβj = Σβ̃j and

define C = κe−ψ(Σβj) = κe−ψ(Σβ̃j). Then for all i = 1, 2, . . . , n we have

βi = vi + Ceψ(βi) and β̃i = vi + Ceψ(β̃i).

Treating C as a fixed constant, the function u(x) = x grows at a constant rate of u′(x) = 1,

and the function h(x) = vi + Ceψ(x) grows at a rate of h′(x) = Cψ′(x)eψ(x) < 1, which

follows from the Digamma bound ψ′(x)eψ(x) < 1 for x > 0 (Batir, 2005) and the fact

that C < 1 since β, β̃ ∈ B. Therefore u(x) intersects h(x) exactly once—that is, at

x = βi—after which u(x) > h(x) for all larger x. In a general sense, this implies that

the sum Σβj of a solution β is sufficient to recover the individual components βi of the

solution. As a direct result of the assumption Σβj = Σβ̃j, we must then have βi = β̃i for

all i = 1, 2, . . . , n, by which β = β̃.

Now suppose, without loss of generality, that Σβj > Σβ̃j. Then for all i = 1, 2, . . . , n

we have

βi = vi + Cβe
ψ(βi) and β̃i = vi + Cβ̃e

ψ(β̃i)
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where Cβ = κe−ψ(Σβj) and Cβ̃ = κe−ψ(Σβ̃j). Note that because β, β̃ ∈ B, we have Cβ < 1

and Cβ̃ < 1. It follows (as in the previous case) that βi and β̃i are the unique solu-

tions to their respective equations above when Cβ and Cβ̃ are treated as fixed constants.

Furthermore, by Σβj < Σβ̃j we have Cβ̃ < Cβ < 1, so that necessarily βi > β̃i for all

i = 1, 2, . . . , n by which β > β̃. However, we have shown that F ′(β) > 0 element-wise for

all β ∈ B. Therefore β > β̃ implies F (β) > F (β̃) = 0, which contradicts our hypothesis

that F (β) = 0. A similar contradiction arises when we assume that Σβj > Σβ̃j, implying

that we must have Σβj = Σβ̃j, which we already showed to imply β = β̃. Therefore

β, β̃ ∈ B such that F (β) = 0 and F (β̃) = 0 implies β = β̃. �

Lemma A: In the vb-em algorithm’s e-step, the optimal update to qz in the vb-em

algorithm’s e-step, given fixed Λ and qθ, is

q∗z(z) ∝ exp〈log p̃(z|θ,Λ)〉qθ ,

and the optimal update to qθ, given fixed Λ and qz, is

q∗θ(θ) ∝ pθ(θ) exp〈log p̃(z|θ,Λ)〉qz .

Proof: In the e-step of the vb-em algorithm, the objective is to maximize the lower

bound (4.22) with respect to the factored distribution q = qzqθ, which we now restate for

convenience as

L(qz, qθ) = −〈log qz(z)〉qz − 〈log qθ(θ)〉qθ + 〈log pθ(θ)〉qθ + 〈log p̃(z|Λ, θ)〉qzqθ .
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To this end, we use a calculus of variations approach (Gelfand and Fomin, 1963).

First, we derive the optimal update q∗z given fixed qθ and Λ. Let L(qz) denote those

terms in L(qz, qθ) that are dependent on qz, so that optimizing L(qz, qθ) with respect to

qz is equivalent to optimizing L(qz) with respect to qz. We can write

L(qz) =
∑

z

−qz(z) log qz(z) + qz(z)〈log p̃(z|Λ, θ)〉qθ

=
∑

z

S(qz(z)). (6.3)

Furthermore, any feasible qz must satisfy
∑

z qz(z) = 1. Because the inputs to qz are

discrete, the equation

∂S(qz)

∂qz
= λ,

is a necessary condition for optimality, where the left-hand side is also the functional

derivative (Gelfand and Fomin, 1963) of L(qz) with respect to qz, and λ is the Lagrange

multiplier corresponding to the unity constraint. By definition of qz (6.3),

∂S(qz)

∂qz
= − log qz(z)− 1 + 〈log p̃(z|Λ, θ)〉qθ . (6.4)

Setting (6.4) equal to λ and solving for q∗z , we obtain
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q∗z(z) ∝ exp〈log p̃(z|Λ, θ)〉qθ ,

where λ is absorbed into the proportionality constant. It remains to show that q∗z is the

global optimizer of L(qz). Because qz has discrete inputs, it is sufficient to verify that

∂2S(qz)

∂qz2

∣

∣

∣

∣

qz=q∗z

< 0. (6.5)

Differentiating (6.4) with respect to qz, we obtain

∂2S(qz)

∂qz2
= −

1

qz
,

so that the second-order condition (6.5) is satisfied by noting q∗z > 0. Therefore q∗z is the

global maximizer of L(qz).

Now we derive the optimal update q∗θ given fixed qz and Λ. Let L(qθ) denote those

terms in L(qz, qθ) that are dependent on qθ, so that optimizing L(qz, qθ) with respect to

qθ is equivalent to optimizing L(qθ) with respect to qθ. We can write

L(qθ) =

∫

θ

−qθ(θ) log qθ(θ) + qθ(θ) log pθ(θ) + qθ(θ)〈log p̃(z|Λ, θ)〉qz dθ (6.6)

=

∫

θ

S(qθ(θ)) dθ. (6.7)
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Furthermore, any feasible qθ must satisfy
∫

θ
qθ(θ) dθ = 1. Because S(qθ) does not depend

on derivatives of qθ, the equation

∂S(qθ)

∂qθ
= λ,

is a necessary condition for optimality (Gelfand and Fomin, 1963), where the left-hand

side is also the functional derivative of L(qθ) with respect to qθ, and λ is the Lagrange

multiplier corresponding to the unity constraint. By definition of qθ (6.6),

∂S(qθ)

∂qθ
= − log qθ − 1 + log pθ(θ) + 〈log p̃(z|Λ, θ)〉qz . (6.8)

Setting (6.8) equal to λ and solving for q∗θ , we obtain

q∗θ(θ) ∝ pθ(θ) exp〈log p̃(z|θ,Λ)〉qz ,

where λ is absorbed into the proportionality constant. It remains to show that q∗θ is

the global optimizer of L(qθ). Because S(qθ) does not depend on derivatives of qθ, it is

sufficient to verify (Gelfand and Fomin, 1963) that

∂2S(qθ)

∂qθ2

∣

∣

∣

∣

qθ=q
∗

θ

< 0. (6.9)
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Differentiating (6.8) with respect to qθ, we obtain

∂2S(qθ)

∂qθ2
= −

1

qθ
,

so that the second-order condition (6.9) is satisfied by noting q∗θ > 0. Therefore q∗θ is the

global maximizer of L(qθ). �

Lemma B: The qz parameters of the variational Bayes e-step update are sub-stochastic.

Proof: Here we show that

∑

x′

expψ(βx
′

x,a)

expψ(
∑

x′′ β
x′′
x,a)

< 1 and
∑

o′

expψ(βo
′

x′,a)

expψ(
∑

o′′ β
o′′

x′,a)
< 1,

where β is defined in (4.30). Without loss of generality, we will show that

∑

i

eψ(βi)−ψ(Σβj) < 1 (6.10)

for any pseudo-count vector β = (β1, β2, . . . , βn) > 0 such that n ≥ 2.

First, we show that eψ(βi)−ψ(Σβj) < βi
Σβj

for fixed i. By rearranging terms in this inequal-

ity, we will show the equivalent
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eψ(βi)

βi
<
eψ(Σβj)

Σβj
⇐⇒ g(Σβj)− g(βi) > 0, (6.11)

where g(x) = eψ(x)/x. To show g(Σβj) − g(βi) > 0, it is sufficient to establish that g

is strictly increasing. To this end, we show that (log g(x))′ = ψ′(x) − 1/x > 0. The

inequality ψ′(x)− 1/x− 1/(2x)2 > 0 is proven for all x > 0 by Batir (2005), from which

(log g(x))′ > 0 immediately follows. Therefore we can conclude eψ(βi)−ψ(Σβj) < βi
Σβj

for all

i. Using this fact, we have

∑

i

eψ(βi)−ψ(Σβj) <
∑

i

βi
Σβj

= 1,

which completes the proof. �

Lemma C: In the Lagrangian relaxation (4.38), the first-order optimality conditions

∂L̃/∂βi = 0 imply that either

βi = vi + κeψ(βi)−ψ(Σβj) for all i,

or
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ψ′(Σβj)
∑

j

1

ψ′(βj)
= 1.

Proof: Suppose that β satisfies ∂L̃/∂βi = 0 for all i. It is straightforward to show by the

definition of L̃ in (4.37) that

∂L̃

∂βi
= ψ′(βi)

(

vi − βi + κeψ(βi)−ψ(Σβj)
)

− ψ′(Σβj)
(

∑

m

vm − βm + κeψ(βm)−ψ(Σβj)
)

.

(6.12)

Using (6.12), for any l 6= i we obtain

∂L̃

∂βi
−
∂L̃

∂βl
= ψ′(βi)

(

vi − βi + κeψ(βi)−ψ(Σjβj)
)

− ψ′(βl)
(

vl − βl + κeψ(βl)−ψ(Σjβj)
)

= 0, (6.13)

so that

vl − βl + κeψ(βl)−ψ(Σjβj) =
ψ′(βi)

ψ′(βl)

(

vi − βi + κeψ(βi)−ψ(Σjβj)
)

, (6.14)

noting that ψ′ > 0. For fixed i, the optimality condition ∂L̃/∂βi = 0 can be rewritten by

substituting the identities (6.14) for all l 6= i into (6.12), leading to the condition
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ψ′(βi)
(

vi − βi + κeψ(βi)−ψ(Σβj)
)

− ψ′(βi)
(

vi − βi + κeψ(βi)−ψ(Σβj)
)

ψ′(Σβj)
∑

l

1

ψ′(βl)
= 0,

or equivalently

(

vi − βi + κeψ(βi)−ψ(Σβj)
)(

1− ψ′(Σβj)
∑

l

1

ψ′(βl)

)

= 0. (6.15)

Noting that (6.15) must hold for all i completes the proof. �

Lemma D: ψ′(Σβj)
∑

j
1

ψ′(βj)
< 1 for all β = (β1, β2, . . . , βn) satisfying β > 0 and n ≥ 2.

Proof outline: Let h(β) = ψ′(Σβj)
∑

j
1

ψ′(βj)
. We assume that h(β) ≥ 1 and seek a

contradiction. Given the vector β of size n, we construct a vector β(n−1) of size n−1 such

that h(β(n−1)) > h(β) ≥ 1, so that h(β(n−1)) > 1. Applying this construction recursively,

we arrive at a scalar β(1) and conclude via induction that h(β(1)) > 1. The desired

contradiction is then established, since by definition h(β(1)) = ψ′(β(1))/ψ′(β(1)) = 1. �

Proof: Suppose to the contrary that h(β) ≥ 1. Let β(n) = β. Given the vector β(k) =

(β
(k)
1 , β

(k)
2 , . . . , β

(k)
k ) for 1 < k ≤ n, we recursively construct β(k−1) such that

β
(k−1)
i =















β
(k)
i , 1 ≤ i ≤ k − 2

β
(k)
k−1 + β

(k)
k , i = k − 1.
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In words, β(k−1) is constructed by (additively) collapsing the final two components of β(k)

into a single component.

Let β′ and β′′ be consecutive vectors generated by the above procedure, such that

|β′| = k and |β′′| = k− 1. Then—where summations over l range from 1 ≤ l ≤ k− 1 and

summations over j range from 1 ≤ j ≤ k—we have

h(β′′) = ψ′(Σβ′′
l )
∑

l

1

ψ′(β′′
l )

= ψ′(Σβ′
j)
∑

l

1

ψ′(β′′
l )

(by Σβ′′
l = Σβ′

j)

= ψ′(Σβ′
j)

(

1

ψ′(β′
k−1 + β′

k)
−

1

ψ′(β′
k−1)

−
1

ψ′(β′
k)

+
∑

j

1

ψ′(β′
j)

)

(by definition of β′′)

= ψ′(Σβ′
j)

(

1

ψ′(β′
k−1 + β′

k)
−

1

ψ′(β′
k−1)

−
1

ψ′(β′
k)

)

+ h(β′) (by definition of h(β′)).

Noting that ψ′ > 0, if we can show

1

ψ′(β′
k−1 + β′

k)
−

1

ψ′(β′
k−1)

−
1

ψ′(β′
k)
> 0, (6.16)

then we can conclude h(β′′) > h(β′). To this end, we now prove

f(x, y) =
1

ψ′(x+ y)
−

1

ψ′(x)
−

1

ψ′(y)
> 0 (6.17)
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for all x, y > 0. Without loss of generality, let us consider f(x, y) as a function of x, while

keeping y fixed. It is straightforward to verify that limx→0 f(x, y) = 0. From this point,

to show f(x, y) > 0 it is sufficient to show that f(x, y) is strictly increasing as a function

of x. Taking the partial derivative of f(x, y) with respect to x, we obtain

∂f(x, y)

∂x
=
ψ′′(x)

ψ′(x)2
−
ψ′′(x+ y)

ψ′(x+ y)2
. (6.18)

Let g(x) = ψ′′(x)/ψ′(x)2, so that ∂f(x, y)/∂x = g(x) − g(x + y), and hence showing

∂f(x, y)/∂x > 0 for all x, y > 0 can be achieved by showing g′(x) < 0 for all x > 0. We

have

g′(x) =
−2ψ′′(x)2 + ψ′(x)ψ′′′(x)

ψ′(x)3
. (6.19)

Noting that ψ′ > 0, the condition g′(x) < 0 is equivalent to

ψ′′(x)2 − 1/2ψ′(x)ψ′′′(x) > 0, (6.20)

which was established by English and Rousseau (1997) for all x > 0. See also Alzer

and Wells (1998). This proves that ∂f(x, y)/∂x > 0 for all x, y > 0. Recalling that

limx→0 f(x, y) = 0, we can conclude that f(x, y) > 0 for all x, y > 0.

The above result establishes inequality (6.16), so that h(β′′) > h(β′). Because h(β) =

h(β(n)) ≥ 1 by assumption, it follows by induction that h(β(k)) > 1 for all 1 ≤ k ≤ n− 1.
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In particular, h(β(1)) > 1. This is a contradiction, however, since by definition h(β(1)) =

ψ′(β(1))/ψ′(β(1)) = 1. Therefore we must have h(β) < 1 for all β satisfying β > 0 and

|β| ≥ 2. �

Lemma E: There exist scalars di satisfying 0 < di < 1/2 such that any β satisfying

βi = vi + κeψ(βi)−ψ(Σβj) for all 1 ≤ i ≤ n also satisfies βi = vi + κ βi
Σβj
− di for all

1 ≤ i ≤ n.

Proof: Suppose that β satisfies βi = vi + κeψ(βi)−ψ(Σβj) for all 1 ≤ i ≤ n. We have

βi = vi + κeψ(βi)−ψ(Σβj) (6.21)

= vi + κ

(

βi
Σβj
− εi

)

= vi + κ
βi
Σβj
− κεi, (6.22)

where

εi =
βi
Σβj
− eψ(βi)−ψ(Σβj). (6.23)

Using the bounds x − 1/2 ≤ eψ(x) ≤ x + e−ξ − 1 for x ≥ 1 (Batir, 2005), where ξ is the

Euler-Mascheroni constant and −1 + e−ξ ≈ −0.44, we can write
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κεi = κ

(

βi
Σβj
− eψ(βi)−ψ(Σβj)

)

=
βi
Σβj

(βi − vi)e
−ψ(βi)+ψ(Σβj) − (βi − vi) (solving for κ in (6.21), then substituting)

≤
βi(βi − vi)(Σβj − 1 + e−ξ)

Σβj(βi − 1/2)
− (βi − vi) (applying the bounds on eψ)

=
βi(βi − vi)(Σβj − 1 + e−ξ)− (βi − vi)Σβj(βi − 1/2)

Σβj(βi − 1/2)

=
(βi − vi)

(

Σβj/2− βi(1− e
−ξ)
)

Σβj(βi − 1/2)
(simplifying the numerator)

=
1

2

(βi − vi)

(βi − 1/2)
−
βi(βi − vi)(1− e

−ξ)

Σβj(βi − 1/2)

<
1

2
.

Let di = κεi, and note that by the result above di < 1/2. In our proof of Lemma B, we

showed that εi > 0 for all i, from which di > 0 immediately follows. By substitution of

di into (6.22), we obtain βi = vi + κ βi
Σβj
− di. �

Proposition A: The infinite-horizon em updates of the fsc parameters are given by

ν∗n ∝
∑

x

µ0(x, n)B(x, n)

π∗
an ∝ πan

∑

x

u(a, x)F(x, n) + γ
∑

x,x′,n′,o′

πanp(x
′|x, a)p(o′|x′, a)λn′no′F(x, n)B(x

′, n′)

λ∗n′no′ ∝
∑

x,x′,a

πanp(x
′|x, a)p(o′|x′, a)λn′no′F(x, n)B(x

′, n′).

Proof : Here we extend em for finite-horizon pomdps to the infinite-horizon case, noting

that the further extension to bapomdps is trivial given the results of Chapter 4. To
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simplify our notation, we begin by defining

F(x, n) =
∞
∑

t=0

γtµt(x, n), B(x, n) =
∞
∑

t=0

γtµ̄t(x, n)

which can be computed by iteratively applying the recursive definitions of µt and µ̄t until

convergence. Alternatively, the desired quantities satisfy F(x, n) = limt→∞F
t(x, n) and

B(x, n) = limt→∞ B
t(x, n) and can be computed by initializing F0(x, n) and B0(x, n)

arbitrarily and applying the recursive formulas

F t(x′, n′) = νn′p0(x
′) + γ

∑

x,n,a,o′

F t−1(x, n)πanλn′no′p(x
′|x, a)p(o′|x′, a) (6.24)

Bt(x, n) =
∑

a

πanu(a, x) + γ
∑

x′,n′,a,o′

Bt−1(x′, n′)πanλn′no′p(x
′|x, a)p(o′|x′, a). (6.25)

until convergence.

Now, let us consider the m-step update of ν∗n as T →∞. We have

ν∗n ∝

∞
∑

t=0

q(t, n0 = n)

=
∞
∑

t=0

∑

x

µ0(x, n)µ̄t(x, n)γ
t

=
∑

x

µ0(x, n)
∞
∑

t=0

µ̄t(x, n)γ
t

=
∑

x

µ0(x, n)B(x, n).
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Next, we consider the m-step update of the quantity π∗
an as T →∞. The update is

π∗
an ∝

∞
∑

t=0

t
∑

τ=0

q(t, aτ = a, nτ = n)

=
∞
∑

t=0

q(t, at = a, nt = n) +
∞
∑

t=1

t−1
∑

τ=0

q(t, aτ = a, nτ = n),

where we partition the sum over the cases of τ = t and τ < t. Note that the above sum

is guaranteed to converge provided that the discount γ is less than 1. Working with the

term corresponding to τ = t, we obtain

q(t, at = a, nt = n) ∝
∞
∑

t=0

∑

x

µt(x, n)πanu(a, x)γ
t

= πan
∑

x

u(a, x)
∞
∑

t=0

µt(x, n)γ
t

= πan
∑

x

u(a, x)F(x, n).

For the term corresponding to τ < t, we have

∞
∑

t=1

t−1
∑

τ=0

q(t, aτ = a, nτ = n)

∝

∞
∑

t=1

t−1
∑

τ=0

∑

x,x′,n′,o′

µτ (x, n)πanp(x
′|x, a)p(o′|x′, a)λn′no′µ̄t−τ−1(x

′, n′)γt

=
∑

x,x′,n′,o′

πanp(x
′|x, a)p(o′|x′, a)λn′no′

∞
∑

t=1

t−1
∑

τ=0

µτ (x, n)µ̄t−τ−1(x
′, n′)γt
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=
∑

x,x′,n′,o′

πanp(x
′|x, a)p(o′|x′, a)λn′no′

∞
∑

τ=0

µτ (x, n)
∞
∑

t=τ+1

µ̄t−τ−1(x
′, n′)γt

= γ
∑

x,x′,n′,o′

πanp(x
′|x, a)p(o′|x′, a)λn′no′

∞
∑

τ=0

µτ (x, n)γ
τ

∞
∑

t=0

µ̄t(x
′, n′)γt

= γ
∑

x,x′,n′,o′

πanp(x
′|x, a)p(o′|x′, a)λn′no′F(x, n)B(x

′, n′).

We then obtain

π∗
an ∝ πan

∑

x

u(a, x)F(x, n) + γ
∑

x,x′,n′,o′

πanp(x
′|x, a)p(o′|x′, a)λn′no′F(x, n)B(x

′, n′).

Finally, we consider the m-step update of the quantity λ∗n′no′ as T →∞. The update is

λ∗n′no′ ∝

∞
∑

t=1

t−1
∑

τ=0

q(t, nτ+1 = n′, nτ = n, oτ+1 = o′)

=
∞
∑

t=1

t−1
∑

τ=0

∑

x,x′,a

µτ (x, n)πanp(x
′|x, a)p(o′|x′, a)λn′no′µ̄t−τ−1(x

′, n′)γt

=
∑

x,x′,a

πanp(x
′|x, a)p(o′|x′, a)λn′no′

∞
∑

t=1

t−1
∑

τ=0

µτ (x, n)µ̄t−τ−1(x
′, n′)γt

=
∑

x,x′,a

πanp(x
′|x, a)p(o′|x′, a)λn′no′

∞
∑

τ=0

µτ (x, n)
∞
∑

t=τ+1

µ̄t−τ−1(x
′, n′)γt

= γ
∑

x,x′,a

πanp(x
′|x, a)p(o′|x′, a)λn′no′

∞
∑

τ=0

µτ (x, n)γ
τ

∞
∑

t=0

µ̄t(x
′, n′)γt

= γ
∑

x,x′,a

πanp(x
′|x, a)p(o′|x′, a)λn′no′F(x, n)B(x

′, n′)

∝
∑

x,x′,a

πanp(x
′|x, a)p(o′|x′, a)λn′no′F(x, n)B(x

′, n′).



Appendix 135

Summarizing the fsc parameter updates, we have

ν∗n ∝
∑

x

µ0(x, n)B(x, n)

π∗
an ∝ πan

∑

x

u(a, x)F(x, n) + γ
∑

x,x′,n′,o′

πanp(x
′|x, a)p(o′|x′, a)λn′no′F(x, n)B(x

′, n′)

λ∗n′no′ ∝
∑

x,x′,a

πanp(x
′|x, a)p(o′|x′, a)λn′no′F(x, n)B(x

′, n′).

Finally, the infinite-horizon expected reward is given by

J(Λ) =
∑

x,n

p0(x)νnB(x, n).

Note that these results are analogous to those presented by Poupart et al. (2011b) for

infinite-horizon pomdps, subject to various changes of variable. �
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