
Accelerated Pattern Recognition Processing

Using Hybrid Spatial/Von Neumann Architectures

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy (Computer Science)

by

Jack Wadden

May 2018

© 2018 Jack Wadden

Abstract

Newly available spatial architectures to accelerate finite automata-based pattern recognition processing have

spurred a large amount of research and development of finite automata-based applications and accelerators.

However, a lack of standard, open-source tools for automata processing application and architecture research

has slowed the pace of innovation.

This dissertation first presents a new non-obvious application use-case for automata processing: efficient

and high-quality pseudo-random number generation, further motivating research into automata processing

acceleration. This dissertation then presents three new tools to enable and accelerate high-quality automata

processing research. The first tool is a novel automata processing simulation, profiling, and optimization

framework to accelerate automata application and architecture research. The second tool is a diverse

benchmark suite of standardized automata graphs and inputs from published work to provide easy and fair

comparisons among automata processing engines and architectures. The third tool is design-space exploration

tool to help design and build spatial/reconfigurable automata processing architectures.

This dissertation then presents two novel architecture studies, enabled by the above toolchain. The

first study characterizes spatial automata processor output processing and recognizes it as an important

bottleneck to performance in real systems. We relax this bottleneck by designing a parameterizable reporting

architecture to efficiently accommodate common-case behavior. The final study recognizes that automata

states can have highly contrasting behavior. We dynamically profile automata graphs and find that some

states perform orders of magnitude less computation than others. We propose a hybrid automata processing

approach where highly active states are computed using spatial architectures, while rarely active states are

offloaded to a von Neumann processor. This offloading can greatly reduce the resource pressure on the spatial

automata processor, while maintaining a large proportion of acceleration potential.

i

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

Jack Wadden

This dissertation has been read and approved by the Examining Committee:

Kevin Skadron , Adviser

Samira Khan , Committee Chair

Andrew Grimshaw

Gabriel Robins

Mircea Stan

Accepted for the School of Engineering and Applied Science:

Craig Benson, Dean, School of Engineering and Applied Science

May 2018

ii

Acknowledgements

This dissertation would not have been possible without the support of a large group of people.

To the National Science Foundation (NSF), Semiconductor Research Corporation (SRC), and Achievement

Awards for College Scientists (ARCS) for providing the resources to conduct this work, thank you.

To my parents, who offered me, and paid for, my every opportunity to succeed in life, thank you. Your

sincere dedication to my education and success will be paid forward.

To my coaches and others who taught me the value of teamwork and perseverance, Laura Wadden, Pete

Caragher, Dan Reid, Ben Lewis, and Peter Wells, thank you.

To those who instilled in me a love of science, technology, engineering, math, and computer science

especially John Benson, Dave Dannels, Mark Vondracek, Russ Kohnken, Daniel Aalberts, Morgan McGuire,

Duane Bailey, Sudhanva Gurumurthi, and Vilas Sridharan, thank you.

To my mentors at the University of Virginia, Mircea Stan, Samira Khan, and in particular my advisor

Kevin Skadron, thank you. Your guidance is treasured and will always be remembered.

To my collaborators and friends at UVA, Nathan Brunelle, Tommy Tracy, Ke Wang, Mohamed El-Hadedy,

Elaheh Sadredini, Chunkun Bo, Vinh Dang, Ted Xie, and Mateja Putic thank you for your help and support.

And good luck.

And finally to loved ones who supported me throughout, and bore the brunt of my moods, brooding, and

anxious, sleepless nights, thank you. Parker, I love you.

“Eye their circuitries to savor their intricacy and their varied palettes. First cousins to the

cloisonne dish, the Persian carpet, the Vatican mosaics; what miniature panoplies live here. And

live is the word. For not only do these laboratory-found-objects look vital, they are juiced with

creation. All the stuffs and junks and fabulous dreams of once sleepless men are shelved, stashed,

and eye-droppered here....

It’s all a rare treat for the eye.”

- Ray Bradbury

from his foreword in State of the Art: A Photographic History of the Integrated Circuit, by Stan Augarten

Contents

Contents v
List of Tables . ix
List of Figures . x

1 Introduction 1
1.1 Contributions . 4
1.2 Organization . 6

2 Background 8
2.1 Automata Processing . 8

2.1.1 Deterministic Finite Automata . 9
2.1.2 Regular Expressions . 10

2.2 von Neumann Automata Processing . 11
2.3 Spatial Automata Processing . 13

2.3.1 FPGA-based Spatial Automata Processing . 13
2.3.2 Micron’s Automata Processor and SDK . 14

3 Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Proces-
sors 18
3.1 Random and Pseudo-random Number Generation . 19

3.1.1 Random and Pseudo-Random Number Generation . 19
3.1.2 State-of-the-Art Parallel PRNG Algorithms . 20

3.2 Using Markov Chains to Generate Pseudo-Random Behavior 21
3.2.1 Markov Chains . 21
3.2.2 Using Markov Chains to Generate Pseudo-Random Behavior 22

3.3 Simulating Markov Chains Using Finite Automata . 22
3.3.1 Markov Chain to NFA Construction Algorithm . 23
3.3.2 Markov Chain to Homogeneous NFA Construction Algorithm 24
3.3.3 Correlation Among Parallel NFA-based Markov Chains 25

3.4 Generating Efficient and High-Quality Pseudo-Random Behavior on Micron’s Automata Processor 26
3.4.1 AP PRNG System Design . 26

3.5 Effects of AP PRNG Configurations on AP PRNG Quality 28
3.5.1 Experimental Framework . 29
3.5.2 Effect of Markov Chain Size on PRNG Quality . 29
3.5.3 Effect of Parallel Markov Chains on Random Quality 30
3.5.4 Effect of Input Size on Random Quality . 32

3.6 AP PRNG Performance Model . 34
3.6.1 Performance Sensitivity to Reconfiguration Threshold 34
3.6.2 Performance on Future AP Hardware . 35
3.6.3 Estimating AP PRNG Power Advantage . 37

3.7 Other Uses for Pseudo-Random Behavior . 37
3.7.1 Simulating Asset Price Motion . 38
3.7.2 Mapping an Asset Price Simulation to the AP Hardware 39

v

Contents vi

3.7.3 Final Construction . 42

4 VASim: An Open Source Platform for Finite Automata Applications and Architecture
Research 43
4.1 Introduction . 43
4.2 VASim Architecture . 45

4.2.1 Extending the Virtual Execution Model . 46
4.3 Automata Simulation . 48
4.4 Automata Optimization and Transformations . 49

4.4.1 VASim’s Common Prefix Merging Algorithm . 50
4.4.2 Subset Construction . 52
4.4.3 Automata Striding . 52

4.5 Automata Serialization and Code Generation . 54
4.5.1 DOT File Format for Automata Visualization . 54
4.5.2 Verilog State Machine Emission for FPGA Evaluation 56

4.6 VASim Simulation Performance . 57
4.7 Conclusions . 58

5 ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing En-
gines and Architectures 59
5.1 Problems with Existing Rulesets and Generators . 61
5.2 ANMLZoo: an Automata Processing Benchmark Suite . 62
5.3 Parallel Automata Rule Scaling . 66
5.4 Visited Set and Active Set Sensitivity . 67
5.5 Automata vs Input-level Parallelism Scaling . 69

5.5.1 CPU Parallel Scaling . 70
5.5.2 GPU Parallel Scaling . 71

5.6 NFA vs. DFA Engines on the GPU . 72
5.7 Mesh Scaling and AP Fabric Utilization . 74
5.8 Cross-Architecture Application Evaluation . 75
5.9 Towards ANMLZoo 2.0: A Retrospective and Future Benchmarking Template 77

5.9.1 Critiques of ANMLZoo Benchmarking Methodology 77
5.9.2 Snort Network Intrusion Detection Benchmark . 81

5.10 Conclusions and Future Work . 83

6 Automata-to-Routing: An Open-Source Toolchain for Design-Space Exploration of Spa-
tial Automata Processing Architectures 85
6.1 Introduction . 85
6.2 Automata-to-Routing Toolchain . 87

6.2.1 ANMLZoo Automata Benchmark Suite . 87
6.2.2 VASim Virtual Automata Simulator . 87
6.2.3 Versitile Place and Route . 88
6.2.4 ATR Toolchain Architecture . 88

6.3 VASim Extensions . 90
6.3.1 Design Rule Transformation: Fan-in Relaxation . 90
6.3.2 Design Rule Transformation: Group-of-Two Grouping 91
6.3.3 .blif Emission Algorithm . 91

6.4 Modelling Micron’s Automata Processor . 91
6.4.1 Defining A Baseline Tile Architecture . 92
6.4.2 Defining A Baseline Routing Network . 92

6.5 Place-and-Route Results . 93
6.5.1 Tile Resource Requirements . 93
6.5.2 Routing Resource Requirements . 94

6.6 Evaluating the AP’s Routing Matrix Using ATR Modelling 94

Contents vii

6.7 Conclusions and Future Work . 97

7 Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Ar-
chitectures 98

7.1 Characterizing Automata Reporting Behavior . 100

7.1.1 Experimental Methodology . 101

7.1.2 Profiling Results . 101

7.2 Simulating Spatial Automata Processors . 103

7.2.1 Spatial Automata Processor System . 103

7.2.2 Simulation Methodology . 105

7.3 Case Study: the Micron D480 AP . 105

7.3.1 The AP D480 Reporting Architecture . 107

7.3.2 Cycle-Accurate Simulation . 109

7.3.3 Simulator Validation . 109

7.3.4 ANMLZoo Reporting Overheads . 110

7.4 Automata Transformations to Reduce Reporting Overhead 111

7.4.1 Disjoint Report Merging . 112

7.4.2 DRM Algorithm . 113

7.4.3 DRM Potential Study . 114

7.4.4 DRM Performance Impact . 114

7.5 Identifying Architectural Bottlenecks in Reporting . 115

7.5.1 Characterizing Report Vector Sparsity . 115

7.5.2 Reducing Output Sparsity . 116

7.6 Discussion and Future Work . 119

7.7 Conclusions . 121

8 Hybrid Spatial/von Neumann Automata Processing 123

8.1 Introduction . 123

8.2 Background . 126

8.2.1 Automata Processing . 126

8.2.2 Temporal Automata Processing . 126

8.2.3 Spatial Automata Processing . 127

8.2.4 Hybrid Spatial/Temporal Architectures . 127

8.3 Hybrid Processing Potential Study . 128

8.3.1 Benchmark Workloads . 128

8.3.2 Profiling Methodology . 128

8.3.3 Partitioning Algorithm . 128

8.3.4 Results . 130

8.4 Hybrid Automata Processing System . 131

8.4.1 FPGA Automata Engine . 132

8.4.2 Reporting Architecture . 133

8.4.3 CPU Automata Engine . 135

8.5 Hybrid System Evaluation . 136

8.5.1 Profiling and Partitioning Methodology . 136

8.5.2 CPU Performance on Offloaded Computation . 137

8.5.3 Spatial Resource Reduction . 139

8.5.4 Added Communication Overheads . 141

8.6 Exploring Spatial Filtering for Non-Automata-Based Algorithms 142

8.6.1 Levenshtein Edit Distance . 143

8.6.2 Spatial Automata Filtering Feasibility Study . 144

8.7 Related Work . 145

8.8 Conclusions . 146

Contents viii

9 Conclusions 148
9.1 Dissertation Summary . 148
9.2 Impact and Future Direction . 150

9.2.1 Methodologies for Domain-Specific Accelerator Research 150
9.2.2 Designing Effective, Cross-Domain Tools . 151
9.2.3 Analyzing Spatial/Temporal Trade-offs in Computer Architectures 153

Bibliography 154

List of Tables

3.1 Stochastic transition matrix of a Markov chain representing an unfair coin. 22
3.2 Hardware resource requirements and best case performance metrics for 2, 4, and 8-state Markov

chains as constructed by Algorithm 2 on a single AP chip. 28
3.3 The effects of increasing the number of states per Markov chain on random quality. It is

statistically harder to identify correlation between chains with more states. 30
3.4 AP PRNG performance modeled on different memory technologies. AP PRNG throughput is

limited by peak memory throughput for DDR3 and DDR4 technologies. 36

4.1 Performance of VASim compared against apemulate. Opt refers to performance after applying
both tool’s redundant state elimination passes. VASim is at least 3.96× and up to 694×
faster than apemulate even after optimizations are applied. VASim’s performance for SPM is
relatively low because Micron’s compiler applies more sophisticated state reduction algorithms
than our heuristic approach. 58

5.1 ANMLZoo benchmark suite. † Newly published automata-inspired regex-like rulesets. Results
are gathered using representative input streams should be considered baseline results, and may
change with new algorithms, implementations, and architectures. 62

5.2 Comparison of static and dynamic metrics of the ANMLZoo Snort benchmark and the new
Snort benchmark built with the new methodology. The new benchmark has more states, more
activity, is less compressable, and has many fewer reports. 83

7.1 Summary statistics for ANMLZoo reporting behavior . 101
7.2 Model parameters corresponding to the first generation Micron D480 Automata Processor core

architecture. 108
7.3 Spatial architecture simulator configuration corresponding to the Micron D480 AP [1]. 108
7.4 Number of required reporting ports in the compiled ANMLZoo benchmarks before and after disjoint

report merging. Some applications cannot be compressed using this technique. Speedup measured

performance improvement due to DRM when compared to the simulated Micron D480 with RVD

enabled. 114

8.1 EDLib speedup when candidate search locations are first pruned by an automata filter. . . . 145

ix

List of Figures

1.1 Automata designed to recognize all correct spellings of the English word color, both British
and American spellings. 1

2.1 A generic homogeneous automata processing element. All elements compute a boolean function
based on input signals. The result of this boolean function is then broadcast to element children. 9

2.2 Spatial automata processors “lay out” automata states in a reconfigurable network of processing
elements and broadcast input symbols to all states. States compute transition rules in parallel
and transitions are propagated via the routing matrix. Von Neumann automata processors
simulate automata by keeping track of a list of active states and using rule tables to compute
transitions for the next input. 13

2.3 An Automata Processing state transition element or STE. STEs repurpose memory columns
as 8-input/1-output look-up-tables used for matching symbols from the input stream. Coupled
with state logic, STEs implement a homogeneous automata state. Similar to an FPGA, inputs
and outputs to STEs are routed through a reconfigurable routing matrix. 15

2.4 Groups-of-Two (GoT) [2] can hold two STE nodes. Each STE has an input, can enable its
pair STE, or enable itself. The output enable signal is chosen between the left STE, right STE,
or the logical OR of both outputs. 15

2.5 Elements in the Micron AP architecture. State Transition Elements (STEs) are groupted into
”Groups of Two” (GoTs). Eight GoTs form a Row. Sixteen Rows form a Block. Ninety-six
blocks form a half-chip. Two distinct half-chips form the AP. We choose the Row as an
appropriate tile for the ATR model AP because it is the first element that has access to the
AP’s routing matrix. 16

3.1 A simple Markov chain that simulates an unfair coin toss with two states: Heads, and Tails.
Transition probabilities between these states are unfair, i.e. the probability of transitioning to
Heads is different than Tails. 21

3.2 A Markov chain implemented on the AP corresponding to the theoretical Markov chain in
Figure 3.1, with two reporting “state nodes” representing Heads and Tails. Reporting states
are indicated by an ”R” subscript. The start state is indicated by a ”1” superscript. Transition
probabilities between these states are unfair and are modeled by dividing the possible input
symbols [0− 9] into random groups, proportional to the transition probabilities. 25

3.3 AP PRNG system-level diagram. A host processor provides a small amount of pseudo-random
input to drive transitions and reconfiguration. 26

3.4 Average number of Crush failures over four trials for parallel 8-state Markov chains with a
reconfiguration threshold of 200,000. The darker bars represent failure rates when interleaving
output bits. Spikes in failure rates occur when the same Markov chains always contribute
to the same bits in output integers. The lighter bars represent failure rates when successive
output from a Markov chain contributes to a single output integer. This eliminates the spike
in failures, but reduces overall quality. 31

3.5 As the reconfiguration threshold increases, it is becomes easier for statistical tests to identify
non-random behavior. 32

x

List of Figures xi

3.6 Output quality of AP PRNG with output permutation hardware greatly increases quality of
random output. AP PRNG passes all tests in BigCrush with a reconfiguration threshold of at
least 1, 000, 000 . 33

3.7 Percentage of runtime spent reconfiguring vs. AP PRNG throughput with different reconfigu-
ration thresholds. Performance increases dramatically if AP PRNG is able to reconfigure less
frequently. 35

3.8 AP PRNG is up to 6.8× more power efficient than the highest-throughput reported GPU
PRNG depending on the deployment scenario. 37

3.9 Asset price simulation modeling a random walk with transitions of +/-$0.01 or no change. . 38
3.10 Linear Markov chain modeling a random walk with transitions of +/-$0.01 or no change. . . 39
3.11 How a linear Markov chain can be implemented on the AP. This chain corresponds to the

transition matrix in section 3.7.2. 40
3.12 A linear Markov chain walker bounded by counters. This construction can represent discrete

values with arbitrary precision without a linear increase in states. 41
3.13 A linear Markov chain walker bounded by counters. This construction can represent discrete

values with arbitrary precision without a linear increase in states. 42

4.1 A generic automata processing element. All elements compute a boolean function based on
input signals. The result of this boolean function is then broadcast to element children. . . . 45

4.2 VASim class hierarchy. STEs consult the global input symbol before computing a boolean
activation function. Special elements do not consult the global input and only compute on
input enable signals within a symbol cycle. 47

4.3 AP-style counters (top) are only capable of counting up. Up-down counters (bottom) add a
new input port with the ability to count down. 48

4.4 VASim simulation pipeline. Stage one computes whether or not each state that was enabled
on the previous cycle matches the current input symbol. Matching states activate. Stage two
identifies the children of the activated states and enables them. Stage three enables all start
states. Stage four computes the boolean functions of all special elements. Stage three must be
run to initialize simulation prior to simulating the first simulation cycle. 49

4.5 Automata graph visualized by VASim’s DOT file emission algorithm. Octogons are reporting
states. Double circles are start states. Each state is labeled with its ID and character set. . . 55

4.6 Hamming distance automata that was simulated and visualized using VASim’s DOT file
conversion algorithm. Both structure and dynamic behavior can be visualized allowing users
to glean important information about the automata graph and how it computes. 56

5.1 Sensitivity of VASim performance in response to additional automata rules. Performance of
automata with many common prefixes and high activity compressability (ER) are less sensitive
to additional rules. This indicates average automata activity after common optimizations,
rather than total rule-count, is a better predictor of performance. 66

5.2 Parameterizable synthetic automata design. Each ring is guaranteed to have a constant active
set and visited set, and is driven by an easy-to-generate input string. This instance has width 3,
thus active set 3. Each stage is fully connected with its succeeding stage to form a continuous
ring. The circumference, n, is derived using the equation n = d visitedwidth e. 68

5.3 Sensitivity of automata simulation performance to changes in the active set (number of states
considered per cycle) and the visited set (number of states consistently visited). Performance
is much more sensitive to increases in active set. The visited set impacts performance when its
size grows larger than the size of an available level of cache. 69

5.4 Hamming automata benefit most from automata-level parallelism. Protomata benefits from
parallelism in both dimensions. Random Forest only benefits from automata-level parallelism. 70

5.5 Protomata, Hamming, and Random Forest all benefit from a massive amount of stream level
parallelism, however appropriate care must be taken to tune automata groups to match GPU
core resources. 72

5.6 Relative performance of NFA and DFA engines over all benchmarks in ANMLZoo. DFAs for
ClamAV, Protomata, and SPM were too expensive to construct due to space or time costs. . 73

List of Figures xii

5.7 Hamming automata have a constant fan-in/fan-out per STE and therefore have relatively
low routing complexity that is not impacted by the dimension of the mesh. The node degree
of Levenshtein automata grows linearly in the size of the encoded edit distance threshold,
therefore routing complexity is very sensitive to this dimension. Levenshtein automata with
edit distance threshold 5 (d=5) fail to route on the current AP hardware past encoded string
length 24. 75

5.8 Performance of all standard candle benchmarks on each available architecture. AP performance
is estimated to be 133MB/s, however, we expect to see performance degradations due to output
reporting constraints when using the real hardware. Because each ANMLZoo standard candle
automata maxes out an AP chip, it is easy and fair to estimate the performance of an AP
Rank (8 chips) as 8 times the performance of an individual AP chip. 76

6.1 The Automata-to-Routing or ATR toolchain flow. ANMLZoo applications are used to evaluate
automata architectures. These automata graphs are fed to VASim which parses and optimizes
the automata. VASim can also enforce design rules on automata and automatically transform
them to fit an architecture without changing the semantics of the automata. VASim emits
these automata graphs as .blif circuit files for corresponding automata processing spatial
architecture models. VPR takes an architecture description and places-and-routes circuits in
this hypothetical architecture. 89

6.2 Fan-in relaxation example. The maximum fan-in is reduced from 4 to 2 by duplicating a state. 90

6.3 Model-AP routing architecture configuration with channel width of 16, and Row architecture
with 8 Groups-of-Two (GoT). Each GoT has two inputs, but selects a single output between
either STE or the OR or their outputs as detailed in Figure 2.4. 92

6.4 Compilation results from our AP model implemented in the ATR toolchain and compiled
by Micron’s AP compiler for the first generation AP D480 chip. “opt” refers to automata
graphs optimized using VASim’s prefix-merging optimization. “GoT” refers to graphs with
pre-grouped GoTs using VASim’s GoT grouping pass. ATR is capable of accurately modeling
the resource usage of the AP in many cases. Large deviations are due to limitations of VPR’s
support for deep hierarchical routing matrices. 94

6.5 Minimum channel-width requirements determined by VPR for each ANMLZoo benchmark for
the model AP. All benchmarks are able to be placed-and-routed successfully using less than 16
routing tracks per channel, the maximum channel width of the model AP routing matrix. . . 95

6.6 Each ANMLZoo benchmark plotted as a function of the average size of each disjoint automaton
subgraph, and the average fan-out of each node. The darker region highlights an area where
automata are larger, with larger fan-out. EntityResolution, Levenshtein, Hamming, Brill, and
SPM are all applications where 2D-mesh, spatial-automata processors perform much better
than the 4-layer hierarchical routing matrix of the AP. 96

7.1 Abstract spatial automata processor system. The spatial automata processor consumes inputs
at once symbol per cycle. Each reporting state is mapped to a Report Aggregator (RA). The
RA takes report signals and pushes them to Report Queues. If a Report Queue fills, the system
stalls and exports the Report Queue over the Output Data Bus. 104

7.2 The Micron D480 reporting architecture. 107

7.3 Normalized performance of alpha release AP D480 hardware compared to performance predicted
by our trace-based, cycle accurate simulator. Predicted performance matches real performance
to within 2.3%-4.6%. 111

7.4 Simulated Micron D480 output processing overhead for each non-synthetic application in the ANMLZoo

benchmark suite. Snort is 46× slower than ideal because it is so bottlenecked by the D480’s reporting

architecture. 6/12 applications spend more time exporting reports than actually processing the finite

automata. 112

7.5 Report vector density (ratio of ’1’s to total bits) for all applications in ANMLZoo. Most
applications have extremely sparse reporting vectors. Report Vector Division (RVD) statically
re-sizes report vectors to reduce vector sparsity known at compile time. 116

List of Figures xiii

7.6 Spatial Reporting Architecture with report aggregation split into sub-modules. The Metadata

Generator Block tags report packets with RAD configuration information, the sub-RA ID where

the packet was generated in this configuration, and the cycle index the packet was generated. The

Arbitration Unit combines and arbitrates packets from sub-RAs to be pushed to the report queue. . 118
7.7 Reporting overheads as a function of increasing RAD factor for Snort and SPM. Snort has sparse

reporting behavior, and thus benefits from smaller packets. SPM has dense reporting behavior, and

benefits from larger packets. 119
7.8 Speedups and reduction in reporting overhead due to RAD. SPM did not benefit from RAD

because it generates dense reporting vectors. 120

8.1 Hybrid spatial/temporal architectures can efficiently process filter-style automata. Dynamic
profiling identifies highly-active, “hot” regions of automata. Hot regions are placed-and-routed
on the spatial processor, and handle a majority of the computation. On occasion, if the
automata transitions into the cold region, a thread is spawned on the temporal processor to
complete computation. 125

8.2 Percentage of states required to capture different levels of total work done by the automata. As
we attempt to capture higher levels of total work in a partition, the number of states required
increases. For some applications, very few states are required to capture a large percentage of
total work; this indicates that large proportions of automata states could be offloaded to a
temporal processor with low overhead. 131

8.3 High-level overview of the proposed hybrid automata system. We target the Intel Xeon+FPGA
platform [3] . 132

8.4 Report aggregators (RAGG) generate data packets whenever a report is generated in the
automata engine. The arbiter stalls computation until all RAGGs are able to push their data
packets to the report queue. A metadata tag is added to the data packet to identify when and
where the packet was generated. 134

8.5 CPU performance for offloaded computation as a function of percent of total work done by
the CPU. The dotted line demarcates the best possible performance of the REAPR engine on
the target FPGA system. We assume if the CPU performs better than this upper bound it
will not bottleneck computation. The partition that is able to offload the most states without
bottlenecking computation is marked with a ∗. These “featured” partitions are used to report
offloading potential in Figure 8.6. 137

8.6 Percentage of states offloaded for each featured partition: the most states offloaded where the
CPU in the Xeon+FPGA system does not bottleneck system performance. Many benchmarks
can offload large proportions of states (up to 99%!) without overloading the CPU with work. 139

8.7 LUT resources consumed by original benchmark automata and featured partitions. “Lower
bound” is a minimal kernel that approximates CCI-P interface logic overhead. 139

8.8 FPGA RTL compilation time of original automata and featured partitions. “Lower bound”
approximates compilation time of CCI-P interface logic overhead. Some applications (Cla-
mAV, Dotstar, ER, Hamming, Levenshtein, Snort) see massive reductions in compile times,
approaching the lower bound. Even when a small number of LUT resources are offloaded,
compile times can be much shorter (RF, SPM). 140

8.9 Communication overhead added by offloading computation to the CPU for each featured
partition. Overhead is reported as a percentage of the original, full runtime. The percentage
of states offloaded for each featured partition is also reported. Some applications (ClamAV,
Dotstar, Snort) show minimal added overheads while offloading greater than 97% of states. . 143

9.1 The architecture research pyramid. 1) important applications in a particular domain motivate
2) development of analysis tools for this domain. 3) benchmarks must be generated to properly
characterize a domain so that a proper consensus is reached after analysis. 4) design-space
exploration tools must be developed to 5) to identify optimal design points for domain-specific
architectures. 152

List of Figures xiv

Chapter 1

Introduction

As we enter the era of “big data,” quickly filtering and extracting information from petabyte data-sets and

tens to hundreds of gigabytes per second of network traffic has become increasingly important. One prominent

methodology for identifying patterns in large files is to use regular expression pattern searches and finite

automata. Regular expressions describe approximate patterns using a text-based representation language. To

match a regular expression pattern over an input, regular expressions are usually converted to finite state

machines or finite automata. Finite automata recognize patterns by traversing a set of states according to

transition rules guided by symbols from an input text. If the automaton enters into a final report state, it

has recognized a pattern in the text, and reports the location in the input stream and the pattern that was

recognized. Figure 1.1 shows an example automata designed to recognize all correct spellings of the English

word color, both the British and American spellings.

Figure 1.1: Automata designed to recognize all correct spellings of the English word color, both British and
American spellings.

While automata processing is a well-known kernel in network analysis for deep packet inspection [4, 5, 6],

and in security for virus detection [7], more recent research has identified new uses for automata processing

1

Introduction 2

in machine learning [8, 9, 10], bio-informatics [11, 6, 12, 13], graph processing and mining [14], pattern-

mining [15, 16, 17], entity resolution [18], natural-language processing [19, 20], and even high-energy particle

physics [21]. These new targets for automata processing further motive the importance of research and

development of high-performance automata processing software engines on von Neumann architectures,

and novel hardware accelerators. This dissertation focuses on the characterization of automata application

behavior in order to more efficiently accelerate applications using von Neumann architectures and/or spatial

architectures.

On von Neumann architectures, simulation of large automata can require many hundreds, even thousands

of parallel memory operations per input symbol. These memory operations can have little spatial and temporal

locality, and can be likened to parallel “pointer chasing”. Thus, high-performance automata processing on

von Neumann architectures relies on the availability of large, fast caches to hide the performance impact of

many long-latency, sequential memory accesses. Because automata can require many parallel accesses per

input cycle, and can have graphs with hundreds of thousands of nodes that do not fit into on-chip caches,

even today’s server class CPUs struggle to meet the demands of modern automata-processing [22].

Because general-purpose CPUs struggle with automata processing, researchers have explored other,

massively-parallel von Neumann accelerators as a possible solution. Graphics processing units (GPUs) offer a

large amount of parallel resources, which can aid in hiding the latency of expensive DRAM accesses [23, 24, 25].

However, the often unpredictable memory accesses and varying amount of parallelism in automata simulation

can be hard to map to a GPU’s regular and rigid SIMD architecture [22].

While von Neumann CPU and GPU architectures struggle with accelerating the difficult parallel mem-

ory accesses and/or local memory capacity challenges inherent in automata processing workloads, spatial

architectures (reconfigurable networks of processing elements such as FPGAs) excel. Spatial architectures

can place-and-route automata states and connections within the reconfigurable fabric. Transitions between

states can be implemented using point-to-point connections wired via an on-chip routing matrix. Once

placed-and-routed, all automata states can compute in parallel, within a processor cycle, no matter how

active the automata. This makes spatial architectures a natural target for the acceleration of finite automata

processing.

Prior spatial automata acceleration has been investigated using FPGAs [26, 27, 28, 29, 30, 31]. Spatial

techniques leverage the reconfigurable fabric to implement a network of automata states [30, 26, 32, 33, 28]

implementing state matching logic in look-up-tables or embedded memories, and connections between states

in the reconfigurable fabric.

Spatial execution offers potentially large benefits over von Neumann execution, but is only applicable if

the automata graph can fit inside the available on-chip resources.

Introduction 3

Micron’s Automata Processor [34] (AP)–an announced, but not yet commercially available specialized

spatial automata processing accelerator–uses a finite-automata-specific reconfigurable fabric to improve state

density over techniques on more general purpose fabrics such as FPGAs [35]. However, because the AP is a

spatial architecture, it is only usable if an automata graph can be placed and routed on-chip.

Note that the pros and cons of von Neumann and spatial architecture families are complementary. On one

hand, von Neumann architectures can hold extremely large automata graphs in main memory, but perform

poorly when computing large amounts of activity. On the other hand, spatial architectures have highly-limited

capacity and routing constraints, but can efficiently compute arbitrary amounts of parallel activity.

In this dissertation, we hypothesize that hybrid spatial/von Neumann automata processing can realize a

majority of the benefits of each architecture: executing small, densely-active portions of automata on the

spatial side, and large, sparsely-active portions of automata on the von Neumann side. Intuition tells us that

many automata should have this lopsided behavior, as automata are usually designed as input filters. In

filter-style automata, a vast majority of candidate input matches are filtered out in the first levels of states

(high activity), and states deeper in the filter are rarely used (low activity).

Depending on automata topology, dynamic behavior, and available spatial resources, hybrid architectures

offer the following benefits over von Neumann or spatial architectures in isolation:

• A reduction of spatial architecture requirements: If 5% of automata states are required to

compute 99.9999% of total work, a spatial core 20x smaller could efficiently handle the same problem.

This reduction in spatial resources might enable small, low-cost integrated spatial cores to compute

problems that typically would only fit on massive, expensive off-chip co-processors.

• Increased capacity: If a large spatial architecture is available, offloading 95% of automata states

could make room for a larger problem size, or other co-processors for other kernels, greatly increasing

the effective capacity of an existing spatial architecture.

• Shorter place-and-route times: Large graphs that utilize a significant percentage of spatial resources

can have extremely long place-and-route times. Smaller graphs might lead to drastically shorter compile

times, and lower power designs. Place and route can be a large bottleneck for automata processing in

network security, where zero day exploits need to be patched as quickly as possible.

To evaluate this hypothesis, this dissertation focuses on three main research thrusts in the field of automata

computing:

Thrust 1) This dissertation investigates novel, non-obvious use-cases and application domains for

automata-based acceleration. If an application can be framed as an automata processing problem, it may

Introduction 4

benefit from acceleration by both von Neumann and spatial architectures, and benefit from future research.

New, important use-cases for automata processing also further motivates research in automata processing

acceleration.

Thrust 2) This dissertation presents a suite of tools to support automata processing research. Prior

to this work, automata processing tool-chains were either fractured, closed source, not freely licensed, or

not geared towards spatial architecture research. In order foster new research in the field of automata

processing, we present a new suite of open-source tools that allow development of new application domains,

finite automata transformations and optimizations research, novel automata processing accelerator designs,

and fair evaluation of new automata processing architectures.

Thrust 3) Using these above tools, this dissertation presents two architectural studies to support the

main hypothesis: a study of the performance impacts of reporting in spatial automata architectures, and an

evaluation of the potential benefits of hybrid CPU/FPGA automata processing. Reporting is often ignored in

modern spatial automata processing research. Every time a match is encountered on chip, that match needs

to be packaged and exported off chip. If match rates are high in the automata, report handling could greatly

affect performance. We characterize reporting behavior in automata benchmarks and show that reporting

can have a large impact on performance in real systems if reporting architectures are not carefully designed.

This characterization, and impact study motivates the design of a new standard reporting architecture for

spatial automata processors. Such reporting architectures are of utmost importance in a hybrid architecture,

where communication between spatial and von Neumann cores is on the critical performance path.

Together, the developed tools, and reporting architecture study enabled us to design a hybrid spatial/von

Neumann automata processing system, and evaluate the benefits of such a hybrid architecture. We present

a hybrid architecture design, and an algorithm for determining appropriate partitioning points to balance

resource reduction, communication costs, and von Neumann co-processor performance.

The results of these investigations may lead to transformational insights into how certain important

application domains are best accelerated, and may also have far reaching effects into FPGA-based accelerator

design and spatial computing.

1.1 Contributions

This dissertation first investigates a new, non-obvious use-case for automata processing: agent-based simulation

and pseudo-random number generation [36]. By recognizing that probabilistic input to automata produces

probabilistic automata behavior, we design non-deterministic finite automata to implement Markov Chains

and evaluate their performance on current architectures. We then identify bottlenecks to performance and

1.1 Contributions 5

propose hardware modifications for future architectures to greatly increase pseudo-random number generation

throughput.

We present the following contributions:

• The design and investigation of fair, fully connected Markov Chains (N-sided dice) and their ability to

generate high-quality pseudo-random output and other types of structured random behavior.

• An investigation of the performance of Micron’s Automata Processor for high-quality pseudo-random

number generation and a comparison of the performance and power efficiency of this technique to

state-of-the-art pseudo-random number generation algorithms on GPUs.

This dissertation then presents three new, open-sourced tools to increase the ease of access and pace of

automata processing research:

The first tool–VASim–is an open-source automata processing sofware development kit. VASim is, to the

best of our knowledge, the first extensible, general-purpose automata processing framework that combines

automata simulation, optimization, transformation, and performance modeling into one, unified and open

source code base. This framework enables easy prototyping, debugging, simulation, profiling, and analysis of

automata-based applications and architectures. VASim is flexible enough to support research and development

of new automata processing techniques, and fast enough to compete with state-of-the-art automata processing

engines.

The second tool–ANMLZoo–is a diverse suite of 14 standardized automata graphs and inputs that are

derived from both well-known, regular-expression-based applications as well as newly-discovered application

domains. We standardize each benchmark for fair cross-architecture evaluations (especially considering

spatial/von Neumann architecture differences). Using these benchmarks, we show that spatial architectures

tend to perform much better than von Neumann architectures. However, spatial architecture capacity is

very sensitive to automata size and topography and cannot place-and-route automata states with complex

connectivity.

The third tool–Automata-to-Routing(ATR)–is an open-source toolchain that can place-and-route any

homogeneous automata application on a parameterizable spatial automata processing architecture [37]. ATR

builds upon both ANMLZoo and VASim, as well as a well-known existing FPGA architecture research

framework VPR [38]. The ATR toolchain enables research on novel spatial automata processing architectures,

and can be used to evaluate design choices in existing, commercially available processors.

This dissertation then presents a characterization of reporting behavior in the ANMLZoo benchmark suite

for spatial automata processing architectures. To the best of our knowledge, we are the first to characterize

reporting behavior across a wide variety of automata benchmarks and recognize its importance in automata-

Introduction 6

processing application and architecture design. We first characterize automata-processing output requirements

using ANMLZoo, evaluate the impact of reporting on the Micron Automata Processor using a validated,

parameterizable, cycle-accurate simulator. We then present two techniques–an automata transformation, and

a new reporting architecture design–that improve reporting efficiency.

This dissertation then presents a study of the potential benefits of hybrid spatial/von Neumann automata

processors. We first develop a profile-driven partitioning algorithm that identifies regions of automata graphs

that are responsible for a large proportion of computation. We then present a characterization of automata

behavior in the ANMLZoo benchmark suite. We show that most automata in the benchmark suite are

filter-style automata, and contain large proportions of activity in a small proportion of states. We then present

a realization of a hybrid automata processing system targeting a commercially available hybrid CPU/FPGA

architecture. We leverage the open-source spatial and von Neumann automata processing engines to compose

our hybrid system. Our experiments show hybrid automata processing enables large reductions in spatial

resource requirements (up to 97%) and reduction in compile times (up to 3.6x), with low added performance

overheads (less than 6.1%). We also show that hybrid architectures can use different algorithms to cooperate

on one application kernel. The spatial architecture can use small, easily routable automata to pre-filter

problem spaces and pass smaller problem sizes to the best performing CPU or GPU algorithms.

1.2 Organization

The remainder of this dissertation is organized as follows:

Chapter 2: Background introduces automata processing, discusses automata-related theory, prior

approaches to automata processing, and the architecture of Micron’s Automata Processor.

Chapter 3: Generating Efficient and High-Quality Pseudo-random Behavior on Automata

Processors presents a novel use-case for accelerated automata processing: pseudo-random number generation.

Chapter 3 also discusses other use-cases and techniques for taking advantage of random behavior in automata.

Chapter 4: An Open-Source Framework for Automata Processing Research presents the

Virtual Automata Simulator or VASim. VASim is an open-source framework for automata processing research

and development.

Chapter 5: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines

and Architectures presents ANMLZoo, a diverse benchmark suite for fair evaluation of various automata

processing engines.

1.2 Organization 7

Chapter 6: An Open-Source Toolchain for Design-Space Exploration of Spatial Automata

Processing Architectures presents Automata-to-Routing or ATR. ATR is an open-source tool for design-

space exploration of spatial automata processing architectures.

Chapter 7: Characterizing and Mitigating Output Reporting Bottlenecks in Spatial Au-

tomata Processing Architectures presents a characterization of reporting behavior in the ANMLZoo

benchmark suite. This chapter then presents an impact study of reporting behavior on the performance of

existing spatial automata processing architectures, and proposes automata transformations and architecture

changes to reduce the impact of reporting on performance.

Chapter 8: Hybrid Spatial/von Neumann Automata Processing presents the intuition behind

hybrid spatial/von Neumann automata processing. This chapter evaluates whether automata can be

partitioned such that a large proportion of automata computation can be accounted for with a small number

of states. We then then evaluate the performance trade-offs of various partitions, and benefits of hybrid

execution targeting a real-world hybrid CPU/FPGA architecture.

Chapter 9: Conclusions summarizes the dissertation and discusses the implications of this work and

potential future directions of research.

Chapter 2

Background

2.1 Automata Processing

Informally, a finite automaton is defined as a directed graph of node “states” with transition rule edges

between states. Each transition rule is guided by a globally visible input symbol read from a symbol tape.

Each automaton has one or more start states that initiate computation. States that are currently performing

computation are said to be enabled. During a compute cycle, each enabled state compares the current symbol

on the input tape with its transition rules. If the symbol triggers a transition rule, the state activates, and

transitions to each state where a rule matched. Computation proceeds with each symbol on the input tape

being considered, and each state in the graph computing transitions.

Each automaton also has one or more final, accept or report states. If a report state activates, the ID

of the report state and the current position in the input symbol tape are recorded. Automata are usually

designed to report when a specified pattern is seen on the input tape.

In the classical non-deterministic finite automata model [39], processing elements can consider any number

of transition rules [40]. Homogeneous finite automata (also known as Glushkov, or Position automata), are a

restriction on classical finite automata where all incoming transitions to a state have the same (homogeneous)

matching rule. This property is desirable for a variety of reasons. Because each transition into a state occurs

using the same rule, transition rules can be computed once for all incoming transitions. Thus, homogeneous

finite automata states can be thought of as boolean circuit elements. Each boolean input is a potential

transition to the homogeneous state. The state computes the matching function once for any incoming

transition, and accepts the transition if the matching function is true. For the next symbol, the homogeneous

state then broadcasts its match or “activation” to all child elements and the process continues. Homogeneous

8

2.1 Automata Processing 9

Figure 2.1: A generic homogeneous automata processing element. All elements compute a boolean function
based on input signals. The result of this boolean function is then broadcast to element children.

automata are easy to reason about because transition computation and state storage are combined into a

single element.

Because homogeneous automata can be thought of as connected graphs of boolean processing elements,

some automata models also consider boolean logic elements other than the homogeneous state, for example

AND gates. These elements perform computation on signals between symbol cycles, and do not consider the

global input.

A picture of a generic boolean homogeneous automata element is shown in Figure 2.1.

2.1.1 Deterministic Finite Automata

Via transition rules, finite automata can enter into multiple states during a symbol cycle. Finite automata

that can be in more than one state are referred to as non-deterministic finite automata or NFAs. The term

non-deterministic here refers to the parallelism of the finite automata, rather than a stochastic sense of the

word. Deterministic finite automata or DFAs are a subset of finite automata that guarantee only one state

transition per input symbol. NFAs and DFAs are equivalent in computational power, but have trade-offs that

can affect the performance of simulation. Because NFAs can be in more than one state for a given input

symbol, they may require more computation per input symbol. DFAs on the other hand only ever have to

compute the transition rules for a single state, and generally require less computation. The downside to DFAs

is that they can require exponentially more states to represent. The DFA can intuitively be thought of as a

unary representation of its equivalent NFA. Each DFA state represents a configuration of the corresponding

NFA state. Because each NFA state can be occupied or not, the total number of possible NFA configurations

is Θ(2N) where N is the number of NFA states. Thus, converting an NFA to a DFA can take exponential

time and space relative to the number of NFA states.

Background 10

Because of this exponential “blow up,” and the large size of NFAs in real-world automata processing,

DFA conversion is usually not considered as a practical acceleration technique. Prior work has explored using

a hybrid approach where parts of NFAs that have lots of parallel behavior are converted to DFAs, while the

rarely active tails of automata are kept as NFAs [30]. Thus, the hybrid finite automata will on average reap

the benefits of DFA transitions, but without paying the penalty of exponential state blowup. We use this

same intuition in Chapter 8 to reduce the resource pressure on spatial automata processing architectures.

2.1.2 Regular Expressions

Informally, regular expressions (commonly shortened to regex) are a compact language for representing

patterns in strings of characters. In this paper, we are primarily concerned with perl compatible regular

expressions (PCRE) [41] because it is the most widely adopted format.

Regular expression patterns represent a certain set of strings. This set of strings is referred to as the

language of the regular expression. Regular expressions are only powerful enough to represent a subset of

all languages, referred to as regular languages. All regular expressions can be described by equivalent finite

automata and vice versa, making regular expressions and finite automata equivalent in power. Regular

expressions are said to be generative, meaning that they define a set of rules that can be used to generate

strings in the corresponding regular language. Unlike generators, finite automata are recognizers and are

machines designed to accept all strings in a language. Thus, we usually convert regular expressions to finite

automata in order to find regular expression patterns in input strings.

Besides simple matching, PCRE regular expressions add a few additional concepts that greatly expand

the expressiveness of the language.

Grouping Or: Parenthesis indicate a grouping of multiple different expressions. Each expression is

separated by a | indicating that any of the expressions within the parenthesis can match in parallel. For

example, (gr(a|e)y) recognizes both the american and british spelling of the color gray.

Wildcards: Wildcards are additions to represent arbitrary characters in an input string. The . for

example is meant to represent a single character of the input string, although this symbol is often omitted

when used along with quantifiers.

Quantifiers: Quantifiers act on the previous expression and define repeating characters or sequences.

The symbol ? specifies that there are must be either zero or exactly one of the previous expression. For

example, (colou?r) matches both the American and English spelling of the word color. The ∗ symbol, also

known as the “Kleene star,” matches zero or any number of the previous expression. And the + symbol

matches at least one of the previous expression. For example, ((B|b)oo+!∗) will recognize the exclamation of

2.2 von Neumann Automata Processing 11

any ghost. Ranged or interval quantifiers put restrictions on the number of characters. For example, if we

wanted to restrict the number of o's in Boo to be between 2 and 10, we could represent this with the regular

expression ((B|b)oo{2, 10}!∗).

Character Classes: Character classes represent sets of characters and are shorthand for groupings of

individual characters. For example, (gr[ae]y) and (gr(a|e)y) are equivalent. Character classes can also be

described as ranges of characters. For example [a− z] is all lowercase characters, while [0− 9] represents any

digit.

Anchors: The ∧ symbol anchors an expression to the beginning of a line or input sequence. For example

(∧[A− Z]) will recognize all lines that begin with an uppercase character. The $ symbol behaves in the same

way but anchors an expression to the end of a line or input sequence.

2.2 von Neumann Automata Processing

von Neumann computers are reconfigurable processing elements coupled with large memory stores. von

Neumann computers perform computation by storing programs and data in a memory store. Instructions

from the program are fetched from memory, and configure the processing element to compute a certain

operation. If needed, data is fetched from memory to complete the operation. Results of the computation are

then stored back out to memory. Performance of von Neumann computers relies heavily on efficient loads and

stores to the memory. Memory performance trends have traditionally trailed those of processor performance,

thus memory speeds have become a bottleneck for many applications; this problem has been dubbed the

“memory wall” [42] and the memory bottleneck is often referred to the “von Neumann Bottleneck.”

On von Neumann architectures, automata are usually computed using rule look-up tables. Each enabled

state is considered in a loop. If an enabled state matches, child states in the graph are fetched and enabled.

Because of the possibly unpredictable and large number of memory accesses, automata processing is usually

bottlenecked by the von Neumann memory system. Caches can help, but automata in general not have the

spatial or temporal locality necessary to efficiently use unmanaged caches. Thus, the runtime of automata

processing on von Neumann computers is highly correlated with the average number of active states (active

set)–which determines required memory bandwidth–and the size of the set of frequently visited states (visited

set)–which determines the size of the cache or scratchpad required to efficiently serve all memory requests [22].

Therefore, most high-performance von Neumann automata processing systems rely heavily on optimizations

and shortcuts that reduce the total number of memory accesses, or increase the efficiency of memory

accesses [43, 44, 30].

Background 12

Hyperscan [43] is a commercial-grade, open-source automata-based regular expression evaluation engine.

Hyperscan analyzes automata and employs hybrid NFA, DFA, and literal exact match techniques to efficiently

compute regular expression matches. While Hyperscan is high-performance and open source, it is built

specifically for regular expression processing (rather than generic automata processing), and is a complex

code-base that is not easily modified. Therefore, it is not a suitable research platform for automata processing

research.

RE2 [44] is another open source automata-based regular expression evaluation engine. RE2 explores

an NFA and dynamically constructs and caches DFA states. If RE2's DFA state cache grows too large, it

defaults back to NFA execution. RE2's approach excels when automata are small (e.g. a small set of search

rules), but becomes inefficient when the automata are very large because dynamic DFA construction becomes

extremely expensive. In our experience, both Hyperscan and VASim (presented in Chapter 4) perform better

than RE2 for even moderately sized rulesets. RE2 is also designed for regular expression processing and is

therefore not a suitable research platform for experimental automata processing.

Becchi et al. [30] provide an open source, automata-based regular expression evaluation engine. This tool

provides algorithms for constructing and gathering dynamic statistics about automata, but does not support

a high performance simulation. Becchi’s tool is most suitable for research, but is difficult to modify, and does

not easily support the addition of new, hypothetical processing elements. Becchi explores many optimizations

of finite automata and their impacts on performance [45, 46, 30].

GPU-based acceleration of automata processing has also been investigated [23, 24, 25, 22]. GPU-based

acceleration can see improvements over CPU-based automata computation. However, GPUs are still von

Neumann computers and rely on efficient parallel memory accesses to improve performance over CPU-based

computation. If parallel memory accesses are not coalescable, or if parallelism is unpredictable, GPUs

struggle to gain large performance advantages over CPUs [22]. Furthermore, extensive performance tuning is

sometimes required to gain appropriate speedups [22, 25].

Many specialized von Neumann accelerators have been developed that gain efficiency over more general

purpose CPU and GPU-based techniques. Kaneta et al. [31] implemented a von Neumann inspired design in

an FPGA using the concept of bit parallelism [47]. Mitra et al. [48] convert PCRE rules from Snort IDS

rules [4] to “opcodes” that are then processed in specialized cores for individual regular expressions. Gogte et

al. [49] and Krishna et al. [50] design processors to compute regular expression matches using small, optimized

lookup tables. Fang et al. [51] design a custom architecture with small von Neumann cores connected to

large scratchpad memories.

2.3 Spatial Automata Processing 13

Figure 2.2: Spatial automata processors “lay out” automata states in a reconfigurable network of processing
elements and broadcast input symbols to all states. States compute transition rules in parallel and transitions
are propagated via the routing matrix. Von Neumann automata processors simulate automata by keeping
track of a list of active states and using rule tables to compute transitions for the next input.

2.3 Spatial Automata Processing

In spatial automata processing, automata graphs are placed-and-routed in a reconfigurable fabric—similar

to how logic gates in a circuit graph are placed-and-routed on an FPGA. Spatial processors offer a certain

number of processing elements in a reconfigurable fabric and automata graphs are directly emulated in the

fabric. Input symbols are broadcast simultaneously to all states in the graph, and all states compute and

communicate in parallel within a single cycle. This is in contrast to von Neumann techniques discussed in

the prior section that store graph information in some sort of memory, and simulate state transitions using

transition rule lookups. For highly active automata, spatial architectures can be several orders of magnitude

faster than von Neumann architectures [22].

Figure 2.2 shows at a high level the differences between these two approaches.

However, spatial architectures have limited capacity and routing resources. If an automaton has more

states than are supported by the architecture, or if the automaton graph topology is too complex to be

routable, the graph cannot be computed.

2.3.1 FPGA-based Spatial Automata Processing

A large amount of prior work has explored spatial automata processing in general purpose reconfigurable

hardware, i.e. field programmable gate arrays (FPGAs) [32, 33, 45, 29, 26, 52, 53]. FPGAs offer a large

Background 14

amount of flexibility in the design of regular expression processing engines and allow spatial implementations

of automata graphs. Most prior work in designing spatial automata processing engines on FPGAs can be

divided into logic vs. memory-based matching. Both techniques are described below.

Logic-based matching:

In the logic-based approach each automata state is represented by a simple flip-flop, and transition rules

between states are computed using combinational decode logic placed and routing in an FPGAs reconfigurable

fabric. A canonical example of this scheme is Prasanna et al. [32]. Other techniques use and optimize this

approach [45, 33, 28, 52, 53].

Memory-based matching:

Because transition rule computation in logic-based techniques use custom decode logic, logic-based designs

cannot be dynamically reconfigured without an expensive full compilation and place-and-route of the automata

graph [31]. It is often desirable to quickly reprogram the same automata graph with different transition rules

based on the results from prior computation [11, 18, 15, 16]. To enable this feature, memory-based transition

rule computation uses embedded memories in the FPGA’s reconfigurable fabric (rather than custom decode

logic) as large look-up-tables for transition rule computation [53]. Embedded memories can be reprogrammed

separately from the logic, and thus offer quick transition rule modification. Kaneta et al. refer to this property

as “dynamic reconfigurability” [31, 34].

The REAPR FPGA Automata Engine:

More recently, the REAPR [53, 54] project has made both logic-based, and memory-based spatial acceleration

techniques available as an open-source framework. The original REAPR paper [53] compared logic and

memory-based techniques and showed that performance is similar, but that memory-based automata, which

are soft-reprogrammable, consume more power. We use the logic-based REAPR automata engine for our

FPGA-based evaluations in later chapters.

2.3.2 Micron’s Automata Processor and SDK

Micron’s Automata Processor [34] is an “automata specific” memory-based spatial architecture that uses a

DRAM-based reconfigurable fabric to gain increased state density over more general-purpose reconfigurable

fabrics [34, 35]. The AP re-purposes the parallel address decode logic and parallel bit look-up inherent in

DRAM arrays as a large set of dense parallel rule look-up-tables. Coupled with a small amount of logic,

2.3 Spatial Automata Processing 15

Figure 2.3: An Automata Processing state transition element or STE. STEs repurpose memory columns
as 8-input/1-output look-up-tables used for matching symbols from the input stream. Coupled with state
logic, STEs implement a homogeneous automata state. Similar to an FPGA, inputs and outputs to STEs are
routed through a reconfigurable routing matrix.

Figure 2.4: Groups-of-Two (GoT) [2] can hold two STE nodes. Each STE has an input, can enable its pair
STE, or enable itself. The output enable signal is chosen between the left STE, right STE, or the logical OR
of both outputs.

each DRAM column can encode a homogeneous automata state transition rule and state storage bit, and is

dubbed a “state transition element” or STE. An illustrative diagram describing the micro-architecture of an

STE is shown in Figure 2.3.

STEs can be configured to report on activation, producing a 1-bit output. This converts an STE to a

“final” state, and is analogous to accepting or matching an input string in a classical NFA.

An STE acts as a type of logic gate. If an STE received an input signal on the previous cycle, it checks its

DRAM column look-up-table to see if the current symbol is in its symbol set. If the STE matches the current

input symbol, it activates and transmits an output signal to child STEs. Each STE receives and transmits

Background 16

Figure 2.5: Elements in the Micron AP architecture. State Transition Elements (STEs) are groupted into
”Groups of Two” (GoTs). Eight GoTs form a Row. Sixteen Rows form a Block. Ninety-six blocks form a
half-chip. Two distinct half-chips form the AP. We choose the Row as an appropriate tile for the ATR model
AP because it is the first element that has access to the AP’s routing matrix.

signals to other STEs via a hierarchical, on-chip routing matrix. Input symbol broadcast, matching, and

enable-signal broadcast happen within a single AP cycle.

The first-generation AP is divided into two disjoint “half-cores.” Each half-core has 96 blocks. Each block

has 16 Rows and thus each AP chip has 3,072 Rows. Each Row has 8 “groups-of-two” or GoTs. Each GoT

has two STEs. GoTs have two input ports but only one output port. The output port is MUXed to select

between either STE’s output or the logical OR or their output signals. The micro-architecture of a GoT is

detailed in Figure 2.4. The hierarchy and organization of AP structures is shown in Figure 2.5.

STEs “report” by sending their signal from a GoT to one of two reporting ports in a Row. Each Row’s

reporting ports are statically routed to a particular portion of a reporting region [1] and do not use the

general purpose routing fabric. Each half-core of the AP chip has three reporting regions. Each region has

the capacity to support reports from 1,024 GoTs–2 reports allowed from each row within 32 consecutive

blocks. The reporting architecture of the D480 AP is discussed in more detail in Chapter 7.

The AP model extends the homogeneous NFA execution model by adding boolean logic elements, which

provide AND, OR, NOT , NAND, NOR, sum of products, and product of sums capability. The AP model

also provides special counter elements (similar to those proposed in the literature [30]) which only activate

after a pre-set threshhold of input activations is reached. Neither of these elements (boolean and counter)

are available in classical NFAs and they expand the set of languages recognized by the device past regular

languages.

2.3 Spatial Automata Processing 17

Micron’s AP Software Development Kit

Micron’s Automata Processor is accompanied by a software development kit to help automata application

developers prototype, debug, and construct large and complex automata [55]. The SDK provides a graphical

user interface that allows a developer to manipulate finite automata and visualize execution. C, Python, and

Java bindings are also included to allow developers to programmatically define large automata networks.

The AP SDK can export automata networks to an XML-derived automata language called Automata

Network Markup Language or ANML. ANML is an abstract intermediate representation of automata, and

allows automata networks to be saved and passed between different tools. Micron also provides tools for

optimizing and compiling (placing and routing) ANML files for execution on the AP as well as emulation of

compiled automata.

Chapter 3

Generating Efficient and High-Quality

Pseudo-Random Behavior on

Automata Processors

Spatial automata processors such as Micron’s Automata Processor (AP) are extremely powerful and efficient

pattern matchers, and have been shown to provide large speedups over von Neumann architectures such

as CPUs and GPUs for massively parallel regular expression, rule-based pattern mining applications [22].

However, the exact use cases for accelerated automata processing outside of the well-known area of regular

expression processing, and its advantage over other architectures such as CPUs and GPUs remains an

open research question. Thus, new application domains that benefit from automata processing should be

investigated.

This chapter explores a novel application of the AP: a high-quality source of pseudo-random behavior

for pseudo-random number generation (PRNG) 1 and other potential simulations that can be defined with

Markov chains (such as agent-based models). We aim to achieve efficient, high-quality, massively parallel,

pseudo-random behavior by constructing and running many parallel Markov chains, simulated using NFAs.

Instead of simulating automata transitions using conventional input data (e.g. a packet stream), we

consider simulating automata transitions using random or pseudo-random input. Because transitions between

states in automata are conditional on the input stream, a probabilistic input stream immediately provides

probabilistic automata transitions, even though the transition rules are deterministic. Thus, probabilistic

automata, including finite state Markov chains, can be emulated using automata.

1Nathan Brunelle contributed significantly to algorithmic design and theoretic justification for true PRNG in this chapter.

18

3.1 Random and Pseudo-random Number Generation 19

Using this intuition, we develop a novel method for creating high-quality pseudo-random behavior using

Markov chains modeled by NFAs, and accelerated using Micron’s Automata Processor. We call this technique

AP PRNG. We use parallel Markov chains to model rolls of fair dice, and then combine the results of each

roll into a new pseudo-random output string. By combining the output of parallel rolls, driven by a single

stream of random or pseudo-random input symbols provided by a host processor (e.g. the system CPU), we

can construct new pseudo-random output hundreds of times larger than the input used to drive transitions

on chip.

However, because we emulate Markov chains using NFAs with fixed transition functions, any non-trivial

number of parallel Markov chains that consume the same input will produce output that is eventually

correlated and patterned. Put another way, some output configurations of the states of Markov chains will be

more probable than others, therefore, pseudo-random output will eventually appear non-uniform.

Thus, we also study the quality of pseudo-random behavior generated by AP PRNG. We identify that AP

PRNG can generate high-throughput, high-quality pseudo-random output. This result is a strict prerequisite

for evaluating the reliability of any simulation accelerated using shared-input parallel Markov chains. If AP

PRNG cannot generate high-quality pseudo-random behavior, it should not be used as a basis for simulation.

3.1 Random and Pseudo-random Number Generation

3.1.1 Random and Pseudo-Random Number Generation

Pseudo-random number generation (PRNG) lies at the core of simulation and cryptographic applications.

For example, Monte Carlo methods are pervasive simulation tools in physical and social sciences and rely

on continuous random sampling to drive simulation of unpredictable processes. Monte Carlo simulations

were among the first use cases for computers [56], and are arguably some the most important algorithms ever

invented. Because fast and high-quality pseudo-random number generation is on the critical path of these

applications, developing fast and high-quality PRNGs is of the utmost importance to improving the quality

and speed of any computational science.

Today, while there are many PRNG algorithms, not all are created equal. No matter the method for

generation of pseudo-random numbers, the harder it is to distinguish pseudo-random numbers from a truly

random stream of numbers, the better it represents a truly random number stream and the higher its quality.

The literature has adopted two avenues for evaluating the quality of PRNGs. Cryptographic applications

require a PRNG to reduce to a hardness assumption, some problem widely believed intractable. Because we

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 20

aim to motivate the use of AP PRNG for Monte Carlo-style simulation, and not cryptographic applications,

the literature suggests we evaluate random behavior empirically using statistical tests.

Statistical tests distinguish random from pseudo-random input by searching for over-prevalent or under-

prevalent patterns. The most comprehensive and stringent collection tests are the BigCrush test battery from

TestU01 suite [57], which includes the functionality of the Knuth tests [58], DIEHARD [59], and the NIST

statistical test suite [60]. A test in the suite fails if it identifies a property of the pseudo-random sequence

that should not exist in true randomness. If all tests pass, the pseudo-random numbers have been deemed

indistinguishable from true randomness.

3.1.2 State-of-the-Art Parallel PRNG Algorithms

It is desirable that psuedo-random number generation algorithms have two properties:

1. The algorithm should produce high-quality pseudo-random behavior. While the quality requirements for

pseudo-random behavior are application dependent, highest-quality output (i.e. output indistinguishable

from random) is usually desired.

2. The algorithm should be performant on modern computer architectures. For von Neumann machines,

this usually means a small number of instructions and a small amount of local state are required to

generate each byte of pseudo-random output.

Mersenne Twister [61] is a popular, and well-known PRNG algorithm used pervasively in Monte Carlo

simulations. However, it is famously difficult to port onto parallel architectures that provide limited storage

per thread (e.g. GPU, XeonPhi) because each instance of the algorithm requires a large amount of state [62].

When porting simulations to many-core architectures or GPUs, cache and scratchpad memory become scarce

resources per parallel thread, meaning that scalable, parallel PRNGs ideally need to use minimal state to

avoid low core utilization of computational resources on chip [62]. Not only is Mersenne Twister hard to

parallelize, it also fails many tests in TestU01’s BigCrush test battery [62], and is thus a dubious choice as

the gold standard PRNG for future high-performance scientific simulation. Increasingly, scientists are moving

away from Mersenne Twister in favor of algorithms that produce higher-quality pseudo-random behavior,

and are easier to parallelize.

Philox [63] is a newer parallel PRNG algorithm that drastically reduces the amount of state required per

instance of the algorithm. Philox also relies exclusively on integer computation, reducing the complexity

of required hardware, and improving performance over floating-point-based algorithms. Because of the

small state per thread requirements, and integer-based computation, Philox is amenable to acceleration on

3.2 Using Markov Chains to Generate Pseudo-Random Behavior 21

Heads Tails

0.01	

0.01	
 0.90	

0.90	

Figure 3.1: A simple Markov chain that simulates an unfair coin toss with two states: Heads, and Tails.
Transition probabilities between these states are unfair, i.e. the probability of transitioning to Heads is
different than Tails.

SIMD-based graphics processing units. Research has reported throughputs of up to 145GB/s of on-board

PRNG generation (exclusive of board I/O) on on an NVidia GTX580 [63]. In our own tests, we were able to

achiev 85GB/s with no performance tuning, using the built-in Philox4×32 10 implementation in the CUDA

curand library on an NVidia K20 GPU.

Importantly, Philox also passes all tests in the BigCrush test suite. Because Philox is fast, easily

parallelizable, and passes all tests in the BigCrush test suites, we consider this algorithm the current

state-of-the-art in both performance and quality.

3.2 Using Markov Chains to Generate Pseudo-Random Behavior

3.2.1 Markov Chains

In informal terms, Markov chains are automata with probabilistic transitions between states. To be formally

considered a Markov chain, transitions in the automaton must 1) be stochastic processes (i.e. they occur

with some probability), and 2) respect the Markov property, which states that every probabilistic transition

depends only on the current state, and is not influenced by memory of prior states. An example Markov

Chain describing an unfair coin is illustrated in Figure 3.1. We focus on emulation of discrete time, finite

state Markov chains in this thesis, and we leave research into emulation of other models as future work.

Markov chains are defined by stochastic transition matrices, which hold all transition probabilities from a

start state (row) to a end state (column). Each row of the transition matrix must be stochastic, i.e. each

element of the row must add up to 1. Logically, this makes sense because we must always make some

transition in a time step, even if it is to the current node. The transition matrix for the unfair coin example

in Figure 3.1 is shown in Table 3.1. Note that to build a fair coin, we simply set all probabilities in the

transition matrix to 1/NumStates.

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 22

To Heads To Tails
From Heads 0.90 0.10

From Tails 0.90 0.10

Table 3.1: Stochastic transition matrix of a Markov chain representing an unfair coin.

3.2.2 Using Markov Chains to Generate Pseudo-Random Behavior

Just like the unfair coin example in the previous section, we can construct fair Markov chains that have an

equal probability of entering into any one state by setting all transition probabilities in the stochastic matrix

to be equal.

Each state is then encoded with a binary label, and on every time step, the binary encoding of the state of

the Markov Chain corresponds to a random output. Naively, number of random bits generated by a fair, fully

connected Markov chain is floor(log2(N)). If the number of states in the chain is not a power of two, we can

only use the bits that are equally likely to appear in the output. Thus, we only consider fair, fully-connected

Markov chains where N = 2k. Because the example Markov chain has four states (N = 4), each time-step

generates log2(4) or 2 random bits. These bits can then be concatenated to form random bytes, integers, or

floating point numbers.

Multiple Markov chains can be run in parallel to generate more random output per time-step. As long as

the transition probabilities in each parallel Markov chain are independent, an arbitrary amount of parallel

output can be generated by simulating any number of parallel Markov chains. We use this intuition to

generate high-throughput PRNG using the simulation of parallel Markov chains. The next chapter describes

how we simulate Markov chains using automata with deterministic transitions.

3.3 Simulating Markov Chains Using Finite Automata

Markov chains and finite automata have similar computation models: they both have states with transition

rules between states. However, transitions between two states in a Markov chain are governed by a simple

probability, while finite automata transitions are governed by a transition rule and an input tape. Note that

the transitions in a finite automata actually do have a probability: the probability that a symbol occurs in

the input stream that will cause a transition.

The probability of a transition from node A to node B on symbol c is the probability that c occurs

in the input stream. Thus, even though the transitions are deterministic given a certain input symbol,

tuning the probability distribution of the input can cause that transition to become probabilistic. Using

this intuition, we can simulate Markov chains by randomizing the input stream, and carefully constructing

automata transitions.

3.3 Simulating Markov Chains Using Finite Automata 23

Assuming a uniformly distributed input stream of symbols, we can easily construct finite automata

transition with a certain probability by making sure that the transition rule is triggered by a proportion of

input symbols that matches the transition probability. For example, if we want to model a Markov chain

transition that occurs with 50% probability, we construct a finite automata transition rule that is triggered

by 50% of symbols that could be seen in the input. If symbols occur uniformly at random, this transition has

a 50% probability of occurring!

3.3.1 Markov Chain to NFA Construction Algorithm

Consider the unfair coin example described in the previous section and shown in Figure 3.1. To produce the

probabilistic transitions of the Markov chain in a finite automaton we first assume the input symbol stream

is a source of uniformly distributed random symbols.

An NFA simulating a Markov chain can be constructed using the following algorithm provided a stochastic

transition matrix:

Data: Square Stochastic Matrix StochMat; Set of possible input symbols Σ
Result: NFA Markov Chain Simulator
initialization;
foreach MarkovState do

Create a corresponding NFA state State ∈ States;
end
Select an arbitrary State to be a start state, activating on start of data;
construction;
foreach FromState ∈ States do

foreach ToState ∈ StatesFromState do
Create transition rule δ(FromState, C);
TransProb← StochMat[FromState][ToState];
Without replacement, randomly select TransProb ∗ |Σ| symbols from Σ as the character class
recognized by EdgeNode;

Add edge from FromState to EdgeNode;

end

end
Algorithm 1: Construct an NFA that simulates a Markov chain given its corresponding transition matrix

The algorithm first converts each Markov chain state into an NFA state. The algorithm then builds a fully

connected finite automata where a transition from node FromState to ToState contains a randomly selected

(without replacement) proportion of the input alphabet corresponding to the proportion in the stochastic

transition matrix.

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 24

3.3.2 Markov Chain to Homogeneous NFA Construction Algorithm

As discussed in Chapter 2, homogeneous NFAs are preferred to theoretical NFAs for a variety of reasons.

Because Micron’s Automata Processor and other automata processing systems focus exclusively on homo-

geneous automata, we present an algorithm for directly constructing homogeneous automata from Markov

chain stochastic matrices.

A homogeneous NFA simulating a Markov chain can be constructed using the following algorithm provided

a stochastic transition matrix:

Data: Square Stochastic Matrix StochMat; Set of possible input symbols Σ
Result: Homogeneous Markov Chain Simulator
initialization;
foreach FromState do

Create a reporting STE “state node” representing FromState that recognizes all input symbols;
end
Select an arbitrary FromState to be start state, activating on start of data;
construction;
foreach FromState do

foreach ToState do
Create “edge node” STE EdgeNode;
TransProb← StochMat[FromState][ToState];
Without replacement, randomly select TransProb ∗ |Σ| symbols from Σ as the character class
recognized by EdgeNode;

Add edge from FromState to EdgeNode;
Add edge from EdgeNode to ToState;

end

end
Algorithm 2: Construct AP Markov Chain Simulation

An example of this construction for the unfair coin example is shown in Figure 3.2. For illustrative

purposes, we restrict the input symbols to be within the character class [0− 9]. The proportion of symbols in

each EdgeNode corresponds to the transition probability recorded in the transition matrix.

Note that unlike the non-homogeneous construction in Section 3.2.2, this construction takes two cycles to

generate an output, one to move from a “from state” node to an edge node, and another to move from an

edge node to a “to state” node. Algorithm 2 can easily be modified to generate an output on every cycle by

also setting a randomly selected edge node, along with an arbitrary state node, to act as a start state. We

omit this construction for clarity but assume one random output per cycle when modeling performance of

Markov chains on AP hardware.

While other Markov chain constructions exist, we identified this as the most efficient in terms of overall

STE usage, connectivity, and performance. We leave research and evaluation of other constructions as future

work. Markov chains can also be used to construct probabilistic automata that model more complex systems.

3.3 Simulating Markov Chains Using Finite Automata 25

Figure 3.2: A Markov chain implemented on the AP corresponding to the theoretical Markov chain in
Figure 3.1, with two reporting “state nodes” representing Heads and Tails. Reporting states are indicated
by an ”R” subscript. The start state is indicated by a ”1” superscript. Transition probabilities between
these states are unfair and are modeled by dividing the possible input symbols [0− 9] into random groups,
proportional to the transition probabilities.

We discuss some examples (such as agent agent-based simulations) in Section 3.7 but leave evaluation of the

quality of these more complex systems to future work.

3.3.3 Correlation Among Parallel NFA-based Markov Chains

Because we construct pseudo-random output using NFA-based Markov chains with randomly generated, fixed

transition functions, any number of parallel NFA-based Markov chains that consume the same input must

produce output that is correlated.

For example, consider a 2-state chain with identical, but fair, transition tables. In this case, the NFA-based

Markov chains can only ever make the same transitions on any random input, and will emit output of the

form ((00)|(11))∗, obviously a non-random sequence! If the second transition table is the inverse of the first,

the NFAs will emit output of the form ((01)|(10))∗, an output just as patterend as was produced by identical

tables.

While it is fairly easy to construct transition tables that produce non-random output, as we increase the

number of parallel Markov chains, size of the input alphabet, and the number of states in the Markov chain,

the properties of multiple transition tables that produce high-quality random output become much harder to

identify.

When constructing new NFA-based Markov chains, we choose to randomly construct its transition table.

While this strategy does not preclude the construction of highly-correlated groups of chains which produce

low-quality pseudo-random output, we hypothesize that random construction performs well enough to pass

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 26

all statistical tests for a certain number of Markov chain time steps. We leave potential improvements on this

strategy to future work.

3.4 Generating Efficient and High-Quality Pseudo-Random Be-

havior on Micron’s Automata Processor

By constructing a certain number of NFA-based Markov chains that model rolls of fair dice, and simulating

all automata using the same pseudo-random input, we can create a large amount of pseudo-random behavior,

with a small input stimulus.

However, because there may be many hundreds to thousands of transitions per symbol in parallel NFAs,

CPU-based simulation of these systems will almost certainly not be able to compete with state-of-the-art

PRNG techniques like Philox. Therefore, we propose to use Micron’s Automata Processor to accelerate

NFA-based PRNG. We dub this methodology AP PRNG. This section describes AP PRNG, and the potential

PRNG throughput given reasonable architectural restrictions.

3.4.1 AP PRNG System Design

System Architecture

The proposed system architecture is shown in figure 3.3.

Figure 3.3: AP PRNG system-level diagram. A host processor provides a small amount of pseudo-random
input to drive transitions and reconfiguration.

A certain number of parallel, NFA-based Markov chains are placed and routed on Micron’s AP. AP PRNG

can be configured to support a number of NFA-based Markov Chains (NMC) that drive random output. Each

3.4 Generating Efficient and High-Quality Pseudo-Random Behavior on Micron’s Automata Processor27

individual NFA-based Markov chain can be configured with a certain number of final states (NS), which is

also the number of states in the simulated Markov chain.

All chains share the same pseudo-random input symbol stream and make transitions according to the

randomized transitions outlined in Algorithm 2. For every input symbol, each chain will enter into a state

that reports its encoded binary ID. These IDs are then combined by the AP architecture, and exported

off-chip as pseudo-random output.

Because AP PRNG output is correlated, eventually, statistical tests will be able to identify patterns in

the output. Thus, the randomized transition rules in each NFA-based Markov chain need to be reconfigured

periodically after a certain number of input symbols to preserve quality. The lower the input reconfiguration

threshold (IR), the more frequently the support processor will need to reconfigure AP PRNG transition

tables, and the higher the performance penalty.

Note that a support processor is required to provide the random or pseudo-random input symbol stream.

The support processor is also responsible for randomly configuring the symbol sets of the STEs responsible

for pseudo-random transitions in the NFA-based Markov chains.

An AP PRNG configuration depends on the type of NFA-based Markov chains generated (NS), the

number of NFAs of that type (NMC), and the input reconfiguration threshold (IR). We discuss the effects

of various NFA-based Markov chain configurations on capacity, AP PRNG output quality, and AP PRNG

throughput in the following sections.

AP Chip Capacity

Each NFA-based Markov chain generated by Algorithm 2 requires a certain number of reporting states, and

a certain number of total NFA states to be implemented. Because only 32 STEs out of 256 in an AP block

are capable of reporting in the first generation AP architecture [34], each parallel NFA-based Markov chain

may be limited by either reporting elements or total STEs per block depending on how many Markov chain

states it models. An N -state fair Markov chain requires N reporting STEs to model as an NFA, thus we

can instantiate a maximum of 16, 8, and 4 chains per AP block for 2, 4, and 8-state chains respectively. A

N -state fair Markov chain requires N2 +N total STEs to model as an NFA, thus, based on STE capacity, we

can instantiate a maximum of 42, 12, and 3 chains per block for 2, 4, and 8-state chains respectively. Thus,

considering both constraints, we can implement a maximum of 16, 8, and 3 chains per block for 2, 4, and

8-state chains respectively.

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 28

Potential AP PRNG Performance

Micron’s AP is capable of processing one symbol cycle every 7.5ns, meaning that AP PRNG can process a

Markov-chain time-step every 7.5ns. Given the chip capacity constraints discussed above, and assuming that

each reporting element can be used to create random output, and no chip output reporting bottlenecks, a

single AP chip can create up to 51.2GB/s of pseudo-random output. Given that an AP board contains 32

AP chips, the maximum throughput per board is upwards of 1.6TB/s of pseudo-random throughput, greater

than 10 times the fastest GPU-based, board-level PRNG throughput reported in the literature [62].

Table 3.2 summarizes the constraints derived in the previous section and reports the maximum potential

random output for 2, 4, and 8-state chains on the AP given our assumptions.

NS Reporting
STEs

Total
STEs

NMC per
AP Block

Output Bits
per Cycle per
Chip

Input Random
Throughput
Required

Max Through-
put per Chip

2 2 6 16 3,072 133MB/s 51, 200MB/s
4 4 20 8 3,072 133MB/s 51, 200MB/s
8 8 72 3 1,728 133MB/s 28, 800MB/s

Table 3.2: Hardware resource requirements and best case performance metrics for 2, 4, and 8-state Markov
chains as constructed by Algorithm 2 on a single AP chip.

Note that we also report the required input pseudo-random or random throughput necessary to drive all

transitions on chip. This is important to track to make sure it is reasonable that a given support processor

will not bottleneck AP PRNG. Because all automata on an AP chip share the same input symbol stream,

and the AP processes one input symbol every 7.5ns, the maximum required input throughput necessary is

133MB/s.

While the potential PRNG throughput of AP PRNG is impressive, correlation among Markov chains and

practical output throughput bottlenecks of AP chips will prevent AP PRNG from reaching this theoretical

upper-bound. In the next sections, we simulate the APPRNG system to analyze the effects of AP PRNG

configurations on PRNG quality. We then analyze the AP chip’s output throughput bottlenecks and propose

solutions to improve performance.

3.5 Effects of AP PRNG Configurations on AP PRNG Quality

The known existence of correlation among parallel NFA-based Markov chains introduces two important

questions: (1) how does the number (NMC) and size (NS) of parallel Markov chains affect quality of PRNG,

and (2) given the configuration that provides the best quality PRNG, how long can we run AP PRNG before

statistical tests are able to reliably detect patterned output, and the system must be reconfigured (IR)?

3.5 Effects of AP PRNG Configurations on AP PRNG Quality 29

The following sections simulate the AP PRNG system and use the TestU01 statistical test battery [57] to

evaluate the quality of the resulting pseudo-random output. The results of these sensitivity analyses will

motivate configurations for the final AP PRNG system.

3.5.1 Experimental Framework

To test AP PRNG quality, we designed a program to build NFA-based Markov chains using Algorithm 2

and simulate them. We gather the PRNG output from the simulator and measure its quality using the test

batteries in the TestU01 statistical test suite [57]. Because first-generation AP hardware is not yet available,

we use a functional simulation of AP PRNG behavior, which was verified using Micron’s AP SDK.

Statistical Random Quality Tests

TestU01 is made of three main test batteries: SmallCrush, Crush, and BigCrush. SmallCrush consists of 10

statistical tests, and is meant to quickly check obvious statistical flaws in PRNG output. Crush applies 96

distinct statistical tests (144 total test statistics), while BigCrush applies 106 distinct tests (160 total test

statistics). Because production AP hardware is not currently available, the BigCrush test battery can take

between 3-7 days to complete on a single CPU core, depending on the configuration. We therefore do initial

sensitivity analyses using SmallCrush, and Crush, in order to quickly identify trends in relative quality of

random output between different AP PRNG configurations.

Support Processor Model

Because AP PRNG requires a support processor to supply random input to the hypothetical AP, and to

randomly configure Markov chain transition tables, we must provide a source of pseudo-random numbers

that simulates the role of an AP PRNG support processor. For this evaluation we use the Philox32x4 10

generator [63] to provide all random input. As one should expect for any PRNG, we found that using lower

quality input sources, such as the C standard library’s rand() or Mersenne Twister, translated to significantly

lower quality AP PRNG output. We therefore use the Philox algorithm, as it is the most performant and

highest quality generator available, and available as an open source C++ library [63]. We use this library

implementation to drive all random transition table configuration and streaming input to AP PRNG.

3.5.2 Effect of Markov Chain Size on PRNG Quality

To show how the quality of pseudo-random output is affected by Markov chains of different sizes, we run

multiple trials of SmallCrush using the AP PRNG functional simulator. Although SmallCrush may not be

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 30

the most stringent test suite, and thus less useful when comparing to state-of-the-art PRNGs, it is suitable

to quickly identify relative patterns in failures among different AP PRNG configurations, and motivate

appropriate parameters for more stringent tests.

We configured AP PRNG with a reconfiguration threshold (IR) of 50,000 input symbols, 384 parallel

Markov chains (NMC), varying the size of the Markov chains as 2, 4, or 8 states (NS). For each state

configuration, we ran 16 trials of SmallCrush and collected data on all test failures. The results are shown in

Table 3.3.

Number of Markov Chain States 2 4 8
Average Number of Failures 5.5 2 0
Distinct Number of Failures 6 2 0

Table 3.3: The effects of increasing the number of states per Markov chain on random quality. It is statistically
harder to identify correlation between chains with more states.

We can see that random quality is highly sensitive to the number of states used to build each Markov

chain. 2-state Markov chains fail an average of 5.5 tests over the 16 trials, failing 6 unique tests in the test

suite. 4-state Markov chains consistently fail the same two tests over the 16 trials. 8-state Markov chains

are completely resistant to failure over the 16 trials, passing all tests. This trend is likely due to the huge

increase in the possible outputs that could be created by Markov chains with more states. A larger number

of states allows for a larger number of possible configurations of a single Markov chain. Therefore, Markov

chains with 8 states will take longer to repeat configurations and exhibit statistically identifiable non-random

behavior than the same number of chains with 2 states.

We therefore only consider 8-state chains in the following sensitivity analyses.

3.5.3 Effect of Parallel Markov Chains on Random Quality

To show how the number of parallel, 8-state Markov chains affects the random quality produced, we explore

performance of AP PRNG with from 32 to 768 Markov chains operating in parallel. For these experiments,

we use Crush to evaluate random quality. Figure 3.4 summarizes the experimental results. Apart from two

obvious outliers, when using 352 and 704 parallel Markov chains, as the number of parallel Markov chains

increases, quality of randomness is stable, suggesting that practically, larger numbers of parallel Markov

chains do not significantly decrease quality of random output.

We hypothesized that the marked increases in the failure rate for 352 (32× 11) and 704 (64× 11) parallel

Markov chains was due to an undesirable property of our algorithm for converting output bits from AP PRNG

to 32-bit integers. Because the value of an integer is influenced more by high-significance bits, non-random

3.5 Effects of AP PRNG Configurations on AP PRNG Quality 31

Figure 3.4: Average number of Crush failures over four trials for parallel 8-state Markov chains with a
reconfiguration threshold of 200,000. The darker bars represent failure rates when interleaving output bits.
Spikes in failure rates occur when the same Markov chains always contribute to the same bits in output
integers. The lighter bars represent failure rates when successive output from a Markov chain contributes to
a single output integer. This eliminates the spike in failures, but reduces overall quality.

behavior in high-significance bits will be noticed quicker than non-random behavior in low-significance bits

on the numeric-based tests.

Because we construct 32-bit integers by concatenating three output bits from every 8-state chain in a

round-robin fashion, certain numbers of chains will align their output, such that a single chain will always

contribute to the same digits. This puts undue reliance on chains that contribute highly significant bits of

integers, and may amplify patterns in the psuedo-random output. To test this hypothesis, we modified how

integers are constructed to have a Markov chain provide all the bits for a single 32-bit value before the value

is consumed by the statistical tests. Thus, all Markov chains contribute uniformly to the digits in a single

integer, rather than a particular set of digits. The results of this experiment are shown in Figure 3.4.

The spikes in failure rates are eliminated, although failure rates are higher on average, supporting our

hypothesis. We therefore adjust AP PRNG to use the largest prime number of Markov chains able to fit

onto an AP chip. A prime number of machines will prevent any one machine from contributing to the same

location in an supplied 32-bit integer at least until we provide 32 times that prime number of input symbols.

The maximum number of 8-state Markov chains that will fit onto an AP chip is 576; we therefore use 571

(the largest prime less than 576) 8-state chains per AP chip as the highest performing configuration for final

quality and performance evaluations.

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 32

Figure 3.5: As the reconfiguration threshold increases, it is becomes easier for statistical tests to identify
non-random behavior.

3.5.4 Effect of Input Size on Random Quality

To show how the quality of random output is affected by the number of input symbols, we ran four trials

of 761 8-state Markov chains through the Crush test suite, varying the number of input symbols from

20,000 to 90,000. We hypothesized that the more symbols we allowed each parallel machine to consume

without reconfiguration, the more likely the output is to look non-random. Therefore, shorter reconfiguration

thresholds will likely increase quality of random output. However, shorter reconfiguration thresholds force

the AP to reconfigure more often, incurring a reconfiguration penalty.

The results of the experiment are shown in Figure 3.5.

Figure 3.5 shows that, as we increase the number of input symbols between reconfigurations, the quality of

random output decreases. However, even for 20,000 symbols, 761, 8-state Markov chains do not consistently

pass all Crush tests. In initial exploratory tests, some BigCrush tests even failed with reconfiguration

thresholds as low as 10,000, meaning that even shorter reconfiguration thresholds are required in order

to match the quality of the Philox algorithm. As the AP only takes 7.5ns to consume a symbol, but

approximately 45ms to reconfigure [15], a reconfiguration threshold of 10,000 would cause the AP to spend

99.83% of its time reconfiguring, translating to 48MB/s of output, less random output than input.

We hypothesize that performance of AP PRNG could be drastically increased if we could reduce the impact

of neighbor dependence. Because our algorithm always forms integers by interleaving bits of neighboring

Markov chains in a deterministic manner, we put undue pressure on close groups of machines to produce

uncorrelated output. Previously, we saw that neighbor dependence induced catastrophic failure rates when

the same configuration of machines was always used to contribute the same digits of output integers. By

using a prime number of machines, we could force this configuration to at least rotate. However, rotation

3.5 Effects of AP PRNG Configurations on AP PRNG Quality 33

Figure 3.6: Output quality of AP PRNG with output permutation hardware greatly increases quality of
random output. AP PRNG passes all tests in BigCrush with a reconfiguration threshold of at least 1, 000, 000

still preserves the relative order of machines contributing to any individual output integer. To eliminate

neighbor dependence without decreasing throughput, we investigate potential impact of output permutation

via pipelined support hardware or software to reorder output bits of a group of Markov chains before we

combine the bits into integer values for analysis.

We configured AP PRNG to use 571 8-state Markov chains with 32-wide permutation hardware that

changes the output ordering of every 32 Markov chains every 1, 000 symbol cycles. We then ran four trials of

BigCrush to assess improvements in quality of random output. Results are shown in Figure 3.6. Compared

to the results from Figure 3.5, random output quality greatly improved. Previously, AP PRNG failed

all tests in Crush with a reconfiguration threshold of 20, 000 input symbols. However, AP PRNG with

permutation capability passes all BigCrush tests with a reconfiguration threshold of at least 1, 000, 000

symbols. This indicates that neighbor dependence was a major contributor to poor output quality. AP

PRNG with permutation capability can generate at least 50× more random output before full reconfiguration

is required.

While this functionality is simulated in software, we hypothesize its implementation as an addition to the

reporting architecture, support ASIC, or via the host or support processor. The most efficient implementation

will depend on the particular deployment scenario of the AP. Output permutation is only one way of increasing

quality of output, and this result motivates further studies to identify other methods (especially to replace the

simple round-robin scheme) to cheaply mitigate the effects of neighbor dependence in hardware, or software.

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 34

3.6 AP PRNG Performance Model

The above sensitivity analyses motivate using 571, 8-state Markov chains, with a reconfiguration threshold of

at least 1, 000, 000 input symbols, and a permutation threshold of 1, 000 as a high-quality PRNG. To analyze

the practical performance of this AP PRNG configuration, we constructed a performance model based on

these parameters and the reported configuration of the first-generation AP architecture [34]. Because the AP

operates at 133MHz, consuming one 8-bit symbol and executing all transition rules every 7.5ns cycle, an

AP performance model does not require simulation. Below we describe the model inputs, output metrics, and

sensitivity to certain architectural parameters.

First Generation AP Architectural Parameters
Frequency 133MHz
Cycle Time (Tc) 7.5ns
STE Size 256 bits
Random State per Chip (ChipState) 1.17MB
Est. AP Reconfiguration Time (Tr) 45ms

AP PRNG Parameters
States per Markov chain (Ns) 8
Markov chains per AP Chip (Nmc) 571
Input Reconfiguration Threshold (IR) 1, 000, 000
Permutation Width (PW) 32
Permutation Reconfiguration Threshold (PR) 1, 000

AP PRNG Performance Model
Chip Output per Input Symbol (O) log2(Ns) ∗Nmc

Random Generation Time (TR) IR ∗ Tc
Runs per second (Runs) 1/(TRun + Tr)
AP PRNG Throughput (P) Runs ∗O
Random Input Stream Rate (Ins) Runs ∗ IR
Random Input Required
for Reconfiguration (Inr) Runs ∗ ChipState
Random Input Required
per Permutation (Inp) PW log2(PW)

3.6.1 Performance Sensitivity to Reconfiguration Threshold

Figure 3.7 shows the throughput of AP PRNG predicted by the performance model for various reconfiguration

thresholds (IR). When IR = 1, 000, 000, AP PRNG produces 4.1GB/s of random output per proposed

first-gen AP chip.

One unique feature of AP PRNG is that it allows the user to easily trade random quality for higher

random throughput. This is desirable if an application or simulation does not require extremely high-quality

randomness and is constrained by power, or performance. If strict random quality is not required, and the

3.6 AP PRNG Performance Model 35

Figure 3.7: Percentage of runtime spent reconfiguring vs. AP PRNG throughput with different reconfiguration
thresholds. Performance increases dramatically if AP PRNG is able to reconfigure less frequently.

user allows for a longer IR, the model predicts that performance can be increased dramatically. Figure 3.7

shows that for an IR = 10, 000, 000, a single first-gen AP chip is capable of producing 17.8GB/s of random

output. End users will therefore be able to reduce the number of AP chips, and power consumption, or

increase performance, if statistically perfect randomness is not required for a particular application.

AP PRNG also requires a source of random input to drive automata transitions, reconfiguration, and

permutation. While we assume the system host processor is able to implement the Philox32× 4 10 algorithm

and provide this random input, the resulting need for random input throughput can be significant. For

IR = 1, 000, 000, the model predicts we need 200.7MB/s of random input per chip. For IR = 10, 000, 000,

the model predicts we need 176.3MB/s of random input per chip.

3.6.2 Performance on Future AP Hardware

On the first generation AP chip hardware, maximum output throughput is projected to be 436.9MB/s [1],

thus limiting the practical amount of random output that can be exported off chip. STE reconfiguration

time, which we have shown to be the next most significant performance bottleneck, is projected to be

45ms on first-generation AP hardware. While these parameters represent the projected performance of the

first-generation AP chip architecture and implementation, they do not reflect fundamental bottlenecks to AP

PRNG. For example, output report vectors and STE columns are implemented as DRAM memory; therefore,

it is not unreasonable to assume that both STE reconfiguration and output reporting could happen at or

near native memory I/O speeds, drastically decreasing reconfiguration times and increasing practical AP

PRNG output throughput.

We consider the performance of AP PRNG where writes could occur at native DDR3, DDR4 and Hybrid

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 36

Memory Technology DDR3 DDR4 HMC 2.0
Peak Throughput (GB/s) 12.8 17.0 320
Tr (µs) 91.4 68.8 7.3
AP Chip Output (GB/s) 28.2 28.3 28.5
Throughput Limited Out-
put (GB/s)

12.8 17.0 28.5

Table 3.4: AP PRNG performance modeled on different memory technologies. AP PRNG throughput is
limited by peak memory throughput for DDR3 and DDR4 technologies.

Memory Cube (HMC) throughputs. HMC technology accomplishes massive I/O throughput by stacking

DRAM layers directly on top of logic, and inserting vertical communication links with through-silicon vias [64].

One could integrate the AP into HMC as one or many layers of a stacked HMC design as a part of a

heterogeneous memory module. Table 3.4 shows the performance of DDR3, DDR4, and HMC2.0 technologies

with derived reconfiguration times (TR), and AP PRNG throughput.

For 571, 8-state Markov chains we only need to reconfigure all transition STEs (64 for 8-state chains). For

a single chip, this translates to 1.17MB of state. Table 3.4 shows that even if we reconfigure the AP using

native DDR3 bandwidth, the AP PRNG performance model predicts each AP chip can produce 28.2GB/s of

high-quality pseudo-random output. However, peak DDR3 throughput is only 12.8GB/s, and thus limits the

practical amount of output we can export off chip.

If we consider future high-throughput memory technologies, such as Hybrid Memory Cube (HMC) [64],

the AP PRNG performance model predicts that each AP chip will produce a comparable 28.33GB/s of

pseudo-random output. However, HMC’s much larger output bandwidth allows us to easily export this output

off chip.

As we increase the number of reconfigurations per second, AP PRNG also requires more random input

throughput. The HMC configuration, with TR = 1, 000, 000, requires 289MB/s of random input per chip,

about 7× larger than AP PRNG on the first-generation AP chip. While this is not an insignificant amount

of random input, the host processor can easily supply it. The significant amount of state needed for STE

reconfiguration motivates research into techniques to increase TR (such as output permutation) without

sacrificing random quality.

Future AP architectures implemented on cutting-edge transistor process nodes will also most likely have

larger STE capacities. Adjusting the model for a reasonable 1.41× increase in STE capacity (corresponding

to 1.41× more Markov chains) per AP core, AP PRNG can produce 40.5GB/s of random output per chip,

while only requiring 355MB/s of random input from the host processor to configure transition tables, drive

automata transitions, and drive permutation reconfiguration.

3.7 Other Uses for Pseudo-Random Behavior 37

3.6.3 Estimating AP PRNG Power Advantage

Ultimately, performance and power advantages over current PRNG implementations will greatly depend

on the implementation and deployment scenario of AP PRNG or other applications of Markov chains such

as discrete event simulations, however, we project that AP PRNG will be much more power efficient than

GPU PRNG and Markov-chain based discrete-event simulations. For example, the GTX 580 GPU used in

Salmon et.al [63] has a TDP of 244W, while each DDR3-based AP chip has a projected TDP of 4W, and

stacked HMC-based memories are projected to use 70% less energy than DDR3. Figure 3.8 shows the PRNG

efficiency of six different realistic AP PRNG deployment scenarios.

Figure 3.8: AP PRNG is up to 6.8× more power efficient than the highest-throughput reported GPU PRNG
depending on the deployment scenario.

All AP deployment scenarios require a support processor to generate random input and configure the

AP. We assume that a typical single CPU support processor core consumes 35W. The configuration with

4 AP chips implemented in an HMC technology produces 4MB/s/W, 6.8× more power efficient than the

best performing GPU PRNG reported in the literature [63], and 10.8× more power efficient than our

measured experiments using the curand library implementation of Philox32x4 10 on an NVidia K20C GPU.

Disregarding support processor power consumption, and conservatively assuming a 4W TDP per AP chip,

AP chips are 16.8× more power efficient than the reported GPU implementation.

3.7 Other Uses for Pseudo-Random Behavior

Any agent-based model can be represented using Markov chains [65]. The following sections show different

examples of how accelerated random Markov chain simulation using automata could be used to model useful

applications that rely on agent-based simulation.

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 38

Figure 3.9: Asset price simulation modeling a random walk with transitions of +/-$0.01 or no change.

3.7.1 Simulating Asset Price Motion

Asset price motion is concerned with simulating and predicting the price of a financial asset over some set

amount of time. Based on randomly generated input, an asset price is adjusted over time according to a

motion function. This function is often chosen to be Brownian motion. Brownian motion was originally

developed as a part of particle theory and defined to model the random motion of particles in a system, but

has been re-purposed as a proposed model for behavior of the price of assets and financial markets.

Because Brownian motion is a stochastic process, it can be simulated using random walks on Markov

chains. Random walks are driven by random transitions (defined by a motion function) between states of

a walker over some dimensional space of states. In our asset price example, the state space is simply all

discrete prices that the asset could occupy, thus a 1D number line. At any given time, the price could go up

or down depending on a random input, and the added or subtracted amount would be determined by the

motion function. At the end of the simulation, the final state of the walker is the predicted asset price of the

simulation.

An example of a 1D random walk simulation of an asset price is illustrated in Figure 3.9. 1D random

walks can be simulated using linear Markov chains, or Markov chains with diagonal or banded stochastic

matrices. As long as the transitions to neighboring (or nearly neighboring) states correctly encode the

3.7 Other Uses for Pseudo-Random Behavior 39

Figure 3.10: Linear Markov chain modeling a random walk with transitions of +/-$0.01 or no change.

proposed transition function. An example of the linear Markov chain that produced the prior simulation is

shown in Figure 3.10. Note that by definition, our linear Markov chain is only capable of modeling discrete,

non-continuous values. However, as long as we implement enough states, we can model to arbitrary precision

with arbitrary price bounds. Our random walk construction described in the next section shows how we can

implement this arbitrary precision on the AP without this 1-1 correspondence between states and discrete

values.

For our explanatory example, we will simply set the cost function to be +/-$0.01 with equal probability,

and then explain how to construct simulated arithmetic Brownian motion cost functions.

3.7.2 Mapping an Asset Price Simulation to the AP Hardware

We now show how Markov chains on the AP can be used to simulate asset price motion via random walks on a

linear Markov chain. We first present the construction of a +/-1 linear Markov chain ”walker” simulation, and

then present a method to avoid the 1-1 correspondence between states and discrete values in the simulation.

Linear Markov Chain Random Walker:

To construct a linear Markov chain ”walker,” we first need to define the appropriate diagonal stochastic

transition matrix according to our transition function. Because we define our current transition function to

increment or decrement by $0.01, or remain at the current price with equal probability, we know that the

transitions from each state to its neighbor will have a probability of 0.33. Thus the transition matrix looks

like the following:

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 40

Figure 3.11: How a linear Markov chain can be implemented on the AP. This chain corresponds to the
transition matrix in section 3.7.2.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.33 .33 0 0 0 0 0 · · · 0

.33
. . .

...
...

...
...

...
...

...

0 · · · .33 .33 0 0 0 0 0

0 · · · .33 .33 .33 0 0 0 0

0 · · · 0 .33 .33 .33 0 0 0

0 · · · 0 0 .33 .33 .33 0 0

0 · · · 0 0 0 .33 .33 .33 0

... · · · 0 0 0 0 .33 .33 .33

0 · · · 0 0 0 0 0 .33 .33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Each state then represents a certain value of the asset with cent precision, and can transition to its +$0.01

or -$0.01 neighbor or remain at the current price with equal probability. Later we will discuss how to modify

the transition matrix to simulate other, more complicated transition functions.

Because we only have three transitions, up, down, or stay with equal probability we can simplify the

construction of the Markov chain to consider only random input in the range [0− 2], where a 1 will force a

transition to the neighboring up state, and 0 to the neighboring down state, and a 2 will cause the walker

to remain in the current state. An illustration of a section of such a Markov chain walker as it would be

implemented on the AP is shown in Figure 3.11.

Bounding Walkers with Counters:

With the above construction, we only have enough STEs per AP core to represent 10,000 discrete prices,

or values from $0.00 to $100.00. This is not a realistic implementation as prices may be out of this range,

and also may have much larger variation, or need more precision. As well, because this construction utilizes

3.7 Other Uses for Pseudo-Random Behavior 41

Figure 3.12: A linear Markov chain walker bounded by counters. This construction can represent discrete
values with arbitrary precision without a linear increase in states.

almost all STEs on a core, it would preclude parallel simulations or heterogeneous functionality. Therefore,

we propose bounding small walkers with counters as a way to reduce the STE costs of such simulations.

The intuition behind counter bounding is that if we can keep track of how many times we “fall off” the

edge of a small walker in both directions, we can simulate an infinite sized walker. We accomplish this by

using two counters: one to count up falls, and one to count down falls. If the simulation ever falls off either

end of the walker, it activates both the corresponding counter, as well as the STE on the other end of the

walker, thus ”wrapping around” in a ring. At the end of the simulation, the end price will be the current

price plus the difference between the counters multiplied by the size of the counter. An example of such a

construction is shown in Figure 3.12.

We can also use this technique to bound higher dimensional random walk Markov chains. For every

dimension, we need two counters to keep track of whenever we “fall off” the top or bottom of each. The

difference in the counters times the size of the walker plus the value in the walker, will always give the

coordinate of the random walk in that dimension.

Extracting Values from Counters:

As the value stored within counters is not readily available, we need some way to extract it. We accomplish

this be reserving a single symbol for ”counter pumping.” Consider a counter with target 16 and internal

value 13. To know 13, we activate the counter using the pumping symbol until it activates (3 cycles). In

Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors 42

Figure 3.13: A linear Markov chain walker bounded by counters. This construction can represent discrete
values with arbitrary precision without a linear increase in states.

post-processing, we now know that the value stored in the counter was the target (16) minus the number of

cycles pumped before activation (3), thus 13 is known.

Because counters can have large targets, we may need to pump a large number of times, wasting time

and power. Therefore, in practice, two counters may need to be used to keep track of digits of the count,

bounding the number of pumps to be the radix of the chosen counting scheme. For example, to construct a

two digit counter, have the first digit activate the second digit when it reaches its target and then reset its

count to 0. Pumping these counters will therefore efficiently extract each digit of the number.

3.7.3 Final Construction

We construct a prototype asset price simulator based on the example described in the previous section. The

full prototype, including walker, bounding counter structures, and pumping system, are shown in Figure 3.13.

We purposefully use four counters in this construction because in that case, we can tune the size of the

walker such that the entire simulation fits inside a single AP block.

While simulation of Brownian motion is just one example of the uses of Markov chains, other practical

uses for simulations of Markov chains exist. For example, Markov Chain Monte Carlo simulation, which

was voted one of the ten most important algorithms of all time, is heavily used in theoretical and applied

science and mathematics, and although not feasible for large, continuous state spaces, could be practically

implemented on the AP when states are sparsely connected (linear arithmetic Brownian motion), or when

the application calls for a relatively small, known transition matrix (credit default modeling).

Chapter 4

VASim: An Open Source Platform for

Finite Automata Applications and

Architecture Research

4.1 Introduction

Although there is exciting research driving both application and architectural innovations in automata

processing, the tools available to researchers for prototyping, debugging, and simulating finite automata

are severely fragmented and narrow in scope. This places an unnecessary burden on researchers to track

down, learn, and integrate a menagerie of tools and automata formats to evaluate new research against prior

state-of-the-art. In particular, we observe the following limitations with existing tools:

• Closed-source: many tools designed to manipulate and simulate finite automata are not open source [55].

This means that bug-fixes, performance improvements, or any additional features cannot be added by

researchers. Closed source tools often prevent researchers from answering even basic research questions

about the structure or behavior of automata.

• Difficult to obtain: tools can be hidden on personal or academic websites [66] or behind a gate-keeper [67].

difficult to obtain [67], forcing the researcher to re-implement the algorithm.

• Restrictively licensed: even if tools are easily available and open-source, some tools have restrictive

open-source licenses that prevent use in for-profit scenarious [66]. This prevents any work in academic

settings from being adopted and used by industry.

43

VASim: An Open Source Platform for Finite Automata Applications and Architecture Research 44

• Lacking in features: many automata tools lack state-of-the-art automata transformation algorithms. If

the tools are closed source, these features cannot be added [55]. Sometimes it is possible to write scripts

to convert automata to specific serialization formats understood by individual tools [67]. In this way,

automata can be passed from tool to tool to used various available features. However, tools are not

always designed in a way to make arbitrary automata I/O easy or even feasible at all [43]. A proper

research framework should support easy addition of other hypothetical features that may not be useful

to a majority of users.

• Poor performance: current tools available for simulation can take hours to process reasonably-sized

automata and input stimuli [55]. Some tools also consume large amounts of memory, leading to memory

thrashing and untenable performance degradation [55].

To address the shortcomings of existing tools, we present the Virtual Automata Simulator, or VASim. VASim

is, to the best of our knowledge, the first extensible, general-purpose framework that combines automata

simulation, optimization, transformation, and analysis into one, unified and open source code base. This

framework enables easy prototyping, debugging, simulation, and analysis of automata-based applications and

architectures.

In this chapter, we describe the implementation of VASim, provide clear evidence of its versatility, and

demonstrate its usefulness for novel, state-of-the-art automata processing research.

Unlike currently available tools, VASim is modular, extensible, and general. The platform can support

simulation and analysis of a diverse set of finite automata models, such as classical NFAs, AP-style NFAs,

JFAs [68], Counting finite automata [69], and hybrid approaches [46]. To highlight VASim’s flexibility, we

show how a hypothetical new processing element can be easily added to the execution model. This particular

extension was accomplished with the addition or modification of only 9 lines of code.

VASim can serialize automata into several common formats, including the DOT graph language and

synthesizable functional Verilog code for FPGA execution. VASim is also capable of exporting automata to

output formats for execution on existing CPU [67] and GPU engines [23]. This serialization can allow easy

integration and comparison with existing tools with various serialization formats, and allow execution using

various automata processing engines on CPUs, GPUs, FPGAs, and custom automata processing hardware.

VASim provides a common codebase for applying state-of-the-art optimizations, transformations, and

static and dynamic analyses to finite automata. This platform allows researchers to easily and quickly share

new algorithms, and perform fair apples-to-apples comparisons to prior work, accelerating automata-processing

research. We provide several optimizations in the core of VASim, including an NFA state reduction algorithm.

4.2 VASim Architecture 45

Figure 4.1: A generic automata processing element. All elements compute a boolean function based on input
signals. The result of this boolean function is then broadcast to element children.

While performance was not the main driving consideration during development, VASim is fast, and is

currently 4×-694× faster than existing simulation tools for the Micron’s Automata Processor. Furthermore,

VASim is parametrically multi-threaded in two dimensions of parallelism common to automata-based

applications, allowing for zero-effort improved performance on multi-core systems. VASim’s high performance

greatly improves the pace of automata processing software and hardware design space exploration.

Together, these contributions form a powerful, comprehensive, full-stack automata processing platform,

providing fast and efficient tools for automata application, optimization, and processing research. The next

sections describe VASim’s software architecture, and simulation methodology.

4.2 VASim Architecture

VASim is based on an abstract, object-oriented view of automata graphs. In VASim, an automata graph is

made up of nodes called Elements. Elements represent abstract processing elements in an automata network

and have an associated boolean activation function as shown in Figure 4.1.

Each Element object contains a list of parent elements, and child elements that make up the edges of the

automata graph. Each element can receive a boolean signal from an input or parent node. If an element

receives an input signal, or otherwise needs to compute its activation function it is considered enabled.

Once enabled, an element computes some sort of activation function. This function can use any combination

of its inputs, and/or local state, and/or some global state (e.g. a symbol from an automata input tape) to

compute. If an element computes true, it activates and can propagate signals to child elements.

Elements themselves do not define any computation, and the Element class merely defines the directed

graph structure of the automata (parents and children). Element sub-classes are responsible for defining the

VASim: An Open Source Platform for Finite Automata Applications and Architecture Research 46

boolean activation function. By default, VASim provides two different types of Element subclasses: the STE

and Special Element. The STE is a classic automata processing element, and stores a character set that

represents all possible input symbols the STE matches against. An STE examines the global input symbol

and defines its boolean activation function as whether or not the current global input symbol is contained in

the character set.

Special Elements do not inspect the global input symbol and compute boolean functions only based on

the values of their enable signals. An important distinction between Special Elements and any other element

in the automata graph is that they compute after STEs within a single symbol cycle. An example of a

Special Element currently implemented in VASim is an AND gate. AND gates only activate if either of their

inputs are high. Special elements can be chained together allowing for complex combinatorial computation

within a symbol cycle. Another example of a special element is a Counter. Counters hold an internal count

of the number of cycles an input enable signal was high, and activate when a target threshold is reached.

Figure 4.2 shows a high-level overview of VASim’s extensible class hierarchy, including STEs, and various

special elements.

STEs have a special start property that defines the behavior of the state on the first input symbol, or

when an end-of-line symbol sequence is encountered. Finite automata also have final or report states. Because

computation can end in either STEs or Special Elements, the Element parent class has a special report

property that defines reporting behavior. Reporting elements can also be tagged with an optional list of

report codes.

4.2.1 Extending the Virtual Execution Model

VASim’s extensible, object oriented design makes adding support for other types of processing elements

straightforward and low-effort. We describe how support for an up-down counter—a Special Element counter

that can count both up and down—can be easily added to VASim.

The first generation D480 AP architecture only supports counters that can count in one direction. These

counters were originally designed to make counting regular expression sub-expression quantifications more

efficient [55].

Up-down counters add a third, count down port to traditional counters, allowing them to adjust the value

in the counter in both directions. A single up-down counter can be treated as a semaphore or 1-bit stack and

efficiently compute tasks classical NFAs cannot, e.g. whether or not parenthesis are properly nested in an

arbitrarily long input. Both AP-style counters and up-down counters are shown in Figure 4.3.

4.2 VASim Architecture 47

Figure 4.2: VASim class hierarchy. STEs consult the global input symbol before computing a boolean
activation function. Special elements do not consult the global input and only compute on input enable
signals within a symbol cycle.

Because the up-down counter behaves nearly identically to an AP-style counter, this new class can inherit

almost all of the functionality of the counter provided by VASim. The only method that needs to be overridden

in the new up-down counter class is the counter's boolean activation function. The original counter’s boolean

activation function was implemented in 70 lines of code. The up-down counter method required the addition

or modification of only 9 lines of code in total.

Because the functionality of counters and up-down counters are so similar, the number of non-boilerplate

lines of code is expected to be small. However, the number of lines of code required to implement other

arbitrary special elements are generally small as well because they tend to only require the modification of

the boolean activation function. For example, we implemented an XOR gate, a gate not included in the AP

execution model, by modifying only one line of code.

VASim: An Open Source Platform for Finite Automata Applications and Architecture Research 48

Figure 4.3: AP-style counters (top) are only capable of counting up. Up-down counters (bottom) add a new
input port with the ability to count down.

4.3 Automata Simulation

Automata compute by considering an input stream of symbols. For each input symbol, any STE that was

enabled on the previous cycle attempts to match the current symbol. If the STE matches the symbol, it

activates, and enables all of its children.

After each enabled STE attempts a match, any special elements that are enabled or otherwise need to

perform computation compute their activation functions. This stage is analogous to a combinational circuit

simulation. Once all Special Elements have computed their transition functions and reached a steady state,

the next symbol is considered, and the process starts over again.

VASim divides the automata simulation of each individual symbol into three distinct stages:

Stage 1: each enabled STE attempts to match on the current input symbol. If the STE matches, it is

stored to an intermediate data structure. If an STE matches and it is also a reporting STE, then it records a

report in a global result data structure.

Stage 2: Each activated STE is considered and each child of all activated STEs are then enabled and

pushed to an intermediate data structure.

Stage 3: Because start states are enabled by default, each start state is enabled and pushed to an

intermediate data structure.

Stage 4: Special elements are now enabled and can be simulated. Because Special Elements are unbuffered,

4.4 Automata Optimization and Transformations 49

Figure 4.4: VASim simulation pipeline. Stage one computes whether or not each state that was enabled
on the previous cycle matches the current input symbol. Matching states activate. Stage two identifies the
children of the activated states and enables them. Stage three enables all start states. Stage four computes the
boolean functions of all special elements. Stage three must be run to initialize simulation prior to simulating
the first simulation cycle.

they require a much more expensive circuit simulation step where steady states in feedback loops must be

identified and reached.

Because start states must be enabled before the first iteration of Stage 1, simulation needs to be initialized

by running Stage 3 once before simulation begins.

Figure 4.4 shows a high-level overview of VASim’s simulation core.

Note that VASim is designed so that researchers can easily augment VASim’s simulation core to support

arbitrary functionality. Additional stages can be added to support new functionality that relies on global data

structures or data structures local to each element. New Elements can be constructed that have arbitrary

functionality within special processing stages. VASim is meant to be extensible, and is organized to make

these hypothetical modifications low-effort.

4.4 Automata Optimization and Transformations

An automaton that recognizes a particular regular language may not be the most compact, or minimal

representation. As a trivial example, imagine two automata that are identical in structure. Both will compute

the same language, follow the same paths, and recognize the same patterns, but one is redundant, and

the automata can be compressed by at least 50%. Even individual automaton often have opportunities for

VASim: An Open Source Platform for Finite Automata Applications and Architecture Research 50

compression. An automaton is not guaranteed to be “minimal” unless it is proved to be so. Unfortunately,

algorithms for minimizing NFAs are NP-complete and PSPACE-complete [70], making practical minimization

of large sets of automata impractical. Thus, heuristics have been studied to improve the performance of NFA

minimization. Specifically, NFA reduction aims to greatly reduce the number of states in the NFA, without

providing a technically minimal solution.

NFA reduction has two main benefits: state reduction, and redundant computation elimination. State-

reduction is beneficial to both spatial and von Neumann processing techniques. For spatial architectures, a

reduction in automata states means that we need fewer spatial resources to implement the same automata

functionality. This can have important implications if large amounts of redundancy exist. For instance,

an automata before compression might not fit into an available spatial architecture, but after compression

is implementable. For von Neumann architectures, a reduction in automata states means a reduction in

redundant computation. If large amounts of automata computation is redundant, and can be removed, large

program speedups could be realized.

Prior work has used pre-orders and binary relations over all automata states to identify redundancies [71,

72, 73]. The basic idea of these algorithms relies on the intuition that any two states that are always reachable

by identical sets of strings (prefixes), are redundant, and can be merged. Naive algorithms analyze all possible

prefix paths for pairs of states and are, thus, computationally expensive. Most work involves refinement of

this naive algorithm to improve performance. In this section, we propose an even simpler heuristic that is easy

to implement that also captures a large proportion of compression opportunities for common applications.

Our algorithm captures all of the compression opportunities of the pre-order algorithm when automata are

acyclic. Cycles in automata are rare in practice, and so, this heuristic is highly effective.

4.4.1 VASim’s Common Prefix Merging Algorithm

VASim’s common prefix merging algorithm relies on the assumption that most automata do not have looping

structures. We make a simple change from the naive pre-order algorithm discussed previously. The pre-order

algorithm considers two states and merges them if they 1) have identical character sets and 2) the set of all

strings that cause transitions to those two states (prefixes) are identical. Instead of comparing the set of all

strings that cause transitions to two states (prefixes), we simply compare the parents of two states. If both

states share the same parents, then trivially, they must have the same prefix!

The algorithm first begins by considering the automata start states. If the start states 1) have identical

character sets and 2) have identical parents, then they can be merged. To merge states A and B, we adjust all

of A’s outgoing edges to originate from B, and then delete A. Once the start states are merged, all children of

4.4 Automata Optimization and Transformations 51

these states are marked considered, and compared with each other in a breadth first manner. The algorithm

continues in this way, considering states unless they have already been considered and marked, until no

children are left to consider. Listing 4.4.1 shows pseudo C++ code for this prefix merging heuristic algorithm

implemented in VASim.

1 /∗ Merges a l l s t a t e s with i d e n t i c a l parents and charac t e r s e t s ∗/

2 i n t mergeCommonPrefixes (queue<STE ∗> &workq) {

3 queue<STE∗> n e x t l e v e l ;

4 queue<STE∗> next workq ;

5 i n t merged = 0 ;

6 // merge s t e s with i d e n t i c a l parents and charac t e r s e t s

7 whi le (! workq . empty ()) {

8 STE ∗ s t e = workq . f r on t () ;

9 workq . pop () ;

10 whi le (! workq . empty ()) {

11 STE ∗merge candidate = workq . f r on t () ;

12 workq . pop () ;

13 // i f the two STEs have i d e n t i c a l p r e f i x e s and charac t e r se t s , merge

14 i f (ste−>compare (merge candidate)) {

15 merged++;

16 merge (ste , merge candidate) ;

17 // e l s e push back onto workq

18 } e l s e {

19 next workq . push (merge candidate) ;

20 }

21 }

22 // Add a l l c h i l d r en o f f i r s t to the next l e v e l

23 f o r (STE ch i l d : ste−>getChi ldren ()) {

24 i f (! ch i ld−>isMarked ()){

25 ch i ld−>mark () ;

26 n e x t l e v e l . push (ch i l d) ;

27 }

28 }

29 // Recurse , merging a l l c h i l d r en

30 i f (n e x t l e v e l . s i z e () > 0)

31 merged += mergeCommonPrefixes (n e x t l e v e l) ;

32 // Try another candidate

33 whi le (! next workq . empty ()) {

34 workq . push (next workq . f r on t ()) ;

35 next workq . pop () ;

36 }

37 }

38 return merged ;

39 }

Listing 4.1: Pseudocode for heuristic prefix merge algorithm implemented in VASim

VASim: An Open Source Platform for Finite Automata Applications and Architecture Research 52

4.4.2 Subset Construction

Deterministic finite automata (DFAs) restrict the automata paradigm to allow only one state to be active at

any one time. NFAs and DFAs are equivalent in computational power, but DFAs are often easier to execute

on von Veumann architectures because they only require one transition rule fetch per input symbol cycle in

the automata. Because a DFA state represents a possible configuration of all states in a corresponding NFA,

a DFA may be exponentially larger, and take exponential time to construct.

VASim includes an implementation of the classic NFA to DFA subset construction algorithm [39]. Even

though the classic subset construction algorithm does not consider homogeneous automata, prior work

has proven that subset construction preserves the homogeneity property, and is thus suitable to apply to

STEs [40].

Some novel automata processing research relies on taking advantage of the subset construction algorithm,

such as hybrid NFA/DFA designs [30]. We leave implementation of these algorithms for future work, but the

building blocks exist in VASim to easily implement these hybrid designs.

4.4.3 Automata Striding

Automata striding is a well-known technique to increase the throughput of automata simulation [30].

Automata striding transforms automata so that instead of considering one symbol per cycle, the automata

states consider N symbols per cycle. While the new automata considers N symbols, it till only makes a

single transition (rather than N transitions), thus reducing the number of transitions in the automata, and

increasing throughput by N times.

Similar to subset construction, automata striding transforms automata by partially simulating the

automata graph and converting a configuration of the NFA into a new state. By feeding in combinations of

N symbols, and generating new states that represent these symbols, we can generate an automata that make

a single transition on N symbols. For example, to 2-stride an automata, we consider the configuration of

the automata after each combination of any 2 symbols, constructing a new state that represents a single

transition after the automata considers that ordered pair. We then repeat this process, simulating the

automata for every combination of 2 symbols until no new configurations can be generated. Note that the

new, 2-strided automata is driven by symbols with twice as many bits. Care must be taken when designing

striding algorithms or automata engines to make sure that systems can handle these larger symbols. Becchi

et al. presented algorithms that automatically attempt to compress the number of symbols used by automata

in order to enable striding opportunities [30].

4.4 Automata Optimization and Transformations 53

Use-Case: Bit-level Striding for File Carving

While striding has mainly been investigated for the purpose of increasing the throughput of automata

processing applications, we implemented a striding algorithm in VASim for a different purpose: ease of

pattern expression.

Regular expressions and finite automata are usually defined using 8-bit symbols. This is due to the fact

that most regular expression patterns are meant to be applied to data that is built up of 8-bit bytes. Currently,

there is no way to explicitly write a regular expression with a 1-bit pattern. However, applications of automata

processing can benefit from the ability to define bit-level patterns, or patterns that are finer-grained than

byte-level. One example is identifying fine-grained patterns in file metadata for the purpose of file carving.

File carving is the task of identifying files from a stream of bytes. File carving is used for data recovery

from corrupted data stores (e.g. a corrupted file system), and in data forensics for law enforcement purposes.

Current popular techniques look for exact signature matches in file headers [74], and reconstruct files based on

simple header/footer identification and pairing. Unfortunately, exact signatures in file headers and footers can

be short, and occur many times in a byte stream generating unacceptable false positive rates. For example,

the Scalpel file carving tool looks for Zip files by locating Zip file header and footer signatures. A Zip file

header signature is only 4 bytes long (\x50\x4b\x03\x04) [75], and is likely to occur probabilistically in

other regions that are not Zip file headers. Thus, while Scalpel is fast, Scalpel’s false positive rates are high,

making the tool less useful. More accurate header analysis is specifically stated as a weakness of the tool,

and an area of future work, by its authors [74].

We can improve the accuracy of Scalpel-style file carving by using more precise, regular expressions and

corresponding automata graphs, rather than exact match signatures. Regular expression patterns will allow

us to specify more precise header and footer patterns, and thus reduce false positive rates. However, some

patterns in file metadata are specified at granularities smaller than 8-bit bytes! For example, consider the

date and time stamps in a PKZip file that use the standard MS-DOS format [75]:

• Bits 0-4: Seconds divided by two, meaning that these bits can take values from 0 to 29 (58 seconds).

• Bits 5-10: Minutes, meaning that these bits can take values from 0 to 59.

• Bits 11-15: Hours, meaning that these bits can take values from 0-23.

Trying to represent this pattern as a regular expression is a difficult task and presents a few daunting

problems. The first problem is that each seconds, minutes, hours bit field is not 8 bits wide. This means that

the regular expression writer must consider how two parts of a character set change. The second problem is

that one field crosses the boundary of two bytes, forcing the regular expression writer to consider combinations

VASim: An Open Source Platform for Finite Automata Applications and Architecture Research 54

of patterns. Building an automata, rather than a regular expression, might relieve some of the complexity,

but does not make either of the above problems easier.

We propose to solve the above problem using automata striding. We first construct automata with a

bit-level alphabet, choosing bit possibilities one at a time rather than attempting to think about byte level

patterns. Once a bit-level automaton has been generated, we then apply striding three times (once to form

2-bit symbols, twice to form 4-bit symbols, and a third time to form 8-bit symbols) to automatically generate

a byte-level automata that can be understood by any existing regular expression or automata processing

engine.

In this way, any complex pattern can be easily constructed using bit-level descriptions, but can also–via

striding–be computed efficiently on existing platforms.

To show the usefulness of this approach, we implemented a version of the 2-striding algorithm outlined

by Becchi [30] in VASim. We then built a program to construct the bit-level automata based on publicly

available descriptions of the PKZip file format header [75]. We then verified that this approach by using the

strided automata to identified a set of headers in benchmark zip files.

We expect this algorithm to be hugely influential in any pattern search where bit-level patterns exist,

such as file carving, virus detection, and malware scanning, as well as applications where existing alphabets

are small, such as DNA analysis.

4.5 Automata Serialization and Code Generation

VASim is capable of serializing and emitting automata graphs into several formats and codes. Serialization

can allow arbitrary automata to be processed, visualized, and evaluated on variety of underlying automata

processing engines. This capability increases productivity, freeing researchers from dependence on a single

platform, and allows researchers to easily compare performance of automata, and high-level languages that

emit automata [76] on different software or hardware engines.

As an example of the power of automata transformations, we briefly describe how VASim converts abstract

automata to the DOT graph language for visualization, and a functional Verilog HDL code for execution on

an FPGA.

4.5.1 DOT File Format for Automata Visualization

Visualization of automata is a highly desirable feature for debugging of applications and different automata

transformations and optimizations. We implement a pass over the automata graph that emits the graph in the

DOT file format for graph visualization using Graphviz layout engines [77]. In our current implementation,

4.5 Automata Serialization and Code Generation 55

Figure 4.5: Automata graph visualized by VASim’s DOT file emission algorithm. Octogons are reporting
states. Double circles are start states. Each state is labeled with its ID and character set.

STEs are visualized as circles. Each STE is labeled with its STE ID and the character set it matches on.

Special elements are visualized as rectangles. Start states are visualized as double circles. Report states are

visualized as octagons. An example visualization using our DOT generation pass is shown in Figure 4.5.

While visualization is extremely helpful for debugging automata construction and transformations,

visualization can also help debug dynamic behavior, and also identify optimization opportunities. As an

example of the power of visualization of dynamic behavior, we instrumented our DOT file generation algorithm

to also include profiling information from the siulation of automata. The algorithm generates a heat map

of automata behavior, showing how often automata states compute. Figure 4.6 shows a Hamming distance

automata [6] after simulation.

Redder states represent more activity, while greener states represent less activity. Blue states do less than

1% of the computation of the hottest red states. White states were never enabled during simulation and do

no computation at all over the profile run. This image was the initial intuition behind automata partitioning

and hybrid execution explored in Chapter 8.

VASim: An Open Source Platform for Finite Automata Applications and Architecture Research 56

Figure 4.6: Hamming distance automata that was simulated and visualized using VASim’s DOT file conversion
algorithm. Both structure and dynamic behavior can be visualized allowing users to glean important
information about the automata graph and how it computes.

4.5.2 Verilog State Machine Emission for FPGA Evaluation

Reconfigurable fabrics other than Micron’s AP (e.g. FPGAs) can also be used to simulate automata in a

spatial manner. However, these fabrics lack software tools to convert automata graph representations to

synthesizable FPGA designs. To address this problem, we implement a conversion from abstract automata

objects in VASim to synthesizable Verilog for execution on FPGAs. Listing 4.5.2 shows a snippet of Verilog

that implements a portion of an automata graph.

1 // //////////////

2 // STE: 3 4 4 9

3 // //////////////

4 // Input enable OR gate

5 wire 3449 EN ;

6 a s s i gn 3449 EN = 3448 ;

7

8 // Match l o g i c and a c t i v a t i o n r e g i s t e r

9 (∗ dont touch = ” true ” ∗) always @(posedge Clk) // should not be opt imized

10 begin

11 i f (Rst n == 1 ’ b0)

12 3 4 4 9 <= 1 ’ b0 ;

13 e l s e i f (3449 EN == 1 ’ b1)

14 case (Symbol)

15 8 ’ d47 : 3 4 4 9 <= 1 ’ b1 ;

16 d e f au l t : 3 4 4 9 <= 1 ’ b0 ;

17 endcase

18 e l s e 3 4 4 9 <= 1 ’ b0 ;

19 end

20

21 // //////////////

22 // STE: 3 4 4 3

23 // //////////////

24 // Input enable OR gate

4.6 VASim Simulation Performance 57

25 wire 3443 EN ;

26 a s s i gn 3443 EN = 3442 ;

27

28 // Match l o g i c and a c t i v a t i on r e g i s t e r

29 (∗ dont touch = ” true ” ∗) always @(posedge Clk) // should not be opt imized

30 begin

31 i f (Rst n == 1 ’ b0)

32 3 4 4 3 <= 1 ’ b0 ;

33 e l s e i f (3443 EN == 1 ’ b1)

34 case (Symbol)

35 8 ’ d47 : 3 4 4 3 <= 1 ’ b1 ;

36 d e f au l t : 3 4 4 3 <= 1 ’ b0 ;

37 endcase

38 e l s e 3 4 4 3 <= 1 ’ b0 ;

39 end

Listing 4.2: A snippet of verilog code generated by VASim representing two state transition elements (STEs).

All STEs use registers to buffer communication between each other. Each element defines a custom

computation according to its input symbols. This computation is then emitted in Verilog code, per automata

element. Verilog allows the designs to be portable among different FPGA vendor architectures, and allows

designs to take advantage of the many optimizations available in modern FPGA compilers and place-and-route

tools.

4.6 VASim Simulation Performance

While performance of automata processing was not considered a main design constraint in the original

VASim prototype, VASim uses efficient data structures and algorithms to reduce the amount and expense

of all automata computation. Furthermore, VASim is multi-threaded making it trivial to scale automata

computation across multiple cores. In this section, we evaluate VASim against Micron’s single-threaded

automata evaluation tool, apemulate [55].

We consider the 12 real-world automata processing benchmarks from the ANMLZoo [22] automata

processing benchmark suite for evaluating VASim against Micron’s automata simulation tool apemulate.

ANMLZoo contains a diverse set of automata benchmarks with varying static and dynamic properties,

allowing for fair comparisons of automata processing engines and architectures [22]. ANMLZoo is presented

in more detail in Chapter 5.

Table 4.1 shows runtimes of VASim and apemulate over all benchmarks in ANMLZoo. Experiments

were performed on a 3.3GHz 6-core (12-thread) Intel i7-5820K, with 32GB of RAM using version 1.6.5 of

the AP SDK [55]. Each automata was run in its original form, and then run after applying optimizations:

VASim: An Open Source Platform for Finite Automata Applications and Architecture Research 58

Benchmark Family VASim (s) apemulate (s) VASim Opt (s) apemulate Opt (s) VASim Speedup

Snort Regex 65.86 4,584.60 3.84 838.14 218.27×
Dotstar Regex 40.06 3,058.81 1.09 208.64 191.42×
ClamAV Regex 4.66 607.50 0.62 77.58 125.12×
PowerEN Regex 8.81 3,294.99 1.27 881.38 694.01×

Brill Regex 92.46 3,281.95 2.25 132.43 58.87×
Protomata Regex 78.78 3,431.30 28.82 1,405.21 48.77×
Hamming Mesh 8.61 393.06 7.25 339.93 46.90×

Levenshtein Mesh 6.26 223.86 5.19 194.92 37.57×
Entity Resolution Widget 78.90 killed 12.82 122.85 9.59×

SPM Widget 561.97 8,252 561.97 2,225 3.96×
Fermi Widget 187.16 3,451.96 183.89 2,824.97 15.37×

Random Forest Widget 99.82 4,538.11 66.90 1,045.21 15.63×

Table 4.1: Performance of VASim compared against apemulate. Opt refers to performance after applying both
tool’s redundant state elimination passes. VASim is at least 3.96× and up to 694× faster than apemulate even
after optimizations are applied. VASim’s performance for SPM is relatively low because Micron’s compiler
applies more sophisticated state reduction algorithms than our heuristic approach.

prefix merging for VASim and all standard optimizations enabled for apemulate (-O1). Output reporting was

enabled for both tools and runtime was measured using the Unix time command.

When prefix merging is enabled in VASim, the simulation core is at least 3.96× faster than apemulate,

and is greater than 125× faster than apemulate in 4/12 applications.

4.7 Conclusions

This chapter presented the Virtual Automata Simulator or VASim [78, 79]. VASim is an open-source

framework for automata processing research. It combines a flexible, object-oriented automata programming

framework with a high-performance simulation core. VASim is capable of building, optimizing, transforming,

converting, and simulating automata graphs, and is designed to be flexible to support modifications to answer

new research questions.

VASim is in active use by both academia and industry. As of the writing of this chapter, VASim

had been downloaded over 210 times by 140 unique users from GitHub [80]. VASim has been used to

publish papers at top-tier computer architecture conferences including the International Symposium on

Computer Architecture (ISCA) [81], the International Symposium on Microarchitecture (MICRO) [82], and

the International Symposium on High-Performance Computer Architecture (HPCA) [13, 83].

VASim continues to evolve to support the needs users, and is under active development. Current projects

include re-factoring and stability improvements, and implementation of more sophisticated NFA reduction

algorithms.

Chapter 5

ANMLZoo: A Benchmark Suite for

Exploring Bottlenecks in Automata

Processing Engines and Architectures

Because acceleration of automata processing has traditionally been motivated by network intrusion detection,

new automata-processing engines on different architectures are evaluated using a small, relatively homogeneous

set of existing representative regular expression rulesets [4, 7, 45]. Synthetic benchmark suites such as IBM’s

PowerEN suite [50] allow scientists to do more controlled studies of regular expression processing. Becchi et

al. [84] created a synthetic regular expression rule and stimulus generator to help researchers do even more

accurate sensitivity studies on regular expression processing engines.

While these regular expressions applications and benchmarks are valid and important real-world use cases

for automata processing, they represent a very narrow range of all useful automata. Regular expressions, as

written by humans, tend to be converted by classic algorithms into non-deterministic finite automata with

very similar average structure, dynamic behavior, and matching complexity, and thus do not represent a wide

range of possible useful automata structures or behavior.

Micron’s Automata Processor and accompanying software development kit have made prototyping and

development of automata-based (rather than regular-expression-based) pattern matching engines much

easier. No good quantitative metric exists to measure the relative merits of either approach, but in our

experience, directly constructing finite automata is an easier and more intuitive way for defining complex

regular languages and pattern mining tasks. The availability of this software and hardware has led to the

59

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures60

development of a large number of new, non-obvious automata-based applications in domains such as big

data analysis [18], data-mining [16, 15, 17], bioinformatics [12, 6, 11, 13], high-energy particle physics [21],

machine learning [8, 9, 10], pseudo-random number generation and simulation [36], and natural language

processing [19, 20] that can differ significantly in static structure and dynamic behavior from existing regular

expression benchmarks [4, 7, 45, 50].

This new diversity in automata-based applications, development tools, software recognition engines,

and hardware architectures for automata processing, motivates a standard but flexible application and

engine repository for fair evaluation of new automata-processing algorithms, architectures, and automata

applications.

This chapter presents ANMLZoo, a benchmark suite of automata-based applications for prototyping and

evaluation of both software and hardware automata-processing engines. ANMLZoo contains 14 different

automata-based applications that represent four major classes of automata: regular expression rulesets,

string scoring meshes, programmable widgets, and synthetic automata, all of which may stress automata

processing algorithms and architectures in different ways. Furthermore, ANMLZoo contains source code

for high-performance automata processing engines that we have deployed for CPUs, Intel’s XeonPhi, and

GPUs, and can accomodate new state-of-the-art high-performance algorithms and architectures as they are

developed.

The main contributions of this chapter are the following:

• The creation of a public repository for standardized finite automata benchmarks and input stimuli,

allowing for easy and fair comparisons of von-Neumann and reconfigurable fabric-based automata

processing engines.

• The inclusion of parameterizable automata-generation scripts for some benchmarks, allowing for

sensitivity studies of different static and dynamic automata properties of both real applications and

synthetic automata.

• The analysis and categorization of automata using both qualitative and quantitative metrics. We

consider both well-known metrics (node count, edge count, active set, etc...) and novel metrics (activity

compressability, character set complexity) to categorize automata benchmarks. We show how some of

these metrics impact performance on different architectures.

• The creation of a public repository for automata processing engines for several architectures for easy and

fair comparisons of new algorithms and implementations to prior work. We include high-performance

5.1 Problems with Existing Rulesets and Generators 61

state-of-the-art automata-processing engines that we developed for CPUs (including Intel’s XeonPhi),

and for GPUs.

• The designation of a common tool for ANMLZoo automata manipulation, optimization, transformation,

and analysis. Thus, new automata representations and optimizations can be easily shared among

researchers and compared to prior work.

To demonstrate the usefulness of ANMLZoo, we investigate performance of four automata processing

engines on four different macro architectures (Intel i7-5820K, Intel’s XeonPhi 3120, a Maxwell-based NVidia

Titan X GPU, and Micron’s first-generation Automata Processor) and identify relative bottlenecks in each

software engine and architecture pair.

5.1 Problems with Existing Rulesets and Generators

Research into fast regular expression processing engines has traditionally been motivated by deep packet

inspection, which includes applications in the network intrusion detection system (NIDS) community. NIDS

tools attempt to match regular expression patterns that identify possible malicious network behavior like

attacks or probes against streaming network packet traffic. An example NIDS regex pattern (and an equivalent

NFA) from the Snort ruleset searching for an click-to-launch executable within a PDF file is shown below.

/\x2fF\s ∗ (<< |)\s ∗ \x2fDOS\s ∗ \x28/smi

NIDS rulesets such as Snort [4], as well as virus detection rulesets such as ClamAV [7], and synthetic

rulesets such as PowerEN [50] have been popular rulesets for benchmarking existing regular expression

engines [51, 30]. However, it is desirable to have a common and flexible methodology for benchmarking

and conducting sensitivity analysis on regular expression engines with parameterizable rulesets and input

stimuli. Becchi et al. [84] constructed a synthetic regular expression generation tool that parameterized

regular expression features that make DFA conversion expensive. This tool also includes an automatic trace

generation tool, which can tune input streams to induce various levels of activity in any automaton. However,

this tool was motivated and designed to generate regular expressions and inputs to better evaluate deep

packet inspection engines and architectures, and not for arbitrary automata processing.

Similarly, new architectures for automata evaluation [51] are designed for and evaluated using the above

mentioned patterns, or with simple exact match strings, highly compressable binary trees [85], and/or finite

automata with a very small number of states.

As our characterization will show, existing regular expression and automata benchmarks are either very

similar in static and dynamic properties, or not publicly available, easily accessible, or in a common format.

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures62

Benchmark Family States* Compressability Node Degree* Charset Complexity* Active Set* Activity Compressability

Snort Regex 34,480 50.04% 1.13 8.74 98.45 75.71%
Dotstar Regex 38,951 59.6% 1.01 8.28 3.25 92.79%
ClamAV Regex 42,543 14.12% 1.02 7.86 4.30 94.78%
PowerEN Regex 34,495 14.85% 1.06 8.11 31.15 66.20%

Brill† Regex 26,364 38.20% 1.49 8.75 14.28 99.14%
Protomata† Regex 38,251 8.95% 1.04 19.44 554.281 63.15%

Hamming Mesh 11,254 0.81% 1.71 9.89 240.1 15.78%
Levenshtein Mesh 2,660 4.45% 3.36 8.0 88.02 22.93%

Entity Resolution Widget 5,689 94.02% 6.38 8.60 10.62 99.11 %
SPM Widget 100,500 0% 2.1 6.58 6,331.32 0%
Fermi Widget 39,033 4.29% 1.48 8.18 3,854.45 ∼0%

Random Forest Widget 71,574 5.00% 1.053 14.26 968.64 1.26%

BlockRings Synthetic 44,352 NA 1 8 192 NA
CoreRings Synthetic 48,002 NA 1 8 2 NA

Table 5.1: ANMLZoo benchmark suite. † Newly published automata-inspired regex-like rulesets. Results are
gathered using representative input streams should be considered baseline results, and may change with new
algorithms, implementations, and architectures.

This makes it extremely difficult or even impossible to evaluate improvements over existing state-of-the-

art publications. Many state-of-the-art software engines and infrastructures for automata processing and

transformation are also not publicly available, again making it difficult or impossible to do fair evaluations of

existing automata-processing algorithms and implementations on different architectures.

5.2 ANMLZoo: an Automata Processing Benchmark Suite

To address the above drawbacks with the current methodology for benchmarking of automata processing

engines we present ANMLZoo, a repository for automata benchmarks, input stimuli, and software engines

and infrastructures for fair benchmarking of new automata processing engines 1. Each ANMLZoo benchmark

is shown in Table 5.1.

Below we list each application in ANMLZoo, including both existing popular regular expression benchmarks,

as well as a new set of recently published automata-based applications that together form a much more

diverse starting point for benchmarking of automata-processing engines.

Snort[4] are regular expressions extracted from a snapshot of the snort ruleset, commonly used to

benchmark regular expression processing engines.

Dotstar [24] is a combined set of synthetic regular expressions from Becchi et al. [24] containing all

variations of the synthetic dotstar rules created from the backdoor Snort rules and the spyware rules used in

that evaluation.

ClamAV [7] is a set of regular expression signatures for identifying virus signatures in files. Our

benchmark includes ClamAV rules with small (< 64) quantifiers and no ranges.

1Deyuan Guo, Elaheh Sadredini, Tommy Tracy, Chunkun Bo, Nathan Brunelle, and Matt Grimm all contributed to either
generation or consultation on generation of these benchmarks.

5.2 ANMLZoo: an Automata Processing Benchmark Suite 63

PowerEN [50] is a combination of over 2000 regular expressions from the PowerEN “complex” regex

rule set.

Brill [19, 20] is a set of over 2000 Brill tagging rules.

Protomata [6] is a set of 2340 real and randomly generated protein motif signatures.

Hamming [12] is a set of 93 Hamming distance automata used to calculate the number of mismatches

between a randomly generated encoded string and random input sequence.

Levenshtein [11] is a set of 24 Levenshtein automata designed to calculate the edit distance between an

encoded DNA sequence and an input DNA sequence.

Entity Resolution [18] is a set of automata designed to identify whether input name sequences match

a certain encoded pattern.

SPM [16] or Sequential Pattern Mining, is an automata-based application to identify groups of related

items in baskets.

Fermi [21] is a path recognition algorithm that looks for sequential series of ordered coordinates defining

a particle path.

Random Forest [8] is an encoded and compressed implementation of a random forest ensemble classifier

for handwriting recognition.

BlockRings are synthetic automaton rings with deterministic behavior meant to occupy each block (192)

on an AP chip.

CoreRings are synthetic automaton rings with deterministic behavior meant to occupy each core (2) on

an AP chip.

The difference between automata constructed by regular expressions and other modern automata-based

applications in ANMLZoo can be easily quantified by looking at both static and dynamic properties.

Before we perform static or dynamic analysis, all automata are compressed using common-prefix merging

or CPM as described in Chapter 4. CPM merges redundant states from the automata in a breadth-first

manner, from start states to end states, while preserving automata correctness. This optimization can greatly

reduce the size of, and redundant traversals for, automata, and is thus used for baseline static and dynamic

evaluation of automata. However, we do not claim that these are optimally minimized automata, and thus

they may be compressed further. Dynamic properties can vary greatly depending on the corresponding input

stimulus, and so metrics like active set should also not be considered inherent properties of the benchmarks or

applications, but rather based on the particular automata evaluated and behavior induced by a representative

input.

We considered five metrics to quantify differences in automata applications. Each metric is described

below:

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures64

• States: The total number of states (STEs) in the common prefix-merged (CPM) automata graph. The

capacity of an AP chip is 49,152 STEs. State counts lower than this number indicate lower utilization

of on-chip resources and a harder routing task for the AP compiler and fabric. State counts higher

than this number indicate the Micron compiler was able to identify compression opportunities other

than CPM.

• State Compressability: The percentage of redundant states removed by CPM. High compressability

reduces pressure on reconfigurable resources in FPGAs and the AP, but also may improve cache behavior

in von Neumann engines.

• Node degree: The average output degree of each node. Higher node degrees and more connectivity

indicate a harder place and route task for spatial automata processing engines like FPGAs and the AP.

• Character set complexity: We use the Quine-McCluskey algorithm [86] to calculate the minimum

number of boolean terms required to compute the boolean match function corresponding to the character

set of an automaton transition rule (STE). This metric reflects the average difficulty in building a

circuit to compute the match function of a particular STE.

• Active Set: The average number of active states. Larger numbers of active states require more transition

rule fetches. Thus, this is a proxy metric inverse to performance in von Neumann architectures. Spatial

architectures like the AP are unaffected by active set because all transitions are accomplished in parallel

in a single cycle if the design can successfully place and route.

• Activity Compressability: The average amount of redundant activity removed by CPM. This metric

roughly indicates how much performance is gained on von Neumann engines from the CPM optimization.

Table 5.1 shows that many benchmarks derived from regular expressions have similar static properties.

Each regex benchmark has an average node-degree of about 1, reflecting the long strings of automata states

that are often emitted from typical regular-expression-to-automaton conversion algorithms. In contrast,

applications such as mesh automata and Entity Resolution (which uses Hamming automata as a sub-kernel)

have many more output edges and represent a much more complex structure and routing task for spatial

automata-processing fabrics. Regular-expression-like automata tend to have a high number of common

prefixes, reflected in high state and activity compressability factors. In contrast, automata widgets such as

Fermi are designed to compute non-obvious recognition tasks and generally have much less redundancy by

design. We explore automata compressability via CPM and its effect on performance in Section 5.3.

ANMLZoo provides the following features:

5.2 ANMLZoo: an Automata Processing Benchmark Suite 65

Diverse Automata Structure and Behavior: ANMLZoo is originally divided into four major au-

tomata families: regular-expression-derived automata (Snort, ClamAV, PowerEN, Brill, Protomata), automata

meshes for string scoring (Hamming, Levenshtein), structured processing elements or ”widgets” (SPM, Ran-

dom Forest, ER, Fermi), and synthetic automata with exact known properties (BlockRings, CoreRings). All

applications are quantitatively diverse in both static and dynamic properties, and reflect real-world uses of

automata.

Standard Candles: Each ANMLZoo benchmark provides at least one file that defines a standard set

of automata that max out the resources of a single first-generation Micron D480 AP chip. While there is

no one “correct” way to standardize trade-offs among both automata state-size, activity, and connectivity,

we chose this metric as a compromise to allow easy and fair comparisons between different reconfigurable

data-flow architectures and von Neumann automata processing engines. We call these standardized automata

the ANMLZoo standard candles. Because standard candle automata max out the resources of an AP chip,

we can easily and fairly compare application performance on other automata processing architectures against

different deployment scenarios of small 4W AP D480 chips. For example, performance of 1 AP rank (8

parallel AP chips consuming 8 parallel input streams), is trivial to deduce via multiplying the performance

of one AP chip by 8. This feature is exemplified in Section 5.8. Each standard candle benchmark is also

accompanied by a corresponding stimulus of 1MB and 10MB, for testing and evaluation respectively. Versions

of standard candles and input stimulus may evolve to adapt to the needs of the community, but automata

and input stimuli will never be removed from the suite allowing for easy and fair comparisons to prior work.

Written in ANML: Each application is defined using Micron’s Automata Network markup language [55]

or ANML. ANML allows a standard but flexible method for defining automata networks. ANML is an

XML-like language that is used to define automata computation graphs. Applications that are defined as

regular expressions can be converted to ANML automata using Micron’s SDK [55]. If a benchmark is derived

from regular expression rulesets, these rules are also included in the suite.

Parametric Automata Generation Scripts: Where possible, automata generation scripts have been

provided to facilitate sensitivity analyses of different automata-processing applications and architectures.

For example, Section 5.4 shows how performance of von Neumann architectures is impacted by varying

fixed properties of synthetic automata and Section 5.7 shows how AP chip utilization is affected by varying

dimensions of mesh automata (Hamming, Levenshtein). These sensitivity analysis cannot be done using the

fixed benchmarks like the standard candle automata.

To demonstrate the usefulness of ANMLZoo, the following sections present five different experiments

exploring the sensitivity of different engines to different types of automata, exposing bottlenecks in automata

processing engines on von Neumann and spatial architectures, and relative advantages of automata processing

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures66

Figure 5.1: Sensitivity of VASim performance in response to additional automata rules. Performance of
automata with many common prefixes and high activity compressability (ER) are less sensitive to additional
rules. This indicates average automata activity after common optimizations, rather than total rule-count, is
a better predictor of performance.

on each available architecture. For each CPU experiment, we use a 6-core (12-thread) Intel i7-5870K clocked

at 3.3GHz with 32GB of RAM clocked at 2166MHz. This server also acts as the host CPU for the following

accelerators. For each many-core CPU accelerator experiment, we use a 57-core (228-thread) Intel XeonPhi

3120p clocked at 1.1GHz. For each GPU accelerator experiment, we use an NVIDIA Maxwell-based GTX

Titan X clocked at 1GHz. For each AP fabric utilization experiment, we use Micron’s AP SDK version 1.6.5.

5.3 Parallel Automata Rule Scaling

Many regular expression processing applications are concerned with the number of parallel “rules” or automata

that a given engine or architecture can process. For von Neumann architectures, more automata computed in

parallel may mean more transitions to compute, and more pressure on the memory hierarchy. For data-flow,

reconfigurable fabric automata-processing architectures, more parallel automata lead to a higher number of

states, and thus more pressure on the underlying reconfigurable fabric capacity and routing resources. Thus,

the more rules an engine is capable of quickly processing, the more desirable the engine.

However, “number of rules” is a poor metric to measure the amount of work being done by an automata

engine. As an example, we consider two applications from ANMLZoo (Entity Resolution and Fermi) and

vary the number of rules processed by a single thread on the CPU, measuring the sensitivity of performance

of VASim to the number of automata being computed. Figure 5.1 shows the results of our experiment.

5.4 Visited Set and Active Set Sensitivity 67

We plot normalized performance of common-prefix-merged versions of the automata rules (compressed)

and the original (uncompressed) versions of the automata rules for both Entity Resolution and Fermi. The

common-prefix-merged version of Entity Resolution, while initially incurring a severe penalty for additional

rules, quickly reaches a point where additional rules have little impact on performance. This is due to the high

activity compressability of Entity Resolution, as the redundant states removed by common-prefix merging

were also responsible for a high amount of redundant activity in the original automata.

Figure 5.1 also plots the performance cost of adding rules without the benefit of common-prefix merging.

The performance penalty of additional rules is much more severe, and does not plateau, indicating new rules

require significant additional activity and computation when uncompressed.

For the Fermi application, both the CPM and non-CPM versions have near-identical performance

characteristics. This is because Fermi has an extremely small activity-compressability factor. Specially-

designed automata like Fermi are therefore extremely important to consider when characterizing new automata

engines and optimizations, as they are harder to compress, and therefore pay a larger penalty when computing

additional rules.

5.4 Visited Set and Active Set Sensitivity

Because automata processing on von-Neumann architectures requires many sequential accesses to memory,

performance of automata processing on these architectures has been shown to be limited by access latency in

the memory hierarchy [51, 85]. However, this bottleneck and its impact can greatly depend on the underlying

automata engine algorithm and implementation. In the previous section, we saw that automata activity,

rather than “number of rules,” was the main factor hurting performance, but this activity was not measured

or controlled for.

In general, it can be difficult or impossible to guarantee certain properties of automata for controlled

experiments. It is therefore important to have a set of automata benchmarks (or generation tools) in the

benchmark suite that can precisely vary metrics such as the visited set (the set of states consistently visited

during computation) and the active set (the number of active states which need to perform memory accesses

per cycle). These synthetic automata and synthetic automata generation tools allow for controlled experiments

measuring the specific impact of memory hierarchy latency or throughput on total performance.

We present a parametric synthetic automata design to control for the ratio of active set to visited set.

The synthetic automata design is shown in Figure 5.2 2.

2Prof. Nathan Brunelle originated the idea for the synthetic automata design, and built the scripts to generate them.

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures68

Figure 5.2: Parameterizable synthetic automata design. Each ring is guaranteed to have a constant active set
and visited set, and is driven by an easy-to-generate input string. This instance has width 3, thus active set
3. Each stage is fully connected with its succeeding stage to form a continuous ring. The circumference, n, is
derived using the equation n = d visitedwidth e.

Each automaton is organized as a ring of stages. Each stage in the ring has a fixed number of states that

is always activated by the previous stage. This property guarantees that at any one cycle, the active set in

any one ring is equal to the width of the stage. Each ring is also of a fixed circumference (i.e. the number

of stages in the ring). Therefore, the total visited set of the automaton is the width of the stage times the

number of stages in the ring. This design allows us to individually control for both active set and visited set,

and isolate the impact of each on performance of different automata-processing engines. Below shows the

results of VASim performance while varying active set and visited set independently. We vary the visited set

of a single ring by multiples of 10 states from 100 to 100,000 states, and vary the active set of each ring by 1

from 1 to 20.

The more average states visited, the larger the pressure on the caches in the memory hierarchy of a von

Neumann architecture. Therefore, guaranteeing that the visited set fits into L1 or L2 caches of a CPU can be

extremely important for high-performance.

When the number of states is between 100 and 10,000, increasing the size of the visited set has little

impact on performance. This indicates that the entire visited set fits within a single level of the memory

hierarchy, and so a larger number of states does not impact the performance of computing transitions for the

active set. However, there is a relatively large impact when increasing the size of the visited set from 10,000

5.5 Automata vs Input-level Parallelism Scaling 69

Figure 5.3: Sensitivity of automata simulation performance to changes in the active set (number of states
considered per cycle) and the visited set (number of states consistently visited). Performance is much more
sensitive to increases in active set. The visited set impacts performance when its size grows larger than the
size of an available level of cache.

to 100,000.

While increasing the size of the visited set does impact performance, slight increases in active set can

have extremely large impacts on performance. Because automata structure can be irregular and behavior is

often unpredictable, it is difficult to guarantee locality of access. Therefore, to improve automata processing

performance on the CPU, VASim must work to reduce the size of the average active set via automata

optimizations and transformations, but also maintain an automata visited set size that optimizes performance.

5.5 Automata vs Input-level Parallelism Scaling

Because it can be difficult or impossible to reduce the active set of automata, and improving memory latency

at the architectural level can be extremely expensive, automata engines often attempt to exploit parallelism

among independent automata and among automata input streams to hide the latency of individual transitions

and increase throughput of automata engines. This section explores sensitivity of automata engines and

architectures to these two dimensions of parallelism–parallel automata and parallel input streams. Distinct

automata can be divided into an equal number of groups (G), and the input stream can be divided into an

equal number of sections (S). Thus, we can launch G× S number of CPU threads or GPU thread-blocks to

compute in parallel.

We pick three applications: Protomata, Hamming, and Random Forest to illustrate how different families

of applications (regex, mesh, and widget) respond to varying automata group and stream parallelism. For

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures70

Figure 5.4: Hamming automata benefit most from automata-level parallelism. Protomata benefits from
parallelism in both dimensions. Random Forest only benefits from automata-level parallelism.

each application, we pick 4 sets of groups and vary the number of parallel streams on both the VAsim (CPU)

and iNFAnt2 (GPU) baseline engines. Results are presented below.

5.5.1 CPU Parallel Scaling

Results from varying automata groups and parallel input streams on VASim, our baseline CPU automata

engine, are shown in Figure 5.4.

Hamming automata seem to favor more parallel automata groups and are not accelerated by increasing

the number of parallel packet streams. This is because Hamming automata have relatively little activity

compression and so parallel threads computing parallel automata are more likely to be doing distinct,

non-redundant work. Thus it is better to have single threads operate on smaller, distinct automata that may

have good behavior in an individual CPU’s L1 cache.

Protomata is much more responsive to both automata-level and input-level parallelism. This is because

5.5 Automata vs Input-level Parallelism Scaling 71

Protomata has a small number of automata that have a much greater level of activity than others. Because

VASim is not equipped to parallelize work within individual automata, the threads that are responsible for

these “problem” automata run much slower and bottleneck performance. While automata-level parallelism

cannot accelerate problem automata, stream-level parallelism can. Thus Protomata performs best with eight

parallel automata groups (8), but a larger number of packet streams (12).

Random Forest has an extremely low level of activity compressability and so benefits most from distributing

automata across many threads. Random Forest benefits so much from parallel automata computation, that

any additional thread contexts for computing parallel input streams hurts performance, even when cores are

underutilized. This indicates that shared per-chip (as opposed to per-core) resources like L2 and L3 cache are

over-utilized, and important for performance where active set is high.

These experiments shows that parallelization strategies for CPU-based automata processing depend highly

on the automata topography, compressability, and dynamic behavior.

5.5.2 GPU Parallel Scaling

Results from varying automata groups and parallel input streams on iNFAnt2, our baseline GPU automata

engine, are shown in Figure 5.5 3.

Unlike the CPU-based engine, Hamming automata on the GPU overwhelmingly favor more parallel input

streams. Hamming performs best when each CUDA thread block operates on all meshes simultaneously and

there are more than 560 parallel blocks operating on different sections of the input stream. This highlights

the ability of the GPU to hide the latency of any individual memory access by executing an extremely large

number of parallel tasks. Because there may be a relatively small number of parallel accesses in any one

benchmark (e.g. Hamming has an average active set of 240 over 49 distinct automata when prefix merged) it

is generally better to exploit input stream-level parallelism for latency hiding on the GPU.

Protomata shows similar performance characteristics to Hamming. However, a single group does not

universally perform best. Dividing the automata into eight groups performs better as the number of parallel

streams is increased. This reflects sensitivity to utilization of per-GPU stream-processor resources such as

shared memory and L1 cache. The total performance of the GPU engine relies on a balance of NFA transition

table size and stream-level parallelism that is highly application specific.

Random Forest, as discussed earlier, has a small amount of activity compressability, and therefore favors

computation by more parallel groups, with smaller, more efficient NFA transition tables. Random Forest

performs best on the GPU when split into 48 distinct groups. However, it is still the case that too many

3Vinh Dang gathered results for these scaling experiments

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures72

Figure 5.5: Protomata, Hamming, and Random Forest all benefit from a massive amount of stream level
parallelism, however appropriate care must be taken to tune automata groups to match GPU core resources.

automata groups will limit stream level parallelism, and reduce the ability of the GPU to hide the latency of

transition table lookups.

These experiments show that GPU automata processing engines mostly favor parallelization via parallel

input streams. If an application allows its input stream to be divided among parallel threads, the GPU can

better hide the long latencies associated with SIMD control-flow and memory divergence.

5.6 NFA vs. DFA Engines on the GPU

The variable topography and dynamic parallelism of NFAs can be especially difficult to efficiently map to

the GPU’s SIMD architecture. Thus, deterministic finite automata (DFA) have been explored as a possible

alternative method of automata processing to better exploit the GPU’s available resources [87, 25]. DFAs are

equivalent automata that are constructed so that only one state can be occupied at any one time. A DFA

5.6 NFA vs. DFA Engines on the GPU 73

Figure 5.6: Relative performance of NFA and DFA engines over all benchmarks in ANMLZoo. DFAs for
ClamAV, Protomata, and SPM were too expensive to construct due to space or time costs.

state therefore represents a particular configuration of NFA states. Because of this relationship, DFAs can be

potentially exponentially larger than their equivalent NFAs, and exponentially expensive in time to construct.

We use the DFA generation tool developed by Becchi [45] to convert as many ANMLZoo NFAs to DFAs

as was possible. Some ANMLZoo applications took too long, or required too much memory to be converted

to a reasonable number of DFAs and were ignored. The GPU DFA engine in iNFAnt2 assigns individual

CUDA threads within a thread-block to processes a particular DFA. In contrast, the iNFAnt2 NFA engine

maps the computation of entire NFAs to CUDA thread-blocks. Because each DFA only ever requires one,

deterministic transition per cycle, the number of control-flow and memory operations per cycle is much lower.

Furthermore, divergence among threads is much less likely, leading to higher utilization of SIMD units.

Figure 5.6 shows the relative performance between our baseline NFA and DFA engines achieved using the

optimal block and grid size, and thread and stream configuration for each application 4. The DFA-based

engine traverses exactly one state per symbol, independent of the automaton and input stream, while the

NFA-based processing engine follows a number of state transitions.

Unsurprisingly, Figure 5.6 shows that the DFA engine–when DFAs are able to be created–is the best

solution for every benchmark with the exception of ER. This is due to the relative simplicity of the DFA

kernel, and the reduced number of total instructions required to compute the automata. We compared

profiling information gathered by NVIDIA's profiling tool nvprof on the Levenshtein automata. The NFA

kernel executed over 5, 700 times more control flow instructions than the equivalent DFA kernel, and 43 times

more memory instructions per input symbol.

4Vinh Dang gathered results for these experiments

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures74

In some applications (Snort), DFAs do not give significantly better performance compared to NFAs

in iNFAnt2. This is because very few NFAs can be combined into single DFAs. Specifically, for the ER

benchmark, the large number of required DFAs causes the iNFAnt2 DFA engine to perform worse than the

iNFAnt2 NFA engine.

5.7 Mesh Scaling and AP Fabric Utilization

Mesh automata, such as the Hamming and Levenshtein automata, score input strings by positionally keeping

track of input mismatches with an encoded string.

Hamming-distance automata have been shown to help accelerate both DNA and protein [12] motif search

algorithms. These automata use a simple kernel–match or mismatch–to positionally keep track of the number

of mismatches between the input and encoded string using automata states. A mismatch will force a transition

to a new row of states that represent mismatches one greater than the previous row. In practice, it is usually

only important to keep track of mismatches up to a particular score threshold, and so rows can be pruned

from Hamming distance automata to decrease unnecessary states and computation. Because Hamming

distance automata only ever considers the match or mismatch kernel, the fan-out and fan-in of any individual

state is always less than or equal to 2, no matter the length of the input string, or the number of mismatches

the automaton is programmed to compute.

Levenshtein automata use a more complex kernel to keep track of differences between an encoded string and

an input string. While Hamming distance only considered matches and mismatches, Levenshtein automata

additionally keep track of possible insertions in the input string and deletions from the encoded string,

ultimately scoring the number of ”edits” (edit distance) required to transform one string to the other up to a

certain edit threshold. Because the Levenshtein automata must account for any number of deletions up to

the threshold, the maximum fan-out and fan-in of any individual state grows linearly with the size of the

threshold.

This increase in the connectivity is not problematic for von Neumann-based automata processing engines,

where arbitrary automata networks can be easily stored in memory. However, high connectivity can be

problematic for spatial architectures that rely on a reconfigurable routing matrix to lay out all possible

datapaths in the automata networks. To show impacts of connectivity in mesh automata on spatial

architectures, we vary both encoded string length and a score threshold for Hamming and Levenshtein

automata. We then compile the designs for the AP and measure their on-chip routing utilization. Figure 5.7

plots the resulting routing complexity vs. encoded string length for ten different automata.

5.8 Cross-Architecture Application Evaluation 75

Figure 5.7: Hamming automata have a constant fan-in/fan-out per STE and therefore have relatively low
routing complexity that is not impacted by the dimension of the mesh. The node degree of Levenshtein
automata grows linearly in the size of the encoded edit distance threshold, therefore routing complexity is
very sensitive to this dimension. Levenshtein automata with edit distance threshold 5 (d=5) fail to route on
the current AP hardware past encoded string length 24.

Hamming automata are relatively insensitive to increases in both dimensions–the encoded string length

and the score threshold–of the automata. This reflects the constant fan-in/fan-out per match/mismatch

kernel. While the number of these kernels increases, their routing complexity remains relatively flat.

In contrast, the routing complexity of Levenshtein automata is highly sensitive to changes in the score

threshold. This is due to the linear scaling of fan-in/fan-out to account for a number of deletions up to the

score threshold. Figure 5.7 shows that a Levenshtein automaton with length 24 and score threshold 5 takes

about 4 times more routing resources than a Levenshtein automaton with a score threshold of 3, and 10 times

more routing resources than a Hamming automaton with a score threshold of 5 and encoded string length of

24. Levenshtein automata with a score threshold of 5, and length greater than 24 fail to route on the current

generation of the AP architecture and place-and-route tools.

5.8 Cross-Architecture Application Evaluation

We evaluate the performance of each baseline NFA automata-processing engine over all standard-candle

ANMLZoo benchmarks. Results are shown in Figure 5.8. While this does not represent an absolute ranking

of the performance of each architecture, it does represent the current state of the baseline evaluation engines

included in ANMLZoo as compared to the AP. We present the estimated performance of the first generation

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures76

Figure 5.8: Performance of all standard candle benchmarks on each available architecture. AP performance
is estimated to be 133MB/s, however, we expect to see performance degradations due to output reporting
constraints when using the real hardware. Because each ANMLZoo standard candle automata maxes out an
AP chip, it is easy and fair to estimate the performance of an AP Rank (8 chips) as 8 times the performance
of an individual AP chip.

AP hardware [34].

VASim tends to perform worse on the XeonPhi than the i7 CPU. While the XeonPhi has many more

individual cores (57 rather than 6), the CPU's large L3 cache is more important than parallel cores for

accelerating the VASim algorithm. A XeonPhi-specific baseline automata-engine to take advantage of its

vector units, similar to iNFAnt2, is therefore desirable for a more fair evaluation of these architectures. The

XeonPhi performs better than the CPU on the PowerEN and Levenshtein benchmarks, indicating that the

VASim algorithm is more bottlenecked by parallelism, and less bottlenecked by rule-transition latency, for

these benchmarks.

The GPU NFA engine performs better than our baseline CPU engine in 10 out of 14 benchmarks, indicating

that the GPU’s massively parallel resources are important for parallel automata-processing. However, the

CPU engine outperforms the GPU engine on Brill, ClamAV, BlockRings, and CoreRings. This is most likely

due to both a small active set and visited set in these applications, allowing for more ideal cache behavior on

the CPU.

The simulated AP's chip's data-flow style architecture generally outperforms all von-Neumann-style NFA

automata engines. One notable exception is the synthetic CoreRings benchmark, where VASim is capable of

achieving upwards of 230MB/s. CoreRings has an extremely low activity relative to the number of states.

Section 5.4 showed that the CPU can achieve 50MB/s per core per active state. Thus, the impressive

performance for the full multi-threaded version of CoreRings is unsurprising. This motivates heterogeneous

automata-processing engines and architectures with both von Neumann and data-flow engines operating on

portions of automata that best suit them.

Because each standard-candle automata benchmark maximizes the resources of an individual AP chip, we

can easily, and fairly, estimate performance of other deployment scenarios of AP chips. Because each AP

chip can operate on a separate, parallel portion of the input stream, AP performance is expected to scale

5.9 Towards ANMLZoo 2.0: A Retrospective and Future Benchmarking Template 77

perfectly linearly in the real hardware. As an example of this feature of the benchmark suite, we also include

estimated AP Rank performance in Figure 5.8.

For each architecture, we explored both dimensions of automata parallelism to attempt find the best-

performing configuration. However, exploring every possible configuration was not feasible and so optimal

performance is not guaranteed. Data-flow architectures such as the AP do not have this dimension of

complexity, and thus guarantee deterministic performance with no dynamic performance tuning. This

property is extremely desirable for real-time applications such as deep-packet inspection and on-line machine

learning.

Moving forward, new algorithms, automata-representations, automata-processing engines and new

automata-processing architectures can be easily evaluated and compared using ANMLZoo. We encour-

age researchers to contribute any of these components as they are developed, so that new research can fairly

and easily compare to prior work.

5.9 Towards ANMLZoo 2.0: A Retrospective and Future Bench-

marking Template

ANMLZoo was released in the Summer of 2016. Since its release, it has been used by researchers to benchmark

automata processing approaches in major architecture [81, 82, 83], and FPGA [53, 88] conferences. While

ANMLZoo has had immediate, high impact in the automata processing domain, since its publication, some

valid criticisms have arisen. This section highlights valid criticisms of the ANMLZoo benchmarks, and then

suggests modifications to the benchmark suite, and a new automata processing benchmarking methodology.

5.9.1 Critiques of ANMLZoo Benchmarking Methodology

Below is a list of common critiques that have been levied at ANMLZoo, and responses:

Automata are too small [89]: Nourian et al. claim that automata in the ANMLZoo benchmark suite are

“not meant for large scale analysis.”

Response: It is unclear what the authors meant by this, and they did not elaborate. We interpret this

criticism to mean that automata are “too small.” ANMLZoo applications are standardized to the

Micron D480. Some important, real-world automata applications were actually not big enough to fit

into one AP chip. Some applications (especially in the domain of bio-informatics [11]) can be orders

of magnitudes larger than the capacity of an AP chip, and have complex routing that causes high

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures78

utilization, or unroutability. Nourian et al. [89] picked small, unrealistic bio-informatics automata

structures but replicated them many times in order to justify a “large” benchmark. It is thus unclear

how these automata represent a better or fairer evaluation than ANMLZoo benchmarks and why they

chose not to also evaluate each system’s performance with the ANMLZoo automata.

Documentation is lacking: This criticism has been levied by many users. Users find it frustrating to

have to read cited papers in order to have an intuition behind how the automata work. In many cases

there are tens of hours involved in understanding each individual benchmark, and how it computes the

underlying function.

Response: This criticism is valid. We have even seen examples of researchers mis-using the benchmarks

due to misunderstandings, applying optimizations and claiming speedups that are spurious [81]. These

misunderstandings could have been avoided if documentation of both automata graphs and input

streams was available or clearer. In response, we believe every benchmark should have an easy to

understand landing page that describes in an intuitive way, with visuals, how the automata process

the application’s input streams. We have made an effort to improve documentation. In particular,

Hamming, Levenshtein, RandomForest, EntityResolution, and SPM have updated documentation [90]

meant to help teach users the intuition behind these automata, without requiring researchers to read

the original papers.

Inputs are too small (size)/not enough inputs (number)/not diverse enough (source): Many users

and peer reviewers observe that different inputs may cause different behavior in automata, and change

the conclusions of evaluations that use ANMLZoo. The availability of only one, 10MB input per

benchmark also limits the ability of novel techniques to properly train/test models.

Response (size): We semi-arbitrarily chose inputs of 10MB. We thought that 10MB would give users

enough data to assess streaming performance of automata applications, offer enough of a snapshot of

an application to capture diverse behavior, and also be small enough to distribute efficiently. For some

benchmarks 10MB is much less than the inputs used in the real world. For example, bio-informatics

alignment (Hamming, Levenshtein) often deals with analysis of the human genome, which is a few

gigabytes of data. In hindsight, we have no reason to believe that 10MB inputs caused issues with

conclusions from studies that used the benchmarks. However, we do agree that the ability to generate

longer inputs, to capture the overheads of streaming computation, or to measure end-to-end performance

on real-world, large scale evaluations would be useful. This motivates the inclusion of scripts to generate

5.9 Towards ANMLZoo 2.0: A Retrospective and Future Benchmarking Template 79

arbitrarily long inputs, or pointers to repositories that include larger, more realistic, but still compatible

data sets.

We also recognize that it is not necessary to fix the evaluation input byte streams to a particular size

for all benchmarks. Future benchmarks should include input sizes that capture and reflect real-world

behavior of the application, and perform a full instance of the measured algorithm. There does not

seem to be any worthwhile benefit to fixing the input size across all benchmarks.

Response (number): ANMLZoo chose to couple single evaluation inputs with single instances of automata

graphs in order to constitute one benchmark. This single data point might miss behavior caused by

malicious inputs, or not represent average-case behavior.

In hindsight, we have no reason to believe that the inputs we chose did not represent average-case

behavior, or caused issues with conclusions drawn from the benchmarks in papers. However, we do

agree that more inputs, and inputs that intentionally cause certain behaviors, will only add to the

usefulness of the benchmark suite. In particular, having multiple inputs for training and testing of

statistical techniques would be especially helpful. We therefore suggest that future benchmarks include

one “standard” input for performance evaluations and testing, and at least nine other “training” or

other evaluation inputs of the same size.

In the design of ANMLZoo, we chose inputs that seemed representative of average-case behavior. In

situations where input stream choice seemed genuinely arbitrary, we decided to make the input source

choice arbitrarily. In hindsight, we have no reason to believe that this caused issues with conclusions

using the benchmarks. However, we do agree that more inputs, and inputs that intentionally cause

certain behaviors, will only add to the usefulness of the benchmark suite. We therefore suggest that

future benchmarks include larger and more

Response (source): We think that evaluated inputs should represent average-case behavior. However,

average-case behavior might not capture worst-case behavior that are important to design around

for some use-cases. For example, in network intrusion detection (Snort), systems are designed with

malicious attackers in mind. Thus corner case behavior that causes poor performance in a system is a

likely attack vector. These corner case stimuli are less useful for architects, who search for broad trends

in performance, however, we do agree that this behavior is important for some application domains,

and should be included for application specific evaluations of systems.

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures80

Benchmarks are not full applications: In order to spatially normalize automata, some applications were

artificially cut down, or enhanced. This makes apples-to-apples comparisons of the performance of the

automata benchmarks to other, non-automata-based algorithms on other architectures impossible.

Response: This is a valid, important criticism that should be addressed when designing future benchmarks.

We argue that cut-down applications are acceptable benchmarks when comparing automata processing

performance across different execution engines. However, automata-processing may not be the most

efficient algorithm for computing a particular application on a given architecture [76]. Thus, cut down

benchmarks are not useful for benchmarking kernel performance of a particular architecture. For

example, we cannot say that a GPU performs worse than an FPGA for Random Forest inference given

an automata benchmark that does not capture an entire instance of a computation. We can only

say that the GPU performs worse at Random Forest inference when using the automata processing

algorithm to compute the kernel. Thus, benchmarks should strive to be comparable to other algorithms

implementing the same kernel where possible.

Benchmarks pegged to unavailable/obsolete processor: The Micron D480 will most likely never come

to market, its tools are difficult to access, and FPGAs have “leap-frogged” the AP in performance and

capacity. Why peg benchmarks to an obsolete processor?

Response: When ANMLZoo was conceived, Micron’s Automata Processor was still expected to reach

commercial availability. It was also still considered the state-of-the-art as a real-hardware automata

processing accelerator. Since the inception of the AP, commercial FPGAs benefited greatly from process

manufacturing advances. Recent work has shown that FPGAs have a much larger capacity than the

D480 AP, and potentially higher operating frequencies [53], and more flexible routing resources [37].

Thus, it is no longer prudent to consider the AP as the state-of-the-art performance and capacity target,

and we do not see a reason to continue to spatially normalize applications to this architecture.

However, when designing new benchmarks, we should still develop reasonable justifications for regular-

izing automata when the choice of size and number of automata is arbitrary. Arbitrary choices should

be avoided when possible.

The above criticisms, filed after years of use and experience were instrumental in helping us understand

drawbacks to current approaches and to define new goals for good automata processing benchmarks. Below

we summarize the lessons learned and properties that we think benchmarks should require before addition to

a future benchmark suite.

5.9 Towards ANMLZoo 2.0: A Retrospective and Future Benchmarking Template 81

Full Applications: Where possible, automata benchmarks should compute a full, useful, end-to-end kernel

computation. In this way, automata processing on various accelerators can be fairly compared to the

best known algorithms implementing the same kernel on other architectures.

Full documentation: Each application should be documented in a concise, intuitive, easy to understand

manner. This is so researchers can understand how inputs are co-designed with the automata so that

they properly understand acceleration opportunities.

Avoiding purely arbitrary design choices: The choice of size and number of some automata benchmarks

can sometimes seem completely arbitrary. For example, mesh automata used for string scoring (Hamming,

Levenshtein) have three arbitrary dimensions of design: 1) the length of the encoded string, 2) the

hamming or edit-distance the widget calculates, and 3) the number of widgets in the benchmark.

Arbitrary choices should be avoided where possible when designing benchmarks with many design

parameters.

Realistic, diverse inputs: Inputs should not be arbitrarily sized, and should represent the actual inputs of

an automata application. There should be a single, default testing input that represents “average-case”

behavior. There should also be at least nine other accompanying training inputs of the same general

behavior. If the application is motivated by possibly malicious inputs, a separate set of inputs should be

generated and combined with the automata to form a similar, but distinct benchmark. Where possible,

scripts to generate inputs should be given.

In the next section, we use the above guidelines to build a new benchmark for automata processing–Snort

network intrusion detection rules–as a possible member of a next-generation benchmark suite.

5.9.2 Snort Network Intrusion Detection Benchmark

Snort is an open-source set of network packet inspection tools and is an especially important motivator

for regular expression and finite automata processing acceleration. Due to increasing network traffic and

increasing numbers of packet inspection rules over time [91], the processing requirements for network analysis

systems have also increased.

The original ANMLZoo benchmark suite included a Snort benchmark [22]. To generate the benchmark,

regular expressions were extracted from the pcre tags of snort rules. PCRE regular expressions can have

modifiers that guide how the regular expression should be compiled or guide what part of the input stream

the regular expression should be applied to. For ANMLZoo, we stripped Snort-specific modifiers [92] and

compiled regular expression patters without regards to the semantics of these modifiers.

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures82

Each rule was then added to a common rule-set and then the rule set was compiled to automata using

Micron’s regular expression to automata compiler [55]. If the ruleset failed to compile, the rule is skipped,

and the process continues. As discussed in previous sections, the benchmark is complete when the compiler

indicates that any additional rules would require two AP chips to implement [22].

After the release of the benchmark suite, a number of issues were identified with this methodology. The

first issue was the closed source nature of the Micron PCRE compiler [55]. Some rules were not able to be

compiled for various reasons, and could not be diagnosed due to the closed-source nature of the tool. Thus,

these rules could not be considered in the benchmark. In contrast, open-source PCRE compilers, such as

Intel’s Hyperscan [43], offer a much more robust compiler framework, that can consider more rules.

The second issue was that we were ignoring the semantics of the Snort-specific modifiers [92]. Some of

these modifiers guide the Snort system to search for regular expression patterns in a particular section of a

packet payload, rather than the entire packet. Thus, our methodology of ignoring these modifiers, compiling

the rules, and running these automata on the whole packet stream, produced spurious reports, and an

extremely high matching rate.

To solve the above problems, we make two changes to our methodology for converting regular expressions

rules to automata benchmarks:

1. We use Hyperscan [43], a publicly available, open-source regular expression processing library to convert

regular expressions to homogeneous finite automata format. This tool is published as hscompile, as

a part of the MNCaRT automata processing ecosystem [79] developed at the University of Virginia.

Hyperscan is an industry standard regular expression engine and offers users a high-level of confidence

that regular expressions are being compiled and converted correctly.

2. We segregate rules with Snort specific modifiers. Instead of removing the modifiers and considering

PCREs that are context specific, we instead only consider PCREs from Snort rules that do not have

Snort specific modifiers, and ignore rules with Snort specific modifiers. In the future, rules with these

modifiers could be segregated into groups, and form distinct benchmarks, with inputs that correspond

to their expected use-case.

3. We consider all PCRE regular expressions from all community Snort rules. Previously, we stopped

adding new rules when the Micron AP chip was full. Our new methodology considers all rules.

The result of this new methodology is a new Snort benchmark that behaves in a way that is much

closer to the actual application, and larger in size due to the better support in the open-source compiler,

5.10 Conclusions and Future Work 83

States Compressed States Compression Factor Average Activity Reports/symbol
ANMLZoo Snort 69,029 34,366 50.7% 30.13 2.29

New Snort 258,750 216,315 16.5% 432.55 0.132
Change 3.75x 6.3x -3.07x 14.36x -17.34x

Table 5.2: Comparison of static and dynamic metrics of the ANMLZoo Snort benchmark and the new Snort
benchmark built with the new methodology. The new benchmark has more states, more activity, is less
compressable, and has many fewer reports.

and consideration of many more PCRE rules. Table 5.2 shows summary statistics of this new automata

benchmark.

The first major difference is the size of the benchmark. The new Snort benchmark has 3.75x the number

of total states, and 6.29x the total number of non-redundant states. Interestingly, the old Snort benchmark

was compiled from 2,585 PCRE rules, while the new Snort benchmark was compiled from 2,670 PCRE rules.

This large increase in states corresponding to a small increase in total rules means 1) that larger rules were

added to the benchmark and 2) more unique rules were added to the benchmark.

The second major difference is the activity. We profiled the original Snort benchmark and the new Snort

benchmark using ANMLZoo’s 1MB inputs and measured the average activity in the automata. Table 5.2

shows the results of our experiment. The original benchmark has, on average, 30.13 states compute on

any given cycle. In contrast, the new Snort benchmark has 432.55 states compute on any given cycle, a

14.4x increase. This is a substantial increase in activity, and further motivates spatial approaches for this

application to handle this increase in activity.

The third major difference is reporting behavior. The original Snort application reports on average 2.29

times for every input symbol. This frequent reporting behavior is caused by indiscriminately applying context

sensitive rules to the entire input stream as discussed above. The new snort benchmark reports far less–on

average only once every 7.6 input symbols. Note that these results differ from those in Chapter 7 due to

bug-fixes to VASim during the period between the evaluations.

5.10 Conclusions and Future Work

This chapter presented ANMLZoo, a diverse benchmark suite of finite automata for easy and fair evaluation of

automata processing engines. ANMLZoo benchmarks are quantitatively diverse in both static structure and

dynamic behavior and represent a wide range of well known and new applications for automata processing.

Using ANMLZoo, we were able to show bottlenecks in von Neumann computer architectures for automata

processing. CPUs perform well when the average activity in an automata is small, and the average number of

visited automata states is small. GPUs and Intel’s XeonPhi can perform well, but exploiting the computational

ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures84

power of SIMD units to compute the irregular parallelism of automata is difficult. Thus, these architectures

generally benefit from input stream parallelism, rather than automata-level parallelism. The AP is the

fastest automata-processing hardware but its capacity is very sensitive to automata topography and cannot

place-and-route automata states with complex connectivity.

In retrospect, after years of use and experience, we outline guidelines to build future benchmarks that better

serve the research community. These benchmarks should represent full applications, be well documented, avoid

arbitrary design, and include input stimuli that correspond to real problems. As a step towards this goal, we

present a new Snort benchmark that more closely represents the Snort application computation requirements.

We suggest that future work should apply this methodology to build a next generation benchmark suite for

automata processing.

Chapter 6

Automata-to-Routing: An

Open-Source Toolchain for

Design-Space Exploration of Spatial

Automata Processing Architectures

6.1 Introduction

Prior spatial automata acceleration has investigated using FPGA fabrics to place-and-route automata

states [28, 29, 30]. New commercially available hardware such as Micron’s Automata Processor [34] uses a

finite-automata-specific reconfigurable fabric to improve state density over techniques on more general-purpose

fabrics. In order to achieve the full potential of automata processing, it is necessary to further research

automata-specific spatial architectures that can identify tradeoffs among different design decisions. However,

of the new automata processing architectures published since Micron published details of the Automata

Processor [51, 50, 49], all are either von Neumann-based techniques or implemented in existing FPGA fabrics.

The reason for this lack of spatial architecture research is three-fold:

1) A benchmark suite of diverse, real-world automata processing benchmarks was not available for fair

apples-to-apples evaluations of automata processing architectures.

2) Suitable open-source tools for the optimization of automata (tantamount to good performance on both

von Neumann and spatial architectures) did not exist. Thus, important standard optimizations must be

85

Automata-to-Routing: An Open-Source Toolchain for Design-Space Exploration of Spatial Automata Processing Architectures86

reproduced, making research in automata processing high effort.

3) Furthermore, no open-source tools for spatial automata architecture research (including high-quality

place-and-route algorithms and flexible, parametric automata-processing fabric description languages) existed

for fair evaluation of spatial automata-processing architecture design choices.

To solve the above problems, this chapter presents a new open-source toolchain–Automata-to-Routing

(ATR)–that can place-and-route any AP application on a parameterizable spatial automata processing

architecture. ATR builds upon three open-source tools: a newly available automata processing benchmark

suite, ANMLZoo [22], an open-source framework for automata optimization and transformation, VASim [78],

and a well-known existing FPGA architecture research framework, VPR [38]. Integration of these tools

was not straightforward, and required additional capabilities to enforce spatial architecture design rules on

abstract automata, and emit automata in a VPR-readable format. The ATR toolchain enables research

on novel spatial automata processing architectures, and can be used to evaluate design choices in existing,

commercially available processors.

To show the usefulness of the ATR toolchain we use it to explore bottlenecks in a commercially available

automata processor. We first create a baseline model of Micron’s Automata Processor (AP) [34] to see if

ATR is capable of faithfully modeling the AP’s logic-tile architecture. We compare placement performance

of this baseline AP model architecture to the real AP, using the ANMLZoo benchmark suite. In many

cases, the ATR toolchain can closely model the AP’s logic-tile architecture, matching placement statistics to

within an average of 7.9% for 9/14 benchmarks. This result indicates that we are able to accurately model

the AP’s tile architecture for most applications, and motivates future high-level design-space exploration of

automata-processing logic-tile architectures using the toolchain.

ATR cannot closely model five benchmarks. We demonstrate that this is due to differences between the AP

and ATR’s routing matrix designs. Micron’s AP uses a deep hierarchical routing matrix, while VPR is only

able to model 2D-mesh routing fabrics. Our results indicate that ATR’s shallower, 2D-mesh routing fabric–in

contrast to the AP’s deep hierarchical fabric–reduces resource requirements by up to 4.2x for difficult-to-route

benchmarks. We then identify two properties of automata that cause inefficient resource usage on the AP:

average automaton subgraph size and average fan-out. We show that highly connected automata that span a

significant portion of the chip are difficult to place-and-route efficiently in the deep hierarchical design of the

AP. This result provides application specific insight into how future AP architectures should be designed.

6.2 Automata-to-Routing Toolchain 87

6.2 Automata-to-Routing Toolchain

This section first describes the three tools used to enable Automata-to-Routing: ANMLZoo, VASim, and

VPR. We then describe the ATR architecture and how it enables spatial automata processing architecture

research.

6.2.1 ANMLZoo Automata Benchmark Suite

ANMLZoo [22] is a public repository of 14 automata processing benchmarks and corresponding input stimuli.

Twelve benchmarks are from real-world use-cases for automata processing and two are synthetic. Each

benchmark is roughly classified into a “family” of automata based on the topology and size of disjoint automata

subgraphs. The first family are regular expression automata (Dotstar, Brill, PowerEN, ClamAV, Protomata).

Regular expressions tend to correspond to long, narrow automata, with low topological complexity. “Mesh”

automata (Hamming, Levenshtein) have regular, 2-dimensional properties and can grow quadratically with

problem size. “Widget” automata (EntityResolution, RandomForest, SPM) are generally composed of smaller

custom automaton engines with complex topology that can vary in individual size and complexity depending

on application and problem size. Synthetic automata (BlockRings, CoreRings) are designed to test particular

properties of execution engines while controlling for automata properties such as active set and visited set.

Because both the number of automata states and routing complexity affect fabric utilization, there is no

“right” way to standardize automata benchmarks. Instead of picking one metric, each ANMLZoo benchmark

is compiled to completely fill the resources of an AP chip, thus standardizing for both state and routing

resources at the same time. This methodology allows easy and fair comparisons of the capacity and routing

capabilities of the AP versus other spatial architectures.

6.2.2 VASim Virtual Automata Simulator

VASim [78] is an open-source platform for manipulation, optimization, and simulation of finite automata.

VASim offers an easy-to-use, object oriented view of automata-processing directed graphs and is designed

from the ground up to be an easy to understand research platform for automata processing application and

architecture research.

VASim offers traditional, well known automata minimization passes, e.g. prefix merging. Prefix merging

is an algorithm, analogous to circuit minimization, that can greatly improve processing performance in von

Neumann automata processing engines, and reduce resource requirements for automata implemented on

spatial architectures [22]. VASim allows automata researchers access to these standard algorithms without

the need for lengthy re-implementation. Furthermore, VASim also acts as an open-source repository for new

Automata-to-Routing: An Open-Source Toolchain for Design-Space Exploration of Spatial Automata Processing Architectures88

automata optimization algorithms so that researchers can easily share their optimizations with others and

use them for both application and architecture research.

VASim can also enforce architecture specific design rules. While von Neumann automata processing

architectures generally do not place any restrictions on the number of states, fan-in, and fan-out allowed in

an automata graph, spatial architectures are usually very sensitive to these parameters. Just as in FPGA

place-and-route, a large fan-in or fan-out in an automaton might prevent a graph from being routable. For

ATR, we extend VASim to automatically enforce fan-in requirements of spatial architectures.

6.2.3 Versitile Place and Route

Versatile Place and Route (VPR) [38] is a well known open-source tool for research on tiled, “island style”

spatial architectures and is widely used in the FPGA design community. VPR allows researchers to define their

own spatial fabrics using an XML-based parameterizable architecture description language. The language

describes fabric dimensions (number of logic tiles wide and tall), switch-block architecture, connection-block

architecture, channel width, and logic-tile architecture. Logic tiles can be hierarchical, and may be composed

of smaller elements such as basic LUTs and registers connected using a basic, but fairly flexible interconnect

library.

Once an architecture description file has been defined, VPR takes a Berkeley logic interconnect format

(.blif) logic circuit netlist as input. VPR packs each logic tile with circuit elements, places and optimizes

placement of tiles in the architecture, and then routes each tile within the reconfigurable fabric.

While VPR is geared towards placement and routing of gate-level logic, VPR also allows place-and-route

of “black box” elements, to represent hard logic such as multipliers that may exist as non-LUT computation

blocks in the FPGA fabric. VPR is so general, that it allows the definition of any arbitrary black box element,

not just traditional FPGA logic elements. Thus, in ATR, we use VPR to model reconfigurable arrays of

automata state transition elements, rather than traditional logic gates. This new use-case for VPR highlights

its flexibility as a back-end architecture description and place-and-route tool for any application domain

targeting an island style reconfigurable array of processors, as long as a benchmark suite and optimization

and transformation tools exist to support this domain.

6.2.4 ATR Toolchain Architecture

Automata-to-routing (ATR) combines ANMLZoo [22], VASim [78], and VPR [38] into a new toolchain for

spatial automata processing research. Figure 6.1 describes the high-level architecture of the ATR toolchain.

First, automata are fed into VASim. VASim is responsible for optimizing automata (e.g. applying prefix

6.2 Automata-to-Routing Toolchain 89

Figure 6.1: The Automata-to-Routing or ATR toolchain flow. ANMLZoo applications are used to evaluate
automata architectures. These automata graphs are fed to VASim which parses and optimizes the automata.
VASim can also enforce design rules on automata and automatically transform them to fit an architecture
without changing the semantics of the automata. VASim emits these automata graphs as .blif circuit files for
corresponding automata processing spatial architecture models. VPR takes an architecture description and
places-and-routes circuits in this hypothetical architecture.

merging) and applying transformations to enforce user-specified design rules. One particular transformation

required for this work, fan-in relaxation, is described below. Once automata have been optimized and

transformed to fit the design rules of a particular architecture, VASim emits automata netlist in a VPR

readable .blif format. ATR then feeds the .blif circuit and spatial automata processor description file defined

by the researcher to VPR. VPR then packs, places, and routes the automata circuit into the architecture.

Results from place-and-route can then be used to evaluate the “goodness” of a given architecture depending

on desired properties. ANMLZoo provides a large set of diverse benchmarks to fairly evaluate the relative

merits of hypothetical and real automata processing architectures.

Together, ANMLZoo, VASim, and VPR form Automata-to-Routing, a powerful spatial architecture

research toolchain. The following sections describe modifications to the open-source VASim tool to enable

Automata-to-Routing: An Open-Source Toolchain for Design-Space Exploration of Spatial Automata Processing Architectures90

Figure 6.2: Fan-in relaxation example. The maximum fan-in is reduced from 4 to 2 by duplicating a state.

this toolchain and results and conclusions from placing and routing ANMLZoo benchmarks on both real and

ATR modeled spatial automata processing architectures.

6.3 VASim Extensions

6.3.1 Design Rule Transformation: Fan-in Relaxation

We add one new transformation to VASim to better allow it to serve spatial-architecture researchers: fan-in

relaxation. While abstract automata states can have arbitrarily large fan-in, spatially-routed automata can

have fan-in restrictions based on the underlying spatial architecture’s routing matrix and tile architecture.

Fan-in relaxation duplicates a state that has a fan-in that violates a maximum defined by the architect.

When duplicating a state, inputs to the original state are divided among the new duplicate states, while

output edges are copied. A picture illustrating a simple example of input duplication is show in Figure 6.2. If

the fan-in was N before relaxation, fan-in is guaranteed to be at most ceil(N/2) after relaxation. Note that

this technique doubles the fan-in of the child states of the duplicated state. This algorithm proceeds in a

breadth-first manner to ensure that the required fan-in is enforced for all nodes in a single pass.

Three applications from the ANMLZoo automata benchmark suite have high fan-ins: ClamAV, EntityRes-

olution, and Snort. All three required the fan-in relaxation transformation before successful place-and-route

on the architectures modelled below.

6.4 Modelling Micron’s Automata Processor 91

6.3.2 Design Rule Transformation: Group-of-Two Grouping

In order to save logic and routing resources on-chip, the AP D480 couples every two STEs into a Group-of-Two

or GoT. A Group-of-Two allows configurable connectivity between a pair of STEs without consuming global

routing resources [2]. A figure describing the GoT functionality is shown in Figure 2.4. VPR is currently

unable to model the logical OR of signals, and so, we implement a pass in VASim to identify pairs of STEs

that might use this OR-gate and pre-group them into a GoT element.

6.3.3 .blif Emission Algorithm

VASim is also extended to convert abstract automata to .blif circuit files readable by VPR. .blif files have

three distinct sections that define a circuit. The first section defines the top level input/output signals. The

second section describes all instantiations of circuit elements. The third section describes module definitions

of each circuit element.

We guide VASim to emit a single clock input pin and no output pins. Because I/O is handled by specialized

IP blocks in the AP and not by individual pins in the chip, we essentially ignore I/O pins and turn off

dangling block removal in VPR. Output reporting signals for STEs are left unconnected to better match the

AP’s statically routed reporting architecture [1].

We then guide VASim to emit a circuit element for each STE and pre-grouped GoT in the automata

graph. Each STE and GoT lists its input-enable ports, assigning the wire names of each STE that connects

to it. It also lists a single output wire that can connect to other STEs in the netlist. We finally guide VASim

to emit circuit element module definitions for STEs and GoTs. While this methodology is specific to Micron’s

AP, ATR is flexible to support the addition of any arbitrary processing elements and I/O architectures. Thus,

allowing researchers to investigate the impact of new, hypothetical automata-processing elements.

6.4 Modelling Micron’s Automata Processor

In order to demonstrate the usefulness of ATR, we first attempt to model Micron’s Automata Processor in

the VPR architecture description language as accurately as possible. By attempting to accurately model the

AP, we can create a baseline architecture from which we can evaluate the advantages, disadvantages, and

trade-offs of potential architectural changes. Thus, researchers will be able to explore new spatial architecture

design parameters (such tile complexity or channel width), new hardware features, or entirely new spatial

architectures for automata processing. Previously, no such capability was available to researchers, inhibiting

advances in this area.

Automata-to-Routing: An Open-Source Toolchain for Design-Space Exploration of Spatial Automata Processing Architectures92

Figure 6.3: Model-AP routing architecture configuration with channel width of 16, and Row architecture
with 8 Groups-of-Two (GoT). Each GoT has two inputs, but selects a single output between either STE or
the OR or their outputs as detailed in Figure 2.4.

6.4.1 Defining A Baseline Tile Architecture

Because the AP’s routing matrix is hierarchical in nature, and the VPR tool assumes a 2D mesh-style routing

fabric, the AP architecture cannot be modeled 100% faithfully. We must choose a layer of the AP’s hierarchy

(described in Figure 2.5) to expose to VPR’s 2D routing fabric as the base level tile to model. We choose the

AP Row as the tile abstraction for our baseline AP model. The AP Row is the first AP structure to directly

connect the global reconfigurable routing network [34] and thus is a natural (although admittedly imprecise)

structure to implement as the base tile.

6.4.2 Defining A Baseline Routing Network

Once the baseline tile abstraction has been defined, we can design our baseline routing architecture to model

the corresponding level of the AP’s routing network.

Detailed architectural descriptions of the AP’s routing network have not been made publicly available.

However, patents filed by Micron that correspond to the AP give us a high-level idea of how tiles might

connect to the routing matrix [2]. Figure 6.3 describes the assumed routing matrix organization of the AP.

This organization is presumptive and not authoritative. The rest of this chapter refers to the presumptive

modeled architecture as the “model AP.”

Each model-AP Row has 8 input and 8 output connections to the global routing matrix. GoTs within a

Row can receive input from any of these input wires via the intra-row interconnect matrix, and can send

output to a single output wire. GoTs can choose output from either internal STE, or the OR of their output.

6.5 Place-and-Route Results 93

VPR is unable to model the GoT’s OR gate functionality, and so these structures must be identified using

VASim’s GoT identification pass (discussed in Section 6.3.2) prior to VPR packing and placement. Final

states report activations via two reporting ports statically placed in each row structure.

The model-AP Row routing switch block is 16 tracks wide, suggesting a channel width of 16. Because

channel width and wire segment length are co-designed and unknown for the real AP hardware, we pick a

segment length of one. We leave refinement of these parameters for future work.

6.5 Place-and-Route Results

We use the ATR toolchain to place-and-route each ANMLZoo automata benchmark on our baseline rep-

resentative AP architecture. Three ANMLZoo benchmarks (ClamAV, EntityResolution, and Snort) were

transformed using fan-in relaxation to have maximum fan-ins of 8. We measure and report the number

of rows required to successfully pack, place, and route each benchmark. VPR was configured to prevent

unrelated clustering. Unrelated clustering allows automata states from different disjoint subgraphs to be

placed into the same tile. While this generally allows for a denser packing, it can greatly increase channel

width requirements, and is turned off to satisfy the model AP channel width requirements. Place-and-route

results are presented below.

6.5.1 Tile Resource Requirements

Figure 6.4 plots the tiles (AP Rows) required to place and route each ANMLZoo automata benchmark. The

first bar represents the performance of ATR with VASim’s automata prefix-merging optimizations turned off.

The second bar represents the performance of ATR with VASim’s prefix-merging optimizations turned on.

VASim’s optimizations attempt to simulate optimizations performed in Micron’s automata compiler, and

are thus always considered for fair model comparison. The third bar represents performance of ATR with

optimizations and GoT grouping turned on. GoT grouping only makes a difference if automata states benefit

from the internal OR gate functionality. Figure 6.4 also plots the number of tiles the Micron AP compiler

requires to place-and-route each ANMLZoo benchmark.

Some model AP results closely match the results from Micron’s compiler and architecture. For ClamAV,

Dotstar, Fermi, Protomata, RandomForest (RF), Snort, and BlockRings, the number of model AP tiles are

within 2.1% − 9.5% of the real AP compiler stack and architecture. These particular application results

indicate that we are able to model the AP architecture and compiler stack.

Some applications actually require fewer tile resources than the AP when placed-and-routed in our

model. For Brill, EntityResolution (ER), Hamming, Levenshtein, and SPM, the number of model AP tiles is

Automata-to-Routing: An Open-Source Toolchain for Design-Space Exploration of Spatial Automata Processing Architectures94

Figure 6.4: Compilation results from our AP model implemented in the ATR toolchain and compiled by
Micron’s AP compiler for the first generation AP D480 chip. “opt” refers to automata graphs optimized
using VASim’s prefix-merging optimization. “GoT” refers to graphs with pre-grouped GoTs using VASim’s
GoT grouping pass. ATR is capable of accurately modeling the resource usage of the AP in many cases.
Large deviations are due to limitations of VPR’s support for deep hierarchical routing matrices.

considerably lower than the real AP. This indicates that, for these applications, the model AP architecture

performs better than the real AP hardware and compiler stack. We discuss possible reasons for improved

performance over the AP architecture and suggest improvements to the AP to take advantage of these results

in Section 6.6.

6.5.2 Routing Resource Requirements

VPR uses a binary search to identify the smallest number of required tracks per channel to successfully route

a circuit in a reasonable amount of time. This metric can be used as a proxy for how difficult the placed

circuit was to route. A higher minimum required channel width indicates a more difficult routing problem,

and suggests that the architecture requires at least that many routing tracks to successfully implement that

circuit. Figure 6.5 shows the minimum channel width requirements derived by VPR for each ANMLZoo

benchmark for the model AP.

Most benchmarks can be routed with 6 tracks per channel. However, three applications required 14 tracks

per channel. All applications have a minimum channel width requirement less than the model AP’s 16-wide

channels.

6.6 Evaluating the AP’s Routing Matrix Using ATR Modelling

While the Automata Processor is capable of routing many applications in ANMLZoo with the same efficiency as

the model AP, the previous section identified five benchmarks (Brill, EntityResolution, Hamming, Levenshtein,

and SPM) where the model AP performs much better. In the case of Levenshtein, the model AP is able to

route all automaton subgraphs while using 4.2x fewer tile resources.

6.6 Evaluating the AP’s Routing Matrix Using ATR Modelling 95

Figure 6.5: Minimum channel-width requirements determined by VPR for each ANMLZoo benchmark for
the model AP. All benchmarks are able to be placed-and-routed successfully using less than 16 routing tracks
per channel, the maximum channel width of the model AP routing matrix.

We suspect the reason for this improvement is the difference in the routing matrix topology. The AP’s

hierarchical routing matrix has four levels [34]. In contrast, VPR’s underlying routing matrix assumes a

2D-mesh, island-style architecture with only one layer. Because they lack a deep hierarchy, 2D-mesh fabrics

are much more flexible in the graph size and graph topologies they can place-and-route efficiently. To highlight

this difference between tree-based routing fabrics and mesh-based routing fabrics, we plot each ANMLZoo

benchmark as a function of its average automaton subgraph size and the average node fan-out. These results

are shown in Figure 6.6.

The darker region encompassing in Figure 6.6 highlights where automata are difficult to route using a

hierarchical routing matrix. Importantly, these automata have both high connectivity, and large subgraph

sizes.

Brill is a large tree structure with a single, very large automaton subgraph. However, large automaton

subgraphs are not enough to cause poor performance in the AP’s routing matrix. For instance, CoreRings

and RandomForest both have average automata subgraph sizes greater than Brill. The key difference is that

Brill has a large enough average fan-out (1.49) that most likely causes congestion in the roots of the AP’s

hierarchical routing matrix. CoreRings and RandomForest are essentially very large loops, that can be routed

fairly easily through the routing hierarchy, even though they are larger than the Brill automaton.

However, some applications like Fermi have relatively similar fan-out (1.48), but route efficiently in the

AP. Fermi has relatively complex connectivity, but each automaton subgraph is so small that it is able to fit

within just a few tiles. As long as the connections between tiles are relatively few, the AP is able fit these

automaton into the leaves of the hierarchical routing matrix without causing congestion in the roots. Fermi

automaton only need four automata tiles and thus also represent a much easier global routing problem than

Automata-to-Routing: An Open-Source Toolchain for Design-Space Exploration of Spatial Automata Processing Architectures96

Figure 6.6: Each ANMLZoo benchmark plotted as a function of the average size of each disjoint automaton
subgraph, and the average fan-out of each node. The darker region highlights an area where automata are
larger, with larger fan-out. EntityResolution, Levenshtein, Hamming, Brill, and SPM are all applications
where 2D-mesh, spatial-automata processors perform much better than the 4-layer hierarchical routing matrix
of the AP.

Hamming, which requires at least 32.

EntityResolution and Levenshtein represent more challenging cases, where both the average automaton

subgraph size and fan-out are higher. EntityResolution and Levenshtein must use 2.7x, and 4.2x more tiles

respectively when routed using the hierarchical routing matrix than the model AP’s 2D-mesh routing fabric.

EntityResolution, Brill, Levenshtein, and Hamming (the four benchmarks that the tree hierarchy struggles

to route efficiently) all have both high-connectivity and relatively large subgraph sizes. EntityResolution

is a custom automata that utilizes large, highly-connected trees to match approximate names in databases.

Brill is a large, single tree structure, and must be placed-and-routed to span the entire reconfigurable fabric.

Both Hamming and Levenshtein are classified as mesh automata in ANMLZoo [22]. Mesh automata have a

regular, 2D-grid structure, and are much more naturally placed-and-routed in 2D routing matrices.

While the above applications are not easily routed using the AP’s hierarchical routing matrix, most

ANMLZoo applications, especially those that are regular-expression based, perform very well. Because

regular-expression processing is such an important motivation for automata processing acceleration, we

conclude that the AP’s routing matrix architecture is suitable for regular expression rule-set acceleration

in most cases. However, for some applications such as Levenshtein edit-distance automata (an extremely

important string comparison kernel for a wide variety of application domains), the AP’s routing matrix is not

6.7 Conclusions and Future Work 97

an ideal design.

6.7 Conclusions and Future Work

This chapter presented the Automata-to-Routing (ATR) toolchain. ATR is a full-stack, automata-processing

toolchain that enables research of spatial automata-processing architectures. Prior to ATR, no research

toolchain for spatial automata-processing architecture research toolchain existed, preventing exploration of

this exciting new class of architectures. ATR combines three different existing open-source software tools–the

ANMLZoo [22] benchmark suite, the VASim [78] open finite automata simulator and optimization framework,

and VPR [38], a flexible reconfigurable array simulator and place-and-route tool–into one toolchain that

allows researchers to experiment with spatial, automata architectures. ATR enables evaluation of new and

existing automata processing-tile organizations, and routing-matrix architectures.

We show that ATR is capable of modelling the logic tiles of existing spatial, reconfigurable, automata-

processing architectures such as Micron’s Automata Processor with sufficient accuracy to enable research on

new architectures for spatial automata processing.

We present a study–enabled by ATR–comparing and contrasting performance of the AP’s hierarchical

routing matrix against a proposed 2D-mesh style routing matrix. We identify four benchmarks where a

2D-mesh routing matrix performs better, using up to 4.2x fewer logic tiles. We also characterize two properties

of automata graphs–average state fan-out and average number of subgraph states–that correlate with poor

routability on the AP.

Future work is needed on further extensions to the ATR tools, design-space exploration of spatial automata

processing tile microarchitectures, identifying improved tile microarchitectures. Future work may also include

area and power modelling of spatial automata-processing architectures to identify additional trade-offs between

logic-tile and routing resources.

Chapter 7

Characterizing and Mitigating Output

Bottlenecks in Spatial Automata

Processing Architectures

Spatial, reconfigurable architectures, such as field programmable gate arrays (FPGAs), usually offer much

improved performance over von Neumann solutions [22]. Spatial architectures consist of reconfigurable

networks of processing elements, and implement automata graphs by wiring together processing elements

using a place-and-route algorithm. Spatial architectures excel at automata processing, because they allow

massively parallel state-matching computation and point-to-point transition rule communication using parallel

processing elements [22]. Thus, spatial architectures are performance inelastic and have the same performance

no matter how many state transitions are computed in parallel.

However, depending on their implementation, spatial architectures can suffer performance degradation

due to input and output processing. Because spatial automata processing architectures compute many state

transitions in parallel, and may match many patterns within a single cycle, they can generate a massive

amount of output, and become bottlenecked by I/O operations. For example, Micron’s D480 Automata

Processor—an automata-specific spatial architecture that supports up to 6,144 reporting states per chip—must

stall for up to 255 cycles if many reports occur on a single symbol cycle [1]; a 255x overhead! Even when

applications have more modest reporting (e.g. a single report every 10 cycles) the minimum performance

penalty is a 6.5x slowdown over ideal computation with no reporting.

Every spatial automata processor must somehow combine or compress a possibly large number of report

98

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 99

signals. Careful attention is needed to design reporting architectures that can support both a large number

of reporting states, and frequent reporting events. Otherwise, reporting overheads will eat into much of the

performance benefits of spatial architectures over von Neumann architectures.

This chapter focuses on characterizing and mitigating the output reporting problem for spatial automata

processing architectures. To the best of our knowledge, this is the first work to characterize reporting

behavior across a wide variety of automata benchmarks and recognize its importance in automata-processing

application and architecture design. We first characterize automata-processing output requirements using

ANMLZoo, a standardized benchmark suite [22]. We use the VASim virtual automata simulator [78] to track

the density and frequency of reporting events inside automata graphs. We find that usually there are only a

few automata states that report on any one input symbol (sparse reporting), but that reporting events can

occur extremely frequently. In rare cases, many automata states may need to report on the same input symbol

(dense reporting), but fairly infrequently. This motivates the design of spatial reporting architectures that

are optimized to support efficient handling of a small number of frequent reports at low-cost (the common

case), but do not hurt performance when reporting is dense (the uncommon case).

To better understand the overhead associated with output reporting in real spatial architectures, we

develop a novel parameterizable cycle-accurate simulator methodology for spatial architectures. We validate

this simulator methodology by configuring it to model an example real-world spatial automata processor

(the Micron D480 Automata Processor or AP) and show that output reporting overhead in this architecture

can be extremely high, causing up to 46x performance degradation. This particular reporting architecture is

designed to efficiently handle dense reporting, but pays a large penalty when reporting is sparse. Thus, when

faced with common-case reporting behavior of automata applications, overheads can be extremely high.

Motivated by this high overhead, we consider methods to increase spatial architecture performance

by reducing report-output overhead, while still supporting a large number of reporting states. The first

method we consider modifies the automata graph, combining reporting state outputs that can provably be

disambiguated when activated. By combining reporting states, we can reduce output port pressure on the

reporting architecture. This transformation is purely a software change, and does not require added hardware.

The second method we consider is a new reporting architecture design for automata processing on FPGAs

and automata-specific spatial architectures. Using reporting characteristics discovered from application

profiling, we design a configurable reporting architecture that increases performance over the Micron D480

AP reporting architecture, while still supporting a large number of generic output ports. This architecture

improves performance when reporting is sparse, and performs just as well as the AP when reporting is dense.

This chapter makes the following contributions:

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 100

• To the best of our knowledge, the first characterization of automata reporting frequency and density

over a large set of diverse automata benchmarks. This study motivates direct changes to existing

automata-processing architectures, and influences design of future architectures.

• A novel methodology for cycle-accurate simulation of spatial automata processors, validated against

real hardware. The simulator combines public descriptions of the cycle costs of certain operations

with placement information from spatial place-and-route tools to generate highly-accurate performance

metrics. We simulate a commercial automata processor and identify that automata reporting can cause

severe overheads – up to 46x over ideal performance with no reporting.

• A software-based automata transformation to reduce the cost of output reporting on existing spatial

architectures. This automata transformation requires no changes to underlying hardware and increases

performance by up to 40%.

• A new, configurable reporting architecture design for spatial automata-processing architectures that can

be configured for both sparse and dense reporting. When compared to existing reporting architectures

tailored for dense reporting, our configurable architecture shows speedups of up to 5.1x when reporting

is sparse (the common case), and never hurts performance when reporting is dense (the uncommon

case).

These studies not only motivate architecture changes in future automata-specific spatial architectures,

but also reporting architectures implemented in automata processing engines on general purpose spatial

architectures, such as FPGAs. Our simulator is flexible to account for any spatial architecture solution that

relies on compressing and buffering output reports. Our work identifies that reporting, which has been ignored

thus far, is a first-class design constraint and should be one of the main focus areas of spatial automata

processing architecture research.

7.1 Characterizing Automata Reporting Behavior

To understand typical reporting behavior in various automata use-cases, we first profile benchmarks from the

ANMLZoo automata benchmark suite [22]. ANMLZoo is a diverse set of finite automata and associated input

streams adapted from real-world applications. Characterizing the behavior of these benchmark applications

will help motivate architectures that better satisfy real-world requirements. To the best of our knowledge,

this is the first study of reporting behavior in a wide range of diverse automata applications.

7.1 Characterizing Automata Reporting Behavior 101

Table 7.1: Summary statistics for ANMLZoo reporting behavior
Benchmark Family Reports Report Cycles Reports/Cycle Reports/RCycle Max/RCycle Std.Dev/RCycle Index of Disp.

Snort Regex 1,710,495 995,011 1.710495 1.719 6 0.567 0.197
Dotstar Regex 0 0 0 0 0 0 0
ClamAV Regex 0 0 0 0 0 0 0
PowerEn Regex 4,304 4,303 0.004 1.000 2 0.015 0.996

Brill Regex 429,386 118,005 0.429 3.640 11 1.585 3.900
Protomata Regex 111,239 105,722 0.111 1.052 4 0.230 0.991
Hamming Mesh 2 2 2e-06 1.0 1 0 0.999

Levenshtein Mesh 4 4 4e-06 1.0 1 0 0.999
ER Widget 37,628 28,612 0.0380 1.315 3 0.523 1.490

SPM Widget 47,304,453 33,933 47.304 1394.055 1792 283.980 1,404.599
Fermi Widget 96,127 13,444 0.096 7.150 20 4.503 9.890

RF Widget 21,310 3,322 0.021 6.415 9 0.710 6.472

7.1.1 Experimental Methodology

We use the Virtual Automata Simulator (VASim) [78] to simulate the 12 non-synthetic ANMLZoo applications

on the 1MB ANMLZoo standard inputs. We use non-synthetic applications, because the synthetic benchmarks

are designed for micro-benchmarking von Neumann automata processors and do not attempt to give insight

into real-world application behavior.

Before we simulate automata, we first run VASim’s standard redundancy-elimination optimization

passes. In some instances, automata benchmarks have fully redundant automata that can be identified and

merged. Usually, VASim preserves redundant reporting states so that the functionality of the automaton

is indistinguishable from the original graph. For this study, we modify the standard VASim redundancy-

elimination pass so that these automata and their reporting states are fully merged. However, we map a

single report state to multiple virtual state IDs. Thus, automata functionality is not affected, but reporting

overheads are reduced. This mimics the behavior of the Micron AP compiler [55].

We then simulate the automata on the standard 1MB ANMLZoo inputs provided with the benchmark

suite and track every report over the course of automata execution. The total number of reports (Reports) is

distinguished from the total number of cycles in which any number of reports occurred (Report Cycles or

RCycles). Because we used ANMLZoo’s 1MB inputs, the total number of cycles for the entire application is

1,000,000, as we assume 1 symbol is processed per cycle in spatial systems. Because there are 12 applications,

and report traces are large, we present varying summary statistics. These summary statistics will guide our

bottleneck analysis and motivate efficient reporting architecture designs. Results are shown in Table 7.1.

7.1.2 Profiling Results

Reporting behavior in the ANMLZoo benchmark suite varies highly from application to application. Some

applications do not report at all (ClamAV, Dotstar). While it might seem strange for a benchmark to

not use all of its states, this is not bad behavior. ClamAV is a set of virus scanning signatures. As input,

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 102

ANMLZoo chose a semi-arbitrary file to represent common case input. This happens to not be a virus,

and so no reports should be expected. Some applications, such as Hamming and Levenshtein, report very

infrequently. Hamming and Levenshtein automata identify strings that approximately match encoded strings

in the automata. Their input was generated randomly, and only very few strings within the scoring metrics

were identified. While these particular workloads do not bottleneck spatial processors, this does not mean

that these applications could not be bottlenecked by reporting using different automata and/or input streams.

Eight applications (Snort, PowerEN, Brill, Protomata, ER, SPM, Fermi, RF) report more than a trivial

amount. Reporting behavior in these applications is highly varying. Some applications report on almost

every cycle (Snort), while others report with varying frequency up to about once every 300 cycles (RF).

Furthermore, when applications report on a given cycle, there are varying numbers of reports. For instance,

on one hand, PowerEN mostly only has a single report per cycle, and never has more than two reports. On

the other hand, SPM has an average of almost 1,400 distinct reports for each reporting cycle. SPM is an

outlier, with most applications having low, single-digit numbers of reports per reporting cycle.

To get a sense for the distribution and volume of reports in ANMLZoo, we use a metric called the

index of dispersion (IoD). The IoD is the ratio of the variance of a data stream to the mean of a data

stream and, informally, measures how “bursty” data streams are. We calculate the IoD for each ANMLZoo

benchmark using the number of reports per symbol cycle to get sense for the average reporting behavior

of each benchmark. IoD’s equal to zero (Dotstar, ClamAV) mean that the number of reports generated

per cycle has a variance equal to zero, and thus the same number of reports were generated for every cycle.

Applications that never report, and therefore always report ’0’ times are perfectly regular and therefore have

a IoD of 0. IoD’s less than one (Snort) indicate very regularly-spaced reporting events of regular size. Snort

reports on almost every cycle and usually has one or two reports. Thus its IoD is very low (0.197). IoD’s

approximately equal to one (PowerEN, Protomata) are what we would expect from a Poisson distribution,

indicating there is no regular pattern in reporting. IoD’s greater than one (Brill, ER, SPM, Fermi, RF)

indicate clumped reporting, where reporting events are more likely to be large and clustered in time, e.g.

when a signature or event is recognized. SPM in particular is extremely “bursty,” reporting many times per

report cycle, but intermittently.

The above characterization shows that, while reporting behavior is diverse, most benchmarks with non-

trivial reporting behavior report fairly frequently, but do not create many simultaneous reports, i.e. are not

very “bursty”. Average reports per Report Cycle usually falls between 1 and 7. Maximum values for every

application but SPM never exceed 20. This result should be intuitive. Automata are usually designed for

parallel matching of various diverse patterns, thus recognizing multiple patterns at once should be a rare

event. These observations motivate reporting architectures that can handle these common cases with very

7.2 Simulating Spatial Automata Processors 103

low overhead. In the next section, we present a parameterizable reporting architecture simulator to explore

performance bottlenecks in real spatial automata processors, and potential solutions.

7.2 Simulating Spatial Automata Processors

When considering automata processing on spatial, reconfigurable architectures such as FPGAs and Micron’s

Automata Processor, performance of the automata engine is ostensibly equal to the operating frequency of

the placed-and-routed design. Because automata matching computations and communication happens within

a single cycle, the time it takes to run automata on the input symbol stream is equal to the symbol cycle

time of the device multiplied by the number of symbols in the input symbol stream. While prior work often

reports this nominal, “kernel” performance [20, 18], real-hardware performance also depends heavily on how

the architecture handles exporting reports. Some prior work uses equation-based models to more accurately

estimate output reporting costs [93, 6]. However, this technique is not validated against real hardware and

fails to account for complexities of dynamic behavior.

FPGA-based automata acceleration usually only reports nominal operating frequency of the design. To

the best of our knowledge, only one FPGA-based system reports real-hardware, end-to-end performance

numbers on large automata [53]. However, this work only considers a single application (Random Forest [22])

and compresses reporting states using custom, application specific hardware, and is thus not a general purpose

solution or analysis [53].

To solve these problems, we present a flexible methodology for both accurate performance modeling of

existing spatial architectures (to identify performance bottlenecks) and architecture research (to evaluate the

impacts of changes to performance sensitive parts of the micro-architecture). We first present a parameterizable

automata processing simulator. Report traces generated by the Virtual Automata Simulator tool VASim [78]

can be fed to this simulator to generate cycle-accurate run-time estimates. We then validate this methodology

against real spatial automata processing hardware and show it is highly accurate.

7.2.1 Spatial Automata Processor System

We first present an abstract, parameterizable automata-processing system architecture that can be used to

investigate high-level performance impacts of spatial architecture reporting architectures. A figure showing

the abstract automata processing system is shown in Figure 7.1. Each major structure is described below.

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 104

Spatial
Automata
Processor

Host
System

R
A O
ut

pu
t D

at
a

Bu
s

Spatial Automata Processor System

Reporting Architecture

Report Queue

Report Queue

Report Queue

…

R
A

R
A

…

Figure 7.1: Abstract spatial automata processor system. The spatial automata processor consumes inputs at
once symbol per cycle. Each reporting state is mapped to a Report Aggregator (RA). The RA takes report
signals and pushes them to Report Queues. If a Report Queue fills, the system stalls and exports the Report
Queue over the Output Data Bus.

Automata Processor

For spatial automata processing, computation is streaming. The inputs are the symbols that drive state

transitions in parallel within the spatial fabric, and the outputs are the reports from each reporting state

that activates during computation. Because the input symbol stream requires a single byte per symbol cycle,

and has perfectly predictable spatial locality, we assume the input system can easily be designed to support

this requirement. The automata processing architecture then consumes one symbol, computing matches, and

communicating state transitions point-to-point, all within a single cycle. If a report state activates, a special

signal is routed to the report aggregator circuit.

Report Aggregation

The Report Aggregator (RA) is responsible for turning reporting events into data packets that can be exported

off-chip for further processing. In this system we abstract report aggregation and offer three configurable

parameters: 1) the number of input signals the RA is responsible for converting into packets, and 2) the

number of RA circuits assigned to the automata. We assume each RA can consume and aggregate a single

report event in a single cycle in a pipelined manner.

7.3 Case Study: the Micron D480 AP 105

Report Queues

Once an RA converts reporting events into data packets, the RA pushes these packets to a Report Queue

(RQ). The RA can send a certain number of packets to the RQ in a single cycle. Thus, if the RA creates more

packets than can be pushed to the RQ, the entire system must stall. Queues enable output to be batched for

more efficient transfer off chip.

Output Data Bus

Once an RQ fills, the automata processing system stalls, and the queue is offloaded via the Output Data

Bus. We assume the hypothetical system is capable of exporting the entire RQ in a single transaction with a

certain cycle cost. Multiple RQs may share the same output bus, and thus must arbitrate for the bus on a

reporting event.

7.2.2 Simulation Methodology

The above system can be simulated by assigning automata reporting states to ports in RAs, and tracking

reporting events during automata simulation. Because we assume each symbol is executed by the automata

processor on a single cycle, we set the base cost of consuming a symbol as one cycle in our simulator. We also

assume that report aggregation is pipelined, and only requires one cycle to generate a report. We currently

ignore pipeline startup costs as they are implementation dependent, and most likely small in comparison to

the costs of megabyte input automata processing. We assume that the only event that can cause stalls in the

system are the filling, and subsequent export of a Report Queues over the Output Data Bus. When a report

queue fills, its export transaction cost is calculated and added to the total cycle count.

The simulation steps are formalized in Algorithm 3. For clarity, we consider reporting costs for a single

report buffer and report the cycle cost for export as a fixed value. This algorithm can be directly extended to

support both additional queues and export costs relative to chunks of data.

7.3 Case Study: the Micron D480 AP

To demonstrate how our parameterizable simulator can be used to identify bottlenecks in real architectures, we

configure it to model performance of a the Micron D480 AP [34]. The next sections describe the architecture

of the Micron D480, the parameters used to configure our spatial architecture simulator to match the D480

reporting architecture, simulator validation, and simulated performance results for the ANMLZoo benchmark

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 106

input : Number of report aggregators
input : Number of entries, q, in report queue
input : Export cost, k, in cycles
input : function RA returns the RA of a given state
input : function ST returns ST state associated with report event
input : ordered map R of reporting cycles to list of report events
output : Total number of cycles needed to process the reporting events

total cycles← 0;
queue entries← 0;
foreach c⇒ E ∈ R do

total cycles← total cycles + 1;
set P ;
foreach report event e ∈ E do

add RA(ST (e)) to set P ;
end
for i← 1 to —P— do

if i > 1 then
total cycles← total cycles + 1;

end
queue entries← queue entries + 1;
if queue entries = q then

total cycles← total cycles + (k ∗ q);
queue entries← 0;

end

end

end
total cycles← total cycles + (k ∗ queue entries);
return total cycles
Algorithm 3: Cycle-Accurate Reporting Overhead Simulation for a Single Report Queue

7.3 Case Study: the Micron D480 AP 107

Figure 7.2: The Micron D480 reporting architecture.

suite. The lessons learned in the case study will help guide the design of future spatial automata processors,

such as those developed on FPGAs.

7.3.1 The AP D480 Reporting Architecture

Figure 7.2 shows an overview of the reporting architecture of the Micron D480 AP. Each D480 chip is organized

into two half-cores. Each half-core has three reporting regions, and each reporting region is responsible for

recording up to 1,024 single-bit reports from 1,024 different states into a report vector on any given cycle.

Reports are generated by routing the outputs from reporting states to ports in each reporting region. If any

one state reports in a region, the region generates a bit-mapped report vector with 1,024 report bits (where

0’s represent no report, and 1’s represent a report), and a 64-bit metadata tag containing the region and

cycle information of that report. These report vectors are then pushed to a first-level (L1) storage buffer.

When full, L1 buffers are exported into one of two global, second-level storage buffers for eventual export

off-chip [1]. The AP must stall when an L1 buffer transfers its contents to an L2, because a report vector

generated in subsequent cycles cannot be pushed to the L1 buffer while it is exporting vectors. However, the

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 108

D480 Structure Default

Half-cores per chip 2

Reporting regions per half core 3

L1 report vector buffers per region 1

Report vector width 1024 bits

Vector metadata size 64 bits

L1 buffer entries 481

L1 empty check cost 2.5 cycles

L1 export initiation cost 15 cycles

L1 export cost per 8B chunk 2.5 cycles

L1 vector export cost 40 cycles

L2 buffers per chip 2

L2 buffer size 64kB

L2 vector export cost N/A

Table 7.2: Model parameters corresponding to the first generation Micron D480 Automata Processor core architecture.

AP does not stall when an L2 buffer transfers its contents off-chip because this structure is double-buffered

(i.e. when one L2 buffer is being exported off-chip, the other, sibling buffer can be used simultaneously to

import report vectors). Currently, when an L1 buffer fills, the AP must check every region for reports. If a

region is empty, this check costs 2.5 cycles. Table 2 shows the cycle costs of each of these operations reported

by Micron [1]. Table 3 shows the simulator configuration parameters to match the Micron D480.

Report Vector Division

Because exporting large reporting vectors can be expensive, the Micron D480 allows report vectors in reporting

regions to be statically reduced in size in the case that all of the ports in the full region are not required.

Dubbed Report Vector Division (RVD) [1], this technique attempts to statically route reporting states into

consecutive reporting ports in an output region. If the reporting region can use 512, 256, 128, or 64 ports,

rather than the available 1,024, the D480 can be configured to export the divided, rather than the full, vector.

While alpha D480 hardware does not have this feature enabled, we configure the simulator to evaluate its

performance impact.

Simulator Configuration Default

Report Aggregators 6

Report Queues 6

RA/RQ width 1024 bits

Vector metadata size 64 bits

Queue Entries 481

Queue empty check cost 2.5 cycles

Queue export initiation cost 15 cycles

Bus cost per 8B chunk 2.5 cycles

Table 7.3: Spatial architecture simulator configuration corresponding to the Micron D480 AP [1].

7.3 Case Study: the Micron D480 AP 109

7.3.2 Cycle-Accurate Simulation

The Micron D480 AP can be simulated using our parameterizable spatial architecture simulator, by setting

parameters to be as close as possible to real hardware. Each reporting region can be simulated as a separate

RA. Because there are 3 reporting regions in each of 2 half-cores, we configure the simulator to have 6 RAs.

Reporting regions are 1,024 bits wide, and also include a 64-bit metadata tag. Therefore, we set each RQ

entry to be 1,088 bits wide. The AP can transfer a report vector per cycle to each corresponding L1 buffer,

thus we set the queue push throughput to be one packet per cycle. Each L1 buffer can hold 1,024 132-byte

vectors, but cannot hold more than 64kB of data (the size of the OEB). Thus, we set the number of entries

in the RQs to be 481 (64kB/1,088 bits). We also augment the simulator to account for other dynamic costs

such as report export initialization costs, and buffer ”empty” checks [1].

Because performance depends on both when and where reports occur on chip, we use placement information

emitted by the Micron spatial compiler to better identify which RA input ports reporting states are assigned

to. We first place-and-route automata using Micron’s compiler. We then extract placement information

embedded in this representation, and create a new hardware accurate automata graph such that every state

is properly tagged with the coarse-grained AP hardware region it was assigned by the compiler 1. In this way,

we can approximate which reporting regions reporting states are assigned to, improving the accuracy of the

simulator.

Once states are assigned to input ports of the RAs, we run the automata on an input using VASim and

create a report trace. This trace is then fed to the cycle-accurate simulator for processing as described in

Section 7.2.2. The simulator processes the report vector, assigning cycle costs based on the reports generated

on any given cycle, and the associated query, transfer, and stall costs. The total number of cycles can then

be multiplied by the cycle time of the device to estimate total runtime.

7.3.3 Simulator Validation

We validate our cycle accurate simulation methodology against real hardware by comparing the actual

wall-clock runtimes of automata on alpha release D480 AP boards with runtimes generated by our spatial

compiler. We first estimate driver overhead by running the automata application with no input stimulus.

This measured time encompasses all CPU, PCIe, firmware, and miscellaneous overheads associated with

initiating computation. Any runtime on top of this is due to automata processing and reporting overheads.

This value can then be subtracted from runtimes collected from real hardware runs for comparison with

simulation.

1Kevin Angstadt designed and built much of the placement extraction tool.

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 110

We consider a synthetic application to validate the performance model. The synthetic application is made

up of automata that are both a start state and a reporting state, and matches on a single stimulus character.

Thus, any time a stimulus character appears in the input stream, a report is generated for every state. The

size of this report vector, and the number of report regions used can be controlled by adding or subtracting

additional automata.

We compile enough synthetic automata to occupy at least one reporting port in every report region in

both AP half-cores. Because report vector division is not enabled in alpha hardware, we guarantee full

report vectors will be exported from every output region region whenever a stimulus character is seen in the

input stream. We vary the frequency of stimulus characters in the input by a constant amount and record

the performance of varying cycles per report or CpR. A lower CpR means more frequent reports, higher

pressure on the reporting architecture, and a higher performance penalty. We evaluate three different CpR

values, two, three, and four through 481 input symbols. Alpha D480 firmware currently does not currently

support contiguous inputs longer than 481 input symbols with high reporting rates. Larger inputs can still be

supported by breaking the stream into chunks, but this introduces additional, unrelated overheads that we do

not wish to measure. We therefore leave verification on release hardware over the entire ANMLZoo benchmark

suite to future work. Figure 7.3 shows normalized runtimes of real AP hardware and runtimes predicted

by our spatial architecture simulator using the three different input stimulus files. Predicted performance

matches real performance to within 2.3%-4.6%.

7.3.4 ANMLZoo Reporting Overheads

We use the simulation methodology described above to simulate performance of ANMLZoo applications on

the Micron D480. Figure 7.4 shows the overhead associated with output reporting for all 12 non-synthetic

ANMLZoo benchmarks [22]. Some benchmarks incur extremely large reporting overheads. For example,

Snort incurs a 46× slowdown over ideal performance, and 6 out of 12 benchmarks spend more time processing

reporting overheads than processing automata transitions! Some benchmarks have little or not reporting

overheads. This is simply because these benchmarks reports infrequently or not at all at all.

Report Vector Division (RVD) is simulated by counting the report ports per region and configuring the

report vector to be the appropriate size. RVD makes a large impact on performance when there are relatively

few reporting ports required, but frequent reporting. For example, RVD decreases reporting overhead by

approximately 50% for Snort, Brill, Protomata, ER, Fermi, and RF.

While RVD does help improve performance, reporting overhead is still extremely high for many benchmarks.

These high reporting overheads can cancel out much of the benefit of spatial acceleration. The rest of this

7.4 Automata Transformations to Reduce Reporting Overhead 111

Figure 7.3: Normalized performance of alpha release AP D480 hardware compared to performance predicted
by our trace-based, cycle accurate simulator. Predicted performance matches real performance to within
2.3%-4.6%.

chapter attempts to understand what causes high reporting overheads and propose solutions to mitigate

them.

7.4 Automata Transformations to Reduce Reporting Overhead

Automata transformations are extremely important for improving performance on von Neumann architectures,

and reducing capacity requirements on spatial architectures [22]. Automata compression does not require

any changes to hardware, and thus can easily be implemented on existing systems. This section presents an

automata transformation to reduce the number of required reporting ports called “disjoint report merging”

or DRM.

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 112

0

1

2

3

4

5

6

7

8

9

10

O
ut

pu
t P

ro
ce

ss
in

g
O

ve
rh

ea
d

Simulated ANMLZoo Overhead on the Micron D480

Overhead Overhead with RVD

46x 24x

Figure 7.4: Simulated Micron D480 output processing overhead for each non-synthetic application in the ANMLZoo
benchmark suite. Snort is 46× slower than ideal because it is so bottlenecked by the D480’s reporting architecture.
6/12 applications spend more time exporting reports than actually processing the finite automata.

7.4.1 Disjoint Report Merging

Because reporting ports are a scarce resource, and generally increase report vector sparsity, it is desirable to

decrease the total number of required reporting ports. Reporting ports can be reduced by having multiple

states share a single port. However, when states share a port, multiple reports on the same cycle might be

masked as a single report, or we might not be able to discern which state generated the report. Thus, it is

only safe to share a reporting port if a set of reporting states provably never use the port on the same cycle.

This is possible if the character sets of the reporting elements have no characters in common (disjoint), and

thus can never match on the same cycle. We propose to merge the ports of reporting states with disjoint

character sets to reduce the output port requirements. We call this technique “Disjoint Report Merging” or

DRM.

DRM identifies sets of reporting states with disjoint character sets that provably cannot match on the

same input. DRM then assigns all members of a set to the same reporting port. Unioned reports cause

ambiguity when they occur (i.e. we do not know which original state reported). However, because their

character sets are disjoint, it is trivial to disambiguate which reporting state was responsible for the report

7.4 Automata Transformations to Reduce Reporting Overhead 113

by examining the symbol that caused the report on the host system.

As an example, if reporting state (1) has character set [a] and reporting state (2) has character set [b], a

report from their union (1 or 2) may represent (1) or (2). However, the character sets in (1) and (2) are

disjoint and we can therefore recover the original reporting state by examining the triggering input symbol.

In the example above, if the symbol that caused the unioned report (1,2) to match was b, the report came

from (2).

By reducing the number of required reporting ports, we reduce RA input port requirements, and may

induce report vector division (described in Section 7.3.1) possibly reducing reporting overheads.

input : set R of reporting state state objects
input : function Children returns output connections from given state
input : function Matches returns char set of matching input stimuli for an STE state
output : mapping from reporting port to set of merged reporting state objects

mapping ports;
foreach state r ∈ R do

if |Children(r)| > 0 then
continue

end
port sink;
ports(sink)← {r};
R← R \ {r};
char set match←Matches(r);
foreach state r′ ∈ R do

if |Children(r′)| > 0 then
continue

end
if match ∩Matches(r′) == ∅ then

ports(sink)← ports(sink) ∪ {r′};
R← R \ {r′};

end

end

end
return ports

Algorithm 4: Disjoint Report Merging

7.4.2 DRM Algorithm

Pseudocode for identifying disjoint character sets in reporting states is provided in Algorithm 4. We implement

DRM as a VASim pass over the reporting states in each ANMLZoo benchmark. DRM is accomplished by

examining reporting states and grouping states that have disjoint character sets.

Because routing a large number of outputs from merged states to a single reporting port might create

congestion in the reconfigurable routing matrix, we only consider merging reporting states that have no

outgoing connections. We also restrict DRM to merge disjoint reporting state ports in the same connected

component subgraph. These restrictions make it more likely that only states that are close together in the

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 114

Benchmark Orig. Comp. Factor Speedup

Snort 1,955 1,364 30.2% 40.4%

Dotstar 1,290 343 73.4% 0%

ClamAV 515 164 67.9% 0%

PowerEN 2,920 1,054 63.9% 2.6%

Brill 1,886 1,886 0% NA

Protomata 2,338 2,338 0% NA

Hamming 279 156 44.0% 0%

Levenshtein 178 84 52.8% 0%

ER 1,406 1,406 0% NA

SPM 5,025 5,025 0% NA

Fermi 2,399 1,030 57.1% 26.2%

RF 1,661 1,661 0% NA

Table 7.4: Number of required reporting ports in the compiled ANMLZoo benchmarks before and after disjoint report
merging. Some applications cannot be compressed using this technique. Speedup measured performance improvement
due to DRM when compared to the simulated Micron D480 with RVD enabled.

architecture will be merged and not increase reconfigurable fabric resource requirements, and a more realistic

measure of potential benefit.

7.4.3 DRM Potential Study

We apply the DRM algorithm described above to every automata benchmark in the ANMLZoo benchmark

suite [22], and compare the original number of required reporting ports to the final number after DRM

to identify how much opportunity for report port compression exists. Table 7.4 shows the original and

compressed number of reporting states.

The reporting ports of many benchmarks can be compressed by large amounts. For instance, reporting

ports in 5 out of 12 of the applications can be compressed by more than 50%. 73% of Dotstar’s reporting

ports can be compressed from 1, 290 to just 343. However, reporting ports in 5 out of 12 applications cannot

be compressed using DRM at all. For example, Brill has 1, 886 reporting states, but each has an identical

character set, and are thus are never disjoint. Brill can be report-compressed if the algorithm considers the

second-to-last level of matching states, and disambiguates reports using a symbol lookup into the second to

last symbol that caused a report. Ideally, DRM merges the ports of automata with identical suffixes until it

encounters parent states with disjoint character sets. We leave development of this algorithm for future work.

7.4.4 DRM Performance Impact

We simulate the performance of each ANMLZoo benchmark using ANMLZoo’s 1MB input files before and

after DRM is applied. The simulator first re-maps outputs from disjoint sets to a single report vector port

in the architecture. RVD is then applied. DRM only increases system performance if it induces RVD. The

7.5 Identifying Architectural Bottlenecks in Reporting 115

last column in Table 4 shows the simulated speedup of the DRM version of the automata over the original

application with RVD enabled.

While many applications are compressible, if reports are infrequent, or if RVD is not induced, there is no

performance benefit for DRM. However some applications benefit greatly from DRM. Snort’s end-to-end

performance was improved by ∼ 40.8%, reflecting a ∼ 42% reduction in report processing overhead. Fermi’s

end-to-end performance was improved by ∼ 26%, reflecting a ∼ 57% reduction in in report processing

overhead.

7.5 Identifying Architectural Bottlenecks in Reporting

While DRM can reduce output port requirements and induce report vector division, DRM is not a general

technique, and does not help decrease reporting overheads for most of the ANMLZoo benchmarks. For

example, DRM cannot be applied to the SPM benchmark, which has a reporting overhead of ∼ 8x. Snort,

which enjoys the largest benefit from DRM, still has a reporting overhead of ∼ 13x. The following sections first

characterize the reporting bottleneck in the Micron D480 architecture. We identify that a large percentage

of reporting bottlenecks are caused by extremely sparse reporting vectors and explore a new reporting

architecture design that reduce the sparsity of these vectors.

7.5.1 Characterizing Report Vector Sparsity

Report Aggregators (RAs) are configured to export reporting events as bit vectors where set bits correspond

to states that reported on that particular cycle. Whenever a report occurs, a sparse vector is generated

and pushed to the corresponding Report Queues (RQ). Because each report vector is tagged with 64-bits of

metadata, wider RAs can amortize the cost of this metadata over a larger number of reports. However, if

there are few reports per report cycle, RAs that are too wide introduce large levels of sparsity, and can clog

the Output Data Bus with a large amount of unnecessary data.

Section 7.1 identified that there were usually between 1-7 reports per cycle, and very rarely a large number.

Thus, we hypothesize that RAs that are 1,024 bits wide introduce a large amount of sparsity. We measure

the density of each reporting vector by recording the ratio of 1’s in a report vector to total bits, not counting

the metadata. A larger density (lower sparsity) means that more meaningful data is being recorded. Results

are shown in Figure 7.5.

In general, density is extremely low. Most applications, even with RVD applied, do not use more than

0.5% of the available vector space. SPM is an obvious outlier as its average density is 22.7%. For each

reporting cycle, SPM must account for an average of ∼ 1, 394 reports, where the rest of ANMLZoo averages

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 116

0.0%

0.5%

1.0%

1.5%

2.0%

Pe
rc

en
ta

ge
 o

f '
1'

s
in

 E
ac

h
R

ep
or

t V
ec

to
r

Report Vector Density

Report Vector Density w/ RVD

22.7%

Figure 7.5: Report vector density (ratio of ’1’s to total bits) for all applications in ANMLZoo. Most
applications have extremely sparse reporting vectors. Report Vector Division (RVD) statically re-sizes report
vectors to reduce vector sparsity known at compile time.

between 1 and 7. While the common case is sparse reporting, it is also important to make sure we do not

hurt performance of applications with denser reporting.

Report Vector Division more than doubles report vector density in all applications but SPM. This is

because RVD is able to statically reduce RA size, removing ports that provably will always be ’0’s.

Because our spatial automata processing system must pay a cycle penalty for every exported bit, this

sparsity is a huge source of inefficiency. The next section explores modifications to the spatial architecture

model to reduce this sparsity, and decrease reporting overheads.

7.5.2 Reducing Output Sparsity

The previous section showed that report vectors, even when statically divided using RVD, were extremely

sparse, causing large and unnecessary overheads. To solve this problem, we modify the architecture, splitting

RAs into finer grained structures or sub-RAs. These finer grained structures can be configured to push

smaller packets to the output queue when reporting is sparse, or be chain-ganged together into sub-groups

to push larger packets when reporting is dense. We call this technique Report Aggregator Division (RAD).

Similar to RVD described in Section 7.3.1, RAD generates smaller packets, reducing the sparsity of output.

7.5 Identifying Architectural Bottlenecks in Reporting 117

However, unlike RVD, RAD does not require the automata to use a small number of report ports and can

support very large numbers of ports without paying a penalty for sparse output.

Report Aggregator Division

We implement RAD by dividing each 1,024-bit wide RA into 64, 16-bit-wide sub-RAs. Each sub-RA is

statically responsible for 16 reports from the automata fabric. When reports occur in the automata fabric,

sub-RAs generate small, 16-bit report packets. Sub-RAs can be chain-ganged together into equal-sized

sub-groups to generate larger packets if reporting is dense.

To keep track of when and where reports are generated in an RA/RQ pair, we add a metadata generator

block (MGB). The MGB is responsible for tagging data packets generated by sub-RAs with the symbol cycle

that generated the packet, the ID of the sub-RA that generated the packet, and the RAD configuration (the

size of the sub-groups) of the RA. Each metadata tag is 64-bits and consists of a 32-bit field to hold the

index of the cycle that generated the packet, a 16-bit field to hold the ID of the sub-RA that generated the

packet, and a 16-bit field to identify how many sequential sub-RAs are currently chain-ganged together into a

sub-group. In order to support the possibility that more than one sub-RA or group of sub-RAs generates a

packet on a given cycle, we add a hardware structure to control how packets are pushed to the RQ called

the arbitration unit (AU). The AU multiplexes packets from sub-RA groups and pushes them to the RQ. If

more than one packet is generated by a sub-RA group on the same cycle, the AU stalls automata processing

and pushes each packet to the RQ until automata processing can resume. Sub-RA groups are configured by

setting appropriate configuration bits in the MGB and AU.

Because RAD configuration for each RA/RQ pair is carried via the metadata packet, the number of

sub-RAs chain-ganged together in a sub-group can be configured at any time by stalling processing and

re-setting the appropriate bits in the MGB and AU. RAD reconfiguration is designed to be light-weight, and

does not require a recompilation or a separate place-and-route step. The augmented system supporting RAD

is shown in Figure 7.6.

Sensitivity Analysis

We explore the potential benefits of RAD by adding RAD capabilities to the spatial architecture simulator

and simulating system performance on the Snort and SPM ANMLZoo benchmarks.

We increase the RAD division factor from 1 (64 sub-RAs chain-ganged together) to 64 (16 input ports for

each of 64 independent sub-RAs) and measure reporting overheads. Every other parameter in the simulator

is set to the default Micron D480 setting. Results are shown in Figure 7.7.

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 118

Figure 7.6: Spatial Reporting Architecture with report aggregation split into sub-modules. The Metadata Generator
Block tags report packets with RAD configuration information, the sub-RA ID where the packet was generated in this
configuration, and the cycle index the packet was generated. The Arbitration Unit combines and arbitrates packets
from sub-RAs to be pushed to the report queue.

A RAD factor of 1 represents the original configuration of the Micron D480 AP. Because Snort reports

are frequent and sparse (low IoD), Snort benefits greatly from a high RAD factor. A RAD factor of 64 (64

sub-RAs with 16-bit packets) reduces reporting overheads to 3.8x versus 46.3x when the RAD factor is 1

and configured to match the Micron D480 AP. On the other hand, because SPM’s reports are infrequent

and dense (high IoD), SPM shows better performance from a low RAD factor, and performs best when

RAD is configured to match the Micron D480 AP. This result highlights the benefits of a flexible reporting

architecture: the RAD architecture allows us to tune the RAD factor to best match the reporting behavior of

an application.

Results

We simulate all ANMLZoo benchmarks using the original architecture with RVD enabled, and compare the

results to our RAD-enabled architecture with the highest performing RAD factor. This corresponds to 64 for

all benchmarks but SPM, which does not benefit from RAD. Results are shown in Figure 7.8.

When compared to RVD, RAD is able to reduce reporting overheads by 66% to 84% for applications with

sparse reporting behavior. Unlike RVD, RAD is able to reduce sparsity while also allowing a large number of

input ports.

For benchmarks with large reporting overheads, RAD greatly improves performance in almost all cases.

For example, RAD improves the performance of Snort, which had a 24x reporting overhead with RVD enabled,

7.6 Discussion and Future Work 119

1 2 4 8 16 32 64
0

5

10

15

20

25

30

35

40

45

50

RAD Division Factor

Sl
ow

do
w

n
D

ue
 to

 R
ep

or
tin

g
O

ve
rh

ea
ds

Snort and SPM Performance When Varying RAD Factor

Snort SPM

Figure 7.7: Reporting overheads as a function of increasing RAD factor for Snort and SPM. Snort has sparse reporting
behavior, and thus benefits from smaller packets. SPM has dense reporting behavior, and benefits from larger packets.

by 5.1x.

When reporting is dense, such as in SPM, RAD has no positive benefit. However, importantly, RAD does

not hurt performance, as it is configurable to account for dense reporting behavior.

While these results are impressive, other techniques can be employed to further reduce overheads. Future

work will investigate the cost of implementation of the most promising solutions discovered by our spatial

architecture simulator.

7.6 Discussion and Future Work

This chapter motivates automata reporting as a critical bottleneck in practical automata processing architecture

design. We first characterized automata reporting to identify common-case behavior and showed that reporting

behavior for most benchmarks is sparse, but can be dense. We then show that architectures that over-design

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 120

Figure 7.8: Speedups and reduction in reporting overhead due to RAD. SPM did not benefit from RAD
because it generates dense reporting vectors.

for dense reporting perform poorly for applications with sparse reporting. We then present a configurable

reporting architecture that is able to efficiently handle common-case, sparse behavior better than existing

systems, while also not hurting performance when reporting is dense.

Could different inputs hurt performance of a RAD configuration? Inputs that differ from the

characterization inputs might cause different reporting behavior, and might hurt performance of a chosen

RAD configuration. Because reporting behavior can be diverse, we designed the RAD reporting architecture

to be configurable to account for such changes in behavior. If average case behavior is not captured by the

profiling inputs, and reporting overhead is high, the architecture can be quickly reconfigured with a new

RAD factor by updating the settings of the MGB unit in all, or some of the RA/RQ pairs. In future work,

more applications and more inputs could be used to generate more complete application characterizations

that may motivate improvements to this architecture. Future work could also monitor reporting behavior

at runtime to guide dynamic reconfiguration of the RAD architectures, in order to respond to variations in

reporting behavior.

Could compression circuits further reduce sparsity? Yes. Future work could explore the trade-off

7.7 Conclusions 121

space in compression circuit area and power costs versus performance. Careful attention should be paid

such that frequent or dense reporting does not overwhelm these compression circuits. Application specific

compression schemes are an extremely promising path for future work. Architects could build in certain

popular compression kernels such as report counting and thresholding [16], or classed report voting [8, 53].

Why is there still a gap between the potential and achieved speedups? While RAD enables

much more efficient reporting for benchmarks with sparse but frequent reporting, the architecture still must

stall for every reporting event. Completely eliminating these stalls might be accomplished by double buffering

the report queues so that reports from one queue could be exported off-chip while the automata continues

to run and pushes report packets to a second sibling queue. We leave evaluation of the impacts of double

buffering, as well as other techniques to reduce reporting overhead to zero, as future work.

Could report signal to RA routing cause congestion in the reconfigurable routing matrix?

Yes. All spatial architectures must somehow route reporting signals to ports in an RA or similar structure,

and these signals might cause congestion in the reconfigurable routing matrix. DRM might exacerbate routing

congestion by wiring many input signals from automata states placed far away to the same reporting port.

Our DRM algorithm attempts to minimize this potential impact by only grouping states with no other output

signals, and within the same a connected component. The RAD architecture operates independently of the

routing fabric, and does not affect routing constraints.

Do results extend to other spatial architectures? The lessons of these studies not only apply

to current spatial automata processor architectures like the D480, but also motivate designs of reporting

architectures for FPGA-based automata processing engines, and reporting architectures for next generation

spatial automata processing ASICs. Most prior work in spatial automata processing overlooked reporting

architecture design and performance impact. Our work shows that reporting cannot be ignored when

considering a wide variety of real-world applications, and should be carefully designed to consider a wide

variety of reporting behavior.

7.7 Conclusions

Spatial automata processing architectures offer an exciting acceleration opportunity for the widening array of

automata-based applications. However, because of their massively parallel nature, spatial architectures can

suffer from output reporting constraints. This chapter first characterizes reporting behavior of automata

applications. To the best of our knowledge, this work is the first to characterize reporting behavior over a

large set of diverse automata benchmarks. We identify that reporting can be frequent, but is usually sparse

in nature.

Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures 122

To identify performance impacts of reporting, we design a parameterizable spatial automata processing

simulator. This simulator can be configured to behave like a wide range of real and hypothetical spatial

automata processing systems. The simulator uses report traces generated by offline automata processing,

and measures the costs associated with exporting these reports off chip. We use this spatial automata

processing simulator to measure the overhead due to reporting in a commercial spatial automata processing

architecture–Micron’s D480 Automata Processor. Reporting overheads for many applications are extremely

large. For example, Snort has a projected reporting overhead of ∼ 46x, and 6 out of 12 applications spend

more time exporting reports than processing automata symbols.

We explore two novel methods to reduce reporting overheads in spatial architecture systems. One software

only method, and one hardware architecture modification. The software method transforms the automata,

merging reporting outputs that can provably be disambiguated after computation. The hardware method

modularizes report aggregation units so that they can be divided into finer-grained, independent structures.

We show that modularizing report aggregators can reduce reporting overheads by up to 84% and increase

performance by up to 5.1x.

Chapter 8

Hybrid Spatial/von Neumann

Automata Processing

8.1 Introduction

Power limitations brought on by the breakdown in Dennard scaling, and ever increasing transistor counts

brought on by Moore’s law, have led to underutilized or “dark” silicon. Adding specialized accelerators to

architectures has emerged as a way to utilize dark silicon in order to extend traditional performance scaling

trends [94]. Specialized accelerators allow for greatly reduced power budgets and increased performance for

specific types of computation when compared to general purpose architectures.

One area of specialization that has garnered increased attention over the last decade is automata

processing, also known as finite state machine or finite state automata simulation. Automata processing

is one of the 13 Berkeley Parallel Motifs [95], and is widely used for regular-expression-based streaming

pattern matching. Automata processing is a central kernel in deep packet inspection (for network traffic

analysis and intrusion detection [4]), data mining, database queries [96], and virus detection [7]. Other uses

for accelerated automata processing have been discovered in recent years. Automata have been found to be

useful in bioinformatics [12, 11, 13], machine-learning [8, 10], pattern mining [15, 16, 17], natural language

processing [19, 20], and other important application domains [22].

Informally, finite automata are directed graphs of state nodes. Each directed edge in the graph has a

transition rule associated with it. Computation begins in “start” states, and transitions in the automata

are guided by a global input string of symbols. If the automata ever enters into a “final state”, it has

recognized some pattern in the input, and this event is recorded as an output. Large-scale automata

123

Hybrid Spatial/von Neumann Automata Processing 124

processing is generally difficult on traditional von Neumann or “temporally programmed” architectures [97]

because automata simulation involves a large number of parallel, unpredictable memory accesses, with little

computational intensity (aka ”pointer-chasing”). Thus, while temporal processors, such as CPUs, can fit

extremely large automata graphs in main memory, their performance depends greatly on how active automata

are, and how accesses utilize the memory hierarchy.

Reconfigurable “spatial” architectures, such as FPGAs, are ideal target architectures to accelerate large-

scale automata processing. Spatial architectures can “lay out” automata states as processing elements in

a reconfigurable fabric. Transitions between states can be implemented using point-to-point connections

wired via an on-chip routing matrix. Once placed-and-routed, all automata states can compute in parallel,

within a single cycle, no matter how active the automata. The downside to spatial architectures is that they

can be greatly limited in processing element capacity and routing resources. If an automaton is too large to

fit into the spatial architecture or if the graph topology is too complex to route using the on-chip routing

resources, the automaton graph cannot be executed, or the graph must be partitioned and executed with

multiple passes [16]. Larger fabrics, or more chips increase available resources to compute larger automata,

but these large fabrics usually also have much higher costs, and can greatly increase system complexity.

Hybrid Automata Processing Intuition: Note that the pros and cons of each architecture are

complementary. On one hand, temporal architectures can hold extremely large automata graphs in main

memory, but perform poorly when computing large amounts of parallel activity. On the other hand, spatial

architectures have highly-limited capacity and routing constraints, limiting the size of the automata they can

implement, but can efficiently compute arbitrary amounts of parallel activity.

This chapter proposes processing automata on hybrid spatial/temporal architectures. If automata graphs

can be partitioned so that the spatial processor computes small, densely-active portions of the automata, and

the temporal processor computes large, sparsely-active portions of automata on the temporal processor, a

majority of the benefits of both architectures can be realized. Intuition tells us that many automata should

have this lopsided behavior. Automata are usually designed as filters. In filter-style automata, a vast majority

of candidate matches are filtered out in the first few states (high activity), and states deeper in the filter are

rarely needed (low activity).

If an automaton transition crosses from a hot region to a cold region, a signal must be sent from the

spatial processor to the temporal processor to resume computation at the correct location. Figure 8.1 shows

a high level overview of how filter-style automata could be profiled and partitioned across cores in a hybrid

spatial/temporal system.

8.1 Introduction 125

Figure 8.1: Hybrid spatial/temporal architectures can efficiently process filter-style automata. Dynamic
profiling identifies highly-active, “hot” regions of automata. Hot regions are placed-and-routed on the spatial
processor, and handle a majority of the computation. On occasion, if the automata transitions into the cold
region, a thread is spawned on the temporal processor to complete computation.

Benefits of Hybrid Automata Processing: Depending on automata topology, dynamic behavior,

and available spatial resources, the benefits of hybrid automata processing are the following:

• A reduction of spatial architecture requirements: If 5% of automata states are required to

compute 99.9999% of total work, a spatial core 20x smaller might be able to efficiently compute the

same problem. This reduction in spatial resources might enable small, low-cost integrated spatial cores

to compute problems that typically would only fit on massive, expensive off-chip co-processors.

• Increased capacity: If a large spatial architecture is available, offloading 95% of automata states

could make room to process 20x more automata states, allowing for parallel instances of the same

automata or the computation of larger problem sizes. For many large automata applications, spatial

architecture capacity is directly tied to performance [16, 11, 8].

• Shorter place-and-route times: Large graphs that utilize a significant percentage of spatial resources

can have extremely long place-and-route times. Offloading large proportions of the automaton graph

might lead to drastically shorter compile times. Place-and-route can be a large bottleneck for automata

processing in network security, where zero day exploits need to be patched as quickly as possible.

To evaluate the potential of hybrid automata processing, this chapter presents the following contributions:

• A profile-driven partitioning algorithm that identifies regions of automata graphs that are responsible

for a large proportion of computation.

Hybrid Spatial/von Neumann Automata Processing 126

• A characterization of automata behavior in the ANMLZoo benchmark suite. We show that most

automata in the benchmark suite are filter-style automata, and contain large proportions of activity in

a small proportion of states.

• A realization of a hybrid automata processing system targeting a commercially available hybrid

CPU/FPGA architecture. We leverage existing, open-source spatial and von Neumann automata

processing engines to compose our hybrid system.

• Experiments showing hybrid automata processing enables large reductions in spatial resource require-

ments (up to 97%) and compile times (up to 3.6x), with low performance overheads (¡6.1%).

• A feasibility study showing how hybrid architectures can use different algorithms to cooperate on one

application kernel. The spatial architecture can use small, easily routable automata to pre-filter problem

spaces and pass smaller problem sizes to non-automata-based CPU or GPU algorithms.

8.2 Background

8.2.1 Automata Processing

Informally, a finite automaton is defined as a directed graph of state nodes with transition rules between

states guided by a globally visible input symbol. Each automaton has one or more start states that initiate

computation. States that are currently performing computation are said to be enabled. For each input symbol,

enabled states compare the current symbol on the input tape with their transition rule. If the symbol triggers

the transition rule, the state activates, enabling all of its children, so they compute on the next cycle. Each

automaton also has one or more report states. If a report state activates, the ID of the report state and the

current position in the input symbol tape are recorded. Automata are usually designed to report when a

specified pattern is seen on the input tape after following a series of state transitions.

8.2.2 Temporal Automata Processing

On von Neumann or “temporal” architectures [97], automata are usually computed using some form of

transition table stored in main memory. Each enabled state is considered in a loop. If an enabled state

matches the current input symbol, child states in the graph are fetched via the transition table and enabled.

Because of the possibly unpredictable and large number of memory accesses involved in this algorithm,

automata processing is usually bottlenecked by the memory system. Thus, the runtime of automata processing

on these systems is highly correlated with the average number of active states–which determines required

8.2 Background 127

memory bandwidth–and the size of the set of frequently visited states–which determines the size of the

cache or scratchpad required to efficiently serve all memory requests [22]. Therefore, most high-performance,

temporal processing systems rely heavily on optimizations, shortcuts, or new architectures that reduce the

total number of memory accesses, or increase the efficiency of memory accesses [43, 44, 51].

8.2.3 Spatial Automata Processing

On spatial architectures (i.e. architectures with arrays of reconfigurable processing elements such as FPGAs)

automata graphs are placed-and-routed in a reconfigurable fabric—similar to how logic gates in a circuit

graph are placed-and-routed on an FPGA. Input symbols are broadcast simultaneously to all states in the

graph, and all states compute and communicate in parallel within a single cycle. For highly active automata,

spatial architectures can be several orders of magnitude faster than temporal architectures [22].

However, spatial architectures have limited capacity and routing resources. If an automaton has more

states than are supported by the architecture, or if the automaton graph topology is too complex to be

routable, the graph cannot be computed, or the graph must be partitioned and executed by reconfiguring the

architecture to process each partition, and execute multiple passes of the input stimulus [16].

Prior work has explored automata on general purpose reconfigurable hardware [32, 33, 45, 29, 53]. Micron’s

Automata Processor [34] is an “automata specific” spatial architecture that uses a DRAM-based reconfigurable

fabric to gain increased state density over more general-purpose reconfigurable fabrics [34, 35].

8.2.4 Hybrid Spatial/Temporal Architectures

While processors coupled with reconfigurable logic are now commonplace, high-performance, single-package

hybrid FPGA/CPU systems have only recently become available. Intel has developed the Xeon+FPGA

platform: a hybrid CPU/FPGA platform that marries a server-class, Xeon CPU with an Arria 10 FPGA on

the same package [3]. This system is the first to combine high-performance CPUs with large-capacity FPGA

fabrics. Closely-coupled spatial architectures allow lower latency and lower power communication, and the

potential for a variety of on-package specialized accelerators. This system is an ideal platform to prototype

hybrid automata processing as it provides high-performance CPU cores and a high-capacity FPGA fabric

with an easy to program, high-throughput inter-processor communication architecture. In this chapter, we

run temporal automata processing on real hardware, and functionally simulate the spatial architecture in

order to estimate overheads of automata partitioning in a real system.

Hybrid Spatial/von Neumann Automata Processing 128

8.3 Hybrid Processing Potential Study

We first attempt to determine the potential benefit of hybrid automata processing by profiling automata

behavior and identifying whether a large number of automata states can be offloaded to a temporal processor

with low overhead. If we offload too many states, the temporal processor will be responsible for too

much computation, and bottleneck the system. This section describes the benchmark workloads, profiling

methodology, our partitioning algorithm, and the results of our potential study.

8.3.1 Benchmark Workloads

We run all evaluations on automata processing workloads from the ANMLZoo automata benchmark suite [22].

ANMLZoo is made up of 14 automata benchmarks. Each benchmark is an automata graph coupled with an

input stimulus. ANMLZoo is a mix of real application workloads, synthetic workloads, and purely synthetic

micro-benchmarks. We only consider the 12 real and synthetic benchmarks for this evaluation as the synthetic

micro-benchmarks do not attempt to mimic real behavior of automata applications in the wild.

8.3.2 Profiling Methodology

We use the Virtual Automata Simulator (VASim) [78] to simulate automata. Our profiling methodology

tracks activity in the automata and records the number of times each automata state attempts a matching

computation on a particular input. Automata states only need to perform a matching computation when they

are enabled by a parent state. Thus, the number of cycles an automata state is enabled directly corresponds

to how much useful work each state does. Once the work levels of each automata state are recorded, we store

this information in a metadata file. Note that we can easily identify the total amount of work done in the

entire automata graph by summing work done by each state. Furthermore, the proportion of work done

by a state, or by a group of states, can then be easily calculated by comparing the ratio of work done by a

state/states to the work done by all states.

8.3.3 Partitioning Algorithm

Our partitioning algorithm uses profiling metadata gathered according to the process outlined in Section 8.3.2

to partition automata into two parts (a spatial and temporal part) according to a threshold of desired work.

As input, the algorithm takes an automata graph, profiling metadata, and a percent threshold of total work,

and outputs a spatial partition that contains at most that proportion of total work.

The algorithm begins with the automata start states and encodes each candidate in a priority queue

according to the amount of work done by each state. At each iteration, the state in the queue that did the

8.3 Hybrid Processing Potential Study 129

Input: A profiled automata A
Input: Work threshold workThreshold
Output: A set of states P that do workThreshold work
priorityQueue← A.startStates
workTotal← 0
P ← ∅
// Grow partition until work threshold is reached

while workTotal ≤ workThreshold do
s← priorityQueue.pop
workTotal+ = s.workDone
if workTotal ≤ workThreshold then

P ← P
⋃
s

for child ∈ s.children do
priorityQueue.push(child)

end

else
break

end

end
// Set all boundary states to report

for s ∈ P do
for child ∈ s.children do

if child /∈ P then
A.reportStates = A.reportStates

⋃
s

end

end

end
return P

Algorithm 5: Profile-based Automata Partitioning

Hybrid Spatial/von Neumann Automata Processing 130

most work (the top of the queue) is considered as a candidate to add to the spatial partition. The work

accomplished by that state is added to a running total. If the running total falls below the threshold of total

work desired for the spatial partition, the state is added to the partition, and its children are added to the

priority queue for consideration. If the running total breaks the desired work threshold, the state is not

added, and the algorithm ends.

Once a spatial partition is selected, the states that have edges that cross the partition boundary are

converted to reporting states. A report in the spatial partition indicates either 1) that a pattern was found

or 2) that the temporal processor needs to spawn a thread to complete computation. The second case is

communication overhead introduced by partitioning. Its impact is evaluated in the fully system evaluation in

Section 8.5.4

Furthermore, all edges that cross from the temporal partition to the spatial partition are deleted, enforcing

feed forward behavior. This greatly simplifies system design, and allows for asynchronous computation

between spatial and temporal cores. To preserve correctness of the system, we conservatively implement all

reachable automata states on the temporal processor. Thus, if a signal generated in the temporal processor

needs to “re-enter” the spatial partition, re-entry is disallowed, and the temporal processor is responsible for

this computation. Figure 8.1 shows the direction of communication always travels from the spatial partition

to the temporal partition, and that a temporal thread conservatively has access to all edges and states in the

original automaton. In this way, the a temporal thread can always correctly process any arbitrary injected

behavior. Figure 8.1 We leave evaluation of other partitioning algorithms and implementation of support for

bi-directional communication for future work.

8.3.4 Results

We profile and partition the 12 non-microbenchmark automata from the ANMLZoo benchmark suite [22]

using the VASim virtual automata simulator’s [78] –profile option. We profile each benchmark using the

1MB standard ANMLZoo inputs with standard optimizations turned on, and with OR gates removed (-Ox).

Figure 8.2 shows the percentage of states required to capture varying thresholds of total automata work using

the partitioning algorithm described in Section 8.3.3.

Many applications have the property that a small number of states are responsible for a vast amount of

the computation. For example, in Dotstar, only 2.5% of states need to be considered to capture 99.999999%

of automata work. In Snort, a subset of the classic network-intrusion benchmark, and real-world motivator

for regular expression acceleration [22], only 8.3% of states need to be considered to capture 99.999999% of

8.4 Hybrid Automata Processing System 131

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9%

Brill Dotstar ClamAV EntityResolution Fermi Hamming Levenshtein PowerEN Protomata RandomForest Snort SPM

% States Required to Capture Varying Levels of Total Automata Work

Figure 8.2: Percentage of states required to capture different levels of total work done by the automata. As
we attempt to capture higher levels of total work in a partition, the number of states required increases. For
some applications, very few states are required to capture a large percentage of total work; this indicates that
large proportions of automata states could be offloaded to a temporal processor with low overhead.

automata work. This indicates these applications might gain huge benefits from offloading computation to a

temporal processor in a hybrid system.

In some applications such as RandomForest, a large number of states (nearly 100%) must be considered

to capture a large proportion of total work. In RandomForest, ensembles of decision trees are represented as

a series of independent automaton loops. Loops are not amenable to partitioning because automata states

are used more evenly, thus RandomForest most likely will not benefit from hybrid automata processing.

The above results indicate that impressive capacity reductions might be achieved from a hybrid-system

implementation. If communication overhead is low, and CPU-based automata processing can efficiently

handle offloaded computation, applications like Snort, ClamAV, and Dotstar, could reduce required automata

states by 90%-99%. To measure the CPU performance on offloaded computation, and the impact of added

communication overheads on the hybrid system performance, the following sections simulate hybrid system

performance targeting Intel’s Xeon+FPGA [3].

8.4 Hybrid Automata Processing System

This section describes our prototype implementation of a hybrid automata processor system. The high level

overview of the hybrid system is shown in Figure 8.3. We chose to target our system architecture for Intel’s

Xeon+FPGA platform [3] described in Section 8.2.4. To the best of our knowledge, the Xeon+FPGA platform

offers the highest-performance CPU and largest-capacity FPGA in a single package. We therefore target

automata acceleration using an FPGA-based automata engine [53] and an Intel x86 CPU-based engine [43].

In order to efficiently communicate signals between the FPGA and CPU automata engines, we implement a

version of the reporting architecture described in Wadden et al. [83]. In the remainder of this section, we

describe each piece of the hybrid architecture and their implementation.

Hybrid Spatial/von Neumann Automata Processing 132

Figure 8.3: High-level overview of the proposed hybrid automata system. We target the Intel Xeon+FPGA
platform [3]

While we chose the Xeon+FPGA product because of its high-performance characteristics, the benefit of

hybrid automata processing should not be considered specific to this system. The partitioning algorithms

presented in this chapter could be implemented on other spatial/temporal systems, or an application specific

hybrid automata processor.

8.4.1 FPGA Automata Engine

For our spatial, FPGA automata engine, we choose the REAPR reconfigurable engine for automata process-

ing [53]. While there is much prior work in FPGA-based automata processing, to our knowledge, REAPR

is the first automata engine that focuses on generating both automata engines as well as a scalable I/O

infrastructure for sending input symbol streams to the FPGA and collecting automata reporting results.

However, REAPR’s I/O infrastructure was designed using Xilinx’s high-level synthesis toolchain and is

specific to Xilinx systems. We therefore augment REAPR to have a standardized I/O protocol so that other

platform specific I/O shims can be easily inserted.

REAPR Automata Engine

REAPR implements each automaton state as transition logic coupled with a state storage bit. This form

of automaton, where transition logic is coupled with the state storage bit is called a homogeneous finite

automaton [53]. Transition logic computes the transition rule of the state given an 8-bit input symbol. If the

state storage bit is high, and the transition logic matches the current input symbol, a transition signal is

propagated to connected child states.

8.4 Hybrid Automata Processing System 133

REAPR implements transition logic using FPGA look-up-tables (LUTs), or using embedded BRAM

columns. BRAM-based transition logic is usually easier to compile, but generates larger designs. We therefore

choose to focus on LUT-based transition logic to accelerate design-space exploration of hybrid designs. Report

states simply wire the result of their transition logic to a special reporting port. How these reports are

combined and exported off-chip is discussed in Section 8.4.2

In this way, the automata implementation can be abstracted from the reporting architecture implementa-

tion, and platform specific I/O circuitry. This is extremely helpful when migrating automata engines between

FPGAs of different vendors. We borrow the interface implemented in the REAPR automata engine and

designate it as the Standard Automata Interface (SAI). The symbol input defines the 8-bit input symbol

that drives computation. Computation can only occur if the Run signal is high. All automata transitions

must occur during a single cycle of the Clk signal. If a reporting state matches, a corresponding signal in the

Reports vector goes high during the cycle.

Ensuring that symbols are properly driven to the symbol bus is not included in this interface and should

be implemented as a separate input queue. In this way, all symbol input and reporting output is abstracted

from the automata functionality. I/O architecture will vary from vendor to vendor and from FPGA product

to product and should therefore not be included in the SAI definition.

8.4.2 Reporting Architecture

While most prior spatial automata processing engines do not consider output reporting, REAPR at least

evaluates a full system, including I/O for one automata benchmark in the ANMLZoo benchmark suite [53].

Input architectures for automata engines are usually fairly simple to design; no matter how many automata

and states are implemented, the input requirement remains one input symbol per cycle. Output reporting

architectures systems for automata processing can be much more difficult to design because of the diverse

reporting needs of automata applications. For example, automata might require thousands of output ports.

This requirement can greatly complicate reporting architecture design if the particular FPGA allows access

to a much smaller number of wires of an output bus.

Design of the reporting architecture must also consider the reporting behavior of each automata application.

If automata report frequently, but only a few automata report per cycle, small output packets are desirable.

If application has many reports on a single cycle, large, bit-mapped output vectors are desired [83].

Hybrid Spatial/von Neumann Automata Processing 134

Reporting Architecture Overview

Wadden et al. [83] designed a run-time reconfigurable reporting architecture to satisfy a wide variety of

automata reporting needs. We implement a version of this reporting architecture, with a 64-bit report vector

width, and 64-bit metadata tag, as our communication architecture between FPGA and CPU sides of the

hybrid architecture. Figure 8.4 shows an overview of this architecture.

Figure 8.4: Report aggregators (RAGG) generate data packets whenever a report is generated in the automata
engine. The arbiter stalls computation until all RAGGs are able to push their data packets to the report
queue. A metadata tag is added to the data packet to identify when and where the packet was generated.

Our implementation requires that automata processing stall whenever a report is generated. Once the

system stalls, a report packet is generated by each report aggregator (RAGG) where a report occurred. The

arbiter then grants each report aggregator with a report packet access to the output queue to push its result.

If the output queue becomes full, the reporting architecture is stalled, and a bus transaction is issued to send

all data in the report queue to the CPU, incurring a single cycle penalty.

8.4 Hybrid Automata Processing System 135

The architecture includes the overhead of a 64-bit metadata tag coupled with a 64-bit report packet (a

128-bit wide packet in total). The metadata provides 32 bits as a report index (i.e. what cycle the report

occurred on) and 32 bits to encode the ID of the report aggregator and other dynamic information. 128

divides evenly into the 512-bit CCI-P bus discussed below. Thus, we are able to buffer 4 report packets before

we need to issue a write transaction.

Other than the bus transaction cost, the reporting architecture is the only part of the architecture that

can cause automata processing to stall. More reports will cause more stalls, and decrease overall system

performance.

Intel CCI-P Interface

The above reporting architecture is general enough to be used on a variety of designs. However, for this

implementation, we tailor all I/O to be compatible with the Intel Xeon+FPGA platform and I/O interface.

The Xeon+FPGA product abstracts away much of the FPGA-to-CPU communication using a controller

that implements the Cache Coherent Interface (CCI-P) protocol logic [98]. CCI-P abstracts the physical

PCIe and QPI busses connecting the CPU and FPGA and offers a single interface–agnostic of the number of

physical channels or protocols–to link hardware accelerators to the CPU. This improves the development

time of accelerators and also ensures forward portability and inter-product portability of designs that adhere

to this protocol. We implement and functionally verify a CCI-P controller for the REAPR automata engine

in order to measure the hardware overhead of I/O interface hardware. We model performance of the CCI-P

hardware according to the CCI-P interface documentation [98].

8.4.3 CPU Automata Engine

We use the Virtual Automata Simulator (VASim) [78] to execute automata on the CPU. VASim is an open-

source automata simulation library that can optimize, manipulate, and simulate automata graphs. VASim

is not the fastest CPU automata processing engine available, but it offers significant flexibility to support

partitioning automata, and resuming automata processing. Furthermore, VASim performs well enough

to test the potential benefits hybrid automata processing. Because VASim is not the highest performing

automata engine, it should be considered a lower bound on the performance; future work might evaluate other,

more sophisticated, higher-performance automata processing engines such as Intel’s Hyperscan [43]. Faster

automata engines would allow the system to offload of more states, or allow for smaller, lower-performance

CPUs in a hybrid system, without bottlenecking system performance.

Hybrid Spatial/von Neumann Automata Processing 136

We require that the CPU-based automata engine be able to resume automata simulation in each instance

where an automata transition crosses the partition boundary. We augment VASim to support this capability

by allowing any number of states to be enabled on any cycle during simulation. If automata simulation

reaches the boundary of the spatial partition, a report is generated and communicated from the FPGA to

the CPU as a tuple consisting of 1) the location in the input stream where computation needs to be resumed,

and 2) the state(s) where computation stopped. VASim resumes computation by enabling all children of the

states where computation stopped, and considering the input symbol immediately following the reported

index.

If VASim needs to process multiple activations that cross the partition, simulation proceeds, and new

activity is injected when the proper index in the input symbol stream is reached. If, after processing all

transitions in the automata for a given symbol, there is no activity, computation is fast-forwarded to the

next available new activity. This fast-forwarding allows VASim to skip large parts of the input stream,

greatly improving its performance over naively considering each input symbol. Performance of VASim when

processing offloaded behavior ultimately depends on how often activity needs to cross the partition boundary,

and how much offloaded automata computation needs to be accomplished once automata processing is

resumed.

Note that CPU automata simulation is asynchronous with respect to FPGA simulation. The FPGA and

CPU simulations do not need to be synchronized because we only consider automata computation that does

not involve any conjunctive operations (e.g. AND gates). Thus, simulation in one part of an automaton can

never impact the results of simulation in another part of the automaton. VASim conservatively has access to

the entire automata, so that any arbitrary behavior can be simulated without consulting the spatial processor.

8.5 Hybrid System Evaluation

8.5.1 Profiling and Partitioning Methodology

ANMLZoo benchmarks do not provide multiple inputs. To avoid training and testing automata on the same

data, we therefore use the Pareto principal and divide the 10MB ANMLZoo inputs into separate chunks for

training and testing. For all evaluations in this section, we use the first 8MB of ANMLZoo input for profiling

and partitioning according to various levels of automata work. We then use the last 2MB for system testing

and evaluation.

When profiling automata, we also need to be careful not to over-train. If a match occurs in the input, it may

bias the profiling such that entire rules are included in the partition. We assume that the benchmark inputs

8.5 Hybrid System Evaluation 137

Figure 8.5: CPU performance for offloaded computation as a function of percent of total work done by the
CPU. The dotted line demarcates the best possible performance of the REAPR engine on the target FPGA
system. We assume if the CPU performs better than this upper bound it will not bottleneck computation.
The partition that is able to offload the most states without bottlenecking computation is marked with a ∗.
These “featured” partitions are used to report offloading potential in Figure 8.6.

are representative of real-world behavior; however, when training real applications rather than benchmarks,

care should be taken to provide inputs such that average-case behavior for a use case is represented, perhaps

using multiple, diverse inputs.

8.5.2 CPU Performance on Offloaded Computation

Offloading states from the spatial processor to the CPU co-processor might reduce the resource pressure on

the spatial architecture. However, if too many states are offloaded, or if offloaded states do too much work,

the CPU might bottleneck system performance. How much work is offloaded, and how efficiently the CPU

processes this work, is tantamount to total system performance and will be application- and input-dependent.

In order to understand how CPU performance changes as the the partition changes for different applications,

we measure the performance of the CPU processing all offloaded computation.

Experimental Methodology

We first profile and partition all ANMLZoo benchmarks using the methodology described in Section 8.5.1

partitioning automata with various work thresholds (90%, 99%, 99.9% etc...). The partitioning algorithm

generates a spatial partition that contains each work threshold. We then simulate each spatial partition

using the 2MB testing input as if it were executed on the FPGA. We track all reports that would be emitted

from the FPGA and labels them as either true reports, or as activity that needs to be offloaded the CPU.

True reports are easy to distinguish from offloaded activity because true reports come from elements that

would have reported in the original, unpartitioned automata. We then then divide up the transitions among

multiple threads and simulate the automata while injecting this activity at the proper index in the input

stream. For this evaluation, we use VASim to compute automata on the CPU in the Xeon+FPGA system [3].

This particular CPU has 28 logical cores, 36MB of L3 cache, and runs at 2.4GHz. Because the CPU has 28

Hybrid Spatial/von Neumann Automata Processing 138

logical cores, we run offloaded computation using 28 separate VASim threads; each thread is responsible for

resuming automata processing and simulating the resulting work generated by activity crossing the partition

boundary. As input, we use the testing input multiplied by 4 times (8MB) to insure that start-up overheads

such as thread-spawn can be amortized over a longer, more realistic input.

Results

Figure 8.5 shows the performance of the CPU running different percentages of total offloaded automata work.

We also demarcate the best performance attainable by the REAPR FPGA automata engine in the Intel

Xeon+FPGA system (400MB/s) as a dotted line. Once CPU performance of offloaded computation goes

above this line, we have high confidence that the CPU will not bottleneck the hybrid system when executing

the partition. In reality, REAPR performance on the FPGA will most likely be much lower than 400MB/s

due to less than optimal operating frequency and communication overheads and so this boundary should be

considered a conservative threshold.

Figure 8.5 shows that as the partition grows, and the CPU is responsible for less work, CPU performance

increases. For Entity Resolution, the CPU must compute 1% of total work before we are confident it will not

bottleneck system performance (marked with a ∗). Most other applications require the CPU to compute

less work–0.1%-0.01%–before the CPU is able to safely keep up with best-case FPGA throughput. To show

the potential of hybrid processing, we pick one “featured” partition for each benchmark where we are able to

offload a large proportion of automata states, with high confidence the CPU will not bottleneck computation.

These partitions are marked with a ∗ in Figure 8.5.

Figure 8.6 shows the percentage of states offloaded for each of our featured partitions. In most cases (Brill,

Dotstar, ClamAV, Entity Resolution, Hamming, Levenshtein, Protomata, Snort, SPM) we are able to offload

50% of benchmark states to the CPU before the CPU bottlenecks computation. In three cases, (Dotstar,

ClamAV, and Snort) we are able to offload greater than 97% of benchmark states. This massive reduction in

states might greatly decrease required FPGA resources, and compilation times. Note that different partitions

might be desirable depending on the ultimate system requirements and application. More states can be

offloaded, but at the risk of being bottlenecked by CPU automata processing. We leave exploration of this

trade-off for future work.

For Fermi and PowerEN, we could not find a partition where the CPU did not bottleneck the FPGA.

For PowerEN, this is due to the fact that the testing inputs exercise automata in places that the training

inputs did not. This example motivates future work on improving the training methodology to account for

worst-case behavior where applications may have diverse, and have unpredictable behavior. Either a larger

training set, or a statistical method might produce more stable partitions.

8.5 Hybrid System Evaluation 139

Figure 8.6: Percentage of states offloaded for each featured partition: the most states offloaded where the
CPU in the Xeon+FPGA system does not bottleneck system performance. Many benchmarks can offload
large proportions of states (up to 99%!) without overloading the CPU with work.

The following sections explore real-hardware space savings and compile-time reductions as a result of

automata partitioning (excepting Fermi and PowerEN). We also simulate the impact of added communication

overhead required to communicate offloaded computation to the CPU.

Figure 8.7: LUT resources consumed by original benchmark automata and featured partitions. “Lower bound”
is a minimal kernel that approximates CCI-P interface logic overhead.

8.5.3 Spatial Resource Reduction

Place and Route Methodology

We demonstrate the significant potential benefits of automata partitioning by compiling each full ANMLZoo

application as well as each corresponding featured automata partition highlighted in Figure 8.6. Automata

are first converted to HDL using the REAPR toolchain [53]. Then, REAPR HDL is augmented with an

Hybrid Spatial/von Neumann Automata Processing 140

Figure 8.8: FPGA RTL compilation time of original automata and featured partitions. “Lower bound”
approximates compilation time of CCI-P interface logic overhead. Some applications (ClamAV, Dotstar, ER,
Hamming, Levenshtein, Snort) see massive reductions in compile times, approaching the lower bound. Even
when a small number of LUT resources are offloaded, compile times can be much shorter (RF, SPM).

appropriately sized reporting architecture, and CCI-P I/O interface logic. We use Quartus Prime Pro 16.0 to

compile all HDL and target the Intel Arria 10 FPGA device included in the target Xeon+FPGA system [3].

To identify the overhead of CCI-P interface logic, we compile an extremely small example accelerator

with a CCI-P controller, and use this as an approximation of a non-automata, interface-logic baseline. This

baseline represents the lower bound of both required LUT resources and compile time after eliminating all

automata-processing related resources and is presented as Lower Bound in Figures 8.7 and 8.8.

Capacity Reduction

Figure 8.7 shows the FPGA LUT resources required to implement the systems before (Original) and after

(Partitioned) partitioning. Most applications show a very large reduction in LUT resources. For example, our

featured Snort partition was able to offload 97.8% of automata states, which corresponds to a 94.6% reduction

in LUT resources when not accounting for interface logic. Brill, ClamAV, Dotstar, and Snort all show greater

than 94% reduction in automata-related LUT resources. These savings are large, and the implications of

these massive reductions in automata-related resources is discussed in Section 8.8.

RF is an example where very few states were able to be offloaded effectively (3.3%), resulting in a

correspondingly small reduction in automata LUT resources of only 1.9%.

Compilation Time Reduction

Figure 8.8 shows the wall-clock runtime of FPGA RTL compilation for ANMLZoo benchmarks (Original)

and our featured partitions (Partitioned). Our baseline (Lower Bound) is the compile time of the minimal

CCI-P interface logic discussed in the previous section.

Six applications (ClamAV, Dotstar, ER, Hamming, Levenshtein, and Snort) reduce automata-related

compile times by a substantial amount, over 94%. On average, automata-related compilation time is reduced

8.5 Hybrid System Evaluation 141

by over 90%. When partitioned, Dotstar’s automata related compilation time is reduced by 99.8%, to within

a fraction of the lower bound, and Dotstar’s total end-to-end compilation time is reduced by 3.6x.

Interestingly, some benchmarks show a large reduction in compile times when they showed modest

reductions in automata LUT requirements. For example, the Random Forest featured partition only used

1.9% fewer LUT resources than the full Random Forest benchmark, but required 73% less time to compile

automata-related hardware and 56% less time to compile the full system. This is because a small reduction

in automata states can generate automata partitions that are much easier to place and route. Random Forest

automaton are loops of states. Upon inspection, the partitioning algorithm snipped these loops, transforming

them into linear chains of states, greatly reducing the complexity of the place-and-route task, and thus greatly

decreasing compile times.

Reduced compile times especially matter in the areas where “zero day” exploits occur, such as network

intrusion detection (Snort) and virus detection (ClamAV). Compilation times are ideally on the order of a few

minutes, rather than a few hours, and a reduction in compile times for these applications due to partitioning

makes FPGA-based acceleration much more attractive.

8.5.4 Added Communication Overheads

While partitioning automata may allow us to offload a large number of “cold” states to the CPU, any added

communication between the FPGA and CPU to initiate offloaded computation will cause additional report

architecture stalls, and might increase total system runtime. Even if the CPU can keep up with offloaded

computation, communication overhead might decrease performance, and eliminate much of the benefit of

spatial acceleration. To understand this impact and potential trade-off, we simulate the communication

overhead added due to partitioning for all ANMLZoo benchmarks compiled in Section 8.5.3.

Performance Model

We estimate the performance of the automata engine on the Intel Xeon+FPGA system using a cycle accurate

simulation of our automata engine and reporting architecture. Automata processing processes all transitions

from one symbol in parallel in one clock cycle, and is therefore trivial to simulate. However, the system must

stall whenever output reporting events occur (one cycle per RAGG packet) and when a CCI-P transaction is

required to empty the output report queue. We optimistically model each CCI-P transaction request with

a single cycle penalty. In a real system, communication costs may be higher if there is frequent reporting

and contention for the CCI-P bus, increasing average CCI-P transaction costs. Future work will explore

system-specific performance costs of system I/O using this bus.

Hybrid Spatial/von Neumann Automata Processing 142

We implement automata symbol stream input on a separate CCI-P channel. Because symbol input has

perfect locality, we assume that input can be easily overlapped with computation, and do not consider its

cost in our simulation.

Results

We simulate the original automata and the featured partitioned automata for each benchmark and report the

added communication overhead as a percentage of the performance of the original computation. Figure 8.9

shows the results of our experiment plotted with the percentage of offloaded states reported in Figure 8.6.

Most applications show a small added overhead (at most 6.1%) indicating that communication overhead for

these partitions does not cause significant performance degradation.

Our experiments show that communication overhead is low and automata partitioning can offer a trade-off

between capacity and performance for filter-style automata. If a user can absorb a larger performance penalty,

the partition could be reduced, increasing the number of offloaded states, but also increasing communication

overhead. If a user requires the highest levels of performance, and can afford to compile extra states on the

available FPGA, we could offload fewer states, reducing communication overhead.

Unexpectedly, ER and SPM show a reduction in communication overhead by 1.3% and 20.5% respectively.

This is possible if the partition removes automata branches that ultimately generate multiple costly reports

in the full automata simulation. As long as the CPU can keep up with the resulting branched computation,

total spatial architecture performance can actually be improved by offloading computation.

8.6 Exploring Spatial Filtering for Non-Automata-Based Algorithms

When partitioning automata graphs across FPGA and CPU architectures in a hybrid system, we previously

required that the CPU simulate the remainder of the automata. However, the CPU does not necessarily

need to perform automata processing to identify patterns. Existing CPU algorithms can use small spatial

automata filters to provide hints to where patterns might lie in the input stream and then use a different,

preferable algorithm (i.e. one with higher performance, additional capabilities, or smaller memory footprint)

to compute a final result.

To explore the potential for small automata filters to provide hints to non-automata-based algorithms, we

present an example case study using the Levenshtein edit distance kernel [11].

8.6 Exploring Spatial Filtering for Non-Automata-Based Algorithms 143

Figure 8.9: Communication overhead added by offloading computation to the CPU for each featured partition.
Overhead is reported as a percentage of the original, full runtime. The percentage of states offloaded for
each featured partition is also reported. Some applications (ClamAV, Dotstar, Snort) show minimal added
overheads while offloading greater than 97% of states.

8.6.1 Levenshtein Edit Distance

Edit distance (or Levenshtein distance) is an approximate string matching metric used in linguistics, bioinfor-

matics, and machine learning domains. Edit distance algorithms compare a pattern string to a reference

string and indicate where the pattern string is similar to the reference string.

Edit distance can be computed using automata processing using Levenshtein automata. When implemented

on spatial processors, Levenshtein automata have high performance [11], however, Levenshtein automata

have a complex topology, and can suffer from routing and capacity constraints on spatial architectures when

pattern strings are large. For example, Wadden et al. showed that Levenshtein automata that calculate a

maximum edit distance of 5 could not be routed on Micron’s Automata Processor when the pattern string

length was greater than 24 [22]. Levenshtein automata often need to encode much larger pattern strings.

Thus, capacity and routing constraints of spatial architectures greatly limit their usefulness when considering

large, real-world problem sizes.

On CPUs, the parallel memory operations and large memory footprint of Levenshtein automata graphs

can make them especially challenging to compute efficiently [22]. Because of these challenges, the edit

Hybrid Spatial/von Neumann Automata Processing 144

distance kernel is usually computed using two-dimensional dynamic programming techniques [99]. This style

of algorithm performs well when small pattern strings need to be identified in relatively small reference strings,

but performs poorly when many pattern strings need to be found within a large, streaming reference string.

Using the intuition gained in previous sections, we propose a spatial automata filtering technique, where

small, easily routable Levenshtein automata are used to greatly filter the possible locations of pattern

strings within a large reference string. Then, a dynamic programming algorithm implemented on a general

purpose processor computes the final expensive pattern search without considering all possible locations

in the large reference string. This technique is similar to how some long string alignment algorithms use

seeds to filter large reference inputs [100] but does not require the generation of a seed index, and uses a

more capable edit distance metric (rather than exact match or hamming distance metrics) to identify seed

locations. Application specific integrated circuits have been developed to accelerate string scoring algorithms

for bio-informatics sequence alignment [101]. Turakhia et al. developed a bio-informatics-specific accelerator

capable of out-performing EDLib[99]–a high-performance CPU-based Edit Distance scorer–by 24.4x when

scoring 1,000 base pair DNA sequences.

8.6.2 Spatial Automata Filtering Feasibility Study

Methodology

We construct Levenshtein automata for a set of input patterns and a fixed edit distance. Instead of constructing

full Levenshtein automata for each input pattern, we only build an automata to recognize the first N characters

of each pattern with at most the same similarity (1 - (edit distance/N)). At runtime, these Levensthein

filters run on the input, and report positions in the input stream where potential matches for the full pattern

may exist. These positions are then passed to a CPU-based edit distance scorer (edlib [99]), tailored for fast

edit distance computations on long strings. Without the spatial automata pre-filtering, the EDLib algorithm

must consider matching every pattern string at every position in the input string.

Evaluation

We evaluate the potential for spatial automata filtering using bio-informatics inspired data sets. For the

reference string, we use the first 10MB of the first human chromosome with ambiguous DNA base pairs

removed. For the pattern strings, we consider 400 DNA strings or “reads” of 1,000 base pairs (bp) in length,

generated by the Mason2 [102] read simulator. We then use EDLib [99]–a state-of-the-art edit distance string

scorer–to find all locations where the pattern strings occur in the reference within an edit distance of 100 to

represent a desired string similarity of approximately 90% [99]. Without filtering, EDLib must compute the

8.7 Related Work 145

edit distance of every pattern string anchored at every location in the 10MB reference for each of 400, 1,000

bp DNA patterns.

To help prune the search space for EDLib, we build 400 Levenshtein automata of length 22–corresponding

to the first 22 base-pairs of each 1,000 bp read. Each Levenshtein automata is configured to match within

an edit distance of 4. Compiling a full Levenshtein automaton for 1,000 length pattern strings with an edit

distance of 100 would be impractical. The automata would require 72,320,000 states and would not fit into

even the largest commercially available FPGAs. Using heuristics developed from profiling results, we chose

22 length, 4 edit distance filters as an appropriate size to filter out a large proportion of candidate matches,

while also greatly reducing the probability of false negatives. These automata require only 55,462 states to

implement–1,303x reduction in spatial requirements.

We compile our short automata filters for the Xeon+FPGA platform using the methodology outlined in

Section 8.5.3. The filters required 119,479 LUT resources to compile, representing approximately 28% of the

available 427,200 LUT resources in the Xeon+FPGA Arria10 device. We then simulate our filters using the

methodology outlined in Section8.5.4. Simulation indicates that the FPGA is able to pre-filter the 10MB

input with a throughput of about 196MB/s.

We use VASim to simulate the 22-bp Levenshtein filters on our 10MB input and guide VASim to generate

report traces. The 400, 22-bp spatial filters generated 190,017 matches on 150,005 unique cycles our of

10,000,000. These matches can be thought of as “hints” to where edlib should search for a potential pattern

match, and which pattern strings it should attempt to align. We then feed these hints to EDLib and measure

its performance when considering only these candidates. Table 8.1 shows the results of our experiment.

EDLib Perf (KB/s) Filtered Perf. (KB/s) Speedup

34.3 506.4 14.78x

Table 8.1: EDLib speedup when candidate search locations are first pruned by an automata filter.
When the 10MB input is first pruned by a spatial automata filter on FPGA, EDLib is accelerated by

14.78x. This feasibility study shows that our automata partitioning intuition can be extended to accelerate

applications that perform non-automata-based computation. Future work could explore other algorithms,

other than Levenshtein Edit Distance, that might benefit from spatial automata filtering.

8.7 Related Work

Prior work in automata processing has used automata sub-problems to pre-filter large input streams to

dramatically reduce the amount of work required to solve the problem on sequential automata runs, or on the

CPU or GPU. Wang et al. [16] implemented a multi-pass, pruning approach to accelerate sequential pattern

mining. By exploiting the downward closure property–that each sequential pattern of size N must include the

Hybrid Spatial/von Neumann Automata Processing 146

sequential pattern of size N-1–multiple passes can be used to make the problem tractable on capacity limited

spatial automata processing architectures.

Prior work has also explored application-specific accelerators for automata processing [45, 28, 50, 51, 81, 82].

All of these architectures are constrained in some way by the number of states they can process at any one

time. The work presented in this chapter offers an analysis to improve the capacity of any processor that

accelerates these patterns in the presence of a CPU co-processor. Because CPUs are usually omni-present in

systems that include specialized accelerators, we expect any realization of these systems to be able to take

advantage of hybrid automata processing.

Prior work has also exploited automata partitioning to reduce spatial resource requirements on FPGAs in

hybrid systems. Sidler et al. [96] developed a database query processor that included automata acceleration

processing units (PU). Each PU is capable of processing a fully connected automata with up to four tokens,

where each token can be a single character or an exact string match. For each PU, the largest number of states

evaluated was 32, and the largest number of characters was 64. Because the number of states and characters

are small, Sidler et al. statically partitioned larger regular expressions, executing regular expression terms

that occurred after a “.*” term on the CPU. This work is designed to accelerate small regular expressions in

database queries and is not designed as a general-purpose automata accelerator. Our system can account for

automata with hundreds of thousands of states, arbitrary character sets, and complex connectivity. We also

dynamically profile a diverse set of automata and intelligently partition using profiled results rather than a

static partition, to unlock offloading opportunities that might not be obvious to the developer.

Future work might leverage the lessons learned in this chapter to combine prior spatial accelerators

(AP [34], Cache Automaton [82]) with prior temporal accelerators (UAP [51]).

8.8 Conclusions

This chapter presents a new automata processing paradigm that partitions automata across hybrid spa-

tial/temporal architectures. We first observe that many automata-based applications behave as filters. Filter

automata have a small set of “hot” automata states that do a large majority of the computation (dense

computation), while a large proportion of “cold” states sit idle (sparse computation). We propose automata

processing in a hybrid system where dense computation is executed in a spatial accelerator, and sparse

computation is executed on a von Neumann or “temporal” processor.

We first profile automata benchmarks from the ANMLZoo benchmark suite and find that most applications

do a vast majority of computation in a small fraction of automata states. For example, the Dotstar benchmark

accomplishes 99.99% of total work using only 2.7% of automata states. We propose to offload the remaining

8.8 Conclusions 147

states to the CPU, reducing spatial resource requirements by up to 35x. Where prior automata applications

were limited by spatial architecture capacity, this technique might enable acceleration of new problem sizes

or large gains in performance.

We target the Xeon+FPGA platform [3] and develop a partitioning algorithm that profiles automata and

only offloads states if the CPU can efficiently perform offloaded computation and not bottleneck computation.

We then place and route these partitions to reveal large capacity and compile time reductions. Using our

partitioning methodology we can realize up to 98% reduction in automata-related hardware resources and

78% improvement in end-to-end FPGA compile times with a small added performance overhead in some

cases (¡6.1%).

These experiments show that automata partitioning and hybrid automata processing offer a novel trade-off

between system performance, and spatial resource requirements and compile times. Users are now able to trade

a small performance overhead for a large reduction in required spatial architecture resources. This reduction

in spatial resources can enable more computation on a given spatial fabric, allow existing computation to fit

into smaller integrated fabrics, and greatly reduce compile times. One exciting new area of research where

partitioning could make a large impact is in automata processing overlays [88]. Automata overlays implement

automata-specific spatial architectures on top of existing general-purpose FPGA fabrics. Overlays offer greatly

reduced compile and reconfiguration times when compared to FPGAs, because of the raised abstraction

of processing elements. Overlays also offer flexible dynamic reconfigurability. However, because of their

“network in network” implementation, overlays suffer from a large hardware overhead per state, and reduced

capacities compared to application-specific reconfigurable fabrics [88]. Hybrid automata partitioning could

enable practical uses of automata-processing overlays by greatly reducing the spatial resource requirements.

Hybrid automata processing is a general technique, and leverages the best uses of spatial and temporal

architectures. Future automata processing systems should should include accelerator cores designed for both

sparse and dense automata processing in the same architecture to best accelerate this domain.

Chapter 9

Conclusions

9.1 Dissertation Summary

This dissertation focuses on the design and evaluation of accelerators for automata processing. Automata

processing is an important kernel in networking for deep packet inspection [45, 6], but also has a wide range

of use cases in bio-informatics [11, 12, 93, 13], data mining [15, 16, 17], natural language processing [19, 20],

machine learning [8, 9, 10], and other application domains [21]. By building specialized accelerators for

automata processing, many important kernels can be made faster, and more power efficient. Furthermore,

kernels that can be implemented using automata-based algorithms can benefit from these accelerators.

This dissertation first proposes a new application domain that could benefit from accelerated automata

processing: pseudo-random number generation [36]. We describe algorithms and methodologies to simulate

Markov Chains using classic non-deterministic finite automata, and use Markov Chains to generate high-

quality, high-throughput, pseudo-random number streams. We show that following reasonable technology

scaling trends, spatial automata processors are up to 6.8x more power efficient than GPU-based techniques

in the literature. We also show that other applications can be framed as Markov chains–such as agent-based

modelling and random walks–and could benefit from accelerated automata processing.

This dissertation then identifies weaknesses in the existing toolchains to conduct automata processing

research. In order to design and evaluate high-impact specialized accelerators, proper toolchains need to exist

to identify bottlenecks, and inefficiencies in existing architectures and accelerators. These tools must be able

to simulate, profile, analyze, and optimize applications, and must be flexible enough to answer new research

questions. We present VASim, an open-source automata processing framework for automata processing

research [78]. VASim is a multi-purpose software library that offers an object oriented view of automata states.

148

9.1 Dissertation Summary 149

Using this object oriented view and associated data structures, VASim can simulate automata, optimize

automata, transform automata, and be used to generate automata. At the time of writing, VASim is known to

be in active use by over 5 universities, and has contributed to research in three top-tier computer architecture

conferences.

This dissertation then identifies a lack of standardized benchmarks for fair evaluation of automata processing

accelerators. In any area of acceleration, fair and standardized benchmarking techniques are necessary to

support proper conclusions from experimental results. Prior benchmarks were either well motivated but small

in number, or synthetically generated (at worst, completely arbitrary). We present ANMLZoo, a diverse,

spatially-standardized set of 14 automata benchmarks for automata processing research [22]. Each benchmark

is normalized to the capacity of one Micron AP D480 chip. Thus, comparisons using these benchmarks can

trivially compare to the best performance of this unreleased architecture. Using this benchmark suite, we show

that while GPUs outperform CPUs by leveraging latency hiding aspects of the GPU’s memory architecture,

spatial architectures generally perform orders of magnitude better than von Neumann architectures when

computing real-world automata. However, spatial architecture capacity is very sensitive to the size and

topology of automata.

This dissertation then identifies a lack of tools for design space exploration of spatial architectures. Spatial

architectures are reconfigurable networks of connected processing elements. Because these networks rely

on mapping application task-graphs to architectural resources in space, special place-and-route algorithms

are required to implement. High-quality place-and-route tools are important to identify bottlenecks in

spatial architecture resources such as processing elements and routing resources, and compare designs that

trade-off capabilities and number of each resource. We present Automata-to-Routing, an automata-processing

specific spatial architecture design-space exploration tool [37]. Automata-to-Routing (ATR) leverages VASim,

ANMLZoo, and the versatile place and route tool (VPR) to enable the design of automata-specific spatial

architectures. ATR also uses the sophisticated place-and-route algorithms in VPR to map automata graphs

to the spatial resources on chip. We show that this toolchain is able to match the effectiveness of industry

standard toolchains, modelling Micron’s compiler toolchain within 2.5%− 9.8% accuracy for applications

not bottlenecked by the AP’s hierarchical routing matrix. This toolchain is also made up of completely

open-source components, allowing much greater flexibility for research.

This base framework of a general purpose simulator, a benchmark suite, and a spatial architecture design

and evaluation framework forms a foundation on top of which we can now perform architecture research.

This dissertation identifies two areas of insight to build high-performance automata processing architectures.

The first insight is that output processing in spatial automata processing architectures can have a huge

impact on system performance, and should be considered a first-class design constraint. We use the above

Conclusions 150

tools to characterize reporting behavior. We find that reporting behavior can be frequent and require

high-throughput output architectures. We then develop and validate a trace-based simulation methodology

to measure the impact of reporting on the performance of spatial automata processing architectures. We

find that the impact can be very high in real systems (up to 46x), and suggest designs that minimize the

penalty of output processing in the common case [83]. Our new reporting architecture design is able to reduce

reporting overheads by up to 84% and improve performance of applications that are heavily bottlenecked by

reporting by up to 5.4x.

The second insight is that spatial architectures and von Neumann architectures have complimentary

advantages and disadvantages, and can be used together to gain a large percentage of the advantages of

both. Spatial architectures can execute parallel automata behavior without performance degradation, but

suffer from capacity and routing constraints. Von Neumann architectures can simulate practically arbitrarily

large automata graphs, with complex topologies, but suffer from severe performance degradation with even

modest amounts of automata activity. By implementing densely-active regions of automata on spatial cores,

and sparsely-active regions of automata on von Neumann cores, we can reduce the resource pressure on the

spatial architecture, while maintaining a large proportion of total performance. To evaluate this idea, we first

dynamically profile automata behavior, and show that automata tend to have this lop-sided, dense/sparse

behavior. For Snort, a subset of the classic network-intrusion benchmark, only 8.3% of states account for

99.999999% of total automata work. We then evaluate the performance of hybrid execution and show that

large proportions of automata states can be offloaded (up to 98%), and executed on a von Neumann processor,

while inducing small, acceptable communication overheads (up to 6%).

By reducing the pressure on spatial resource requirements, this technique could enable the execution

of larger automata graphs, motivate the use of smaller reconfigurable fabrics, allow execution of larger

applications on domain specific reconfigurable overlays [88], and greatly reduce place-and-route times.

9.2 Impact and Future Direction

9.2.1 Methodologies for Domain-Specific Accelerator Research

In order to conduct high-impact computer architecture research, a foundation of analysis tools, proper

compilers, and fair benchmarks are all necessary prior to making scientific conclusions about computer

architectures. When conducting CPU-based research, existing, high-quality tools are often taken for granted.

Many simulators exist that excel at different science for various reasons; compilers and their optimizations

for CPUs are also well established and mostly mature; benchmark suites are well studied and generally

9.2 Impact and Future Direction 151

agreed upon. Even GPUs and their compilers are beginning to reach this point of maturity. For any domain

specific accelerator, or system that claims high-performance for a domain or subset of computations, these

foundational tools must exist.

This dissertation followed a path that first built this foundation, and then used it to conduct domain

specific accelerator research. When focusing on design of accelerators for other application domains, we can

use this methodology as a guide:

1. Motivating applications must be identified that are important to society. Applications should be

obviously bottlenecked by computing power. Relaxing these bottlenecks should show obvious benefit to

society.

2. Tools to analyze the structure and behavior of these applications must be developed. “Structure and

behavior” are not well defined, and will vary depending on the best available underlying algorithms.

Such structure and behavior could be as high-level as a profiled task graph, as generated in Chapter 8.

For automata, this task-graph is the automata graph. For the deep neural network domain, this graph

might be as high-level as a hidden layer of the network.

3. A diverse set of benchmark applications must be identified to provide consensus about bottlenecks and

roadblocks to further acceleration. These benchmarks should be designed to allow easy comparison

between different approaches to solving the problem. Benchmarks should serve to fairly measure

improvement over all existing approaches.

4. New tools must be developed to allow for design space exploration of new architectures–both spatial

and von Neumann, or a combination of both–in order to identify optimal approaches. For CPUs and

GPUs, these tools are usually parameterizable cycle accurate simulators. For FPGAs, these tools

parametrically model reconfigurable networks [38].

5. Once bottlenecks are identified, and tools exist to conduct design-space exploration, new configurations,

or brand new architectures should be proposed that relax these bottlenecks.

A visualization of this methodology, showing how each step supports the next, is shown in Figure 9.1.

9.2.2 Designing Effective, Cross-Domain Tools

The above process can be extremely costly. Building compilers, benchmarks, simulators, and other design-

space exploration tools takes years (even decades), and are continually re-evaluated to adjust to changing

assumptions. As we rely on more and more on specialized accelerators for new application domains to

Conclusions 152

Figure 9.1: The architecture research pyramid. 1) important applications in a particular domain motivate 2)
development of analysis tools for this domain. 3) benchmarks must be generated to properly characterize
a domain so that a proper consensus is reached after analysis. 4) design-space exploration tools must be
developed to 5) to identify optimal design points for domain-specific architectures.

overcome the disadvantages of general purpose computers, we will need a large amounts of tools work in order

to design and build effective computer architectures. Currently, the area of machine learning has enough

interest and investment to warrant such work. Benchmark suites [103, 104], and compiler frameworks for

task graphs [105, 106, 107], are being developed.

To reduce the burden on researchers developing domain specific tools, research should be conducted into

generic tools that can serve multiple domains. An example of such a tool is the versatile place and route

(VPR) tool [38] used to develop Automata-to-Routing in Chapter 6. VPR was originally designed to serve

the FPGA design community. However, VPR is so flexible as a tool, it can support design-space exploration

of spatial architectures with arbitrary processing elements. This intuition was first used to develop models for

coarse-grained reconfigurable architectures for image processing [108]. We used this intuition as inspiration

to develop a completely new pipeline for the automata processing domain [37].

Another example of such a tool is the Low-Level Virtual Machine or LLVM [109]. LLVM provides a

low-level intermediate program representation to allow for portable, and high-performance optimizations for

von Neumann computers. However, LLVM’s low-level intermediate representation might be too low-level to be

applicable to optimizations on coarser-grained task-graphs, and was not designed with spatial/dataflow style

code generation in mind. Thus, room exists for a higher-level intermediate task graph language and compiler

9.2 Impact and Future Direction 153

framework to implement truly machine independent optimizations such as redundant code elimination

(analogous to redundant state elimination in the VASim compiler). Such high-level approaches are well-known

for CPU-based optimization (e.g. abstract syntax tree optimization) [110], but such have not been evaluated

for domain-specific optimization re-use. It is highly likely that a novel abstraction layer will be desired.

9.2.3 Analyzing Spatial/Temporal Trade-offs in Computer Architectures

The design of domain-specific accelerators is motivated by the observation that no one computer architecture

best serves every style of computation. Thus, architects have increasingly focused on specializing accelerators

for important application domains to improve performance, and power efficiency over general purpose

processors. Complicating the design choices of specialized accelerators is that there are often large trade-offs

when making design choices for even a single domain. For example, Chapter 8 highlighted that no single

architecture is “best” when designing even for the automata processing domain–an extremely restricted, and

simple model of computation. Even within this simple model, computation and data access patterns can

vary so widely within a single application, that neither spatial architectures nor von Neumann architectures

perform best in isolation, and an architecture that is able to take advantage of the combination of the two

paradigms is desirable.

Researchers have not yet formalized an approach to identifying when spatial vs. von Neumann approaches

are best for computations. Prior spatial/dataflow architecture approaches for general purpose computing have

argued that various new control paradigms are required to gain efficiency over von Neumann or SIMD-based

approaches [97]. Parashar et al. [97] survey prior approaches to spatial/dataflow computing and their

advantages, but this work did not expose intuitions about inherent properties or behaviors of algorithms that

made these types of architectures to perform better than large vector/SIMD, or out-of-order von Neumann

architectures.

Future work should attempt to identify fundamental intuitions behind when spatial, dataflow architectures

are a better approach than temporal, von Neumann based architectures. In this dissertation, we were able

to expose some of this intuition for automata processing. We show that spatial architectures excel when

automata behavior in the graph is dense, and von Neumann architectures excel when automata behavior in

the dataflow graph is sparse. In the future, this dissertation and these intuitions may lay the ground work for

new analyses of the benefits of spatial vs. von Neumann architectures for other, domain-specific compute

paradigms.

Bibliography

[1] Micron Inc. Designing for the Micron D480 Automata Processor. http://www.micronautomata.com/
documentation/anml_documentation/c_D480_design_notes.html.

[2] David R. Brown, Harold B. Noyes, Irene Junjuan Xu, and Paul Glendenning. Methods and systems
for routing in a state machine, March 25 2014. US Patent 8,680,888.

[3] Algo-Logic. Intel xeon + fpga. http://algo-logic.com/Intel-Xeon-FPGA.

[4] Martin Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of the USENIX
Large Installation Systems Administration Conference (LISA), 1999.

[5] Vern Paxson. Bro: a System for Detecting Network Intruders in Real-Time. Computer Networks,
31(23-24):2435–2463, 1999.

[6] Indranil Roy. Algorithmic Techniques for the Micron Automata Processor. PhD thesis, Georgia
Institute of Technology, 2015.

[7] ClamAV. ClamAV Rules. Available at https://www.clamav.net/.

[8] Tommy Tracy II, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glendenning. Towards machine learning
on the automata processor. In Proceedings of the International Conference on High Performance
Computing. Springer, 2016.

[9] Mateja Putic, A.J. Varshneya, and Mircea Stan. Hierarchical Temporal Memory on the Automata
Processor. In Proceedings of the IEEE Micro Special Issue on Cognitive Architectures. IEEE, 2016.

[10] Mateja Putic and Mircea Stan. Dendroplex: Synthesis, Simulation, and Validation of Hierarchical
Temporal Memory on the Automata Processor. In Proceedings of the Design Automation Conference
(DAC), 2017.

[11] Tommy Tracy II, Mircea Stan, Nathan Brunelle, Jack Wadden, Ke Wang, Kevin Skadron, and Gabe
Robins. Nondeterministic finite automata in hardware—the case of the Levenshtein automaton.
Proceedings of Architectures and Systems for Big Data (ASBD), in conjunction with ISCA, 2015.

[12] Indanil Roy and Srinivas Aluru. Finding Motifs in Biological Sequences Using the Micron Automata
Processor. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 415–424, 2014.

[13] Chunkun Bo, Vinh Dang, Elaheh Sadredini, and Kevin Skadron. Searching for potential grna off-
target sites for crispr/cas9 using automata processing across different platforms. In Proceedings of
IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2018.

[14] Indranil Roy, N. Jammula, and Srinivas Aluru. Algorithmic Techniques for Solving Graph Problems
on the Automata Processor. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 283–292, May 2016.

[15] Ke Wang, Yanjun Qi, Jeffrey J Fox, Mircea Stan, and Kevin Skadron. Association rule mining with
the Micron Automata Processor. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 689–699, 2015.

154

http://www.micronautomata.com/documentation/anml_documentation/c_D480_design_notes.html
http://www.micronautomata.com/documentation/anml_documentation/c_D480_design_notes.html
http://algo-logic.com/Intel-Xeon-FPGA
https://www.clamav.net/

Bibliography 155

[16] Ke Wang, Elaheh Sadredini, and Kevin Skadron. Sequential Pattern Mining with the Micron Au-
tomata Processor. In Proceedings of the ACM International Conference on Computing Frontiers (CF),
2016.

[17] Elaheh Sadredini, Reza Rahimi, Ke Wang, and Kevin Skadron. Frequent Subtree Mining on the
Automata Processor: Challenges and Opportunities. In Proceedings of the International Conference
on Supercomputing (ICS), New York, NY, USA, 2017. ACM.

[18] Chunkun Bo, Ke Wang, Jeffrey J. Fox, and Kevin Skadron. Entity Resolution Acceleration using
Micron’s Automata Processor. Proceedings of Architectures and Systems for Big Data (ASBD), in
conjunction with ISCA, 2015.

[19] Keira Zhou, Jeffrey J Fox, Ke Wang, Donald E Brown, and Kevin Skadron. Brill Tagging on the
Micron Automata Processor. In Proceedings of the IEEE International Conference on Semantic
Computing (ICSC), pages 236–239, 2015.

[20] K. Zhou, J. Wadden, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron. Regular expression acceler-
ation on the micron automata processor: Brill tagging as a case study. In 2015 IEEE International
Conference on Big Data (Big Data), pages 355–360, Oct 2015.

[21] Michael H.L.S. Wang, Gustavo Cancelo, Christopher Green, Deyuan Guo, Ke Wang, and Ted
Zmuda. Using the Automata Processor for fast pattern recognition in high energy physics
experiments—a proof of concept. Nuclear Instruments and Methods in Physics Research, 2016.

[22] Jack Wadden, Vinh Dang, Nathan Brunelle, Tom Tracy II, Deyuan Guo, Elaheh Sadredini,
Ke Wang, Chunkun Bo, Gabriel Robins, Mircea Stan, and Kevin Skadron. ANMLZoo: A Benchmark
Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures. In Proceedings
of the IEEE International Symposium on Workload Characterization (IISWC), 2017.

[23] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. iNFAnt: NFA Pattern
Matching on GPGPU Devices. SIGCOMM Computer Communication Review, 40(5):20–26, 2010.

[24] Xiaodong Yu and Michela Becchi. GPU Acceleration of Regular Expression Matching for Large
Datasets: Exploring the Implementation Space. In Proceedings of the ACM International Conference
on Computing Frontiers (CF), pages 18:1–18:10, 2013.

[25] Xiaodong Yu and Michela Becchi. Exploring different automata representations for efficient regular
expression matching on GPUs. In ACM SIGPLAN Notices, volume 48, pages 287–288, 2013.

[26] Ioannis Sourdis, João Bispo, João M. P. Cardoso, and Stamatis Vassiliadis. Regular expression
matching in reconfigurable hardware. Journal of Signal Processing Systems, 51(1):99–121, 2008.

[27] Zachary K Baker, Hong-Jip Jung, and Viktor K Prasanna. Regular expression software deceleration
for intrusion detection systems. In Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), pages 1–8. IEEE, 2006.

[28] Y. H. E. Yang and V. K. Prasanna. Space-time tradeoff in regular expression matching with semi-
deterministic finite automata. In Proceedings of the IEEE International Conference on Computer
Communications, pages 1853–1861, 2011.

[29] Xiang Wang. Techniques for efficient regular expression matching across hardware architectures.
Master’s thesis, University of Missouri-Columbia, 2014.

[30] Michela Becchi. Data structures, algorithms and architectures for efficient regular expression evalua-
tion. PhD thesis, Washington University in St. Louis, 2009.

[31] Yusaku Kaneta, Shingo Yoshizawa, SI Minato, and Hiroki Arimura. High-Speed String and Regular
Expression Matching on FPGA. In Proceedings of the Asia-Pacific Signal and Information Processing
Association (APSIPA-ASC), 2011.

Bibliography 156

[32] Reetinder Sidhu and Viktor K. Prasanna. Fast Regular Expression Matching Using FPGAs. In
Proceedings of the the 9th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 227–238, Washington, DC, USA, 2001. IEEE Computer Society.

[33] Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. Compact Architecture for High-throughput
Regular Expression Matching on FPGA. In Proceedings of the 4th ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS), pages 30–39, New York, NY, USA,
2008. ACM.

[34] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes. An efficient
and scalable semiconductor architecture for parallel automata processing. IEEE Transactions on
Parallel and Distributed Systems, 25(12):3088–3098, 2014.

[35] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes. Supplementary
material for an efficient and scalable semiconductor architecture for parallel automata processing.
IEEE Transactions on Parallel and Distributed Systems, 25(12), 2014.

[36] Jack Wadden, Nathan Brunelle, Ke Wang, Mohamed El-Hadedy, Gabriel Robins, Mircea Stan, and
Kevin Skadron. Generating efficient and high-quality pseudo-random behavior on Automata Proces-
sors. In Proceedings of the 2016 IEEE 34th International Conference on Computer Design (ICCD),
pages 622–629, Oct 2016.

[37] Jack Wadden, Samira Khan, and Kevin Skadron. Automata-to-Routing: An Open Source Toolchain
for Design-Space Exploration of Spatial Automata Processing Architectures. In Proceedings of the
IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM),
2017.

[38] Vaughn Betz and Jonathan Rose. VPR: A new packing, placement and routing tool for FPGA
research. In Proceedings of the International Workshop on Field Programmable Logic and Applications,
pages 213–222. Springer, 1997.

[39] Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Technology,
2006.

[40] J. M. Champarnaud. Subset construction complexity for homogeneous automata, position automata
and ZPC-structures. Theoretical Computer Science, Workshop on Implementing Automata ’98,
267(1):17 – 34, 2001.

[41] Pcre - perl compatible regular expressions. https://www.pcre.org/.

[42] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the obvious. SIGARCH
Comput. Archit. News, 23(1):20–24, March 1995.

[43] Intel. Hyperscan. https://github.com/01org/hyperscan.

[44] Google. Re2. https://github.com/google/re2.

[45] Michela Becchi, Charlie Wiseman, and Patrick Crowley. Evaluating regular expression matching
engines on network and general purpose processors. In Proceedings of the ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS), pages 30–39, 2009.

[46] Michela Becchi and Patrick Crowley. A Hybrid Finite Automaton for Practical Deep Packet Inspec-
tion. In Proceedings of the ACM International Conference on emerging Networking EXperiments and
Technologies (CoNEXT), pages 1:1–1:12, 2007.

[47] Jan Holub. Bit parallelism - nfa simulation. In Bruce W. Watson and Derick Wood, editors, Imple-
mentation and Application of Automata, pages 149–160, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

https://www.pcre.org/
https://github.com/01org/hyperscan
https://github.com/google/re2

Bibliography 157

[48] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Compiling pcre to fpga for accelerating snort ids.
In Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking and Communica-
tions Systems, ANCS ’07, pages 127–136, New York, NY, USA, 2007. ACM.

[49] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni, and Thomas F. Wenisch. HARE:
Hardware accelerator for regular expressions. In Proceedings of the 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 1–12, Oct 2016.

[50] Kubilay Atasu, Florian Doerfler, Jan van Lunteren, and Christoph Hagleitner. Hardware-accelerated
regular expression matching with overlap handling on IBM PowerEN processor. In Proceedings of the
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 1254–1265, 2013.

[51] Yuanwei Fang, Tung T Hoang, Michela Becchi, and Andrew A Chien. Fast support for unstructured
data processing: the unified automata processor. In Proceedings of the ACM International Symposium
on Microarchitecture (MICRO), pages 533–545, 2015.

[52] B. L. Hutchings, R. Franklin, and D. Carver. Assisting network intrusion detection with reconfigurable
hardware. In Proceedings. 10th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 111–120, 2002.

[53] Ted Xie, Vinh Dang, Chunkun Bo, Jack Wadden, Kevin Skadron, and Mircea Stan. REAPR: Recon-
figurable Engine for Automata Processing. In Proceedings of the International Conference on Field
Programmable Logic (FPL) to appear. IEEE, 2017.

[54] Ted Xie. Reapr: Reconfigurable engine for automata processing. https://github.com/ted-xie/

REAPR.

[55] Micron Automata Processor SDK. http://micronautomata.com/.

[56] Nicholas Metropolis. The beginning of the monte carlo method. Los Alamos Science, No. 15, 1987.

[57] Pierre L’Ecuyer and Richard Simard. TestU01: A C Library for Empirical Testing of Random Number
Generators. ACM Trans. Math. Softw., 33(4), August 2007.

[58] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[59] George Marsaglia. DIEHARD: a battery of tests of randomness. See http://stat. fsu.
edu/ geo/diehard. html, 1996.

[60] Andrew Rukhin, Juan Soto, James Nechvatal, Elaine Barker, Stefan Leigh, Mark Levenson, David
Banks, Alan Heckert, James Dray, San Vo, Andrew Rukhin, Juan Soto, Miles Smid, Stefan Leigh,
Mark Vangel, Alan Heckert, James Dray, and Lawrence E Bassham Iii. A statistical test suite for
random and pseudorandom number generators for cryptographic applications, 2001.

[61] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8(1):3–30, January
1998.

[62] Markus Manssen, Martin Weigel, and Alexander K Hartmann. Random number generators for
massively parallel simulations on GPU. The European Physical Journal-Special Topics, 210(1):53–71,
2012.

[63] John K Salmon, Mark A Moraes, Ron O Dror, and David E Shaw. Parallel random numbers: as easy
as 1, 2, 3. In Proceedings of the IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1–12. IEEE, 2011.

[64] Hybrid memory cube specification 2.0. http://www.hybridmemorycube.org/files/SiteDownloads/
HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf.

https://github.com/ted-xie/REAPR
https://github.com/ted-xie/REAPR
http://micronautomata.com/
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf

Bibliography 158

[65] Sven Banisch. Agent-Based Models as Markov Chains, pages 35–55. Springer International Publishing,
Cham, 2016.

[66] S.H. Rodger and T.W. Finley. JFLAP: An Interactive Formal Languages and Automata Package.
Jones and Bartlett, 2006.

[67] Michela Becchi. Regular expression processor. http://regex.wustl.edu/index.php/Regular_

Expression_Processor.

[68] X. Yu, B. Lin, and M. Becchi. Revisiting State Blow-Up: Automatically Building Augmented-FA
While Preserving Functional Equivalence. IEEE Journal on Selected Areas in Communications,
32(10):1822–1833, 2014.

[69] Michela Becchi and Patrick Crowley. Extending Finite Automata to Efficiently Match Perl-compatible
Regular Expressions. In Proceedings of the ACM International Conference on emerging Networking
EXperiments and Technologies (CoNext), pages 25:1–25:12, 2008.

[70] Andreas Malcher. Minimizing finite automata is computationally hard. Theoretical Computer Science,
327(3):375 – 390, 2004. Developments in Language Theory.

[71] Lucian Ilie and Sheng Yu. Algorithms for computing small nfas. In Proceedings of the 27th Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS ’02, pages 328–340,
London, UK, UK, 2002. Springer-Verlag.

[72] J.-M. Champarnaud and F. Coulon. Nfa reduction algorithms by means of regular inequalities.
Theoretical Computer Science, 327(3):241 – 253, 2004. Developments in Language Theory.

[73] Lucian Ilie, Roberto Solis-Oba, and Sheng Yu. Reducing the size of nfas by using equivalences and
preorders. In Alberto Apostolico, Maxime Crochemore, and Kunsoo Park, editors, Combinatorial
Pattern Matching, pages 310–321, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[74] Golden G. Richard III and Vassil Roussev. Scalpel: A frugal, high performance file carver. In Refereed
Proceedings of the 5th Annual Digital Forensic Research Workshop (DFRWS’05), 01 2005.

[75] Flourian Buckholtz. The structure of a pkzip file. https://users.cs.jmu.edu/buchhofp/

forensics/formats/pkzip.html.

[76] Kevin Angstadt, Westley Weimer, and Kevin Skadron. RAPID Programming of Pattern-Recognition
Processors. In Proceedings of the 21st International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 593–605, 2016.

[77] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon Woodhull. Graphvi-
zopen source graph drawing tools. In International Symposium on Graph Drawing, pages 483–484,
2001.

[78] Jack Wadden and Kevin Skadron. VASim: An Open Virtual Automata Simulator for Automata
Processing Application and Architecture Research. Technical Report CS2016-03, University of
Virginia, 2016.

[79] K. Angstadt, J. Wadden, V. Dang, T. Xie, D. Kramp, W. Weimer, M. Stan, and K. Skadron. Mncart:
An open-source, multi-architecture automata-processing research and execution ecosystem. IEEE
Computer Architecture Letters, 17(1):84–87, Jan 2018.

[80] Jack Wadden. Vasim: The virtual automata simulator. https://github.com/jackwadden/VASim.

[81] Arun Subramaniyan and Reetuparna Das. Parallel automata processor. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA ’17, pages 600–612, New York,
NY, USA, 2017. ACM.

http://regex.wustl.edu/index.php/Regular_Expression_Processor
http://regex.wustl.edu/index.php/Regular_Expression_Processor
https://users.cs.jmu.edu/buchhofp/forensics/formats/pkzip.html
https://users.cs.jmu.edu/buchhofp/forensics/formats/pkzip.html
https://github.com/jackwadden/VASim

Bibliography 159

[82] A. Subramaniyan, J. Wang, E. R. M. Balasubramanian, D. Blaauw, D. Sylvester, and R. Das. Cache
automaton: Repurposing caches for automata processing. In 2017 26th International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 373–373, Sept 2017.

[83] Jack Wadden, Kevin Angstadt, and Kevin Skadron. Characterizing and mitigating output reporting
bottlenecks in spatial-reconfigurable automata processing architectures. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2018.

[84] Michela Becchi, Mark Franklin, and Patrick Crowley. A workload for evaluating deep packet inspec-
tion architectures. In Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC), pages 79–89. IEEE, 2008.

[85] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-parallel finite-state machines.
ACM SIGPLAN Notices, 49(4):529–542, 2014.

[86] Sourangsu Banerji. Computer Simulation Codes for the Quine-McCluskey Method of Logic Minimiza-
tion. arXiv preprint arXiv:1404.3349, 2014.

[87] G. Vasiliadis, M. Polychronakis, and S. Ioannidis. Parallelization and characterization of pattern
matching using GPUs. In Proceedings of the IEEE International Symposium on Workload Character-
ization (IISWC), pages 216–225, 2011.

[88] R. Karakchi, L. Richars, and J. Bakos. A dynamically reconfigurable automata processor overlay. In
2017 International Conference on Reconfigurable Computing and FPGAs (ReConFig), Dec 2017.

[89] Marziyeh Nourian, Xiang Wang, Xiaodong Yu, Wu-chun Feng, and Michela Becchi. Demystifying
automata processing: Gpus, fpgas or micron’s ap? In Proceedings of the International Conference on
Supercomputing, ICS ’17, pages 1:1–1:11, New York, NY, USA, 2017. ACM.

[90] Jack Wadden. Anmlzoo: a benchmark suite for exploring bottlenecks in automata processing engines
and architectures. https://github.com/jackwadden/ANMLZoo.

[91] A. Munoz, S. Sezer, D. Burns, and G. Douglas. An approach for unifying rule based deep packet
inspection. In 2011 IEEE International Conference on Communications (ICC), pages 1–5, June 2011.

[92] Cisco and its Affiliates. Snort users manual 2.9.11. http://manual-snort-org.

s3-website-us-east-1.amazonaws.com/snort_manual.html.

[93] Indranil Roy, Ankit Srivastava, Marziyeh Nourian, Michela Becchi, and Srinivas Aluru. High Perfor-
mance Pattern Matching Using the Automata Processor. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 1123–1132, 2016.

[94] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks. Machsuite:
Benchmarks for accelerator design and customized architectures. In Workload Characterization
(IISWC), 2014 IEEE International Symposium on, pages 110–119. IEEE, 2014.

[95] Krste Asanovi, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands,
Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams, and
Katherine A. Yelick. The landscape of parallel computing research: A view from berkeley. Technical
Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, Dec 2006.

[96] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. Accelerating pattern matching
queries in hybrid cpu-fpga architectures. In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD ’17, pages 403–415, New York, NY, USA, 2017. ACM.

[97] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago, Daniel Lustig,
Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel, Randy Allmon, Rachid Rayess,
Stephen Maresh, and Joel Emer. Triggered instructions: A control paradigm for spatially-programmed
architectures. In Proceedings of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, pages 142–153, New York, NY, USA, 2013. ACM.

https://github.com/jackwadden/ANMLZoo
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/snort_manual.html
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/snort_manual.html

Bibliography 160

[98] Intel. Intel cci: Core cache interface. https://01.org/sites/default/files/downloads/opae/

cci-p-mpf-overview.pdf.

[99] Martin Šošić and Mile Šikić. Edlib: a c/c++ library for fast, exact sequence alignment using edit
distance. Bioinformatics, 33(9):1394–1395, 2017.

[100] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nature methods,
9(4):357–359, 2012.

[101] Yatish Turakhia, Gill Bejerano, and William J Dally. Darwin: A genomics co-processor provides up
to 15,000 x acceleration on long read assembly. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating Systems, pages 199–
213. ACM, 2018.

[102] Manuel Holtgrewe. Mason–a read simulator for second generation sequencing data. Technical Report
FU Berlin, 2010.

[103] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Fathom: Reference
workloads for modern deep learning methods. In Workload Characterization (IISWC), 2016 IEEE
International Symposium on, pages 1–10. IEEE, 2016.

[104] Baidu Research Sharan Narang. Deepbench. https://svail.github.io/DeepBench/.

[105] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265–283, 2016.

[106] Richard Wei, Vikram Adve, and Lane Schwartz. Dlvm: A modern compiler infrastructure for deep
learning. arXiv preprint arXiv:1711.03016, 2017.

[107] Scott Cyphers, Arjun K Bansal, Anahita Bhiwandiwalla, Jayaram Bobba, Matthew Brookhart, Avi-
jit Chakraborty, Will Constable, Christian Convey, Leona Cook, Omar Kanawi, et al. Intel® ngraph.
2018.

[108] Artem Vasilyev, Nikhil Bhagdikar, Ardavan Pedram, Stephen Richardson, Shahar Kvatinsky, and
Mark Horowitz. Evaluating programmable architectures for imaging and vision applications. In
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pages 1–13.
IEEE, 2016.

[109] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis &
transformation. In Proceedings of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, page 75. IEEE Computer Society, 2004.

[110] Chris Arthur Lattner. LLVM: An infrastructure for multi-stage optimization. PhD thesis, University
of Illinois at Urbana-Champaign, 2002.

[111]

[112] M. Becchi and S. Cadambi. Memory-efficient regular expression search using state merging. In
IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications, pages
1064–1072, May 2007.

[113] Eric E Schadt, Steve Turner, and Andrew Kasarskis. A window into third-generation sequencing.
Human molecular genetics, 19(R2):R227–R240, 2010.

[114] Intel. Open programmable acceleration engine. https://opae.github.io/.

[115] Ben Langmead. Aligning short sequencing reads with bowtie. Current protocols in bioinformatics,
pages 11–7, 2010.

https://01.org/sites/default/files/downloads/opae/cci-p-mpf-overview.pdf
https://01.org/sites/default/files/downloads/opae/cci-p-mpf-overview.pdf
https://svail.github.io/DeepBench/
https://opae.github.io/

Bibliography 161

[116] Geoff Langdale. HyperScan in Suricata: State of the Union. 2016. http://suricon.net/

wp-content/uploads/2016/11/SuriCon2016_GeoffLangdale.pdf.

[117] Marvin Tom and Guy Lemieux. Logic block clustering of large designs for channel-width constrained
FPGAs. In Proceedings of the 42nd annual Design Automation Conference (DAC), pages 726–731.
ACM, 2005.

[118] Tim Bray. The JavaScript object notation (JSON) data interchange format. 2014.

[119] G. H. Mealy. A method for synthesizing sequential circuits. The Bell System Technical Journal,
34(5):1045–1079, Sept 1955.

[120] Yuan Zu, Ming Yang, Zhonghu Xu, Lin Wang, Xin Tian, Kunyang Peng, and Qunfeng Dong. GPU-
based NFA implementation for memory efficient high speed regular expression matching. In ACM
SIGPLAN Notices, volume 47, pages 129–140, 2012.

[121] Computer Sciences Corporation. Big data universe beginning to explode. http://www.csc.com/

insights/flxwd/78931-big_data_universe_beginning_to_explode, 2012.

[122] Anil Krishna, Timothy Heil, Nicholas Lindberg, Farnaz Toussi, and Steven VanderWiel. Hardware
acceleration in the IBM PowerEN processor: Architecture and performance. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation Techniques (PACT), pages
389–400, 2012.

[123] Titan IC Systems. RXP regular eXpression processor soft IP. http://titanicsystems.com/

Products/Regular-eXpression-Processor-(RXP).

[124] H. D. Cheng and K. S. Fu. VLSI architectures for string matching and pattern matching. Pattern
Recognition, 20(1):125–144, 1987.

[125] Arne Halaas, Børge Svingen, Magnar Nedland, P̊al Sætrom, Ola Snøve, Jr., and Olaf René Birke-
land. A recursive MISD architecture for pattern matching. IEEE Transactions on Very Large Scale
Integrated Systems (TVLSI), 12(7):727–734, 2004.

[126] Hongbin Lu, Kai Zheng, Bin Liu, Xin Zhang, and Yunhao Liu. A memory-efficient parallel string
matching architecture for high-speed intrusion detection. IEEE Journal on Selected Areas in Com-
munications, 24(10):1793–1804, 2006.

[127] Michela Becchi and Patrick Crowley. Efficient regular expression evaluation: Theory to practice. In
Proceedings of Architectures for Networking and Communications Systems (ANCS), pages 50–59,
2008.

[128] Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner, and George Varghese. Curing
regular expressions matching algorithms from insomnia, amnesia, and acalculia. In Proceedings of
the ACM/IEEE Symposium on Architecture for Networking and Communications Systems (ANCS),
pages 155–164, 2007.

[129] Pascal Caron and Djelloul Ziadi. Characterization of Glushkov automata. Theoretical Computer
Science, 233(1):75–90, 2000.

http://suricon.net/wp-content/uploads/2016/11/SuriCon2016_GeoffLangdale.pdf
http://suricon.net/wp-content/uploads/2016/11/SuriCon2016_GeoffLangdale.pdf
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://www.csc.com/insights/flxwd/78931-big_data_universe_beginning_to_explode
http://titanicsystems.com/Products/Regular-eXpression-Processor-(RXP)
http://titanicsystems.com/Products/Regular-eXpression-Processor-(RXP)

	Contents
	List of Tables
	List of Figures

	Introduction
	Contributions
	Organization

	Background
	Automata Processing
	Deterministic Finite Automata
	Regular Expressions

	von Neumann Automata Processing
	Spatial Automata Processing
	FPGA-based Spatial Automata Processing
	Micron's Automata Processor and SDK

	Generating Efficient and High-Quality Pseudo-Random Behavior on Automata Processors
	Random and Pseudo-random Number Generation
	Random and Pseudo-Random Number Generation
	State-of-the-Art Parallel PRNG Algorithms

	Using Markov Chains to Generate Pseudo-Random Behavior
	Markov Chains
	Using Markov Chains to Generate Pseudo-Random Behavior

	Simulating Markov Chains Using Finite Automata
	Markov Chain to NFA Construction Algorithm
	Markov Chain to Homogeneous NFA Construction Algorithm
	Correlation Among Parallel NFA-based Markov Chains

	Generating Efficient and High-Quality Pseudo-Random Behavior on Micron's Automata Processor
	AP PRNG System Design

	Effects of AP PRNG Configurations on AP PRNG Quality
	Experimental Framework
	Effect of Markov Chain Size on PRNG Quality
	Effect of Parallel Markov Chains on Random Quality
	Effect of Input Size on Random Quality

	AP PRNG Performance Model
	Performance Sensitivity to Reconfiguration Threshold
	Performance on Future AP Hardware
	Estimating AP PRNG Power Advantage

	Other Uses for Pseudo-Random Behavior
	Simulating Asset Price Motion
	Mapping an Asset Price Simulation to the AP Hardware
	Final Construction

	VASim: An Open Source Platform for Finite Automata Applications and Architecture Research
	Introduction
	VASim Architecture
	Extending the Virtual Execution Model

	Automata Simulation
	Automata Optimization and Transformations
	VASim's Common Prefix Merging Algorithm
	Subset Construction
	Automata Striding

	Automata Serialization and Code Generation
	DOT File Format for Automata Visualization
	Verilog State Machine Emission for FPGA Evaluation

	VASim Simulation Performance
	Conclusions

	ANMLZoo: A Benchmark Suite for Exploring Bottlenecks in Automata Processing Engines and Architectures
	Problems with Existing Rulesets and Generators
	ANMLZoo: an Automata Processing Benchmark Suite
	Parallel Automata Rule Scaling
	Visited Set and Active Set Sensitivity
	Automata vs Input-level Parallelism Scaling
	CPU Parallel Scaling
	GPU Parallel Scaling

	NFA vs. DFA Engines on the GPU
	Mesh Scaling and AP Fabric Utilization
	Cross-Architecture Application Evaluation
	Towards ANMLZoo 2.0: A Retrospective and Future Benchmarking Template
	Critiques of ANMLZoo Benchmarking Methodology
	Snort Network Intrusion Detection Benchmark

	Conclusions and Future Work

	Automata-to-Routing: An Open-Source Toolchain for Design-Space Exploration of Spatial Automata Processing Architectures
	Introduction
	Automata-to-Routing Toolchain
	ANMLZoo Automata Benchmark Suite
	VASim Virtual Automata Simulator
	Versitile Place and Route
	ATR Toolchain Architecture

	VASim Extensions
	Design Rule Transformation: Fan-in Relaxation
	Design Rule Transformation: Group-of-Two Grouping
	.blif Emission Algorithm

	Modelling Micron's Automata Processor
	Defining A Baseline Tile Architecture
	Defining A Baseline Routing Network

	Place-and-Route Results
	Tile Resource Requirements
	Routing Resource Requirements

	Evaluating the AP's Routing Matrix Using ATR Modelling
	Conclusions and Future Work

	Characterizing and Mitigating Output Bottlenecks in Spatial Automata Processing Architectures
	Characterizing Automata Reporting Behavior
	Experimental Methodology
	Profiling Results

	Simulating Spatial Automata Processors
	Spatial Automata Processor System
	Simulation Methodology

	Case Study: the Micron D480 AP
	The AP D480 Reporting Architecture
	Cycle-Accurate Simulation
	Simulator Validation
	ANMLZoo Reporting Overheads

	Automata Transformations to Reduce Reporting Overhead
	Disjoint Report Merging
	DRM Algorithm
	DRM Potential Study
	DRM Performance Impact

	Identifying Architectural Bottlenecks in Reporting
	Characterizing Report Vector Sparsity
	Reducing Output Sparsity

	Discussion and Future Work
	Conclusions

	Hybrid Spatial/von Neumann Automata Processing
	Introduction
	Background
	Automata Processing
	Temporal Automata Processing
	Spatial Automata Processing
	Hybrid Spatial/Temporal Architectures

	Hybrid Processing Potential Study
	Benchmark Workloads
	Profiling Methodology
	Partitioning Algorithm
	Results

	Hybrid Automata Processing System
	FPGA Automata Engine
	Reporting Architecture
	CPU Automata Engine

	Hybrid System Evaluation
	Profiling and Partitioning Methodology
	CPU Performance on Offloaded Computation
	Spatial Resource Reduction
	Added Communication Overheads

	Exploring Spatial Filtering for Non-Automata-Based Algorithms
	Levenshtein Edit Distance
	Spatial Automata Filtering Feasibility Study

	Related Work
	Conclusions

	Conclusions
	Dissertation Summary
	Impact and Future Direction
	Methodologies for Domain-Specific Accelerator Research
	Designing Effective, Cross-Domain Tools
	Analyzing Spatial/Temporal Trade-offs in Computer Architectures

	Bibliography

