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Abstract

Sensitive dependence on initial conditions is a defining quality of chaotic systems in which

small differences in how two units begin may lead to large differences in these units later

in time. This property has strong theoretical implications for interpretability and

predictability of time based phenomena. However estimation of maximal Lyapunov

exponents, a defining metric of sensitive dependence on initial condition, from data with

measurement error is difficult. This impedes the study of sensitive dependence in

psychological and behavior research as these areas of research tend to have relatively high

levels of measurement error compared to other fields of study. This is unfortunate as

many psychological phenomenon such as life satisfaction, drug use behaviors, and genetic

differences in behavior are considered to display sensitive dependence on initial condition.

Many Psychological researchers use structural equation modeling (SEM) to account for

measurement error when modeling behavioral data. SEM is a versatile method for

modeling systems of linear equations capable of explicitly modeling measurement error.

This dissertation seeks to use SEM as a means of estimating maximal Lyapunov

exponents from data with measurement error. This estimated maximal Lyapunov

exponent via SEM will be termed a Latent Lyapunov Exponent (LLE). First, a

mathematical derivation of an SEM equivalent of the R-method for estimating maximal

Lyapunov exponents is shown. Then a series of simulation studies compare the proposed

method to currently established methods on bias, variance, and MSE. A separate

simulation will then test the efficacy of the LLE method for a smaller number of samples.

Extensions of LLE to multivariate space will then be discussed. Next, a real data example

from socially anxious individuals over a number of weeks will serve as an illustration of

the use of the LLE method. Finally, limitations, and future directions will be discussed.
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Latent Multivariate Maximal Lyapunov Exponents

Things change over time. Despite differences in size, scope, and complexity, almost

every natural system has at least this in common. Systems of living creatures undergo

change over time through such phenomena as growth, reproduction, and decay. Large

celestial bodies change over time due to local events such as storms or volcanoes, or

impacts with other celestial bodies. Great empires rise and fall over periods of hundreds

of years, while pop-culture music trends change every few months. Change is to be

expected of a given system. Thus, to fully understand a system it is not enough to study

that things change, but to study how and why things change. This is especially true when

trying to understand human systems. How and why things change over time is inherently

linked to complexity and diversity within a system and human systems (particularly

human psychological systems) are perhaps the most complex systems in existence

(J. N. Weiss, Qu, & Garfinkel, 2003).

This inherent complexity means that many aspects of human systems change over

time in many different ways for many reasons. Large scale societal change occurs in part

through innovation in technologies and interactions between different societies (Pennisi,

2005; Turchin, 2013; Turchin, Currie, Turner, & Gavrilets, 2013). Individuals change over

time due to biological, social, and psychological mechanisms (Baltes, Staudinger, &

Lindenberger, 1999). Nesselroade (1991) notes that both how and why individuals change

are variable at the interindividual level (i.e., how or why a given person changes is

dependant on qualities shared with other individuals) and at the intraindividual level

(i.e., how or why a given person experiences change itself changes over time). Thus, to

fully understand how and why human systems change over time researchers must measure

multiple individuals across multiple different variables across multiple different occasions.

This intensive measurement of multiple individuals on multiple variables across time

is the cornerstone of modern longitudinal data analysis within psychological science

(Collins, 2006). These repeated measurements of multiple variables from multiple
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individuals give researchers an idea of the trajectories of how psychological variables

change over time within individuals and of the impact of variables that may influence

these trajectories. For instance, numerous researchers have sought to understand how and

why personality changes over time (e.g., Funder, Block, & Block, 1983; McCrae, 1993;

Soldz & Vaillant, 1999). In a large meta-analysis of 92 longitudinal studies regarding

multiple personality characteristics (e.g., extroversion and conscientiousness), Roberts,

Walton, and Viechtbauer (2006) found that most longitudinal studies show that that

many personality traits, considered to be stable across the life span, actually showed

significant variation within individuals as individuals aged. In another meta-analysis of 18

longitudinal studies, Reijntjes, Kamphuis, Prinzie, and Telch (2010) found robust links

between childhood peer victimization and internalization problems. Other longitudinal

behavioral studies have been used to understand illicit drug use by adolescents, the effects

of empathy training on relationship satisfaction, and the effects of maternal engagement

on the dynamics of epigenetic change in young children (Kandel, 1982; Krol, Moulder,

Lillard, Grossmann, & Connelly, 2019; Long, Angera, Carter, Nakamoto, & Kalso, 1999;

Resnick et al., 1997; Shedler & Block, 1990).

As new technologies are developed for measuring human behaviors (e.g., wearable

sensors, smart devices, and video recording devices), researchers are able to collect more

data samples from individuals over longer periods of time. These intensive within-person

measurements yield individual time series for multiple different measured variables. These

multivariate time series in turn offer researchers a rich source of data for modeling human

systems and allow researchers to ask more nuanced questions about human behavior than

have previously been possible. Specifically, time series analysis allows for inferences to be

made at the individual level (Molenaar, 2004). Metrics such as heart-rate, activity,

location, and galvanic skin response may even be collected at high sampling rates for

weeks on end (ideally) without interruption. For instance Madan, Cebrian, Lazer, and

Pentland (2010) used mobile sensing devices to collect time series data in order to
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understand how activity levels are influenced by illness symptomology and stress. Fuller

et al. (2003) also used time series analysis to understand worker satisfaction and stress

levels across 4 months. As new devices for measuring qualities of human systems are

actively being developed by researchers interested in asking more nuanced questions

regarding human behavior, new analysis methods must also be developed to model this

ever-changing data landscape.

Modern time series analysis can generally be divided into two approaches:

discrete-time modeling and continuous-time modeling. Discrete-time modeling is the

process of creating a statistical, mathematical, or computational model relating a variable

or set of variables at time t with that of previous time points (Jebb, Tay, Wang, &

Huang, 2015). Continuous-time modeling is the process of creating a statistical,

mathematical, or computational model of the instantaneous change of some process for

any given time (van Montfort, Oud, & Voelkle, 2018). These two methodologies attempt

to model how and why variables change over time in different ways. As such, both have

their own benefits and potential drawbacks.

Discrete Time Modeling in Psychological Research

Discrete time models are a popular tool for understanding how and why a given

system changes over time. Discrete time models tend to be relatively easy to interpret,

can show adequate fit for many different systems, and are relatively simple to conduct.

Models such as the autoregressive integrated moving average (ARIMA) family of models,

time series intervention analysis, and discrete-time Markov chains are quite commonly

used in psychological research for these reasons. These models generally take the form:

xt = f(xt−τ ) (1)

where xt is the value of variable x at time t and f(xt−τ ) is an arbitrary function of x at a

previous time t− τ . That is, the current state of a given system at any given time is
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modeled as a function of the previous states of that system from τ measurements into the

past.

Researchers have used discrete-time modeling to understand a wide verity of

psychological phenomena. Borsboom and Cramer (2013) and Fried et al. (2017) show how

discrete time network models may be used to understand the interactions of

psychopathology symptoms both within and between individuals. In these analyses,

researchers found that many individual symptoms across different psychopathologies

exhibit high comorbidity rates with other symptoms from other disorders, partially

explaining the comorbidity of psychopathologies such as depression and anxiety. Schmitz

and Skinner (1993) used discrete-time modeling to understand how children’s beliefs

about their ability on cognitive tests are structured in a feedback loop to children’s

performance on those tests. They reported that interindividual and intraindividual

understandings of how children’s beliefs about their performance showed different

findings, with different children needing different intraindividual models to understand

the interplay between belief and performance. Other discrete-time analyses have modeled

human brain during copying tasks, associations between stress and dizziness, and

associations between psychological distress and smoking behaviors (Andersson & Yardley,

2000; Lawrence & Williams, 2015; Leuthold, Langheim, Lewis, & Georgopoulos, 2005).

While useful and widely applied, discrete-time models have a number of problems

that may affect the validity of inferences drawn from such models (van Montfort et al.,

2018). For instance, discrete-time models are highly sensitive to sampling interval. de

Haan-Rietdijk, Voelkle, Keijsers, and Hamaker (2017) found that results of common

discrete-time methods used in experience sampling studies may differ quite substantially

when observations are not equally spaced in time. Other researchers have found

discrete-time models to be sensitive to sampling rate and sampling interval (A. A. Weiss,

1984). These problems make inferences from many discrete-time models questionable

when sampling issues arise. As an alternative to discrete-time models, other researchers
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use continuous-time models to model human systems over time.

Continuous Time Modeling in Psychological Research

Continuous-time models describe the instantaneous state and change of a given

system at any given time within the sampling period. These models are typically in the

form of an autonomous differential equation model expressing the time derivative of a

variable by some function of that variable:

ẋ = f(x), (2)

where ẋ is the derivative of x with respect to time. That is, the instantaneous rate of

change of change of a given system is modeled by the current state of that system in time.

These models are known as dynamical systems models and may be estimated in either

differential form as seen in equation 2, or in integral form if such a form can be derived

from equation 2. Continuous-time differential equation models are ubiquitous in

engineering and physical sciences where they have been used to model such things as

predator-prey dynamics, neuron spiking, and hydrodynamics (Hodgkin & Huxley, 1952;

Lorenz, 1963; Yorke & Anderson Jr, 1973). An interesting property of continuous-time

dynamical systems models is that the functional form of the model f(x) used to describe

ẋ embodies a hypothesis chosen by a given researcher.

Researchers have used continuous-time models to understand numerous

psychological phenomena. Steele and Ferrer (2011) modeled positive and negative affect

of romantic partners as a set of coupled second-order linear differential equations. These

types of equations model processes that regulate toward an equilibrium point while

fluctuating. Steele and Ferrer (2011) found that romantic partners not only regulate their

own positive and negative affect, but also each other’s. Similarly, Boker and Laurenceau

(2006) showed that intimacy between husband and wives could also be adequately

modeled and understood as a set of coupled second-order differential equations. Deboeck
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and Bergeman (2013) found that the interplay between a person’s negative affect and

neuroticism could be modeled as a reservoir with an inflow rate and outflow rate, where

the outflow rate of negative affect was negatively influenced by neuroticism. That is,

individuals higher in neuroticism had a more difficult time in ridding themselves of

negative emotion.

Compared to discrete-time models, continuous-time differential equation models

offer a number of benefits. Methods for estimating such models are robust to sampling

misspecification, allow for analogous discussion of psychological variables with

well-studied physical systems, and explicitly model change as the outcome of interest

(Boker, Neale, & Rausch, 2004; Boker, Tiberio, & Moulder, 2018; van Montfort et al.,

2018). However, individual differential equation models tend to be less flexible than

discrete-time models to fitting a wide variety of data sets and may require explicit

estimation of ẋ before/during model construction (Boker, Deboeck, Edler, & Keel, 2010;

Deboeck, 2010). Additionally, for many systems the explicit analytic solution is unknown,

making verification of parameter accuracy of many differential equation models only

available through intensive numerical estimation procedures.

The form of a given differential equation model may dramatically change the

interpretation of parameters for a given model. This is one of the greatest benefits of

differential equation modeling of psychological processes as a psychological researcher can

make their hypotheses explicit in the form of their chosen differential equation. For

instance, if a researcher believed that the system they were studying showed regulatory

behavior, they may choose to model this system as a damped linear oscillator or a

reservoir or as an exponentially decaying system. Each of these models show a different

functional form and the parameters of these models each have different interpretations.

However, if one of these models fits a given data set better than another, then more

specific claims of how this regulation occurs could be made. Each differential equation

model is an explicit idea of how a variable (or set of variables) is changing over time.
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Some ideas may be better than others for describing certain dynamical systems. Some

dynamical systems such as springs and pendulums can be modeled with relatively

uncomplicated linear processes. Such linear dynamical systems were some of the first

studied in classical mechanics and are the core of many modern methods of differential

equation modeling across psychological science.

Linear Dynamical Systems. A dynamical system is a system whose behavior in

a given space is determined by the system’s state in that space. This phase space (or

state space in the discrete case) defines the behavior of a system toward structures that

determine how a point in this space will move over time. Phase space structures define

equilibria of a given system. That is, phase space structures define the behavior of a

dynamical system as time →∞. In a linear dynamical system these structures are finite

and well defined.

Linear dynamical systems are systems whose evolution in phase space is defined by

systems of linear differential equations. Generally these equations are all first order

differential equations as any nth order linear differential equation may be converted into a

system of 1st order linear differential equations. An nth order differential equation is

defined by the highest derivative in said equation. For example, an equation with only 1st

derivatives is a 1st order differential equation and a system with a 2nd derivative and no

larger derivatives is a 2nd order differential equation. To determine the long term behavior

of these systems, researchers model the equilibrium of these systems at time →∞. Points

at which ẋ = 0 as time →∞ are considered fixed points. For the most part, singular

fixed points are the only structures in the phase space of linear dynamical systems. A

fixed point of a dynamical system is a structure in phase space consisting of a single

point. This single point determines the long run behavior of said system. Linear

dynamical systems may have only 1 fixed point. In a 1st order system, these fixed points

may be stable or unstable.

A stable fixed point is also known as a point attractor or sink. Stable fixed points
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are points in phase space to which all trajectories converge as time →∞. Linear systems

with a stable fixed point represent regulation as either exponential growth or decay to this

fixed point, depending on initial condition. Figure 1 represents a stable fixed point of a

system of 2 linear differential equations. An unstable fixed point is also known as a point

repeller or source. Linear systems with an unstable fixed point represent exponential

growth as any initial condition in phase space will quickly go to ∞ as time increases.

Figure 2 represents an unstable fixed point of a system of 2 linear differential equations.

Figure 1 . Phase space plot representing a stable fixed point of a dynamical system. The

arrows define define how trajectories in this phase space will move over time. The length

of the arrows define the rate of change in that region. The red dot represents the stable

fixed point at (0,0) of the system defined at the top left of this plot. Blue lines represent

different trajectories of 4 initial conditions.

In 2nd order differential equations, fixed points may be combinations of stable,

unstable, and neutral. A multi-stable fixed point is also known as a saddle-node. These
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Figure 2 . Phase space plot representing an unstable fixed point of a dynamical system.

The arrows define define how trajectories in this phase space will move over time. The

length of the arrows define the rate of change in that region. The red dot represents the

unstable fixed point at (0,0) of the system defined at the top left of this plot. Blue lines

represent different trajectories of 4 initial conditions.

fixed points are stable from at least one dimension and unstable on others, Figure 3. A

neutral fixed point is also known as a center. These fixed points represent constant

periodic behavior of a system as time →∞, Figure 4. Fixed points may also show spiral

behavior. Spiral sinks and spiral sources are fixed points in 2nd order differential equations

for which trajectories do not go directly to the fixed point, but show a rotating behavior.

Spiral sinks show rotating behavior to fixed point over time and spiral sources show

rotating behavior away from a fixed point over time, see Figures 5 and 6 respectively.

Higher order linear systems show even more complicated fixed point structures. To

understand the behavior of fixed points in high dimensional dynamical systems,
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Figure 3 . Phase space plot representing an multi-stable fixed point of a dynamical

system. The arrows define define how trajectories in this phase space will move over time.

The length of the arrows define the rate of change in that region. The red dot represents

the multi-stable fixed point at (0,0) of the system defined at the top left of this plot. Blue

lines represent different trajectories of 4 initial conditions.

researchers calculate the Jacobian matrix, J of a given dynamical system about a fixed

point. The Jacobian matrix of a system is a matrix of first partial derivatives of a system.

For example, given the 2nd order linear systemẋ
ẏ

 =

 2 −1

−2 4


x
y

 (3)

the Jacobian matrix of this system is:

J


ẋ
ẏ


 =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 =

 2 −1

−2 4

 . (4)
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