
 

Page 1 of 53 
 

Faraday’s Fridge 
Mac Cartier, Tyler Labiak, and Seth VandeBraak 

 

Date of Submission 

Capstone Design ECE 4440 / ECE4991 

 

 

 

Signatures  

 

Tyler Labiak 
 

Mac Cartier 
 

 

 

 

 

 

 

 

 

  



 

Page 2 of 53 
 

Statement of work: 

 

Mac- 

 My contributions to the project are centered around the oscillator and inductive sensing 
subsystem. I designed the circuit schematic and found component values for the circuit, verifying 
theoretical functionality by simulation in MultiSim. I then constructed several prototypes for the 
oscillator, and refined the design to address issues that arose. After designing the first revision of 
the PCB, I populated the second revision with the appropriate components and tested the power 
regulation subcircuit, oscillator, and frequency divider to ensure proper functionality. I then 
wound an inductive coil and measured it to ensure effective operation. I helped test the final 
system as well and helped document that. 

Tyler- 

 My main focus on this project was embedded and software development. I worked to 
program the two microcontrollers used in the project as well as the matlab script that handles 
serial communications between the boards and the user input and output. This included working 
with technologies such as the Bluetopia SDK and TI Bluetooth Stack on MSP432 MCU’s, the 
MSP432P401R microcontroller, TI-Drivers, Estimote Beacons, Eddystone, and Matlab. I also 
worked with Mac to test the final project and played a small role helping him debug the 
oscillator. I am also the creator of the timelines. 

Seth- 

 While working remotely, I was able to contribute in different ways to the group. I was 
able to contribute to the development of the oscillator and inductive sensing subsystem by 
designing the layout to work as a header board on the MSP. As a result of using components not 
in the NI database, new footprints for components were produced. Additionally, I worked to 
coordinate the ordering of parts for the project and ensure their compatibility with the overall 
system.    

 

 

 

 

 

 

  



 

Page 3 of 53 
 

Table of Contents 

Capstone Design ECE 4440 / ECE4991 1 

Signatures 1 

Statement of work: 2 

Table of Contents 3 

Table of Figures 4 

Background 6 

Constraints 7 

Design Constraints 7 

Economic and Cost Constraints 7 

External Standards 8 

Tools Employed 8 

Ethical, Social, and Economic Concerns 9 

Environmental Impact 9 

Sustainability 9 

Health and Safety 9 

Manufacturability 10 

Ethical Issues 10 

Intellectual Property Issues 10 

Detailed Technical Description of Project 11 

Project Timeline 19 

Test Plan 22 

Final Results Error! Bookmark not defined. 

Costs 29 

Future Work 29 

References 30 

Appendix 34 



 

Page 4 of 53 
 

Table of Figures 

 

Figure 1. System Block Diagram  11 

Figure 2. Full schematic of the inductive sensor header board  13 

Figure 3. Bluetooth Profile GATT Characteristics 14 

Figure 4. Bluetooth Test Output  14 

Figure 5. Eddystone UID Advertising Packet  15 

Figure 6. Eddystone-UID Service Data Breakdown 15 

Figure 7. Uart Communication Block Diagram for Bluetooth 16 

Figure 8. MSP42 Pinout for Induction Loop  17 

Figure 9: PC Program Block Diagram 18 

Figure 10. Initial Gantt Chart 20 

Figure 11. Midterm Gantt Chart  21 

Figure 12. Final Gantt Chart  22 

Figure 13. Original Hardware Test Plan 23 

Figure 14. Power supply subcircuit 24 

Figure 15: Power supply settling time without load (1V/div. and 100us/div.) 24 

Figure 16.  Oscillator and counter subcircuit 24 

Figure 17. Oscillator output waveform 25 

Figure 18. Oscillator and counter output waveforms showing regular period as anticipated 25 

Figure 19.  Counter output pulse shape 25 

Figure 20. Initial Software Test Plan 26 



 

Page 5 of 53 
 

Figure 21: Bluetooth SPP Test 28 

Figure 22. Period OUtput Test 28 

Figure 23. Plot showing the oscillation frequency as a function of distance from the front 
of the car to the coil 

Figure 24: Total Budget Breakdown 

30 
 

35 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 6 of 53 
 

 

Abstract 

This project aims to develop a flexible and straightforward parking management system 
to provide insight into parking capacity and trends and provide a method for assigning and 
enforcing restricted parking permits. This will be accomplished using BTLE wireless technology 
in a two-part system: a unique Bluetooth beacon mounted on each vehicle interfacing with a 
stationary wireless transceiver in each parking spot. These stationary transceivers, or base 
stations, will use an inductive loop to monitor a vehicle’s presence in the parking space. A 
database of permissions and registered BTLE tags verify if the car in the parking space is 
authorized to park in that spot and determine whether the vehicle has been there for longer than 
approved.  The system constructed here will demonstrate a modular unit for a single parking 
spot, but a single hub in practice can manage multiple spaces. 

Background  

Current parking enforcement is done either by manual inspection of cars for decals, 
permit-enforced gating, or license plate recognition systems. There are also parking systems that 
use distributed sensor networks to measure capacity and provide digital signage accordingly [1]. 
E-Zpass is a popular electronic road toll collection system that uses active radio frequency 
identification (RFID) transponders mounted in users’ vehicles to identify them as they pass 
through the toll plaza. In 2019, there were nearly 42 million active transponders, which made 3.7 
billion transactions [2]. 

Our project differs from these existing technologies by using Bluetooth Low Energy 
(BTLE) technology to identify every vehicle in each parking spot in a lot or garage, track 
occupancy of that parking spot, and authenticate whether cars are permitted to park there. This 
will provide much more information than existing methods and detects parking permit violators 
far quicker and more automated than manual verification. Implementation of this system will 
reduce human bias and save parking enforcement’s time. In the time of SARS-CoV-2, it is more 
important to have hands free methods for payment.  If this technology fix is not implanted, 
drivers will continue to unnecessarily risk their health to pay for their parking spot. 

The most common vehicle detection method is the inductive-loop sensor, which uses a 
coil of wire in the pavement to sense a change in inductance due to eddy currents induced in the 
vehicle above. We plan on integrating this into a parking spot to detect if a car is parked above. 
The induction loop will be designed in Multisim and submitted to the professor to manufacture 
the PCB header board. To convert the signal into usable data, we will use a counter to take the 
inductive loop’s average frequency. When a car is present, the frequency will be reduced.  

 This design project drew on the entire ECE Fundamentals series in the design of circuits, 
the layout of PCBs, and the process of testing and debugging the device. Both the intro to 
Embedded (ECE 3430) and the Advanced Embedded (ECE 4501) curricula are used in the 
software development process for the microcontroller. This includes writing the code, using 
protocols such as UART, and implementing the microcontroller board. The inductive sensing 



 

Page 7 of 53 
 

loop utilized concepts from Electromagnetic Fields(ECE 3209) and from RF Design (ECE 
4209). Finally, the STS 4600 technical writing class curriculum will be used in the final report. 

Constraints 

Design Constraints 

 The Faraday’s Fridge group consists of 3 electrical engineers, therefore the focus of this 
capstone project was on the hardware components while deploying embedded technology to 
provide proof of concept for a future software implementation. Applying embedded technology, 
the project utilized a Texas Instruments Launchpad as a platform for development.  

CPU Limitations 

 To satisfy the needs to process incoming data streams, the Texas Instruments Launchpad 
MSP432P401R board [3]. This board was selected for the 48 MHz clock speed, large memory 
banks, and compatibility with the Texas Instruments BOOST-CC2564MODA [4]. The booster 
module enabled the use of Bluetooth without the design for a header board. 

Software Availability 

 The University of Virginia provided licences for National Instruments’ Multisim [5] and 
Ultiboard [6], enabling the development of the oscillator PCBA.  To encode the Texas 
Instruments Launchpad, the licence free Code Composer Studio [7] was selected. Pulling data 
from the microcontrollers and interpreting the results, MathWorks Matlab[8] was used under the 
University of Virginia’s student licence.  

Manufacturing Limitations 

Through our gratuitous professor, our PCBs were put panel and sent to Advance Circuit 
for manufacturing. Despite lead time delays from other manufacturers, the turnaround time was 
less than one week per board, providing time for rapid prototyping. Important limitations form 
Advanced Circuits [9] include: 1 oz Cu, Lead-Free Solder Finish, and minimum 0.005” 
line/spacing. 

 Sourcing of parts was done through Digikey and Mouser. With global relations conflicts 
and health concerns, the part supply chain was slowed and prevented the use of certain parts and 
device footprints. 

Economic and Cost Constraints 

 Due to the economic restrictions of the University of Virginia, each capstone project was 
limited to five hundred dollars.  This allows for a large budget for design and development of 
rapid prototypes of the project.  

 

 



 

Page 8 of 53 
 

External Standards 

The regulation of wireless communication is always considered when present. The 
inductance coil is an intentional radiator and operates near 230 kHz. Through FCC 47 15.213, 1 
Watt peak output power is permitted [10].  With the  oscillator powered through a 3.3 V supply 
and drawing less than 100 mA peak, the team believes that it complies with the requirements, 
however official verification is needed. FCC BLE is regulated through the 2.402-2.48 GHz 
bandwidth through FCC ID Z64-2564N [11]. Due to BLE chips being produced through the 
Texas Instruments, they are licenced for use without modification. 

To ensure that the PCBA can be reproduced safely, the following regulations were 
followed to ensure uniformity.  IPC Standards 9001-2015  [12]set out standards for quality 
management for PCB manufacturing. Advance Circuits has certified their compliance with the 
guidelines listed in IPC. When selecting parts, JEDEC Solid State Technology Association SMT 
[13] were followed to ensure that the footprint of the parts ordered matched the pads placed on 
the PCB. To ensure the environmental and public safety, sourced parts and PCB certified RoHS. 
RoHS restricts the use of hazardous materials in electronic products [14] .  

The communication between the central hub and the microcontroller was over a USB 
cable. The regulation of USB cables is through the USB Implementers Form [15].  Between the 
computer, microcontroller, and the booster pack the communication protocol is UART.  UART 
ensures that serial communication between different components is consistent and readable [16].   

Tools Employed 

Hardware 

In order to design the hardware component, the PCBA, National Instruments design tools 
were implemented for testing and characterization. Mac improved upon his simulation 
techniques in order to design a reliable oscillator in Multisim [5]. Mac also used Matlab [8] to 
perform calculations for the oscillator circuit and to analyze test data. Seth took the schematic 
from Multisim and implemented a layout using Ultiboard [6]. To match the components 
available at Digikey, new footprints were created using the tools integrated into Ultiboard.  

Embedded Development 

 The embedded development for this project was done by Tyler entirely in the C 
computing language using Code Composer Studio v10.1.1 [7]. The firmware on this project was 
broken down into two parts which have very different development approaches in terms of 
software used. The first part is the microcontroller which controls and pulls data from the 
induction loop PCB. This firmware is built based on the TI_Drivers and example projects 
available in the SimpleLink MSP432P4 SDK version 3.40.x.x which is all available inside Code 
composer studio via the Resource Explorer. Specifically, the firmware used for this board is a 
modified version of the “capturepwmdisplay” example project available in this SDK. Tyler 
added to this script an additional GPIO pin to serve as an enable bit on the PCB using the 
GPIO.h driver and the SysConfig tool from texas instruments. Also, this example project runs 
the TI_RTOS, but since a single thread was used, this served no purpose in the end result. This 
entire firmware approach was new to us, since none of us had worked with the SimpleLink SDK, 



 

Page 9 of 53 
 

or TI_Drivers. However the SDK and example projects were really simple to use and are 
recommended for future students. 

 The second firmware approach revolves around using the BOOST-CC2564MODA, 
which is the bluetooth booster pack we selected. Texas Instruments provides the CC256x 
MSP432 Bluetopia SDK for this hardware. This SDK provides sample projects that open a serial 
terminal with commands to interface with various Bluetooth profiles. From here the Serial Port 
Profile Low Energy (SPPLE) sample project was used and did not require modification. Rather 
Matlab[8] functions were created to interact with the serial terminal instead of UART to control 
the Bluetooth hardware and read its output. 

Software 

 The software function in this project is to communicate over UART to both of the circuit 
boards for the purpose of controlling the bluetooth hardware via the SPP protocol, as well as 
process data coming off both of these boards and interface with the user. This was entirely done 
in Matlab. Tyler learned how to pull advertising data form the BLE sensor using the SPPLE 
protocol and oscillation frequency from the counter. Using Matlab, the team deciphered the data 
into a readable display to detect if a car was present. Another software tool used was the 
Estimote phone app. This app allows configuration of the beacon. 

 

Ethical, Social, and Economic Concerns 

Environmental Impact 

 To minimize environmental impact, parts were carefully sourced to produce a final 
product that exclusively included RoHS compliant components. This effort was to prevent 
hazardous materials from being introduced into the environment.  If the project proceeds from 
development into production, alternative sources will not be needed to comply with the standards 
to make a compliant product.  

Sustainability 

 As society transitions towards being more sustainable, it is imperative that the project is 
proactive and consider its impact on the environment. There is a potential for a large amount of 
electronic waste if the system is not maintained. However, if the users exchange the battery of 
the Bluetooth beacon and return broken modules, the environmental impact can be reduced by 
reusing the tag devices [17]. The other battery in the system used to power the oscillator is a 
traditional 9V battery for simplicity. While the draw from the battery is low, enabling an 
extended life, an extension of a 3.3 V regulator connected to AC power. This would eliminate 
the need for the 9V battery by relying on a small amount of energy from the power grid.  

Health and Safety 

 The primary safety concern is electrocution; to prevent risk electric shock, there are no 
high voltage components in the system.  Additional safety measures are taken by using a star 



 

Page 10 of 53 
 

grounding technique on PCBA header boards.  To further prevent shock, it is recommended to 
keep the device out of reach of children and in an enclosed container. 

Manufacturability 

As the design is a prototype, it is not designed for manufacturability. The NI Launchpad 
and booster pack are intended for the development of a product and not mass production. While 
the parts on the oscillator header board are RoHS compliant and can be used for manufacturing, 
the board itself is designed to attach to the NI Launchpad and has many features not used in this 
design. Manufacturing at any level other than this design will be under the “Future Work” 
section. 

Ethical Issues 

A major concern with any identification and authentication system is the transmission of 
private information. This system has inherent security in that there is no personal information 
stored on individual tags. The only information visible to the public eye is the Bluetooth address, 
which is no less secure than seeing a license plate on the car. The ethical concerns of this project 
revolve around data storage and access. To ensure secure information for the customers, end-to-
end encryption and firewalls must be implemented.  As the program develops into a full 
company, there needs to be a heavy focus on this.   

Intellectual Property Issues 

 In USRE38626E1 patented “Parking regulation enforcement system” permits the use of 
cameras to regulate parking meter usage [18]. It claims, “a parking regulation enforcement 
system for monitoring a parked vehicle, the system comprising: a camera capturing a first image 
of the parked vehicle at a first observation time and a second image of the vehicle at a second 
observation time.” While this provides an alternative to the traditional method of checking 
parking meters, it can catch unpermitted parked cars. Our project's objective is to make both the 
law enforcement’s job easier and provide a simpler way to pay for parking. Our device allows 
hassle-free, contactless payment for the user.  

 A parking patent that targets the person that parks in the parking spot named “System and 
Method For Managing Payment Based Parking with Near Field Communication” allows users to 
tap to pay with their mobile device instead of using coins or credit cards [19]. Faraday’s Fridge’s 
solution takes it a step further by allowing the user to park and go without worrying about paying 
them.  

 Another related patent, “Method for managing a parking lot,” claims that can manage a 
parking lot “via a processor, transforming received parking lot data comprising video data and 
audio data into parking lot information comprising information about a plurality of overlapping 
moving parking lot objects, the parking lot information comprising an identification of at least 
one of the plurality of overlapping moving parking lot objects, the identification determined by 
the processor; and transmitting the parking lot information to an interaction device [20].” In this 
design, there is the potential ethical issue of recording audio and video of patrons. This would 
not be an issue in Faraday’s Fridge’s design due to willingly signing up for the service.   



 

Page 11 of 53 
 

 While there are patents for other parking management systems, from our research, we 
have determined that there is not a patent out for a parking system that uses Bluetooth or an 
inductive loop.  Separately, our design does not include any novel device but is instead an 
implementation of preexisting technologies. For that reason, we believe that our parking meter 
management system is patentable. Given that there is a large market of parking meters across the 
United States, we think it can be a successful product once it is designed for production. 

 

Detailed Technical Description of Project 

System Overview 

 
Figure 1. System Block Diagram  

 At a glance the system consists of the following main components that can be divided 
into the induction loop path and the BTLE path. At one end of each path is the car, which is a 
metal body that interacts with the induction loop that also contains an Estimote Bluetooth 
Beacon. On the other end is the PC which is a Matlab script that communicates to both boards 
over UART USB connections as well as the user. 

 The induction loop PCB is a custom header board for the MSP432. This PCB consists of 
an oscillator circuit with a resonance tank consisting of an inductor and a tapped oscillator. The 
induction here comes from an inductive loop of wire. When a metal body comes near the loop 
the inductance varies causing the oscillation frequency to vary. This frequency signal feeds a 
CMOS counter to divide the frequency down significantly before connecting to a pin on the 
MSP432. This microcontroller provides an enable bit to the oscillator and measures output from 
the counter. The microcontroller clocks the period coming out of the counter and constantly 
streams it over UART to the PC. When a significant change in period occurs, this means a car is 
detected.  

 After detecting a car, the program sends a UART command to the second 
microcontroller. This microcontroller is attached to a bluetooth boosterpack, and the Bluetooth 



 

Page 12 of 53 
 

Stack can be interfaced over serial communication. The Matlab script tells this program to start 
scanning for bluetooth devices and reads in a list of devices as text. Then this list is searched for 
the unique identifiers provided by the Estimote beacon via Eddystone-UID advertising protocol. 
This verifies that the car ID is valid. 

Induction Loop 

 The function of the inductive sensing circuit is to detect the presence of a vehicle. This is 
accomplished by a Colpitts oscillator which drives the LC tank at its resonant frequency. The 
capacitor values are constant, so a change in inductance yields an inverse change in resonant 
frequency. When a metal object is present in the magnetic field of the inductive loop, eddy 
currents induced in the metal object oppose the magnetic field, lowering the inductance and 
yielding a higher resonant frequency.  

 Because the change in inductance is relatively small and the change in frequency is 
inversely proportional to the square root of the change in inductance, the circuit must have very 
stable oscillation characteristics and not be easily perturbed by noise. The first way to ensure 
stability is to verify that the capacitor values are appropriate for the range of values the inductor 
could take on. If the inductance is too low, the oscillator’s frequency will increase to a point 
where the capacitive feedback divider appears to be a short circuit and the amplifier will be 
unable to sustain a stable oscillation. The second consideration is minimizing the effects of 
transient perturbations. This is done with a counter serving as a frequency divider averaging the 
period. We used a 14-bit counter to divide the frequency from 232kHz to 28Hz which yields an 
output which is the sum of 8192 other periods. 

 
Figure 2. Full schematic of the inductive sensor header board  

 The circuit is powered by a 9V battery which is regulated down to 3.3V using a low-
dropout regulator. The entire oscillator circuit can be turned off or on using the enable pin on the 
LT1763CS8-3.3 to conserve power [21]. The Colpitts oscillator is driven by Q1, the 2N3904 
NPN BJT biased by R1 and R7, which pumps the LC tank consisting of L1, C1, and C6. The 



 

Page 13 of 53 
 

inductor’s value was chosen to be in the order of 50uH according to Federal Highway 
Administration guidelines, and the capacitors’ values were set such that the resonant frequency 
was less than 1Mhz [22]. 𝐶is the series combination of 𝐶ଵand 𝐶 and was found using the 
following equation: 

 𝑓 =
ଵ

ଶగඥ
 

The signal output is current-limited by R6 and AC coupled by C3. The DC bias is then 
set at the middle of the rail by the voltage divider formed by R2 and R3 and negative transients 
are shunted by D2. In this circuit, D1 was not populated but was added in case it was needed 
instead of D2. The 4020 counter (U2)  accepts this oscillation as its clock signal. After 8192 
cycles, the 14th bit of the counter goes high and outputs a ‘1’, immediately resetting the counter. 

Embedded Development - Bluetooth 

 The embedded development for the Bluetooth side of things is very minimal. Our 
approach revolves around using the BOOST-CC2564MODA [4], which is the bluetooth booster 
pack we selected. Texas Instruments provides the CC256x MSP432 Bluetopia SDK [24] for this 
hardware. This SDK provides sample projects that open a serial terminal with commands to 
interface with various Bluetooth profiles. From here the Serial Port Profile Low Energy (SPPLE) 
sample project was used and did not require modification. Instead some test processing and use 
of the built in commands are all that is needed. 

 SPPLE is a custom version of the SPP protocol that emulates a wired serial connection. 
This works by using GATT characteristics (Generic Attribute Profile for BTLE) which are 
defined in the Bluetooth Specification [23]. Specific knowledge of the Bluetooth Spec is beyond 
the scope of this project. Nevertheless, the figure below shows the UUID’s associated with this 
communication as listed by TI. These characteristics are how the sample code would allow a 
client and server to send and receive information. 

 
Figure 3. Bluetooth Profile GATT Characteristics 

 The really important part of this sample project is that upon starting it opens a serial 
command window which allows access to functions that work with GAPPLE, which is the low 
energy version of the Generic Access Profile. This profile deals with discovery and connection 
of Bluetooth devices. The commands here in order are client, startscanning, and stopscanning. 
These are simply sent from Matlab to the microcontroller to interface with the Bluetooth Booster 
pack as if you were typing in a command window. After defining the board as a client, one can 



 

Page 14 of 53 
 

start scanning for Bluetooth devices. Sample output is shown below through a Putty Serial 
Terminal. 

 
Figure 4. Bluetooth Test Output  

 After starting the scan, many bluetooth devices are spit out to the terminal such as the one 
above. I will review some of the features and what they mean in the context of this project. The 
first thing to note is the address and address type. When this project was first started we believed 
that the 6 byte BT Address could be used to identify cars. However, as it turns out these BT 
addresses are more like ip addresses than product identifiers in that they can be static or 
randomly generated. As it turns out most bluetooth devices randomly generate their address as 
shown in the field “Address Type: atRandom.” It would not be possible to use this address then 
to determine the identity of a car in a parking lot. 

 What we learned is that bluetooth beacons work by using non-connectable undirected 
advertising as shown in the “Address Type” field. This means that the beacon will broadcast an 
advertising packet out to any receiver. These advertising packets can hold useful configurable 
data such as short messages or identification. This detected bluetooth device has 31 bytes of 
advertising data where some bytes specify type, others length, and others are the data itself. Of 
the data, only some of it is configurable as well. Our group elected to go with Google’s 
Eddystone-UID open standard for our advertising. This standard is supported by our beacon, and 
broadcasts 80 + 48 bits for identification as well as the transmit power, and all of these factors 
are configurable through the Estimote phone app for our beacon. 

 
Figure 5. Eddystone UID Advertising Packet  

 Displayed above is the complete bytewise breakdown of an Eddystone-UID advertising 
packet. The relevant portion here is the Service Data which is 20 bytes. This breaks down further 
as shown below. 



 

Page 15 of 53 
 

 
Figure 6. Eddystone-UID Service Data Breakdown 

 As shown in the table there are 10 bytes for the namespace ID and 6 bytes for the 
instance. These are configurable fields intended to be two levels of classification. For example 
the namespace could be the name of a grocery store, and the instance could correspond to an 
aisle. Regardless, this gives us 80+48 = 128 bits to play with. This means that there could be 
2^128 = 3.4028237e+38 different Eddystone Bluetooth beacons. 



 

Page 16 of 53 
 

 
Figure 7. Uart Communication Block Diagram for Bluetooth 

 To summarize what is going on here in terms of embedded programming, Texas 
instruments supplies a bluetooth SDK with example projects that can access bluetooth protocols 
through a serial communication. After passing the commands “client” and  “startscanning” to the 
serial terminal all of the bluetooth devices and advertising data that may be available is printed 
out over UART to the serial terminal. “stopscanning” is used to end this process. Then all of the 
data is pulled from the UART  to be processed as text in Matlab. The namespace and instance 
corresponding to a specific will be specified in Matlab and the text searched for a match. Of 
course the instance and namespace are entirely configurable through the Estimote phone app as 
shown in our video demo. 

 

Embedded Development - Induction Loop 

 The induction loop firmware is built based on the TI_Drivers and example projects 
available in the SimpleLink MSP432P4 SDK version 3.40.x.x [26]. Specifically, the firmware 
used for this board is a modified version of the “capturepwmdisplay” example project available 
in this SDK. The only thing added to this script is an additional GPIO pin to serve as an enable 
bit on the PCB using the GPIO.h driver and the SysConfig tool from texas instruments. The 
timer configuration was also changed to have a smaller divide and go faster in development for a 
more precise period reading, however the induction loop proved to cause a large enough change 
in inductance that this was not actually necessary. In order to recreate this code, merely 



 

Page 17 of 53 
 

download the sample code from Resource Explore in code composer, and then configure the pin 
as an active high output in any fashion. Again, in this case the GPIO.h driver was used. Below is 
a screenshot from the Sysconfig tool that shows the relevant pins and connections as well as the 
drivers implemented. 

 

  
Figure 8. MSP42 Pinout for Induction Loop  

 For the purpose of this project the LED’s here are irrelevant. They just flash while the 
code is running. Attention should be given to pin 6.7, which takes the output from the inductive 
loop header board and pin 3.5 which is an output pin driven high and serves as an enable bit for 
the 3.3V regulator. Additionally, the UART pins are highlighted in the above diagram as the 
display driver uses UART to output to the PC.  

 Although the sample code is made for an RTOS, there is actually just a single thread 
included that runs in an entirely linear fashion before entering a while loop that indefinitely waits 
for rising edges on the input pin and outputs the timer over UART. The drivers used are 
displayed as well. Again, all of them except the GPIO driver are default with the program. To 
quickly summarize this sample project, all drivers are initialized with the Sysconfig tool. For 
example the pins numbers, input vs output, pullup pulldown resistors, the timer config, UART 
buffer size and direction and so on. The code merely calls the driver init functions, configures the 
capture driver and PWM driver for rising edge and creates a semaphore to wait on in the while 
loop. Then this timer capture outputs a value using the display driver, which is essentially a 
wrapper for UART. The result is a constant stream of values containing the period coming out of 
the PCB cmos counter in microseconds. 

PC 

 Initially we did not plan to use two different microcontrollers for the project. While it is 
not an inherently worse system to use two microcontrollers instead of one, in this case it 



 

Page 18 of 53 
 

definitely makes the power usage go up when using boards that are as overkill as the 
MSP432P401R to run a simple timer capture input pin. However, the reason that we ended up 
with two boards is that the bluetooth SDK and example projects we pulled from are super 
complicated, and work on an outdated compiler. The intention was to just run the main function 
of the bluetooth code at some point in the very simple capture compare program to bring the two 
together. However, issues with the different compilers and linker files made this an impossible 
feat without starting from scratch with the Bluetooth stack. To remedy this problem on a single 
board, we would recommend a future user gets the newest TI bluetooth header board for the 
P401R which is actually compatible with Sysconfig and the TI drivers used above. However, in 
this case the solution pursued was to use two boards and handle communication through two 
separate UART ports in Matlab. A high level diagram of the code is shown below. 

 
Figure 9: PC Program Block Diagram 

 This diagram sums up the main script in Matlab. After initializing the USB com ports 
associated with the bluetooth microcontroller, the induction loop microcontroller and the ID of 
the car, the program begins with a user input where they can start the program or stop it. Once 
initialized the program begins waiting for a car. This is accomplished by calling the 
loop_detect() function. This function is passed the com port for the induction loop and returns a 
boolean true once a car is detected. Otherwise it still waits. If a car is detected, the BT_detect() 
function will be passed to the Com port of the bluetooth microcontroller as well as the ID to 
search for. This function returns a boolean that tells if the car’s ID matches that passed into the 
function. If not, or there is none at all, then the parking is invalid and the program goes back to 
the user prompt. If the car has a valid bluetooth ID, then the parking is valid and the software 
will again call the loop_detect until the car leaves. Note that the detected boolean detects a 



 

Page 19 of 53 
 

change in inductance positive or negative, so if the car leaves that will also return a true detected 
value. 

To dive a little deeper into the functions, the BT_detect() function simply carries out the 
UART read and writes described above for the BT microcontroller. First the serial connection is 
initialized at the proper Baud rate and com port. Then it sets the device to client mode, tells the 
device to scan for Bluetooth devices and then reads them as text. The ID parameter passed in is 
simply the 16 bytes corresponding to the namespace and instance concatenated. This function 
also rearranges the ID string to fit the format “0xAB 0xCD” as shown in Figure 4 that way it can 
be searched for precisely - finding an exact match after going line by line. Something to consider 
is that the Matlab code somewhat arbitrarily reads 200 lines of serial terminal. In every tested 
case this is more than enough to read all the surrounding devices often multiple times and usually 
reads about 15 devices. It also executes very fast so this number was chosen. However, it is 
possible that in some cases where there is high bluetooth traffic and many devices that the car 
would not be scanned for in the first 200 lines. In this case that number can be raised at the cost 
of slowing down the scan. Also, this code writes to a text file the list of scanned devices just to 
keep a log. Anyway, the function returns a boolean that is true if any of the local bluetooth 
devices match the value passed. Otherwise the car should not be parked there and this is output. 

The loop_detect() function is slightly more complicated than this. Again the serial port is 
opened in Matlab. However, in this case the connection is just constantly fed values from the 
loop microcontroller which is the period coming out of the CMOS counter in microseconds, so 
the function runs in a while loop. The period values are fed into a 25 index circular buffer, the 
first 10 of which are averaged to determine a calibration period. This calibration period is 
flexible in that it is read from the first 10 values rather than set in advance, that way either the 
frequencies induced by a park car or no car at all can be used as a baseline. Now, if a value 
differs from that calibration by more than 2%, then a car has either pulled in or pulled out. This 
is the detected boolean referenced in Figure 9 that is returned by the function. It also causes the 
while loop to be exited. An initial problem was that the period values were coming in extremely 
fast and causing buffer overflow issues. As a fix the Malab function always flushes the serial 
port before reading a value. This helped with consistency and eliminated some crashes. 

 

Project Timeline 

 In order to best articulate how the timelines of this project shifted throughout the 
semester three versions of the timeline are shown below accompanied by the rationale/sentiments 
of our group at the time they were created. The last timeline rationale will include lessons 
learned regarding the planning of the project. First there is a version that was created before even 
the proposal was finalized. The rationale is copied from the proposal so that it may be contrasted 
with the final course of action. Then there is a timeline update conducted at the midterm design 
review and the corresponding thoughts. Lastly is the true timeline of the project from a finished 
perspective, which will be contrasted with the others. 



 

Page 20 of 53 
 

Figure 10. Initial Gantt Chart 

Initial Timeline Rationale 

“For the timeline of this project many tasks can be completed in parallel but there are 
some deliverables that must be completed before moving forward. For example, all of the parts 
should be ordered before the final draft of the proposal so that prices can be finalized. For some 
of the parts, including the Bluetooth components, the parts must be fully shipped and received 
before serious work can begin so there are some buffers built into the timeline for shipping and 
receiving parts. 

Since the induction loop and header board rely on a PCB, it is essential that the designs 
are completed before the orders are placed through Professor Powell. We plan on having the 
design finalized by the end of September for the first order, and to have them mostly tested by 
the second order that way a possible revised design can be made if necessary. The two main 
developments, the induction loop and bluetooth components should be designed in parallel and 
early, to dedicate as much time to troubleshooting as possible.” 

 



 

Page 21 of 53 
 

Figure 11. Midterm Gantt Chart  

Midterm Design Review Timeline Update 

“One of the largest changes to our project is that we switched microcontrollers.  The change 
in microcontrollers enables us to work in a developer kit. These development kits have the ability 
to program the Bluetooth module without using a separate board.  Enabling us to have a coherent 
prototype and ability to troubleshoot without multiple boards.  An additional feature of the new 
microcontroller is that it has the ability to use a Bluetooth booster pack.  This allows us to reduce 
the amount of hardware design for this component and focus on the software side of the project.   

 (Above,) the Gantt chart was updated to reflect the current timeline.  With the new timeline, 
we only have one set PCB sendout date and one emergency sendout.  This is due to the inability 
to get boards out, back, and tested within a reasonable time.  Another change on the chart is the 
new MSP Bluetooth booster pack.  The new booster pack gives us the ability to reduce the amount 
of design work for the most certain part.” 

 
Figure 12. Final Gantt Chart  

Final Version of Timeline and Reflections 

 An obvious change and the only addition to the timeline comes in changing “Emergency 
Sendout” to “Sendout 2” and the addition of “More Loop Testing” to the last version of the 
timeline. Unfortunately, the oscillator design we initially went with did not work and had to be 
revised for the final project. This meant that the loop testing window went on far longer than 
expected, and all of our efforts for most of the semester were put towards fixing this oscillator. 
As a result the window where parts were being ordered grew much larger. Although we would 
have liked to have ordered the parts much earlier, some of our early runs had parts that we later 
changed. For example the diode package from the first run was changed and had to be purchased 



 

Page 22 of 53 
 

later. Partly as a result of focusing on this hardware, the bluetooth header and software sections 
were put on delay. Outside of some initial proof of concept work and laying out software 
generally, the majority of the coding and testing of this project was done in finals week. 

The final version of the timeline was affected by the unique circumstances of 2020. In the 
final version, the capstone fair and online poster session were done away with. Also, Tyler did 
actually get Covid, and since he was working on the bluetooth embedded code, this introduced a 
delay in that category. This was the other major factor in the delays that the software and testing 
sections have in the graph above. 

The time management portion of this capstone can only be described as it was by 
Professor Powell as “start early and fail early.” Truthfully, the initial timeline was very 
optimistic with deadlines; however, this led to some failures being detected early enough. Our 
group did work a lot at the end of the semester, but did not feel like we were cramming it all in. 
One piece of advice that would have helped us massively was to check right away to see if all of 
the parts were correct. Probably the greatest challenge of the embedded system was working 
with an outdated and nearly unsupported bluetooth boosterpack, since we did not buy the newest 
version. Additionally, our efforts to test the induction loop were hindered after ordering some of 
the wrong parts. 

 

Test Plan 

 
Figure 13. Original Hardware Test Plan 

 In the prototyping phase of the oscillator design, the oscillator circuit was constructed on 
a breadboard using discrete components and powered externally. The FET-based design proved 



 

Page 23 of 53 
 

problematic in its stability and amplification capabilities, so a BJT-based Colpitts oscillator 
design was used instead.  

 The PCB was visually inspected to ensure that there were no broken traces or bad 
contacts. When no issues were found, the power regulation system was soldered onto the board. 
The regulator was tested for both its shutdown feature and its regulation capabilities. The 
subcircuit was not functional at first due to an incorrect pinout in the Multisim library. The PCB 
was modified to make the proper connections at the expense of the bypass ripple reduction 
feature of the regulator. This did not prove to be problematic as the power supply demonstrated 
exemplary performance and settling time. 

 
Figure 14. Power supply subcircuit 

 
Figure 15: Power supply settling time without load (1V/div. and 100us/div.) 

 Next, the oscillator subcircuit was installed and tested for functionality using an 
oscilloscope. It functioned as expected from the beginning. The counter and its requisite input 
protection were soldered in and tested, again with the expected results. 

 



 

Page 24 of 53 
 

Figure 16.  Oscillator and counter subcircuit 

 
Figure 17. Oscillator output waveform 

 
Figure 18. Oscillator and counter output waveforms showing regular period as anticipated 

 
Figure 19.  Counter output pulse shape 

 

 The inductive sensing system was tested by incrementally moving a 2008 Toyota Camry, 
a fairly average and common sedan, over the coil and recording the output frequency. This 
established a profile of inductive loop sensitivity over the length of the vehicle. 

 



 

Page 25 of 53 
 

 
Figure 20. Initial Software Test Plan 

 The software test plan began with running a simple bluetooth demo to achieve serial 
communication. This was initially the SPP protocol before switching to the SPPLE example 
program that ended being used. However, given that there is only a single bluetooth header 
board, writing from one MSP432 to another would not be possible in the typical client and server 
configuration that the program was designed for. However, I found software by the name of 
bluetooth serial terminal on the windows store that allows us to emulate this function on a laptop 
with bluetooth. I could write into Putty which connected to UART to the bluetooth header board 
which sent the message and was read on my laptop. Communication the other way worked as 
well from laptop to board. The results of this test were a success, as messages could be relayed 
through the serial terminal from one device to another as shown in Figure 21. This test also 
proved the viability of writing to the bluetooth board via UART as a coding solution. 



 

Page 26 of 53 
 

  
Figure 21. Bluetooth SPP Test 

 Another software test that was conducted by just simply reading in the periods of the 
induction loop board output using a fixed inductor value rather than the entire wire loop. Here it 
was found that the oscillator had a period of around 17,808 to 17813 us and the value only 
fluctuated between these values over an extended period of time. This means that there is an 
error of approximately only .00028 due to the clock divide. It is for this reason that the divide 
was left at 64 rather than cut down like initially. Power is saved and the error is not close to the 
3% fluctuation expected from the car. 

 
Figure 22. Period OUtput Test 

We tested the system in its entirety using a vehicle in a parking lot. After the system was 
calibrated, the vehicle was driven over the inductive sensor with a Bluetooth ID registered in the 
system, and then the vehicle was driven off of the sensor. This procedure was repeated after the 
Bluetooth ID was changed to be foreign to the system. The vehicle was then driven on and off 
the sensor in quick succession to test responsiveness, hysteresis, and consistency. 

 



 

Page 27 of 53 
 

Final Results 

In this section you should explain the functionality of your final device in detail. You should 
honestly assess and explain which of the success criteria defined in your proposal you met and 
which you did not. 

 

Points Induction Loop Bluetooth Data 
Reliability 

Bluetooth 
Positioning 
Reliability 

Software 
Functionality 

3 Multiple “test 
vehicles” are 
almost always 
detected 

Bluetooth data is 
transmitted 
nearly without 
errors, correct ID 
is almost always 
detected 

Successful 
transmission 
while car is in 
parking spot 

Software is 
professional with 
no bugs 

2 Induction loop 
only works for 
particular test 
vehicle most of 
the time 

Bluetooth data 
has some errors, 
false negatives 
will be viewed 
more favorably 
than false 
positives 

Mostly 
successful 
transmission 
while car is in 
parking spot, 
possible blind 
spots or specific 
orientations that 
work best 

Software is 
functional but 
unpolished 

1 Induction loop 
only works some 
of the time 

Bluetooth data is 
rarely 
transported 
correctly, many 
false positives 

Car must be 
placed perfectly 
for transmission 
to work 

Software 
contains 
significant bugs 

0 Induction loop 
does not work 

BTLE does not 
work at all 

BTLE does not 
work at all 

Software does 
not function at 
all 

Table 1. Grade Rubric 

 

Points Grade 

10-12 A 

7-9 B 

4-6 C 



 

Page 28 of 53 
 

0-3 D 

Table 2. Points to Letter Grade 
 

 Our system met a majority of its requirements with gusto. The induction loop component 
earned highest marks, detecting all of our test vehicles consistently, quickly, and accurately. The 
Bluetooth transmission criterium was met in all of the test cases. The Bluetooth module never 
had any false positives or negatives (earning 3 points under data reliability), but occasionally 
needed to be reset only on restarting the software. We believe that this bug is due to occasionally 
failing to initialize serial port communication between the bluetooth receiver and the PC. 
However, once the software is started, it completes bug free. The software was capable of 
showing the effectiveness of our system and processed the information correctly, but wasn’t 
debugged to the point that it could be deployed tomorrow, since these manual board setups were 
sometimes necessary on startup. 

 
 Figure 23. Plot showing the oscillation frequency as a function of distance from the front of the car to the coil 

 We hypothesized that the car’s effect on the oscillation frequency would occur when the 
coil was under the engine block. This turned out to be incorrect. There is an aberration centered 
at 50 inches, roughly under the engine block, but the peak effect occurs when the coil is centered 
squarely beneath the car.  

 In terms of false positives and false negatives, there was never a false positive for 
detecting a bluetooth ID because the combinatorics of another device having the same 16 byte ID 
are next to impossible. Upon initial testing, there were some false negatives for the bluetooth 
case, where the connection was perhaps too weak. However, the Estimote app allows the 
transmit power to be turned up to a maximum range of 70 meters and we raised this transmit 
power to eliminate this issue. The induction loop also performs super consistently, the period 
when no cars are moving is precise within a fraction of a percent, and adding the car gives a 3% 
change roughly. There was no case where we saw a false positive or negative for the loop. 



 

Page 29 of 53 
 

Costs 

 Tracking the budget throughout the project resulted in a total expenditure of 254.92 for 
one Estimote BLE beacon as well as one working oscillating inductance loop vehicle sensor.  
Due to the restrictions on quantities of the Estimote beacons, the price could not be reduced 
through online obtainment; to get lower prices, a deal must be reached with the company to 
supply the beacons. As we used TI Launchpads to develop our product, an alternative 
microcontroller would be required to obtain large quantities. At larger quantities, the MSP 
microcontroller can be bought without a launchpad, however this would require a board 
redesign. Another significant cost reduction would be the elimination of the BLE booster, the per 
unit cost is $24, but the Bluetooth chip integrated onto a one PCB is $12. The cost of PCB 
manufacturing also decreases significantly when produced in large quantities. An estimate of 
what the cost of 10,000 units is shown in table 3. 

  

 Cost for one unit Estimated cost per 
unit at Q = 10,000 

Savings 

Sensing Node $102.88 $30 70% 

Estimote Beacon $34.74 $25 30% 

Total $137.62 $55 60% 

 

 

Future Work  

 With the short time table of the capstone class, there is room for improvement for the 
design in the future. The ultimate goal for the system would be to work with conventional 
parking meters. This would allow access to a large market of potential customers.  To achieve 
this design, the microcontroller and header boards can be reduced to one board. This will result 
in a significant price decrease compared to the prototype. While this device provides a novel 
approach to solve parking management problems, the implementation of subsurface induction 
sensors is invasive and expensive. To make the project viable in the marketplace, efforts should 
be made to install the product easily and non-invasively.  

 In the development of the prototype using the Estimote Beacon, our team came across a 
new article explaining how Bluetooth IDs can be spoofed [25]. As the system currently relies on 
one way authentication, this device is susceptible to this attack. The addition of two-way 
encrypted Bluetooth handshake would increase the overall security of the system. 

  



 

Page 30 of 53 
 

References 

[1] "Parking operators," [Online]. Available: 
https://www.smartparking.com/solutions/parking-operator. [Accessed 30 Oct. 
2020]. 

[2] "About Us," [Online]. Available: https://www.e-zpassiag.com/about-
us/statistics. [Accessed 30 Oct. 2020]. 

[3] "SimpleLink™ MSP432P401R high-precision ADC LaunchPad™ 
Development Kit," Texas Instruments, [Online]. Available: 
https://www.ti.com/tool/MSP-EXP432P401R. [Accessed 10 Dec. 2020]. 

[4] "BOOST-CC2564MODA TMP107 temperature sensor daisy-chain 
BoosterPack™ plug-in module," Texas Instruments, [Online]. Available: 
https://www.ti.com/tool/BOOST-CC2564MODA?keyMatch=BOOST-
CC2564MODA&tisearch=Search-EN-everything&usecase=GPN. [Accessed 10 
Dec. 2020]. 

[5] "Multisim," National Instruments, [Online]. Available: https://www.ni.com/en-
us/support/downloads/software-products/download.multisim.html#312060. 
[Accessed 10 Dec. 2020]. 

[6] "Utliboard," National Instruments, [Online]. Available: https://www.ni.com/en-
us/support/downloads/software-products/download.utliboard.html#312060. 
[Accessed 10 Dec. 2020]. 

[7] "Code Composer Studio (CCS) Integrated Development Environment (IDE)," 
Texas Instruments, [Online]. Available: https://www.ti.com/tool/CCSTUDIO. 
[Accessed 10 Dec. 2020]. 

[8] "Matlab," Mathworks, [Online]. Available: 
https://www.mathworks.com/products/matlab.html. [Accessed 10 Dec 2020]. 

[9] "2 & 4 Layer PCB Special Pricing Options," Advance Circuits, [Online]. 
Available: https://www.4pcb.com/pcb-prototype-2-4-layer-boards-specials.html. 
[Accessed 10 Dec. 2020]. 

[10] "Understanding the FCC Regulations for Low-Power, Non-Licensed 
Transmitters," Office of Engineering and Technology Federal Communications 
Commission, [Online]. Available: 
https://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/bulletins/
oet63/oet63rev.pdf. [Accessed 10 Dec. 2020]. 

[11] "FCC ID Z64-2564N," FCC ID, [Online]. Available: https://fccid.io/Z64-2564N. 
[Accessed 10 Dec. 2020]. 



 

Page 31 of 53 
 

[12] "PCB Certificaitons," Advance Circuits, [Online]. Available: 
https://www.4pcb.com/pcb-certifications.html. [Accessed 10 Dec. 2020]. 

[13] "SMT / SMD Components & packages, sizes, dimensions, details," Electronic 
Notes, [Online]. Available: https://www.electronics-
notes.com/articles/electronic_components/surface-mount-technology-smd-
smt/packages.php. [Accessed 10 Dec. 2020]. 

[14] "2020 RoHS Compliance Guide: Regulations, 10 Substances, 
Exemptions.," 
[Online]. Available: https://www.rohsguide.com/. [Accessed 1 Nov. 2020]. 

[15] "USB Standards: USB 1, USB 2, USB 3, USB 4 - capabilities & 
comparisons," 
Electronics Notes, [Online]. Available: 
https://www.electronics-notes.com/articles/connectivity/usb-universal-
serial-bu 
s/standards.php. [Accessed 10 Dec. 2020]. 

[16] "EIA RS 232 Standard," Electronic Notes, [Online]. Available: 
https://www.electronics-notes.com/articles/connectivity/serial-data-
communications/rs232-eia-v24-
standard.php#:~:text=In%20terms%20of%20the%20RS232%20timeline%2C%
20the%20RS,a%20common%20approach%20was%20required%20to%20allo
w%20interoperability.. [Accessed 10 Dec. 2020]. 

[17] R. LeBlanc, "E-Waste and the Importance of Electronics Recycling,," The 
Balance Small Business, [Online]. Available: 
https://www.thebalancesmb.com/e-waste-and-the-importance-of-electronics-
recycling-2877783. [Accessed 10 Sep. 15].  

[18] P. J. Kielland, "Parking regulation enforcement system". United States of 
America Patent USRE38626E1, 19 Oct. 2004. 

[19] J. Bachmann and L. Berman, "System and Method For Managing Payment 
Based  Parking with Near Field Communication". United States of America 
Patent    .       US20120296708A1, 22 Nov. 2012. 

[20] M. Haynes and P. Haynes, "System and Method For Managing Payment Based        
Parking with Near Field Communication". United States of America Patent      .       
US7123166B1, 6 Oct. 2017. 

[21] "LT1763CS8-3.3#TRPBF," Digikey, [Online]. Available:               .                                    
https://www.digikey.com/en/products/detail/linear-technology-analog-                . 
devices/LT1763CS8-3-3-TRPBF/4247566. [Accessed 10 Dec. 2020]. 



 

Page 32 of 53 
 

[22] FHWA-HRT-06-108. October 2006. Chapter 2, Traffic Detector Handbook: 
Third Edition—Volume I. Available: 
http://www.fhwa.dot.gov/publications/research/operations/its/06108. [Accessed: 
05-Sep-2020] 

[23] "TI Dual-Mode Bluetooth® Stack"Texas Instruments, [Online]. Available:                        
https://www.ti.com/tool/TIBLUETOOTHSTACK-SDK [Accessed 10 Dec. .         
2020] 

 
[24] 

"Bluetooth Generic Attributes,"Bluetooth, [Online]. Available:               .                                       
https://www.bluetooth.com/specifications/GATT/. [Accessed 10 Dec. 2020]. 

[25] "SimpleLink MSP432P4 High-precision ADC MCU Software Development"             
Texas Instruments, [Online].Available:https://www.ti.com/tool/download       .         
/SIMPLE LINK-MSP432- SDK.  [Accessed 10 Dec. 2020] 

[26] E. Montalbano, "Bluetooth Spoofing Bug Affects Billions of IoT Devices,"               
Threat Post, 16 Sep. 2020. [Online]. Available:                                                                              
https://threatpost.com/bluetooth-spoofing-bug-iot-devices/159291/#:~:text.         
=A%20team%20of%20academic%20researchers%20have%20discovered% .         
20a,researchers%20said%2C%20and%20remains%20unpatched%20in%20     .         
Android%20devices. [Accessed 10 Dec. 2020]. 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 



 

Page 33 of 53 
 

 

 

  



 

Page 34 of 53 
 

Appendix 

 

 



 

Page 35 of 53 
 

 
Figure 24. Total Budget Breakdown 

 

 

 



 

Page 36 of 53 
 

Combined_mat.c: 
clear; 
clc; 
 
loop_port = "COM7"; 
BT_port = "COM4"; 
 
CAR_ID = '00010203040506070809101112131415'; 
 
car_in_spot = 0; 
run_program = 1; 
while run_program 
    valid_input = 0; 
    while valid_input ==0 
        x = input("Type 'start' to begin or type 'stop' to exit program\n",'s'); 
        if x == "stop" 
            valid_input = 1; 
            run_program = 0; 
        elseif x == "start" 
            valid_input = 1; 
        else 
            disp("Invalid Input"); 
        end 
    end 
     
    if run_program ==0 
        break; 
    end 
    if car_in_spot == 0 
        disp("Waiting for car..."); 
        loop_detect(loop_port); 
        disp("Car detected, checking BT ID"); 
        RightCar = bt_detect(BT_port,CAR_ID); 
        if RightCar 
            disp("Valid ID"); 
            car_in_spot = 1; 
         
        else 
            disp("Invalid ID"); 
        end 
    end 
    if car_in_spot ==1; 
        disp("waiting for car to leave..."); 
        loop_detect(loop_port); 
        disp("Car left!"); 
        car_in_spot = 0; 



 

Page 37 of 53 
 

    end 
     
end 
 
loop_detect.m: 
function [detect] = loop_detect(ComPort) 
device = serialport(ComPort,115200); 
A = zeros(1,25); %circular buffer 
index = 1; 
detect = 0; 
 
testmode = 0; 
 
cal = 0; 
 
while 1 %main loop 
    flush(device); % clear serial 
    data = str2num(readline(device)) ;%get data 
    A(index) = data ;%load buffer; 
    
    if A(10) ~=0 && A(11) ==0 
        cal = mean(A(1:10)); 
    end 
     
    if abs(cal - data)/cal >= .02 && A(25) ~= 0 % check if buffer full and detect metal 
        detect = 1; 
        break; 
    end 
     
    if testmode ==1 && A(25) ~=0 
        detect = 1; 
        pause(5); 
        break; 
    end 
     
    index = index + 1; % increement and loop buffer 
    if index == 26 
        index = 1; 
    end 
end 
 
 
     
end  



 

Page 38 of 53 
 

bt_detect.m: 
function [detected] = bt_detect(ComPort,CAR_ID) 
 
device = serialport(ComPort,115200); 
 
writeline(device, "client"); 
writeline(device, "startscanning"); 
 
Bluetooth_stream = ""; 
for i= 1:200 
     
    Bluetooth_stream = Bluetooth_stream + readline(device); 
end 
 
writeline(device, "stopscanning"); 
%CAR_ID = '00010203040506070809101112131415'; 
 
string_out = ""; 
for i = 1:2:31 
    string_out = string_out + "0x"+ CAR_ID(i:i+1) + " "; 
end 
 
fileID = fopen('exp.txt','w'); 
fprintf(fileID,Bluetooth_stream); 
fclose(fileID); 
 
detected = contains(Bluetooth_stream,string_out); 
 
     
end 
 
capturepwmdisplay.c: 
/* 
 * Copyright (c) 2016-2019, Texas Instruments Incorporated 
 * All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 
 * *  Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 
 * *  Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in the 
 *    documentation and/or other materials provided with the distribution. 



 

Page 39 of 53 
 

 * 
 * *  Neither the name of Texas Instruments Incorporated nor the names of 
 *    its contributors may be used to endorse or promote products derived 
 *    from this software without specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS "AS IS" 
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
TO, 
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR 
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, 
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; 
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 
LIABILITY, 
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR 
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */ 
 
/* 
 *  ======== capturepwmdisplay.c ======== 
 */ 
/* Driver Header files */ 
 
#include <ti/drivers/Capture.h> 
#include <ti/display/Display.h> 
#include <ti/drivers/UART.h> 
#include <ti/drivers/PWM.h> 
#include <ti/drivers/GPIO.h> 
#include <ti/drivers/dpl/SemaphoreP.h> 
#include <stddef.h> 
#include <stdio.h> 
 
/* Driver configuration */ 
#include "ti_drivers_config.h" 
 
/* Callback used for blinking LED on timer completion */ 
void captureCallback(Capture_Handle handle, uint32_t interval); 
 
/* Local Variables */ 



 

Page 40 of 53 
 

static Display_Handle display; 
volatile uint32_t curInterval; 
static SemaphoreP_Handle captureSem; 
 
/* 
 *  ======== mainThread ======== 
 *  Task that will capture two rising edges and output the time between the 
 *  two edges 
 */ 
void *mainThread(void *arg0) 
{ 
 
    SemaphoreP_Params semParams; 
    Capture_Params captureParams; 
    Capture_Handle capture; 
    PWM_Params pwmParams; 
    PWM_Handle pwm0, pwm1; 
 
//    char        input; 
//    char  output[6]; 
//    UART_Handle uart; 
//    UART_Params uartParams; 
 
 
    /* units in microseconds */ 
    uint32_t   pwmPeriod = 100000; 
    uint32_t   duty = 50000; 
 
    /* Driver Init Functions */ 
    Capture_init(); 
   Display_init(); 
    PWM_init(); 
 
    UART_init(); 
 
    GPIO_init(); 
 
    //GPIO_setConfig(); 
 
    GPIO_toggle(CONFIG_GPIO_0); 
 
 
 
    /* Open Display for Output */ 
     display = Display_open(Display_Type_UART, NULL); 
 



 

Page 41 of 53 
 

     if (display == NULL) 
     { 
         /* Failed to open display driver */ 
         while (1); 
     } 
 
 
 
    /* Create a UART with data processing off. */ 
//    UART_Params_init(&uartParams); 
//    uartParams.writeDataMode = UART_DATA_TEXT; 
//    uartParams.readDataMode = UART_DATA_TEXT; 
//    uartParams.readReturnMode = UART_RETURN_FULL; 
//    uartParams.readEcho = UART_ECHO_OFF; 
//    uartParams.baudRate = 115200; 
// 
// 
//    uart = UART_open(CONFIG_UART_0, &uartParams); 
// 
//    if (uart == NULL) { 
//        /* UART_open() failed */ 
//        while (1); 
//    } 
 
 
 
    /* PWM Params init */ 
    PWM_Params_init(&pwmParams); 
    pwmParams.dutyUnits = PWM_DUTY_US; 
    pwmParams.dutyValue = 0; 
    pwmParams.periodUnits = PWM_PERIOD_US; 
    pwmParams.periodValue = pwmPeriod; 
 
    /* Open PWM0 */ 
    pwm0 = PWM_open(CONFIG_PWM_0, &pwmParams); 
 
     if (!pwm0) 
     { 
         Display_printf(display, 0, 0, "Failed to initialized PWM0.\n"); 
         while (1); 
     } 
 
 
    PWM_start(pwm0); 
 
    /* Open PWM1 */ 



 

Page 42 of 53 
 

    pwm1 = PWM_open(CONFIG_PWM_1, &pwmParams); 
 
     if (!pwm1) 
     { 
         Display_printf(display, 0, 0, "Failed to initialized PWM1.\n"); 
         while (1); 
     } 
 
    PWM_start(pwm1); 
 
    /* Semaphore to wait for capture data */ 
    SemaphoreP_Params_init(&semParams); 
    semParams.mode = SemaphoreP_Mode_BINARY; 
    captureSem = SemaphoreP_create(0, &semParams); 
 
     if (captureSem == NULL) 
     { 
         Display_printf(display, 0, 0, "Could not allocate semaphore!\n"); 
         while(1); 
     } 
 
    /* Setting up the Capture driver to detect two rising edges and report 
     * the result in microseconds 
     */ 
    Capture_Params_init(&captureParams); 
    captureParams.mode = Capture_RISING_EDGE; 
    captureParams.periodUnit = Capture_PERIOD_US; 
    captureParams.callbackFxn = captureCallback; 
 
    capture = Capture_open(CONFIG_CAPTURE_0, &captureParams); 
     if (capture == NULL) 
     { 
         Display_printf(display, 0, 0, "Failed to initialized Capture!\n"); 
         while(1); 
     } 
 
     Display_printf(display, 0, 0, "About to Capture!\n"); 
 
    /* set the PWM duty and start the capture */ 
    PWM_setDuty(pwm0, duty); 
    PWM_setDuty(pwm1, duty); 
    Capture_start(capture); 
 
    while(1) 
    { 
        /* The value printed should be close to the period of the pwm */ 



 

Page 43 of 53 
 

        SemaphoreP_pend(captureSem, SemaphoreP_WAIT_FOREVER); 
//         Display_printf(display, 0, 0, 
//                 "Period: %d\n", curInterval); 
         Display_printf(display, 0, 0, 
                 "%d\n", curInterval); 
//        sprintf(output, "%ld", curInterval); 
//        UART_write(uart, output, sizeof(output)); 
//        UART_write(uart, "\n",1); 
//        UART_readPolling(uart, &input, 1); 
//            if (input == 'a'){ 
//                break; 
//            } 
 
    } 
     Display_printf(display, 0, 0, "%s\n", "IT Worked"); 
//    UART_write(uart, "W", 1); 
 
} 
 
/* Callback function that displays the interval */ 
void captureCallback(Capture_Handle handle, uint32_t interval) 
{ 
    curInterval = interval; 
    SemaphoreP_post(captureSem); 
} 
 
main_tirtos.c 
/* 
 * Copyright (c) 2016-2019, Texas Instruments Incorporated 
 * All rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met: 
 * 
 * *  Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer. 
 * 
 * *  Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in the 
 *    documentation and/or other materials provided with the distribution. 
 * 
 * *  Neither the name of Texas Instruments Incorporated nor the names of 
 *    its contributors may be used to endorse or promote products derived 
 *    from this software without specific prior written permission. 
 * 



 

Page 44 of 53 
 

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS "AS IS" 
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
TO, 
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR 
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, 
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; 
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 
LIABILITY, 
 
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR 
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */ 
 
/* 
 *  ======== main_tirtos.c ======== 
 */ 
#include <stdint.h> 
 
/* POSIX Header files */ 
#include <pthread.h> 
 
/* RTOS header files */ 
#include <ti/sysbios/BIOS.h> 
 
/* Driver configuration */ 
#include <ti/drivers/Board.h> 
 
extern void *mainThread(void *arg0); 
 
/* Stack size in bytes */ 
#define THREADSTACKSIZE    1024 
 
/* 
 *  ======== main ======== 
 */ 
int main(void) 
{ 
    pthread_t           thread; 



 

Page 45 of 53 
 

    pthread_attr_t      attrs; 
    struct sched_param  priParam; 
    int                 retc; 
 
    /* Call driver init functions */ 
    Board_init(); 
 
    /* Initialize the attributes structure with default values */ 
    pthread_attr_init(&attrs); 
 
    /* Set priority, detach state, and stack size attributes */ 
    priParam.sched_priority = 1; 
    retc = pthread_attr_setschedparam(&attrs, &priParam); 
    retc |= pthread_attr_setdetachstate(&attrs, PTHREAD_CREATE_DETACHED); 
    retc |= pthread_attr_setstacksize(&attrs, THREADSTACKSIZE); 
    if (retc != 0) { 
        /* failed to set attributes */ 
        while (1) {} 
    } 
 
    retc = pthread_create(&thread, &attrs, mainThread, NULL); 
    if (retc != 0) { 
        /* pthread_create() failed */ 
        while (1) {} 
    } 
 
    BIOS_start(); 
 
    return (0); 
} 
 
  



 

Page 46 of 53 
 

Main.c: 
/*****< main.c >***************************************************************/ 
/*      Copyright 2012 - 2014 Stonestreet One.                                */ 
/*      All Rights Reserved.                                                  */ 
/*                                                                            */ 
/*      Copyright 2015 Texas Instruments Incorporated.                        */ 
/*      All Rights Reserved.                                                  */ 
/*                                                                            */ 
/*  MAIN - Main application implementation.                                   */ 
/*                                                                            */ 
/*  Author:  Tim Cook                                                         */ 
/*                                                                            */ 
/*** MODIFICATION HISTORY 
*****************************************************/ 
/*                                                                            */ 
/*   mm/dd/yy  F. Lastname    Description of Modification                     */ 
/*   --------  -----------    ------------------------------------------------*/ 
/*   01/28/12  T. Cook        Initial creation.                               */ 
/*****************************************************************************
*/ 
#include "Main.h"                /* Main application header.                  */ 
#include "HAL.h"                 /* Function for Hardware Abstraction.        */ 
#include "HCITRANS.h"            /* HCI Transport Prototypes/Constants.       */ 
 
   /*********************************************************************/ 
   /* Defines, Enumerations, & Type Definitions                         */ 
   /*********************************************************************/ 
 
   /* The following constant denotes the max buffer size used for user  */ 
   /* commands input via the User Interface.                            */ 
#define MAX_COMMAND_LENGTH    (64) 
 
   /*********************************************************************/ 
   /* Local/Static Variables                                            */ 
   /*********************************************************************/ 
 
   /* Internal Variables to this Module (Remember that all variables    */ 
   /* declared static are initialized to 0 automatically by the         */ 
   /* compiler as part of standard C/C++).                              */ 
 
static unsigned int BluetoothStackID; 
static unsigned int InputIndex; 
static Boolean_t SleepAllowed; 
 
   /* The following buffer is used to store console input.  An          */ 
   /* additional 2 bytes are added to account for 2 null characters that*/ 



 

Page 47 of 53 
 

   /* must be added to each command line before the lines are processed.*/ 
static char Input[MAX_COMMAND_LENGTH + 2]; 
 
   /*********************************************************************/ 
   /* Local/Static Functions                                            */ 
   /*********************************************************************/ 
 
static void ProcessCharactersTask(void *UserParameter); 
static void IdleTask(void *UserParameter); 
static void ToggleLEDTask(void *UserParameter); 
static void BTPSAPI HCI_Sleep_Callback(Boolean_t _SleepAllowed, unsigned long 
CallbackParameter); 
static void PollErrorFlags(void); 
 
   /* The following function is responsible for retrieving commands from*/ 
   /* the user console.                                                 */ 
static void ProcessCharactersTask(void *UserParameter) 
{ 
   char      Char; 
   Boolean_t CompleteLine; 
 
   /* Initialize the variable indicating a complete line has been parsed*/ 
   /* to false.                                                         */ 
   CompleteLine = FALSE; 
 
   /* Attempt to read data from the console.                            */ 
   while((!CompleteLine) && (HAL_ConsoleRead(1, &Char))) 
   { 
      switch(Char) 
      { 
         case '\r': 
         case '\n': 
            if(InputIndex > 0) 
            { 
               /* We have received an end of line character, set the    */ 
               /* complete line variable to true.                       */ 
               CompleteLine = TRUE; 
            } 
            else 
            { 
               /* The user pressed 'Enter' without typing a command,    */ 
               /* display the application's prompt.                     */ 
               DisplayPrompt(); 
            } 
            break; 
         case 0x08: 



 

Page 48 of 53 
 

            /* Backspace has been pressed, so now decrement the number  */ 
            /* of bytes in the buffer (if there are bytes in the        */ 
            /* buffer).                                                 */ 
            if(InputIndex) 
            { 
               InputIndex--; 
               HAL_ConsoleWrite(3, "\b \b"); 
            } 
            break; 
         default: 
            /* Accept any other printable characters.                   */ 
            if((Char >= ' ') && (Char <= '~')) 
            { 
               /* Add the Data Byte to the Input Buffer, and make sure  */ 
               /* that we do not overwrite the Input Buffer.            */ 
               Input[InputIndex++] = Char; 
               HAL_ConsoleWrite(1, &Char); 
 
               /* Check to see if we have reached the end of the buffer.*/ 
               if(InputIndex >= MAX_COMMAND_LENGTH) 
               { 
                  /* We have received all of the data that we can       */ 
                  /* handle, set the complete line variable to true.    */ 
                  CompleteLine = TRUE; 
               } 
            } 
            break; 
      } 
   } 
 
   /* Check if we have received a complete line.                        */ 
   if(CompleteLine) 
   { 
      /* We have received a complete line, null-terminate the string,   */ 
      /* adding an extra null character for interopability with the     */ 
      /* command line processing performed in the application.          */ 
      Input[InputIndex]   = '\0'; 
      Input[InputIndex+1] = '\0'; 
 
      /* Set the input index back to the start of the buffer.           */ 
      InputIndex = 0; 
 
      /* Process the command line.                                      */ 
      ProcessCommandLine(Input); 
   } 
} 



 

Page 49 of 53 
 

 
   /* The following function is responsible for checking the idle state */ 
   /* and possibly entering LPM3 mode.                                  */ 
static void IdleTask(void *UserParameter) 
{ 
   /* If the stack is idle and we are in HCILL sleep, then we may enter */ 
   /* a Low Power Mode (with Timer Interrupts disabled).                */ 
   if((BSC_QueryStackIdle(BluetoothStackID)) && (SleepAllowed)) 
   { 
      /* The stack is idle and we are in HCILL sleep, attempt to suspend*/ 
      /* the UART.                                                      */ 
      if(!HCITR_COMSuspend()) 
      { 
         /* Check to see if a wakeup is in progress (by the controller).*/ 
         /* If so we will disable sleep mode so that we complete the    */ 
         /* process.                                                    */ 
         if(!HCITR_COMSuspended()) 
            SleepAllowed = FALSE; 
 
         /* Go ahead and process any characters we may have received on */ 
         /* the console UART.                                           */ 
         ProcessCharactersTask(NULL); 
      } 
      else 
      { 
         /* Failed to suspend the UART which must mean that the         */ 
         /* controller is attempting to do a wakeup.  Therefore we will */ 
         /* flag that sleep mode is disabled.                           */ 
         SleepAllowed = FALSE; 
      } 
   } 
   else 
   { 
      /* Poll the error flags.                                          */ 
      PollErrorFlags(); 
   } 
} 
 
   /* The following function is responsible for toggling the LED.       */ 
static void ToggleLEDTask(void *UserParameter) 
{ 
   HAL_ToggleLED(); 
} 
 
   /* The following is the HCI Sleep Callback.  This is registered with */ 
   /* the stack to note when the Host processor may enter into a sleep  */ 



 

Page 50 of 53 
 

   /* mode.                                                             */ 
static void BTPSAPI HCI_Sleep_Callback(Boolean_t _SleepAllowed, unsigned long 
CallbackParameter) 
{ 
   /* Simply store the state internally.                                */ 
   SleepAllowed = _SleepAllowed; 
 
   /* Check if sleep is allowed.                                        */ 
   if(SleepAllowed) 
   { 
      /* Sleep is allowed, set the LED color to blue to notify the user.*/ 
      HAL_SetLEDColor(hlcBlue); 
   } 
   else 
   { 
      /* Sleep is not allowed, set the LED color to green to notify the */ 
      /* user.                                                          */ 
      HAL_SetLEDColor(hlcGreen); 
   } 
} 
 
   /* The following function polls all error flags and displays an      */ 
   /* appropriate message if any error flags are set.                   */ 
static void PollErrorFlags(void) 
{ 
   unsigned int ErrorFlags; 
 
   /* Query the HCI transport error flags to determine if any errors    */ 
   /* have occurred.                                                    */ 
   ErrorFlags = HCITR_COMQueryErrorFlags(); 
 
   if(ErrorFlags & HCITR_ERROR_FLAG_EUSCI_UART_RXBUF_OVERRUN) 
      Display(("Error: HCITRANS eUSCI UART RXBUF register overrun.\r\n")); 
 
   if(ErrorFlags & HCITR_ERROR_FLAG_UART_RX_BUFFER_OVERRUN) 
      Display(("Error: HCITRANS UART Rx buffer overrun.\r\n")); 
} 
 
   /*********************************************************************/ 
   /* Global/Non-Static Functions                                       */ 
   /*********************************************************************/ 
 
   /* The following is the main application entry point.  This function */ 
   /* will configure the hardware and initialize the OS Abstraction     */ 
   /* layer, create the main application thread and start the scheduler.*/ 
int main(void) 



 

Page 51 of 53 
 

{ 
   int                           Result; 
   BTPS_Initialization_t         BTPS_Initialization; 
   HCI_DriverInformation_t       HCI_DriverInformation; 
   HCI_HCILLConfiguration_t      HCILLConfig; 
   HCI_Driver_Reconfigure_Data_t DriverReconfigureData; 
 
   /* Configure the hardware for its intended use.                      */ 
   HAL_ConfigureHardware(); 
 
   /* Flag that sleep is not currently enabled.                         */ 
   SleepAllowed = FALSE; 
 
   /* Configure the UART Parameters.                                    */ 
   HCI_DRIVER_SET_COMM_INFORMATION(&HCI_DriverInformation, 1, 
HAL_HCI_UART_MAX_BAUD_RATE, cpHCILL_RTS_CTS); 
 
   /* Set up the application callbacks.                                 */ 
   BTPS_Initialization.GetTickCountCallback  = HAL_GetTickCount; 
   BTPS_Initialization.MessageOutputCallback = HAL_ConsoleWrite; 
 
   /* Initialize the application.                                       */ 
   if((Result = InitializeApplication(&HCI_DriverInformation, &BTPS_Initialization)) > 0) 
   { 
      /* Save the Bluetooth Stack ID.                                   */ 
      BluetoothStackID = (unsigned int)Result; 
 
      /* Register a sleep mode callback if we are using HCILL Mode.     */ 
      if((HCI_DriverInformation.DriverInformation.COMMDriverInformation.Protocol == 
cpHCILL) || (HCI_DriverInformation.DriverInformation.COMMDriverInformation.Protocol == 
cpHCILL_RTS_CTS)) 
      { 
         HCILLConfig.SleepCallbackFunction        = HCI_Sleep_Callback; 
         HCILLConfig.SleepCallbackParameter       = 0; 
         DriverReconfigureData.ReconfigureCommand = 
HCI_COMM_DRIVER_RECONFIGURE_DATA_COMMAND_CHANGE_HCILL_PARAM
ETERS; 
         DriverReconfigureData.ReconfigureData    = (void *)&HCILLConfig; 
 
         /* Register the sleep mode callback.  Note that if this        */ 
         /* function returns greater than 0 then sleep is currently     */ 
         /* enabled.                                                    */ 
         Result = HCI_Reconfigure_Driver(BluetoothStackID, FALSE, &DriverReconfigureData); 
         if(Result > 0) 
         { 
            Display(("Sleep is allowed.\r\n")); 



 

Page 52 of 53 
 

 
            /* Flag that it is safe to go into sleep mode.              */ 
            SleepAllowed = TRUE; 
         } 
      } 
 
      /* We need to execute Add a function to process the command line  */ 
      /* to the BTPS Scheduler.                                         */ 
      if(BTPS_AddFunctionToScheduler(ProcessCharactersTask, NULL, 100)) 
      { 
         /* Add the idle task (which determines if LPM3 may be entered) */ 
         /* to the scheduler.                                           */ 
         if(BTPS_AddFunctionToScheduler(IdleTask, NULL, 100)) 
         { 
            if(BTPS_AddFunctionToScheduler(ToggleLEDTask, NULL, 750)) 
            { 
               HAL_SetLEDColor(hlcGreen); 
 
               /* Execute the scheduler, note that this function does   */ 
               /* not return.                                           */ 
               BTPS_ExecuteScheduler(); 
            } 
         } 
      } 
   } 
 
   /* If we've gotten to this point then an error has occurred, set the */ 
   /* LED to red to signify that there is a problem.                    */ 
   HAL_SetLEDColor(hlcRed); 
 
   /* Poll the error flags to see if we can determine the reason for the*/ 
   /* failure.                                                          */ 
   PollErrorFlags(); 
 
   /* Scheduler above should run continuously, if it exits an error     */ 
   /* occurred.                                                         */ 
   while(1) 
   { 
      HAL_ToggleLED(); 
 
      BTPS_Delay(100); 
   } 
} 
 
 

 



 

Page 53 of 53 
 

 

Delivered in a Word .docx format with track changes turned on 

 


