ACCURACY OF MACHINE LEARNING ALGORITHMS IN PREDICTING COLLEGE
BASKETBALL GAMES

A Research Paper submitted to the Department of Computer Science
In Partial Fulfillment of the Requirements for the Degree
Bachelor of Science in Computer Science

By
Sindhura N. Mente

April 25, 2022

On my honor as a University student, | have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISOR
Haiying Shen, Department of Computer Science

INTRODUCTION

College basketball is an extremely popular sport that has become a lucrative industry in
terms of producing revenue, especially in the realm of sports betting. For the 2022 NCAA men’s
basketball tournament an estimated 3 billion dollars would have been spent on betting (Korpar,
2022). Developing a project that could potentially provide better insight into the behavior of the
game was determined to be a valuable endeavor.

We reasoned that with the expansive datasets that exist online on the records of the
performances and outcomes of NCAA men’s basketball games we could apply Machine learning
techniques to develop a model that could accurately predict the outcomes of games. College
basketball is a sport that involves a large range of statistics in order to measure individual and
team performance. Figure 1 below is a list of the range of statistics that were available and we
used as features in our model.

Four Factors

Offensive Defensive
Offensive Efficiency Defense Efficiency
eFG% eFG%

TO% TO%

OR% OR%
FTRate FTRate

Team Stats

Avg Height

Eff Height

C Hgt

PF Hgt

SF Hgt

SG Hgt

PG Hgt

Experience

Bench

Continuity

Figure 1: Four Factors. This figure shows the range of basketball features used to build the

models. (Kim & Mente, 2022).

RESULTS FROM SIMILAR RESEARCH
A team of researchers from KU Leuven approached the problem by using J48, Random
Forest, Naive Bayes, and Multilayer perceptron. The team of researchers used similar features to

our own including the Four Factors. One observation that was made by the team was that the

simpler model Naive Bayes performed the best out of all the approaches and also that using
additional features, outside of the four factors, lead to worse results (Moorthy et al., 2013, p.8).

Another team of researchers from the University of Pittsburgh tried predicting the
outcomes of NCAA basketball games using Adaptive Boosting, K-nearest neighbors, Naive
Bayes, Neural Networks, Logistic Regression, Support Vector Machine, and Random Forest.
The team discovered that Logistic Regression had the best performance in terms of scoring
points when used to fill out a bracket for the men’s basketball tournament (Levandoski & Lobo,
2017, p. 13).

Both teams felt that they encountered a limit to which any model would be able to predict
a game. The researchers at KU Leuven had a limit of around 74-75%. The researchers from the
University of Pittsburgh found that the models had a better performance than an average person
but luck/volatility still made it difficult.

PROCESS AND METHODOLOGY

INITIAL PROCESS AND PROOF OF CONCEPT

Initially the focus was on data from the Athletic Coast Conference (ACC) during the
2020-2021 season. The reason for this was that college basketball is unique due to the high
turnover rosters have from season to season, and it would be difficult to extract the most
significant features from data across multiple seasons. Additionally, first fitting a variety of
models on a small subset of the data and observing the outcomes to ensure that the data cleaning
step was performed correctly would be more prudent than modifying all of the data sets and then
coming to the conclusion that the data were being modified incorrectly. First, we gathered all of
the necessary data on the ACC from the KenPom website (kenpom.com) which includes data

regarding each collegiate team including parameters such as free throw rate, point differentials

(the difference in final points scored for a particular game between the chosen team and the
opposing team), and bench, which is the percentage of the minutes played where none of the
original starters are playing. Each of the features, and how they were calculated, for each team is

listed in Figure 2 below.

Statistical Category Meaning

Offensive eFG% (Field Goals Made + 0.5 * 3 Pointers Made) /

Field Goals Attempted.

Offensive TOP%
TO% = TO / Possessions

Offensive ORB%
OR% = Offensive Rebound / (Offensive

Rebound + Opponent Defensive Rebound)

Offensive FTR%
Free Throw Attempt / Field Goal Attempt

Defensive eFG% (Opponent Field Goals Made + 0.5 *
Opponent 3 Pointers Made) / Opponent Field

Goals Attempted.

Defensive TOP% Opponent Turn Over / Opponent Possessions

Defensive ORB% Defensive Rebound / Defensive Rebound +

Opponent Offensive Rebound

Defensive FTR% Opponent Free Throw Attempt / Opponent

Field Goal Attempt

Exp The average years that roster spent in college.
Freshman - 0

Sophmore -1

Junior- 2

Senior 3

Bench Percentage of the minutes played where none

of the original starters are playing

Size It’s the average of the heights of all the
players multiplied by the total number of

minutes each player played

Point Differential The feature we were trying to predict.

tm - opp

Figure 2: Formulas for Features. This figure shows the calculations done to create the features.

(Kim & Mente, 2022).

We pulled every team's records and game scores from the ACC during the 2020-2021

season from https://www.sports-reference.com/chb/ and cross-referenced this data with that

extracted from KenPom to ensure that there weren’t discrepancies, and then created a final data
frame for each team in the ACC with all of the information regarding the games each team
played in the chosen season. An example, for the University of Louisville, is pictured below in

Figure 3.

© 1ouisville 2020_2021_FINAL

[™ o Opp Off Opp Off Opp Off Opp Off Opp Def Opp Def Opp Def Opp Def Opp opp Opp tm Off tm Off tm Off tm Off
PP eFG% TOP% ORB% FTR% eFG% TOP% ORB% FTR Exp Bench Size eFGY TOP% ORB% FTR%

0 79 44 53.194765 17.317249 19.029374 25.404157 57.370518 18.328475 24.163028 34.342629 2.30 21.12 76.36 47.774869 17.23554 32.00569 32.111693
17 70 50.032787 18.850537 20.613734 35.672131 49.428934 10.182843 20.778247 27.284264 238 24.24 79.19 47.774869 17.23554 32.00569 32.111693
3 75 54 50520196 20.453518 31.770833 35.495716 49.385965 18.868742 24.207493 22397661 212 30.64 76.31 47.774869 17.23554 32.00569 32.111693
4 48 B5 49.944598 13.640654 23.791822 26.260388 47.856315 17.343117 25.166826 28.447277 238 28.77 77.97 47.774869 17.23664 32.00569 32.111693
5 64 54 48.829953 18.321827 34.487021 36.895476 50.000000 17.458842 26.143791 33.226581 1.27 33.54 77.63 47.774869 17.23664 32.00569 32.111693
6 62 59 47.086721 19.756581 32.644178 34.485095 46.679816 17.945089 30.522946 29.651545 1.00 31.72 78.95 47.774869 17.23554 32.00569 32.111693
7 76 64 49.789030 19.156790 25.373134 29.704641 55.463576 18.465209 2B8.656716 20.056291 1.76 33.86 76.95 47.774869 17.23664 32.00569 32.111693
8 73 71 52.258065 17.183288 27.830832 33.387097 48.842975 17.924528 24.353741 31.900826 1.55 28.51 76.42 47.774869 17.23554 32.00569 32.111693
9 77 65 48.975235 20.014976 26.158038 28.522630 54.451167 17.900718 25.909091 32.065687 1.70 38.13 77.51 47.774869 17.23554 32.00569 32.111693
10 72 78 47.375328 18.415458 27.032735 32.808399 52.546584 17.927990 26.259378 19.751553 1.80 30.00 78.61 47.774869 17.23554 32.00569 32.111693
11 65 78 54.004107 20.421042 34.367246 32.443532 46.143345 19.513440 31.663113 35153584 1.96 30.17 79.62 47.774869 17.23554 32.00569 32.111693

12 70 65 53.583502 18.331368 32.227488 23.394185 51.316752 19.883862 28.957055 31.894660 0.86 24.72 77.18 47.774869 17.23554 32.00569 32.111693

Figure 3: Louisville Dataframe. This figure shows an example dataframe. (Kim & Mente, 2022).

To create these data sets, we started by cleaning the data. First, we filled all of NaN
values in the raw datasets by filling them in with the mean value of that respective column, and if
any of the categorical variables contained NaN values, then we dropped the row completely. We
then modified the names of some variables for understanding and consistency across datasets for
all colleges. Afterward, we proceeded to start the model building and training process.

To verify that our results were viable, we chose to train a variety of models on the
University of Virginia’s (UVA) ACC data from 2020 to 2021 to predict the point differentials

relative to UVA.

https://www.sports-reference.com/cbb/

The first model trained was a simple linear regression model that considers all of the
aforementioned features when making predictions, and we chose to use the linear root mean
square error (RMSE) to evaluate the utility of the model. The next model we trained was a
decision tree regression model, and the error we chose to evaluate the algorithm was the tree
RMSE. After this, we tried a random forest regressor and similarly used random forest RMSE to
evaluate the error. The last model we implemented was a logistic regression model.
EXPANSION TO COMPLETE ACC DATASET

After verifying that the models were valid and provided believable results, we proceeded
to expand the dataset to include the features of size, experience, and bench minutes shown in
Figure 1, in order to expand the work of a previous paper. We also then expanded the dataset
further to include data for the entire ACC as opposed to just UVA. Next, we trained the data for
each of the schools using a linear regression model and obtained relatively low linear RMSEs.
EXPANSION TO ALL COLLEGIATE CONFERENCES

Since only teams in the Athletic Coast Conference (ACC) were included in the models
created, it was determined that expanding the dataset to include a wider range of conferences and
teams would assist in making the model's prediction more accurate given the large field of
college basketball. The conferences added were the Big Ten, Big 12, PAC 12, and the
Southeastern Conference, raising the total number of teams included from 14 to 63. Our
preliminary findings showed that logistic regression was the best model since it yielded an error
of 9.992007221626415e-16; however, we believe this may have been due to overfitting of the

data.

REMOVAL OF BIAS

The errors of the models were deemed suspiciously small and we recognized that
overfitting was occurring. We analyzed each of the features to attempt to identify which ones
may have given rise to this problem, and were able to identify the “Tm* and “Opp” features of
the dataset being mainly responsible for the overfitting. The reason for this was that “Tm* and
“Opp” are directly used in the calculation of “Final Point Differential”. We then reran the models
with those features removed from the datasets for each of the colleges, which yielded errors that
were significantly larger than the errors we obtained initially, confirming that overfitting was
present in the models. By removing the features that were causing this overfitting, we were able
to reduce the inherent biases present in the data. This in turn allowed us to create models for each
college participating in March Madness that would be able to be extrapolated to future seasons
and beyond the scope of the training data to have meaningful impacts in the sports industry.

In doing so, we determined that logistic regression and not linear regression was the
model best suited for the problem, since the goal of the capstone project is to accurately
determine the outcome of a basketball game given parameters about the teams. Logistic
regression encodes the variable being predicted, in this case final point differential, asa 0 or 1,
where 0 indicates that the chosen team lost, and 1 indicates that the chosen team won. This
appeared to be the best model for the problem it is intended to solve, since we obtained a log
error of 0.596255892458005, so we proceeded with the logistic regression models for each
school for the remainder of the project.

FINAL MODELS AND GAME PREDICTION
Once the overfitting and bias were removed from the data, and the final data frames for

each college were made, we trained models respective to every college on the data associated

with that college, and then saved the models for each of the 63 colleges in a list. Since the
models created, satisfied our initial goal was to develop an algorithm to successfully predict the
outcome of a single basketball game given certain parameters regarding the teams and player, we
decided to test the models we built on the NCAA March Madness bracket for the 2021-2022
basketball season, since all of the models we trained used data from the previous 2020-2021
season. After this, we considered different methods to create a March Madness bracket solver in
order to test the power and robustness of our models.

In our research, we came across the bracketology python package, which provides a
historical database of all previous NCAA tournament brackets (PyPI, 2020). The package is
pertinent to our project due to its ability to provide an overview of model effectiveness in
deciding the outcome of games, and by extension, the winners of the NCAA tournament. Figure
4 below shows an example output of running the bracketology March Madness simulator with

the model used to predict the outcome of a game being a coin flip.

° # Initialize simulation parameters

n_sims = 1000 # number of times to simulate through all years
brackets = [bl9]

total sims = (n_sims * len(brackets))

scores = []

correct_games = []

Loop through a plethora of brackets
for i in range(n_sims):
for bracket in brackets:

Run the algorithm on the bracket
bracket.score(sim func=pick_a random_team, verbose=False)

Save the scoring results in a list
scores.append(bracket.total_score)
correct_games.append(bracket.n_games_correct)

Calculate the average across all simulations
avg_score = round(sum(scores) / total_sims)
avg_correct = round(sum(correct_games) / total_sims)

Print result
print(f"Average number total score {avg_score}/192")
print (f"Average number of games guessed correctly {avg_correct}/64")

Average number total score 30/192
Average number of games guessed correctly 21/64

Figure 4: Bracketology Example. This figure shows example code from the bracketology

documentation. (Kim & Mente, 2022).

After examining the internals of the methods in the package and how they fit together to

form the overall March Madness bracket solver, we supplied the models we created for each

team to the package to have a better evaluation function to predict the outcome of individual

games. We created two methods, named choose_team and toss_up to determine the outcome of a

game and supply the result to the bracketology package to fill out a March Madness bracket for

each round in the competition.

The choose_team function takes in the names of the two teams playing against each other

in a game and runs the logistic regression model for the first team with the second team as the

10

opponent, and the model for the second team with the first team as an opponent. If only the first
team’s model or the second team’s model returns a 1, then that team is predicted to have won the
game. If both teams’ models return either a 0 or 1, then this means that the game could be won
by either team, and the toss_up function is called internally. Figure 5 displays the logic for the

choose_team function.

if trial 1[0]==0 and trial 2[0]==1:
print(team one, " won!")
return team one

elif trial 2[0]==0 and trial 1[0]==1:

print(team two, won!")

return team two

elif trial 1[0]==0 and trial 2[0]==0 or trial 1[0]==1 and trial 2[0]==1:
print("This is a tossup")
tossup result = toss up(team one,team two)

Figure 5: Choose Team Logic. This figure shows the logic behind how a team is picked. (Kim &

Mente, 2022).

The toss_up function is called when the outcome of a game between two teams is unable
to be determined by the models created, meaning that both models return that their respective
team will win or lose the game. The toss_up function then creates models for each team in which
it only considers the six most important factors in the model building process. We determined

this by extracting the importance of each feature and the results are shown below in Figure 6.

11

° for i,v in enumerate(importance list):
print('Feature: %0d, Score: %.5f' % (i,v))

[> Feature:
Feature:

0, Score: -25.13313

1, Score: 41.07369
Feature: 2, Score: -19.76595
Feature: 3, Score: -13.26620
Feature: 4, Score: 37.32968
Feature: 5, Score: -4.08651
Feature: 6, Score: 14.56971
Feature: 7, Score: 7.46394
Feature: 8, Score: 7.62890
Feature: 9, Score: 5.85040
Feature: 10, Score: -28.48853
Feature: 11, Score: 2.83601
Feature: 12, Score: 1.00098
Feature: 13, Score: 1.62019
Feature: 14, Score: 1.91999
Feature: 15, Score: 2.84510
Feature: 16, Score: 1.30950
Feature: 17, Score: 1.71680
Feature: 18, Score: 2.24447
Feature: 19, Score: 0.10174
Feature: 20, Score: 1.52894
Feature: 21, Score: 4.05288

Figure 6: Importance List. This figure shows the coefficients for the features. (Kim & Mente,

2022).

The new models are then run and if they still provide the same answer, this means that
both teams are evenly matched and either could win the game, so one of the two teams is chosen
at random and predicted to win the game. The internals of the toss_up function are provided in

Figure 7 below.

12

) def toss_up(team one, team two):

dataframe_1 = final_dict_schedules[team_one]
dataframe_2 = final_dict_schedules[team_two]

dataframe_1_select = dataframe_1
dataframe_2_select = dataframe_2
new_column_names_1 = []
for names in dataframe_1_select.columns:
if names == "Final Point Differential”:
new_column_names_1.append(names)
else;
names = names.replace("tm","Opp™)
new_column_names_1.append(names)

dataframe_1_select.columns = new_column_names_1
new_column_names_2 = []
for names in dataframe_2_select.columns:
if names == "Final Point Differential”:
new_column_names_2.append(names)
else:
new_column_names_2.append(names)
dataframe_2_select.columns = new_column_names_2
d_1 = dataframe_1_select.join(dataframe_2_select, on="Final Point Differential”, rsuffix="Other ")
column_means = d_1.mean()
d 1 =d 1.fillna(column_means)
d 1 =d 1.drop(['Final Point DifferentialOther ','Final Point Differential’'],axis=1)
trial_1 = perform_special log prediction(final dict_schedules[team two],d 1)

dataframe_1 = final dict schedules[team_two]
dataframe_2 = final_dict schedules[team_one]

dataframe_1_select = dataframe_1
dataframe_2_select = dataframe_2

new_column_names_1 = []
for names in dataframe_1_select.columns:
if names == "Final Point Differential”:
new_column_names_1.append(names)
else;
names = names.replace("tm","Opp™)
new_column_names_1.append(names)

dataframe_1_select.columns = new_column_names_1
new_column_names_2 = []
for names in dataframe_2_select.columns:
if names == "Final Point Differential”:
new_column_names_2.append(names)
else:
new_column_names_2.append(names)
dataframe_2_select.columns = new_column_names_2
d_2 = dataframe_1_select.join(dataframe_2_select, on="Final Point Differential”, rsuffix="Other ")
column_means = d_2.mean()
d_2 = d_2.fillna(column_means)
d 2 =d 2.drop(['Final Point DifferentialOther ','Final Point Differential’],axis=1)
trial 2 = perform_special log prediction(final dict_schedules[team one],d 2)

if trial_1[8]==86 and trial 2[e]==1:
print(team one, " won!")
return team_one

elif trial 2[@]==8 and trial 1[8]==1:
print(team two, " won!")
return team_two

elif trial 1[@]==8 and trial 2[8]=
print("This is a double tossup™)
winner = random.randint(e, 1)
if winner==8:

=8 or trial 1[@]==1 and trial 2[@8]==1:

print(team_one, " won!")
return team_one

else;
print(team_two, " won!™)

return team_two

Figure 7: Toss-up Code. This figure shows the code for the toss-up function. (Kim & Mente,

2022).

13

To complete the testing of our models and March Madness predictor, we ran the models
and filled out the bracket for the 2022 March Madness season and compared the results we
obtained to the actual outcome of the NCAA tournament.

RESULTS
RESULTS OF INITIAL MODELS

After creating the models based off of the UVA dataset, we calculated the error of the
predictions based on the model training, and these results are discussed below.

For the linear regression model, we obtained a linear RMSE of roughly
1.4552158858602253e-14, which shows that the model was able to predict the point differentials
between UV A and other schools, and by extension who won the game, with high accuracy on the
testing dataset. The graph in Figure 8 below is a scatterplot showing how there is little difference
in the predicted point differentials and the true point differentials for the games in the testing
data.

Predictions of UVA Point Differentials
A 0 0

>
>

0
LA

2

Predicted Differential
>
(
>
>

o

o @ Predictions

Actual Differentials

by

Bst Case

Figure 8: Point Differentials. This figure shows the difference in point differentials. (Kim &

Mente, 2022).

14

The value for the error we obtained for the decision tree regressor was 0.0, which is
suggestive of overfitting of the data, so we decided to use cross-fold validation to get a more
accurate representation of the true error of the model. Using this method we received an array of
the following values 14.76482306, 17.20465053, 14.86606875, 9.21954446, 9.5131488,
2.91547595, 12.74754878, 1.58113883, 3, and 17. From this, it is evident that the model is not as
powerful as was initially thought, and suggests that decision tree regression may not be the best
model for the defined problem.

We then evaluated the error for the random forest regression model, which we got as
4.178825592595764. Using cross-fold validation, we got 9.37599716, 10.93255948,
2.34927929, 1.76126142, 7.00490485, 6.13798938, 2.22110384, 7.10704711, 3.381, and 1.8764.
From this, it seems as though the random forest RMSE is a good indicator of the true error of the
model.

To determine the error of the logistic regression model, we used the log-loss function and
got an error of 9.992007221626415e-16, which is a very low value and indicative that the model
is powerful.

RESULTS OF EXPANSION FROM ACC DATASET
Figure 9 below shows how each college’s RMSE from the linear model before adding the

extra features to after adding them decreased compared to the previous run.

15

Difference in RMSEs Before and After Feature Expansion

RMSE

College

Figure 9: RMSE Differences. This figure shows the range of basketball features used to build the

models. (Kim & Mente, 2022).

Additionally, the graph in Figure 10 below shows the difference in the predicted point
differentials and the true point differentials for the games in the extended testing data for the

different schools and games.

Predictions of Point Differentials

0o (4] @ Predictions
o 00 o0 Actual Differentials
o

Predicted Differential

Test Case

Figure 10: Expanded Point Differentials. This figure shows the expanded point differentials for

more schools. (Kim & Mente, 2022).

16

Similar to the model building process for the UVA dataset, we then trained a decision

tree regressor, which yielded an average tree RMSE of 5.824087911424415.

Then we trained a random forest regression model which resulted in the following
random tree RMSE with the average being 4.179457850105979.

The last regression model we trained and fit with the expanded dataset was a logistic
regression model, and used the log-loss function to obtain the error, which produced the
following errors: 9.992007221626413e-16, 9.992007221626415e-16, 9.992007221626415e-16,
9.992007221626413e-16, 9.992007221626415e-16, 9.992007221626415e-16,
9.992007221626415e-16, 9.992007221626413e-16, 9.992007221626415e-16,
9.992007221626415e-16, 9.992007221626413e-16, 9.992007221626413e-16,
9.992007221626415e-16, 9.992007221626413e-16. This suggests that the model was able to
provide highly accurate predictions for the data varying from school to school.

RESULTS AFTER BIAS REMOVAL

Figure 11 below presents a graph containing the difference in the performance and
behavior solely for the linear model prior to removing the features causing overfitting and
afterwards for each of the colleges participating in March Madness. Before we expanded the
dataset and removed the features causing overfitting there was no visible difference between the
predictions of the point differential and the true value of the point differential for a given game
with respect to a particular college. After making the modifications there was great variety and
difference in the predictions versus the true outcome of the games. This was true for each of the

types of models trained.

17

Pre-Expansion + Overfitting features Expansion and Overfitting features removed

Predictions of Point Differentials

(A
(A - -~ @ Predictions @ Predictions

n
o ©°€° o0 Actual Dxf'fe‘rentnals Actual Differentials

Predictions of Point Differentials

B B @

B S o 75 3 S @
@ o 7 2 y AR A

£ o !ﬁ" TSR m “v- bk v‘] ' 4
£ AR 00 SRR Rt SR MY

° o , B v \" Bl £ ‘Y . ! w 0
FIRAAL i TR S Wiy R ow Tl
S] MRk h 2ok y ‘ ';’. v wve?
& E ';‘.d vﬁ%':‘\ Q“i ‘?“VO\ .-'“ ™~ 3"

Test Case

Figure 11: Graph of removed overfitting. This figure shows the difference in the point

differential predictions once the overfitting had been reduced. (Kim & Mente, 2022).

After the “Tm* and “Opp” features were removed and new teams were added to the
overall data frames list, we obtained the following average errors (shown in Figure 12) for each

of the different models trained on data from all 63 colleges.

Model Avg. Error
Linear Regression 1176659071735.2527
Decision Tree 19.101394692872628
Random Forest 14.32164923730064
Logistic Regression 0.596255892458005

Figure 12: Final Errors of the model. This figure shows the average error of the models tested.

(Kim & Mente, 2022).

18

FINAL RESULTS

After creating the final models and integrating them with python’s bracketology package,
the March Madness bracket for the 2022 season was filled out, and the predicted results were
compared to the actual results. Our March Madness bracket solver correctly predicted the
outcome of 20 out of the 32 games of the first round, resulting in an accuracy of 62.5%. Below is

Figure 13 depicting the model running in this year's tournament.

2022 NCAA Men's Basketball Championship Bracket

Second Round Sweet 16 Elite 8 Final Four Championship Final Four Elite 8 Sweet 16 Second Round
March 19-20 March 24-25 March 28-30 April 2 Apiild April 2 March 28-30 March 24-25 March 19-20

Georgia St Gonzaga - Arizona = | Wright St/Bryant
Boise St. Memphis - Seton Hall ~ Seton Hall
UCc Arkansas - H tol Houston
New Mexico St New Mexico St Houston - uAB
e s Ilinois ~ lllinois
Vermont Gonzaga - Colorado St. . SetonHall - Chatlancog:

Alabama CSU Fullerton - | Coloradost. | Colorado St.

RutgersiNore Dame| | Alabama B Colorado St. ~ Michigan
Texas Tech Montana St. - Tennessee ~ Tennacsee
Montana . T | coloradost. - Longood

‘Gonzaga -
Davidson Michigan st. - coloradost. - oniost. - Loyola Ghicago
Duke CSUFulerton Delaware - Villanova
GSU Fullerton Delaware
[e -

Baylor Kansas
Norfolk St Norfolk st. - Kansas - TX Southem/TX AGN
Notth Carolina Marquette = San DiegoSt. - San Diego St.

Marquette Norfolk St. - Kansas ~ Creighton
Saint Mary's veta - Providence - lowa
Wyomingfindiana Saint Mary's lowa ~ Richmond
ucLA ucLa < Providence - Providence
Akron MNorfokst. + Providence ~ South Dakota St

Virginia Tech Texas - Towast. ~ lowa St

Purdue Purdue - Wisconsin - Wisconsin
Yale Purdue - Wisconsin ~ Colgate
Muray St ety - usc - use
San Francisco Murray St. - usc - Miami
Kentucky Kentucky - Aubum - Aubum
St Peter's For more brackets visit PLEXKITS Jacksonville St

Figure 13: 2022 March Madness Bracket. This figure shows the bracket that the logistic

regression model would have outputted. (Kim & Mente, 2022).

This is a lower threshold than expected and means that the models have to be tuned

further to yield better results. Regardless, the implications of the process used to build the

19

models and the March Madness predictor are significant and can be used to aid in predictive

modeling for other sports and in the sports betting industry.

SYNTHESIS AND NEXT STEPS

The model building process was an iterative process in which we had to establish a proof
of concept that the models were viable. We started by creating models for one school, before
continuing to create models for every college participating in March Madness. We then
determined that the data were biased and that overfitting was happening, so we removed the
problematic features and created final models for each of the schools. Then we verified the
accuracy of the models by creating a March Madness predictor, which yielded an accuracy of .
To create better models in the future for this task, we could expand the datasets further to include
data regarding each player on the team, since this varies from season to season and greatly
influences the performance of each team. We could also explore more models including neural
networks and other classification algorithms to determine if there are models better suited for this

problem than logistic regression.

20

REFERENCES

Korpar, L. (2022, March). March Madness betting expected to exceed $3 billion, set all-time
high. Newsweek. https://www.newsweek.com/march-madness-betting-expected-exceed-
3-billion-set-all-time-high-1687917

Kim, J. & Mente, S. (2022). Bracketology Example. [4]. Thesis (Unpublished undergraduate
thesis). School of Engineering and Applied Science, University of Virginia.
Charlottesville, VA

Kim, J. & Mente, S. (2022). Choose Team Logic. [5]. Thesis (Unpublished undergraduate thesis).
School of Engineering and Applied Science, University of Virginia. Charlottesville, VA

Kim, J. & Mente, S. (2022). Expanded Point Differentials. [10]. Thesis (Unpublished
undergraduate thesis). School of Engineering and Applied Science, University of
Virginia. Charlottesville, VA

Kim, J. & Mente, S. (2022). Final Errors of the model. [12]. Thesis (Unpublished undergraduate
thesis). School of Engineering and Applied Science, University of Virginia.
Charlottesville, VA

Kim, J. & Mente, S. (2022). Four Factors. [1]. Thesis (Unpublished undergraduate thesis).
School of Engineering and Applied Science, University of Virginia. Charlottesville, VA

Kim, J. & Mente, S. (2022). Formulas for Features. [2]. Thesis (Unpublished undergraduate
thesis). School of Engineering and Applied Science, University of Virginia.
Charlottesville, VA

Kim, J. & Mente, S. (2022). Graph of removed overfitting. [11]. Thesis (Unpublished
undergraduate thesis). School of Engineering and Applied Science, University of
Virginia. Charlottesville, VA

Kim, J. & Mente, S. (2022). Importance List. [6]. Thesis (Unpublished undergraduate thesis).
School of Engineering and Applied Science, University of Virginia. Charlottesville, VA

Kim, J. & Mente, S. (2022). Louisville Dataframe. [3]. Thesis (Unpublished undergraduate
thesis). School of Engineering and Applied Science, University of Virginia.
Charlottesville, VA

Kim, J. & Mente, S. (2022). 2022 March Madness Bracket. [13]. Thesis (Unpublished
undergraduate thesis). School of Engineering and Applied Science, University of
Virginia. Charlottesville, VA

Kim, J. & Mente, S. (2022). Point Differentials. [8]. Thesis (Unpublished undergraduate thesis).
School of Engineering and Applied Science, University of Virginia. Charlottesville, VA

21

https://www.newsweek.com/march-madness-betting-expected-exceed-3-billion-set-all-time-high-1687917
https://www.newsweek.com/march-madness-betting-expected-exceed-3-billion-set-all-time-high-1687917

Kim, J. & Mente, S. (2022). RMSE Differences. [9]. Thesis (Unpublished undergraduate thesis).
School of Engineering and Applied Science, University of Virginia. Charlottesville, VA

Kim, J. & Mente, S. (2022).Toss-up Code. [7]. Thesis (Unpublished undergraduate thesis).
School of Engineering and Applied Science, University of Virginia. Charlottesville, VA

Levandoski, A., & Lobo, J. (2017). Predicting the NCAA men’s basketball tournament with
machine learning. Jonathan Lobo. http://jonathanlobo.com/docs/predicting_mm.pdf

Moorthy, S., Shi, Z., & Zimmermann, A. (2013). Predicting NCAAB match outcomes using ML
techniques — some results and lessons learned. arXiv Cornell University. 1(1310).
https://arxiv.org/pdf/1310.3607.pdf

PyPI. (2020, March). bracketology. https://pypi.org/project/bracketology/

22

http://jonathanlobo.com/docs/predicting_mm.pdf
https://arxiv.org/pdf/1310.3607.pdf
https://pypi.org/project/bracketology/

