
Data Pipelines: Ways Data Collection and Analysis Pipelines Can Be

Built Through Cloud Services

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Ruohan Ding

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Richard Jacques, Department of Computer Science

ABSTRACT

A Quality Assurance team at Amazon needed a service that

could simplify and automate test data log collection, test

result analysis, and visualize the analysis at scale. My

solution involved leveraging Amazon Web Services (AWS)

to build out an automated data pipeline capable of running,

collecting, and analyzing hundreds of thousands of test logs

per day, and connecting it to a dashboard web-app which

displays charts and graphs of the resulting analysis. The

AWS cloud services used to architect the data pipeline

consisted of Code Pipeline, CodeBuild, EventBridge, SES,

and Aurora Serverless. I wrote the dashboard using React

Framework and ChartJS, hosted on AWS Amplify and

connected to the data pipeline through AWS Lambda and

AWS API Gateway. The final outcome was a success as it

helped fill a vital need within the team for fast and reliable

test data analysis. The complexity of data collection is

abstracted away allowing engineers to better focus on the

tests. The dashboard allows managers and engineers to

quickly gain an understanding of the test result data without

having to do complex analysis. This solution can be

expanded in the future to handle teams with different data,

allowing more teams to use the service. The web-app

dashboard can also be improved upon by implementing

more user customization in the graph and chart

visualizations.

1. INTRODUCTION

Data is the defining feature of the 21st century. There is an

incredible amount of data in the world but most of it is

unprocessed and unused. A common problem many

companies face is how best to conduct useful data

collection and analysis while also investing a minimal

amount of capital and time. Companies like Palantir

provide data analysis services using Machine Learning and

Artificial Intelligence. Companies purchase their services

and give up their data in return for valuable insight

generated from their models.

However relying on third-party companies does present

potential problems. For one there are security concerns

with and possibly regulations against sharing sensitive data

with an outside company. Some companies prefer to

develop their own data-processing pipelines, as this allows

for complete control over the entire process. Unfortunately,

the services and tools necessary to successfully develop

these pipelines require significant time and capital

investments that most companies cannot afford. Therefore,

using existing cloud services designed specifically to build

data-processing pipelines is a good midpoint between

relying on a third-party company and creating proprietary

software.

2. RELATED WORKS

Any company that can successfully leverage the wealth of

data available to them will be able to generate greater

revenue, make better informed decisions, and improve their

overall efficiency (Gavin, 2019). There are many existing

cloud architectures for the design of data processing

pipelines. One popular technique is to combine together

many different AWS services. Even some existing

companies that specialize in data analysis find it easier to

use AWS services instead of creating their own.

Some companies such as Palantir choose to develop their

own data analysis systems in conjunction with existing

AWS Cloud services. Their complex Artificial-Intelligence

powered analysis is hosted on AWS servers and much of

their data deployment and service hosting is also handled

by AWS. This shows that these cloud services can be

highly flexible. Companies can use as little or as much of

these services as fits their needs (Mezzalira, et al, 2022).

AWS also provides many official guides on how best to

leverage their services for a variety of projects. These

projects range from large scale applications deployed by

big corporations to small services developed by university

students. The low-cost of AWS helps to lower the entrance

bar for many users to get started. Also there is very

extensive documentation as well as a very active

community that can help new users to familiarize

themselves with the services and to more easily find

solutions to their wide-ranging problems (Kava and Gong,

2020).

Cloud services provided by AWS, Google, and Salesforce

are universally recognized and considered to be reliable by

many in the industry (Mesbahi, et al, 2018). The learning

curve for these services are low compared to actually

building the services, and the complexities and costs of

maintaining these systems are abstracted away.

3. SYSTEM DESIGN

When used properly cloud services can be integrated

together to build powerful data processing pipelines. The

main challenge is in choosing the correct services to fit the

needs of the project without incurring too much cost or

complexity.

3.1. PALANTIR ARCHITECTURE

The company Palantir has its own models for data analysis

and collection but they also leverage AWS to develop and

integrate the models and prepare data. The architecture of

their Foundry software, a data analytics tool for large

business, is show in Figure 1 (Mezzalira, et al, 2022):

Figure 1: Palantir Foundry Architecture

Complex Machine Learning models are applied within

Palantir’s Foundry platform. The data used by the models is

stored and prepared from S3, RDS, and Kinesis which are

all hosted on AWS. The models are deployed through

Athena and SageMaker on AWS, which in turn is

connected to Lambda and API Gateway. Foundry then hits

the API Gateway to access these models and use them to

conduct data analysis. That analysis is forwarded to its

client-facing front-end. A new company can supply Palantir

with their data and see its analysis after that data is

processed through these pipelines. Despite Palantir being a

well- established company, it still utilizes AWS to manage

the bulk of its data storage and model deployment. This

showcases the flexibility of cloud and how it can remain

useful from small to large-scale projects.

3.2. FULLY AWS ARCHITECTURE

Many users may not need or want the ultra-sophisticated

data analysis that Palantir provides and instead need

simple, frictionless analysis done on their data. AWS has

many guides for building out an appropriate data analytics

pipeline architecture for these use-cases. A suggested

possible design built fully with AWS services is shown

below in Figure 2 (Kava and Gong, 2020):

Figure 2: Serverless Data Lake Centric Analytics

Architecture

This architecture comprehensively covers everything from

data ingestion to security and monitoring. Third-party data

can be ingested by AWS Data Exchange, Datasync, or

Kinesis Firehose and fed into storage. The storage can take

the form of relational databases such as Aurora Serverless,

block storage such as S3, or NoSQL databases such as

DynamoDB. It all depends on the needs of the user.

From here the data can be cleaned and processed through

Lambda functions or passed through code hosted on

CodeBuild. After the data is properly attained and

formatted it can be fed directly to its cataloging or

consumption services such as Athena or SageMaker. This

entire pipeline is secured and monitored by AWS’s own

IAM and VPC services which allow users to restrict access

to and limit behaviors of services within the pipeline. This

guide demonstrates how flexible AWS cloud services are

because there exists a service for every use case. The best

part is that since all these services are developed by AWS,

they communicate very effectively with one another.

3.3. SYSTEM REQUIREMENTS

My project can be split up into two main parts. First, a

cloud system processes, stores, and analyzes large amounts

of data in a reasonable amount of time. The system receives

thousands of data logs every day and that data without

crashing or taking too long. The data then must be

formatted and inserted into a long-term storage database to

be used by the next phase of this project. The second phase

consists of building out a web-app dashboard that is

accessible and easy-to-use. Users should be able to access

the dashboard and create an account for themselves. This

account must be secure and have multi-factor verification

enabled. Users then should be able to add data through this

dashboard as well as generate graphs and tables from

existing data.

Basic requirements such as the security of the data,

scalability of the database in respect to the amount of data,

and the ability to handle spikes of users are inherently

addressed by the cloud services. AWS services have

advanced built-in load balancing, data scaling, and data

protection. This makes implementing any new project a lot

easier as these simple but highly important aspects of the

project are essentially abstracted away.

3.4. ARCHITECTURE OVERVIEW

The architecture I chose to build in order to meet the

requirements set out in section 3.3. was inspired by many

related works found through online research and by official

guides provided by Amazon. Many times tradeoffs had to

be made when I chose between two different

implementation routes.

The frontend web-app dashboard was mainly written in

React. The ChartJS framework was used extensively in

order to generate detailed charts and graphs of the data. The

dashboard was hosted on AWS Amplify which worked

with Cognito in order to provide two-factor authentication

to the web-app. Amplify was also configured with IAM

roles that gives it permissions to communicate with the

backend through Lambda functions. The backend consists

of the AWS Aurora Serverless database. The database was

connected to API Gateway which allowed outside cloud

functions to access and parse it. Cloud Lambda functions

were written and connected to API Gateway in order to

gain access to the database. These cloud functions are

called by the frontend in order to insert, delete, modify, and

retrieve data from the database.

AWS CodeBuild was also set up with a repository in

CodeCommit that contained the code for running nightly-

tests, collecting the results, and storing the data. A pipeline

was then built out in CodePipeline. This pipeline would

trigger the CodeBuild functionality which in turn ran the

code contained in the CodeCommit repository in its own

virtual environment. CodeBuild and CodePipeline both

were connected to Aurora Severless’s Data API which

allowed them to directly conduct Create, Read, Update and

Delete (CRUD) operations on the data without the need to

use Lambda and API Gateway. After CodeCommit

finished, the pipeline would then use EventBridge and SES

to send out email notifications of success or failure to

stakeholders. The pipeline is triggered at a set time every

night by a Jenkins job.

3.5. KEY COMPONENTS

Choosing the right database was possibly the most

impactful part of this project. AWS offers many different

types of databases ranging from bucket based storage like

S3 to NoSQL databases like DynamoDB. The

implementation that I chose to go with was AWS Aurora

Serverless V2, which is a traditional SQL database. The

reason I chose to go with this route was that the type of

data I was storing fit best with the traditional SQL storage

schemas and its CRUD operations. If I had additional data

in the form of image or audio files then I might have gone

with a bucket-based storage implementation. There is also a

lot less maintenance to worry about when using Aurora

Serverless V2. AWS takes care of startup, shutdown, and

capacity scaling (Villalba, 2022). Aurora Serverless V2

also has a built in Data API that allows other AWS services

with the same IAM roles to easily access its data without

the need to write outside APIs. Aurora also decouples

compute and storage which allows it to replicate data

seamlessly and increase the availability of the service, this

functionality is depicted in Figure 3.

Figure 3: Aurora Separation of Storage and

Computation

An API access point and outside cloud functions needed to

be written in order for the dashboard to access Aurora

Serverless. In order to accomplish this, I used a common

implementation combination of Lambda and API Gateway.

The cloud functions to conduct CRUD operations and more

specific data processing are hosted on Lambda. API

Gateway is configured with the necessary IAM roles to

access the correct Aurora Serverless databases. The

Lambda functions are then linked to the API Gateway and

called from the frontend dashboard. This is done mainly for

security so that the data stored inside the database is not

widely accessible to anyone who knows where it is. This

implementation is also highly streamlined due to how

commonly it is used, the architecture is depicted in Figure 4

(Eichorst and Megler, 2017).

Figure 4: Primary CloudFormation Template

The pipeline streamlines the entire data generation to

visualization process. It is triggered every night by a

Jenkins job and the code within the pipeline is run on a

virtual environment. This allows the pipeline to easily catch

any log failures that may occur. The logs are sent to AWS

CloudWatch and can be instrumental to identifying the root

cause of the errors.

4. RESULTS

The dashboard is being actively used by the quality

assurance team on a daily basis to log the manual tests that

they do. It is a massive improvement from having to log

their tests in an Excel sheet that is then shared among the

team. The dashboard gives them a centralized place to

view, store, and analyze their test results. The main page of

the dashboard which contains informative charts and

graphs based on the data is put on three big monitors in the

office. This allows engineers and managers to quickly

glance and see trends in the data or spikes of failures. This,

in turn, allows them to more easily notice problems and

helps to raise awareness for commonly failing tests.

The pipeline is an enhancement to an existing system that

served the same purpose. The main improvement the

pipeline offers is that it is done completely over the cloud

instead of locally. This limits the variables that could

causes failures during the running of the tests, like Wifi

outage or computer running out of battery. It also

streamlines the entire process as all the necessary scripts

are ran back-to-back in order.

5. CONCLUSION

Data is one of the most plentiful resources of the modern

age. Hidden within it is a wealth of knowledge available

only to those that can successfully collect and analyze it.

Cloud services serve as a flexible, low-cost, and

straightforward way to build out powerful data processing

pipelines. Engineers can use cloud services for a variety of

use cases ranging from small projects to large-scale

corporate productions. Most of the complexities associated

with developing and maintaining the tools necessary to host

data pipelines are completely abstracted away with cloud

services. The pipelines and associated dashboard I created

for the Quality Assurance team at Amazon were developed

completely on AWS. For the time being, cloud services are

the best way to build, host, and deploy data pipelines.

6. FUTURE WORK

The natural next-step of this project would be to make it

support more types of data and to conduct more powerful

analysis on the data. The dashboard can be expanded upon

by introducing more analysis functionality. Machine

learning algorithms can be applied to the underlying data in

order to create more advanced analysis, and the results can

be displayed on the dashboard.

The pipeline can be expanded to include more types of

media. Currently my data pipeline can only support digital-

text based data. Audio, visual, and written-text data can be

supported by including the relevant services offered by

AWS or other cloud providers.

REFERENCES

[1] Gavin, M., 2019. Business Analytics: What It Is &

Why It's Important | HBS Online. [online] Harvard

Business School. Available at:

<https://online.hbs.edu/blog/post/importance-of-

business-analytics> [Accessed 23 September

2022].

[2] Mesbahi, M., Rahmani, A. and Hosseinzadeh, M.,

2018. Reliability and high availability in cloud

computing environments: a reference roadmap.

Human-centric Computing and Information

Sciences, [online] 8(1). Available at: <https://hcis-

journal.springeropen.com/articles/10.1186/s13673

-018-0143-8> [Accessed 23 September 2022].

[3] Mezzalira, L., Hyatt, L., Denti, V. and Jaupaj, Z.,

2022. Let’s Architect! Tools for Cloud Architects |

Amazon Web Services. [online] Amazon Web

Services. Available at:

<https://aws.amazon.com/blogs/architecture/lets-

architect-tools-for-cloud-architects/> [Accessed 23

September 2022].

[4] Kava, P. and Gong, C., 2020. AWS serverless data

analytics pipeline reference architecture | Amazon

Web Services. [online] Amazon Web Services.

Available at: <https://aws.amazon.com/blogs/big-

data/aws-serverless-data-analytics-pipeline-

reference-architecture/> [Accessed 23 September

2022].

[5] Villalba, M., 2022. Amazon Aurora Serverless V2

is generally available: Instant scaling for ..., AWS.

[online] AWS News Blog. Available at:

https://aws.amazon.com/blogs/aws/amazon-

aurora-serverless-v2-is-generally-available-

instant-scaling-for-demanding-workloads/

[Accessed: November 30, 2022].

[6] Eichorst, B. and Megler, V., 2017. Blogs, Amazon.

[online] AWS Compute Blog. Available at:

https://aws.amazon.com/blogs/compute/how-to-

provision-complex-on-demand-infrastructures-by-

using-amazon-api-gateway-and-aws-lambda/

[Accessed: November 29, 2022].

