Efficiency and Transparency: How a Small Intern Project Can Save Days of Compute
Time

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia * Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

Winston Zhang

Spring, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science



Efficiency and Transparency: How a Small Intern Project Can Save
Days of Compute Time

CS4991 Capstone Report, 2023

Winston Zhang
Computer Science
The University of Virginia
School of Engineering and Applied Science
Charlottesville, Virginia USA
wyz5Srge@virginia.edu

ABSTRACT

Fannie Mae, a Fortune 500 finance company
dealing in the mortgage market, found itself
disembarking from a several year-long
journey that many tech companies have
undertaken: migrating enterprise software
assets to the cloud. After this migration, a
particular software product that I had worked
on the previous year, had difficulty
processing uploaded user input, while also
offering the user no means to check on the
status of their upload. I provided a window of
transparency by implementing a new status
board on the existing frontend Ul page with
which users interacted. [ utilized a
combination of Angular and AWS Lambda to
implement this full-stack solution. After
deployment to the production environment,
my implementation is expected to eliminate a
significant source of redundancy in compute
time while also minimizing future emails and
support tickets from customers. Future work
on this project may involve the
implementation of a comprehensive suite of
unit test cases, configuration of my feature for
automatic testing and deployment using
CI/CD pipelines, as well as standardization of
frontend UI/UX elements in line with
company standards.

1. INTRODUCTION

In previous iterations of the Google Chrome
web browser, clicking on the taskbar icon
would appear to open a window, which then

disappeared. Most users would then click
dozens more times to no avail, only for
dozens of windows to open. My development
team faced a problem of a similar nature with
the software product we maintained, but with
latencies of several days instead of minutes.

The software product is a web application
hosted on an internal website that returns data
relevant to the loan underwriting process. The
application is commonly used by employees
in the finance and business divisions. Due to
it being designed for users who are not
engineers, the application’s primary purpose
is to provide a user-friendly interface on the
front end so that users can query for and
access data without needing to know or use
SQL. Common use cases Saw users
enqueueing high-workload jobs, and with
most of the logic and computation hidden
from view in the backend, as well as neither
confirmation nor status update being
displayed on the frontend, users would
frequently assume that their submission was
either not received or rejected due to
formatting errors, leading them to either
enqueue duplicate jobs, or to email status
inquiries to the development team. Duplicate
jobs would result in wasted cloud compute
time, and thus wasted money, and email
inquiries required the development team to
pause their work and log into the AWS
console to manually check on the status of a
user’s job, hindering productivity.



2. RELATED WORKS

The software product that I updated for
Fannie Mae had been built by my father when
he was on my team before I joined the
company, so [ was already familiar with the
application and its uses. I gained more
experience with the app in the previous year
by supporting my team in its migration from
on-premises IT infrastructure to AWS cloud
infrastructure. Because of my familiarity with
the project, as well as the relatively simple
scope of the feature to be implemented, I did
not consult any related works, instead opting
to mimic on already implemented code to
build my feature.

The resources I relied on were mainly
tutorials and publicly available
documentation for the frameworks and
packages that I used in my code. The
resources | consulted to become familiar with
Angular for the front-end were the official
documentation available on the Angular
website, as well as a Linkedin Learning
course (Angular, n.d.a; Schwarzenberger,
2019). Angular also maintains a Ul element
module for the framework called Angular
Material, whose documentation I consulted as
I built my feature’s frontend (Angular, n.d.b).
My backend wused psycopg2, a Python
package used for interfacing  with
PostgreSQL databases, whose documentation
I also consulted (Di Gregorio et al. n.d.).

3. PROJECT DESIGN

Due to the web application being already
deployed to the live production environment,
the implementation process of my feature
involved interfacing with and building around
pre-existing application code. Thus, the set of
requirements and constraints was clearly
defined, as well as how the implementation
would be split between front and backend.

3.1 Review of Application Functionalities
The web application offers two similar
functionalities to wusers. The front end,

implemented in Angular, prompts users for
input through an HTML form, where loan
information would be entered. The frontend
extracts values from the HTML UI elements,
and passes them to the AWS backend, which
parses the input and translates it into a SQL
query, fetching the requested data from the
database. The backend passes the returned
data back to the frontend as a JSON object,
whose contents are displayed in the webpage,
below the input form. This Ul-based use case
performs a query for a single loan - a process
that takes place almost instantly.

The application also allows users to
specify multiple loans at once by typing their
input values into a .dat file, which they
upload to the front end. The backend
processes the uploaded files line-by-line and
generates a .dat output file to be emailed to
the user. This upload-based use case, often
involving input files with thousands or
millions of lines, caused the backend to spend
several hours, or even days, processing each
file. The problem arose when users
erroneously uploaded duplicate files, backing
up the job queue, resulting in wasted cloud
compute time. Sometimes, a single user
clogging up the queue would have a
cascading effect, as the processing latency
would cause other users to follow suit,
uploading duplicate files of their own.

3.2 Requirements

The requirements for my implementation
were quite straightforward. Because the
application was used internally, and the
problem faced by users was already known to
my team, I had no need to perform
requirements elicitation with any customers
or stakeholders. Instead, the requirements
were informally explained-to me by my team.

The implied functional requirements are:
1. Users can see processing status of their
enqueued jobs



2. Processing status for jobs is displayed in
tabular form

3. Status board displays several types of
pertinent information in separate columns,
such as file name, date uploaded, and
processing status

4. Users can filter through status board table
by each of the columns, in any combination

5. Users can navigate to status board from
already existing menu on frontend portal.

Due to the limited
implementation, no
requirements were implied.

scope of my
nonfunctional

The constraints are:

1. Frontend 1s implemented using the
Typescript-based Angular framework, and
interfaces with existing frontend code

2. Backend is implemented using Spring Boot
in Java (later amended to Python code run on
AWS Lambda)

3.3 Key Components

My project implementations were divided
into an Angular frontend and Python backend
in accordance with the project constraints
dictated by pre-existing application code.

3.3.1 Frontend

The frontend of my implementation was
implemented as a single Angular component.
Angular components consist of a Typescript

class, an HTML template, and a CSS
stylesheet, closely resembling the
Model-View-Controller =~ (MVC)  design

pattern widely used in web application
development, where the class, which handles
data and logic, is the model and controller,
and the template, which displays data passed
from the class, is the view.

To maintain Ul consistency with existing
components on the frontend, I chose to reuse
existing CSS stylesheets in the repository.

The template, used to render the webpage,
used HTML elements to populate the user’s
web browser window. A form was

implemented at the top that allowed the user
to enter values to filter by, such as a file name
to search for, a range of dates, and processing
status. The input values given to these HTML
elements by the user would be saved to
variables defined in the class. Below the input
form for filter values was the status board
itself. The status board was implemented
using an Angular Material Table, more
commonly referred to as a “mat-table”
(Angular, n.d.b).

The class, used to handle data and logic,
had several variables defined to store the
input values supplied by the user to the
template with which they wanted to filter
data. The class took in data from the backend,
passed in the form of a JSON object, which
was stored in an array. The class had several
Boolean functions defined to determine if
each array element’s data properties
conformed to the filter conditions set by the
user via the template and would exclude
elements if they did not conform to all filter
conditions. The array of now-filtered data
would then be passed to the mat-table in the
template for rendering.

3.3.2 Backend

Initially, the backend of the entire application
ran on Spring Boot, a Java framework. While
learning the framework, I had been informed
of a sudden plan to re-platform the backend to
AWS Lambda. Because of the re-platforming,
the backend of my implementation became
quite straightforward. A simple Python script
was created which made a connection to the
relational database hosted on AWS. Using
psycopg?2, it performed an SQL query on the
metadata table, retrieving file names, dates of
upload, and processing status. Because the
filtering logic had already been handled by
the frontend, the backend code did not need
to perform any further filtering and could
simply retrieve the entire table. The query
response was then returned as a JSON object,
which the frontend would access via URL.



4. ANTICIPATED RESULTS

By the end of my internship, I did not have
the time to develop a way for my front and
backend implementations to interface with
each other, which was the keystone
implementation for my feature to be
functional. After deployment to production,
my implementation is expected to save a
substantial amount of cloud compute time and
money, as well as man-hours, as users can
check on the status of their enqueued jobs,
eliminating the need to queue duplicate jobs,
or email the development team. Due to the
company’s confidentiality policy, I cannot
provide a figure on how much money, and by
extension how much compute time was saved
by my implementation. Additional cost
savings are expected when changes are
implemented to the data query process so that
processing jobs can be performed faster.

5. CONCLUSION

My project sought to address a fault in a
system easily over-encumbered by the
erroneous actions of misinformed users. I
addressed this fault by implementing a new
component on an existing web application
that gave status updates on the jobs uploaded
by wusers, providing transparency to the
previously black-box user experience.

My project demonstrates the importance
of considering human-computer interaction,
as well as the importance of clear and
informative feedback to the user in response
to their actions. Although my implementation
could be seen as a “band-aid” solution to an
underlying problem of system throughput, it
also exemplifies the importance of agility in
the software development process, by
addressing faults quickly while a more
comprehensive fix is under development.

6. FUTURE WORK

Due to time constraints, I was not able to
complete several implementations that were
important for my feature to be considered

polished. Through manual testing, I was able
to verify that both my front and backend
implementations were functional, but I could
neither create standalone automated unit tests
for the front or backend components, nor tests
to ensure proper interfacing between the two.
Additionally, although the same CSS styling
was used, I had implemented my frontend
templates using generic HTML elements and
did not have the time to change them to
proprietary webpage assets normally used for
company websites. Future work would
involve creating a comprehensive test suite
for verification and validation purposes as
future features are implemented, as well as
revising HTML design to bring my
implementation in line with company UI/UX
standards.

Other future work on the project would
involve integrating this new feature into the
new system of automated continuous
integration and continuous deployment
pipelines, along with the aforementioned test
suite. Throughout the course of this project, |
was working on another project that involved
the re-platforming of CI/CD from Jenkins to
Terraform. While my work on this second
project involved the migration of another app
that my team managed, it is anticipated that
my new feature, along with the application,
will be migrated in the future, in the same
way that all the company’s software
applications were migrated in waves to AWS
in previous years.

7. ACKNOWLEDGMENTS

I thank my manager, Sandeep Nadkarni, as
well as the rest of my team, for their help and
support over the past two summers. My
development as a programmer and engineer
would not have been possible without them. I
also thank my department director, Jeffrey
Penner, and my organization VP, Daniel
Seeley. I am beyond thankful to my upper
management for providing me with the
resources to grow, even paying for my AWS
Cloud Practitioner Certification exam.



I thank my fellow FNMA interns, who
made my summers go by in a flash, who were
some of the best friends I have made, and
who made the 9-to-5 feel much shorter than it
actually was.

I thank my parents, for being the first
programmers [ ever knew, for providing me
with the computers I grew up playing with,
and for providing me with the opportunities
and support to get me where I am now.

I thank Anthony Petras, my high school
chemistry teacher, and Steven Barber, my
high school computer science teacher, for
challenging me to strive to better understand
the world and its state of being, and to
appreciate failure instead of avoiding it, for
unforeseen outcomes tell a story as important
as the expected.

REFERENCES

Angular. (n.d.). Understanding Angular.
Retrieved September 28, 2023, from
https://angular.io/guide/understanding-angul
ar-overview

Angular. (n.d.) Angular Material. Retrieved
September 28, 2023, from
https://material.angular.io/

Schwarzenberger, J. (2019, July 13). Angular
Essential Training [Video series]. Linkedin
Learning.
https://www.linkedin.com/learning/angular-
essential-training-2/why-use-angular?

Di Gregorio, F., Varazzo, D., & The Psycopg
Team. (n.d.). Psyopg 2.9.8 documentation.
Retrieved September 28, 2023, from
https://www.psycopg.org/docs/index.html



