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Abstract 

Regime shifts are rapid, sometimes irreversible, changes to non-linear feedback 

mechanisms that occur when ecosystems transition between alternate stable states. 

Ecosystem regime shifts sometimes have severe consequences for human well being 

including eutrophication in lakes, desertification, and fisheries collapses. Statistical 

anomalies such as increased autocorrelation and variance may warn of impending shifts, 

indicating that adaptive management is necessary. To this effect, I proposed 

heteroskedasticity as a new, powerful early warning indicator for ecosystem regime 

shifts. Heteroskedasticity is a type of clustered variance that can occur in time series or in 

spatial data. I hypothesized that statistically significant heteroskedasticity would be 

present in ecosystems approaching regime shifts, but would not be present in ecosystems 

without regime shifts. I further hypothesized that tests for heteroskedasticity in time and 

space would minimize the occurrence of false positive warnings. I expected the null 

hypothesis of no significant heteroskedasticity to ease interpretation of early warning 

indicators and relax the need for pristine reference systems to compare to perturbed 

systems. I tested these hypotheses using simulated data from stochastic ecosystem models 

and data collected during a whole-lake regime shift experiment. The simulated data 

comprised regime shifts with a variety of mechanisms, but in all cases heteroskedasticity 

was a powerful and easily interpreted early warning indicator. In the whole-ecosystem 

experiment, heteroskedasticity tests warned of an impending tipping point well in 

advance of other indicators like autocorrelation and variance. This shows that tests for 

heteroskedasticity can be effective at spatial and temporal scales relevant to ecosystem 

management. The heteroskedasticity indicator contributed by my dissertation satisfies 
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practical requirements for an early warning indicator including that it is powerful, 

minimizes false positives, and does not require a pristine reference system. Overall, my 

dissertation contributes both a valuable tool for ecosystem management and for 

developing fundamental understanding of food webs as complex nonlinear systems. 
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CHAPTER 1: DISSERTATION INTRODUCTION 

Regime shifts are rapid, sometimes irreversible, transitions between alternate 

ecosystem states (Scheffer et al. 2001; Scheffer and Carpenter 2003). Regime shifts may 

have severe consequences for human well being including eutrophication in lakes, 

desertification, and fisheries collapses (Scheffer et al. 2001; Scheffer and Carpenter 2003; 

Scheffer et al. 2009). Recent theoretical results suggest that statistical anomalies may 

warn of an impending regime shift, making it possible to foresee and potentially even 

avert catastrophic shifts by warning that adaptive management is necessary (Biggs et al. 

2009; Scheffer et al. 2009; Dakos et al. 2012; Scheffer et al. 2012). 

 Most early warning indicators derive from the dynamical systems concept of 

critical slowing down (van Nes and Scheffer 2007; Scheffer et al. 2009). Critical slowing 

down is the progressive decline in recovery time from perturbations as a system 

approaches a regime shift (Scheffer et al. 2009). This slowing down manifests itself in 

time series as anomalous increases in autocorrelation and variance (Carpenter and Brock 

2006; van Nes and Scheffer 2007; Scheffer et al. 2009). These statistics are typically 

calculated using moving window analyses where a window (or subset) of data from the 

time series of a key ecosystem property is used to calculate the early warning statistics. 

The statistics are then recalculated as the window is then iterated forward in time. Plots of 

the dynamics of early warning statistics are then evaluated for trends. Autocorrelation 

and variance are expected to increase prior to a regime shift, but should not both increase 

in stable systems (Scheffer et al. 2009; Carpenter et al. 2011). Other statistics, such as 

skewness, may also change in predictable ways prior to a shift (e.g. Guttal and 

Jayaprakash 2008).  
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The efficacy of early warning indicators has mainly been evaluated through 

analyses of data simulated from minimal models of grazing and eutrophication (e.g. 

Carpenter and Brock 2006; van Nes and Scheffer 2007; Scheffer et al. 2009) or through 

regime shift experiments in highly controlled laboratory settings (e.g. Drake and Griffen 

2010; Dai et al. 2012). The efficacy of early warning indicators in field settings is 

unknown, in part because practical challenges such as observation error and seasonal 

cycles are not included in model and laboratory studies. Further, identifying trends in 

indicators is often subjective due to natural variability in indicators. With no benchmark 

values for interpretation, situations occur where the indicators respond properly prior to a 

shift, but managers do not interpret the dynamics as being significant. Alternatively, the 

indicators may vary randomly in a stable system, but managers interpret insignificant 

short-term trends as early warning. 

 This dissertation is motivated by a concern that leading indicator statistics: 1) may 

not be powerful enough to forecast regime shifts with sufficient time to adapt 

management strategies, 2) may return a large number of false positives, and 3) require 

substantial infrastructure in terms of a undisturbed reference system to compare to 

perturbed systems because early warning indicators do not have meaningful thresholds to 

aid interpretation (Biggs et al. 2009; Scheffer et al. 2009; Contamin and Ellison 2009; 

Drake and Griffen 2010; Ditlevsen and Johnsen 2010). These concerns must be resolved 

before leading indicators can be applied in ecosystem management. This dissertation 

addresses these concerns by adapting and testing statistical approaches, mainly developed 

in economics. The chapters, described below, are mostly the results of collaborative 

research as part of the Trophic Cascade Project (Carpenter et al. 2011).  
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Chapter 2 evaluates statistical tests for conditional heteroskedasticity as leading 

indicators of regime shifts. Conditional heteroskedasticity is clustered variance in time 

series that should be exhibited in unstable ecosystems, but not in time series from stable 

ecosystems. I applied moving window conditional heteroskedasticity tests to time series 

simulated from stochastic ecosystem models with and without regime shifts to evaluate if 

conditional heteroskedasticity is a powerful early warning indicator and if probability 

values associated with conditional heteroskedasticity tests can minimize false positive 

warnings and the need for reference systems. Four stochastic ecosystem models, 

representing different types of non-linear dynamics in continuous and discrete time with 

varying magnitudes of noise, were used. I found that conditional heteroskedasticity tests 

were powerful leading indicators of ecosystem regime shifts that minimized false 

positives warnings and the need for pristine reference systems. This chapter was 

published in The American Naturalist (178:442–451). Stephen R. Carpenter and Michael 

L. Pace contributed to this paper as co-authors. 

Chapter 3 evaluates tests for heteroskedasticity as leading indicators in spatially 

extended data. These tests are spatial analogs to the conditional heteroskedasticity tests 

evaluated in the second chapter. I applied tests for spatial heteroskedasticity to simulated 

data from vegetation models approaching the transition from vegetated to desert state. 

The magnitude of spatial heteroskedasticity increased as the modeled systems approached 

the regime shift and heteroskedasticity was a more effective indicator than spatial 

autocorrelation. I conclude that tests for heteroskedasticity can contribute to the growing 

toolbox of early warning indicators for regime shifts in spatially explicit data.  This 

chapter was partly inspired by a workshop “Practical Methods for Analysis of Early 
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Warnings for Regime Shifts” at the Santa Fe Institute. Here, I met leading researchers 

(including my co-author Vasilis Dakos) in early warning indicators and learned about 

current approaches to spatial analysis. This chapter is submitted to Journal of Arid 

Environments.  

Chapter 4 is an analysis of non-linear dynamics in time series derived from a 

whole-ecosystem regime shift experiment. In this experiment we (the Trophic Cascade 

Project) slowly added predator fish to a prey fish dominated lake over the course of four 

years to create a regime shift in predator-prey dynamics (see Carpenter et al. 2011 for 

detailed overview). We measured different aspects of the food web at high frequency to 

assess direct evidence of the existence of alternate ecosystem states. Subsequently, I 

removed linear relationships from these time series using generalized autoregressive 

conditional heteroskedasticity models in order to test for and visualize non-linearity (e.g., 

Hsieh 1991). Few studies directly assess the existence of alternate ecosystem states. This 

is because high frequency time series are rarely collected over long enough time periods 

to apply nonlinearity tests or to reconstruct complex dynamics in phase spaces. Rather, 

most studies instead rely on indirect indicators like tests for bimodality that are unable to 

rule out factors other than nonlinear dynamics in causing food web shifts. Directly 

assessing nonlinearity: 1) confirms the existence of alternate states in a lake ecosystem, 

and 2) confirms that any early warning indicators are due to the experimental regime shift 

and not other possible causes. I found strong evidence for nonlinearity and alternate 

ecosystem states in the experimental data. This chapter establishes the suitability of the 

whole-ecosystem experiment for testing the efficacy of early warning indicators at spatial 

and temporal scales relevant to ecosystem management. This chapter was published in 
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Theoretical Ecology (6:385–394). Timothy J. Cline, Stephen R. Carpenter, and Michael 

L. Pace contributed to this paper as co-authors. 

The fifth chapter applies moving window conditional heteroskedasticity tests to 

time series derived from the whole-ecosystem experiment described in the previous 

chapter. The tests are also applied to a stable reference system. The purpose of this 

chapter is to test the efficacy of conditional heteroskedasticity as an early warning 

indicator under field conditions, at spatial and temporal scales relevant to ecosystem 

managers. These scales, and difficulties associated with real data such as observation 

error, noise, and small sample sizes, are typically minimized when simulated data are 

used to test early warning theory (Carpenter 2003, Scheffer et al. 2009, Seekell et al. 

2011). Using time series from the field study, conditional heteroskedasticity gave 

warnings up to a year and a half prior to the experimental regime shift. Early warning 

signals were not present in the stable reference system. We concluded that 

heteroskedasticity is an effective early warning indicator at spatial and temporal scales 

relevant to ecosystem management. This chapter was published in Ecosystems (15:741–

747). Timothy J. Cline, Stephen R. Carpenter, and Michael L. Pace contributed to this 

paper as co-authors. 

The sixth and final chapter briefly summarizes the main contributions of the 

dissertation and gives several avenues for future research. Specifically, I conclude that 

early warning indicators can precede regime shifts spatial and temporal scales relevant to 

ecosystem management. I also conclude that tests for conditional heteroskedasticity are 

highly effective early warning indicators because 1) they give warning far in advance of 

tipping points, 2) they have a built in threshold that aids in determining if a signal is 
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meaningful, reducing the chance of false positive early warnings and eliminating the 

needs for a pristine reference system with which to compare signals from degrading 

systems. Ecosystem scale tests are necessary to further test the efficacy of early warning 

indicators and to test if early warning indicators appear in time for adaptive management 

to avert a shift. These types of tests are important potential avenues for future research.  
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CHAPTER 2: CONDITIONAL HETEROSKEDASTICITY AS A 
LEADING INDICATOR OF ECOLOGICAL REGIME SHIFTS1 
 

Abstract 

Regime shifts are massive, often irreversible, rearrangements of nonlinear 

ecological processes that occur when systems pass critical transition points. Ecological 

regime shifts sometimes have severe consequences for human well-being, including 

eutrophication in lakes, desertification, and species extinctions. Theoretical and 

laboratory evidence suggests that statistical anomalies may be detectable leading 

indicators of regime shifts in ecological time series, making it possible to foresee and 

potentially avert incipient regime shifts. Conditional heteroskedasticity is persistent 

variance characteristic of time series with clustered volatility. Here, we analyze 

conditional heteroskedasticity as a potential leading indicator of regime shifts in 

ecological time series. We evaluate conditional heteroskedasticity by using ecological 

models with and without four types of critical transition. On approaching transition 

points, all time series contain significant conditional heteroskedasticity. This signal is 

detected hundreds of time steps in advance of the regime shift. Time series without 

regime shifts do not have significant conditional heteroskedasticity. Because probability 

values are easily associated with tests for conditional heteroskedasticity, detection of 

false positives in time series without regime shifts is minimized. This property reduces 

the need for a reference system to compare with the perturbed system. 

 

Introduction 
                                                
1 Seekell DA, Carpenter SR, Pace ML (2011) Conditional heteroskedasticity as a leading 
indicator of ecological regime shifts. The American Naturalist 178:442-451. 
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Regime shifts are reorganizations of nonlinear ecological processes that occur 

when systems pass critical transition points. Ecological regime shifts are sometimes 

irreversible and can have severe consequences for human well-being through loss of 

water quality, loss of rangeland or fish production, or loss of species (Carpenter and 

Brock 2006; Scheffer et al. 2009; Drake and Griffen 2010). Generally, the critical 

transition point is unknown, and regime shifts occur with little or no warning (Scheffer et 

al. 2009). There are a wide variety of approaches to identify regime shifts after they 

occur, but methods to warn of impending regime shifts are needed if unwanted transitions 

are to be prevented (Andersen et al. 2009; Biggs et al. 2009; Contamin and Ellison 2009). 

Theoretical evidence suggests that statistical anomalies appear in ecological time 

series prior to regime shifts (e.g., Carpenter and Brock 2006; Carpenter et al. 2008; 

Scheffer et al. 2009). Increasing autocorrelation (Scheffer et al. 2009), increasing 

variance (Brock and Carpenter 2006; Carpenter and Brock 2006; Scheffer et al. 2009), 

shifts to low-frequency variance (Kleinen et al. 2003; Biggs et al. 2009), and changing 

skewness (Guttal and Jayaprakash 2008) in ecological time series warn of impending 

regime shifts in theory and are present before regime shifts in simulations of stochastic 

ecosystem models (e.g., Carpenter et al. 2008; Guttal and Jayaprakash 2008; Scheffer et 

al. 2009), as well as in laboratory studies (Drake and Griffen 2010). These indicators are 

thought to represent a general class of early warning signals applicable to a wide variety 

of regime shifts. However, some common critical transitions are characterized by 

decreasing variance, decreasing autocorrelation, or no change in symmetry (Berglund and 

Gentz 2002; Brock and Carpenter 2006; Guttal and Jayaprakash 2008; Carpenter et al. 

2009). Hence, leading indicators may have ambiguous interpretations when applied to 
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environmental data if the form of the underlying dynamics is unknown (Brock and 

Carpenter 2006). An additional challenge is to discern between random and nonrandom 

changes in indicators (Scheffer et al. 2009). Currently, a reference system is needed to 

compare to the perturbed system in order to interpret changes in indicators because 

indicators are not easily associated with probability values (e.g., Drake and Griffen 2010; 

Carpenter et al. 2011). 

Conditional heteroskedasticity is persistence in the error variance of 

autoregressive time series models (Engle 1982). In time series, conditional 

heteroskedasticity appears as clustered volatility, such as the periods of high volatility 

and low volatility seen in plots of stock market returns (Engle 2001). Conditional 

heteroskedasticity is well known in economics, but tests for conditional 

heteroskedasticity and related autoregressive conditional heteroskedastic time series 

models have rarely if ever been applied to ecological time series (Lamoureux and 

Lastrapes 1990; Engle 2001). We analyzed conditional heteroskedasticity as a potential 

leading indicator of regime shifts in ecological time series. We use simulated time series 

from stochastic ecosystem models to evaluate the power of conditional heteroskedasticity 

to detect impending regime shifts and to evaluate the susceptibility of these tests to false 

positives. Some of these models use empirically measured large process error, which 

more adequately mimics nature than small-noise processes generally applied to 

ecosystem models. 

 

Methods 

Conditional Heteroskedasticity 
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Constant residual variance (homoscedasticity) is a fundamental assumption of 

ordinary least squares regression analysis. Methods for dealing with violation of the 

constant variance assumption (heteroskedasticity) are well studied and include weighted 

least squares regression, data transformations, and heteroskedastic consistent covariance 

estimators (e.g., Box and Cox 1964; White 1980). Similarly, stationary residual variance 

is also an assumption of many time series analysis methods, and many time series are 

heteroskedastic, with periods of high and low volatility (Engle 1982, 2001; Lamoureux 

and Lastrapes 1990). These time series are described as conditionally heteroskedastic, 

meaning that the variance at a time step is dependent or conditional on the variance at the 

time step before. High volatility is likely to follow high volatility, and low volatility is 

likely to follow low volatility, leading to a characteristic clustering of variances. 

Variance increases in the vicinity of an impending regime shift due to flickering 

or squealing (Taylor et al. 1993; Carpenter and Brock 2006; Scheffer 2009; Brock and 

Carpenter 2010). Flickering occurs when stochastic forcing moves a system between two 

states but not permanently from one state to another (Scheffer 2009; Brock and Carpenter 

2010). These back and forth changes in state variables create increased variance that can 

be viewed as an early warning because environmental conditions have not changed 

enough to force the system into one state (Scheffer 2009). Squealing occurs when 

variance builds in vicinity of a regime shift because the system does not recover from 

random environmental perturbations rapidly due to reduced return rate to equilibrium 

(Scheffer 2009; Scheffer et al. 2009; Brock and Carpenter 2010). Because of flickering 

and squealing, the region of time series near a critical transition might be a cluster of high 

volatility, and the region of time series more distant from the critical transition point 
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might be a cluster of low volatility. Thus, significant conditional heteroskedasticity is 

expected to appear as a system approaches a critical transition point because high 

volatility will appear to cluster. If an impending regime shift is characterized by declining 

variance prior to the critical transition point, conditional heteroskedasticity will still 

appear because there is still a clustering of, in this case, low variance prior to the shift. 

There should be no significant conditional heteroskedasticity in time series without a 

critical transition. Figure 1 is an example of conditional heteroskedasticity. The figure 

consists of squared residuals from an autoregressive lag-1 time series model applied to 

200 time steps of simulated planktivore biomass prior to a regime shift in a temperate-

lake food web model plotted by the squared residual at the previous time step. The strong 

positive relationship between squared residuals and the squared residuals at the previous 

time step is characteristic of conditional heteroskedasticity. The regression line would be 

horizontal if there were no conditional heteroskedasticity and variance at one time step 

was not dependent on variance at the previous time step. 

 

Analytical Approach 

We used simulated time series with and without regime shifts to evaluate 

conditional heteroskedasticity as a leading indicator. Simulated data are well suited to 

evaluation of leading indicators because the locations of regime shifts due to changes in 

the control parameter are known exactly. The power of conditional heteroskedasticity as 

a leading indicator can be assessed at different distances preceding the simulated regime 

shift, and the indicator can be applied to simulated time series without regime shifts to 

evaluate its susceptibility to returning false positives. We selected four models from the 
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literature to generate time series (Table 1) representing discrete- and continuous-time 

approaches with various magnitudes of noise. The models are formed from systems of 

stochastic difference equations or stochastic differential equations and are calibrated to 

either long-term observations or experimental results. The stochastic difference equations 

include empirically measured large process errors. The stochastic differential equations 

contain small-noise perturbations typical of leading indicator simulation studies (e.g., 

Carpenter et al. 2008). These noise terms represent environmental stochasticity but not 

independent random observation error due to measurement error (Carpenter 2003). The 

stochastic differential equations were integrated numerically using the Euler-Maruyama 

method for Ito calculus. The models were run in R (http://www.r-project.org) and Maple 

13 (http://www.maplesoft.com). 

 

Models 

The models used in this study have been described in detail elsewhere and are 

described only briefly here (Table 1). The first model is a stochastic Ricker population 

dynamics model (May 1976; Ponciano et al. 2005) that is widely used to describe 

discrete-time, density-dependent population dynamics (e.g., Beard et al. 2003; Ponciano 

et al. 2005). Model parameters, including process error, were derived from laboratory 

cultures of Escherichia coli, using maximum likelihood methods by Ponciano et al. 

(2005). When the model growth rate (see Table 1) is raised past the critical transition 

point, the system undergoes a period doubling (pitchfork) bifurcation. We simulated 

2,000 time steps at a stable point as a reference series with no regime shift. We then 

simulated 2,000 time steps with slowly increasing population growth rate so that the 
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system would pass the critical transition point at time step 1,500. 

The second model describes the discrete-time dynamics of a midge-algae-detritus 

food web in Lake Myvatn, Iceland (Ives et al. 2008). The model parameters, including 

process error, were derived from long-term data, using maximum likelihood methods by 

Ives et al. (2008). We generated a reference series of midge biomass with no regime shift 

by setting the algal growth rate low so that midge dynamics remained at a stable point. 

We simulated a 2,000-step time series of midge biomass with regime shift by slowly 

increasing the algal growth rate to mimic eutrophication, with the result that the critical 

transition point is crossed at step 1,500. We applied conditional heteroskedasticity tests to 

the resulting midge time series. To find the transition point, we simulated the 

deterministic skeleton of the model and labeled the point just before oscillations begin as 

the critical transition point. After the critical transition point is crossed, this equation 

undergoes a supercritical Neimark-Sacker bifurcation (a discrete-time Hopf bifurcation), 

which is characteristic of a system that loses fixed-point stability and moves toward 

periodic or quasi-periodic behavior (Ives et al. 2008).  

The third model is a simple continuous logistic growth equation that describes 

Daphnia magna population dynamics in a laboratory experiment (Drake and Griffen 

2010). Drake and Griffen (2010) progressively decreased food supply to populations of 

Daphnia over the course of several weeks, leading to declines in abundance and 

eventually extinction. Declines in both population growth rate and system carrying 

capacity are expected when food supply is diminished (Griffen and Drake 2008; Drake 

and Griffen 2010). We generated a reference series of Daphnia biomass by simulating 

2,000 time steps at a stable equilibrium. We generated a series with regime shift by 
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simulating 2,000 time steps with slowly decreasing intrinsic growth rate and decreasing 

carrying capacity so that the system crosses the critical transition point at time step 1,500 

and undergoes a transcritical bifurcation. We did not allow the population to become 

extinct so that we could continue to apply conditional heteroskedasticity tests to the end 

of the 2,000-step time series. Small noise was added because process error was not 

estimated empirically by Drake and Griffen (2010). 

The fourth model describes planktivore-zooplankton-phytoplankton food web 

dynamics in a temperate lake. The model parameters were derived from long-term data 

by Carpenter et al. (2008). Small noise was added because process error was not 

estimated empirically (Carpenter et al. 2008). We generated a reference series of 

planktivore biomass by simulating 2,000 time steps at a stable equilibrium with high 

predation pressure on planktivores. This system has low planktivore biomass, high 

zooplankton biomass, and low phytoplankton biomass. We generated a series with 

regime shift by slowly reducing predation pressure on the planktivores to simulate 

overfishing of predatory fish. The system crosses the critical transition point for a fold 

bifurcation at time step 1,500, and there is a trophic cascade characterized by increasing 

planktivore biomass, declining herbivore biomass, and increasing phytoplankton 

biomass. The planktivore biomass time series is used in this analysis of conditional 

heteroskedasticity. The herbivore biomass time series and phytoplankton biomass time 

series are considered in further analysis described below. 

 

Test for Conditional Heteroskedasticity 

We tested for conditional heteroskedasticity in the model time series with a 
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simple and widely used Lagrange multiplier test described by Engle (1982; see also 

Engle et al. 1985). The testing procedure is as follows:  

 

(1) fit a lag-1 autoregressive model by using ordinary least squares regression, 

(2) square the residuals obtained from step 1, 

(3) lag the squared residuals from step 2 by one time step, 

(4) regress the squared residuals from step 2 by the lagged squared residuals from step 3,  

(5) calculate the Lagrange multiplier test statistic as the product of the r2  value from the  

 auxiliary regression in step 4 and sample size from the auxiliary regression in step 4,  

 and  

(6) calculate the probability value for the Lagrange multiplier by comparing the Lagrange  

 multiplier test statistic to a x2 distribution with 1 df. 

 

Worked examples of the test calculations with and without conditional 

heteroskedasticity are provided in Appendix 1 in this dissertation. Generally, leading 

indicators are applied using moving-window analysis (e.g. Scheffer et al. 2009). Here we 

apply the Lagrange multiplier test for conditional heteroskedasticity to 200 time step 

windows. At time t, the value for t and the 199 previous time steps are included in the 

window. We move the window forward 50 time steps in between each test. In our model 

analyses, the time series have 2,000 observations so that 37 tests are applied with each 

test, consisting of 200 observations. We applied these tests in Minitab 15 

(http://www.minitab.com). 

A likely outcome is recording some significant tests even if there is no conditional 
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heteroskedasticity and no impending regime shift. If the critical level of significance for 

conditional heteroskedasticity tests is 0.05, five significant tests are expected per 100 

tests conducted when there is no conditional heteroskedasticity. A Bernoulli expansion 

may be used in conjunction with the moving-window test results in order to find the 

probability of returning a given number of significant tests in the total number of tests 

(Wilkinson 1951; Moran 2003). For example, if there is one significant test in 10 tries, 

we might not, without other evidence, conclude that there is an impending regime shift 

because the probability of finding one significant test in 10 is high (P = 0.315). The 

probability by Bernoulli expansion is calculated as 

 

! = !!
!!! !!!

×!! 1− ! !!! , 

 

where N  is the number of tests conducted, K  is the number of significant tests, and a is 

the level of significance (e.g., a =  0.05) for the individual conditional heteroskedasticity 

tests (Moran 2003). Lookup tables for probability values from this equation are available 

in Wilkinson (1951). 

 

Variable Selection 

Leading indicators of regime shifts might be effectively resolved in time series 

data collected by standardized environmental monitoring programs (Brock and Carpenter 

2006). However, environmental monitoring programs cannot record all variables of 

interest, and it may be difficult to choose variables that may be important for warning of 

a future regime shift (Lovett et al. 2007). We applied the moving-window Lagrange 
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multiplier test for conditional heteroskedasticity (window width, 200) to the simulated 

phytoplankton and zooplankton biomass time series from the temperate-lake food web 

model to evaluate how variable selection from environmental monitoring may affect 

conditional heteroskedasticity as a leading indicator. 

 

Results 

Conditional Heteroskedasticity as a Leading Indicator of Regime Shifts 

The discrete-time Escherichia coli dynamics model shifts toward chaotic behavior 

as the growth rate increases past the critical transition point and the data pitchfork, a 

pattern characteristic of the period-doubling bifurcation (Fig. 2A, black dots). The 

reference series was variable around a stable point and had no long-run change in E. coli 

abundance (Fig. 2A, red line). There was significant conditional heteroskedasticity prior 

to the critical transition in the time series with a regime shift, and significant tests 

appeared consistently before the transition point (Fig. 2B, black line). The cumulative 

number of significant tests was significant, as judged by Bernoulli expansion (P < 0.05) 

at time step 450. In the reference time series, there was one significant conditional 

heteroskedasticity test in 37 applications (Fig. 2B, red line). This frequency of occurrence 

is not significant as judged by Bernoulli expansion. 

The midge biomass dynamics from the discrete-time food web model for Lake 

Myvatn transition from a stable point to oscillating behavior as algal growth rate is 

slowly increased (Fig. 2C, black line). Midge biomass began oscillating prior to algal 

growth rate being pushed across the critical transition point, indicating that environmental 

stochasticity plays an important role in determining the state of the system. Flickering 
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between the stable point and oscillating regimes appears to occur between time steps 500 

and 1,000. The reference system had considerable variability but remained about the 

stable point throughout the time series (Fig. 2C, red line). Significant tests accumulated 

for the transition case, and the frequency of significant tests was significant by time step 

700 (Fig. 2D, black line). The significant tests occurred mainly while the system was 

flickering, and there were few or no significant conditional heteroskedasticity tests when 

the time series was at the stable or oscillating regime. This result underscores the 

potential importance of flickering in facilitating detection of early warnings of impending 

regime shifts. There was one significant test in 37 applications to the reference time 

series (Fig. 2D, red line). This frequency of occurrence is not significant as judged by 

Bernoulli expansion. 

The time series from the continuous Daphnia dynamics model with critical 

transition (Fig. 3A, black line) had steady population decline, while the Daphnia 

dynamics time series without critical transition varied around a stable point (Fig. 3A, red 

line). There was a steady increase in cumulative number of significant conditional 

heteroskedasticity tests prior to the transition in the series with regime shift. The 

cumulative number of significant tests was significant, as judged by Bernoulli expansion, 

by time step 450 (Fig. 3B, black line). In the reference time series, there were two 

significant tests in 37 applications (Fig. 3C). This number of significant tests is not 

significant as judged by Bernoulli expansion. 

 The planktivore biomass time series with critical transition from the continuous 

lake food web model demonstrated logistic growth and had significant conditional 

heteroskedasticity throughout the period approaching the regime shift, and the impending 
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regime shift was identified by time step 450 (Fig. 3C, 3D, black lines). The reference 

series varied steadily near an equilibrium value in the reference time series (Fig. 3C, red 

line). There were no significant conditional heteroskedasticity tests in the 37 tests applied 

to the reference time series (Fig. 3D, red line). 

 

Variable Selection 

Variable selection for detecting the regime shift was important in the continuous 

temperate-lake food web model. While there is clear early warning in the planktivore 

biomass series (Fig. 3C), there is no clear early warning in the zooplankton biomass time 

series (Fig. 4A). Herbivore biomass decreased as planktivore biomass increased (Fig. 4A, 

black line), but there was no consistent significant conditional heteroskedasticity (Fig. 

4A, red line). Phytoplankton biomass increased as zooplankton biomass decreased (Fig. 

4B, black line). There was significant conditional heteroskedasticity prior to the critical 

transition point (in the planktivore time series), but this was not consistent through the 

time series (Fig. 4B, red line). The phytoplankton time series provides early warning as 

quickly as the planktivore biomass series as judged by Bernoulli expansion; however, the 

number of significant tests is less compelling than the planktivore series when plotted 

(Fig. 4B). The discrepancy in consistency in returning significant conditional 

heteroskedasticity tests demonstrates the importance of selecting relevant environmental 

parameters for long-term monitoring and application of conditional heteroskedasticity as 

a leading indicator of regime shifts. Finding appropriate parameters to measure for real 

systems will be a subjective task based on modeling studies and researchers’ expert 

knowledge of the systems they are studying (e.g., Carpenter et al. 2011). 
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Discussion 

Conditional heteroskedasticity is a powerful leading indicator of impending 

regime shifts. Cumulative tests for conditional heteroskedasticity warn of regime shifts 

hundreds of time steps ahead of critical transition points. Conditional heteroskedasticity 

is robust and is effective for forecasting a variety of forms of regime shift. This is 

because both increasing and decreasing variance prior to a shift appear as clustered 

volatility prior to the shift.  

Some indicators are ambiguous when the underlying dynamics of the system are 

unknown (Brock and Carpenter 2006). For instance, variance in water column 

phosphorus increases prior to the critical transition from an oligotrophic state to a 

eutrophic state in lake ecosystem models (Carpenter and Brock 2006). However, variance 

in algal biomass declines in models describing the transition of phytoplankton 

communities to dominance by toxic cyanobacteria during eutrophication (Carpenter et al. 

2009). Hence some understanding of the potential regime shift is necessary to judge the 

practical importance of increases and decreases in variance. Here, we have shown that a 

test for conditional heteroskedasticity is effective for warning of a variety of critical 

transitions and could be applied to systems with increasing or decreasing variance prior 

to a regime shift. Association with probability values eases interpretation of test results. 

Tests for conditional heteroskedasticity require much larger samples than 

descriptive statistics such as variance and autocorrelation (see Engle et al. 1985). This is 

unlikely to be problematic for parameters that are easily measured in situ at high 

frequency, such as chlorophyll-a in lakes (Carpenter et al. 2009). However, this sample 
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size requirement could be problematic for properties that cannot be sampled at high 

resolution, such as fish biomass and many other ecological variables. Hence, conditional 

heteroskedasticity tests will be practical for application only to some variables and 

studies with high numbers of observations. 

Increased attention will be needed to minimize false positives as the effectiveness 

of leading indicators is tested in theory and in field applications. False positives are cases 

where statistics falsely indicate an impending regime shift. False positives could lead to 

expensive, inconvenient, and unnecessary changes in population or ecosystem 

management. It is difficult to demonstrate the successfulness of avoiding regime shifts 

because success is essentially equivalent to no state change (Scheffer 2009). If this 

difficulty is combined with an abundance of false positives, policy makers and public 

confidence in the usefulness of programs designed to inhibit regime shifts could erode. 

Thus, while these indicators should be pursued, future evaluations of regime shift 

indicators should include time series without regime shifts to evaluate the potential 

susceptibility of indicators to returning false positives. In this study, by associating 

probability values with the conditional heteroskedasticity indicator, we were able to 

minimize false positives due to chance. However, false positives may also be triggered by 

confounding trends in external perturbations (Scheffer 2009). Thus, field studies are 

necessary to more adequately evaluate leading indicators. 

In simulation, leading indicators should be evaluated against models with 

empirically measured process error to better mirror real-world perturbations. Such 

models may have interesting and unexpected dynamics. For instance, the midge biomass 

time series we used contains flickering and an unexpected early transition to the 
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oscillating state due to environmental stochasticity. Such complex dynamics, not seen in 

the other models in this analysis, may be more adequately captured in models with more 

realistic large noises. Further, the response of some indicators may vary considerably, 

depending on the magnitude of noise in the system (Berglund and Gentz 2002). Thus, 

indicators should also be evaluated against models with a variety of magnitudes of noise. 

Observation errors and biases may also be added to simulated data to more 

adequately mimic field data (Carpenter 2003). Parameters are associated with unique 

levels of observational error, and this may reduce the power of some indicators to 

identify impending regime shifts (Carpenter 2003). Magnitude of observation error may 

be dependent on sampling frequency, and high-frequency measurements (e.g., every 5 

min) may be superior for practical application because they may record at a more 

ecologically relevant timescale than low-frequency measurements (e.g., weekly). 

Improved statistical power due to increased sampling size with high-frequency data will 

likely offset any decreased power to identify impending regime shifts due to observation 

error. In an experimentally induced ecosystem regime shift, Carpenter et al. (2011) found 

strong early warning signals in high-frequency data, and large data sets may be needed to 

uncover nonlinear dynamics in all complex systems. 

Leading indicators such as conditional heteroskedasticity may fail to provide early 

warning of regime shifts (false negative) if the system is driven rapidly across the critical 

transition point or if an unlikely and large shock pushes the system from one stable 

equilibrium to another (Scheffer et al. 2009). The mechanics of the system may also 

cause leading indicators to fail, and it may be impossible in practice to know whether this 

is the case prior to a regime shift occurring. However, models thought to adequately 
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represent nonlinear ecosystem dynamics are characterized by leading indicators prior to a 

regime shift (e.g., van Nes and Scheffer 2007; Carpenter et al. 2008; Scheffer et al. 

2009). Laboratory (Drake and Griffen 2010) and whole-ecosystem (Carpenter et al. 2011) 

experimental regime shifts, as well as paleoclimate records (Dakos et al. 2008), are 

characterized by dynamics with early warnings prior to a regime shift. Given that 

conditional heteroskedasticity is expected prior to shifts, the probability of false negatives 

will be determined largely by the sample size that each test is applied to (Engle et al. 

1985). 

Leading indicators of regime shift have been successfully applied to reconstructed 

time series of climate transitions in the ancient past (Dakos et al. 2008). However, the 

true utility of regime shift indicators will not be established until they are adequately 

evaluated on transitions that occur at temporal and spatial scales that are relevant to 

policy makers and the public (e.g., Carpenter et al. 2011). Field studies that 

experimentally induce regime shifts are necessary to examine the advantages and 

limitations of different indicators and to resolve potential discrepancies in their practical 

interpretations. 
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Figure 1: Squared residuals from an AR-lag 1 model applied to the two hundred time 
steps prior to regime shift in the planktivore biomass time series from the temperate lake 
food-web model plotted by the previous squared residual. The strong positive relationship 
is indicative of conditional heteroskedasticity because there is a relationship between the 
error variance at a given time step and the error variance at the previous time step. If the 
regression line was horizontal, error variance would have no relationship with error 
variance at previous time steps and there would be no conditional heteroskedasticity. 
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Figure 2. A) Time series from the discrete E. coli dynamics model with (black line) and 
without (red line) a regime shift. B) Cumulative number of significant moving window 
Lagrange Multiplier tests for conditional heteroskedasticity applied to the discrete E. coli 
dynamics model time series with (black line) and without (red line) regime shift. There 
are 37 total tests applied to the time series. C) Time series midge biomass from the 
discrete lake food-web model with (black line) and without (red line) a regime shift. D) 
Cumulative number of significant moving window Lagrange Multiplier tests for 
conditional heteroskedasticity applied to midge biomass time series from the discrete lake 
food-web dynamics model time series with (black line) and without (red line) regime 
shift. There are 37 total tests applied to the time series. The vertical gray line at step 1500 
denotes the critical transition point for the control parameter in both models with regime 
shift. 
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Figure 3. A) Time series from the continuous Daphnia dynamics model with (black line) 
and without (red line) a regime shift. B) Cumulative number of significant moving 
window Lagrange Multiplier tests for conditional heteroskedasticity applied to the 
continuous Daphnia dynamics model time series with (black line) and without (red line) 
regime shift. There are 37 total tests. C) Planktivore biomass time series from the 
continuous lake food-web model with (black line) and without (red line) a regime shift. 
D) Cumulative number of significant moving window Lagrange Multiplier tests for 
conditional heteroskedasticity applied to the continuous lake food-web dynamics model 
time series with (black line) and without (red line) regime shift. There are 37 total tests. 
The vertical gray line at step 1500 denotes the critical transition point. 
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Figure 4. A) Zooplankton (herbivore) biomass from the continuous lake food-web 
dynamics model with regime shift (black line). B) Phytoplankton biomass from the 
continuous lake food-web dynamics model with regime shift (black line). The cumulative 
numbers of significant moving window conditional heteroskedasticity tests are the red 
dashed lines. The vertical grey lines denote the location of the critical transition in the 
planktivore dynamics. A total of 37 tests were applied to each time series. 
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CHAPTER 3: HETEROSKEDASTICITY AS A LEADING INDICATOR 
OF DESERTIFICATION IN SPATIALLY EXPLICIT DATA2 
 

Abstract 

 Regime shifts are abrupt transitions between alternate ecosystem states including 

desertification in arid regions due to drought or overgrazing. Regime shifts may be 

preceded by statistical anomalies such as increased autocorrelation and increased 

variance, indicating declining resilience and warning of an impending shift. Tests for 

conditional heteroskedasticity, a type of clustered variance, have proven powerful leading 

indicators for regime shifts in time series data, but an analogous indicator for spatial data 

has not been evaluated. A spatial analog for conditional heteroskedasticity might be 

especially useful in arid environments where spatial interactions are critical in structuring 

ecosystem pattern and process. We tested the efficacy of a test for spatial 

heteroskedasticity as a leading indicator of regime shifts with simulated data from 

spatially extended vegetation models with scale-dependent and scale-free patterning. 

These models simulate shifts from conditions of extensive vegetative cover to bare, 

desert-like conditions. We compared the efficacy of spatial heteroskedasticity as a 

leading indicator to the efficacy of Moran’s I index of spatial autocorrelation. The 

magnitude of spatial heteroskedasticity increased consistently as the modeled systems 

approached a regime shift from vegetated to bare, un-vegetated state. Relative to spatial 

autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We 

conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of 

                                                
2 Seekell DA, Dakos V (in review) Heteroskedasticity as a leading indicator of 
desertification in spatially explicit data. Submitted to Journal of Arid Environments, 
February 2014. 
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early warning indicators for regime shifts analyzed with spatially explicit data. 

 

Keywords: regime shift; early warning indicator; spatial pattern; heteroskedasticity; 

critical transition; spatial autocorrelation; resilience; desertification 

 

Introduction 

 Vegetated ecosystems in arid regions are subject to desertification due to drought 

and overgrazing (Rietkerk et al. 2004; Kefi et al. 2007a; D’Odorico et al. 2013). 

Desertification is caused by changes in interactions and feedback cycles that facilitate 

plant growth (Peters et al. 2006; D’Odorico et al. 2013). For instance, plant cover 

decreases soil water evaporation and increases soil infiltration capacity, creating a 

feedback where plant-cover facilitates nearby plant growth (HilleRisLambers et al. 2001; 

D’Odorico et al. 2007). If grazing or drought reduces plant cover, a system can transition 

to a new cycle of decreased plant cover and increased water loss, leading to 

desertification (D’Odorico et al. 2007; D’Odorico et al. 2013). This type of transition 

between feedbacks, which may be irreversible, is known as a regime shift (Scheffer et al. 

2001). In the case of desertification, a regime shift may occur by different mechanisms at 

different scales, all with potentially devastating losses of ecosystem services (Peters and 

Havstad 2006; D’Odorico et al. 2013). Because arid regions are home to more than 2 

billion people including many populations with food insecurity and poor states of human 

well-being, there is a need to understand both the global extent of desertification and the 

areas most at risk of loss of resilience and transition to desert (e.g. Reynolds et al. 2007; 

Kefi et al. 2007a; Dakos et al. 2011; D’Odorico et al. 2013). 
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 Statistical signatures such as increased autocorrelation and increased variance in 

key ecosystem properties may be leading indicators of regime shifts (Scheffer et al. 2009; 

Carpenter et al. 2011; Dakos et al. 2012). Time series from well-mixed systems like lakes 

document that these indicators give considerable warning in advance of regime shifts 

(e.g. Scheffer et al. 2009; Carpenter et al. 2011; Seekell et al. 2012; Batt et al. 2013). 

However, time series indicators can fail in systems with strong spatial connections, such 

as vegetated systems in arid regions where the diameters of root systems and canopies 

create distance dependent facilitation-competition relationships (D’Odorico et al. 2007; 

Dakos et al. 2011). Analyses of simulated data from stochastic ecosystem models suggest 

that spatial analogs for leading indicators of regime shifts (i.e. spatial variance and spatial 

autocorrelation) perform better in these types of spatially extended systems (Guttal and 

Jayaprakash 2009; Donangelo et al. 2010; Dakos et al. 2010). Additionally, because they 

gain power from sampling multiple points in space, spatial indicators are more practical 

than temporal indicators in that they require significantly fewer observations to detect 

change (Guttal and Jayaprakash 2009; Dakos et al. 2010; Dakos et al. 2011). As a 

consequence, there is a substantial interest in developing spatial analogs for temporal 

regime shift indicators (Kefi et al. 2014). 

 We previously presented tests for conditional heteroskedasticity as a leading 

indicator of regime shifts in ecological time series (Seekell et al. 2011; Dakos et al. 2012; 

Seekell et al. 2012). Conditional heteroskedasticity is clustered variance that is exhibited 

in ecosystems approaching a regime shift (Seekell et al. 2011; Seekell et al. 2012). Tests 

for conditional heteroskedasticity have been effective indicators of impending regime 

shifts when applied to simulated data from a variety of stochastic ecosystem models 
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(Seekell et al. 2011; Dakos et al. 2012) and were a highly effective indicator in a whole-

ecosystem regime shift experiment designed to test the efficacy of leading indicators at 

spatial and temporal scales relevant to management (Seekell et al. 2012). Despite this 

success, an analogous technique for spatial data has not been evaluated. Here, we 

describe a test for spatial heteroskedasticity adapted for use as a leading indicator of 

desertification and evaluate its efficacy using data simulated from two spatially extended 

models of vegetation dynamics in arid regions. 

 

Methods 

Test for spatial heteroskedasticity 

Tests for conditional heteroskedasticity in time series are calculated using a two-

step process: 1) the data are filtered through an autoregressive time series model and then 

2) a regression is used to test for autocorrelation among the squares of the filtered values 

(Seekell et al. 2011). Ord and Getis (2012) describe an analogous test for gridded spatial 

data: 1) each cell is filtered by subtracting the mean of adjacent cells, and then 2) spatial 

autocorrelation is assessed for the squares of the filtered data. Here, we assess clustering 

in the squares of the filtered data by applying Moran’s I index of spatial autocorrelation. 

Other metrics of spatial autocorrelation could be used (e.g. Ord and Getis 2012), but we 

used Moran’s I because 1) it is widely used by ecologists and 2) Moran’s I can be easily 

expressed as a regression, similar to the tests typically used to assess conditional 

heteroskedasticity in time series (Anselin et al. 1996; Fortin and Dale 2005; Anselin et al. 

2006; Seekell et al. 2011). 

Leading indicators such as spatial autocorrelation and spatial variance derive from 
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the concept of critical slowing down – a condition when dynamical systems take 

progressively longer to recover from perturbations as they approach a bifurcation point 

(Wissel 1984; van Nes and Scheffer 2007; Dakos et al. 2010). Spatial heteroskedasticity 

is not directly related to critical slowing down, but rather responds to clustering of spatial 

variability (Ord and Getis 2012). Local variability is low for bare cells surrounded by 

bare cells (or vegetated cells surrounded by vegetated cells), but is high at the boundary 

of vegetated and vegetated areas. In semi-arid regions, vegetation can form distinct 

spatial patterns ranging from complete or near complete cover to labyrinth patterns and 

patches close to the transition to desertification (Rietkerk et al. 2002; Borgogno et al. 

2009). We expect that as the vegetation patterns change, local variability due to edges 

will become increasingly clustered as patches of vegetation become smaller and edges 

between vegetated and bare areas contract (cf. Couteron 2002). Spatial heteroskedasticity 

should increase in response to these changes. 

 

Analysis 

 We evaluated spatial heteroskedasticity as a leading indicator of desertification 

using data simulated on 100 × 100 grids from two spatially extended vegetation models 

(Dakos et al 2011). The first dataset was simulated from a stochastic ecohydrology model 

comprising the relationships between plant biomass, soil water, and surface water 

(Rietkerk et al. 2002). In this model, a spatial feedback operates in a way that leads to 

increased soil moisture near a plant and decreased soil moisture away from the plant. 

This scale dependent feedback creates patterns of regular vegetation patches which 

change in predictable as the ecosystem approaches the regime shift to desert (Rietkerk et 
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al. 2002). The second dataset was simulated from a stochastic cellular automaton model 

where the probability of cells becoming vegetated increases if a neighboring cell is 

vegetated (Kefi et al. 2007b). This local facilitation dynamic creates scale-free vegetation 

patterns with patches of vegetation progressively breaking to smaller pieces up to a point 

where none of them is sustained and the ecosystem shifts to a desert (Kefi et al. 2007b). 

Dakos et al. (2011) give detailed descriptions of the models and parameterizations used. 

 The specific data used in our analyses were previously analyzed for testing the 

relative efficacies of spatial and temporal indicators of regime shifts in signaling 

desertification (Dakos et al. 2011). The data represent snapshots, similar to what one 

would get from repeated flyovers for remotely sensed imagery as a system degrades from 

vegetated to desert (Dakos et al. 2011). We use these data to compare spatial 

heteroskedasticity tests directly to spatial autocorrelation. Both spatial heteroskedasticity 

and spatial autocorrelation are assessed using the Moran’s I statistic. For our analysis we 

calculated Moran’s I for both spatial autocorrelation and spatial heteroskedasticity using 

a binary first order Queen contiguity spatial connectivity matrix. This creates an 

autocorrelation analysis that assesses the similarity of each grid cell to the average value 

of adjacent cells. This analysis is analogous to calculating lag-one autocorrelation in time 

series. The matrix of spatial connections (a cell is connected to its adjacent cells and 

disconnected to all other cells) was row standardized (so that row sums equal unity) prior 

to calculating Moran’s I (Anselin 1996). We conducted this analysis for both datasets 

using the freeware application GeoDa (Anselin et al. 2006).  

The scale-free vegetation model gives binary occupancy data (vegetated or bare). 

Prior to assessing spatial autocorrelation on this data, we applied a coarse-graining 
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procedure to make the data quantitative (Dakos et al 2011). The coarse-graining 

procedure sums the values of 5x5 cell sub-matrices to create a new data matrix with a 

smaller number of larger (in terms of area) cells. We did not use the coarse-graining 

procedure prior to testing for spatial heteroskedasticity because spatial heteroskedasticity 

includes its own filtering step that creates continuous data from the binary values by 

subtracting the averages of adjacent cells from each cell value (see above; Ord and Getis 

2012). 

Most analyses of leading indicators are based on simulated data have long lead-up 

times to transitions (e.g. Seekell et al. 2011; Batt et al. 2013). However, in practice, long-

term monitoring programs are difficult to maintain and monitoring may begin at different 

times relative to an impending regime shift and this may influence the magnitude and 

direction of trends (cf. Easterling and Wehner 2009). To test how this may influence 

interpretation of spatial autocorrelation and spatial heteroskedasticity, we evaluated 

trends in these indicators using Kendall’s tau correlation coefficient beginning at 

different points in time (referred to as snapshots). If the direction and magnitude of trends 

were consistent among starting points, managers would draw the same conclusions about 

changes in ecosystem resilience regardless of when monitoring began. However, if there 

is variability in the direction and magnitude of trends, the start date for monitoring may 

influence the conclusions managers draw about changes in ecosystem resilience.  

 

Results 

  Spatial patterns in data from the scale-dependent feedback model shifted from 

complete plant cover, to labyrinths, and then to patches as the system lost resilience and 
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degraded to a desert state (Figure 1A, darker green cells are more heavily vegetated and 

light green cells are lightly vegetated or bare). The squared residuals of the simulated 

vegetation data after filtering had many of the characteristics of the simulated vegetated 

data (e.g. spotted and labyrinth patterns; Figure 1B). However, there is a key difference in 

that the centers of the spots and labyrinths have low values (light blue) as opposed to the 

raw data where the centers are high values (dark blue). For the scale-free model, plant 

cover decreased and became increasing patchy as the vegetation system approached the 

transition to the desert state (Figure 2A). After coarse-graining, the same pattern is 

evidenced but much of the fine scale pattern is smoothed over (Figure 2B). The squared 

residuals of the simulated vegetation data after filtering became increasingly clustered as 

the simulated system degraded (Figure 2C). The centers of patches have in the filtered 

data had low values (light blue) such that high variability edges (dark blue) draw closer 

as the patch sizes decrease. 

For the system with scale-dependent dynamics, spatial autocorrelation was 

moderate when the system was mostly vegetated but jumped to high levels when 

patterning appeared (Figure 3A). After this initial jump, spatial autocorrelation declined 

slightly. When completely vegetated, spatial heteroskedasticity was near zero because of 

the few edges between vegetated and bare regions. Spatial heteroskedasticity increased 

consistently as the system degraded and the edges between vegetated and bare areas grew 

closer together (Figure 3A).  

For the system with scale free dynamics, spatial autocorrelation generally 

increased as the system degraded, but with considerable variability (Figure 3B). This 

variability originates from the coarse-graining procedure that smoothed over cell-to-cell 
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covariance in vegetation dynamics. When completely vegetated, spatial 

heteroskedasticity was near zero because of there are few edges between vegetated and 

bare regions. Spatial heteroskedasticity increased consistently as the system degraded 

(Figure 3B). Because the spatial heteroskedasticity analysis does not require coarse-

graining, the cell-to-cell covariance is not smoothed over and the increase in spatial 

heteroskedasticity as the system degrades has considerably less variability then spatial 

autocorrelation. 

For the scale dependent data, there is a weak positive trend overall in spatial 

autocorrelation (Figure 4A). However, this trend becomes negative if observations begin 

after the first snapshot. The lack of monotonic trend indicates that conclusions drawn 

from monitoring will depend on when a manager begins monitoring the system. For 

spatial heteroskedasticity, Kendall’s tau was consistently at or near unity for each 

potential starting point, indicating that the increase in spatial heteroskedasticity was 

consistent throughout the course of degradation (Figure 4A). If a manager were to assess 

spatial heteroskedasticity, they would come to the same conclusion about declining 

resilience in the system, regardless of when monitoring began. For spatial autocorrelation 

in the scale-free data, trends were always positive but generally weaker (lower values of 

Kendall’s tau) than trends in spatial heteroskedasticity. However, the trends did become 

strong for the last three snapshots (Figure 4B). For spatial heteroskedasticity, Kendall’s 

tau was at or near unity for all possible starting points for assessing trends, indicating that 

managers would draw the same conclusions from the analysis regardless of the starting 

point for monitoring (Figure 4B).  
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Discussion 

 Spatial heteroskedasticity increased consistently prior to desertification in 

simulated arid systems exhibiting scale-free and regular pattern formation. Spatial 

heteroskedasticity increased sooner and more consistently than spatial autocorrelation. 

Hence, spatial heteroskedasticity appeared more reliable than spatial autocorrelation as a 

leading indicator of regime shifts in such simulated patterned data. Temporal tests for 

conditional heteroskedasticity require long uninterrupted time series (e.g. 50-200 time 

steps; Seekell et al. 2011; Seekell et al. 2012), but spatial heteroskedasticity tests required 

only a handful of time steps (e.g. < 10) and these time steps do not have to be equally 

spaced. The characteristics of spatial heteroskedasticity as a leading indicator are well 

suited for terrestrial vegetated systems where the temporal scale of dynamics are long (at 

least relative to the fast dynamics of microbial systems and phytoplankton in lakes where 

many temporal leading indicators have been tested, see Carpenter et al. 2011; Seekell et 

al. 2012; Dai et al. 2012) and it may be impractical to wait and collect data for a large 

amount of time before beginning to assess leading indicators of regime shift (i.e. a shift 

may happen in the time it takes to collect enough data to calculate the temporal indicator 

only once). 

 We did not include metrics of statistical significance in our spatial 

heteroskedasticity analysis. We experimented with a randomization approach (e.g. Kefi et 

al. 2014), but because spatial data easily achieve large sample sizes, even the most trivial 

values of Moran’s I are significantly different from zero. For instance, Moran’s I for 

spatial heteroskedasticity in the least degraded snapshot of the scale-dependent data was 

0.021, but was highly significant (p = 0.001) because the sample size was n = 10,000. 
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This hypersensitivity is common for spatial indicators (Kefi et al. 2014). We 

experimented with reducing sample sizes and found that it improves the efficacy of 

randomization tests for the spatial heteroskedasticity such that there is not significant 

heteroskedasticity in stable systems, and significant heteroskedasticity in degrading 

systems. However, we also found with smaller sample sizes that the spatial 

heteroskedasticity test will not respond strongly if the smaller extent of the image does 

not fully encompass the spatial patterning. 

For large sample sizes, the spatial heteroskedasticity statistic should be evaluated 

by the dual criteria of a value greater than zero (there is no concept of negative 

autocorrelation heteroskedasticity, see Seekell et al. 2012) and strong positive trend. This 

type of dual criteria may not be possible for spatial autocorrelation or spatial variance 

because natural scale-dependent processes that create vegetation patterns also create non-

monotonic trends in spatial indicators in systems with declining resilience (D’Odorico et 

al. 2006; Dakos et al. 2011). This is in part because changes in vegetation patterns are not 

unique to systems with critical slowing down (D’Odorico et al. 2006; Borgogno et al. 

2009). Hence the dual criteria are unique to spatial heteroskedasticity tests and represent 

an advantage for interpretation. 

Because spatial heteroskedasticity responds strongly to edges, spatial 

heteroskedasticity tests will not respond to declining resilience in systems where there is 

no pattern formation. In cases where diffusion does not allow the emergence of patterns, 

spatial autocorrelation or spatial variance may be better indicators (e.g. Guttal and 

Jayaprakash 2009; Dakos et al. 2011). This property is not unique to spatial 

heteroskedasticity - other powerful indicators such as discrete Fourier transformations 
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also respond weakly in systems lacking pattern formation (Carpenter and Brock 2010; 

Kefi et al. 2014). However, in both aquatic and terrestrial systems, diffusion only 

dominates spatial connections at very small scales. The distance dependent relationships 

that dominate at scales relevant to ecosystem management form spatial patterns to which 

the spatial heteroskedasticity test should respond (Abraham 1998; Borgogno et al. 2009). 

Hence, indicators like spatial autocorrelation may outperform spatial heteroskedasticity at 

small scales, but may perform less well in assessing larger scale dynamics.  

 Heterogeneity in ecosystem processes is well studied, especially at the landscape 

scale (e.g., Dutilleul and Legendre 1993; Pickett and Cadenasso 1995). However, 

relatively little is known about the pervasiveness of heteroskedasticity in records of 

ecosystem properties (Seekell et al. 2011; Seekell et al. 2013). Our results suggest that 

spatial heteroskedasticity could be a useful leading indicator of desertification in arid 

systems. Field tests will be crucial to further developing this and other spatial indicators 

at scales relevant to understanding ecosystem regime shifts and for ecosystem 

management (Seekell et al. 2011; Bestelmeyer et al. 2013; Kefi et al. 2014). 
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Figure 1. A: Three example snapshots of simulated data from the scale-dependent 
vegetation model. Darker shades correspond to higher values. B: The squared residuals 
for three snapshots of simulated data from the scale-dependent vegetation model, after 
filtering. 
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Figure 2. A: Three snapshots of simulated data from the scale-free vegetation model. The 
data are binary (i.e. 0 if a cell is not vegetated, 1 is a cell if vegetated). Dark cells are 
vegetated and light cells are bare. B: Three snapshots of the simulated data after a coarse-
graining procedure transforms the binary data into continuous values. C: The squared 
residuals for three snapshots of simulated data from the scale-free vegetation model, after 
filtering. Application of the filter eliminates the need for coarse-graining procedures 
before assessing spatial heteroskedasticity. 
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Figure 3. A: Moran’s I statistics for spatial autocorrelation and spatial heteroskedasticity 
applied to ten snapshots of simulated vegetation data from the spatially explicit model 
with scale-dependent dynamics. B: Moran’s I statistics for spatial autocorrelation and 
spatial heteroskedasticity applied to ten snapshots of simulated vegetation data from the 
spatially explicit model with scale-free dynamics. For both panels, B-splines are fit to the 
data to emphasize patterns. 
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Figure 4. Kendall’s tau correlation coefficients assessing the magnitude and direction of 
trends with different starting points. The first point (furthest left) is the trend in indicator 
values across all ten snapshots. Each point to the right represents the trend beginning with 
a later snapshot (i.e. the furthest right point is the trend in indicators across only the last 
three snapshots in time). A: Results from the vegetation model with scale-dependent 
patterns. B: Results from the vegetation model with scale-free patterns. For both panels, 
B-splines are fit to the data to emphasize patterns. 
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CHAPTER 4: EVIDENCE OF ALTERNATE ATTRACTORS FROM A 
WHOLE-ECOSYSTEM REGIME SHFIT EXPERIMENT3 
 
Abstract 

Ecosystems sometimes shift between different states or dynamic regimes. Theory 

attributes these shifts to multiple ecosystem attractors. However, documenting multiple 

ecosystem attractors is difficult, particularly at spatial and temporal scales relevant to 

ecosystem management. We manipulated the fish community of a lake with the goal of 

causing trophic cascades and shifting the food web from a planktivore-dominated state to 

an alternate piscivore-dominated state. We evaluated evidence that the shifts in the fish 

community comprise alternate attractors using two complementary approaches. First, we 

calculated phase space trajectories to visualize the shift between attractors. Second, we 

computed generalized autoregressive conditional heteroskedasticity (GARCH) models 

and the Brock-Dechert-Scheinkman (BDS) test for linearity. The reconstructed phase 

space trajectories show the system departing a point attractor, entering a limit cycle, and 

then shifting to a new point attractor. The GARCH and BDS results indicate that linear 

explanations are not sufficient to explain the observed patterns. The results provide 

evidence for alternate attractors based on high-frequency time series of field 

measurements. 

 

Introduction 

Ecosystems sometimes shift between different states or dynamic regimes 

(Scheffer et al. 2001; Scheffer and Carpenter 2003). For example, savannas shift to 

                                                
3 Seekell DA, Cline TJ, Carpenter SR, Pace ML (2013) Evidence of alternate attractors 
from a whole-ecosystem regime shifts experiment. Theoretical Ecology 6:385-394. 
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deserts, lakes shift from clear water to algae blooms, and fisheries shift from thriving to 

collapsed (Scheffer et al. 2001). These shifts are sometimes attributed to shifts among 

multiple attractors (Holling 1973; Scheffer and Carpenter 2003). Multiple attractors 

potentially explain sudden, dramatic ecosystem changes as well as failures to predict or 

reverse unwanted changes (Scheffer et al. 2001; Scheffer and Carpenter 2003; Suding et 

al. 2004). However, empirical tests for the existence of multiple ecosystem attractors are 

difficult and consistent evidence remains elusive (e.g., Carpenter and Pace 1997; Scheffer 

et al. 2003; Schröder et al. 2005; Mittelbach et al. 2006; Persson et al. 2007; Hobbs et al. 

2012; Schröder et al. 2012). Laboratory experiments on model systems document 

multiple attractors (e.g., Fussmann et al. 2000; Dai et al. 2012), but complex patterns and 

variability in field data have led to disagreement over the existence and importance of 

multiple attractors in ecosystems (e.g., Carpenter 2001; Biesner et al. 2003; Hsieh et al. 

2005; Mittelbach et al. 2006; Mumby et al. 2007; Hsieh et al. 2008; Bruno et al. 2009).  

 Evidence for existence of multiple ecosystem attractors comes from several types 

of studies in a variety of systems (Scheffer and Carpenter 2003). For example, Scheffer et 

al. (2003) found that drainage ditches demonstrating floating or submerged plant 

dominance exhibited bimodality and path dependency (when slightly different initial 

conditions lead to very different ending conditions), both characteristics of a system with 

more than one attractor (see also Scheffer and Carpenter 2003; Schröder et al. 2005; de 

Young et al. 2008; Andersen et al. 2009). In other studies, tests for discontinuous 

response to changing environmental conditions, path dependency, lack of recovery from 

perturbations, and changes in driver–response relationships are often used to infer 

alternative attractors (see reviews by Scheffer and Carpenter 2003, and Schröder et al. 
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2005). These tests are often coupled to ecosystem models with multiple attractors that 

exhibit the same patterns (e.g., Scheffer et al. 2003; see review by Schröder et al. 2005). 

The strong empirical evidence from laboratory experiments (Schröder et al. 2005) proves 

the potential for multiple attractors in ecological systems. In field settings statistical 

comparisons of mechanistic models with and without alternative attractors have proven a 

powerful means of testing for multiple attractors in ecosystems when long-term data are 

available (Carpenter and Pace 1997; Carpenter 2003; Scheffer and Carpenter 2003; 

Mumby et al. 2007; Ives et al. 2008; Schooler et al. 2011). Thus, the consistency of 

models and data in long-term observational studies represents the primary evidence for 

multiple attractors in ecosystems.  

The existence of multiple attractors is due to certain non-linear processes 

(Scheffer et al. 2001; Scheffer and Carpenter 2003). However, combinations of linear 

processes not associated with multiple attractors can also cause shifts in means, 

bimodality, and changes in driver-response relationships similar to those observed in 

systems with alternate attractors (Scheffer and Carpenter 2003; Schröder et al. 2005; 

Scheffer et al. 2003; Hsieh et al. 2005; Daily et al. 2012; Dakos et al. 2012). While 

patterns such as path dependency, bimodality, and hysteresis are indicative of two or 

more attractors, these patterns do not reconstruct attractors themselves. Physicists and 

economists have developed statistical tests and visualization techniques for identification 

of non-linear dynamics and shifts between multiple attractors in time series. For instance, 

tests for linearity can be applied to time series data to evaluate linear dynamical 

hypotheses (e.g., Brock et al. 1991; Brock et al. 1996; Hsieh et al. 2005). If linear 

possibilities are eliminated then nonlinear explanations are more plausible (Brock et al. 
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1991; Brock et al. 1996). In other approaches, lagged values from time series can be 

plotted in certain combinations to visualize the form of attractors in phase space (Takens 

1981; Schaffer 1984). These approaches make no a priori assumptions about ecological 

processes and are promising for detecting multiple attractors in ecosystems when other 

approaches are difficult to apply or interpret. Nonetheless these visualization and 

statistical approaches are not widely used (Hsieh et al. 2005; Sugihara et al. 2012).  

 Application of novel techniques such as tests for linearity and phase space 

reconstructions has been identified as a priority in efforts to evaluate multiple attractors, 

particularly at spatial and temporal scales relevant to ecosystems (Scheffer and Carpenter 

2003; Hsieh et al. 2005). We previously reported a whole-ecosystem experiment where 

we manipulated the fish community in a small lake with the purpose of testing for early 

warning indicators of a regime shift (Carpenter et al. 2011; Seekell et al. 2012; Pace et al. 

2013). Here, we use a unique 4-year high-resolution time series derived from this 

experiment to test the hypothesis that this change comprised a shift between two alternate 

attractors. We examine phase plots for patterns consistent with a transition between two 

attractors and test for bursts of variance not explained by linear time series models, which 

should accompany a transition between attractors.  

 

Background and Theory 

We manipulated Peter Lake, a small (area: 2.6 ha; max depth: 19.6 m) 

oligotrophic lake in the Upper Peninsula of Michigan (89°32' W, 46°13' N). The lake was 

minnow dominated from 1991 onward due to earlier experiments that removed much of a 

predatory largemouth bass Micropterus salmoides population (Carpenter et al. 2001). By 
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the time of the present study began, the prey fish community consisted of a mixture of 

minnows including golden shiner Notemigonus crysoleucas, fathead minnow Pimephales 

promelas, dace Phoxinus spp., brook stickleback Culaea inconstans, central mudminnow 

Umbra limi and pumpkinseed Lepomis gibbosus. These small fishes dominated Peter 

Lake and there was only a small population of predatory adult (> 150 mm) largemouth 

bass (Carpenter et al. 2011). The minnow dominance prior to the experiment was 

maintained because large numbers of prey fish suppress growth of juvenile largemouth 

bass, increasing juvenile largemouth bass vulnerability to predation or other stressors and 

thereby preventing growth and recruitment of juveniles into the adult largemouth bass 

population (Walters and Kitchell 2001; Carpenter et al. 2008; Carpenter et al. 2011).  

We expected that slowly adding adult largemouth bass would shift the food web 

from minnow dominance to largemouth bass dominance. We hypothesized that if the 

abundance of adult predators increased past a critical point, adult predators would 

dramatically reduce the prey population (Carpenter et al. 2008). The resulting reduction 

in competition should allow juvenile predators to grow and subsequently recruit into the 

adult population. The feedback maintaining minnow dominance (minnows cause a 

recruitment bottleneck for largemouth bass) consequently shifts to a feedback 

maintaining largemouth bass dominance (largemouth bass continue suppressing minnows 

such that their juveniles can continue recruiting into the adult population, causing further 

suppression of the minnows).  

Our expectations for the existence of alternate ecosystem attractors in this system 

and the ability of largemouth bass additions to shift the system between alternate 

attractors derive from a mathematical model of the Peter Lake food web, which was 
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solved to show that altering largemouth bass abundance creates multiple ecosystem 

attractors (see Carpenter et al. 2008). The specific ecological mechanism for the alternate 

attractors is the existence of trophic triangles – a set of predator–prey relationships where 

positive feedbacks can drive either predators or prey to dominance – in fish communities, 

including the Peter Lake fish community (Walters and Kitchell 2001; Carpenter 2003; 

Carpenter et al. 2008; Carpenter and Scheffer 2009).  

A shift between alternate attractors due to nonlinear dynamics is not the only 

possible mechanism for change due to largemouth bass additions (Carpenter et al. 2011). 

For instance, largemouth bass additions could cause step-change reductions in minnow 

abundance without changing feedbacks within the food web. This would happen if, for 

example, sudden increases adult largemouth bass simply forced minnows into short-term 

refuges without eliminating the largemouth bass recruitment bottleneck. Such a change 

could be intrinsically linear and not associated with alternate ecosystem attractors. 

Previous fish community manipulations in this and nearby lakes did not attempt to 

discriminate between linear and nonlinear dynamics and these previous studies were 

based on low-frequency time series suitable for linear analyses but unsuitable for 

statistical tests to reject linear dynamics (He et al. 1993; Carpenter et al. 2001). In the 

present analysis, we leverage high-frequency measurements to discriminate between 

these linear and nonlinear possibilities.  

 

Methods 

Food web manipulation 

We added 1,200 golden shiners on 28 May 2008 to help prevent the transition to 
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largemouth bass dominance from happening too quickly to be detected by early warning 

statistics applied in our previous analyses (Carpenter et al. 2011). The number of fish 

added was < 10% of the existing minnow population (Carpenter et al. 2011). 

Subsequently, we slowly added adult largemouth bass to Peter Lake over the course of 

four summers (12 on 7 July 2008, 15 on 18 June 2009, 15 on 21 July 2009) to cause 

trophic cascades and create a transition from a state of prey dominance to predator 

dominance. The system stabilized in its new condition toward the end of 2010. However, 

we added additional largemouth bass in 2011 (32 on 23 June 2011) to ensure that the 

food web structure would not revert due to winterkill, which may occasionally happen in 

this lake, after the study was complete (Hodgson and Kitchell 1987).  

By experimentally increasing the population of adult largemouth bass we 

attempted to push the system from a minnow dominated point attractor, through a zone of 

bi-stability, to a new largemouth bass dominated point attractor (Carpenter et al. 2008). 

This design is different than some tests for alternate attractors that induce transitions in 

experimental systems from one attractor to another within the zone of bistability and with 

no structural change in the system, then monitor the system for several generations to 

evaluate persistence at the new attractor (Dudgeon et al. 2010). In other words, our 

manipulation is not designed to shift the system between attractors within a zone of 

bistability, but is meant to create structural changes in the system by manipulating a slow 

moving variable (Walker et al. 2012). This mechanism is consistent with mathematical 

understanding of multiple ecosystem attractors and is also thought to represent the 

principal mechanism of change between alternate attractors in ecosystems (Scheffer et al. 

2001; Scheffer and Carpenter 2003; Fauchald 2010). 



 67 

 

Sampling 

We measured prey fish abundance daily with 30 minnow traps (6mm mesh with 

two 25mm openings) spaced approximately equidistant around the perimeter of the lake. 

All trapped fish were released back into the lake at their capture location. The average 

number of prey fish caught per trap per day for each summer was concatenated into one 

time series (cf. Carpenter 1993). The resulting time series was log transformed and 

differenced once prior to the statistical analysis to ensure normality of time series model 

(see below) residuals. We only sampled from late May to early September but 

concatenating these time series is unlikely to affect our analysis because our sampling 

period encompassed the dominant ecological processes relevant to this study. Further, 

there were no obvious jumps between years that would suggest dramatic overwinter 

changes in fish abundance that might adversely affect the statistical analysis (Fig. 1, see 

also Appendix 2). 

 

Statistical analysis 

Aggregates of linear processes may cause changes in the mean or variance of a 

time series and these changes can be mistaken for nonlinear structure by statistical tests 

for linearity. Time series models commonly applied to ecological data, such as 

autoregressive moving average models, filter linear structure from the mean, but the 

residuals could contain linear structures from the error variance that could be mistaken 

for hidden nonlinear structure. Consequently, we filtered the data through a generalized 

autoregressive conditional heteroskedasticity (GARCH) time series model (Bollerslev 
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1986). GARCH models remove linear relationships from the time series by predicting 

mean values and error variances based on linear terms (Bollerselev 1986; Hsieh 1991). 

Structure in the residuals of such models is likely due to nonlinear processes affecting 

either the mean or the variance that are not removed by the GARCH model. We fit the 

models using maximum likelihood in an approach that is typical for application of 

GARCH models. This approach is described in detail in Appendix 2. We standardized the 

residuals from the GARCH model by dividing by the conditional variance (Hsieh 1991). 

We plotted ecosystem phase space trajectories based on the standardized GARCH 

residuals to identify the form of the nonlinear relationship. Ecosystem trajectories for 

standardized GARCH residuals are created by plotting in three dimensions a state 

variable x(t) by x(t+T) by x[t+(m-1)T], where m is an embedding dimension and T is a 

time lag (Schaffer 1984). The resulting plot contains the dynamical properties of the 

system and the patterns formed are diagnostic of different types of nonlinear dynamics 

and attractors (Takens 1981; Schaffer 1984). Some types of stochastic variation may alter 

the nature of nonlinear dynamics and a limitation of plotting the ecosystem trajectories is 

that the lagged variables approach is not designed to handle this (Horsthemke and 

Lefever 1984). However, the noise in this system is thought to be additive (see Carpenter 

et al. 2008) and while this type of noise may cause variability in phase plots such that it is 

more difficult to discern patterns, additive noise should not alter the underlying dynamics 

recovered in the plot. To minimize these effects, we smoothed the standardized GARCH 

residuals using a seven point moving average and plotted the resulting trajectories as B-

splines (cf. Schaffer 1984). We also created phase plots in the original state space of the 

data (i.e. using unfiltered data) for comparison. We display each phase plot in two 
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dimensions for ease of viewing. For each plot, the X (x(t)) and Z (x[t+(m-1)T]) axis are 

the abscissa and ordinate, respectively. Each phase plot uses an embedding dimension m 

= 2 and lag T = 3. 

We tested the standardized residuals for departure from being independent and 

identically distributed (IID) using the Brock-Dechert-Scheinkman (BDS) test (Brock et 

al. 1991; Brock et al. 1996; see Lai 1996, Carpenter et al. 2011, and Dakos et al. 2012 for 

applications of the BDS test in ecological contexts). The standardized GARCH residuals 

are independent and identically distributed (IID) if linear processes determine the 

ecosystem dynamics (Hsieh 1991). For some nonlinear processes, including the ones we 

are interested in, the standardized GARCH residuals are not IID (Hsieh 1991; Dakos et 

al. 2012). The BDS test can be thought as a statistical test for spatial correlation of time 

series histories in phase space (Brock et al. 1991; Brock et al. 1996). After GARCH 

filtering, linear dynamics will create a random pattern in phase space whereas nonlinear 

dynamics will be patterned (correlated) in phase space (Brock et al. 1991; Schaffer 1984). 

The GARCH model can approximate and remove some nonlinear dynamics (Engle 1982, 

Granger 1991). Hence in our application, the BDS test applied to the standardized 

GARCH residuals is a conservative way to screen out linear mechanisms that could 

otherwise appear to be nonlinear dynamics (Granger 1991; Brock et al. 1996; Dakos et al. 

2012). We calculated probability values for the BDS test by bootstrapping (n = 10,000 

permutations) the standardized GARCH residuals (Brock et al. 1996; Carpenter et al. 

2011). We did not use asymptotic probability values for the BDS test because they 

deviate considerably from the normal distribution if the GARCH model is not correctly 

specified (Brock et al. 1991; Brooks and Heravi 1999). The bootstrapped probability 
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values are robust to potential misspecification errors (Brock et al. 1991).  

The BDS test has two free parameters, the embedding dimension and the radius, 

used to determine if the history of points in the system trajectory are near each other in 

phase space. We calculated the BDS test with a variety of embedding dimensions and 

radius parameters because there is no theoretically optimal parameter choice (Brock et al. 

1991; Hsieh 1991; Brock et al. 1996). Significant BDS tests for a wide variety of 

combinations of embedding dimensions and radii indicate a robust conclusion (i.e. 

indicating non-linear vs. linear dynamics). We applied the BDS test instead of other tests 

(e.g., the S-map procedure used by Hsieh et al. 2005) because BDS is well vetted and has 

good power for a variety of types of dynamics (Hsieh 1991; Brock et al. 1991). Other 

linearity tests (e.g., S-map or Tsay’s test; see Hsieh et al. 2005 and Tsay 1986, 

respectively) may be more powerful than the BDS test for certain narrowly-specified 

hypotheses, but we do not assume one type of dynamic a priori and hence a more general 

test is appropriate for our application (Brock et al. 1991; Brooks and Henry 2000). 

The two approaches we apply to identify alternate attractors are complementary. 

The phase space plots are the main results of the analysis and represent a unique case 

where a transition between ecosystem attractors can be visualized in phase space. The 

BDS test is a supporting result that does not identify alternate attractors directly, but rules 

out spurious linear explanations for the patterns observed in the phase plots. 

 

Results 

Prior to the first largemouth bass addition to Peter Lake, small prey fishes were 

abundant based on trap catches and there was high day-to-day variability (Fig. 1, top 
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panel). After the first largemouth bass addition, catches immediately declined. Variability 

shifted to lower frequencies – meaning from high day-to-day variability to longer-term 

oscillations. By the time of the last largemouth bass addition, daily catches were low and 

stable (Fig. 1, top panel).  

The standardized GARCH residuals are displayed in the bottom panel of Figure 1 

(gray line). Tabular results from the model selection procedure and parameter values of 

the best fitting GARCH model used to produce the residuals are given in Appendix 2. 

The smoothed values (red line) are steady before and after the first and last largemouth 

bass additions, consistent with linear dynamics at a point attractor. However, there are 

oscillations during the transition between point attractors (the time between the first and 

last largemouth bass addition), indicating that the oscillations in the unfiltered catch time 

series are likely due to non-linear dynamics. The oscillations in the standardized GARCH 

residuals are of approximately the same amplitude, suggestive of limit cycle dynamics. 

There were no oscillations prior to the first largemouth bass addition that would suggest 

nonlinearity due to the early golden shiner addition. The bootstrap BDS test applied to 

the raw (gray line, bottom panel Figure 1) standardized GARCH residuals was significant 

over a wide range of parameter values. Twenty-one of twenty-four tests were significant 

at the 0.05 level of significance and two additional tests were significant at the 0.1 level. 

Only one BDS test was not significant. The large number of tests with low probability 

values, especially considering that the BDS test is conservative when applied to GARCH 

residuals (Granger 1991; Brock et al. 1996), indicates that the oscillations in standardized 

GARCH residuals cannot be explained by linear processes and can plausibly be attributed 

to nonlinear dynamics such as those associated with alternate attractors (Table 1).  
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Figure 2 is the phase portrait for the Peter Lake minnow trap time series prior to 

GARCH filtering. The line represents the trajectory of the prey fish community over time 

as it moves to different parts of the phase space. The mean catch declines during the 

study and the system dynamics change as the mean catch does. The blue portion of the 

line is the system varying around an attractor, prior to the first largemouth bass addition. 

The gray line is the trajectory during the transition period (between the first and last 

largemouth bass additions). The circular pattern is consistent with the fish entering into a 

limit cycle (May 1972). The red line is the trajectory during the period after the last 

largemouth bass addition. There is considerably less variability after the transition period 

than before the transition. 

Figure 3 is the phase portrait for the Peter Lake minnow trap time series based on 

standardized GARCH residuals. The same basic dynamics are present as in the raw data, 

but the form of the attractors is clearer. Prior to the first largemouth bass addition (blue 

portion of the trajectory), the system is varying around a point attractor. The system has 

some excursions away from the attractor towards the upper right quadrant of the figure, 

but the trajectory returns around the same point attractor. The transition period (grey 

portion of the trajectory) retains its circular pattern consistent with a limit cycle dynamic. 

After the transition period (red line portion of the trajectory) the system varies around a 

point attractor with some excursions to the bottom left quadrant. The magnitude of 

variability around the two point attractors is much more similar in the phase plot based on 

standardized GARCH residuals (Fig. 3) than in the phase plot based on the raw data (Fig. 

2). 

The two point attractors in Figure 3 appear to overlap in phase space. This is 
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because the figures are drawn from standardized GARCH residuals, which are centered 

on zero. Hence the two point attractors are centered at zero. To clarify the dynamics and 

emphasize that these are unique point attractors, we re-plotted the trajectories before and 

after the first and last largemouth bass additions with vectors for each point in time to 

denote the direction of the system trajectory (Figure 4). The trajectory during the 

transition period is excluded for clarity. These vectors show the trajectories almost 

always returning to the point attractors. However, when there are large excursions, the 

trajectories before the first and after the last largemouth bass addition “spin” back to the 

attractors in opposite directions (Figure 4), indicating that the attractors are unique even 

though they overlap in phase space.  

 

Discussion 

Our analysis provides evidence of two point attractors in a food web. The system 

began oscillating and this transition began soon after the first largemouth bass addition. 

These oscillations continued for two years until the system converged to a new, predator-

dominated attractor. The BDS test ruled out linear explanations for these patterns 

suggesting that the manipulation represents a true nonlinear regime shift between 

alternative attractors. 

The transitional dynamics were due to the interaction of fast and slow ecological 

processes. Largemouth bass abundance is a slow changing variable (Walker et al. 2012), 

driven by our experimental additions and the annual reproductive cycles of this species. 

Minnow catch is a fast changing variable where large magnitude intra-annual variability 

is driven by behavior, specifically the decisions to move between foraging zones and 
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refuges as well as shoaling in response to predation risk (Carpenter et al. 2011). We 

interpret the oscillations in our analysis as resulting from delays due to annual 

reproductive cycles. The largemouth bass had a large year class in 2009 and direct and 

indirect predation risk suppressed competition from minnows such that many of these 

young-of-year largemouth bass survived through the winter into 2010 (cf. Post et al. 

1998). The juvenile largemouth bass grew rapidly and were able to prey on small 

minnows midway through 2010. The largemouth bass spawned again in 2010 and the 

system was pushed out of an oscillatory phase to the largemouth bass dominated point 

attractor. The extended delay between annual reproductive cycles of largemouth bass 

allowed time for cycles to form in minnow dynamics due to behavior. Eventually, 

largemouth bass dominance suppressed minnow cycles as the system settled to the 

alternate attractor. 

Recent theoretical and field studies have identified early warning signals such as 

increased variance and increased autocorrelation that occur in ecological time series prior 

to shifts between alternate attractors (van Nes and Scheffer 2007; Carpenter et al. 2008; 

Scheffer et al. 2009; Carpenter et al. 2011). Autocorrelation and variance will often 

increase together prior to a critical transition between alternate attractors driven by a slow 

variable (Brock and Carpenter 2012), but these indicators do not increase simultaneously 

if noise perturbs the system from one attractor to another or if there is no shift between 

attractors (Ditlevsen and Johnsen 2010; Wang et al. 2012). The indicators will also not 

respond to step changes in control variables, for instance if the largemouth bass additions 

suddenly pushed the system to a new attractor without allowing for changes in internal 

feedback mechanisms (Carpenter et al. 2011). We previously reported increased variance 
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and autocorrelation in chlorophyll-a concentration and zooplankton biomass prior to a 

suspected shift between alternate attractors in this experiment (Carpenter et al 2011; 

Seekell et al. 2012; Pace et al. 2013). These increases occurred during the transition 

period and dissipated after the shift between attractors. The early warning indicators 

provide strong corroborating evidence of the nonlinear dynamics identified in our present 

analysis because variance and autocorrelation would not have increased simultaneously if 

the food web had not shifted from one attractor to another or if the transition was caused 

by a strong perturbation and not our experimental manipulation. Further, these indicators 

would not have returned to low levels after the transition if the system remained in an 

unstable condition as opposed to converging to a new attractor.  

How long will the system persist in the predator dominated state? This is difficult 

to predict. Some shifts between attractors are essentially permanent, at least at time scales 

relevant to humans (e.g., desertification; species extinctions), but others are not (e.g., 

trophic cascades). While we cannot predict with certainty how long the system will stay 

in the predator dominated state, we do know that it is possible for largemouth bass 

dominated states to persist for long periods. For instance, an adjacent lake (Paul Lake) 

has been dominated by largemouth bass for at least thirty years (Carpenter et al. 2001). 

Peter Lake had a similar largemouth bass dominated fish community prior to 1991 and 

this suggests that a largemouth bass dominated state in Peter Lake could also persist for 

an extended period of time (Carpenter et al. 2001). However, largemouth bass are 

cannibalistic and this can lead to large oscillations in adult largemouth bass abundance 

over time. For instance, in Paul Lake, adult largemouth bass populations vary by five fold 

in eight to ten year cycles (Post et al. 1998). If the largemouth bass in Peter Lake enter 



 76 

into cyclical population dynamics, the probability of a sudden reverse transition will 

increase during the minima of these cycles, when stochastic events (such as winterkills) 

might push the largemouth bass population below the critical threshold for dominance, 

causing a reverse transition to small fish dominance (Rosenzweig 1971). Hence while the 

predator-prey role reversal associated with the transition between point attractors 

occurred very rapidly in this study (relative to the lifespan of the organisms: ~10 years 

for largemouth bass), the longer term dynamics are not clear and will depend both on the 

life history of the fish (the ability to develop strong cohort dynamics) and on the 

occurrence of strong random shocks to the system. In addition, the small fish populations 

in Peter Lake were not driven to extinction during the four years of this study but may be 

in the longer term.  Under such conditions, piscivore dominance might be more sustained 

and less subject to reversal to the alternate attractor of small fish dominance. 

Our analytical approach is well suited for identifying the existence of alternate 

attractors in ecosystems. However, our approach is unable to resolve some parallel 

problems that are particularly relevant for ecosystem management. For instance, we are 

unable to calculate a threshold value for the transition between states from our analysis. 

Environmental stochasticity creates a range of possible transitions depending on the 

magnitude of perturbations and hence it is difficult to know what the critical point will be 

prior to reaching it (Guttal and Jayaprakash 2007). We are also unable to calculate the 

probability that the transition is or is not reversible through management (Carpenter and 

Lathrop 2008). These questions are probably best addressed with a correctly specified 

mechanistic model of the system. Despite this limitation, confirmation of the existence of 

alternate ecosystem states has profound management implications because the ability to 
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switch between states is known, even if thresholds are unknown (Carpenter et al. 1999; 

Carpenter 2001; Peterson et al. 2003). 

The magnitude and variability in phase space trajectories was different between 

the standardized GARCH residuals and the raw minnow trap catch time series (compare 

Figures 2 and 3). There is much more variability in the raw data in the period prior to the 

transition than in the period after the transition. This is because mean catch is tightly 

correlated with the variance and skewness of the distribution of catch (cf. Seekell 2011; 

Seekell et al. 2011). The high variance at the first attractor in the raw data is a function of 

the inherent high variability when fish catch is high. Likewise, the low variability at the 

second attractor is because there is inherently low variability when mean catch is low. 

This high and low variability is not due to the regime shift but rather the decline in 

minnow populations resulting from increased predator abundance. These changes in 

variability are not present in the phase plot for standardized GARCH residuals (Figure 3). 

For standardized GARCH residuals, the two attractors have similar variability because 

the GARCH model removed changes in variance due to linear dynamics (i.e. due simply 

to reduced size of minnow populations caused by the predator additions). Further, the 

magnitude of variability during the transition is greater than the variability around the 

attractors in Figure 3. This is consistent with theoretical expectations for lake food webs 

(see Carpenter et al. 2008), indicating that the GARCH filtering isolated non-linear 

dynamics associated with the regime shift (i.e. the results are not simply due to a linear 

reduction in prey due to predator additions). 

The significant GARCH terms in our model indicate time-varying variance. 

While the application of GARCH models is extremely common in some disciplines (e.g. 
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economics), we know of no prior applications to ecological data. Hence it is difficult to 

known the prevalence and potential implications of GARCH type processes in 

ecosystems. The GARCH dynamics in this system are consistent with a system 

approaching a transition between alternate attractors (Seekell et al. 2011; Seekell et al. 

2012). GARCH dynamics in stable systems could provide false positive early warnings 

of transitions between ecosystem attractors. However, GARCH dynamics are not 

typically present in models of stable ecosystems (Seekell et al. 2011). Further, the 

significance of BDS tests here in and our previous analyses (see Carpenter et al. 2011) 

indicate potential nonlinearities beyond GARCH processes and this is consistent with 

expectations for early warning indicators (Carpenter et al. 2011; Dakos et al. 2012). 

Further application of these types of models to ecological data is necessary to better 

understand the prevalence of GARCH dynamics in ecosystems.  

The potential for transition between point attractors is widely discussed in 

ecology but the evidence for and approaches to detecting these attractors in ecosystems 

have been disputed (e.g., Connell and Sousa 1983; Sutherland 1990; Scheffer and 

Carpenter 2003; Schröder et al. 2005; Dudgeon et al. 2010). Tests for hallmark patterns 

of alternate attractors such as hysteresis, path dependence, and bimodality have provided 

evidence for the existence of alternate attractors in a wide variety of systems including 

laboratory model systems, oceans, lakes, and forests, at a variety of scales – from 

competition between two species (e.g., between floating and submerged vegetation, 

Scheffer et al. 2003) to huge changes in regional structure (e.g., collapse of Saharan 

vegetation between 5000 and 6000 years ago, deMenocal et al. 2000, Scheffer and 

Carpenter 2003). However, these results are often based on observational records and a 
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review of experimental tests for alternative attractors by Schröder et al. (2005) revealed 

that ecosystem-scale studies and studies involving long-lived organisms such as fish 

typically do not find evidence of alternative attractors. This has led concern over the 

generality of the concept of alternative attractors (Schröder et al. 2005). For instance, 

there is disagreement over the applicability of the concept of alternative states to the 

highly visible and dramatic shift from hard coral to algal dominance in Caribbean coral 

reefs where ecosystem scale experiments are difficult or impossible to conduct and long-

term data is both rare and potentially confounded by changing baseline conditions 

(Mumby et al. 2007; Dudgeon et al. 2010). Our result relative to alternate attractors is 

specific to the fish community dynamics in one lake analyzed in this study, but is a 

consequence of relatively general ecosystem phenomena (trophic triangles, trophic 

cascades). Our results show empirically that alternate attractors can exist at the ecosystem 

scale and that these attractors can be reconstructed and evaluated from high-resolution 

time series.  
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Table 1. Probability values from bootstrapped (n = 10,000) BDS tests on the 
standardized GARCH residuals. We experimented with a variety of radiuses (ε = 0.25–2 
× σ, where σ is the standard deviation of the standardized GARCH residuals) and 
embedding dimensions (m = 2–5).  

ε  m = 2 m = 3 m = 4 m = 5 
0.25 × σ =   0.858  0.0079 0.0046 0.0057 0.0053 
0.50 × σ =   1.716  0.0041 0.0007 0.0004 0.0002 
0.75 × σ =   2.574  0.0031 0.0017 0.0002 0.0000 
1.00 × σ =   3.433  0.0117 0.0056 0.0061 0.0059 
1.50 × σ =   5.149  0.1025 0.0127 0.0093 0.0089 
2.00 × σ =   6.865  0.4064 0.0733 0.0203 0.0146 
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Figure 1. Top: Mean catch per day for minnow traps in the manipulation lake for four 
summers (11 May – 27 August 2008; 18 May – 4 September 2009; 17 May – 3 
September 2010; 16 May – 3 September 2011). The largemouth bass additions are 
denoted with dashed vertical blue lines. We consider the time before the first addition and 
after the last addition to be stable. The time between these additions is considered the 
transition. Bottom: The gray line is the time series of standardized residuals from the 
GARCH time series model fit to the mean catch-per-day time series. The red line is the 
standardized residuals smoothed using a seven point moving average. 
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Figure 2. Phase space plot of the Peter Lake minnow trap time series (untransformed and 
unfiltered). The blue trajectory is the period prior to the first largemouth bass addition. 
The gray trajectory is the transition period. The red trajectory is the period after the last 
largemouth bass addition. The system is initially at a point attractor, but enters into a 
limit cycle after the first largemouth bass addition. The system has returned to a new 
point attractor by the time of the last largemouth bass addition.  
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Figure 3. Phase space plot of standardized GARCH residuals for the Peter Lake minnow 
trap time series. The blue trajectory is the period prior to the first largemouth bass 
addition. The gray trajectory is the transition period. The red trajectory is the period after 
the last largemouth bass addition. The system is initially at a point attractor, but enters 
into a limit cycle after the first largemouth bass addition. The system has returned to a 
new point attractor by the time of the last largemouth bass addition. The two point 
attractors appear very close to each other because they are based on the standardized 
GARCH residuals that are centered at zero. 
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Figure 4. Vector plots for the manipulation lake minnow trap time series trajectories 
before the first (top) and after the last (bottom) largemouth bass additions when the 
manipulation lake varied around point attractors. The point attractors appear close to each 
other because the time series are center around zero. However, the system diverts and 
varies around these states in different directions, indicating that they are distinct. 
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CHAPTER 5: CONDITIONAL HETEROSKEDASTICITY FORECASTS 
REGIME SHIFT IN A WHOLE-ECOSYSTEM EXPERIMENT4 
 
Abstract 

Regime shifts in stochastic ecosystem models are often preceded by early warning 

signals such as increased variance and increased autocorrelation in time series. There is 

considerable theoretical support for early warning signals, but there is a critical lack of 

field observations to test the efficacy of early warning signals at spatial and temporal 

scales relevant for ecosystem management. Conditional heteroskedasticity is persistent 

periods of high and low variance that may be a powerful leading indicator of regime shift. 

We evaluated conditional heteroskedasticity as an early warning indicator by applying 

moving-window conditional heteroskedasticity tests to time series of chlorophyll-a and 

fish catches derived from a whole-lake experiment designed to create a regime shift. 

There was significant conditional heteroskedasticity at least a year prior to the regime 

shift in the manipulated lake but there was no significant conditional heteroskedasticity in 

an adjacent reference lake. Conditional heteroskedasticity was an effective leading 

indicator of regime shift for the ecosystem manipulation. 

 

Introduction 

Statistical anomalies in time series, such as increased variance and increased 

autocorrelation, are early warning indicators of ecosystem regime shifts (Scheffer and 

others 2009). The statistical properties of early warning indicators are well established by 

theoretical and simulation studies (e.g., Carpenter and Brock 2006, van Nes and Scheffer 

                                                
4 Seekell DA, Carpenter SR, Cline TJ, Pace ML (2012) Conditional heteroskedasticity 
forecasts regime shift in a whole-ecosystem experiment. Ecosystems 15:741-747. 
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2007, Guttal and Jayaprakash 2008). However, there are a variety of problems associated 

with detecting early warnings of regime shifts in real systems including large noise 

disturbances, observation errors, confounding trends in external perturbations, small 

sample sizes, and unknown mechanisms causing regime shifts. These difficulties are 

typically minimized when simulated data are used to test early warning theory (Carpenter 

2003 Scheffer and others 2009, Seekell and others 2011). Consequently, the efficacy of 

early warning indicators is unresolved, because there is a critical lack of field-testing for 

early warning indicators, particularly at spatial and temporal scales relevant to ecosystem 

managers.  

Conditional heteroskedasticity is persistent error variance in time series models 

that appears as clustered volatility (Engle 1982). This type of variance is a powerful 

leading indicator of regime shifts in modeled systems (Seekell and others 2011). 

Conditional heteroskedasticity is present when variance at one time step is dependent on 

variance at the previous time step. Periods of high variance follow periods of high 

variance and periods of low variance follow periods of low variance. Variance in stable 

ecosystems is typically constant, but increases prior to a regime shift (Carpenter and 

Brock 2006, Scheffer and others 2009). This pattern suggests conditional 

heteroskedasticity as an early warning indicator because the portion of a time series near 

an impending shift will appear as a cluster of high volatility while portions of the time 

series further away from the regime shift will appear as clusters of low volatility (Seekell 

and others 2011). Thus there should be conditional heteroskedasticity in ecological time 

series prior to a regime shift, but no conditional heteroskedasticity in ecological time 

series without a regime shift (Seekell and others 2011).  
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Early warning indicators that are based on interpreting statistical patterns (e.g. 

high versus low variance) may detect an impending regime shift when there is none 

(Scheffer and others 2009, Seekell and others 2011, Appendix 3). Such false positives 

could result in expensive and unnecessary management action. Conditional 

heteroskedasticity tests are easily associated with probability values (Engle 1982, Engle 

and others 1985). Probability values minimize false positives by providing cut-offs for 

evaluating when an early warning signal is meaningful (Seekell and others 2011, 

Appendix 3). 

We previously documented a whole-ecosystem experimental regime shift where 

top predators were added to a lake to cause trophic cascades and to shift the ecosystem 

from dominance by planktivorous fish to dominance by piscivorous fish (Carpenter and 

others 2011). Trophic cascades are a common type of non-linear ecosystem regime shift, 

and the strong responses in system components such as phytoplankton biomass provide 

an opportunity for evaluating new early warning indicators (Pace and others 1999, 

Carpenter and others 2008, Carpenter and others 2011). Here, we evaluate conditional 

heteroskedasticity as a leading indicator of ecological regime shift. We use existing data 

from the previously documented experimental regime shift reported by Carpenter and 

others (2011), as well as an additional year of data acquired after that report. The purpose 

of our analysis was to evaluate the practicality of conditional heteroskedasticity as an 

early indicator using a known regime shift with high frequency data at scales relevant to 

ecosystem managers. We test if conditional heteroskedasticity provides early warnings 

well in advance of the regime shift and if these tests minimize false warnings when there 

is no impending regime shift.  
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Methods 

Regime shift manipulation—Carpenter and others (2011) conducted a food web 

manipulation on Peter Lake using a second system (Paul Lake) with similar morphometry 

and chemistry as a reference. Prior to their experiment, Peter Lake was dominated by 

pumpkinseed sunfish Lepomis gibbosus, a variety of other small species of fish, and few 

adult (> 150 mm) largemouth bass Micropterus salmoides. Paul Lake was dominated by 

adult largemouth bass with a small population of pumpkinseed. The food-webs represent 

alternative stable structures of similar species composition with the consequence of 

piscivore dominance in Paul Lake and planktivore dominance in Peter Lake. Prior to the 

manipulation, Carpenter and others (2011) re-enforced the initial state of planktivore 

dominance in Peter Lake by adding 5,000 golden shiners Notemigonus crysoleucas on 28 

May 2008. Peter Lake was manipulated over four summers (2008–2011) by adding adult 

largemouth bass to shift the lake to a state of piscivore dominance, similar to the 

reference system. Because the threshold population of largemouth bass required to fully 

transition the system to piscivore dominance was unknown, adult largemouth bass were 

added slowly (12 adult largemouth bass on 7 July 2008, 15 adult largemouth bass on 18 

June 2009, and 15 adult largemouth bass on 21 July of 2009) to maximize the potential to 

test for early warning indicators. In response to the manipulation, the abundance of small 

fishes declined, zooplankton size structure shifted to larger body-sized forms, and 

phytoplankton biomass declined (Carpenter and others 2011). Largemouth bass produced 

a large year class in 2009 and many of these offspring survived the following winter to 

recruit into the adult largemouth bass population in 2010. This recruitment indicates the 
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transition from planktivore to piscivores dominance in the fish community. Turbulence 

from this transition cascaded through the lower part of the food web until the latter part of 

2010 when the entire transition was complete or nearly so. The lake stabilized in this new 

condition in 2011 and an additional 32 adult largemouth bass were added on 23 June 

2011 to re-enforce the piscivore-dominated state. Conditions in the reference lake did not 

change during the study. The results of the first three years of the manipulation, 

documented by Carpenter and others (2011), were consistent with the hypothesis that 

disruption of the food-web would lead to increased variance, increased autocorrelation, 

critical slowing down (i.e. slower recovery from perturbations), increased skewness, non-

linearity, and shifts to increased low frequency variance of key indicator variables prior 

to the regime shift. The results of the fourth year of the study were consistent with the 

manipulation system stabilizing at a new regime including decreased variance and 

autocorrelation (Appendix 3). 

We applied conditional heteroskedasticity tests to chlorophyll-a time series 

derived from this experiment because previous theoretical and empirical work suggested 

chlorophyll-a concentration, a measure of phytoplankton biomass, strongly reflects early 

warning signals of regime shifts driven by trophic cascades (Carpenter and others 2008, 

Carpenter and others 2011). Chlorophyll-a was determined daily in the mixed layer of 

both lakes (for each lake n = 105 in 2008, n = 110 in 2009, n = 110 in 2010, n = 110 in 

2011) between mid-May and early September over four years. To measure chlorophyll-a, 

we took 200 mL water samples from a depth of 0.5 m from each lake and filtered the 

samples onto glass fiber filters. The filters were frozen and chlorophyll-a was 

subsequently extracted in methanol and measured with a fluorometer according to Holm-



 98 

Hansen and Riemann (1978). 

We also applied conditional heteroskedasticity tests to minnow trap catch time 

series derived from the experiment. Changes in minnow trap catch time series are driven 

by both changes in biomass and fish behavior. Previous theoretical and empirical work 

suggested that these times series display non-linear dynamics and early warning signals 

of regime shifts driven by trophic cascades (Carpenter and Kitchell 1993, Carpenter and 

others 2008, Carpenter and others 2011). Thirty minnow traps were deployed in the 

littoral zone of Peter Lake and twenty minnow traps were deployed in the littoral zone of 

Paul Lake from late May to early September during the four study years. The traps  (6mm 

mesh with two 25mm trap openings) were monitored daily (Peter Lake n = 96 in 2008, n 

= 108 in 2009, n = 110 in 2010, n = 111 in 2011; Paul Lake n = 95 in 2008, n = 108 in 

2009, n = 110 in 2010, n = 111 in 2011) and the abundance of each species of fish 

collected in each trap was recorded. Time series were derived from these data by 

calculating the average catch per trap in each lake for each day. 

Statistical analysis—A rolling window Lagrange multiplier test for conditional 

heteroskedasticity was applied to the time series for each lake (Engle 1982, Engle and 

others 1985, Seekell and others 2011). Rolling windows are based on calculating the 

early warning indicator for all observations (n) from nt to nt-wl where t equals time 

intervals (days in our study) and wl equals window length. The calculation is iterated for 

each day with the result being a rolling series of conditional heteroskedasticity tests. We 

used a 50-day window length in this study because this was a good trade-off between 

statistical power (larger window widths correspond to higher statistical power) and 

preserving a large number of windows necessary to make meaningful interpretations of 
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changes in indicator values and to precisely delimitate transitions (smaller window 

widths correspond to a larger number of windows and more precise delimitation of the 

timing of transitions). The Lagrange multiplier test for conditional heteroskedasticity is 

calculated by: 

1) Fitting a time series model to the data 

2) Squaring the residuals of the time series model 

3) Regressing the squared residuals on themselves, lagged one time step 

4) If the slope of the regression in step three is > 0, multiply the multiple r2 value 

from step 3 by the sample size in step 3. If the slope of the regression in step 3 is 

≤ 0, there is no conditional heteroskedasticity. There is no concept of a negative 

slope in step 3. 

5) Calculating a probability value by comparing the value obtained in step 4 with a 

Chi square distribution with one degree of freedom. 

Worked examples of the conditional heteroskedasticity test are provided in Seekell and 

others (2011).  For display, we plot the r2 value from step 4 instead of the Lagrange 

multiplier test statistic. Because each window is the same width, a critical value to assess 

the significance of r2 values is obtained by dividing the critical value from the chi-square 

distribution with one degree of freedom by the sample size of the auxiliary regression. 

We applied criteria of p < 0.1 as the critical probability of significance in this study. 

Based on prior studies of ecological models, significant conditional 

heteroskedasticity tests indicate an impending regime shift while non-significant 

conditional heteroskedasticity tests do not indicate an impending regime shift (Seekell 

and others 2011). We expected no significant conditional heteroskedasticity in Paul Lake 
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during the study. We expected no significant conditional heteroskedasticity in Peter Lake 

prior to the manipulation and significant conditional heteroskedasticity as trophic 

cascades created turbulence in the food web as the regime shift proceeded. Based on 

model analyses, conditional heteroskedasticity is expected to become non-significant 

quickly after a regime shift (see Seekell and others 2011). 

For step 1 of the analysis we applied an auto-regressive lag-4 model (!! = !! +

!!!!!! + !!!!!! + !!!!!! + !!!!!! + !) to the time series and the conditional 

heteroskedasticity tests to the residuals of these time series models. We selected a model 

with four autoregressive terms because in these lakes chlorophyll-a autocorrelation and 

minnow trap autocorrelation is only significant at ≤ 4 lags and the partial autocorrelation 

is generally only significant at ≤ 2 lags. Thus in most cases an autoregressive lag-4 model 

will over-fit data and such a time series model will contain more lags than necessary. 

Over fitting the number of autoregressive lags in the time series model will not cause the 

Lagrange multiplier test to perform more poorly than a correctly specified model and will 

actually improve performance if an important moving average term or covariate is 

omitted from the time series model (Lumsdaine and Ng 1999). Under fitting the time 

series model can adversely affect the performance of the conditional heteroskedasticity 

test by increasing chance of finding false positives.  

Moving window conditional heteroskedasticity tests were robust to a range of 

window widths, time series models, and choices of threshold probability values for 

significance based on a sensitivity analysis (see Appendix 3). 

 

Results 
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Chlorophyll-a time series—Prior to the manipulation (2008), Peter and Paul Lakes 

had similar chlorophyll-a concentrations (Fig. 1). Chlorophyll-a concentrations in Peter 

Lake were dynamic with substantial oscillations during the manipulation (2009 and 

2010), while chlorophyll-a concentrations in Paul Lake were less variable (Fig. 1). The 

fourth year of data (2011), not previously reported, was collected using the same methods 

as the previous three years to ensure that Peter Lake had stabilized at the new piscivore 

dominated regime. Chlorophyll-a concentrations were low in Peter Lake and similar to 

Paul Lake during this year. The declining phase of spring blooms were observed in Peter 

Lake and perhaps in Paul Lake during the first two weeks of observations in 2008 and 

2011. 

There was no significant conditional heteroskedasticity (p > 0.1) in Paul Lake 

during the four-summer study based on the rolling window conditional heteroskedasticity 

analysis (Figure 2). There was also no significant conditional heteroskedasticity in Peter 

Lake in 2008 during the early phase of the manipulation. There was significant 

conditional heteroskedasticity (p < 0.1) in Peter Lake for almost all of 2009 and the first 

half of 2010. Conditional heteroskedasticity became non-significant during the second 

half of 2010, consistent with results given by Carpenter and others (2011), indicating that 

the shift in food-web structure to piscivore dominance had occurred. There was no 

significant conditional heteroskedasticity in Peter Lake during the final year (2011) after 

the regime shift was completed. 

Minnow trap catch time series—Prior to the manipulation (2008), Peter Lake had 

high minnow trap catch and Paul Lake had very low minnow trap catch (Fig. 3). Minnow 

trap catch in Peter Lake declined after largemouth bass additions and became more 
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variable during the manipulation (2009 and 2010). Minnow trap catches in Paul Lake 

were close to zero and were not variable (Fig. 3). Some of the oscillations in Peter Lake 

trap catches, at the beginning of the summers, may be associated with increased near 

shore activity due to pumpkinseed spawning. Oscillations later in the summer are not 

consistent with increased activity due to spawning. In the fourth year (2011), minnow 

abundance in Peter Lake stabilized near the levels observed in Paul Lake with the 

exception of an increase in near shore activity in Peter Lake due to spawning. This 

spawning activity was interrupted by a sudden shift to cold weather and hence the near 

shore activity (and high catches) was only sustained for a brief period of time. 

 There was significant conditional heteroskedasticity (p < 0.1) in Peter Lake in 

2008 after largemouth bass additions began (Fig. 4). There was significant conditional 

heteroskedasticity (p < 0.1) for most of 2009 although there was not significant 

conditional heteroskedasticity (p > 0.1) for a period of time at the beginning of the 

summer when increased trap catch is likely due to spawning activity and not trophic 

cascades. There was no significant conditional heteroskedasticity (p > 0.1) in 2010 or 

2011 with the exception of a brief period in 2011, which was due to the disruption of 

pumpkinseed spawning when a large and sudden shift in weather that drove 

pumpkinseeds off of their nests. There was no significant conditional heteroskedasticity 

in Paul Lake in 2008, 2009, or 2011 (Figure 4). There were two significant moving 

windows at the beginning of 2010, but no significant conditional heteroskedasticity 

during the remainder of the summer.  

 

Discussion 
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Conditional heteroskedasticity was a powerful leading indicator that warned of 

the incipient regime shift about a year in advance. Conditional heteroskedasticity 

disappeared from the experimental system after the regime shift, indicating that the 

system arrived at a new stable state. In the chlorophyll-a time series there were no 

significant tests in the reference lake or in the manipulated lake in the year prior to and 

the year after the manipulation. In the minnow trap time series there were only two 

significant tests after the system had stabilized at the new state, and these significant tests 

were associated with a disrupted life history process (i.e. spawning). There were also only 

two significant tests in the reference system for the chlorophyll-a and minnow trap time 

series, combined. These results indicate that conditional heteroskedasticity provided early 

warning of the regime with minimal false positives. 

Time series statistics used as early warning indicators of regime shift are subject 

to false positives. During the early part of 2008, there was increased chlorophyll-a, and 

this appears similar to the oscillations observed prior to the regime shift. This pattern also 

occurred in 2011 and we speculate the dynamics are the consequence of phytoplankton 

spring blooms. More complete monitoring of these blooms was not possible for this study 

because difficult or impassable road conditions in the early spring limit access to the 

study lakes. There were no significant conditional heteroskedasticity tests during these 

periods. However, such blooms could lead to false positives in other indicators. For 

instance, the high chlorophyll-a values associated with spring blooms are followed by 

low values and this could increase variance in a moving window analysis (e.g., Carpenter 

and others 2006, Carpenter and others 2011). Such increases in variance are consistent 

with an impending regime shift. The conditional heteroskedasticity test’s probability 
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values in this analysis aid interpretation by providing a baseline from which to judge the 

meaningfulness of indicator values.  

Early warnings based on the conditional heteroskedasticity tests appeared first in 

the minnow trap time series. Significant tests were observed in the latter half of 2008 and 

for most of 2009. Significant conditional heteroskedasticity occurred in 2009 and 2010 

for the chlorophyll-a times series. The earlier response associated with minnows reflects 

the effects of largemouth bass predation on both the abundance and behavior of these fish 

(Carpenter and others 2011). Upon introduction of piscivores, prey species quickly 

increase the occupancy of refuges and this shift in behavior contributes to trophic cascade 

effects (Carpenter and others 2010). The response of chlorophyll-a was more delayed and 

was the consequence of slower evolving shifts propagating through the food web 

(Carpenter and others 2011). 

A recent review (Scheffer and others 2009) identified significance testing for 

early warning indicators as an important priority for research on this topic. Conditional 

heteroskedasticity tests provide a useful method for addressing this priority. An 

alternative approach to significance testing is to apply trend statistics, such as Kendall’s 

tau, to early warning indicator values calculated from moving windows (Dakos and 

others 2008, Dakos and others 2010). A significant upward trend in moving window 

variance or autocorrelation estimates would be considered the early warning signal using 

this approach (e.g., Dakos and others 2008, Dakos and others 2010). However, moving 

window indicators are generally highly autocorrelated and trend statistics such as 

Kendall’s tau are subject to increased false positives under these conditions (Hamed and 

Rao 1998). Conditional heteroskedasticity as an early warning indicator is based on a 
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sequence of significance tests, each applied to the uncorrelated residuals of a time series 

filter. Hence, our analysis does not calculate significance values between windows and is 

not subject to this potential source of error. In other words, like all moving window 

indicators, the sequence of conditional heteroskedasticity tests is highly autocorrelated. 

However, the conditional heteroskedasticity significance tests are not based on these 

highly correlated moving windows. The significance test for trend statistics is based on 

these highly correlated moving windows.   

In conclusion, based on our analysis of data from a whole-lake experiment, 

conditional heteroskedasticity is a powerful leading indicator of ecological regime shifts 

that is robust to false positives. These tests have simple (i.e. significant versus not 

significant) interpretations and were successfully applied to a system with natural 

environmental stochasticity with an unknown amount of observation error. Additional 

experience in applying the conditional heteroskedasticity approach is needed to further 

explore the sensitivity and robustness of these tests for a variety of regime shift 

conditions.  
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Figure 1. Daily chlorophyll-a measurements (µg L-1) from the mixed layer of the 
manipulated Peter Lake (red) and reference Paul Lake (black) systems. Vertical dashed 
blue lines denote the timing of largemouth bass additions to the manipulated Peter Lake. 
Note the vertical axis scales are different between years for display purposes. 
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Figure 2. Rolling window (window width = 50 days) conditional heteroskedasticity tests 
for chlorophyll-a time series from the manipulated Peter Lake (red) and the reference 
Paul Lake (black). The black horizontal line represents the critical value for the 
conditional heteroskedasticity test. Values above the horizontal line indicate significant 
(p < 0.1) conditional heteroskedasticity. Values below the horizontal line indicate non-
significant (p > 0.1) conditional heteroskedasticity. For display on the log10-scale, values 
< 0.001 have been plotted as 0.001. 
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Figure 3. Daily minnow trap catches (catch trap−1 day−1) from the littoral zone of the 
manipulated Peter Lake (red) and reference Paul Lake (black) systems. Vertical dashed 
blue lines denote the timing of largemouth bass additions to the manipulated Peter Lake. 
Note the vertical axis scales are different between years for display purposes. 
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Figure 4. Rolling window (window width = 50 days) conditional heteroskedasticity tests 
for minnow trap catches (catch trap−1 day−1) the manipulated Peter Lake (red) and the 
reference Paul Lake (black). The black horizontal line represents the critical value for the 
conditional heteroskedasticity test. Values above the horizontal line indicate significant 
(p < 0.1) conditional heteroskedasticity. Values below the horizontal line indicate non-
significant (p > 0.1) conditional heteroskedasticity. For display on the log10-scale, values 
< 0.001 have been plotted as 0.001. 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 
 

This dissertation shows that tests for conditional heteroskedasticity are a powerful 

leading indicator of ecosystem regime shifts that also minimize false positive warnings. 

Chapters two and three show that conditional heteroskedasticity is a general indicator – 

effective in time in space in response to a variety of regime shift mechanisms. Chapters 

four and five use data from a whole-ecosystem regime shift experiment to show that 

conditional heteroskedasticity is an effective indicator at spatial and temporal scales 

relevant to ecosystem management. Moving window autocorrelation and variance 

analyses from the ecosystem experiment vary in ways that make results difficult to 

interpret without detailed understanding of ecosystem properties. Conditional 

heteroskedasticity is more practical than autocorrelation and variance because conditional 

heteroskedasticity has a built in threshold that aids in interpretation. Hence, the overall 

contribution of this dissertation is that it advances early warning analysis by proving the 

efficacy of a powerful, but easy to interpret early warning indicator. 

 A variety of early warning indicators for regime shifts exist, but few have been 

tested with data from real ecosystems (e.g. Carpenter et al. 2011; Dakos et al. 2012; 

Seekell et al. 2012). To date, the lake experiment detailed in Chapter 5 is the only 

ecosystem-scale test of early warning indicators. A critical research need is further tests 

at spatial and temporal scales relevant to ecosystem management. For instance, a variety 

of studies provide proof-of-concept for early warning indicators in biological systems 

(e.g. Drake and Griffen 2010), but no analysis based on field or laboratory data exists that 

shows that early warnings come in time to avert an unwanted shift through adaptive 

management. If early warning indicators do come in time, synthesis work may be 



 114 

necessary to determine if governance structures can maintain monitoring programs for 

the required time or if governance structures can respond in enough time to avert a 

transition. In the end, logistical challenges associated with environmental monitoring and 

the ability of managers to respond to early warning indicators could be limiting steps that 

are more challenging then the derivation and application of early warning indicators. 

 Early warning dynamics may also be interpreted as indirect metrics to test the 

form (e.g. linear or non-linear) of ecosystem dynamics. For instance, variance and 

autocorrelation only increase together prior to a regime shift. If these indicators increase 

in data prior to a historic shift, the shift was likely due to nonlinear dynamics. If the 

indicators do not exist, the shift was likely due to linear dynamics. These types of indirect 

indicators may be advantageous for testing hypotheses in ecological data, which typically 

are not abundant enough to apply direct tests for nonlinearity (see Chapter 4). 

Climatologists have now used early warning indicators for this purpose (e.g. Lenton et al. 

2012), but there have not yet been applications to ecological data. This is an exciting new 

potential for early warning indicators. 

Little is known about the prevalence of conditional heteroskedasticity in 

ecosystem time series (Chapter 2). The model analyses and whole-ecosystem experiment 

in this dissertation suggest that conditional heteroskedasticity exists in unstable 

ecosystems, but not in stable ecosystems. However, it is not yet clear if conditional 

heteroskedasticity exists naturally in physical or biological characteristics of ecosystems 

not included in this dissertation and, if yes, what causes conditional heteroskedasticity. 

Conditional heteroskedasticity is pervasive in other disciplines (e.g. economics) and if 

uncovered in ecological time series, tests for the origin of conditional heteroskedasticity 
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could unveil unique ecosystem dynamics and new understanding of controls on patterns 

in ecosystem time series (e.g. Lamoureux and Lastrapes 1990). Such analyses would be 

novel contributions to the ecological literature and a direct extension of this dissertation. 

The availability of long-term datasets through the Long-term Ecological Research 

Network and data repositories like The Knowledge Network for Biocomplexity stand to 

facilitate widespread evaluation of conditional heteroskedasticity in a variety of 

ecosystems. 
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Appendix 1: Worked examples of test for conditional heteroskedasticity 

This appendix to Chapter 2 contains worked examples of a test for conditional heteroskedasticity. 

 

Example 1: Short time series with no conditional heteroskedasticity 

We arbitrarily selected a subset of twenty sequential points from the discrete E. coli time series without regime shift. The full 

time series is displayed in Figure A1.1A. The vertical blue lines mark the beginning and end of the subset. Figure A1.1B displays the 

subset. 

 
Fig. A1.1. A) E. coli dynamics model without regime shift. The vertical blue lines mark the subset of data used in this example. B) 
Time series of the subset of data from panel A used in this example. 
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The 20 values from the subset are in the first row of the below table. 
 
Data 30.86 31.67 31.79 32.33 32.67 32.35 31.80 32.20 32.87 33.16 33.54 32.84 34.11 33.74 34.27 34.75 34.96 34.68 34.28 34.26 

 
 
Step 1: Lag the data one time step. The lagged data are in a second row (highlighted in yellow). Fit an AR(1) model using ordinary 
least squares regression. The AR model is Yt = a + ρYt-1 + e, where Yt is the measurement at time t, a is a constant, ρ is the 
autoregressive parameter, Yt-1 is the previous measurement, and e is an error term. The residuals from the AR(1) model are in a third 
row (highlighted in green). 
 
Data 30.86 31.67 31.79 32.33 32.67 32.35 31.80 32.20 32.87 33.16 33.54 32.84 34.11 33.74 34.27 34.75 34.96 34.68 34.28 34.26 

Lagged data  30.86 31.67 31.79 32.33 32.67 32.35 31.80 32.20 32.87 33.16 33.54 32.84 34.11 33.74 34.27 34.75 34.96 34.68 34.28 

AR(1) Residuals  0.24 0.30 0.13 0.03 -0.58 -0.86 0.00 0.34 0.07 0.22 -0.80 1.04 -0.37 0.46 0.51 0.32 -0.14 -0.30 0.01 

 
 
 
Step 2: Square the AR(1) residuals. The squared residuals are added to a new row in the table and are highlighted in yellow. 
 
Data 30.86 31.67 31.79 32.33 32.67 32.35 31.80 32.20 32.87 33.16 33.54 32.84 34.11 33.74 34.27 34.75 34.96 34.68 34.28 34.26 

Lagged data  30.86 31.67 31.79 32.33 32.67 32.35 31.80 32.20 32.87 33.16 33.54 32.84 34.11 33.74 34.27 34.75 34.96 34.68 34.28 

AR(1) residuals  0.24 0.30 0.13 0.03 -0.58 -0.86 0.00 0.34 0.07 0.22 -0.80 1.04 -0.37 0.46 0.51 0.32 -0.14 -0.30 0.01 

Squared residuals  0.06 0.09 0.02 0.00 0.34 0.74 0.00 0.11 0.00 0.05 0.64 1.08 0.13 0.21 0.26 0.10 0.02 0.09 0.00 

 
Step 3: Lag the squared residuals from step 2. The lagged, squared residuals are added to a new row in the table and highlighted in 
yellow. 
 
Data 30.86 31.67 31.79 32.33 32.67 32.35 31.80 32.20 32.87 33.16 33.54 32.84 34.11 33.74 34.27 34.75 34.96 34.68 34.28 34.26 

Lagged data  30.86 31.67 31.79 32.33 32.67 32.35 31.80 32.20 32.87 33.16 33.54 32.84 34.11 33.74 34.27 34.75 34.96 34.68 34.28 
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AR(1) residuals  0.24 0.30 0.13 0.03 -0.58 -0.86 0.00 0.34 0.07 0.22 -0.80 1.04 -0.37 0.46 0.51 0.32 -0.14 -0.30 0.01 

Squared residuals  0.06 0.09 0.02 0.00 0.34 0.74 0.00 0.11 0.00 0.05 0.64 1.08 0.13 0.21 0.26 0.10 0.02 0.09 0.00 

Lagged squared 

residuals 

  0.06 0.09 0.02 0.00 0.34 0.74 0.00 0.11 0.00 0.05 0.64 1.08 0.13 0.21 0.26 0.10 0.02 0.09 

 
 
 
 
Step 4: Fit an ordinary least squares regression where the squared residuals from Step 2 are the dependent variable and the lag of the 
squared residuals from step 3 are the independent variable. The regression results are below. 
 
Predictor Coefficient Std. Error Coefficient T p 

Constant 0.16132 0.08932 1.81 0.090 

Lagged squared Residuals 0.2497 0.2439 1.02 0.321 

     

 r2 = 0.061 n = 18   

Step 5: The Lagrange Multiplier test statistic for heteroskedasticity is the product of the  r2 value highlighted in green in the above 
regression results table and the sample size in step 4 highlighted in light blue in the above table (0.061*18 = 1.098). 
 
Step 6: Evaluate the probability of finding the Lagrange Multiplier test statistic if there is no conditional heteroskedasticity by 
comparing the test statistic to a chi-square distribution with one degree of freedom. The observed test statistic (LM = 1.098) is likely 
given that there is no conditional heteroskedasticity (p = 0.22) so we conclude there is not conditional heteroskedasticity in this time 
series. 
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Example 2: Short time series with conditional heteroskedasticity 
 
We arbitrarily selected a subset of fifteen sequential points from the planktivore biomass time series with regime shift from the 
continuous lake food-web model. The full time series is displayed in Figure A1.2A. The vertical blue lines mark the beginning and 
end of the subset and the vertical red line marks the critical transition point. Figure A1.2B displays the subset. 

 
Fig. A1.2. A) Planktivore biomass time series from the continuous lake food-web model with regime shift. The vertical blue lines 
mark the beginning and end of the data subset. The vertical red line marks the critical transition point. B) The subset of fifteen points 
from the planktivore biomass time series with regime shift. 
 
The 15 values from the subset are in the first row of the below table. 
 
Data 26.13 26.27 26.41 26.55 26.70 26.86 27.03 27.18 27.33 27.51 27.68 27.85 28.03 28.20 28.42 

 
Step 1: Lag the data one time step. The lagged data are in a second row (highlighted in yellow). Fit an AR(1) model using ordinary 
least squares regression. The residuals from the AR(1) model are in the third row (highlighted in green). 
 



 121 

Data 26.13 26.27 26.41 26.55 26.70 26.86 27.03 27.18 27.33 27.51 27.68 27.85 28.03 28.20 28.42 

Lagged data  26.13 26.27 26.41 26.55 26.70 26.86 27.03 27.18 27.33 27.51 27.68 27.85 28.03 28.20 

AR(1) Residuals  0.002 -0.002 -0.005 0.003 0.010 0.010 -0.010 -0.016 0.016 -0.009 0.001 -0.009 -0.019 0.27 

 
 
 
 
Step 2: Square the residuals from the AR(1) residuals. The squared residuals are highlighted in yellow in the fourth row of the table. 
We plotted the squared residuals in Figure A1.3 because the values are very small and the variability is difficult to appreciate in Fig 
S2B. 
 
Data 26.13 26.27 26.41 26.55 26.70 26.86 27.03 27.18 27.33 27.51 27.68 27.85 28.03 28.20 28.42 

Lagged data  26.13 26.27 26.41 26.55 26.70 26.86 27.03 27.18 27.33 27.51 27.68 27.85 28.03 28.20 

AR(1) residuals  0.002 -0.002 -0.005 0.003 0.010 0.010 -0.010 -0.016 0.016 -0.009 0.001 -0.009 -0.019 0.27 

Squared residuals  0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0003 0.0003 0.0001 0.0000 0.0001 0.0003 0.0007 
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Fig. A1.3. Squared residuals by time step from the continuous lake food-web model subset. The variance increases with time. 
 
 
 
Step 3: Lag the squared residuals from step 2. The lagged, squared residuals are added to the fifth row in the table and are highlighted 
in yellow. 
 
Data 26.13 26.27 26.41 26.55 26.70 26.86 27.03 27.18 27.33 27.51 27.68 27.85 28.03 28.20 28.42 

Lagged data  26.13 26.27 26.41 26.55 26.70 26.86 27.03 27.18 27.33 27.51 27.68 27.85 28.03 28.20 

AR(1) residuals  0.002 -0.002 -0.005 0.003 0.010 0.010 -0.010 -0.016 0.016 -0.009 0.001 -0.009 -0.019 0.27 

Squared residuals  0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0003 0.0003 0.0001 0.0000 0.0001 0.0003 0.0007 

Lagged squared residuals   0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0003 0.0003 0.0001 0.0000 0.0001 0.0003 

 
Step 4: Fit an ordinary least squares regression where the squared residuals from Step 2 are the dependent variable and the lag of the 
squared residuals from step 3 are the independent variable. The regression results are below. 
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Predictor Coefficient Std. Error Coefficient T p 

Constant 0.00003042 0.000005660 0.54 0.602 

Lagged squared Residuals 1.2291 0.3753 3.27 0.007 

     

 r2 = 0.494 n = 13   

 
 
 
 
Step 5: The Lagrange Multiplier test statistic for heteroskedasticity is the product of the r2 value highlighted in green in the above 
regression results table and the sample size highlighted in light blue in the above regression results table (0.494*13 = 6.422). 
 
 
 
 
 
Step 6: Evaluate the probability of finding the Lagrange Multiplier test statistic if there is no conditional heteroskedasticity by 
comparing the test statistic to a chi-square distribution with one degree of freedom. This test statistic (LM = 6.422) is unlikely given 
that there is no conditional heteroskedasticity (p = 0.006) so we conclude there is conditional heteroskedasticity in this time series. 
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Appendix 2: GARCH Model Selection 
 
This appendix to Chapter 4 contains additional results for GARCH model selection. 
 
Model Selection Results 

 We fit six GARCH(1,1) time series models to filter linear relationships out of the fish catch time series. First, autoregressive 

models with one (yt = b1yt-1) to six lags (yt = b1yt-1 + b2yt-2 + b3yt-3 + b4yt-4 + b5yt-5 + b6yt-6) were fit to the time series using maximum 

likelihood. This portion of the model (the structural portion) predicts the mean. Each model also contained four binary dummy 

variables to adjust for potential shifts in mean between years (i.e. values for the dummy variable for year 200x are 1 if the data are 

from 200x and 0 otherwise, values for the dummy variable for year 200y are 1 if the data are from 200y and 0 otherwise, and so on). A 

GARCH(1,1) equation was fit to the residuals of each autoregressive model. A GARCH(1,1) equation is essentially a autoregressive 

moving average time series model applied to the squared residuals of the structural model. The squared residual is an estimate of error 

variance at a given time step. Hence the GARCH model seeks to predict error variance based on previous error variances. 

The best autoregressive model was then selected on the dual criteria of elimination of autocorrelation from residuals of the 

structural portion of the model (according to Durbin’s h test) and minimization of the AICc. A model with three lags was selected as 

the best fitting structural model because it eliminated autocorrelation (p = 0.1568) and minimized the AICc (Table A2.1). For the 

GARCH portion of the model we used one autoregressive term and one moving average term in each model. We experimented with 

higher order terms but these did not improve fit. We fit the GARCH models using SAS/ETS version 9.2. The equation for the best 

fitting GARCH model is: 
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where yt is the state variable, b1, b2, b3 are autoregressive coefficients for the mean, ak are autoregressive coefficients for the 

conditional error variance ( ℎ!), b4, b5, b6 are coefficients for the dummy variables d2008, d2009, d2010, d2011.  

The three autoregressive lags were significant (Table A2.2). The dummy variables were not significant, but the fitted 

coefficients were negative which is consistent with a general decline in minnow abundance. The GARCH parameters (ak) were greater 

than zero and summed to less than one indicating at good model fit (Engle 2001). 

 We calculated the BDS test using the “tseries” package in R. The phase plots were created in Origin Pro graphing software. 
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Table A2.1. Model comparison statistics for Peter Lake fish time series. The diagnostics statistics are the coefficient of determination 

(r2), information criterion (AICc), Durbin’s h statistic for residual autocorrelation (probability values in parentheses), and Engle’s 

(1982) Lagrange multiplier test for conditional heteroskedasticity (probability values in parentheses). The h and LM statistics derive 

from the structural portion of the model while the r2 and AICc statistics derive from the full GARCH model. The AR-3 model (in 

bold) was selected because the structural portion of the model eliminated autocorrelation and the AICc values were lower than the 

other candidate models. 

Model AR r2 AR AICc H LM GARCH r2 GARCH AICc 

AR-1 0.1204 489.040111 -4.8080 (p = 0.0001) 47.6871 (p < 0.0001) 0.1187 323.962301 

AR-2 0.1611 470.92655 -3.3225 (p = 0.0004) 82.7283 (p < 0.0001) 0.1579 310.025402 

AR-3 0.1692 468.025051 -1.0089 (p = 0.1568) 83.8402 (p < 0.0001) 0.1652 305.962521 

AR-4 0.1716 468.785545 -1.2004 (p = 0.1153) 83.0649 (p < 0.0001) 0.1680 307.36322 

AR-5 0.1737 469.629508 -1.1461 (p = 0.1262) 88.9607 (p < 0.0001) 0.1696 309.392506 

AR-6 0.1758 470.597107 -2.9288 (p = 0.0018) 93.2569 (p < 0.0001) 0.1711 310.998679 
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Table A2.2. Statistical results for the best fitting GARCH model (three autoregressive lags).  

Variable (term in equation1) Coefficient Standard error t-value Probability value 

AR-Lag1 (b1) -0.3909 0.0510 -7.66 <0.0001 

AR-Lag2 (b2) -0.2580 0.0588 -4.39 <0.0001 

AR-Lag3 (b3) -0.1255 0.0568 -2.21 0.0271 

2008 dummy (b4) -0.0340 0.0240 -1.41 0.1574 

2009 dummy (b5) -0.0109 0.0245 -0.45 0.6558 

2010 dummy (b6) -0.0187 0.0278 -0.67 0.5005 

2011 dummy (b7) -0.0101 0.0407 -0.25 0.8041 

ARCH intercept (a0) 0.004116 0.001844 2.23 0.0256 

ARCH parameter (a1) 0.1821 0.0429 4.25 <0.0001 

GARCH parameter (a2) 0.7995 0.0421 18.98 <0.0001 
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Appendix 3: Additional Results for Empirical Tests of Conditional Heteroskedasticity as an 
Early Warning Indicator 
 
This appendix to Chapter 5 contains additional empirical results including moving window tests for autocorrelation and variance and a 

sensitivity analysis. 

 

Moving window autocorrelation and coefficient of variation 

 We calculated moving window lag-1 autocorrelation coefficients and coefficients of variation (standard deviation / mean) for 

the phytoplankton and minnow trap time series. The purpose of these plots is to provide a means for comparison between the behavior 

of these two more widely applied indicators and conditional heteroskedasticity. The first three years of autocorrelation and coefficient 

of variation for the phytoplankton time series were previously described by Carpenter and others (2011). We use 28 day moving 

windows to remain consistent with their analysis. 

 Autocorrelation was near one in the manipulation system prior to the shift in 2009 and 2010, a strong indication of an 

impending regime shift (Carpenter and others 2011) (Figure A3.1 red lines). However, autocorrelation in the manipulation system also 

approached one at the end of 2011 when the system had stabilized at a new state (Figure A3.1). Autocorrelation was highly variable in 

the reference system and autocorrelation had increasing trends for substantial portions of 2008 and 2011 (Figure A3.1, black lines).  

Variance was high and increasing in the manipulation lake in 2009 and remained high in 2010, indicative of an impending 

regime shift (Figure A3.1, red lines). Variance was lower in 2011 and decreasing, consistent with a system that had stabilized at a new 
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state. Variance was high in the reference lake in 2008, but this was largely a function of a single high chlorophyll-a measurement on 

day of year 153. (Figure A3.1 black lines, Figure 1 in the main text). Variance was generally low in the reference lake, but had an 

increasing trend in 2009 even though the system was stable.  

 Autocorrelation was increasing in the manipulation lake minnow trap time series in 2008 and remained near one until 2011 

when the system stabilized at the new state (Figure A3.2 red lines). This pattern is indicative of an impending regime shift. 

Autocorrelation was highly variable in the reference system, but did not approach one indicating no impending shift (Figure A3.2 

black lines).  

The coefficient of variation was low and stable for the fish catch time series in the manipulation lake (Figure A3.2 red lines). 

This is not consistent with early warning of an impending regime shift. The coefficient of variation in the reference system was 

generally low and stable (Figure A3.2 black lines). In 2008 the coefficient of variation was high but not trending in the reference 

system. These patterns in the reference system are consistent with a system not approaching a regime shift. 

 Autocorrelation and variance statistics in this analysis provide early warning of the experimental regime shift in the 

manipulation lake (Carpenter and others 2011). However, these statistics are highly variable in the reference system and there are 

extended periods with increasing autocorrelation and variance even though the system is stable. While such trends may happen due to 

chance, there is a tendency to apply meaning to them (cf. Tversky and Kahneman 1971) especially in short time series that will likely 

be typical of many applications of early warning indicators (e.g., Carpenter and others 2011, Bestelmeyer and others 2011). For 

instance, variance was increasing throughout 2009 in the reference system chlorophyll-a time series. Without additional years of data 
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for context, a manager might conclude that there is early warning of a regime shift due to rising variance. The principal advantage of 

conditional heteroskedasticity testing is that probability values aid in discerning when early warnings are meaningful. Much like 

autocorrelation and variance, moving window conditional heteroskedasticity test statistics are highly variable (Figure A3.2). However, 

the threshold level for significance provides an easy to interpret benchmark on whether or not the indicator is possibly meaningful. In 

the case of the 2009 reference system chlorophyll-a time series, there was no significant conditional heteroskedasticity tests indicating 

that even though there may be trends within sub-sets of the moving window results, these due not represent meaningful early 

warnings. 
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Figure A3.1. Moving window (28 day) lag-1 autocorrelation coefficient and coefficient of variation (standard deviation / mean) for 
phytoplankton time series in the reference (black) and manipulation (red) system. Increasing autocorrelation and autocorrelation near 
one are consistent with early warning of regime shift. Increasing variation is consistent with early warning of a regime shift. 
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Figure A3.2. Moving window (28 day) lag-1 autocorrelation coefficient and coefficient of variation (standard deviation / mean) for 
mean minnow trap time series in the reference (black) and manipulation (red) system. Increasing autocorrelation and autocorrelation 
near one are consistent with early warning of regime shift. Increasing variation is consistent with early warning of a regime shift.
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Sensitivity of conditional heteroskedasticity testing to window size selection 

 We applied conditional heteroskedasticity tests using variably sized moving windows (widths = 30, 40, 60, 70 days). The 

outcome of this analysis is 16 figures each for fish and chlorophyll-a time series (4 years × 4 window widths). The four window 

widths for each year are arranged vertically. If the general pattern of significant vs. non-significant tests is consistent vertically, the 

conditional heteroskedasticity test is robust to window size selection. Wider window widths have more power to detect conditional 

heteroskedasticity (cf. Engle and others 1985). However, larger window widths reduce the total number of windows, which obscures 

delimiting the location of the shift and requires that longer time series be collected before application of indicators can begin. Hence 

the windows begin later in the year for longer window widths because more data is necessary before application can begin. 

 Conditional heteroskedasticity tests were robust to window size selection for phytoplankton time series (Figure A3.3). There 

was no significant conditional heteroskedasticity in 2008 or 2011 regardless of window width. There was significant conditional 

heteroskedasticity for extended periods of time in the manipulated lake in 2009 and 2010, but not in the reference lake. Conditional 

heteroskedasticity tests were relatively robust to window size selection for the fish catch per unit effort time series (Figure A3.4). This 

broke down for narrow windows though (n = 30). Wider windows provided consistent results.
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Figure A3.3: Conditional heteroskedasticity tests on phytoplankton time series using variably size moving windows (n = 30, 40, 60, 
70). Columns separate years and rows separate window widths. Red lines denote the manipulated Peter Lake. Black lines denote the 
reference Paul Lake. The horizontal lines denote the threshold level for significance (p = 0.1). Tests above the horizontal lines are 
significant (p ≤ 0.1). Tests below the horizontal lines are not significant (p > 0.1). 
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Figure A3.4: Conditional heteroskedasticity tests on minnow trap time series using variably sized moving windows (n = 30, 40, 60, 
70). Columns separate years and rows separate window widths. Red lines denote the manipulated Peter Lake. Black lines denote the 
reference Paul Lake. The horizontal lines denote the threshold level for significance (p = 0.1). Tests above the horizontal lines are 
significant (p ≤ 0.1). Tests below the horizontal lines are not significant (p > 0.1). 
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Conditional heteroskedasticity test sensitivity to time series filter selection 

  We applied moving window (window with = 50 days) conditional heteroskedasticity tests using autoregressive time series 

models with two to six autoregressive lags (lower order lags included). Conditional heteroskedasticity tests are robust to time series 

model selection if the conditional heteroskedasticity tests for each model follow a similar pattern and are of a similar magnitude when 

plotted together. For the phytoplankton time series, conditional heteroskedasticity tests were robust to time series model selection 

except during the beginning of 2010 (Figure A3.5). Here, low order models (AR Lag-2 and AR Lag-3) produce tests statistics that are 

much greater than the higher order models in the reference system and test statistics that are much lower than the higher order models 

in the manipulation system. This could lead to false positive early warnings in the reference system and false negatives in the 

manipulation system. High order models providing similar results is consistent with the idea that over specifying the number of 

autoregressive lags in the time series model will not cause the conditional heteroskedasticity test to perform more poorly than a 

correctly specified lower order model (Lumsdaine and Ng 1999). Conditional heteroskedasticity tests appeared robust to time series 

model selection when applied to the minnow trap time series (Figure A3.6). 
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Figure A3.5. Conditional heteroskedasticity test sensitivity to time series model selection when applied to phytoplankton time series. 
If the differently color lines, representing different autoregressive models (autoregressive lags 2-6, including lower order lags), follow 
the same pattern, the conditional heteroskedasticity test is robust to time series model selection. If there is considerable space between 
different time series models, conditional heteroskedasticity testing is not robust to the choice of time series model. 
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Figure A3.6. Conditional heteroskedasticity test sensitivity to time series model selection when applied to minnow trap time series. If 
the differently color lines, representing different autoregressive models (autoregressive lags 2–6, including lower order lags), follow 
the same pattern, the conditional heteroskedasticity test is robust to time series model selection. If there is considerable space between 
different time series models, conditional heteroskedasticity testing is not robust to the choice of time series model. 
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Conditional heteroskedasticity test to sensitivity to threshold probability value selection 

 In the main text we selected a threshold for significance of p = 0.1 a priori because of the relatively small sample size (n = 50) 

used in each window (cf. Engle et al. 1985). Threshold levels for the significance of probability values are arbitrary for all statistics. In 

this case higher thresholds increase the power of conditional heteroskedasticity tests. Lower thresholds improve the ability of the 

indicator to prevent false positive warnings. Hence in field settings the critical threshold may be adjusted based on sample size to 

increase power or minimize false positives.  

We applied moving window conditional heteroskedasticity tests using autoregressive lag-4 models, 50-day windows. We 

tabulated the number of significant tests in each time series using critical probability values of p = 0.1 and p = 0.05. Realistically, 

these critical thresholds are very close to each other (difference = 0.05) so there should be minimal differences in number of 

significant tests between the thresholds. Higher threshold probabilities will always have the same number or more significant tests 

than lower threshold probability values. There was almost no difference in number of significant tests (Table A3.1).  
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Table A3.1. Number of significant conditional heteroskedasticity tests (with Lag-4 autoregressive time series models and 50 day 
moving windows) at thresholds of p = 0.1 and p = 0.05 for significance. 

Lake Year Time series Number of significant tests Total number of tests 
   P = 0.1 P = 0.05  
Peter 2008 Phytoplankton 0 0 56 
Paul 2008 Phytoplankton 0 0 56 
Peter 2008 Fish 15 9 47 
Paul 2008 Fish 0 0 46 
Peter 2009 Phytoplankton 59 56 61 
Paul 2009 Phytoplankton 0 0 61 
Peter 2009 Fish 44 42 59 
Paul 2009 Fish 0 0 59 
Peter 2010 Phytoplankton 26 26 61 
Paul 2010 Phytoplankton 0 0 61 
Peter 2010 Fish 0 0 61 
Paul 2010 Fish 2 2 61 
Peter 2011 Phytoplankton 1 0 62 
Paul 2011 Phytoplankton 0 0 62 
Peter 2011 Fish 2 1 62 
Paul 2011 Fish 0 0 62 
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