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Abstract

Cerebral perfusion imaging provides information about the blood supply of tissue. It reveals

functional changes of the brain before and after structural changes, which can be used to

improve the sensitivity and accuracy of stroke and tumor diagnosis. There has been an

increasing interest in developing methods for non-contrast perfusion imaging, because of

the risk of nephrogenic systemic fibrosis (NSF) in patients with kidney dysfunction and the

need for repeated blood flow measurements in a short period of time for functional studies.

Magnetic resonance imaging (MRI) provides a safer option for perfusion imaging without a

contrast agent: arterial spin labeling (ASL). In this work, we propose several new techniques

to improve the quality and quantification of ASL MRI.

Using the water spins of blood as a tracer makes ASL safer than other perfusion imaging

methods, but also results in a low signal-noise-ratio (SNR). Conventionally, ASL uses lengthy

scan times to improve image quality and compensate for motion. However, this strategy

is typically used to measure the perfusion bolus at a single time point, which can limit

the accuracy of perfusion quantification, particularly in the setting of disease. Measuring

multiple time points, which is called dynamic ASL, can improve quantification of cerebral
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blood flow (CBF) and yield additional information, but long scan times may be needed. In

this work, we describe the following advances that can be used to improve dynamic ASL:

(1) accurate reference T2 mapping; (2) robust and rapid single-shot data acquisition; (3)

dynamic model-based image reconstruction; and (4) optimal experiment design.

As a parameter estimation problem, CBF is quantified based on other reference param-

eters, such as T1 and T2. Here, I introduce a novel T2 mapping paradigm, which combines

the conventional image reconstruction and parameter regression steps into one state tracking

step. Using the unscented Kalman filter (UKF), the proposed method uses a T2 decay model

to estimate T2 information from k-space data directly and efficiently. It achieves accurate

estimation up to an undersampling factor of 8, which is comparable to a compressed sensing

method with model-based sparsity. This new paradigm can be adapted to Cartesian and

non-Cartesian trajectories, and other parameter mapping models.

In order to improve ASL image quality, a rapid and robust ASL sequence was developed

with a combined parallel and compressed sensing image reconstruction. Pseudo continuous

radio frequency (RF) pulses are used to tag the proximal blood. A 3D turbo spin echo

sequence with stack-of-spiral readouts [1] is used to acquire k-space data. Additionally,

pulsatile motion artifacts are corrected by exploiting the redundancy among multiple receiver

coils. A dual-density spiral trajectory is used to achieve single-shot imaging, which improves

the SNR and freezes motion. ASL image quality and SNR are further improved by parallel

reconstruction with spatial sparsity constraints.

Accurate CBF mapping requires dynamic ASL imaging at multiple observation times, but

the scan time for each ASL image must be short if the total scan time is limited. This limits

the image SNR further. However, in dynamic ASL perfusion imaging, the similar spatial
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structure of images at different delay times and prior information about their temporal

evolution can be exploited to improve the image quality and the estimates of perfusion

parameters. By using the sparsity of dynamic ASL perfusion images in the domain of a

perfusion model, we can efficiently use the relationship between different time frames and

not just reconstruct each frame separately. The resulting image reconstruction suppresses

both random noise and physiological motion artifacts, because they do not conform to the

underlying perfusion model. The proposed method results in rapid and robust, 3D dynamic

ASL imaging in a clinically practical time.

In dynamic ASL imaging, the selection of observation times can influence the accuracy of

CBF quantification. We design an optimal observation time scheme based on minimization

of the Cramér-Rao lower bound (CRLB). Additionally, in the low SNR situation of ASL

images, noise in the magnitude image is more accurately described by a Rician model,

instead of a Gaussian model. Therefore, a maximum likelihood estimator is designed based

on Rician noise, which provides unbiased CBF estimation. Further, the optimal observation

time scheme is designed based on Rician noise.

The main contributions described in this work attempt to extend ASL imaging from

a ’static’ measurement with a single post label delay to dynamic perfusion imaging with

multiple observation times, which includes sequence design, reconstruction and experiment

design. The state of the art in ASL is represented by ’static’ clinical imaging and functional

brain imaging. Dynamic perfusion imaging is another important step in the evolution of

ASL. The rich information that can be obtained using dynamic perfusion imaging will be

interesting to explore in the future.
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Chapter 1
Introduction

Cerebral perfusion imaging can improve the diagnosis of stroke and cancer, by providing

hemodynamic information. However, the typical measurement with dynamic susceptibility

contrast imaging (DSC) [2] is contraindicated and potentially life-threatening for patients

with renal dysfunction [3, 4]. This represents a significant impediment in acute stroke pa-

tients, where approximately 25% have kidney issues, but the limited stroke therapeutic time

window does not always allow time to check renal function.

Arterial spin labeling (ASL) [5, 6] with magnetic resonance imaging (MRI) is an alterna-

tive method for perfusion imaging without administering contrast material. However, ASL

inherently has low signal-to-noise ratio (SNR) and is sensitive to motion artifacts. In order

to achieve stable images and sufficient SNR, currently ASL imaging is limited to relatively

low spatial resolution and a single post label delay (PLD) measurement, which is insufficient

to fully characterize cerebral perfusion in stroke in a way that is clinically relevant.

In the following work, we will develop a method for accurate and accelerated ASL for

robust and high quality perfusion images, achieving whole brain coverage in a clinically

1
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feasible scan time.

1.1 Background

Evaluation of cerebral perfusion has gained significant importance in the modern care of

stroke and brain tumor patients. Currently, cerebral perfusion is routinely assessed by

contrast-enhanced CT and MR perfusion imaging. In stroke patients, this information is

used to improve the sensitivity and accuracy of stroke diagnosis, exclude stroke mimics,

and better assess the infarct core and collateral flow. Proper early treatment of stroke can

significantly help salvageable brain tissue reperfuse and stop stroke lesion expansion. In

brain tumor patients, the information is used to characterize tumor angiogenesis, monitor

response to antiangiogenic agents, distinguish tumor recurrence from radiation necrosis, and

differentiate between brain tumor and brain tumor mimics. Physicians can select a thera-

peutic approach based on perfusion imaging, which can provide cerebral information such

as cerebral blood volume (CBV), cerebral blood flow (CBF), and a number of descriptors of

the timing and dynamics of contrast transit through the cerebral capillary network.

However, typical perfusion measurement is performed with contrast administration, for

example dynamic susceptibility contrast imaging (DSC) in MRI, which is risky for patients

with acute kidney injury and chronic kidney disease at stages 4 and 5 (glomerular filtration

rate<30 mL/min/1.73m2) [4]. This is a potentially life-threatening condition that can result,

if patients with severe chronic kidney disease are exposed to gadolinium. Because stroke

patients tend to be elderly, there is more concern about their renal function. Usually, patients

older than 65 years, are highly suggested to check renal dysfunction before being given a
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contrast agent. On the other hand, because of the urgency associated with stroke, there is

often not time to perform a blood draw and determine the safety of administering contrast.

For all these reasons, a contrast-free perfusion imaging method would be appealing to all

physicians taking care of stroke patients, especially one that could be repeated as often as

needed without concern for the dose of contrast used or the renal function of the patient.

Arterial spin labeling (ASL) is a non-contrast and non-invasive perfusion imaging method

with MRI. By inverting the natural blood signal in arteries using radio frequency (RF) pulses,

it builds a blood bolus and can measure the hemodynamics as the bolus flows through brain.

High correlation between ASL and DSC has been demonstrated [7]. Therefore, ASL can be

a valuable perfusion imaging method.

1.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) [8] is a powerful medical imaging technique, which can

provide rich anatomical and functional information from the human body. It has been widely

applied clinically for a range of applications, including neuroimaging, cardiovascular imaging

and musculoskeletal imaging. Comparing with other medical imaging methods, such as X-

ray, computed tomography (CT) and positron emission tomography (PET), MRI has the

advantages of non-ionizing radiation, flexible imaging plane orientation and excellent soft

tissue contrast [9–11].

MRI is a tomographic technique that acquires local tissue information in three steps.

First, polarization in a main magnetic field. In an atom, protons, electrons and neutrons all

have spin. When spins are paired (e.g., an even number of neutrons and an even number
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of protons), the nucleus has no overall spin. A nucleus with an odd number of neutrons

and/or an odd number of protons has net spin, and thus is active in nuclear magnetic

resonance (NMR). A hydrogen atom contains only one proton and its net spin has two

possible orientations. Typically, the spins in body tissue have random direction, because of

thermal movement. When the hydrogen atoms in the human body are exposed to a strong

magnetic field, spins are lined up along the main field direction, also called the longitudinal

direction. There are slightly more atoms in the parallel state along the main field than in

the anti-parallel state, and thus there is net magnetization along the longitudinal direction.

These spins precess about the direction of the main field at the Larmor frequency. Second,

excitation by a radio frequency (RF) pulse. The MRI scanner deposits energy to the tissue

of interest using an oscillating RF pulse in the transverse plane at the frequency of the spins’

precession. Then, the net magnetization is precessing about RF and main field, which tips

the net magnetization from the longitudinal direction to the transverse direction. Third,

spatial encoding by linear gradients. After turning off the RF pulse, the net magnetization

gradually returns to the longitudinal direction and releases the energy in the form of radio

frequency energy. With gradient magnetic fields applied that cause the magnetic field to

vary linearly in space, spins at different locations emit signals at different frequencies. These

signals are collected by receiver coils and Fourier transformation is used to determine the

frequency distribution, which provides information about spins at different locations.

The intensity of magnetic resonance (MR) images depends on multiple parameters of

local tissue; therefore, the images can have rich contrast. The signal relaxation rates are

highly correlated to pathology, such as tumors. The signal phase can indicate temperature

change, which can guide focused ultrasound therapy. Deoxygenated hemoglobin attenuates
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the MR signal, so MRI can reveal the oxygen consumption and neural activity in brain. The

drawbacks of MRI include long scan time, low sensitivity and a noisy environment for the

patient.

1.3 Perfusion

Perfusion is a physiological process by which the body delivers blood to the microvasculature,

where oxygen and glucose exchange with local tissue. Some diseases can be diagnosed by

this functional change before structural changes [12].

The brain metabolic rate indicates brain activity and related pathologies. This important

parameter can be measured by the cerebral metabolic rate of oxygen (CMRO2), which

describes the amount of oxygen consumed per unit tissue per minute. Cerebral blood flow is

an effective measure of brain metabolism, because of the direct relationship between CMRO2

and CBF :

CMRO2 = OEF · CBF · [O2]a (1.1)

[O2]a is the concentration of oxygen in arterial blood. It is about 8 µmol/mL. CBF de-

scribes the volume of blood that moves through vessels per minute. It is about 50 ml/100g

tissue/minute for gray matter and about 1/3 of that level for white matter. Skeletal muscle

perfusion is about 1/10 that of gray matter CBF at rest and reaches 80 ml/100g/minute

during exercise. OEF is oxygen extraction fraction, which describes the fraction of oxygen

that leaves blood and metabolizes glucose. It is about 40%.

How much blood is supplied to the tissue also depends on blood velocity and blood

volume. Cerebral blood volume (CBV) describes the fraction of tissue volume occupied
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by blood vessels. It is about 4%. CBV is composed of an arterial portion (aCBV), a

capillary portion and a venous portion. Blood velocity is pulsatile in the large vessels,

with a periodicity related to the cardiac cycle. Blood velocity in capillaries is much slower

(1 mm/s) and appears to be stable in the macrocosm, but is irregular in the microcosm,

because of the obstruction of blood cells.

The central volume principle uses the mean transit time (MTT or τ) to connect the

concepts of CBF and CBV:

CBV = τ · CBF (1.2)

The typical value of τ is 4 s.

Several methods have been used to measure CBF, including positron emission tomogra-

phy (PET), Doppler ultrasound, dynamic susceptibility contrast MRI and ASL[13]. In DSC

MRI, the introduced contrast agent induces a signal drop. The kinetic signal change can

be described as a sum over the past history of delivery to the local tissue weighted by the

fraction that remains in the voxel:

C = CBF ·
∫ t

0

AIF (t′) · r(t′ − t)dt′

= CBF · AIF ∗ r
(1.3)

where C is the concentration of contrast agent; r is the residue function, which describes the

fraction of contrast delivered at time t′ and still in the image voxel at observation time t;

and ∗ is the convolution operator.

This model assumes that the contrast agent achieves equilibrium immediately when it

arrives at local tissue. It is referred to as a single compartment model. This framework
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can also be used as the foundation of ASL model development [14]. More complex models

have also been developed that include transport between tissue and the microvascular bed,

including two compartment models [15] and four compartment models [16]. However, in ASL

imaging, low SNR and time-consuming scans limit the information that can be detected

in a practical experiment, and thus the complexity of the signal model. Therefore, most

researchers focus on the classic single compartment model described in the following section.

1.4 Arterial Spin Labeling

Conventional perfusion measurement can be done with PET (with 15O targeted on water or

glucose), SPECT (with 133Xe), CT (with Xenon or Iodine) and ultrasound [13]. MRI with

a contrast agent can also quantify perfusion. ASL uses freely diffusable water as a tracer

instead of an exogenous contrast agent.

1.4.1 The Perfusion Model of ASL

Here, we will derive the ASL signal model [6, 14] from the Bloch equations [5].

The basic Bloch equation is

dM

dt
= M× γB− Mxi +Myj

T2
+
M0 −Mz

T1

k (1.4)

where i, j and k are unit vectors; M is the magnetization vector; B is the magnetic field;

and M0 is the equilibrium magnetization, which is along the direction of the main magnetic

field. T1 is longitudinal relaxation time and T2 is transversal relaxation time.

When we only consider the longitudinal magnetization recovery along k direction, the
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Bloch equation can be simplified as

dM

dt
=
M0 −M

T1

. (1.5)

Additionally, when we consider the blood flow and the static tissue [6] together, it becomes

dM

dt
=
M0 −M

T1

+ f(Ma −Mv) (1.6)

where M is the longitudinal magnetization; Ma is the magnetization of arterial inflow blood

per ml; Mv is the magnetization of venous outflow blood per ml; and f is the blood flow,

with units of ml/100g tissue/min.

We will assume a single compartment model, where blood and tissue exchange and achieve

equilibrium immediately [6]. Thus, the magnetization in the vein is proportional to the spins

in the tissue:

Mv =
M

λ
(1.7)

where λ is the partition coefficient, which describes the ratio of water per gram of brain

tissue to water per gram of blood.

Therefore, the equation becomes

dM

dt
=
M0 −M

T1

+ fMa −
f

λ
M . (1.8)

To image blood flow, we collect two sets of data in ASL imaging: one with ‘labeled’ blood,

where the spin in blood is inverted or saturated, and the other with ‘control’ blood, where
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the spin is positive (although maybe not fully recovered, because of a limited repetition

time). These two sets of signal are described by the following equations:

dMlabel

dt
=
M0 −Mlabel

T1

+ fMa,label −
f

λ
Mlabel (1.9)

dMcontrol

dt
=
M0 −Mcontrol

T1

+ fMa,control −
f

λ
Mcontrol (1.10)

where Ma,label and Ma,control are the arterial input blood signal in the label and control scans,

respectively; and Mlabel and Mcontrol are the tissue signal in label and control scans.

To show the perfusion signal and eliminate the background signal from static tissue,

the label image is subtracted from the control image. Let us define ∆M as the perfusion

contrast:

∆M = Mcontrol −Mlabel . (1.11)

The subtraction of Eqs. 1.9 and 1.10 results in the following equation:

d∆M

dt
= −∆M

(
1

T1

+
f

λ

)
+ f(Ma,control −Ma,label) (1.12)

Now let us define

1

T
=

1

T1

+
f

λ
, (1.13)

which is the ‘apparent T1’, including blood flow.

Define arterial blood function A:

A = Ma,control −Ma,label (1.14)
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This can be expressed as

A = 2αM0fa ∗m (1.15)

where α is the labeling efficiency, and 0 < α < 1 with 1 corresponding to a fully inverted

blood signal. a is a dispersion kernel, describing the shape of the labeled blood bolus,

normalized to 1. m is the decay of inverted blood signal:

m = e−t/T1b (1.16)

T1b is the T1 of blood. t is the time the labeled blood arrives at the local tissue. In pulsed

ASL, the labeled region is wide, so the blood arriving at the image plane has experienced

different amounts of signal recovery, according to the imaging time t. In pseudo continuous

ASL (pCASL), the labeling plane (about 30 mm) is thinner than pulsed ASL (PASL), where

global inversion is implemented in most cases. Labeled blood in pCASL can be simplified

by a constant recovery time when it arrives at the image plane. This time is usually referred

to as the arterial transit time (ATT or ∆t).

If we ignore the dispersion of the blood bolus and assume a = 1, then for pCASL

A = 2αM0fe
−∆t/T1b (1.17)

The original equation 1.12 becomes

d∆M

dt
+

∆M

T
= A (1.18)
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This is a standard first-order ordinary differential equation (ODE), and the solution is derived

as follows.

Define µ, which satisfies:

dµ∆M

dt
= µA (1.19)

It means:

µ
d∆M

dt
+ ∆M

dµ

dt
= µA (1.20)

Dividing by µ on both sides:

d∆M

dt
+ ∆M

1

µ

dµ

dt
= A (1.21)

Therefore, to satisfy Eq. 1.18, µ should be chosen as

1

µ

dµ

dt
=

1

T
(1.22)

The solution is

µ = et/T (1.23)

The ODE Eq.1.19 is solved as follows:

∆M =
1

µ

∫
µAdt

= e−t/T
∫ ub

lb

et/TAdt

= ATQ

= 2αM0fe
−∆t/T1bTQ

(1.24)
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The lower limit of the integral, lb, is the time of arrival of the blood bolus (∆t in pCASL).

The upper limit of the integral, ub, is the smaller of the observation time, t, and the end of

the blood bolus, τ + ∆t. Therefore, for pCASL,

Q(n) =


0 if 0 < t < ∆t

1− exp
(
− t−∆t

T

)
if ∆t ≤ t ≤ ∆t+ τ

exp
(
− t−τ−∆t

T

)
− exp

(
− t−∆t

T

)
if ∆t+ τ < t

(1.25)

Similar results can be derived following the contrast perfusion model in Eq. 1.3. Including

signal recovery, m, in the residue function, r, yields the following expressions:

R = rm (1.26)

∆M = A ∗R (1.27)

The residue function is given as [14]:

r = e−ft/λ (1.28)

Therefore, the ASL signal is expressed as:

∆M = A ∗ (rm) (1.29)

More details of each function and parameter will be discussed in the following sections.
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1.4.2 Simplification of ASL Model

If the post-label delay (PLD) is longer than the arterial transit time, all of the labeled

blood bolus has arrived at the microvascular bed at the time of signal acquisition. Under

this condition, the ASL signal will be insensitive to the arterial transit time and can be

quantified by a single PLD measurement. When PLD > ∆t, it equals to t > τ + ∆t. The

ASL signal is described by the third part of Eq. 1.24:

∆M = 2αM0fTe
−∆t/T1b

(
e−(t−τ−∆t)/T − e−(t−∆t)/T

)
(1.30)

Assume that there is little change in T1 in the tissue by introducing the labeled blood bolus.

T ≈ T1b (1.31)

Then, CBF can be quantified by single PLD measurement [7]:

∆M = 2αM0fT1b

(
e−(t−τ)/T1b − e−t/T1b

)
(1.32)

Because the difference in T1 between blood (1650 ms) [17] and gray matter (1500 ms) [18]

at 3T is less than 10%, the T1 of brain tissue is also used in some work [19, 20]:

∆M = 2αM0fT1b

(
e−(t−τ)/T1 − e−t/T1

)
(1.33)
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1.4.3 Measurement of M0

In a single-compartment model, when we quantify CBF, the signal is usually normalized

by the M0 of blood first. Generally, there are two methods to calculate the normalization

factor: one method measures the M0 of local tissue, then estimates the local blood signal as

M0/λ; the other measures the M0 of global blood.

M0 can be estimated along with T1 using multiple T1-weighted independent measure-

ments. If scan time is limited, the first excitation that is used to establish the steady state

can also be used to calculate M0. Here, we list three blood M0 estimation methods used in

this situation [21].

Global M0 from CSF

M0 = R MCSF e(TE/T ∗
2CSF−TE/T

∗
2b) (1.34)

where R is 0.87 [22]. MCSF is the average value of the top 20% of pixels in the CSF

region. T ∗2CSF is the T ∗2 of CSF, 74.9 ms. T ∗2b is the T ∗2 of blood, 43.6 ms. One drawback

of this method is that there could be a problem with the accuracy of the T ∗2 values,

which may be different from scanner to scanner.

Global M0 from white Matter

This method is similar to the CSF method, but uses the signal in white matter. Replace

T ∗2 of CSF by the white matter T ∗2w, which is about 44.7 ms and R is 1.19.

Local M0 by local λ

This is similar to the method of local tissue M0/λ, but instead of a global λ, some
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researchers use more accurate values of λ for each region. In gray matter, λ = 0.98,

and in white matter, λ = 0.84.

1.4.4 Arterial Input Function

The AIF function A mentioned in Eq. 1.24 describes the temporal profile of the blood bolus

and its dispersion. Most AIF models are based on the convolution of the ideal AIF and a

dispersion function [23].

The ideal AIF is described by a boxcar function, without dispersion:

a =


0 t < ∆t

1 ∆t < t < ∆t+ τ

0 t > τ

(1.35)

This sharp-edged blood bolus cannot be achieved in practice. Thus, the AIF function is

usually convolved with a dispersion function (e.g., log-normal distribution). However, only a

few researchers consider the AIF function [24] and most groups use the ideal AIF to simplify

the quantification.

1.4.5 ASL Sequence

Current development of ASL mainly focuses on improvement pulse sequences. An ASL

sequence can be separated into three parts: tagging pulses, preparing pulses and signal

acquisition. There are several excellent reviews about ASL [25–28], so here I only give the

basic ideas.
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Tagging Pulse

Usually, researchers categorize an ASL method according to its tagging method.

The first ASL experiment followed flow-driven inversion theory and is known as contin-

uous ASL (CASL)[29–31]. CASL tags arterial blood in a proximal slice for a long time (1-2

s), waits for the signal of blood to accumulate in tissue and then images the tissue. This

method requires extra coil hardware for tagging, which limits its range of application.

In the 1990s and early 2000s, variants of blood tagging methods were developed with a

short RF, which is feasible on commercial scanners, known as pulsed ASL (PASL). PASL

methods include PICORE [32], TILT [33] and FAIR [34]. These methods tag a large region in

a short time, then wait for the blood in this region to flow into the imaging slice. They have

lower specific absorption rate (SAR) values, yield robust results and have been included

in commercial protocols. However, the distal blood signal decays before it flows into the

imaging slice and this results in lower SNR. The length of the blood bolus is uncertain,

which reduces the accuracy in CBF quantification. Velocity selective ASL [35] provides

robust quantification, but it uses the saturation of blood instead of inversion labeled blood.

Currently, PASL has advantages in dynamic ASL imaging and complex blood flow regions,

such as myocardial [36] and lung [37] perfusion imaging.

In 2005, a new breakthrough was achieved in ASL tagging and was named pseudo con-

tinuous ASL or pulsed continuous ASL (pCASL) [38–40]. pCASL is similar to CASL, but

uses the body RF coil for tagging. It uses a series of short duration RF pulses separated by

short time intervals to approach the flow driven inversion condition, which inverts the spins

of blood in the feeding artery and builds up a blood bolus. Relatively high SNR and clean
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background signal are its benefits. Further improvement has been achieved by including

multiple labeling phases [41].

Starting in 2010, territorial ASL [42] became popular, which can tag a selected artery

and show the blood supply of a specific brain region. However, only a few large arteries can

be selected separately (e.g. left and right internal carotid arteries, left and right vertebral

arteries), so it cannot reveal more detailed information about blood supplied by smaller

arteries.

Preparing Pulses

ASL images the blood flow delivered to local tissue. The blood signal in large vessels can

introduce quantitative error. Researchers use flow suppression method to eliminate this

signal. For example, motion sensitive gradients [20, 43] can be used. Another way to

suppress flow is to saturate the blood signal before it comes into the image slices, using

methods such as QUIPSS [44] and Q2TIPS [45].

ASL has low SNR and is vulnerable to motion artifacts [25]. To stabilize the image and

suppress unknown artifacts, background suppression [46, 47] is used to null the signal from

static tissue. But this technique also attenuates the ASL signal [48].

Acquisition

ASL is time-consuming, because the tagged blood requires about 1-2 seconds to transit

to the image region and more than 10 averages are conventionally performed to improve

the image quality. ASL is also motion sensitive. Therefore, a fast acquisition in a single

shot is preferable. Echo planar image (EPI) and spiral scanning are widely used in 2D
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ASL. Similarly, GRASE and stack-of-spirals perform well in 3D acquisitions [49]. Parallel

imaging techniques (e.g. GRAPPA) are used to accelerate acquisition and achieve single-shot

imaging. Other fast acquisition methods, such as SSFP [37], has also been described in the

literature. SSFP is of particular interest in applications with large susceptibility variations

that require short readouts, such as lung perfusion.

In summary, the state-of-art of ASL includes: about 1.8 second pCASL tagging pulse,

about 1.5 second post label delay, background suppression pulses, flow suppression pulses

and 3D readout. Most ASL sequences achieve resolution from 5 mm × 5 mm × 5 mm up

to 3 mm × 3 mm × 4 mm, with whole brain coverage.

1.4.6 Problems in ASL

The low SNR of ASL requires a large number of signal averages (typically more than 10),

which makes imaging time-consuming. To achieve stable images and sufficient SNR, currently

ASL is limited to low spatial resolution and single post label delay (PLD) imaging, instead

of dynamic imaging.

The ASL signal decays with T1 when the tagged blood travels from the tagging plane

into the imaging slice. This arterial transit time is subject dependent and its variance can

lead to inaccuracy in perfusion estimation. One commonly adopted strategy in minimizing

the uncertainty of ATT is to use a long PLD, which ensures that all blood bolus reaches the

tissue, but this requires prior knowledge of ATT. An over-long PLD may miss peak perfusion

and reduce SNR. Velocity selective labeling minimizes ATT uncertainty by selecting blood

flowing with a certain velocity, but this reduces labeling efficiency and SNR.

The acquisition of ASL at a single delay time is insufficient to fully characterize cerebral
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perfusion in stroke and brain tumor patients clinically. Moreover, the CBF values computed

using a single delay time can be inaccurate if the bolus is delayed in a particular region of the

brain, which often occurs in patients with cerebrovascular conditions. Dynamic ASL is an

emerging alternative that collects a series of perfusion images and can yield more accurate

CBF maps and maps of other parameters required for patient management, such as ATT.

However, collecting this information robustly with high image quality in three dimensions in

a clinically feasible scan time is an extremely challenging technical problem.

Researchers have become interested in dynamic ASL, a strategy that acquires images at

multiple PLD times for accurate CBF estimation [50] and potential ATT map formation.

Different strategies can be pursued to resolve the dilemma between scan time and multiple

PLD frames. The temporal fast data sampling Look-Locker method acquires a series of

images with different PLDs in one preparation [51]. Novel ASL Hadamard encoding tagging

[52, 53] combines different PLD preparations to improve signal. However, all of the above

techniques focus on improving the image for each PLD frame separately using pulse sequence

design. This dissertation also explores using advanced image reconstruction methods to

improve dynamic ASL.

1.5 Dissertation Overview

The remainder of this dissertation is organized as follows:

Parameter mapping is essential for quantification of ASL perfusion. Furthermore, quan-

tification of parameter maps is increasingly providing widely accepted and important infor-

mation in clinical diagnosis. In Chapter 2, we propose a method for accurate and accelerated
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parameter estimation. We designed a highly accelerated and direct parametric map estima-

tion method using the unscented Kalman filter and extended the proposed method with

parallel reconstruction and two-parameter estimation. To evaluate the performance of the

proposed method, we compared this novel method to the compressed sensing method with

k-p sparsity on phantom and volunteer data. Furthermore, we adapted the undersampling

scheme into the acquisition pulse sequence and verified it in an accelerated acquisition.

We developed a robust and fast 3D pCASL sequence with parallel and compressed sensing

image reconstruction. In Chapter 3, 3D turbo spin echo with a stack-of-spirals k-space

trajectory was designed to compensate for the low speed and low SNR of ASL. A pseudo

continuous labeling scheme improved the perfusion signal. To reduce susceptibility artifacts,

maintain moderate resolution and be insensitive to motion, including rigid bulk motion and

pulsatile blood flow, we developed parallel image reconstruction with a dual-density spiral

trajectory. Further, compressed sensing was used to suppress noise and improve image

quality.

Dynamic ASL requires multiple measurements with different observation times, which en-

ables the estimation of ATT and an accurate CBF. We exploited the similar spatial structure

among frames and prior information about signal evolution to improve image quality and

CBF estimation accuracy. In Chapter 4, we developed a compressed sensing reconstruction

with sparsity based on a perfusion model and dictionary learning. We then validated the

proposed method in simulation, experiments and through evaluation by a neuroradiologist.

Multiple observation times (OT) ASL provides accurate CBF maps by fitting to a dy-

namic perfusion model. The variance of CBF can be further reduced by optimal OT design.

This could significantly improve CBF accuracy in the low SNR situation of ASL. In Chapter
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5, we improve CBF estimation in dynamic ASL by designing optimal observation times based

on Gaussian and Rician noise, which reduces the variance of CBF estimation. Further, an

unbiased maximum likelihood estimator was designed with a Rician noise model. Then, the

new designs were validated in simulation and a volunteer scan.



Chapter 2
Accelerated T2 mapping

2.1 Introduction

Tissue parameter mapping shows substantial promise for improved disease characterization.

For example, T1 and T2 changes have shown high correlation with tumor [54, 55], stroke

[56], cardiac lesions [57] and Parkinson disease [58]. Furthermore, the accuracy of T1 and T2

maps limit the quantification of other MR techniques, such as cerebral blow flow estimation

in arterial spin labeling.

To achieve accurate parameter mapping and multiple component analysis [59], several

measurements are usually required along the parameter encoding direction (p-space). A

classic example is imaging at multiple TEs for T2 mapping. Nevertheless, long acquisition

times have slowed the adoption of parameter mapping, because they make the parameter

map vulnerable to motion and limit the coverage in certain applications (e.g., cardiac T1

mapping). Therefore, an accelerated parameter mapping paradigm is desirable.

Parameter maps can be accelerated using parallel imaging. In addition, sparsity between

k-space and p-space has been exploited by compressed sensing methods for higher acceler-

22
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ation rates. One of the successful constraints for compressed sensing acceleration is model

based sparsity. It assumes the image structures are similar at each TE measurement and

signals from different pixels follow a similar evolution pattern in p-space. Model-based com-

pressed sensing [60, 61] could include a nonlinear T2 decay model as a data fidelity term and

pursue the parameter map in the reconstruction directly, but this approach is computation-

ally complex. In recent work, the T2 model has been linearized using principal component

analysis [62] and an over-complete dictionary in the K-SVD method [63]. These methods use

compressed sensing to reconstruct images, which is then followed by parameter estimation.

Moreover, in most compressed sensing reconstructions, the quality and accuracy of the T2

map depends on the sparse representation and the regularization parameters.

T2 mapping can be generalized as an estimation problem. In MRI, we do not directly

measure the T2 map, but rather signals that are nonlinear functions of local T2. In other

words, we observe the dynamic process of the T2 map at multiple encoding states in p-

space. The Kalman filter has been widely used for state tracking and parameter estimation.

Recently, Sümbül [64] and Feng [65] successfully adopted it in dynamic MRI by exploiting

spatial and temporal redundancy. By viewing the parameter of interest as the state of a

dynamic system, we can model the multi-TE measurement process and use the Kalman

filter to recursively improve our estimate of a T2 map.

In this chapter, we seek to explore a new paradigm for parameter mapping, which com-

bines image reconstruction and optimal parameter estimation. A model based unscented

Kalman filter (UKF) [66] was applied to accelerate T2 mapping and combined with parallel

imaging. The proposed method was compared with a compressed sensing reconstruction on

a numerical phantom and retrospective volunteer data. Then, the accelerated sequence was



CHAPTER 2. ACCELERATED T2 MAPPING 24

developed for prospective acceleration. To our knowledge, this is the first work of parameter

mapping in MRI using the unscented Kalman filter.

2.2 Theory

The key to this method is that we track the T2 map in k-p-space by the UKF directly. The

conventional method reconstructs the T2 weighted images from k-space data and regresses

the T2 map pixel by pixel in image space (Fig. 2.1a). In the proposed method, T2 weighted

images at multiple TEs are not reconstructed, but are modeled as a part of the measurement

function (Fig. 2.1b) in k-p-space.

2.2.1 Kalman Filter

The Kalman filter [67] is a recursive and efficient method to estimate the state of a system

from noisy measurements. Generally, the Kalman filter describes a dynamic system by two

steps: state transition and measurement. The general Kalman filter is given by the following

equations:

xk = f(xk−1, wk−1)

zk = h(xk, vk)

p(w) ∼ N(0, Q)

p(v) ∼ N(0, R)

(2.1)

where f is the state transition function; xk is the kth state of system; w is the system noise,

assumed to be white Gaussian noise with covariance matrix Q; h is the measurement function

of state xk; zk is the measured data; and v is the measurement noise, also assumed to be
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Figure 2.1: T2 mapping paradigms. With multiple-TE measurements, a T2 map is commonly
processed as shown in (a). k-space data are reconstructed to T2-weighted images. The intensity
of each pixel (blue dots) is regressed to the signal decay model (red line) and results in the local
T2 value. The proposed method (b) tracks the T2 value in parameter-space using the UKF,
which produces the T2 map from the k-space data directly. The red line indicates the true T2

value. The blue line illustrates the tracking process, which approaches the true T2 value as
more measurements are included.
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white Gaussian noise with covariance matrix R.

2.2.2 T2 Signal Model

In the special case of T2 mapping, we observe the signal decay at a rate of T2 in p-space.

Here we set the T2 map as the system state, which is assumed to be constant in time and

invulnerable to noise. Therefore, the state transition function is given by

f(xk−1, w) = xk−1 (2.2)

Each k-space data sample zk is one measurement of state xk with encoding position tk. The

measurement function h(tk) is composed of signal decay, Fourier transform and measurement

noise:

h(xk, v) = UkFM(tk) + v (2.3)

where F is the Fourier transform and Uk is an undersampling pattern at state tk that results

in a k-p space undersampling scheme. M(tk) is a T2-weighted image at echo time tk.

The T2 weighting process is represented using a single-compartment exponential T2 model

M(tk) = ρe
− tk

T2 (2.4)

where tk is the echo time.
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With constant echo spacing, the model can be simplified as

M(k) = ρ exp(−kxk), k = 0, 1, 2, · · · , K

xk =
∆t

T2

(2.5)

Here, we treat the shortest TE measurement as ρ exp(−∆t/T2). When the shortest TE

equates to the echo spacing, ∆t, ρ equals to a proton density image. When the shortest TE

is longer than ∆t, ρ is a T2 weighted image, one step backward. k is the index of parameter

encoding states.

Given the state transition function f and measurement function h, the Kalman filter

estimation problem is now defined. The system state xk — the desired T2 map — can be

estimated by the UKF, as described in the following section.

2.2.3 Unscented Kalman Filter

The basic Kalman filter uses linear state transition and measurement functions. It can be

adapted to nonlinear models using various approximations. An early version of this approach

was the extended Kalman filter (EKF), which linearizes the filter using a Jacobian matrix.

The EKF has limited accuracy for highly nonlinear problems. The unscented Kalman filter

represents the nonlinear model by the unscented transform, follows the state distribution

using a deterministic sampling approach and achieves higher order approximation of the

measurement.

When we estimate the state xk from the former state xk−1 and measured data zk, 2N+1

sigma vectors χk−1,i are used to approximate the state transition and the signal measurement.
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N is the length of the vector x.

χk−1,i =


xk−1 if i = 0

xk−1 + Ti if i = 1, · · · , N

xk−1 − Ti if i = N + 1, · · · , 2N

(2.6)

where Ti is the ith column of matrix square root of (N + λ)Pk−1.

TT ′ = (N + λ)Pk−1 (2.7)

α and κ describe the distance between the sigma vector and xk−1:

λ = α2(N + κ)−N (2.8)

The sigma states are transformed by the function f , which for this problem propagates the

prior state unchanged:

χk.i = χk−1,i (2.9)

The estimated state x−k is represented by the current sigma vectors:

x−k =
2N∑
i=0

wmi χk,i (2.10)

where

wm0 =
λ

λ+N

wmi 6=0 =
0.5

λ+N

(2.11)
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The covariance of x−k is approximated by:

P−k =
2N∑
i=0

wci (χk,i − x−k )(χk,i − x−k )′ +Q (2.12)

where

wc0 =
λ

λ+N
+ 1 + α2 + β

wci 6=0 =
0.5

λ+N

(2.13)

β = 2 is optimal for a Gaussian distribution of x [68]. The measured data are approximated

by the measurement function h:

ζi = UkFρ exp(−kχk,i)

z−k =
2N∑
i=0

wmi ζi

(2.14)

The posterior covariance of measurement zk is:

Pz =
2N∑
i=0

wci (ζk,i − z−k )(ζk,i − z−k )′ +R (2.15)

The next step is to update the gain matrix:

Pxz =
2N∑
i=0

wci (χk,i − x−k )(ζk,i − z−k )′

G = PxzP
−1
z

(2.16)
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The final step of the iteration is to correct the state estimate and the covariance matrix:

xk = x−k +G(zk − z−k )

Pk = P−k −GPzG
′

(2.17)

2.2.4 Multiple-Channel Data

Parallel image reconstruction uses multiple-channel data to accelerate scans and improve

image quality. Here we will exploit the redundancy among multiple channel data following

the SENSE method [69].

To generalize the UKF for multiple-channel data, we add an n-channel sensitivity map

Si to the measurement function h:

h(xk, v) = UkF



S1

S2

...

Sn


ρ exp(−kxk) +



v1

v2

...

vn


(2.18)

To simplify the calculation, we assume that the noise from different channels follows the

same distribution R.

2.2.5 Two-Parameter Estimation

We will refer to the above method as the single UKF, because it estimates a T2 map based on

prior knowledge of ρ. A pre-scan to obtain a ρ map is feasible, but this requires additional

scan time and could introduce more measurement error. We can incorporate ρ into the
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estimated state, which will double the number of variables to be estimated and increase

computational complexity. We will call this the two-parameter UKF model. In the two-

parameter UKF model, Eq. 2.2 becomes:

f


xk−1

ρk−1

 ,
wx
wρ


 =

xk−1

ρk−1

 (2.19)

As for the single UKF, we assume the minimum TE map ρ is constant in time and invul-

nerable to noise.

2.2.6 Parameter Initialization

To reduce the matrix size in the calculations, we first localize the image pixels using a 1D

Fourier transform along the readout direction, as in Feng et. al (12). The minimum TE

weighted ρ map is prior knowledge in the single UKF and is initialized using data from

shortest TE acquired in the two-parameter UKF. The T2 map is typically initialized to a

constant value. If the initial guess of T2 is 80 ms, the T2 map can be written as x0 = ∆t/80.

The initial estimation error covariance matrix P0 is empirically chosen as a diagonal matrix

proportional to the noise level σ2 of the measured image.

The distribution of noise v is assumed to be a stationary process, which does not change

during the scan. Its covariance matrix R becomes a diagonal matrix with each diagonal

element equal to σ2I in the case of white Gaussian noise. This assumption is more reliable

for T2 measurements of the brain than of the heart, because there is less motion and volume

change. There should be no change between each state T2, which results in Q = 0 in theory.

However, we empirically choose a small Q to stabilize the estimation. Tuning the parameters
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Q and R can influence the performance of the UKF.

2.3 Methods

2.3.1 Simulation

A realistic analytical phantom [70] was used to simulate the T2 mapping acquisition, recon-

struction and parameter estimation process. We represented the grey and white matter by

four ROIs with T2 = 50, 80, 120, and 250 ms. To simulate multiple TEs, 100 parameter

encoding states were measured with echo spacing equal to 3 ms. These images were sampled

by a Cartesian trajectory with a matrix size of 128 × 128.

To evaluate the tolerance of the proposed method, we validated T2 maps according to

noise level and number of available encoding states. The single-parameter UKF was tested on

the fully sampled data. In the noise tolerance test, the generated data was contaminated by

Gaussian complex noise with SNR from 10 to 100 according to the shortest TE measurement

[63]. In the test of number of available measurements, the T2 maps were estimated with the

number of available measurement states from 10 to 100 at SNR 50.

Figure 2.2: T2 data sampling scheme in k-p-space. (a) and (b) fully sampled data in k-space
and p-space (data are always fully sampled in the RO direction). (c) is the incoherent random
sampling pattern for compressed sensing with acceleration ratio 4. At each TE encoding state,
PE lines are acquired according to the polynomial probability function. (d) is alternative
undersampling pattern for the UKF with acceleration factor of 4.
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To verify the performance of UKF methods with an accelerated acquisition, we retrospec-

tively undersampled k-space by factors of 2, 4, 6, and 8 at each TE. As shown in Fig. 2.2d,

the undersampling pattern included a few fully-sampled central phase-encoding lines and

undersampled outer k-space lines at each TE. This pattern is designed to contain the same

number of phase encoding lines at each TE measurement, so that it was compatible with a

multiple contrast spin echo pulse sequence. The proposed methods were compared to the

model-based compressed sensing method with over-complete dictionary trained by K-SVD

[63]. To achieve incoherence in the compressed sensing reconstruction, k-space was under-

sampled following a polynomial distribution in the phase encoding direction (Fig. 2.2c). An

over-complete dictionary was trained based on the T2 decay model. The training data in-

cluded T2 values over the range of 1-300 ms, and 100 prototypes were obtained from 1000

synthetic T2 decay signals. The T2 decay signal was represented by at most three proto-

types. Wavelet thresholding was performed on each frame and the termination tolerance

was ε < e−3. K-SVD and spatial wavelet sparsity were performed on the real and imaginary

parts separately at each pixel. The T2 map was calculated to minimize the least squared

error pixel by pixel across the reconstructed images.

The results were compared with the fully sampled noiseless T2 map and quantified by

structure similarity index (SSIM) [71] and normalized root mean squared error (NRMSE).

2.3.2 Experiments

T2 mapping data with multiple TE encoding were acquired on healthy volunteers. All the

experiments were performed on a 3T Siemens Trio scanner (Erlangen, Germany) with a

12-channel receiver array head coil. The study followed an IRB protocol approved by our
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institution with written informed consent from volunteers.

A spin echo sequence was used for validation scans of an ex-vivo brain. The parameters

were as follows: matrix size 128 × 128, FOV 180 mm × 180 mm, TR 500 ms and slice

thickness 4 mm. TE varied from 14 ms to 144 ms with a step size of 2 ms.

A modified multiple contrast spin echo sequence was used to scan normal volunteers. The

same phase encoding lines were acquired in one echo train at different TEs. The parameters

were as follows: TR 2.5 s, slice thickness 5 mm, FOV 220 mm × 220 mm and matrix size

192 × 192. 70 spin echoes were acquired with echo spacing of 5.5 ms. The total scan time

was about 8 minutes.

The volunteer data was retrospectively undersampled by factors of 2, 4, 6 and 8 with

the same undersampling scheme used for the simulation. Without prior knowledge of proton

density, the two-parameter UKF method and the compressed sensing method with K-SVD

were used to reconstruct the T2 map. The results were evaluated using SSIM and NRMSE

by comparison to the standard T2 map, which was obtained from fully sampled data and

least squared error model fitting.

To accelerate the acquisition in practice, we adapted the undersampling scheme into a

multiple contrast spin echo sequence. After excitation, the sequence collected 70 spin echoes

with echo spacing 5 ms, with each echo designed to acquire a phase encoding value according

to the undersampling scheme. For example, the first echo train collected the highest line

in each k-space cluster, shown as the red dots in Fig. 2.2d. T2 maps were estimated by the

proposed methods with undersampling factors of 4 and 8. Other scan parameters were as

follows: TR 2 s, slice thickness 5 mm, FOV 200 mm × 200 mm and image matrix size 128

× 128. For fully sampled k-space, the scan time would have been approximately 4 minutes.
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With the accelerated sequence, the scan times were reduced to approximately 1 minute and

30 seconds for undersampling factors of 4 and 8, respectively.

This reconstruction was carried out in MATLAB 2012b (The MathWorks, Inc) with a

4x GTX 680 Workstation (Amax Information Technologies, Inc). 12 CPU cores (Intel Xeon

E5-2640 2.50 GHz Processor LGA2011) were used for parallel computation.

2.4 Results

2.4.1 Simulations

The accuracy of T2 estimation highly depends on the quality of images and the SNR of

the acquired signal. Different SNR level signals were used to test the performance of the

model-based UKF. Compared with the noiseless T2 map, the results in left plot of Fig. 2.3

show that the estimated T2 map has reduced error and increased similarity as the SNR of

the acquisition increases. The amount of available data is also essential to the quality of

estimation. As shown in right plot of Fig. 2.3, as the number of TE measurements increases,

estimation errors are reduced and similarity index is increased. However, acquiring more

than 60 TE measurements yields limited improvement in T2 map quality.

Figure 2.4 shows the T2 map estimated of a numerical phantom with an undersampling

factor of 8 and SNR = 50. There were negligible undersampling artifacts with any of the

reconstruction methods. The compressed sensing method (NRMSE = 0.1125) resulted in

lower SNR (SNR = 10.4) and missed some fine structures, as shown in the middle row of

Fig. 2.4. Absolute error relative to a fully-sampled noiseless T2 map for each method is shown

in the bottom row. As expected, the single-parameter UKF filter provided most accurate
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Figure 2.3: UKF performance with SNR level and number of encoding states. With high SNR
data, the UKF method results in improved similarity and less estimation error (left). The UKF
can improve T2 map estimation by introducing more measurements, but limited improvement
is achieved beyond 60 measurements.

estimation (NRMSE = 0.0272, SNR = 40.4); it benefited from prior knowledge of proton

density. Compared with the compressed sensing method, two-parameter UKF reduced the

estimation error by a factor of 2 (NRMSE = 0.0507, SNR = 26.6).

Figure 2.5 plots the quantitative results of the compressed sensing reconstruction and

proposed UKF methods at different acceleration factors. The single-parameter UKF bene-

fited from prior knowledge of proton density map, resulting in lower estimated errors, higher

structure similarity and SNR. Two-parameter UKF estimated both the T2 map and pro-

ton density map, but still resulted in more accurate estimates than the compressed sensing

method.

2.4.2 Experiments

Ex-vivo brain scans are shown in Fig. 2.6. The scans were acquired with a standard spin echo

pulse sequence to directly show the performance of the parameter map estimation methods

independent of pulse sequence factors, such as RF inhomogeneity and eddy currents. With

undersampling factors up to 8, both the compressed sensing and UKF methods resulted in

negligible undersampling artifacts. Compared with the fully-acquired data set, the proposed
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Figure 2.4: T2 map estimation on the numerical phantom with compressed sensing, two-
parameter UKF and single-parameter UKF. With an acceleration rate of 8, the resulting T2

maps (top) had negligible artifacts. Zoomed-in images (middle row) showed that the UKF
methods maintained the fine structures better than the compressed sensing method. The
absolute error maps (bottom row) show that the UKF methods had lower estimation error.
Maps are shown in ms.
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Figure 2.5: Quantification of estimated T2 map error in the simulation. With acceleration
rates of 2, 4, 6 and 8, single UKF estimation results in lowest NRMSE (left), highest similarity
index (middle) and highest local SNR (right). Even without prior knowledge of proton density,
the two-parameter UKF method still improves accuracy compared to the compressed sensing
method.

method yielded lower absolute error than the compressed sensing reconstruction.

The T2 maps from undersampled data set were quantified by comparing to the fully sam-

pled data, as shown in Fig. 2.7. The proposed method yielded more accurate T2 maps, with

less estimation error and higher structural similarity index. This result held for undersam-

pling factors of 2, 4, 6 and 8.

Volunteer results with retrospective undersampling are shown in 2.8. As in the simulation

results, the two-parameter UKF estimated the T2 map accurately, based on comparison with

fully sampled data. At this high acceleration factor of 8, T2 maps from both methods

revealed lower SNR and more error at the interfaces between cerebrospinal fluid and gray

matter. The compressed sensing method (NRMSE = 0.0744) began to show undersampling

artifacts, as shown in the zoomed-in images along the the middle row, but the two-parameter

UKF method maintained negligible artifacts and reduced the estimation error by a factor of

1.6 (NRMSE = 0.0452).

Quantifications of the above results are shown in Fig. 2.9. As the acceleration rate in-
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Figure 2.6: T2 maps from the compressed sensing and UKF methods with an ex-vivo brain
phantom. Fully sampled k-space data were retrospectively undersampled by factors of 2, 4, 6
and 8. Both compressed sensing and the two-parameter UKF methods resulted in T2 maps with-
out notable undersampling artifacts. As shown in the absolute error maps, the two-parameter
UKF resulted in lower error than the compressed sensing method, as compared with the fully
sampled data set. Maps are shown in ms.
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Figure 2.7: Quantification of the T2 maps from compressed sensing method and the two-
parameter UKF method. Undersampled by factors of 2, 4, 6 and 8, the two-parameter UKF
method resulted in more accurate T2 estimation with less RMSE and higher SSIM than the
compressed sensing method.

creased, estimation errors increased and structure similarity reduced. The two-parameter

UKF method resulted in lower NRMSE and higher SSIM for each retrospectively undersam-

pled case.

Fig. 2.10 shows the T2 map from accelerated acquisitions with the undersampled sequence.

The two-parameter UKF method recovered T2 maps with undersampling rates of 4 (Fig. 2.10,

middle) and 8 (Fig. 2.10, right). Compared to the T2 map from fully sampled k-p space

(Fig. 2.10, left), the proposed method has lower SNR as expected, but few aliasing artifacts

and negligible difference overall.

2.5 Discussion

In this chapter, we have developed an unscented Kalman filter model, which provided a

novel diagram describing parameter mapping as a state tracking problem in k-p-space. The

proposed method uses MR parameters as the fundamental state space and the MR signal

model as the dynamic system model. By monitoring the propagation of this dynamic system,
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Figure 2.8: T2 maps from the compressed sensing method and the two-parameter UKF
method from a volunteer scan. With a retrospective undersampling factor of 8, the compressed
sensing method showed some undersampling artifacts (middle row). By comparison, the two-
parameter UKF method maintained the fine structures and only resulted in lower SNR, as
expected. Absolute error maps were calculated by comparison with fully sampled data (bottom
row). Maps are shown in ms.
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Figure 2.9: Estimation errors on retrospectively undersampled volunteer data. The two-
parameter UKF method resulted in more accurate estimation with less NRMSE (left) and
higher SSIM (right).

Figure 2.10: The performance of two-parameter UKF method with accelerated acquisition.
Compared with the T2 map from fully sampled k-space data (left), the two-parameter UKF
method provided T2 maps with negligible differences at acceleration rate 4 (middle) and accel-
eration rate 8 (right). Maps are shown in ms.
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it provides quantitative parameter maps directly without image reconstruction.

This method was specialized to the problem of T2 mapping from highly undersampled

k-space data. This method combines image reconstruction and parameter estimation into

a UKF measurement model. It achieves high accuracy in parameter estimation with under

sampling factors of 2, 4, 6 and 8, which is comparable to compressed sensing methods.

The proposed method was derived for T2 estimation, but the unscented Kalman filter

method can be easily adapted into other parameter measurements, such as T1 mapping

with a Look-Locker pulse sequence. Since the Fourier transform operator is linear, the non-

linearity of the signal model limits the performance of the UKF estimator. The proposed

method can be used to estimate multiple parameters by adopting a new signal model in

Eq. 2.4. However, a complex model could reduce the accuracy of estimation and require

more measurements.

The proposed method was tested for T2 mapping, focusing on grey matter and white

matter on 3T, so we limited the T2 values in simulation from 50 to 250 ms and the initial

T2 was set around 80 ms for gray matter. A wider T2 range could be included to include

cerebrospinal fluid and other long T2 species, which would mean that the proposed method

would be used to track a wider parameter range. The performance of the method under

these conditions would need to be evaluated.

The accuracy of parameter estimation is limited by the number of measured states in

p-space. The Kalman filter achieves maximum likelihood estimation, which approaches

the minimum variance estimator when number of encoding states is large enough. More

measurements along p-space increase the estimation accuracy. However, the length of the

echo train in a multiple contrast spin echo sequence is also limited by the readout bandwidth
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and SNR. The measurements with long TE have low SNR and yield limited improvement

to the estimate. The number of measurements in p-space is also limited by the specific

application. In T2 mapping, it costs little time to measure more states in the same echo

train, but this method can cost extra time in some applications (e.g., conventional diffusion-

weighted imaging).

An alternative way to improve the estimation accuracy is to improve the convergence of

the UKF estimator. The first few iterations of a Kalman filter can been seen as the training

the covariance P . A small initial P0 can stabilize the propagation of the covariance matrix P

and also constrains the range of estimated values to be near the initial value. More accurate

initialization of T2 and proton density maps could help with convergence, but this will slow

down the training of covariance matrix.

The direct estimation of the T2 map contains only a real value, which is different from

complex image estimation. Here, we simply assume the phase of image comes from coil

sensitivity. In a single coil measurement, the proposed method performs better with a

sensitivity map, which provides the phase information for data fidelity. When using multiple

channel data, the UKF method adopts the features of parallel imaging reconstruction, which

helps to improve the estimation parameter map quality. The SENSE scheme is a theoretical

extension of UKF methods. But the accuracy of sensitivity maps will directly affect the

estimation of T2 map. It should be possible to add sensitivity estimation to the UKF model,

which would enable simultaneous estimation of a sensitivity map and a T2 map. However,

this would also significantly increase the estimation complexity.

The accuracy of the estimated T2 map also depends on pulse sequence design. The

multiple contrast spin echo sequence is time efficient compared to a conventional spin echo
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sequence, but the signal is not accurately modeled by a mono-exponential T2 decay model.

It includes multiple signal pathways, is limited by the accuracy of the refocusing RF pulses,

and contains diffusion attenuation from crusher gradients. Additionally, in fully sampled k-

p-space, the same phase encoding lines are acquired in one excitation, but in undersampled

k-p-space some of the phase encoding lines are acquired in different echo trains. The order of

phase encoding lines could introduce more variation in the quantification of the T2 map. In

this work, our main focus was on the design of the parameter tracking algorithm; additional

improvements are possible with better sequence design.

The 1D simplification achieved by performing a 1D Fourier transform along the read-

out direction before the UKF reduces the error covariance matrix P size and makes the

calculation memory efficient. However, it also reduces the correlation information between

different phase encoding lines, and thus does not capitalize on some potential improvements

in estimation accuracy.

The proposed method computes T2 maps directly, without reconstructing T2-weighted

images. For applications that require T2-weighted images, a T2-weighted image can be gen-

erated based on the resulting T2 and proton density maps.

The performance of compressed sensing highly depends on the undersampling scheme,

and this is also true for UKF methods. We used simple undersampling patterns in this work.

As shown in Fig. 2.2(c) and (d), the incoherent pattern in compressed sensing reconstruction

is distributed polynomially along the phase encoding direction and distributed uniformly in

p-space. The UKF undersampling scheme covers k-space at each measured state equally

to simplify pulse sequence implementation. Optimal pattern design [72] could improve the

performance of both compressed sensing and UKF methods, but it is beyond the scope of
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this chapter.

One possible reason for the better performance of the UKF method is that it exploits

the signal model more efficiently. Compressed sensing methods assume the image can be

represented by a few atoms in a dictionary, including a spatial dictionary (e.g. wavelet

transform bases) and a model based dictionary (e.g. K-SVD and PCA). But the signal

decay model can be fully described by two parameters. By comparison, the two-parameter

UKF method estimates the two parameters in T2 model directly. This feature could more

efficiently exploit the redundant information of the parameter encoding states, can represent

the measured signal better and help recover each TE image from undersampled k-space data.

2.6 Conclusion

In this work, we developed a new paradigm of parameter mapping based on the unscented

Kalman filter. This method estimates the parameter map of interest directly from k-p-space

data and provides accurate estimation of the parameter at high acceleration rates.



Chapter 3
Robust ASL with a Single PLD

ASL has low SNR and is sensitive to motion. Therefore, preserving perfusion contrast and

suppressing artifacts are necessary for accurate CBF estimation. In this chapter, we will

develop a robust ASL pulse sequence and image reconstruction methods to improve image

quality. This chapter has three sections. The first section describes an efficient ASL pulse

sequence. The ASL signal is generated by pCASL tagging pulses and acquired by using a 3D

spin echo train with a stack-of-spirals k-space trajectory for high SNR. The second section

describes methods to improve motion robustness. Parallel image reconstruction is used to

suppress motion artifacts by efficiently exploiting coil redundancy. Single-shot imaging with

a dual-density spiral trajectory is also developed to accelerate ASL imaging. The third

section describes techniques for noise suppression. Spatial sparsity constraints are used to

improve conventional ASL images. Numerical phantoms and normal volunteers were used

for assessing these new methods.

This chapter is focused on static ASL imaging with single post label delay, but it lays

the groundwork for the dynamic ASL methods described in Ch. 4 and Ch. 5.

47
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3.1 Introduction

ASL has good repeatability in brain [73] and kidney [74, 75] imaging. ASL has been compared

to PET [76] and DSC [7] to confirm that it provides reliable information about pathology.

However, the signal from labeled blood produces low signal-noise-ratio ASL images, which

typically contain only 1% of the signal of conventional MR images. Therefore, ASL image

quality is a key to accurate ASL quantification.

The quality of ASL images can be improved with respect to three components: contrast

generation, signal acquisition and image reconstruction. Recently, researchers have made

substantial progress in these areas. As a blood tagging method, pseudo continuous ASL

(pCASL) has higher SNR than pulsed ASL, because of its high labeling efficiency and long

labeled blood bolus. As a signal acquisition method, turbo spin echo with 3D stack-of-

spirals [1] can give images comparable to a Cartesian trajectory with a shorter scan time.

This method also maintains the motion insensitivity of spiral readouts, which is important

for motion-sensitive ASL imaging. A dual density spiral trajectory fully-samples the center

of k-space and under-samples the outer region k-space, so that it is possible to achieve single-

shot imaging with parallel reconstruction. As an image reconstruction and recovery method,

compressed sensing [77] has been successful in accelerating MR imaging and improving image

quality. For accurate parameter estimation, we will focus on these three components to

improve ASL image quality in this chapter: (a) development of an SNR and time efficient

pCASL sequence by using 3D stack of spirals; (b) motion robustness by parallel imaging

and spiral trajectory design; and (c) noise suppression by compressed sensing with spatial

sparsity.
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3.2 Sequence Design

3.2.1 3D Acquisition

Whole-brain coverage can be achieved using multi-slice 2D imaging with echo-planar or spiral

readouts. However, 3D echo-train techniques yield higher SNR and sample the perfusion

bolus at the same time throughout the brain [78]. Conventional TSE is typically not fast

enough, but researchers have successfully used 3D GRASE and 3D TSE with stack-of-spirals

for 3D ASL [39].

Spiral trajectories cover k-space rapidly and are robust to motion artifacts [79, 80]. Our

lab has developed a 3D spiral TSE pulse sequence [1, 81], where a 3D stack-of-spirals tra-

jectory is traversed by inserting spiral readouts into the refocusing intervals of a TSE pulse

sequence. Symmetric phase encoding along the slice direction provides a true 3D image.

Each echo train repetitively samples a particular spiral interleaf. Slab excitation and chop-

ping are performed by alternating the phase of the refocusing pulses during signal averaging.

Crusher gradients along all three axes are used to eliminate banding artifacts.

This sequence is capable of using various spiral trajectory designs. Flexible on-line spiral

gradient design can be used for constant-density or variable-density spiral scanning. Gridding

image reconstruction is performed on-line.

An image acquired using the 3D TSE stack-of-spirals pulse sequence is shown in Fig. 3.1.

The image shows a resolution phantom scanned in a Siemens 3T Trio scanner. A constant

density spiral with 16 interleaves achieved in-plane resolution of 1.5 mm by 1.5 mm. Slab

selective RF excited a region of 28 slices with slice thickness 3.5 mm. The result demonstrates
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a b c

Figure 3.1: Image acquired using a 3D TSE stack-of-spiral acquisition. (a) Coronal view of
a phantom. (b) Sagittal view. (c) Transverse view.

good in-plane image quality and a good through-plane slice profile.

3.2.2 Tagging Pulse

Pseudo continuous arterial spin labeling (pCASL) [39] was used to generate the blood bolus.

This technique approaches the flow-driven-inversion condition by breaking each long duration

RF pulse into a series of small duration RF pulses with a short inter-pulse interval, which is

feasible on most commercial scanners. The RF pulse train was built by repeating Hanning

pulses of 500 us duration with a 500 us gap before the next pulse. The mean B1 amplitude

was 1.63 µT and the mean gradient was 0.2 mT/m, corresponding to ηb = 7% [40]. Control

and label scans were switched by controlling the phase of RF pulses. The tagging plane was

placed 80 mm below the anterior commissure (AC) - posterior commissure (PC) line.

The proposed pulse sequence that combines pCASL tagging with 3D TSE stack of spirals

is shown in Fig. 3.2. A 3D ASL image of a normal volunteer acquired with this pulse sequence

is shown in Fig. 3.3.
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Figure 3.2: The schematic of pCASL with 3D TSE stack of spirals. ASL tagging is achieved
by a large number of small flip angle and short (500 us) Hanning RF pulses with the same
phase in label images and alternating phase in control images. Vessel blood signal is eliminated
by a BIR4 RF pulse module with flow-spoiling gradients. Signal is excited by a slab selective
pulse and chopping is performed by alternating the phase of the refocusing pulses during
signal averaging. k-space is sampled using a 3D turbo spin echo with spiral readouts and phase
encoding along the z direction. Each echo train repetitively samples a particular spiral interleaf
as the z phase encoding symmetrically samples kz. Crushers before and after inversion pulses
are used to eliminate banding artifacts.
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Figure 3.3: 3D pCASL images with TSE spiral sequence. 12 slices with slice thickness 5 mm.
Constant density spiral trajectory with 6-ms readouts and three interleaves. Eight averages
were used to improve SNR.
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3.3 Motion Robustness

3.3.1 Constant-density and Parallel Imaging

A 3D spiral TSE pulse sequence is a rapid and SNR-efficient pulse sequence that can be used

for ASL without using accelerated image reconstruction techniques. One option is to cover

all of k-space in a single shot and then perform signal averaging to gain SNR and motion

robustness. However, the conventional spiral trajectory design yields modest (about 5 mm

in-plane) spatial resolution and its long readout becomes sensitive to susceptibility artifacts.

An interleaved spiral acquisition yields improved resolution, but is more sensitive to patient

and physiological motion (e.g., flow in large vessels).

Single-shot spiral ASL with conventional image reconstruction method yields robustness

to motion, but at the cost of low spatial resolution and susceptibility to artifacts. Multi-shot

spiral scanning yields better resolution, but more sensitivity to motion artifacts.

One example of spiral ASL motion artifacts are ring artifacts centered on blood vessels.

We simulated these artifacts by varying the intensity of the point spread function for each

interleaf measurement. The simulation is shown in Fig. 3.4. From this simulation, we can

see that data inconsistency across multiple spiral measurements results in a ring-like artifact.

Compare this artifact with Fig. 3.5, which shows a ring-like artifact centered on the sagittal

sinus, which pulsates with the cardiac cycle. When each interleaf of spiral is acquired at

different phase of cardiac cycle, the inconsistency will result in a ring-like artifact.

This artifact can be reduced by signal averaging, which also improves SNR. When a long

scan time is feasible, more averaging is always preferable in ASL. The artifact can also be



CHAPTER 3. ROBUST ASL WITH A SINGLE PLD 54

Figure 3.4: Simulation of a spiral point spread function with pulsatile motion. The intensity
of large vessels varies according to the cardiac cycle, which introduces data inconsistency in
multiple-shot measurements. The target signal is changing (middle) at the sampling time for
each interleaf (top). When combining the data from 3 interleaves, the reconstruction results in
a ring artifact. The line plot (bottom) shows the aliasing artifact.

reduced by background suppression with additional RF preparation pulses, which is known

to suppress motion artifacts and stabilize the resulting ASL subtraction images, although at

the cost of a reduction in SNR.

Here, we exploit the redundant information in a multi-coil scan and use the SPIRiT par-

allel reconstruction method [77] to enforce the consistency of measurements so as to reduce

the ring artifact in multi-shot spiral ASL. SPIRiT is a GRAPPA-like parallel imaging recon-

struction, which can be adapted to an arbitrary trajectory. This method can be described
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Figure 3.5: Single-shot spiral scanning results in a stable ASL image (a), but relatively low
resolution and more susceptibility artifacts in the T1 weighted images (c). The green arrows
highlight the susceptibility artifacts. The multiple-shot spiral scan has better resolution and
fewer susceptibility artifacts (b), but it is more sensitive to motion artifacts (d). As the red
arrows highlight, the pulsatile motion results in ring-like artifacts.



CHAPTER 3. ROBUST ASL WITH A SINGLE PLD 56

using the following cost function:

min : ‖Fx− y‖2 + λ ‖(G− I)x‖2 (3.1)

where x is the target image and y is the acquired data. F is Fourier transform operator, which

can be Cartesian or non-Cartesian, and usually includes undersampling. G is a calibration

kernel, which is trained by the fully-sampled k-space center and describes the relationship

between the acquired and missing data.

Here, SPIRiT reconstruction was performed on each interleaf of the component image

separately and then the complex images from each interleaf were added together to form

the final component image. The component images were subtracted using either complex

or magnitude subtraction to form the perfusion image. For comparison, images were also

reconstructed by gridding the data from the interleaves together.

As shown in the Fig. 3.6, gridding yields component images with no visible motion

artifacts from either bulk or venous motion. However, the subtraction images show the

pulsatile motion artifact, which manifests as a ring artifact in a multi-shot spiral scan. The

artifact is significant when using complex subtraction (c), because of phase inconsistency.

The artifact is reduced when using magnitude subtraction (d), where negative values are

ignored, but some artifact remains (red arrow). The subtraction images are significantly

improved by using SPIRiT to reconstruct each interleaf separately. The artifact is largely

eliminated when using both complex (e) and magnitude (f) subtraction.

This method was tested on data from four extra volunteers, as shown as Fig. 3.7. The

pulsatile motion in the vein resulted in ring-like artifacts with conventional gridding recon-
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Figure 3.6: SPIRiT correction for ring artifacts. Gridding reconstruction: control image (a),
label image (b), complex subtraction (c) and magnitude subtraction (d). SPIRiT reconstruc-
tion: complex subtraction (e) and magnitude subtraction (f).
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Figure 3.7: Four more volunteer images with pulsatile motion correction. The top row is
conventional gridding image reconstruction with complex subtraction. The bottom row shows
the corresponding parallel image reconstruction for each subject. The pulsatile motion artifacts
is eliminated with parallel image reconstruction.

struction and complex subtraction (top). Using the proposed parallel reconstruction with

SPIRiT, the artifact was eliminated.

3.3.2 Single-shot Spiral and Parallel Imaging

Using a parallel image reconstruction permits single-shot scanning at higher spatial reso-

lution. Using the SPIRiT non-Cartesian parallel image reconstruction method [82] and a

dual-density spiral acquisition, we demonstrated that parallel spiral acquisition allows single-

shot acquisition with improved spatial resolution and good motion robustness.

ASL imaging provides perfusion contrast by subtracting a labeled image group from

a control image group. In addition to the low SNR, this subtraction makes ASL more

vulnerable to motion artifacts, which includes the rigid bulk motion and the pulsatile motion

in large vessels corresponding to cardiac cycle. Motion artifacts can occur with motion
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Figure 3.8: Constant-density and dual-density spiral. Left: Constant-density spiral trajectory
with three interleaves. Middle: Dual density spiral trajectory with a single interleaf. Right:
Sampling density along radial direction of k-space.

between the acquisition of different spiral interleaves, between multiple repetitions, and

between the control and label images. Constant density spiral trajectories can cover the

k-space with long readouts, but will introduce susceptibility artifacts and T2/T2∗ shadowing.

To cover the k-space fast and efficiently, we use a dual density spiral trajectory. Spiral

trajectories are always oversampled in the angular direction. The trajectory is constant

density when the sampling density in radial direction follows the Nyquist rule. Dual density

spiral scans fully sample the center of k-space, but rapidly reduces to an undersampled

density (e.g. 1/3 Nyquist ratio) in the outer k-space, as shown in Fig. 3.8. Here, we control

the slope of the transition in density by a Fermi function.

Fig. 3.9 shows an image from a single-shot dual density spiral. This scan was carried out

on a healthy volunteer with resolution 4 mm by 4 mm by 4 mm. Measurements were repeated

8 times to improve the SNR. k-space was covered by three dual density spiral trajectories

with different initial angles. In the reconstruction, data were processed by a conventional

gridding method on each spiral readout separately. The images show good contrast between

white and grey matter, and little signal in the CSF region, which does not contain perfusion
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Figure 3.9: ASL images acquired with a 3D single-shot dual-density spiral scan.

signal. Better results can be achieved by parallel reconstruction. In particular, the image

can be reconstructed by SPIRiT as mentioned above, but we used the gridding method here

to compare the performance of the trajectory only.

With a constant-density spiral trajectory, it is difficult to correct for motion between mul-

tiple interleaves. Using single-shot dual-density trajectory and parallel image reconstruction,

we can freeze the motion and use conventional registration methods to correct for it. To

verify the method, we designed a dual-density spiral with three interleaves. Each interleaf

can be reconstructed by the parallel method and three interleaves can be averaged in image

domain, which is equivalent to repeating the measurement to improve the SNR. These three

interleaves can also be combined to fill an over-sampled k-space, which can be reconstructed
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a b c
Figure 3.10: Dual density spiral trajectory freezes motion. (a) Conventional gridding re-
construction. (b) Parallel and compressed sensing reconstruction; (c) Compressed sensing
reconstruction with image registration.

by a conventional gridding method, as with a constant-density trajectory. Using this design,

we can determine the motion artifacts with the same data set. As shown in Fig. 3.10, the

motion artifact is apparent as a bright edge in the ASL images (a) when the gridding recon-

struction was used. The artifact is not reduced with a parallel and compressed sensing image

reconstruction (b). When each interleaf was reconstructed separately and was registered to

the image from the first measurement, the motion artifact was reduced significantly.

3.4 Noise Suppression by Spatial Sparsity

Spiral parallel imaging is a very rapid imaging method, but there is an SNR penalty at

high acceleration rates. Compressed sensing (CS) is another option for accelerated image

reconstruction. It is based on exploiting sparsity of the data in some domain, and grew out of

earlier research in nonlinear denoising methods. CS can simultaneously accelerate acquisition

and provide denoising, and thus is an intriguing option for ASL image reconstruction. It can

be combined with parallel imaging for highly accelerated image acquisition with excellent

SNR. Compressed sensing methods based on spatial sparsity have been actively studied in
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the past decade and used to reduce MR scan time and improve SNR. Different sparsity

transforms were tested on high-resolution pCASL fully sampled data to improve the image

quality.

Compressed sensing is a one example of constrained image reconstruction, which can

exploit prior knowledge to improve image quality. For example, total variation is based the

assumption that medical images are piece-wise smooth. By enforcing this constraint, called

a sparse representation in compressed sensing, it is possible to suppress noise like artifacts

and recover the image. Compressed sensing can be expressed as follows:

min : |φx|p

s.t. ‖Fx− y‖2

(3.2)

where x is the target image and y is the acquired data. F is a Fourier transform operator,

which can be Cartesian or non-Cartesian, and usually includes undersampling. φ is a sparse

transform operator on the image and p is the norm of this sparse representation.

The above optimization is solved by a Lagrange multiplier λ:

min : ‖Fx− y‖2 + λ|φx|p (3.3)

It can also be combined with SPIRiT parallel reconstruction as described above:

min : ‖Fx− y‖2 + λ|φx|p + ‖(G− I)x‖2 (3.4)

A numerical phantom [70] was used to test the performance of spatial sparsity. A control
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Figure 3.11: Noise suppression by enforcing spatial sparsity on a simulated phantom. Noise
in the initial image was largely suppressed when spatial wavelet and TV sparsity were enforced.
The compressed sensing method recovered the ASL image and approximated the noiseless image
well.

image was generated without perfusion contrast, which corresponds to a proton density image

with a long TR and short TE sequence. Therefore, the component images before subtraction

will not provide information about structures and contrast for the ASL image. The label

image and control image contained about 1% difference for perfusion contrast. Gaussian

noise was added with SNR 10 for the ASL images. Control and label images were sampled

to Cartesian k-space and separately reconstructed by the compressed sensing method.

Fig. 3.11 shows compressed sensing results enforcing different types of spatial sparsity.

The initial noise image (RMSE = 11.3e-4) was recovered using a wavelet constraint (RMSE

= 7.4e-4) and a total variation (RV) constraint (RMSE = 5.9e-4). Fig. 3.12 shows the

structural similarity index map, where 1 stands for the same structure and 0 stands for

not similar. The compressed sensing method improved the similarity in the low SNR white

matter region.

One ASL experiment was performed on a 3 Tesla Siemens Trio scanner with a 12-channel

receiver coil. There were 7 interleaves covering one slice; each interleaf had 3600 samples

and a 7.2-ms readout, resulting in-plane normalized resolution of 2.0 mm × 2.0 mm. The



CHAPTER 3. ROBUST ASL WITH A SINGLE PLD 64

Figure 3.12: Enforcing spatial sparsity improves the structural similarity in a numerical
phantom. Wavelet and TV sparsities improve the similarity to a noiseless ASL image. There
is no perfusion signal in the CSF region, so the similarity shows limited improvement in this
pure noise region.

same interleaf from difference slices were collected as one echo train with symmetric encoding

in the z direction. 24 slices with thickness 4 mm were collected to cover the whole brain.

Slab excitation and chopping were done by alternating the phase of refocusing RF pulses

corresponding to odd and even average number. Crushers in z axis are used to eliminate

the banding artifacts. Six averages and 3.5s TR resulted in a total scan time of about 5

min. Slice position was corrected first and a 1D FFT was performed along slice direction,

and then the data from 13 slices were reconstructed. This ASL image has higher spatial

resolution than common ASL images (e.g. 4.0 mm × 4.0 mm), so it has lower SNR. The

compressed sensing reconstruction was performed with total variation and wavelet transform

constraints.

The result is shown in Fig. 3.13. SPIRiT reconstruction revealed more fine structures in

image, but it also amplified the noise. With the sparsity constraints, the noise in image was

suppressed. This is consistent with the simulation results.

To evaluate the methods, pCASL images were acquired as part of dynamic ASL experi-

ments (Chapter: 4). Three interleave dual-density spiral scans were collected. The labeling
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Figure 3.13: The performance of spatial sparsity on a high resolution ASL image. The initial
image is noisy with conventional gridding reconstruction. The SPIRiT method revealed more
detailed structures, but is also noisy. The compressed sensing method recovered an ASL image
by enforcing spatial sparsity constraints. Both spatial sparsity constraints reduced the noise in
the image.

duration was 2 s, post label delay was 1100 ms and resolution was 4.0 mm × 4.0 mm. Four

averages and three interleaves were acquired. TR was 5 seconds and total scan time was

about 2 minutes.

First, these three interleaves oversampled the center of k-space and fully sampled the rest

of k-space, and thus they can be reconstructed by the gridding method, as in other published

multiple-shot ASL spiral imaging scans. Second, each interleave can be reconstructed as a

individual image by constrained reconstruction with spatial sparsity and multi-coil redun-

dancy. Motion compensation (MC) was performed on the constrained reconstruction results

before averaging and subtraction.

A neuroradiologist graded the images in a random order. A Likert scale was used with

criteria of good quality of clinical diagnosis. 1 stands for strongly disagree; 2 stands for

disagree; 3 stands for neither agree nor disagree; 4 stands for agree and 5 stands for strongly

agree.

The scores in Table 3.1 show that motion compensation preserves or improves image

quality in every volunteer but one (Volunteer 4).
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Table 3.1: Neuroradiologist grading results with gridding, CS and CS-MC reconstruction

Gridding CS-MC
Volunteer 1 4 4
Volunteer 2 2 3
Volunteer 3 5 5
Volunteer 4 5 4
Volunteer 5 4 5
Volunteer 6 3 3
Volunteer 7 3 4

mean 3.7 4

3.5 Conclusion

In this chapter, we developed a robust ASL sequence with a single-shot 3D stack-of-spirals

readout. The ASL image quality can be further improved by motion correction and com-

pressed sensing image reconstruction. This protocol could provide more stable ASL imaging

in the brain and provided a foundation for our study of dynamic ASL imaging.



Chapter 4
Dynamic ASL

Dynamic ASL measures the perfusion bolus at multiple observation times and yields accurate

estimates of CBF in the presence of variations in arterial transit time (ATT). ASL has

intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive

signal averaging is typically required, leading to long scan times for dynamic ASL. The goal

of this chapter was to develop an accelerated dynamic ASL method with improved SNR and

robustness to motion using a model-based image reconstruction that exploits the inherent

sparsity of dynamic ASL data. Both a sparse signal model and spatial sparsity were enforced

in a compressed sensing and parallel image reconstruction of pseudo continuous arterial spin

labeling (pCASL) k-space data acquired at nine observation times. Performance of the

technique was verified using a numerical phantom. The technique was tested using data

acquired from normal volunteers using a single-shot 3D turbo spin echo pulse sequence with

a stack-of-spirals readout on a 3-Tesla scanner. The proposed method was compared to

gridding and parallel image reconstruction.

67



CHAPTER 4. DYNAMIC ASL 68

4.1 Introduction

Since the blood magnetization is “labeled” upstream of the volume of interest, a portion of

the ASL signal decays before arterial blood flows into the imaging slab, and the acquired

signal thus depends on the tagged blood arrival time, called the arterial transit time (ATT),

which in turn depends on both the blood flow velocity and the delay between labeling and

image-data acquisition. Nevertheless, most ASL studies follow the single post label delay

(PLD) protocol, which cannot provide a subject-dependent ATT map and may result in

errors in CBF quantification [20, 83]. A PLD longer than the ATT can ensure the blood

bolus has flowed into surrounding tissue and reduces estimation error [19], but this method

may miss the peak ASL signal and requires prior knowledge of the ATT.

A multiple-PLD protocol can fully characterize the ASL dynamic model, improve CBF

accuracy and provide rich hemodynamic information, but it is time-consuming. Therefore,

researchers have focused on methods for accelerating dynamic ASL. However, accelerating

each ASL measurement individually can reduce image quality. Background suppression has

been applied to reduce background artifacts and stabilize images [46, 47, 84], but it also

attenuates the ASL signal [48].

In this chapter, we propose to accelerate dynamic ASL image acquisition through a com-

bination of three methods. First, we use a rapid and efficient data acquisition method: 3D

turbo spin echo (TSE) imaging with a spiral k-space trajectory. (Other readouts can be

used, such as 3D GRASE.) Next, we incorporate parallel imaging. Spiral TSE parallel imag-

ing is a very rapid imaging method, enabling single-shot 3D scanning. However, there is an

SNR penalty at high acceleration rates. So, we also incorporate compressed sensing [77],
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which is based on exploiting sparsity of the data in some domain and grew out of earlier

research in nonlinear denoising methods. Compressed sensing can simultaneously accelerate

acquisition and provide denoising, and thus is an intriguing option for ASL image recon-

struction. Here we combine compressed sensing with parallel imaging for highly accelerated

image acquisition with excellent SNR.

The first step in applying compressed sensing to ASL image reconstruction is to apply

a spatial sparsity transform; the denoising properties of this approach enable single-shot

imaging with improved SNR. This is a promising technique in its own right, but the dynamic

ASL problem is even richer with opportunities for compressed sensing. For this problem, we

certainly need high acceleration. We also need high SNR, not only for the perfusion images,

but also for the resulting parameter maps. The key hypothesis of this chapter is that for

dynamic ASL perfusion imaging, the similar spatial structure of images at different delay

times and prior information about their temporal evolution can be exploited to improve

image quality and perfusion parameter estimation. By using the sparsity of dynamic ASL

perfusion images in the domain of a perfusion model, we can efficiently use the relationship

between different time frames and not just reconstruct each frame separately. The resulting

image reconstruction suppresses both random noise and motion artifacts, because they do

not conform to the underlying perfusion model. The proposed method results in rapid and

robust dynamic ASL imaging, as demonstrated below.
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4.2 Algorithms

In dynamic ASL, perfusion images with the same CBF information are measured at multiple

observation times (OTs). These measurements are usually reconstructed separately. But

they can be reconstructed more efficiently by combining all dynamic frames with an ASL

dynamic model.

4.2.1 Dictionary Representation

Compressed sensing recovers images from noise or noise-like artifacts using a sparsity-promoting

image reconstruction. This constrained optimization problem is usually solved by introduc-

ing Lagrange multipliers:

x̂ = arg min
x
‖Fx− y‖2 + λ‖R(x)‖p (4.1)

where, x is the target image. y is the acquired data. F is a Fourier transform operator

that includes the k-space sampling trajectory and under-sampling pattern. R(x) is the

representation of x in the sparse transform domain, constrained in the minimization with

norm p. λ is a regularization parameter.

Suppose the signal x can be represented by a linear combination of a few elements in the

dictionary D, which contains n prototypes, D = d1, d2, · · · , dn.

x =
∑
i=1

sidi + ε (4.2)

where, ε is the tolerant error, which limits the sparsity of the representation. si is the
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coefficient on prototype di and is an element of a sparse coefficient vector S = s1, s2 · · · , sn,

where most elements are zeros. Compressed sensing improves image quality by enforcing the

sparsity of S, while maintaining data fidelity.

x̂ = arg min
x
‖Fx− y‖2 + λ‖S‖p (4.3)

Additional sparsity constraints can be used to improve the image quality. The total

variation (TV) constraint is commonly used for noise suppression and image recovery. Based

on piece-wise smooth assumption, TV suppresses the noise-like variance and maintains the

edge structure. With the additional constraint, the target function becomes:

x̂ = arg min
x
‖Fx− y‖2 + λ1‖x‖p1 + λ2‖TV (x)‖p2 (4.4)

4.2.2 ASL Model and Over-complete Dictionary

K-SVD [85] is an algorithm to generate an over-complete dictionary D, which contains more

prototypes than the dimension of signal x. Compared with an orthogonal dictionary, such

as one obtained by principle component analysis (PCA) [62], the over-complete dictionary

design achieves a sparser representation of the signal and improves compressed sensing per-

formance on a limited dimension signal, such as dynamic ASL, where only a few number of

OT encoding steps are present because of the limited scan time.

The K-SVD algorithm builds up the signal prototype dictionary iteratively from a training

data set. Because each tissue pixel will follow a valid ASL signal evolution pattern Fig. 4.1,

it can be described by prototypes based on the ASL dynamic model. Therefore, we trained
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the K-SVD dictionary with a synthetic dataset generated from an ASL signal model. By

using a large number of signal prototypes representing the realistic range of possible ASL

parameters, we can represent any expected signal. The K-SVD algorithm then distills the

representation down to a smaller dictionary that can still represent any expected signal

accurately as a linear combination of a small number of signal prototypes.

The following single-compartment perfusion model [14, 20] was used to generated the

training data:

∆M = 2M0αfT1 exp

(
− ∆t

T1,b

)
Q(t) (4.5)

Q(n) =


0 if 0 < t < ∆t

1− exp
(
− t−∆t

T1

)
if ∆t ≤ t ≤ ∆t+ τ

exp
(
− t−τ−∆t

T1

)
− exp

(
− t−∆t

T1

)
if ∆t+ τ < t

(4.6)

where, ∆M is the dynamic ASL signal, t is the observation time, ∆t is arterial transit

time and f is CBF, τ is the blood bolus duration, α is the labeling efficiency. T1 and

T1,b are the longitudinal relaxation times of brain tissue and blood. M0 is the equilibrium

magnetization of blood. Training data were comprised of 9600 ASL dynamic signals, with

CBF 1-120 ml/100g/min and ATT 50-4000 ms. Each signal was sampled at 9 observation

times (600, 1100, 1600, 2100, 2600, 3100, 3600, 4100, 4600 ms). The K-SVD algorithm

generated 256 prototypes.
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Figure 4.1: Evolution of dynamic ASL signals in a numerical phantom showing the underlying
assumptions of this work. The signal from an individual pixel is temporally slowly varying. The
dynamic signals in different pixels (blue and red) follow the same nonlinear perfusion model
with different parameter values.

4.2.3 Compressed Sensing Solver

This image reconstruction problem is a nonlinear optimization problem. We apply the

following four steps to solve this problem, as shown in Fig. 4.2:

1, Define x as the ASL perfusion-weighted images. The k-space data is subtracted pair-wise

to get the data y with ASL contrast. x0 is initialized by gridding and zero padding.

2, The multi-OT ASL images are projected onto the pre-trained dictionary D pixel by pixel.

Orthogonal matching pursuit is used to enforce sparsity in the over-complete dictionary.

minimize : ‖S‖0

subjectto : ‖x− SD‖ < ε

(4.7)

Q represents this model based sparsity in the image space.

Q = SD (4.8)
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3, The TV constraint is enforced by a shrinkage with a penalty method [86].

P =
TV (x)∑
‖TV (x)‖2

max

(∑
‖TV (x)‖2 −

λ2

β
, 0

)
(4.9)

4, A least squared function was solved by the conjugate gradient method to maintain the

data fidelity and enforce the constraints of model based sparsity Q and total variation P .

x̂ = arg min
x
‖Fx− y‖2 + λ1‖x−Q‖2 + λ2‖TV (x)− P‖2 (4.10)

If in-plane k-space is undersampled for acceleration, we can recover the image by using

information from multiple channels. SPIRiT [82] is an autocalibrated parallel reconstruction

method that can be used with non-Cartesian trajectories. When using undersampled k-space,

we combine the calibration consistency penalty and data fidelity terms:

x̂ = arg min
x
‖Fx− y‖2 + λ1‖x−Q‖2 + λ2‖TV (x)− P‖2 + λ3‖(G− I)x‖2 (4.11)

Where, G is the SPIRiT calibration kernel.

Step 2-4 are repeated until the stopping criterion (improvement of cost function is less

than 0.01) is satisfied..

4.3 Pulse-sequence Design

4.3.1 Blood Tagging

Pseudo continuous arterial spin labeling (pCASL) [39] was used as described in Ch. 3.
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Figure 4.2: Overview of model-based reconstruction. The acquired data are processed sep-
arately according to the spiral initial angles. We subtract each label image dataset from the
corresponding control image dataset to generate the k-space data with ASL contrast. The ASL
images are recovered in a compressed sensing iterative reconstruction by pursuing model-based
sparsity, spatial sparsity, and data consistency across multiple channel measurements.
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4.3.2 Vessel Suppression

Adiabatic BIR4 preparation pulses were used to suppress the vascular blood signal, because

intravascular signal often manifests as a bright spot in subtracted perfusion images and can

result in over-estimation of CBF. To reduce the RF pulse duration and T2 weighting, a single

lobe crusher was used with gradient amplitude 22 mT/m, duration 5000 µs and rise time

440 µs. For the blood flow with laminar model, maximum vessel velocity is 1.5 cm/s at the

first zero-cross of the attenuated sinc function [87].

4.3.3 Imaging Sequence

k-space data were collected with stack of spirals using a 3D turbo spin echo sequence [1, 81].

In-plane spiral encoding was inserted between hard RF refocusing pulses and phase encoding

along the slice direction was performed centrically (Fig. 4.3a). Each echo in a particular TSE

echo train collected the same spiral interleaf, with different through-plane phase encodings

sampled during the echo train. RF chopping between averages was used to achieve a better

slab selection profile by rotating the phase of refocusing RFs by 180 degrees on even averages

[88]. Two dummy scans were performed before ASL data collection to build up steady state

for the background signal.

4.3.4 Dual Density Spiral

Parallel imaging was used to accelerate ASL in-plane imaging by exploiting redundant in-

formation among multiple receiver channels. A dual-density spiral trajectory was used to

acquire k-space, with 100% of Nyquist sampling during the first 1/4 of the readout and
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Figure 4.3: Dual-density spiral with 3D TSE k-space trajectory. In this TSE sequence,
each echo train samples a particular spiral interleaf while the z direction is encoded centrically
(a). Each dual-density spiral interleaf fully samples the center of k-space (dashed line in c),
providing auto-calibration data for parallel image reconstruction. With different initial spiral
angles (b), multiple interleaves can be combined into an oversampled k-space (solid line in
c) and reconstructed by a simple gridding method for comparison with accelerated image
reconstruction methods.

under-sample at a factor of 3 during the rest of the readout. The dual-density design covers

a larger k-space area than a Nyquist-sampled constant-density spiral with similar readout

length. Therefore, it enables single-shot imaging, reduces the scan time and improves the

motion robustness.

By rotating the spirals, multiple dual-density spirals can be combined to form an over-

sampled k-space (Fig. 4.3b and Fig. 4.3c). This data can be reconstructed by gridding in

k-space, yielding a reference image reconstructed using a standard method. This reference

image can then be compared to images reconstructed using parallel imaging and compressed

sensing methods.
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4.4 Simulation

To demonstrate the performance of compressed sensing with a model-based constraint, a

numerical phantom was used to mimic dynamic ASL imaging and CBF estimation. A

numerical brain phantom [70] was separated into white matter (WM), gray matter (GM)

and high perfusion (HP) ROIs, corresponding to CBF 20, 50, 80 ml/100g/min. The dynamic

perfusion signal of each pixel was generated based on the local CBF value and calculated by

the ASL dynamic model above. Nine perfusion images were simulated at OT = 600, 1100,

1600, 2100, 2600, 3100, 3600, 4100 and 4600 ms. Other parameters were chosen as follows:

normalized equilibrium blood signal M0,blood = 1, tissue blood partition coefficient λ = 0.9,

tissue T1 = 1500 ms, blood T1,blood = 1660 ms, tagged bolus duration τ = 2000 ms.

The noiseless dynamic ASL images were projected onto the trained dictionary, so as

to verify the accuracy and sparsity of the model-based dictionary. For noisy ASL images,

we assumed the signal could be recovered by enforcing its sparsity on the dictionary. This

hypothesis was tested by representing the noisy dynamic ASL images with a few primary

coefficients of the dictionary.

To test the performance of the model-based constraint on motion artifacts, we simulated

random motion by translating the control image at OT 3600 ms, which mimicked rigid

motion between the acquisition of control and label images.

To verify the noise suppression of proposed method, Gaussian noise was added, with σ

= 0.002. The SNR was about 10, according to the highest signal in all perfusion images

and was lower for the early/late OTs and low perfusion regions. These images were sampled

to k-space and reconstructed by compressed sensing method. Spatial sparsity and model-



CHAPTER 4. DYNAMIC ASL 79

based sparsity have separate effects on image quality. To verify additional improvement by

introducing the model-based sparsity, we reconstructed ASL images using spatial sparsity

first and selected the Lagrange multiplier with the best performance. Then, the model-based

constraint was added and evaluated.

In the simulation, because of the prior knowledge of the phantom structure, we can

quantify the SNR more accurately by using the local standard deviation::

SNR =
mean(ROI)

std(ROI)
(4.12)

Image structure and artifacts were also evaluated via the root of mean squared error (RMSE)

and structural similarity index (SSIM) [71], compared to noiseless and motionless images.

4.5 In Vivo Measurements

4.5.1 Dynamic ASL Protocol

Six volunteers were imaged on a 3 Tesla Siemens Trio scanner (Erlangen, Germany) with

a 12-channel head coil receiver array and body coil transmission. The scan followed the

protocol approved by the University of Virginia and written informed consent was obtained

from each subject.

For the multiple-OT ASL measurements, single-shot dual-density spiral scanning was

used with an in-plane acceleration factor of 2. The spiral readout duration was 6 ms and

the FOV was 200 mm, which gave a nominal spatial resolution of 4.5 mm × 4.5 mm. The

whole brain was covered by 24 slices with thickness 4.5 mm. Four pairs of control and label
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images were averaged to improve SNR. Three repetitions of the dual-density spiral were

performed with different initial spiral angles. TR was 5 s and TE was 22 ms. For each OT

measurement, the total scan time was about 2 minutes.

To observe the early perfusion signal of a 2000 ms blood bolus, 9 OTs were designed by

varying pCASL tagging durations and PLDs (Table 4.1). In the case of bolus duration less

than 2000 ms, we assumed the blood bolus to remain in proximal artery by using a PLD

much shorter than the ATT. In this way,, we are able to observe the entire dynamic ASL

signal, even if only a portion of the blood bolus has arrived at the microvasculature at a

given time.

Table 4.1: Observation Time Design (ms)

Design OT 600 1100 1600 2100 2600 3100 3600 4100 4600
Bolus Duration 500 1000 1500 2000 2000 2000 2000 2000 2000
Sequence PLD 100 100 100 100 600 1100 1600 2100 2600

To improve the CBF estimation, a saturation recovery sequence with the same 3D stack-

of-spirals sequence and the same resolution was employed to measure a T1 map. This se-

quence used two averages and was repeated 5 times with different TRs (1s, 2s, 3s, 4s and

5s) to acquire images with different T1 weighting.

4.5.2 ASL Image Analysis

Image reconstruction and data analysis were performed by MATLAB 2012b (The Math-

Works, Inc.) on a 4x GTX 680 Workstation (Amax Information Technologies, Inc.) with 12

CPUs (Intel Xeon E5-2640 2.50GHz Processor LGA2011).

A T1 map was calculated from saturation recovery scans with multiple TRs. The images

from each TR was reconstructed by SPIRiT. The equilibrium magnetization of the brain
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signal M0 and the T1 map was estimated by minimizing the least squared error of the

saturation recovery equation:

Msat = M0

(
1− exp

(
−TR
T1

))
(4.13)

ASL images ∆Mi from multiple observation times OTi were fitted to the dynamic ASL

model with minimization of the least squared error, resulting in model fitting CBF (M-CBF)

and model fitting ATT (M-ATT).

In addition to calculating M-CBF and M-ATT based directly on fitting the images to a

perfusion model, we tested other methods for calculating an ATT map and the associated

CBF map. The PLD weighted delay method [20] is a robust method for calculating ATT.

Because there is a monotonic relationship between ATT and averaged dynamic images with

PLD weighting, we can obtain ATT reliably using a lookup table of weighted delays without

knowledge of CBF. Here we developed a similar generalized weighted delay method based on

our multiple-OT acquisition. The ATT map (W-ATT) is calculated based on the monotonic

relationship between ATT and a weighted average of the images:

WT =

∑9
i=1 OTi ·∆Mi∑9

i=1 ∆Mi

(4.14)

Both methods showed the weighted delay as a monotonical function of ATT and insen-

sitive to different CBFs. In PLD weighted delay method, when the ATT is smaller than the

shortest PLD (0.7 s), the blood bolus has all arrived in brain tissue at imaging time and

changes in ATT only results in ASL signal recovery difference, which is too small to detect,
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Figure 4.4: A general weighted delay in ATT calculation. Weighted by observation time, it
keeps the monotonically increasing function for small ATT. In comparison, the PLD weighted
delay method shows a flat region, which is insensitive to ATT changes. Both methods show
similar robustness to the changes in CBFs.

shown as the flat region in Fig. 4.4. The general weighted delay acquires ASL images before

the blood bolus all arrived and can estimate the small ATT more accurately.

Using the W-ATT, a CBF map was calculated at OTs that contain ASL signal (OT=1600,

2100, 2600, 3100, 3600, 4100 and 4600 ms) and averaged to obtain a weighted CBF (W-CBF).

Arterial cerebral blood volume (aCBV) was calculated by the product of the ATT map

and the CBF map [89]:

aCBV = ATT · CBF (4.15)

This was designated as model-fitting aCBV (M-aCBV) and weighted average aCBV (W-
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aCBV) below.

To compare with the performance of the proposed method, volunteer data were also

reconstructed by a gridding method and a parallel imaging method with SPIRiT reconstruc-

tion. The residual error in M-CBF calculation and the SNR from the highest perfusion signal

measurement were analyzed by the Wilcoxon signed-rank test. Two ROIs were chosen based

on the T1 map: white matter (WM) 10-1300 ms and gray matter (GM) 1300-1900 ms.

To test the improvement in the CBF map by the proposed method, we compared the

different reconstruction methods in a low SNR case. Low SNR images were obtained by using

1/3 of the data. The gridding method, the parallel image reconstruction and the proposed

method were used to reconstruct the ASL images, which provided the low SNR CBF maps.

Because DSC images were not available, we treated the CBF map from all available ASL

data as a high SNR gold standard. By comparing the similarity of CBF maps between

high SNR and low SNR cases, we evaluated the performance of reconstruction methods and

analyzed the results by the Wilcoxon signed-rank test across six volunteers.

In order to independently assess image quality and the resulting parameter maps, a neu-

roradiologist graded the images using a Likert scale (1 for strongly disagree; 2 for disagree; 3

for neither agree nor disagree; 4 for agree and 5 for strongly agree). Seven criteria were eval-

uated: no motion artifact in perfusion images, good dynamic contrast in perfusion images,

good CBF map quality with traditional model fitting, good CBF map quality with weighted

average, good ATT map quality with traditional model fitting, good ATT map quality with

weighted average, good aCBV map quality with traditional model fitting and good aCBV

map quality with weighted average.
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Figure 4.5: The trained dictionary represents the ASL signal. For noiseless data (a), only a
few prototypes are needed to represent the signal with high accuracy. For noisy data (b), image
denoising can be performed by projecting the signal onto a few prototypes. One selected ASL
pixel illustrates that a dictionary representation can approximate the noiseless signal accurately
(c).

4.6 Results

4.6.1 Simulation Results

The simulated multi-OT ASL images were represented by the over-complete dictionary and

the approximation errors are shown in Fig. 4.5. The noiseless ASL signal was accurately

approximated using just a few prototypes in the dictionary (Fig. 4.5a). More prototypes

yielded improved signal approximation but also tend to approximate the noise, because of

the low SNR of the ASL signal (Fig. 4.5b). In Fig. 4.5c, a noisy ASL signal (MSE =

3.39e-6) was projected onto the dictionary, then represented by a few primary prototypes,

which suppresses noise and recovers the signal (MSE = 3.36e-7).

Fig. 4.6 shows that the model-based constraint reduced motion artifacts significantly.

The rigid bulk motion resulted in ring-like artifacts around brain and a bright spot in the

CSF region, as shown in noiseless ASL (a). Because this random motion artifact did not

follow the ASL signal decay model, it was suppressed by the model-based dictionary (b). As
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Figure 4.6: Model-based sparsity reduces motion artifacts in multi-OT ASL images. In the
noiseless case, one of the dynamic ASL images contained motion artifact (a) from subtraction
between control and label images. By projecting the multi-OT signal onto the model-based
dictionary, the motion artifact was eliminated (b), because its dynamic pattern was distinct
from the ASL model. As a reference, the noiseless and artifact-free image is shown in (c).
Similar results were shown with noisy data (d, e).

a reference, the noiseless and motionless image is shown in (c). Similarly, in noisy data (d),

the motion artifact and background noise were suppressed by projecting the dynamic signal

onto the dictionary (e). Some motion artifacts remain near the CSF region in (e), because

some random noise was fitted into the ASL model and represented by the dictionary.

The performance of constrained reconstruction depends on the choice of Lagrange mul-

tiplier. To demonstrate the image quality improvement achieved by enforcing model-based

sparsity, the multipliers were chosen in two steps. First, with a spatial constraint only, we

searched for the best TV weight minimizing RMSE. It was an ”L-curve” as shown in Fig. 4.7

(left) and the minimum RMSE was achieved with the TV weight 0.0027. Then, model-based
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Figure 4.7: Regularization parameter searching in compressed sensing. Left: RMSE changed
with spatial TV weights only. Based on the RMSE, the best TV weight was fixed at 0.0027.
By adding the K-SVD constraint, we can reduce the error further (right)

Figure 4.8: Simulated ASL images reconstructed by compressed sensing. The complex Gaus-
sian noise in initial images (a) was suppressed by the compressed sensing reconstruction with
spatial TV constraint (b) and model-based sparsity (c). By combining spatial and model-
based sparsity, the image quality is improved further (d). The noiseless image (e) is shown as
reference.

sparsity was combined with this ”best” TV. From Fig. 4.7 (right), the RMSE was further

reduced and K-SVD achieved its best performance at weight 1.1.

The above results are more clearly demonstrated in simulated ASL images (Fig. 4.8).

Spatial TV (b) suppressed noise and improved the ASL image SNR. Model-based recon-

struction (c) enforced the signal changes in OT encoding space towards the dynamic model

and suppressed noise along the OT encoding dimension. The combination of the above two

types of sparsity (d) improved the image quality further. Initial noisy images (a) and ideal

images (e) are also shown for reference.

Quantitation of local SNR and estimation error are shown in Table 4.2. For all ROIs, the
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compressed sensing reconstruction increased the SNR and the model-based sparsity improved

it further. Compared with the noiseless ASL signal, compressed sensing with TV and K-

SVD constraints increased the image similarity, reduced the error from background noise by

a factor of 2.7, and reduced the residual in perfusion maps by a factor of 1.8.

Table 4.2: Improvement of ASL images quality and CBF map by compressed sensing.

WM GM HP Image Image CBF CBF
SNR SNR SNR SSI RMSE(e−4) RMSE residue

Initial 2.4 5.8 9.6 0.71 20 9.4 68.0
TV 5.3 7.8 11.3 0.83 7.8 7.1 39.3

Model 2.7 9.4 15.4 0.78 10.0 8.5 43.1
TV+Model 5.3 8.4 12.4 0.87 7.3 6.2 38.1

4.6.2 Experiments Results

Fig. 4.9 shows one slice from a 3D dynamic pCASL image set from a volunteer experiment.

The simple non-Cartesian gridding reconstruction (a) resulted in high background noise and

motion artifacts. Parallel reconstruction with SPIRiT (b) reduced noise and stabilized the

image. As demonstrated by simulation, the compressed sensing reconstruction (c) suppressed

the noise in the background and improved the SNR of volunteers ASL images further.

The proposed method corrected artifacts from motion. As highlight by the arrows in

Fig. 4.9, the brain had rigid bulk motion between control and label measurements, which

resulted in ring-like motion artifacts. Because the motion occurred irregularly, the model-

based constraint eliminated the artifact as it had a poor representation in the model-based

dictionary.

The CBF maps are shown on the right of Fig. 4.9. In the residual maps of CBF fitting,

the proposed method reduced the residual in GM and WM regions, compared with the
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gridding and parallel image reconstructions. It also reduced the error from CSF, which does

not contain perfusion signal, and the edge of brain, which exhibits motion artifacts.

To show the improvement in accuracy of the proposed method, we considered the high

SNR result from all the acquired data to be a gold standard and compared the CBF map

from only one third of acquired data to it, which reduced the total scan time from 18 minutes

to about 6 minutes. The results suffered lower SNR, became unstable and had higher fitting

error with a parallel image reconstruction. Compressed sensing reconstruction (e) reduced

the residual compared to the parallel reconstruction (d). The proposed method results in a

CBF map that provided a better approximation to the high SNR results (a, b, c).

Fig. 4.10 is the statistical analysis of the six volunteers’ images. Fig. 4.10a shows SNR

improvement using the proposed method. In the gray matter region, the compressed sensing

method significantly improved the SNR (P < 0.05) compared with gridding and parallel

image reconstruction. Fig. 4.10b shows the model residual of CBF estimation in volun-

teers. The proposed method resulted in less estimation error versus parallel and gridding

reconstruction in white matter (P < 0.05). Also, significant improvement is achieved in the

grey matter compared with parallel imaging. If we treat the high SNR CBF map from all

available data as a gold standard, the CBF maps from only 1/3 of data were evaluated by

the similarity index, as shown in Fig. 4.10c. The proposed method resulted in significantly

higher similarity to the high SNR results.

Table 4.3 shows the blinded reading scores of six volunteers’ images by the neuroradiol-

ogist. The proposed method and the parallel reconstruction provided better image quality

and parameter maps than the gridding reconstruction. The proposed method showed bet-

ter dynamic contrast. The proposed method improved ATT and aCBV maps calculated
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Figure 4.9: Dynamic pCASL perfusion images from selected OTs (2600, 3100, 3600, 4100
ms) in a normal volunteer. The gridding reconstruction (a) showed high motion artifacts
and background noise. The SPIRiT reconstruction (b) eliminated most of the under-sampling
artifacts of the dual-density spiral acquisition. The model-based reconstruction suppressed
background noise and reduced the estimation error in the CBF (c). As the arrow highlights,
the motion artifacts obtained using the gridding method (a) and SPIRiT reconstruction (b)
were suppressed when the model-based sparsity constraint was used (c). When using only 1/3
of the acquired data and reducing the scan time to 40s at each OT, the SNR of perfusion
images dropped quickly in SPIRiT and more error was shown in CBF calculation (d). Again,
the proposed method improved the images, reduced the fitting error, and provided a similar
CBF map to the high-SNR results (e). Center: Dynamic model fitting residual (a.u.). Right:
CBF map (ml/100g/min).



CHAPTER 4. DYNAMIC ASL 90

Figure 4.10: ASL image SNR and CBF estimation residual in volunteers (N = 6,
mean±standard deviation). ROIs of grey matter (GM) and white matter (WM) were chosen
based on T1 value. Compared with gridding and parallel image reconstruction, the proposed
method improved SNR (a) and reduced estimation residuals (b) significantly. With 1/3 of the
data, the proposed method also provided better structural similarity to the high SNR results
(c). (In the same ROI, * P < 0.05 versus the parallel reconstruction method; $P < 0.05 versus
the gridding method).

using the weighted average method. It also improved CBF and aCBV calculated using the

model fitting method. The CBF, ATT and aCBF maps calculated with the weighted average

method were preferred to the model fitting results.

Table 4.3: Mean rating of images and parameter maps from six volunteers in a blinded
evaluation by a neuroradiologist.

motion dynamic M- W- M- W- M- W-
robust contrast CBF CBF ATT ATT aCBV aCBV

Gridding 3.3± 0.8 3.7± 1.0 3.5± 0.5 4.7± 0.5 3.3± 0.8 3.5± 0.8 2.3± 0.8 3.2± 0.4
Parallel 4.5± 0.8 4.3± 0.8 3.8± 0.4 5.0± 0.0 3.7± 0.5 3.8± 0.8 2.7± 0.8 3.3± 0.5
Model 4.0± 0.6 4.5± 0.8 4.2± 0.8 4.8± 0.4 3.5± 0.8 4.0± 0.6 3.3± 0.5 3.8± 0.4

4.7 Discussion

This work presents a model-based image reconstruction for dynamic ASL perfusion imaging.

The method was combined with single-shot 3D acquisition and parallel imaging, yielding

whole-brain dynamic ASL image acquisition in 40 seconds to 2 minutes per temporal frame.

In this method, prior knowledge of the dynamic ASL signal time course was exploited to
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distinguish the ASL signal from noise and random motion artifacts. This compressed sens-

ing image reconstruction method improved ASL image quality and robustness and yielded

accurate CBF estimates. The results in this chapter were achieved without background sup-

pression or motion compensation, in order to demonstrate the intrinsic robustness of the

method.

As a reconstruction strategy, the proposed method is compatible with most current tech-

niques in dynamic ASL. The proposed method can easily be adapted to use Cartesian read-

outs, such as 2D echo planar imaging or 3D GRASE [89]. While the model-based reconstruc-

tion intrinsically suppresses motion artifacts, motion compensation would further improve

the robustness of the method. Background suppression could be added to further suppress

artifacts. The method could be combined with new RF labeling pulse techniques, such as

Hadamard encoding [52, 53].

Model-based sparsity assumes the signal in each pixel follows a given dynamic ASL model,

with the parameters of the model varying from pixel to pixel. Here, we simply chose the

basic CASL model [14]. An improved model could describe perfusion more accurately, for

example by including the arterial input function (AIF) [23], but a complex ASL dynamic

model could also require more OT measurements to estimate the parameters precisely, thus

increasing imaging time.

The K-SVD method enforces the sparsity of the low-dimensional signal of ASL using an

over-complete dictionary. The training data set included signal prototypes based on all rea-

sonable values of the perfusion parameters (CBF and ATT). More accurate parameter ranges

can be determined based upon a particular application, which will improve the sparsity and

accuracy of representation in the dictionary. More prototypes in the K-SVD dictionary may
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further improve the sparse representation, but would also increase the computational com-

plexity for the orthogonal matching pursuit and prolong reconstruction time. Moreover, in

our work, minor differences were noticed between dictionary sizes ranging from 32 to 512.

In the compressed sensing reconstruction, the model-based sparsity limits the way we

prepare the initial k-space data y. Perfusion contrast in ASL is obtained by subtracting

tagged images from control images. The low SNR in perfusion images makes it difficult to

distinguish signal from noise. Therefore, to maximize the performance of spatial sparsity, one

might propose to apply the compressed sensing reconstruction to control and label images

separately prior to subtraction. However, because the ASL signal is less than 1% of normal

MRI images, the dynamic evolution of ASL is too small to extract from the background

signal before subtraction, so it would be difficult to exploit model-based sparsity based on

component images. Therefore, in this work, we subtracted the k-space data of the label

images from that of the control images as the first step in the image reconstruction. This

complex subtraction may be less robust than magnitude subtraction, because it is more

sensitive to variations in signal phase.

This work used a pCASL tagging method with the length of the tagging pulse reduced

for early observation times. This tagging scheme was combined with a new general weighted-

delay method of calculating perfusion maps. The combination of these two methods made it

possible to begin measuring the ASL signal when only part of the blood bolus has arrived at

the tissue of interest (Table 4.1). This in turn makes it possible to catch the rising edge of

the perfusion signal and to detect small ATT values. So, changing the length of the tagging

pulse has advantages in the design of dynamic pCASL experiments, but it does change the

perfusion bolus duration. The alternative would be a more conventional design with constant
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perfusion bolus duration and variable post-label delay. The reliability and accuracy of this

variable perfusion bolus technique should be further evaluated in a future study.

This study used equally-spaced observation times. However, CBF estimation accuracy

might be improved by optimal observation-time design (Zhao and Meyer, 2013, 2012). Non-

equally-spaced sampling in the parameter encoding space might break the assumptions of

some sparsity constraints, such as temporal TV, but it can be adapted into model-based

sparsity by proper dictionary training.

4.8 Conclusion

This work introduces model-based compressed sensing to improve ASL image quality and

CBF accuracy. By enforcing sparsity in the observation-time encoding domain, noise and

motion artifacts were suppressed and the estimated CBF maps were more accurate. These

benefits can be used to accelerate dynamic ASL, so that it can be achieved in a feasible scan

time.



Chapter 5
Optimal ASL Experiment

Dynamic arterial spin labeling (ASL) can provide important information (such as cerebral

blood flow maps) for the care of stroke and brain tumor patients. Currently this technique

requires significant signal averaging to improve image quality and parametric accuracy. By

sampling the perfusion bolus at multiple observation times (OT) instead of simply averaging

the signal at one OT, we can obtain additional perfusion parameters and achieve more

accurate estimation. The design of OTs and the design of estimators are conventionally

based on a Gaussian noise assumption. However, in a rapid dynamic perfusion experiment,

the signal-noise-ratio is low and we cannot approximate the noise of an MRI magnitude

signal by a Gaussian model. Using an inaccurate noise model will result in biased parameter

estimation with the least squares method and a sub-optimal OT design. In this chapter, we

present new methods for solving two related problems: (1) the optimal design of OTs for

a dynamic ASL experiment assuming a realistic Rician noise model; and (2) an unbiased

maximum likelihood estimator of perfusion parameters from dynamic ASL data assuming a

Rician noise model.

94
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5.1 Introduction

ASL provides a non-contrast, non-invasive perfusion imaging option for patients. It labels

the natural signal of blood by inversion of its longitudinal magnetization and acquires the

perfusion image in a downstream slice of interest. Modeling the spins in blood as a freely

diffusible tracer, ASL is used to generate cerebral blood flow (CBF) maps. To measure the

dynamics of cerebral perfusion, it is possible to measure images at multiple OTs and then use

nonlinear regression to estimate the parameters in a perfusion model. However, the blood

signal decays with longitudinal relaxation rate T1 as it transits from the labeling region to

the capillary exchange site. Typical ASL images contain 1% of the signal of a conventional

MR image. Therefore, low SNR is a key limiting factor of ASL.

In addition to improved tagging techniques and image reconstruction methods, we can

also improve the CBF map by experimental design with no extra scan time. As an estimation

problem, optimal OT design will provide precise (stable, lower variance) and accurate (close

to the real value) results.

In estimation theory, the variance of a parameter estimated from noisy data is subject to

the Cramér-Rao lower bound (CRLB) [90]. By designing OTs, we try to maximize the Fisher

matrix so as to minimize the CRLB. Even if the CRLB is not achievable, some researchers

have shown the benefits of maximizing the Fisher matrix so as to minimize the variance of

our estimated parameters [91, 92].

This lower bound can be approached by maximum likelihood estimation (MLE) when

the data set is large enough, regardless of the noise model. In the case of additive white

Gaussian noise, a least squared (LS) error estimator equates to MLE and therefore yields
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an efficient estimator, which should be better than other estimators, such as absolute error

(L1) estimator.

MRI acquisition results in complex Gaussian noise, and after the magnitude operation

it has a Rician distribution. With high SNR, the Rician noise can be approximated by a

Gaussian distribution, which is the conventional noise model in optimal experimental design.

This assumption is usually true in MRI, such as in T1 mapping, where the SNR is typically

more than 10. In the case of ASL perfusion images, the SNR is low and the Rician noise can

no longer be accurately approximated by a Gaussian model. Thus, a LS estimator results in

biased estimation and the more general method of MLE is needed for an unbiased estimate

[93]. Therefore, the optimal design should follow the actual Rician model.

In this work, we will present the optimal OT design for CBF estimation based on a

pCASL single-compartment dynamic perfusion model and compare the resulting accuracy

using both LS and L1 estimators with a Gaussian noise model. Further, a more practical

situation with Rician noise and low SNR will be considered. A new optimal OT design and

an unbiased maximum likelihood estimator are designed with a Rician noise model. The

new designs are evaluated in a numerical phantom study and a volunteer scan.

5.2 Theory

5.2.1 Cramér-Rao Lower Bound

Multiple-OT ASL images provide accurate CBF maps by fitting to a dynamic perfusion

model. The variance of the CBF estimate can be further reduced by optimal OT design.
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For N OTs, the measured signal y(i) can be expressed as:

y(i) = f (x, n(i), i) , 1 ≤ i ≤ N (5.1)

where x is the parameter to be estimated and the n(i) are the noise in the measurements

and are assumed to be independent and identically distributed random variables (i.i.d.).

There are various estimators that yield optimal estimates x̂ that satisfy a particular

criterion. The key questions are what is the most accurate estimator, whether it exists and

whether it is reachable. The Cramér-Rao lower bound gives the lower bound on the variance

of the estimated parameter, in terms of only the statistical properties of the observations. It

assumes the probability density function p(y|x) satisfies the ’regularity’ condition:

E

[
∂ ln p(y|x)

∂x

]
= 0 (5.2)

where the expectation is taken with respect to p(y|x).

Then any unbiased estimator x̂ satisfies:

var(x̂) ≥ 1

F

(
dψ(y)

dy

)2

(5.3)

where ψ(y) is the estimator of x

F is the Fisher information matrix:

F = −E
[
∂2 ln p(y|x)

∂x2

]
= E

[(
∂ ln p(y;x)

∂x

)2
]

(5.4)
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This lower bound can be achieved if and only if

∂ ln p(y|x)

∂x
= F(x)[ψ(y)− x] (5.5)

The efficient estimator is

x̂ = ψ(y) (5.6)

It achieves the minimum variance unbiased result:

var(x̂) =
1

F(x)
(5.7)

5.2.2 Gaussian Noise

Suppose the observation is contaminated by additive noise n:

y = f(x) + n (5.8)

In the case of Gaussian distributed noise and an unbiased estimator, the best estimate is

achieved when

E[(x̂− x)2|x] ≥ 1

F
= σ2 1(

∂f(x)
∂x

)′ (
∂f(x)
∂x

) (5.9)

More details are provided in Appendix 5.A.

Multiple optimization criteria can be set for the Fisher information matrix, such as the

determinant (D-optimality) criterion. Here we choose to minimize the variance in CBF

estimation.
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With a dynamic ASL signal model, the optimal OTs are given as:

t̂ = arg min
t

F(2, 2)

F(1, 1)F(2, 2)−F(1, 2)F(2, 1)
(5.10)

where

F = E


∑(

∂∆M
∂f

)2 ∑
∂∆M
∂f

∂∆M
∂∆t∑

∂∆M
∂∆t

∂∆M
∂f

∑(
∂∆M
∂∆t

)2

 (5.11)

∂∆M

∂f
= 2M0αT1exp

(
− ∆t

T1,b

)
Q (5.12)

∂∆M

∂∆t
=


0

2M0αfT1

(
− 1
T1,b

exp(− ∆t
T1,b

) +
(

1
T1,b
− 1

T1

)
exp(− ∆t

T1,b
) exp(− t−∆t)

T1
)
)

2M0αfT1

(
1− exp(− τ

T1
)
)

( 1
T1
− 1

T1,b
)exp(− ∆t

T1,b
) exp(− t−∆t−τ

T1
)

(5.13)

More details are provided in Appendix 5.B.

5.2.3 Rician Noise

When a magnitude operation is performed on a data set with a complex Gaussian dis-

tribution, the distribution is changed to Rician [94, 95]. MR signals and images contain

complex Gaussian noise. In parameter estimation, model regression is typically performed

on magnitude images, which is contaminated by Rician noise:

P (x,A, σ) =
x

σ2
e−(x2+A2)/2σ2

I0

(
xA

σ2

)
(5.14)

where σ is the variance of the complex Gaussian noise and A is actual signal amplitude. I0

is the 0th-order modified Bessel function of the first kind.
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In the high SNR situation, the Rician distribution can be approximated by a Gaussian

distribution, and thus optimal OT design combined with a conventional LS estimator could

provide accurate CBF estimation. However, when the SNR is low, the resulting Rician

noise will result in biased estimation and sub-optimal experimental design if the Gaussian

approximation is used. Dynamic ASL images intrinsically have low SNR; therefore, we need

to use a Rician noise model in the design of both the OTs and the estimator.

The general maximum likelihood estimator with a Rician noise model is as follows:

(
∂∆M

∂f

)T
V(IS −∆M) = 0 (5.15)

where

V =



1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
N


(5.16)

and

I =



I1(z(t1))
I0(z(t1))

0 · · · 0

0 I1(z(t2))
I0(z(t2))

· · · 0

...
...

. . .
...

0 0 · · · I1(z(tN ))
I0(z(tN ))


(5.17)

with

z(tk) =
S(tk)∆M(tk)

σ2
k

(5.18)

The details of the derivation can be found in [93].
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The Fisher information matrix was given based on Rician noise, which leads to the

optimal design of OTs. When estimating two variables from the measurements, the Fisher

information matrix is 2 by 2 with elements:

Fi,j(t1, ...tN) =

(
∂∆M

∂xi

)T
VE[R]

(
∂∆M

∂xj

)
(5.19)

where

E[R]k,k = −∆M(tk)
2

σ2
+ E

[
S(tk)

2I2
1 ((tk))

σ2I2
0 ((tk))

]
(5.20)

The partial derivative is performed corresponding to x1 = f and x2 = ∆t.

The optimal OT design has an analytical solution with Gaussian noise model. It follows

the optimization of Eq. 5.9. With the Rician distribution, the first difficulty is that the

noise model is not separable and cannot be expressed analytically in a simple form. The

expectation in Eq. 5.19 does not have an analytical solution. Therefore, numerical integra-

tion was used with reasonable accuracy [96]. Here, we used the recursive adaptive Lobatto

quadrature method, with an interval from 0 to 10∆M .

Another computational problem is the optimization of the Fisher information matrix.

Due to the large N , we adopt the method in Santos’s work [97] to calculate the optimal

OTs iteratively. When the problem is convex, the iterative optimal results yield the global

optimal Fisher matrix:

F(t1, t2, · · · , tn) = F(t1, t2, · · · , tn−1) +
1

σ2

∂∆M(tn)

∂f

∂∆M(tn)

∂∆t
E [Rn,n] (5.21)
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5.3 Methods

5.3.1 Simulation

All simulations were performed using MATLAB 2013b. The classic single-compartment

pseudo continuous ASL model [14] was used to simulate the dynamic pCASL signal in a

selected pixel. In the optimal OT designs, we assume both ATT and CBF are unknown,

and design to minimize CBF variance. Assume that we measure the ASL signal from brain

perfusion with CBF 50 ml/100g/min. Other common assumptions are made for the perfusion

model: tissue T1 = 1500 ms, blood T1b = 1600 ms, labeling efficiency α = 0.9, partition

coefficient λ = 0.9, bolus duration τ = 2000 ms, and arterial transit time ATT = 700 ms.

Suppose we perform ASL imaging with a total scan time of 7 minutes. With a 5-second

TR, each ASL image pair (control image and label image) is collected in 10 s. Therefore,

about 40 ASL images are collected in this scan time, which can be averaged with a single-PLD

measurement or can be acquired by dynamic ASL with optimal OT design.

Image SNR is specified based on the highest possible perfusion signal in the dynamic

images, which can be much lower at the early and late OTs. The ’SNR’ is defined by the

noise level in a single measurement; for example, SNR = 2 means σ = 0.5%M0,blood for one

measurement (assuming the maximum ASL signal is 1% of the fully relaxed equilibrium

magnitude of blood signal). When multiple measurements are averaged, the image SNR is

improved by
√

number of averages.

Synthetic ASL data were generated, and then the CBF was estimated from noisy images.

In each case, the generation and estimation are repeated 10000 times to verify the statistical
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performance of OT design and estimator.

We designed the following simulations to answer these questions: (a) whether optimal

OT design helps the quantification of CBF; (b) how it performs with low SNR; (c) how we

improve the quantification when SNR is low.

First, we would like to verify the optimal OT design, by comparing the following different

OT designs: (1) 5 evenly spaced OTs with 8 averages at each; (2) 10 evenly spaced OTs with

4 averages at each; (3) 40 evenly spaced OTs; (4) optimal OT design based on a Gaussian

noise model. The CBF value was calculated by two estimators: LS and L1. To simplify the

problem, we used high SNR = 10 here.

We then performed simulations with the more accurate Rician noise model. We contam-

inated the ASL image with Rician noise and estimated the CBF with a LS estimator. We

used SNR = 10 and 2 corresponding to the high SNR and low SNR cases.

For the case of Rician noise with low SNR, we compared the performance of the maxi-

mum likelihood estimator designed with a Rician noise model to the performance of the LS

estimator.

Finally, we tested the optimal OT design based on a Rician noise model and compared

it to the result from optimal design with a Gaussian noise model.

5.3.2 Experiment

To assess the performance of the optimal OT design in practice, experiments were performed

on a 3T Siemens scanner with healthy volunteers. 3D pCASL was used with a single-shot

dual-density spiral trajectory with resolution 5 mm × 5 mm × 5 mm. Other parameters

were as follows: TR 5380 ms (limited by SAR); TE 22 ms; 24 slices; readout 6 ms; FOV
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200 mm; initial spiral density 1.0; and final spiral density 0.4. The proposed OT design was

implemented with 40 optimally designed OTs based on Rician noise and two averages at

each OT. The control experiment used 5 evenly spaced OTs with 16 averages at each OT.

5.4 Results

Figure 5.1 shows the improvement with optimal OT design. We assumed Gaussian noise

with an SNR = 10 for each measurement. Four OT schemes are shown on the left. The right

figure shows the estimation results from each sampling scheme. In all cases, the CBF was

estimated accurately without bias. For each OT design, the LS estimator resulted in lower

variance than the absolute error estimator. More importantly, both estimators yielded more

precise (lower standard deviation) estimates with optimal OT design than with the other

OT schemes.

Figure 5.2 shows simulations with Rician noise. With higher SNR (right, SNR = 10),

the LS estimator yielded unbiased and precise results. This is as expected, because Rician

noise is closely approximated by a Gaussian model for high SNR. The red line indicates the

true CBF value in the simulation (50 ml/100g/min). When the SNR was low (SNR = 2),

the LS estimator resulted in wider spread estimates, which corresponds to a larger standard

deviation of the error estimate, as expected. It also resulted in a biased CBF value. As

shown on the right, the mean value of the CBF estimates is larger than the true CBF.

Figure 5.3 demonstrates the performance of the maximum likelihood estimator with

Rician noise. In the case of low SNR (SNR = 2) Rician noise, the maximum likelihood

estimator provided accurate CBF values. The LS estimator and L1 estimator yielded biased
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Figure 5.1: Improved estimation by optimal OT design. With the assumption of high SNR
(SNR = 10 for each measurement), different OT designs are shown in the left figure. The
optimal OTs were designed based on the Gaussian noise model. Observation time were chosen
as follows: 5 evenly spaced OTs with 8 averages each; 10 evenly spaced OTs with 4 averages
each; and 40 evenly spaced OTs with 1 average each. The CBF estimation results are shown
in the right figure. The LS estimator yielded lower variance than the absolute error estimator.
The optimal OT design yielded more precise results than the other OT schemes.

Figure 5.2: Biased estimation by a LS estimator in the presence of Rician noise with low SNR.
Left: With high SNR (SNR = 10 for each measurement), the LS estimator yielded accurate
CBF estimation in the presence of Rician noise. Right: With low SNR (SNR = 2 for each
measurement), the Rician noise resulted in a biased CBF estimate with a LS estimator.
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Figure 5.3: Maximum likelihood estimator provides unbiased estimation. With Rician noise
and low SNR (SNR = 2 for each measurement), both the LS and L1 estimators resulted in
biased estimation. The designed maximum likelihood estimator provided accurate CBF. The
true CBF is 50 ml/100g/min.

results.

In the practical situation with low SNR Rician noise, we verified the performance of

optimal OT designs with different noise models, as shown in Fig. 5.4. Three sampling

schemes were chosen : evenly spaced OTs, optimal OTs based on a Gaussian noise model

and optimal OTs based on a Rician noise model (shown on the left) with low SNR (SNR =

2) Rician noise. The estimation results on the right show that the optimal OT designs gave

more precise result than the evenly spaced OT designs, and the results were improved by

using the Rician model instead of the Gaussian model.

An experimental result is shown in Fig. 5.5. The CBF map with optimal OT design

has less noise in the background than the map based on evenly spaced OTs. However, this

preliminary result is insufficient to prove the benefit of optimal OT design.



CHAPTER 5. OPTIMAL ASL EXPERIMENT 107

Figure 5.4: Comparison of optimal observation time designs. Left: OT designs used for the
simulations: evenly-spaced samples; optimal OT design assuming Gaussian noise; and optimal
OT design assuming Rician noise. Right: Simulations performed with Rician noise and low
SNR (SNR = 2 for each measurement). The CBF values were estimated using the proposed
maximum likelihood estimator. The optimal OT designs yielded more accurate and more
precise estimates than the evenly-spaced design. The Rician OT design yielded more precise
estimates than the Gaussian OT design.

Figure 5.5: Optimal OTs experiment result. Left figure is the CBF map with optimal design
with 40 OTs and 2 average. Right figure is the control scan with 5 OTs with 16 average each.
CBF maps are shown in ml/100g/min.



CHAPTER 5. OPTIMAL ASL EXPERIMENT 108

5.5 Discussion

In this work, we have initial results showing that optimizing OTs can achieve significantly

improved estimation performance, regardless of noise model. ASL imaging is a natural fit for

this design, because it requires a large number of measurements to improve image quality and

SNR. The proposed method can exploit the scan time more efficiently and enable dynamic

ASL imaging instead of conventional averaging. Furthermore, ASL images have intrinsically

low SNR, which makes it more important to design the OTs carefully to improve CBF

quantification and save scan time.

The LS estimator resulted in lower variance than the L1 estimator with Gaussian noise, as

shown in Fig. 5.1. This is consistent with theory; the efficient maximum likelihood estimator

reduces to a LS estimator with a Gaussian noise model.

With low SNR and Rician noise, LS estimation results in biased estimation, whereas

MLE with a Rician noise model gives the correct value. We should also note that although

the Rician MLE is unbiased, it has slightly higher variance than the LS estimator, as shown

in Fig. 5.3. This is because the variance of estimation depend on both the Fisher information

matrix and the estimator. One explanation can be found in the CRLB with Gaussian noise

model of Eq. 5.30, where the estimator ψ also limits the variance of x. We could achieve lower

variance (mean squared error) when we use a biased estimator. Therefore, an interesting

question arises: do we prefer a biased estimate with a lower variance or an unbiased estimate?

The optimal OT design with Rician noise model shows slight improvement compared to

optimal Gaussian design. Both designs are significantly better than averaging at evenly-

spaced OTs.
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The optimal OT design for ASL was difficult to validate experimentally. There are two

possible reasons. First, the experiment was contaminated by physiological noise. The optimal

OTs are designed for minimizing thermal noise from the MRI system. However, ASL usually

contains physiological noise, such as body motion and resting state blood flow changes, which

could dominate the result. Second, the result is not statistically significant. To show the

improvement statistically, we used 10000 repetitions in the simulations. Therefore, one

experiment lacks the power to demonstrate the improvement.

This method is proposed as an optimization for ASL parameter estimation with the

Buxton perfusion model [14], but it can be adapted into more complex model, such as first

pass perfusion with dispersed AIF [23]. A smooth perfusion model without discontinuity

could distribute OTs more widely when solved by a similar algorithm. But a more complex

model could require more sample points to show improvement. It can also be adapted into

other parameter mapping designs, such as T1 mapping [92] and ADC mapping in diffusion

imaging [98]. A simple signal model (e.g., T1 decay model) could yield an optimized result

and improve the stability of estimation.

The uncertainty of reference parameters influences the performance of OT design. Typ-

ically, several of the parameters in the ASL model are not estimated; the CBF is calculated

based on a series of reference values, such as T1 and M0. The variations of these reference val-

ues have an impact on the precision of CBF estimation, which is ignored in the current work.

More accurate methods could follow the Bayesian framework [97] to consider the variance

of input parameters. Furthermore, the design of optimal OTs is based on the assumption of

pre-targeted CBF and ATT. In this work, we used 50 ml/100g/min for CBF and 700 ms for

ATT. If the measured CBF is different from this designed value, the proposed method can
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still provide improved estimates. However, the tolerance to this deviation requires further

study.

Sampling pattern design has been discussed in 2D and 3D spatial domains, but it is

underdeveloped in the temporal domain. Most compressed sensing performed on dynamic

imaging or parameter estimation is randomly (Poisson or multi-level [72]) sampled in the

spatial domain, but evenly sampled in t-space or p-space. Optimal OT design demonstrates

that a non-uniform sampling pattern is more efficient to exploit the information in p-space.

There is more theoretical work needed to combine the two domains of undersampling pattern

design in parameter space compressed sensing.

5.6 Conclusion

Optimal observation time design for dynamic ASL can reduce CBF estimation variance

significantly without extra scan time. With low SNR, a maximum likelihood estimator

should be used for unbiased estimation in the typical Rician noise situation, instead of a

conventional least squared error estimator.

5.A Derivation of CRLB with Gaussian Noise

For the measurements with additive Gaussian noise n and standard deviation σ:

y = f(x) + n (5.22)

y − f(x) = n ∼ N(0, σ2) (5.23)
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In the experiment of N measurements, the covariance matrix of noise is N ×N :

E[nn′] = C (5.24)

The joint probability density function of y on parameter x is also Gaussian distributed:

p(y|x) = A exp[−0.5(y − f(x))′C−1(y − f(x))] (5.25)

ln p(y|x) = lnA− 0.5(y − f(x))′C−1(y − f(x)) (5.26)

The maximum of the likelihood function is determined using a first order differential equa-

tion:

∂ ln p(y|x)

∂x
= (y − f(x))′C−1∂f(x)

∂x
(5.27)

Because C is a symmetric matrix, the Fisher information matrix can be expressed as:

(
∂ ln p(y|x)

∂x

)2

=

(
∂f(x)

∂x

)′
C−1(y − f(x)(y − f(x)′C−1∂f(x)

∂x
(5.28)

We can simplify the above equation as:

E

[(
∂ ln p(y|x)

∂x

)2
]

=

(
∂f(x)

∂x

)′
C−1

(
∂f(x)

∂x

)
(5.29)

From CRLB 5.3, we can get

E[(x̂− x)2|x] ≥

(
∂ψ(x)
∂x

)2

(
∂f(x)
∂x

)′
C−1

(
∂f(x)
∂x

) (5.30)
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where

x̂ = ψ(x) = x+ ϕ(x) (5.31)

ϕ(x) is the bias. If the Gaussian noise is i.i.d. and estimator ψ(x) is unbiased:

C = σ2I (5.32)

E[(x̂− x)2|x] ≥ σ2 1(
∂f(x)
∂x

)′ (
∂f(x)
∂x

) (5.33)

5.B Derivation pf CRLB of ASL model with Gaussian Noise

For the typical single compartment ASL perfusion model [14]:

∆M = 2M0αfT1 exp

(
− ∆t

T1,b

)
Q(t) (5.34)

Q(n) =


0 if 0 < t < ∆t

1− exp
(
− t−∆t

T1

)
if ∆t ≤ t ≤ ∆t+ τ

exp
(
− t−τ−∆t

T1

)
− exp

(
− t−∆t

T1

)
if ∆t+ τ < t

(5.35)

We assume the measured signal contains additive white Gaussian noise.

S = ∆M + n (5.36)
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Suppose we have N measurements and the probability density function is p(S(ti, f)).

p(S, f) =
1

(2πσ2)N/2
exp

[
− 1

2σ2

N∑
i=1

(S(ti)−∆M(ti))
2

]
(5.37)

ln p(S, f) = const.− 1

2σ2

N∑
i=1

(S(ti)−∆M(ti))
2 (5.38)

As mentioned in Equation 5.3 and 5.33, both f and ∆t will be estimated. The Fisher

Information Matrix is

F = E


∑(

∂∆M
∂f

)2 ∑
∂∆M
∂f

∂∆M
∂∆t∑

∂∆M
∂∆t

∂∆M)
∂f

∑(
∂∆M
∂∆t

)2

 (5.39)

To achieve the lower bound:

∂∆M

∂f
= 2M0αT1exp

(
− ∆t

T1,b

)
Q (5.40)

∂∆M

∂∆t
=


0

2M0αfT1

(
− 1
T1,b

exp(− ∆t
T1,b

) +
(

1
T1,b
− 1

T1

)
exp(− ∆t

T1,b
) exp(− t−∆t)

T1
)
)

2M0αfT1

(
1− exp(− τ

T1
)
)

( 1
T1
− 1

T1,b
)exp(− ∆t

T1,b
) exp(− t−∆t−τ

T1
)

(5.41)

The estimation of CBF is limited by the Fisher information matrix:

var(f) ≥ F−1(1, 1) (5.42)

To minimize the variance of CBF, the optimization is performed as follow:

t̂ = arg min
t

F(2, 2)

F(1, 1)F(2, 2)−F(1, 2)F(2, 1)
(5.43)
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Chapter 6
Conclusion

6.1 Overview of Findings

ASL has been improved significantly over the past 20 years, but low SNR remains its primary

limitation. As mentioned in the Introduction, the primary goal of this dissertation was to

develop accurate and accelerated ASL techniques for a limited scan time, in order to promote

dynamic imaging. Chapter 2 focuses on a new method for accelerated parameter mapping.

While this technique has not yet been directly applied to ASL, it could be used to estimate

relaxation time parameters needed for ASL quantification. Chapters 3, 4 and 5 address

ASL problems associated with robust measurement at a single delay time and dynamic ASL

imaging, with discussion of image quality and accuracy of quantification.

Prior to describing the main work, we briefly reviewed the current status of ASL, including

clinical applications, theory, perfusion models, pulse sequences and intrinsic problems.

Chapter 2 describes a new method for parameter mapping. As a parameter estimation

problem, ASL quantification is highly dependent on other reference parameters, such as T1

and T2. We propose the first use of the unscented Kalman filter for parameter estimation

115
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in MRI. This method treats relaxation weighting as encoding states in parameter-space, so

as to estimate the desired parameter directly from k-space data. It enables a high under-

sampling ratio, maintains the accuracy of the parameter map and reduces computational

complexity. This chapter focuses on demonstrating this method for accelerated T2 mapping.

But the proposed method can be adapted to other parameter estimation problems, such as

T1 mapping.

Chapter 3 attempts to develop a robust single post label delay ASL imaging method. 3D

spiral turbo spin echo is a rapid and SNR-efficient readout sequence, which addresses the

speed and SNR limitations of ASL. Interleaved spiral acquisition yields improved resolution

and reduces susceptibility artifacts, but multi-shot readout makes the scan more sensitive

to patient and physiological motion (e.g., flow in large vessels). Image reconstruction using

parallel imaging improves data consistency and accelerates image acquisition. A single-shot

3D ASL was developed with a dual-density spiral k-space trajectory, which provides moderate

resolution and freezes motion artifacts. Spatial sparsity of the ASL image is used to improve

the image quality further.

Chapter 4 describes improvements in dynamic ASL imaging. To achieve reliable and

accurate fits to a perfusion model requires data at multiple observation times, instead of a

single post label delay. This additional parameter space dimension is similar to temporal

sampling. We can improve image quality and CBF estimation by introducing k-p space spar-

sity, which uses the similar spatial structure from different image frames and prior knowledge

about temporal ASL signal evolution. Instead of conventional reconstruction of each mea-

surement, we efficiently use the relationship of images from different observation times to

improve the image quality and the CBF estimation, by exploiting the model-based sparsity
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of multi-observation-time ASL perfusion images.

Chapter 5 discusses the dynamic ASL sampling pattern and quantification. Since the

SNR is even lower in dynamic ASL, it is important to improve the calculation accuracy in

both dynamic experiment design and perfusion parameter estimation. The dynamic infor-

mation is efficiently exploited by observation time design according to the Cramér-Rao lower

bound, instead of averaging naively. However, low SNR breaks the Gaussian noise assump-

tion and result in biased CBF in conventional least squared error estimation. Therefore,

a more realistic Rician noise model is adapted into observation time design and estimator

design.

6.2 Future Directions

6.2.1 Sequence

3D stack-of-spirals

As a general 3D acquisition method, stack-of-spirals has potential applications requiring fast

imaging.

The main competitor of stack-of-spirals is 3D GRASE (stack-of-EPIs). Recent research

has compared GRASE and stack-of-spirals in ASL [99, 100]. The results confirm the SNR

efficiency of 3D sequences and suggest that the performance mainly depends on the echo

time and length of readout. The spiral trajectory is more motion robust, because it has

nearly null gradient moments at the center of k-space. This should make stack-of-spirals a

preferable sequence for motion sensitive imaging, such as ASL, but confirming this requires

further study of repeatability.
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Off-resonance results in blurring in spiral images. Therefore, some groups prefer multiple

interleaved spirals with short readouts. However, this strategy will introduce motion among

the interleaves. An alternative strategy is single-shot dual-density spiral as proposed in this

work, which freezes motion within each measurement. This strategy also covers more of the

center of k-space, which has the potential to improve SNR.

In the single-shot dual-density spiral trajectory, k-space is fully-sampled at the center

and undersampled at outer k-space. The images are recovered by a parallel reconstruction

method. According to the undersampling scheme of compressed sensing, a multiple levels

sampling scheme [101] should be performed to increase incoherence of MRI data. An optimal-

density spiral trajectory can be designed according to the multiple level scheme, which could

increase the coverage and spatial resolution further.

ASL Tagging

ASL was developed based on tagging RF pulses followed by preparation RF pulses. The

pCASL tagging pulse mimics the flow driven inversion condition by splitting the long RF

into a large number of short duration RFs. There are two problems in this approximation:

high SAR, which prolongs the scan time, and unknown tagging efficiency, which limits the

accuracy in quantification. A systematic RF pulse design could improve the performance of

tagging pulses.

The dynamic ASL imaging in this work is performed by multiple observation time mea-

surements. The SNR can be increased by Hadamard encoding.
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6.2.2 Model-based Reconstruction

In k-space, an incoherent sampling pattern promotes noise-like artifacts and successful image

recovery by compressed sensing reconstruction. An optimized k-t sampling pattern could

improve performance by including different spatial and temporal information. Cartesian

k-space can be optimized by selecting which phase encoding steps to omit, and the sam-

pling pattern of a spiral trajectory can be optimized by choosing the initial angle of the

spiral trajectory. However, since we are mainly concerned with noise and motion artifacts,

not under-sampling artifacts, the compressed sensing reconstruction might not produce the

theoretical improvements from sampling pattern optimization in practice.

However, sampling design in the parameter encoding space is still interesting. Most

compressed sensing performed on dynamic imaging or parameter estimation is randomly

(or pseudo randomly) sampled in the spatial domain, but evenly sampled in the temporal

domain. Optimal OT design results in a non-uniform sampling pattern in parameter space.

There is more theoretical work needed to combine the two domains in undersampling pattern

design of parameter space with compressed sensing.

6.2.3 Parameter Tracking

The parameter tracking in Chapter 2 has a high undersampling factor in k-space, but still

requires a large number of samples in p-space. If the prior knowledge is accurate enough,

measurement of proton density in a separate scan could further improve the Kalman filter,

as shown in the simulation. In this design, we did not include Kalman filter training for

the matrices. Actually, these matrices are ’trained’ in the first few iterations by the under-
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sampled data. This can slow down the Kalman filter convergence and limit the estimation

map accuracy. An alternative approach is to train these matrices with separately acquired

data.

By treating each echo in a TSE sequence as having a different TE, we can view the data

in k-p space, which may help to solve T2-shadowing in a TSE sequence and has the potential

for single-shot T2 mapping.

6.3 Collaborations and Contributions

The work in this dissertation includes a lot of contributions from collaborators. I would like

to sincerely thank them for their efforts here.

The spiral techniques are the teamwork of Dr. Meyer’s lab. The spiral offline recon-

struction was mostly modified by Dr. Xue Feng. The gridding reconstruction of spirals with

Chebyshev approximation was originally developed by Dr. Weitian Chen and Dr. Christo-

pher Sica. The 3D sequence with turbo spin echo and stack-of-spirals was developed by

Dr. Samuel Fielden. Of course, Dr. Craig Meyer guided all of the work and discussed most

of the ideas.
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