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Abstract 

 

Recent years have witnessed the vigorous research and development of Artificial Pancreas 

system (AP), which attempts to “close the loop” through communications with third party 

devices such as continuous glucose monitoring and insulin pump aimed at dispensing the 

patients with diabetes from the responsibility of insulin dosing. Physiological modeling is a 

pragmatic methodology for explaining observed dynamic effects, interpreting the experimental 

data and predicting system responses under certain stimuli. Given the complexity of the insulin-

glucose dynamic system, lumping the parameter set is obligatory under most circumstances. 

The ubiquitous inter-individual and intra-individual variability across the population requires us 

to consider the necessary remedial action such as characterization of the parameter 

uncertainties.  

      Insulin sensitivity (SI), is one of the critical parameters that govern the insulin-glucose 

dynamics. We propose and validate a Kalman Filtering based technique that is capable of 

tracking SI in real time based on commonly available data measurements. We then apply the 

developed technique to estimate SI during the menstrual cycle. The results substantiate the 

hypothesis that a subset of premenopausal women with T1DM will experience a decrease in 

insulin sensitivity during the second half of the menstrual cycle (luteal phase). With the 

knowledge of SI, we optimize the predictive power of a dosing algorithm; short-term (up to 45 

minutes) forecasting ability of BG is studied by exploring different structural designs (full model, 

feed-forward, with and without SI tracking). Finally, a model based decision support system is 

derived for insulin dosing; long-term (4 hours) forecasting characteristics of BG influenced by 

individualized parameters are studied both in-silico and in-vivo. 
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Chapter 1. Introduction 
 

Diabetes, or diabetes mellitus, is a group of metabolic diseases arising from gene defect and 

environmental stimuli. It is usually characterized by chronic high blood glucose (hyperglycemia).   

Long time exposure to hyperglycemia may cause irreversible complications, such as blurred 

vision, cardiovascular diseases, neuropathy, renal disease and loss of limb 1–5. There are two  

main diabetes: type 1 diabetes (T1DM) and type 2 diabetes (T2DM). Type 1 Diabetes is a 

disorder of the endocrine system mainly diagnosed in children and young adults whose insulin 

secreting cells (β-cells of the Langerhans islets in the pancreas) are destroyed by the body’s 

immune system. The only treatment is the administration of exogenous insulin. Dosing insulin 

also brings in the risk of low blood glucose (hypoglycemia) which can cause hunger, seizures, 

unconsciousness and even death 6–9. Type 2 diabetes is a progressive condition. At early stages, 

a patient’s body does not produce enough insulin to compensate the elevated blood glucose. 

Without receiving proper treatment, it gradually gets worse and exogenous insulin becomes a 

necessity. The risk of developing type 2 diabetes increases with the aging process and is higher 

for overweight and obese people. Early treatment includes physical exercise, healthy diet, 

weight control and glucose monitoring 10–13. Prediabetes is an intermediate condition in the 

transition between health and type 2 diabetes, characterized by impaired fasting glucose (IFG) 

and impaired glucose tolerance (IGT) 14 and is associated with increased risk for developing 

cardiovascular disease 15,16. Gestational diabetes is a temporary condition diagnosed in female 
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whose blood sugar level is elevated abnormally during pregnancy 17. One of the consequences is 

that a “big baby” (much more weight than normal newborn) may be delivered. With proper 

physical exercise and healthy diet, blood sugar can be well controlled and most patients will 

recover after the delivery.  

      In 2012, the United States had 21.98 million people (8.3% of the population) that were 

diagnosed with diabetes and an estimated 8.1 million remaining  undiagnosed 18. In 2007, the 

estimated total cost of diagnosed diabetes was $174 billion 19. The cost rose to $245 billion in 

2012 that was composed of $176 billion in medical costs and $69 in lower productivity 20. The 

cost increase from 2007 to 2012 was ascribed to two main aspects: growth of the diagnosis of 

diabetes and elevated average cost for each case. Among the diabetes population, 5% are 

diagnosed with type 1 diabetes 21,  90%-95% with type 2 diabetes 22 and gestational diabetes 

affects 1%-14% of pregnancies 23.  

      The management of diabetes is an interdisciplinary subject worldwide. This dissertation is 

focused on improving the accuracy of state estimation and forecasting by physiological 

modeling and the subsequent enhancement in the control performance of insulin dosing. We 

start from the modeling of general physiological systems by giving two illustrative examples. 

Then we introduce the insulin-glucose system and point out the challenges of characterizing 

time-varying parameters in such a system. Insulin sensitivity (SI), or coarsely the gain of insulin-

glucose dynamic is one of those critical parameters. In chapter 3, we propose a Kalman Filtering 

(KF) based technique that is capable of tracking SI in real time and the validation against the 

gold standard method shows significantly positive correlation. A posterior application of the 

established technique to a clinical study is then reported in chapter 4. The results substantiate 

the hypothesis that a subset of premenopausal women with T1DM will experience a decrease in 
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insulin sensitivity during the second half of the menstrual cycle (luteal phase). And in another 

study, we confirm with the publications that a bout of physical exercise increases insulin 

sensitivity. In chapter 5, we explore the short-term (up to 45 minutes) forecasting of blood 

glucose (BG) of by physiological modeling methodology and compare the different structural 

designs (full model, feed-forward, with and without SI tracking) to better understand the impact 

of these design choices on BG forecasting. Finally in chapter 6, we discuss how to provide a 

robust and predictive model by characterizing the uncertainties of the individualized parameters 

for the On-Demand Bolus Advisor system in artificial pancreas (AP).  

      The contribution of this research is the formalization of a series of techniques developed for 

characterizing the physiological parameter uncertainties of an insulin-glucose system aimed at 

enhancing model based insulin dosing strategies in diabetes.  We present an innovative method 

that enables the online tracking of insulin sensitivity. It provides us with a relatively convenient 

and less obtrusive way to extract SI compared to the traditional clinical methodologies. In 

addition, with the knowledge of real time SI, short-term forecasting of blood glucose can be 

improved, which is of importance to the dosing decision considering the kinetics of modern 

insulin analogs. Discussions over how the uncertainties in physiological parameters affect the 

insulin-glucose system in a long-term time scale and a formalization of the model refinement 

process for applications, i.e. bolus advisory system (semi-auto control) are covered in this 

dissertation.   
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Chapter 2. Background 
 

2.1 Glucose Metabolism 

Carbohydrate, digested and absorbed through the gastrointestinal system, is the principle 

source of energy (calories).  It can be broken down into several sugars: glucose, galactose and 

fructose. As the central molecule in carbohydrate mentalism, glucose initializes the pathway by 

transport across the cell membrane. Several glucose transport proteins are involved in the 

diffusion process: the Glut-1 transporter is present in all cells, responsible for the basal level 

glucose uptake as is a necessity to provide the sustaining energy generation; Glut-2 is expressed 

by  tubular cells in kidney and liver, in charge of transporting glucose across the membrane and 

into the interstitial fluid and plasma and Glut-4 transporter is responsible for the glucose 

utilization spurred by the insulin exclusively in cardiac, skeletal muscle and adipose tissue.  

Part of the transported glucose is stored as a polymer in the human body. One of such polymer 

is glycogen, which is critical for providing energy to  the central nervous system metabolism and 

to short bouts of intense physical work, is stored in two major sites: liver (~25%) and skeletal 

muscle (~75%).  When the blood glucose level is low, liver converts the glycogen to glucose 

through the process known as glycogenolysis and muscle glycogen is also broken down, 

releasing glucose to the blood stream. Different from the liver site, the muscle glycogen can be 

used only by muscle. When the level of blood glucose is high, some of the glucose is converted 
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to liver and muscle glycogen. This push-pull mechanism helps to maintain a constant blood 

glucose level. Refer to 24 for more fundamentals  about the glucose metabolism. 

Hormone insulin, secreted and produced in the beta cells in the islets of Langerhans is one of 

most important stimulus of glucose utilization. When abundant substrate (glucose) supply is 

given, insulin is produced and secreted to prompt the use of exogenous nutrients and in parallel 

inhibit the endogenous production. When the exogenous substrate goes low, insulin secretion is 

attenuated, mediating the glucose utilization. This substrate-hormone pair acts like a feedback 

system for the plasma glucose regulation. In type 1 diabetes, the beta-cells are destroyed by the 

immune system. Without the essential feedback signal, insulin, the level of plasma glucose 

becomes susceptible to the exogenous as well as the endogenous disturbances. 

2.2 General Physiological Models  

Models, as a representation usually smaller than the real subject, facilitate the analyzing process 

in four general aspects: describing quantitative relations between stakeholders, interpreting 

experimental data, predicting system’s responses under specific stimuli and explaining the 

observed dynamic effects 25. For the physiological systems, mathematical models have been 

extensively used in both academy and industry. An illustrative example is the application of 

physiological pharmacokinetic models in the assessment of carcinogenic risk 26: the dynamic of 

carcinogenic xenobiotics’ the reactive metabolites is described by a differential equation for 

each part of the body (plasma, skin, fat tissue, liver and kidney) known as “compartments”. 

Figure 1 shows the inputs and outputs of each compartment. The dynamic of the dose as a 

function of time can be obtained by solving equation 2.1. 

పሶܥ (ݐ) = ௜ܷܳ௜ (ݐ)௕ܥ) − ௜ܸ(ݐ)) + 1ܷ௜ ( పܻሶ (ݐ) − ܼపሶ (2.1) ((ݐ)
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is the concentration of xenobiotic in tissue ݅, ܳ௜ (ݐ)௜ܥ  is the blood flow rate, ௜ܷ is the tissue 

volume, ௜ܻ is the entering xenobiotic and ܼ௜  is the removed xenobiotic 26. 

 

Figure 1: Schematic diagram of compartmental models of xenobiotics 26. Each compartment is described by a 
differential equation with i/o defined.  

      Another classic example is the modeling of the branching lung airway 27. By expressing the 

motion of micron-size particles as differential equations 2.2, the air flow fields can be simulated 

to better interpret the human respiratory system. Figure 2 shows the segmentations of the 

branching lung airway.   

ሶࢂ (ݐ) = ߩ1− ݌∇ +∙ ቂ࢜ ቀ∇(࢚)ࢂ + ൫∇(࢚)ࢂ൯௧௥ቁቃ − (࢚)ࢂ) ∙ (2.2) (࢚)ࢂ(∇

  .is the kinematic viscosity ࢜ stands for the pressure and ݌ ,is the velicity vector, ρ is the density ܄

 

Figure 2: Structural simulation of branching lung air flow 27. 
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    Refer to 28 : with a selected model structure, M, for the physiological system, the critical step 

is to identify the parameters, θ, based on the experimental data.  A typical method is to 

minimize the prediction error (equation 2.3) of the model by searching the optimal set of the 

parameters.  

,ݐ)ߝ (∗ߠ = (ݐ)ݕ − (2.3) (∗ߠ|ݐ)ොݕ

      We can also limit the freedom of the error by assigning weights to the error sequence 

(equation 2.4).  With cost function defined as C(ߠ) = ଵே ∑ ݈൫߳௅(ݐ, ൯ே௧ୀଵ(ߠ  , the parameters are 

obtained by solving equation 2.5. According to different designs and implementations of the 

error function and the optimization technique, the advocated parameter estimation methods 

include: linear regression and the least-square method, maximum likelihood method, 

correlating prediction errors with past data, instrumental-variable method and model fitting 

using frequency domain data 25,29–31.  

,ݐ)௅ߝ (ߠ = ,ݐ)ߝ(ݍ)ܮ ෠ߠ(2.4) (ߠ = (2.5) (ߠ)ܥఏ݊݅݉݃ݎܽ

      For general linear, time-invariant systems, these methods can be expected to render 

desirable results. However, the approaches for non-linear, time-varying systems are still limited. 

The use of Maximum likelihood method, Extended Kalman Filter (EKF) and a feedback control-

analog method have been reported 30,32,33.  

      For physiological systems, non-linearity and dynamic parameters are practically ubiquitous. 

Albeit time-invariant linear models can be useful in representing certain physiological systems; 

the characterization of the dynamic parameters are inevitable when we need a more robust and 
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rigorous model to represent the real subject. The approach will be discussed surrounding the 

insulin-glucose system in this dissertation. 

2.3 Insulin-Glucose Models 

In a healthy subject, the blood glucose concentration is regulated by feedback hormonal signals. 

The most important one is insulin, secreted and produced by beta cells in the islets of 

Langerhans. When the blood glucose is perturbed, for example increasing postprandial, more 

insulin is produced to compensate the glucose entering the plasma from the gastrointestinal 

system. A counterregulatory mechanism involving glucagon, cortisol, epinephrine, and growth 

hormone 34–37 is present to prevent overcompensation that can cause hypoglycemia. The 

minimal model, as indicated by the name, that comprises minimum numbers of identifiable 

parameters, is a pragmatic tool to describe the core kinetic of the insulin-glucose interaction. 

Equations 2.6-7 delineate one form of such model: ܩ  and ܺ  represent the blood glucose 

concentration and the insulin action respectively. The equations facilitate the interpretation of 

the dynamic effect by observing the physiological parameters: ܵீ  is in part the glucose 

effectiveness, ݌ଶ describes the rate of the insulin action,  ݌ଷ is a scale factor of insulin action, ܩ௕ 

is the fasting glucose given the plasma insulin concentration equal to a baseline value (ܫ௕), ܴ௔  

describes the rate of glucose appearance in plasma, and ܸ it distribution volume. 

ሶ(ݐ)ܩ = −[ܵீ + [(ݐ)ܺ ∙ (ݐ)ܩ + ܵீ ∙ ௕ܩ + ܴ௔(ݐ)ܸ , (0)ܩ = ௕ (2.6)ܩ

ሶ(ݐ)ܺ = ଶ݌− ∙ (ݐ)ܺ + ଷ݌ ∙ (ݐ)ܫ] − ,[௕ܫ ܺ(0) = 0 (2.7)

 

      One of the critical parameters is insulin resistance (insulin sensitivity). The human body 

responds to insulin with different effectiveness. An insulin sensitivity index is usually used to 

describe this effect quantitatively. Having low insulin sensitivity (high resistance) means the 
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subject needs more insulin to regulate the blood glucose than one having high insulin sensitivity 

if other metabolic states stay identical. In type 2 diabetes, insulin resistance (low insulin 

sensitivity) can cause the body to compensate by secreting more insulin. Chronic elevated 

insulin on board leads to a variety of symptoms such as obesity, high blood pressure and lower 

urinary tract symptoms 38–40.  High insulin sensitivity is generally taken as a good sign. But under 

certain circumstances, for example, exogenous insulin treatment for type 1 diabetes, high 

insulin sensitivity can cause over-corrected blood glucose (hypoglycemia) by miscalculated 

insulin dosing.  

      Over the decades, extensive studies have been conducted surrounding the quantification 

and qualification of insulin sensitivity. The gold standard for measuring the whole-body insulin 

sensitivity is the hyperinsulinemic-euglycemic clamp 41 in which the plasma insulin concentration 

is raised to a plateau and maintained at that level while the glucose plasma concentration is 

maintained at euglycemic level. The insulin sensitivity is calculated based on the historical 

insulin infusion and blood glucose concentration measurements. Intravenous glucose tolerance 

tests (IVGTT) 42 and oral glucose tolerance tests (OGTT) 43 are two alternative methods. In IVGTT, 

a single IV injection of glucose is given to the subject and the plasma glucose and insulin 

concentrations are measured and recorded during the test; in OGTT, the IV injection of glucose 

is replaced by an oral glucose dose. For IVGTT, the inulin sensitivity is obtained by fitting the 

minimal model (equation 2.6-7) to the collected data: 

ܫܵ = ଶ݌ଷ݌ ܸ (2.8)

      While for OGTT, additional models (gastrointestinal compartments, equation 2.9 for instance) 

are needed to account for the glucose flow from oral to the plasma. The expanded parameter 

set will add complexity to the identification process.  
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ܳଵሶ (ݐ) = −݇ఛ ∙ ܳଵ(ݐ) + ݈݉݁ܽ ܳଶሶ (ݐ) = ݇ఛ ∙ ܳଵ(ݐ) − ݇௔௕௦ ∙ ܳଶ(ݐ) (2.9)

 

 

Figure 3: Meal model described by equation 2.9. 
 

      Figure 4 shows another form of meal model which contains two compartments (ܳଵand ܳଶ) 

corresponding to fast absorption and slow absorption respectively. The rate of plasma glucose 

appearance is the combination of the two absorptions.   

ሶܳଵ(ݐ) = −ܽଵ ∙ ܳଵ(ݐ) − ܽௗ ∙ ܳଵ(ݐ) + (ݐ)ሶܳଶ(ݐ)ܯ = −ܽଶ ∙ ܳଶ(ݐ) + ܽௗ ∙ ܳଵ(ݐ)	ܴ௔(ݐ) = ܽଵ ∙ ܳଵ(ݐ) + ܽଶ ∙ ܳଶ(ݐ) (2.10)

 

 

Figure 4: Meal model described by equation 2.10: Q1 (fasting absorption) and Q2 (slow absorption). 

Ingestion ࣎࢑
࢙࢈ࢇ࢑

Ingestion ࢊࢇ
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      The assumption of constant SI during these tests is coarse and non-physiological (to a lesser 

extent in OGTT and IVGTT compared to the clamp). SI actually varies with time subject to a 

variety of factors. We will discuss in detail how to characterize this time varying parameter in 

chapter 3.  

Glucose Observation and Insulin Intervention 

Glucose Sensing 

Blood glucose self-monitoring (SMBG) is a traditional approach used to measure the blood 

glucose level by fingerstick episodically each day. It helps diabetic patients to form a better 

perception of the individualized blood glucose profile and to adjust the treatment strategies 

effectively 44,45. The advent of continuous glucose monitoring (CGM), which generates equally 

spaced readings (every 5 minutes), has further pushed the boundaries of glucose observation 

and the treatment of diabetes.  It has to be pointed out that the present CGM technique is still 

confronted with multiple challenges. Since the sensor measures the interstitial fluid glucose (IG) 

instead of capillary blood glucose, a device calibration has to be taken to compensate the 

gradient between the two sites. Also, there is a time lag for glucose to diffuse from BG to IG and 

the effect is associated with the direction of BG change. It is generally accepted that the delay is 

about 4-10 minutes 46.  On top of that, non-white additive noise further confounds the CGM 

time series.  Extensive researches have been conducted regarding the described challenges: 

device calibration to account for the gradient between capillary blood glucose and interstitial 

fluid glucose 47–49, exploration in the BG-IG time lag 50–53 and application of denoising techniques 

54–56.  

      CGM generates much more complex data than SMBG. Not surprisingly, it brings in valuable 

information that SMBG is incapable of, such as change rate of BG and the direction of change.  
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This is particularly critical for development of intensive BG control system, i.e. closed-loop 

control, also known as artificial pancreas. Kovatchev et al. reported that using CGM as a 

substitute of SMBG for insulin dosing is feasible given the sensor error is below a certain level 46. 

Insulin Delivery 

Multiple daily insulin (MDI) therapy is a widely accepted treatment of insulin dependent 

diabetes. The dosing involves long-acting insulin once or twice a day and episodic fast-acting 

insulin to compensate the meal perturbation.  Continuous subcutaneous insulin infusion (CSII),  

also known as pump therapy, has been advocated since its first clinical trial 57. Rapid-acting 

insulin is delivered precisely by a portable device called an insulin pump. The dosing involves 

two kinds: basal, active continuously, injecting small amount of insulin at short time interval (5 

minutes) and bolus, additional large amount of insulin to compensate the meal carbohydrate. 

The pump users in the United States have grown from 70,000 since 1998 to 350,000 58. MDI and 

CSII have been compared in multiple studies 59–61. 

      Subcutaneous model of insulin injection is applied (if necessary) to account for the insulin 

transportation as an extension of the minimal model. Figure 5 shows an example of insulin 

model composed of three compartments. 

(ݐ)ሶௌ஼ଵܫ = −݇ௗ ∙ (ݐ)௦௖ଵܫ + (ݐ)ሶௌ஼ଶܫ (ݐ)ܬ = −݇ௗ ∙ (ݐ)௦௖ଶܫ + ݇ௗ ∙ (ݐ)ሶ௣ܫ (ݐ)௦௖ଵܫ = −݇௖௟ ∙ (ݐ)௣ܫ + ݇ௗ ∙ (2.11) (ݐ)௦௖ଶܫ
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Figure 5: Subcutaneous model of insulin injection described by equation 2.11. 
 

2.4 BG Forecasting and Control 

The advent of continuous glucose monitoring opens a door to more advanced treatment of 

diabetes. It has been pushing forward the intensive treatment of type 1 diabetes and thanks to 

it, here approaches artificial pancreas, an integrated system which attempts to “close the loop” 

through connections to third party devices (continuous glucose monitoring and insulin pump) 

aimed at dispensing the diabetics patients from cognitive concern of insulin dosing (Figure 6). 

The development of artificial pancreas is an interdisciplinary subject that spans fields such as 

physiological modeling, signal processing, control theory and health care. This dissertation is 

focused on the how to characterize the parameter uncertainties in the insulin-glucose system 

for improving state estimation, prediction and control. 

2.4.1 Short-term BG Forecasting and Closed-loop Control 

As we discussed in section 2.3, the advancing CGM and pump technologies have unleashed the 

development of closed-loop control for insulin dependent diabetes. In the regime of artificial 

pancreas, the intensive control signal (dosing insulin) is adjusted every 5 minutes. For a healthy 

body, the blood glucose responds to pulsatile secretion of insulin in 5 to 15 minutes 62. However, 

Injection ࢊ࢑
ࢊ࢑
࢒ࢉ࢑
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2.4.2 Long-term BG Forecasting and Open-loop Control (Semi-Auto Control) 

The other side of the coin is the open-loop control (or semi-auto control) which is built above 

the safety layer.  The algorithms that have been tested and reported are Proportional Integral 

Derivative (PID) or Model Predictive Control (MPC). The controller in this level usually computes 

the bolus insulin delivery that is supposed to compensate the blood glucose for a long time scale 

depending on the length of the control window. Considering the pronounced inter-individual 

variability reflected in this scale, the leverage of the average model is minimized. Therefore, 

development of a robust individual specific model that is capable of projecting long-term blood 

glucose concentration becomes one of our priorities. The details of how to improve the 

parameter estimation as well as the process of the individual controller calibration will be 

discussed in chapter 6.  

2.5 Diabetes Simulator 

Compared to the minimal model, maximal models are composed of a large number of equations 

and parameters, useful for investigating insulin-glucose dynamics as well as evaluating the 

treatment strategies in preclinical studies. In 2008, a type 1 diabetes simulator 64 co-developed 

by University of Virginia and University of Padova, Italy was accepted by the Food and Drug 

Administration (FDA) as a substitute to animal trials for the preclinical testing of open-loop and 

closed-loop control strategies of diabetes. The simulator is equipped with 100 adults, 100 

children and 100 adolescents (Table 2).  The in-silico cohort spans the observed variability of the 

general T1DM population. Each subject is a complex entity of 26 individual parameters that 

govern 13 first-order differential equations (Table 1 and Figure 7) 65.  
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      In addition, virtual Continuous Glucose Monitoring (CGM) sensor and insulin pump were 

modeled and implemented in the simulation platform that enabled the testing with 

subcutaneous insulin delivery with or without the sensor data. The simulator was designed in a 

way that different combinations of meal pattern and insulin dosing plan can be pre-defined in a 

“scenario” file. Such a platform helps to test the stability of control algorithms in extreme 

circumstances.  A new version of the simulator (S2013) was submitted to FDA with improved 

glucose kinetic in hypoglycemia as well as glucagon kinetics being incorporated 66. 

Table 1: In-silico subject described by 13 differential equations ܩ௣ሶ = −݇ଶ ∙ ௣ܩ + ݇ଵ ∙ ௧ܩ − ௜ܷ௜ − ௧ܧ + ݇௣ଵ − ݇௣ଶ ∙ ௣ܩ − ݇௣ଷ ∙ ௗܫ + ݂ ∙ ݇௔௕௦ ∙ ܳ௚௨௧ܹܤ  

௧ሶܩ = −݇ଵ ∙ ௧ܩ + ݇ଶ∙ܩ௣ − ( ௠ܸ଴ + ௠ܸ௫ ∙ ௠଴ܭ௧ܩ(ܺ + ௧ܩ  

௦௖ሶܩ = −݇௦௖(ܩ௦௖ − ௣ܸ௚ܩ ௣ሶܫ ( = −(݉ଶ + ݉ସ) ∙ ௣ܫ + ݉ଵ ∙ ௟ܫ + ݇௔ଵ ∙ ௦௖ଵܫ + ݇௔ଶ ∙ ௟ሶܫ ௦௖ଶܫ = −(݉ଵ + ݉ଷ) ∙ ௟ܫ + ݉ଶ ∙ ଵሶܫ ௣ܫ = −݇௜(ܫଵ − ௗሶܫ (௣ܸ௜ܫ = −݇௜(ܫௗ − ଵ) ሶܺܫ = ܺ)ଶ௛݌− − ௣ܸ௜ܫ) −  ((௕ܫ
௦௖ଵሶܫ = − ݇ௗ ∙ ௦௖ଵܫ − ݇௔ଵ ∙ ௦௖ଵܫ + ௦௖ଶሶܫ ܹܤ(ݐ)ܬ = ݇ௗ ∙ ௦௖ଵܫ − ݇௔ଶ ∙ ௦௖ଶ ܳ௦௧௢ଵሶܫ = −݇௚௥௜ ∙ ܳ௦௧௢ଵ + ௦௧௢ଶሶܳ (ݐ)ܯ = − ݇௘௠௣௧ ∙ ܳ௦௧௢ଶ + ݇௚௥௜ ∙ ܳ௦௧௢ଵ ܳ௚௨௧ሶ = ݇௔௕௦ ∙ ܳ௚௨௧ + ݇௘௠௣௧ ∙ ܳ௦௧௢ଶ 
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Table 2: Physiological parameters of the in-silico patients 
 Adults Adolescents Children 

Parameter Mean(SD) Min Max Mean(SD) Min Max Mean(SD) Min Max 

Weight(kg) 79.7(12.8) 52.3 118.7 54.7(9.0) 37.0 88.7 39.8(6.8) 27.6 60.6 

Insulin(U/day) 47.2(15.2) 21.3 98.4 53.1(18.2) 22.6 141.5 34.6(9.1) 17.6 56.1 

Carb ratio (g/U) 10.5(3.3) 4.6 21.1 9.3(2.9) 3.2 19.9 14.0(3.8) 8.0 25.5 

       

 

Figure 7: Compartments of the simulator models and signal flow 
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The simulator is developed in Simulink@Matlab.  Figure 8 shows the interface of the latest 

version. “Load Scenario” block is for users to pick a pre-defined test scenario or create a new 

scenario through GUI. “Select Subject” block provides handy functionalities to select in-silico 

patient(s) among 3 groups: adults, adolescents and children. “Hardware” block is designed for 

testing control algorithms using third party devices (insulin pump or/and CGM). “Pre-

test/screening” block provides quick access to simulations of standard clinical test and 

“Outcomes” block is where users choose the output form of the simulated results.  

 

Figure 8: Type 1 simulator interface. 
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A Simulation Example 

As an illustration of the use of the simulation environment, one simple simulation example is 

given here.  100 in-silico adults were chosen and for each subject, a meal with 0.8 gram/kg 

amount of carbohydrates was served 1 hour after the beginning of the simulation. 

Corresponding bolus computed based on subject’s “carbohydrates: insulin” ratio was also 

provided. The entire simulation lasted 16 hours. Figure 9 shows the simulated BG traces of all in-

silico adults. 

Figure 9: Open-loop simulations of 100 in-silico adults: one meal and the corresponding bolus provided 
      

       In this dissertation, both in-vivo and in-silico data were exploited.  Arguably, either cannot 

be replaced completely by the other. The simulation approach provides a fast way to test 

extremes and rule out inappropriate scenarios but it can never guarantees the consistency of 

performance from in-silico to in-vivo. 
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Chapter 3. Dynamic Parameter 
Uncertainties Tracking in the Insulin-
Glucose System – Estimation of Insulin 
Sensitivity 
 

Considering the fact that it is impossible to match every single parameter to the in-vivo 

biomedical data, lumping the parameter set has become a necessity.  Simple first-order time-

invariant model is beneficial under certain circumstances, however, if a substantial amount of 

systematic residuals cannot be accounted for, introducing nonlinearity or/and time-varying 

parameters is indispensable.  A consequence it brings then is the difficulty of parameter tracking.  

One coping solution is recursive least-square algorithm.  

Refer  equation 3.1-5 to 28: if a system can be described as follows ܺ(ݐ) = ,ݐ൫ܪ ݐ)ܺ − 1), ,(ݐ)ݕ (ݐ)෠ߠ ൯(ݐ)ݑ = ℎ(ܺ(ݐ)) (3.1)

a recursive expression of parameter set  ߠ෠(ݐ) is of form: ߠ෠(ݐ) = ݐ)෠ߠ − 1) + ,(ݐ)ܺ)௧ܳఏߛ ,(ݐ)ݕ (ݐ)ܺ ((ݐ)ݑ = ݐ)ܺ − 1) + ݐ)ܺ)௧ܳ௑ߤ − 1), ,(ݐ)ݕ (3.2) ((ݐ)ݑ

The recursive least-square algorithm tries to obtain ߠ෠(ݐ) by solving the minimization problem 

(equation 3.3) which assigns weight (ݐ)ߚ, ݇)) to the residuals. 
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(ݐ)෠ߠ = ఏ݊݅݉݃ݎܽ ෍ݐ)ߚ, (݇)ݕ](݇ − ଶ௧[ߠ(݇)்߮
௞ୀଵ  (3.3)

A time-varying system then can be formalized by a treatment of  ݐ)ߚ, ݇) such as equation 3.4 

which means the older a measurement is taken, the less a weight is assigned.   

,ݐ)ߚ ݇) = ௧ି௞ (3.4)ߣ

The tracking of ߠ෠(ݐ) becomes:  

(ݐ)෠ߠ = ݐ)෠ߠ − 1) + ݐ)ܲ − ߣ(ݐ)߮(1 + ݐ)ܲ(ݐ)்߮ − (ݐ)߮(1 (ݐ)ݕ] − ݐ)෠ߠ்߮ − 1)] 
(ݐ)ܲ = ߣ1 ݐ)ܲ] − 1) − ݐ)ܲ − ݐ)ܲ(ݐ)்߮(ݐ)߮(1 − ߣ(1 + ݐ)ܲ(ݐ)்߮ − (ݐ)߮(1 ] 
 

(3.5)

The term ߣ is usually called “forgetting factor”. The larger it is, the more difficult to track the 

parameter, because the corresponding time constant gets larger. The choice of the magnitude 

of ߣ  plays an important role in balancing the parameter tracking and the noise sensitivity.  

      The archetypal described above have been further developed to adapt to different 

biomedical system.  We use Avanzolini’s publication in 1997 as an illustrative example 67. He and 

his colleagues developed a new approach for on-line tracking of respiratory mechanical 

parameters. The respiratory system in artificial ventilation was expressed by a first-order 

lumped parameter model (equation 3.6). 

௧ܲ௣(ݐ) = (ݐ)݂(ݐ)ܴ + (ݐ)ݒ(ݐ)ܧ + (3.6) ܭ

௧ܲ௣(ݐ)  was transpulmonary pressure, ݂(ݐ) was ventilatory flow, (ݐ)ݒ was the lung volume 

change, ܭ  was the calibration point, ܴ(ݐ)  and (ݐ)ܧ  were time-varying parameters 

corresponding to tissue viscosity and lung elastance respectively.  By incorporating the recursive 
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analysis of mean and standard deviation of the parameters, a common characteristic constant 

for the forgetting factor (ߣ ) was obtained and therefore a good compromise between 

meaningful parameter estimates and model robustness had been achieved. 

      As we discussed in section 2.3, the dynamic of the insulin-glucose system is often described 

by a highly lumped parameter model. Some of the time-varying parameters play a critical role in 

the insulin-glucose interaction. An online parameter tracking technique is therefore particularly 

desirable.   

      Insulin Sensitivity, the index that describes the effectiveness of insulin reacting to glucose, is 

one of the most important parameters. It has been the focus of many studies over the last four 

decades. In the late 1970’s, DeFronzo proposed a hyperinsulinemic-euglycemic clamp technique 

for measuring the whole-body insulin sensitivity, which  turned into the gold standard for SI 

quantification in the hospital setting 41. Intravenous glucose tolerance tests (IVGTT) 42 and oral 

glucose tolerance tests (OGTT) are two alternatives in which a predetermined amount of 

designated of glucose is dosed intravenously (IV) or orally. The oral minimal model is a useful 

tool for SI estimation based on OGTT data 43,68–70. Albeit effective and robust, these traditional 

techniques do require subjects to be in the inpatient clinical setting either with IV lines attached 

or enduring multiple venipunctures. They are invasive to the patients and are also disruptive to 

T1DM patients’ daily insulin treatment in the home setting.  

      The advancement of Continuous Glucose Monitors (CGM) and insulin pumps has significantly 

changed glucose management in T1DM. It also shed light onto the study of SI quantification. 

Schiavon proposed a method to estimate insulin sensitivity using the pump and CGM data 71. 

The liberation from mandatory measurements of plasma glucose and insulin concentration has 

opened the door to convenient access to SI for Type 1 diabetics in daily life. 
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      One difficulty with the traditional techniques is that SI is treated as a time invariant 

physiological parameter (at least during the test process: about 2 hours for hyperinsulinemic-

euglycemic clam and about 4-7 hours for IVGTT and OGTT). However, studies have shown that SI 

does vary significantly in response to many factors; among the most common are circadian 

rhythm 72, physical activity 73, dietary habits 74, and illness or stress. Pillonetto et al. proposed a 

new dynamic insulin sensitivity index to tackle this issue, reporting that the dynamic SI was 

more precise than the regular SI in patients who had slow insulin action 75. Lin and her 

collaborators showed  that the first order estimate of insulin sensitivity could be obtained 

through stochastic modeling 76. 

      The purpose of this study is to propose a new method to track insulin sensitivity utilizing 

CGM and pump data and validate it against the gold standard. 

Data 

After signed informed consent, thirty-two subjects (17 females, 15 males) with type 1 diabetes 

(Mean±SD: age=44±11 yr, body weight=78.4±17.5 kg, BMI=26.6±4.7 kg/m2, A1c=7.3±1.1) 

completed the phase 2 (IRB-HSR#15131) study designed to investigate the insulin sensitivity and 

counterregulatory function. The subjects had been using an insulin pump for at least six month 

prior to the study. Rapid-acting insulin (lispro) was provided for the subjects who did not use 

such insulin before. Aside from a screening visit, females were required to pay two visits to the 

hospital and males were required one visit. On the visiting days, the subject was admitted to the 

research center at approximately 1600 hours. Dinner and insulin bolus were provided around 

1700 hours.  A meal test (mixed nutrition drink, 41 gram) started at 0800 hours. Blood samples 

were collected at -120, -60, -30, -20, -10, 0 5, 10, 15,20, 30, 40, 50, 60, 75, 90, 120, 150, 180, 210 
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and 240 minutes for C-peptide, insulin and glucose. The patients were required to wear CGM 

during at least one visit.  

3.1 Standard Methods and KF Method for SI Quantification 

Including the new insulin index ܵܫ௄ி proposed in this manuscript, we computed four SI indices 

based on the mixed meal test: a) ܵܫோ௔, published by  Dalla Man et al70 served as the control 

group, b) ܵܫ௠௠, by oral glucose minimal model, referring to Dalla Man 77, c)  ܵܫ௦௣, published by 

Schiavon [4] and d) ܵܫ௄ி. Different treatments of blood glucose appearance (ܴ௔) and plasma 

insulin concentration (ܫ) would be taken as the inputs. 

Standard Methods 

a) Insulin Sensitivity from Oral Glucose Minimal Model (ܵܫோ௔) 

Referring to Dalla Man 70, the insulin sensitivity as well as blood glucose appearance, ܴ௔	௢௚௧௧  was 

derived by oral glucose minimal model. ܴ௔	௢௚௧௧ was defined as a piece-wise linear function: 

ሶ(ݐ)ܩ = −[ܵீ + [(ݐ)ܺ ∙ (ݐ)ܩ + ܵீ ∙ ௕ܩ + ܴ௔ ௢௚௧௧(ࢻ, ܸ(ݐ , (0)ܩ = ௕ (3.7)ܩ

ሶ(ݐ)ܺ = ଶ݌− ∙ (ݐ)ܺ + ଷ݌ ∙ (ݐ)ܫ] − ,[௕ܫ ܺ(0) = 0 (3.8)

ܴ௔	௢௚௧௧(ఈ,௧) = ൝ߙ௜ିଵ + ௜ߙ − ௜ݐ௜ିଵߙ − ௜ିଵݐ ݐ) − ,(௜ିଵݐ ݎ݁݌ ௜ିଵݐ ≤ ݐ ≤ ௜ݐ ݅ = 1…7		0,						 																										 ݁ݏ݅ݓݎℎ݁ݐܱ  (3.9)

ோ௔ܫܵ = ଶ݌ଷ݌ ∙ ܸ (3.10)

 

The parameter set to be estimated was [݌ଶ, ,ଷ݌  ௕ were set to the values at theܫ ௕ andܩ .[ࢻ

beginning of the tolerance test (t=0). ܵீ  =0.02. 
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b) Insulin Sensitivity from Extended Minimal Model (ܵܫ௠௠) 

An alternative to the piece-wise linear ܴ௔	௢௚௧௧(ߙ,  from a meal transport (ݐ)	was a derived ܴ௔ (ݐ

model which was composed of two (fast and slow) glucose absorption compartments 

(ܳଵ	ܽ݊݀	ܳଶ), referring to Dalla Man 77. 

ሶ(ݐ)ܩ = −[ܵீ + [(ݐ)ܺ ∙ (ݐ)ܩ + ܵீ ∙ ௕ܩ + ܴ௔ ܸ(ݐ) , (0)ܩ = ௕ (3.11)ܩ

ሶ(ݐ)ܺ = ଶ݌− ∙ (ݐ)ܺ + ଷ݌ ∙ (ݐ)ܫ] − ,[௕ܫ ܺ(0) = 0 (3.12)

ܳଵ(ݐ)ሶ = −(ܽଵ + ܽௗ) ∙ ܳଵ(ݐ) + (3.13) (ݐ)ܯ

ܳଶ(ݐ)ሶ = ܽௗ ∙ ܳଵ(ݐ) − ܽଶ ∙ ܳଶ(ݐ) (3.14)

ܴ௔	(ݐ) = ܽ1 ∙ (ݐ)1ܳ + ܽ2 ∙ (3.15) (ݐ)2ܳ

 

The parameter set to be estimated was [݌ଶ, ௕ܩ .[ଷ݌  and ܫ௕  were set to the values at the 

beginning  of the tolerance test (t=0). ܵீ  =0.02. 

௠௠ܫܵ = ଶ݌ଷ݌ ∙ ܸ (3.16)

 

c) Insulin Sensitivity from Integration of the Minimal Model (ܵܫ௦௣) 

Referring to Schiavon [4], by integration of the minimal model and with appropriate 

computational approximation of blood glucose and insulin concentration from CGM and pump 

data, the insulin sensitivity was  

(݈ܽ݁݉)௦௣ܫܵ = ܹܤ(݈ܽ݁݉)ܥ݋ܣ − ܫܼܧܩ ∙ (ܯܩܥ∆)ܥܷܣ − ܸீ (௘௡ௗݐ)ܯܩܥ]∙ − ൤[(௠௘௔௟ݐ)ܯܩܥ ܮܥ1 ׬ ௧೐೙೏௧್ೌೞೌ೗ݐ݀(ݐ)݈ܽݏܾܽ + ∑ ௧೐೙೏௧ೖୀ௧೘೐ೌ೗ܮܥ(௞ݐ)ݏݑ݈݋ܾ + (௠௘௔௟ݐ)ܤܱܫ − ൨(௘௡ௗݐ)ܤܱܫ ∙ ൤ݐ(|ܯܩܥ∆|)ܥܷܣ௘௡ௗ − ௠௘௔௟ݐ ൨ (3.17)
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Kalman Filtering Method 

d) Insulin Sensitivity by Kalman Filtering (ܵܫ௄ி) 

Kalman Filtering possesses a favorable feature of state tracking by tunable noise filtration. It is 

generally accepted that SI is considered a time-invariant constant during clamp, IVGTT and OGTT. 

Through transforming the time-invariant physiological parameter SI into a time-varying state, 

online SI estimation by KF computation became applicable. The transformation was 

accomplished by adding an extra first order SI dynamic to the nominal minimal model. The 

feature of the dynamic was to drive the SI state to the equilibrium value  ܵܫ௕  in a finite time 

period (characteristic time = 60 minutes).   

      A preliminary application of this approach produced occasional incidences of negative SI, 

inspiring the logarithmic transformation of blood glucose state (log	( ீீ್ )), remote insulin action 

(log	( ௑௑್)) and insulin sensitivity (log	( ௌூௌூ್)) influenced by the nonlinear structure of the minimal 

model. It is worthwhile to point out that the multiplicative term ܩ ∙ ܺ turned into an additive 

component. The insulin-glucose model embedded in KF therefore became: 

ێێۏ
ێێێ
ۍ ln	(ܩ(݇ + ܾܩ(1 )
ln	(ܺ(݇ + 1)ܾܺ )
ln ቆܵܫ(݇ + ܾܫܵ(1 ቇۑۑے

ۑۑۑ
ې = ൥−݌ଵ ଶ݌− ଷ0݌− ସ݌− 00 0 −1/߬ௌூ൩ ێێۏ

ێێێ
ۍ ln(ܾܩ(݇)ܩ )
ln	(ܺ(݇)ܾܺ )
ln ቆܾܵܫܵ(݇)ܫ ቇۑۑے

ۑۑۑ
ې + ൥݌଺ 00 ସ0݌ 0 ൩ ൤ܴ௔(݇)ܫ(݇) ൨ (3.18)

 

      ܴ௔(݇) and ܫ(݇) represented blood glucose appearance and plasma insulin respectively, this 

plus the measurement were taken as inputs into the KF. Without direct access, ܴ௔(݇) and ܫ(݇) 
were computed by meal and insulin transport compartments separately. This “feed-forward 
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modules” idea was inspired by Grossman 78. Figure 10 shows the structure of the KF 

implementation. 

 

 

Figure 10: Feed-forward design of Kalman Filtering.  

 

meal compartment: 

൤ܳଵ(݇ + 1)ܳଶ(݇ + 1)൨ = ൤−(ܽଵ + ܽௗ) 0ܽௗ −ܽଶ൨ ൤ܳଵ(݇)ܳଶ(݇)൨ + ቂ10ቃ(3.19) (݇)ܯ

ܴ௔(݇) = ܽଵ ∙ ܳଵ(݇) + ܽଶ ∙ ܳଶ(݇) (3.20)

 

The model had two compartments representing the fast (Qଵ) and slow (Qଶ) meal absorption 

respectively. The blood glucose appearance was the sum of the two. 

insulin compartment: 

቎ܫ௦௖ଵ(݇ + ݇)௦௖ଶܫ(1 + ݇)௣ܫ(1 + 1) ቏ = ൥−݇ௗ 0 0݇ௗ −݇ௗ 00 ݇ௗ −݇௖௟൩ ቎ܫ௦௖ଵ(݇)ܫ௦௖ଶ(݇)ܫ௣(݇) ቏ + ൥100൩ (3.21) (݇)ܬ

(݇)ܫ = ܫܸ(݇)௣ܫ ∙ ܹܤ − ௕ (3.22)ܫ

VI was the insulin volume of distribution. 
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J 

M ێێۏ
ێێێ
ۍ ln	( ௕)෣ܩܩ
ln	( ܺܺ௕)෣
ln	( ௕)෣ܫܵܫܵ ۑۑے

ۑۑۑ
ې
 

I

ܴ௔
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      The model was discretized in 5-minute intervals to match the frequency of CGM collection. 

We started the KF at the beginning of the admission day at 1600 hours and kept it active until 

1300 hours the next day. SIs during the test (0800-1200 hours) were collected and averaged as 

the ܵܫ௄ி. The initial values of KF states were set to [0	0	0]′. 
Kalman Filtering setting: 

The model embedded in KF was discretized as a 5-minute discrete system in state-space: 

ێێۏ
ێێێ
ۍ ln ቆܩ(݇ + ௕ܩ(1 ቇ
ln ቆܺ(݇ + 1)ܺ௕ ቇ
ln ቆܵܫ(݇ + ௕ܫܵ(1 ቇۑۑے

ۑۑۑ
ې
= ൦−݌ଵ ଶ݌− ଷ0݌− ସ݌− 00 0 − 1߬ௌூ൪ ێێۏ

ێێێ
ۍ ln ቆܩ(݇)ܩ௕ ቇ
ln ቆܺ(݇)ܺ௕ ቇ
ln ቆܵܫܵ(݇)ܫ௕ ቇۑۑے

ۑۑۑ
ې
+ ൦݌଺ 00 ܫସܸ݌ ∙ 0ܹܤ 0 ൪ ൤ܴ௔(݇)ܫ௣(݇) ൨ +  [݇]ݓܩ

 

(3.23)

ቈln ቆܾܩ(݇)ܩ ቇ቉ = [1 0 0]
ێێۏ
ێێێ
ۍ ln ቆܾܩ(݇)ܩ ቇln ቆܺ(݇)ܾܺ ቇln ቆܾܵܫܵ(݇)ܫ ቇۑۑے

ۑۑۑ
ې
+ [݊]ݑܦ + [݊]ݓܪ + (3.24) [݇]ݒ

 

in which ݓ[݊] and ݒ[݊] standed for processing noise and measurement noise respectively. The 

tuning factors were defined as noise covariance as: (்[݊]ݓ[݊]ݓ)ܧ = (்[݊]ݒ[݊]ݒ)ܧ ,ܳ = (்[݊]ݒ[݊]ݓ)ܧ  ,ܴ = ܰ. 

By solving the discrete Riccati equation, the gain = ்ܥܲܣ) + ഥܰ)(்ܥܲܥ + തܴ)ିଵ , where 

തܴ = ܴ + ܰܪ + ்ܪ்ܰ + (3.25) ்ܪܳܪ

ഥܰ = ்ܪܳ)ܩ + ܰ) (3.26)
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      Details of matrices and covariance are listed in Table 3. We assumed that the analogous 

insulin action	ln	( ௑௑್) possessed no process noise. The choices of Q/R were made considering the 

expected magnitude of variation in the estimation of physiological states (G from 40 to 600 

mg/dl and SI from 1e-4 to 1e-2 1/min per mU/l). We allowed that ln	( ௌூௌூ್) could vary by 100 

percent.   

 

Table 3: Noise covariance setting of KF ܪ ܩ ܳ ܴ ܰ 

൥0.05 0 00 0 00 0 1൩ [0	0	0] ൥1 0 00 1 00 0 1൩ 0.5 [0	0	0]′ 
 

3.2 Validation of KF Method against Standards 

The validation has two components:  

Validation using YSI 

41 test traces were available for analysis (17 females with 2 visits and 7 males with 1 visit). We 

used ܵܫோ௔  as the baseline group and the obtained ܴ௔	௢௚௧௧  was applied to several 

implementations by other methods. The YSI were interpolated in 5-minute intervals as the 

measurement input of KF.  Based on different combinations of feed-forward inputs, we obtained 

four ܵܫ௄ி: i) ܵܫ௄ி_ூ௣_ோ௔, using plasma insulin concentration and ܴ௔	௢௚௧௧ as the inputs of KF, ii) ܵܫ௄ி_ௌொ௃_ோ௔, applying subcutaneous insulin compartment and using ܴ௔	௢௚௧௧, iii) ܵܫ௄ி_ூ௣_ெ, using 
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plasma insulin concentration and applying meal compartment, iv) ܵܫ௄ி_ௌொ௃_ெ, applying both 

subcutaneous insulin compartment and meal compartment.  

For comparison, three ܵܫ௠௠ were obtained: i)  ܵܫ௠௠_ௌொ௃_ோ௔, ii) ܵܫ௠௠_ூ௣_ெ, iii)	ܵܫ௠௠_ௌொ௃_ெ. We 

computed the correlation of these 7 SIs to ܵܫோ௔. 

Validation using CGM 

Because of missing data, we ended up with 6 test traces with complete CGM as well as other 

recordings.  ܵܫ௄ி_ௌொ௃_ெ_஼ீெ was computed applying both subcutaneous insulin compartment 

and meal compartment and using 5-minute CGM sampling data as the measurement input of KF. 

For comparison, ܵܫ௦௣ was also computed. We validated ܵܫ௄ி_ௌொ௃_ெ_஼ீெ and ܵܫ௦௣ against ܵܫோ௔  

and ܵܫ௠௠ respectively. 

Statistical Analysis 

Data are presented as Mean±SE unless otherwise noted. Comparison between implementations 

was conducted using standard T-tests with a significance level of 5%. 

  



31 
 

Results and Discussions 

Validation using YSI 

The correlations of ܵܫ௄ி_ூ௣_ோ௔, ܵܫ௄ி_ௌொ௃_ோ௔, ܵܫ௄ி_ூ௣_ெ and ܵܫ௄ி_ௌொ௃_ெ to ܵܫோ௔ were 0.80 (p<0.01), 

0.76 (p<0.01), 0.81 (p<0.01) and 0.80 (p<0.01); the correlations of ܵܫ௠௠_ௌொ௃_ோ௔, ܵܫ௠௠_ூ௣_ெ, 

and	ܵܫ௠௠_ௌொ௃_ெ to ܵܫோ௔ were 0.77 (p<0.01), 0.84 (p<0.01), and 0.77 (p<0.01). Refer to Figure 11, 

Figure 12, Figure 13, Figure 14. 

 

Figure 11: SI_KF_Ip_Ra against SI_Ra (R=0.80, p<0.01). 
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Figure 12: SI_KF_SQJ_Ra against SI_Ra (R=0.76 , p<0.01) and SI_mm_SQJ_Ra against SI_Ra (R=0.77, p<0.01). 
 

 
 
 

 

Figure 13: SI_KF_Ip_M against SI_Ra (R=0.81 , p<0.01) and SI_mm_Ip_M against SI_Ra (R=0.84, p<0.01). 
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Figure 14: SI_KF_SQJ_M against SI_Ra (R=0.80 , p<0.01) and SI_mm_SQJ_M against SI_Ra (R=0.77, p<0.01). 
 

 

 

Validation using CGM 

The correlations of ܵܫ௄ி_஼ீெ ௦௣_஼ீெܫܵ ,  to ܵܫோ௔  were 0.91 (p<0.05) and 0.81 (p<0.05); The 

correlations of ܵܫ௄ி_஼ீெ ௦௣_஼ீெܫܵ ,  to ܵܫ௠௠  were 0.89 (p<0.05) and 0.87 (p<0.05). The 

correlation of  ܵܫ௄ி_஼ீெ  and ܵܫ௦௣_஼ீெ   was 0.84 (p<0.05). Refer to Figure 15. 
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(A) 

 

(B) 

Figure 15: SI validation using CGM: A) SI_KF  and  SI_sp against SI_Ra (R=0.91, p<0.05 and R=0.81, p<0.05), B) SI_KF 
and SI_sp against SI_mm (R=0.89, p<0.05 and R=0.87, p<0.05). 

 

y = 0.7534x

y = 0.9664x

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

2.0E-04 4.0E-04 6.0E-04 8.0E-04 1.0E-03 1.2E-03 1.4E-03
SIRa

SI_KF_CGM SI_sp_CGM

Linear (SI_KF_CGM  ) Linear (SI_sp_CGM )

y = 0.736x

y = 0.9476x

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

0.0E+00 5.0E-04 1.0E-03 1.5E-03
SImm

SI_KF_CGM SI_sp_CGM

Linear (SI_KF_CGM  ) Linear (SI_sp_CGM )



35 
 

      The KF’s iteration frequency was determined by the sampling rate of CGM (Dexcom SEVEN® 

PLUS). In order to match the validation process using CGM, the interpolated YSI with 5-minute 

intervals was taken as the measurement input of the KF.  The validation process of KF method 

using the blood glucose concentration had four components: as shown in Figure 11, validation 

of the core model residing in KF structure; Figure 12 validated the subcutaneous insulin model; 

Figure 13 validated the gut model; Figure 14 validated the comprehensive structure. All four of 

these were well correlated with the counterparts (ܵܫோ௔) obtained by applying Dalla Man 70. For 

comparison, the corresponding ܵܫ௠௠ was computed by applying a similar treatment of  ܴ௔(݇) 
and ܫ(݇). The correlation of ܵܫ௠௠  with ܵܫோ௔  was also satisfactory. On average, ܵܫ௠௠  had 

smaller values than ܵܫ௄ி  and both ܵܫ௠௠ and ܵܫ௄ி  were lower than ܵܫோ௔, referring to Figure 16. 

Interestingly, the application of subcutaneous insulin model imposed an impact on ܵܫ௄ி  and ܵܫ௠௠ (Figure 16) such that the magnitudes of both indices were decreased on average. We 

found that the measurement of plasma insulin concentration in some subjects was 

underestimated.  The model-derived component had greater value, which led to the decreased 

insulin sensitivity.   

      The emergence of continuous glucose monitoring has changed blood glucose management 

for diabetics. It has been proved that CGM can improve glycemic control in T1D adults 79. The 

closed loop control of diabetes has been pushing the boundaries of CGM applications 80,81. In 

this study, we further took advantage of CGM, proposing a technique that enables quick access 

to a dynamic physiological parameter, SI. The validation showed a significant correlation of ܵܫ௄ி  

with ܵܫோ௔ and ܵܫ௠௠  respectively (Figure 15). The ܵܫ௦௣ proposed by Schiavon [4] also correlated 

well with ܵܫோ௔ and ܵܫ௠௠. On average, ܵܫ௦௣ was 45% higher than ܵܫ௄ி (p<0.05). It should be 

pointed out that we did not include the interstitial compartment to account for the time lag 

from plasma for glucose. The CGM readings were taken as the direct measure of blood glucose 
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concentration. Research has been intense on the time lag issue 82–84. A recent study by Basu et al 

51 found that the time lag of glucose appearance from the intravascular to the interstitial 

compartment was less than 10 minutes. It should not be a considerable barrier to our technique. 

However, considering the limited population size in our analysis, further studies with larger 

cohort are necessary.   

Figure 16: SI (Mean±SE) by Kalman Filter and minimal model methods. 
 

      A negative SI implies that increased insulin elevates the blood glucose concentration which 

should be avoided. The original impetus for introduction of the LOG model was to tackle this 

issue.  It is worth noting that the logarithmic blood glucose actually possesses some preferred 

properties in constructing the glucose control objective function in risk space instead of the one 

derived from the seminal work of Kovatchev et al 85. This application is further described in 

Patek et al. 81 : the objective function in risk space allows for appropriate balance between hypo 
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and hyperglycemic risk. A dynamic insulin sensitivity also gives us the opportunity to explore the 

insulin-glucose dynamic in some special cases, for example, physical exercise. The association of 

insulin sensitivity with physical exercise has been discussed in many studies 86,87.  McMahon et al 

found that the glucose requirements were increased in a biphasic manner after a moderate-

intensity afternoon exercise for T1D 88. We are interested in applying our new technique to 

study the patterns of insulin sensitivity influenced by physical exercise.    

      Traditional methods of insulin sensitivity quantification usually require frequent and extra 

blood sampling to measure the plasma insulin and glucose concentration. In this paper, we 

propose an innovative technique, which enables online SI tracking using CGM and pump data. 

The validation of KF-generated SI against the minimal-model fitted SI showed a significantly high 

correlation. We believe this technique can push the boundaries of fast and easy access to SI as 

an auxiliary to the treatment of Type 1 diabetics in the daily life.  
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Chapter 4. Insulin Sensitivity 
Extraction – Applications 
 

4.1 Study of Insulin Sensitivity Variations during Menstrual Cycle for 

Diabetics 

The menstrual cycle plays an essential role in the sexual reproduction. It occurs in the uterus 

and ovary for the possible fertilization and implantation. The cycle length varies among females. 

An average number is 28 days 89.  Under the influence of the endocrine system, each cycle can 

be divided into three main phases: follicular phase, ovulation and luteal phase 90. In the follicular 

phase, the amount of estradiol hormone builds up gradually and plummets before the ovulation 

while the Luteinizing Hormone (LH) surges which triggers the dominant follicle to release an egg. 

After ovulation, the progesterone concentration starts to increase, preparing the body for the 

potential implantation. Without implantation occurrence or egg being fertilized, the drop of 

progesterone and estrogen causes the uterus to shed its lining. This is what we call - the 

menstruation. 

      There have been studies on the insulin sensitivity variation during menstrual cycle in T1DM 

patients. Goldner found that two of the four subjects consistently demonstrated hyperglycemia 

in the luteal phase 91 and the work by Trout showed that three of the five subjects experienced 

decline in SI but no statistical significance was found 92 by using frequently sampled intravenous 
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glucose tolerance test (FSIGT).  Pulido and his colleague reported that the mean insulin 

sensitivity decreased in the luteal phase of 12 healthy regularly menstruating women 93. More 

debate on the mechanism of how the associating hormones impose impact to the insulin-

glucose metabolism can be found in 94–96. 

      The purpose of this study was to analyze the SI in different menstrual cycle phases and to 

find a potential SI variation pattern. The hypothesis of Launchpad trial was that a subset of 

premenopausal women with T1DM would experience a decrease in insulin sensitivity during the 

second half of the menstrual cycle (luteal phase). 

Study Design 

12 T1D subjects (Mean±SD: age=33±7 

yr, TDI per kg=0.5±0.1 unit/kg, duration 

of T1D=21.1±8.2 yr, Total Daily 

Insulin=32.8±7.4 unit, BMI=25.7±2.9 

kg/m2, HbA1c=6.8%±0.7) completed 

the study (Launchpad). The inclusion 

criteria was women 18 years old or 

older with T1D on an insulin pump with 

regular cycles (20-40 days) and 

HbA1c<10%. The study included three 

consecutive menstrual cycles and the 

visit days for each cycle were 

designated in different cycle phases 

(Figure 18): subjects paid visit to hospital during early follicular, middle luteal phase and late 

 

Figure 17: Menstrual cycle and associated hormones 97. 
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luteal phase for the first and the third menstrual cycle; during early and middle follicular phase, 

ovulation, middle and late luteal phase for the second menstrual cycle. On the visiting days, 

subjects’ sex steroid assays (estradiol, progesterone, LH, follicle-stimulating hormone (FSH), 

total testosterone and sex-hormone binding globulin (SHBG)) were collected.  

 

Figure 18: Study spanned three consecutive menstrual cycles  with visiting days for each cycle designated. 
 

      The determination of the menstrual cycle phase was based on recorded dates of menses, 

ovulation prediction kits and serum assays of sex steroids.  As shown in Figure 18, the start of 

menses was tagged as day 1 and the cycle ended on day 28.  The estrogen peak and the LH spike 

were captured by validating the ovulation prediction kit. Insulin administration was downloaded 

from the pump and continuous glucose monitoring values were recorded throughout the three 

cycles. 

 

SI Quantifications and Comparison 

SI by KF method (ࡲࡷࡵࡿ) 

The technique introduced in section 3.1 d) was applied to inform SI estimation every 5 minutes. 

The KF was turned on at 10 PM and kept active for 32 hours, which spanned the whole visiting 

day.  The data points of the first 3 hours (10 PM to 1 AM) were excluded from the final analysis 

for eliminating the potential error brought by the initial condition’s impact.  
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      Nocturnal SI was extracted from the obtained SI time series: 1 AM-6 AM and 1AM-6AM the 

next day (60-360 minutes and 1500-1800 minutes in Figure 19) and the average was taken as 

the SI value of that day. SI during the day was excluded to avoid the errors introduced by 

discrepancies of our model matching to meals.  

Subject 22102 on visiting day 8 

Figure 19: Tracking of G, X and SI from 1 AM to 6 AM the next day (60 to 1800 minutes). 
 

SI by integral method (࢖࢙ࡵࡿ) 

Invented by Schiavon [4], the ܵܫ௦௣ indexing was an integral form of the minimal model (equation 

4.1).  The inputs included historical insulin administration, meal consumption and CGM values. 

This index was a proper tool to quantify the insulin sensitivity on patient’s visiting days. The 

explanation of AoC and IOB term can be found in appendix A. 
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(݈ܽ݁݉)௦௣ܫܵ = ܹܤ(݈ܽ݁݉)ܥ݋ܣ − ܫܼܧܩ ∙ (ܯܩܥ∆)ܥܷܣ − ܸீ (௘௡ௗݐ)ܯܩܥ]∙ − ൤[(௠௘௔௟ݐ)ܯܩܥ ܮܥ1 ׬ ௧೐೙೏௧್ೌೞೌ೗ݐ݀(ݐ)݈ܽݏܾܽ + ∑ ௧೐೙೏௧ೖୀ௧೘೐ೌ೗ܮܥ(௞ݐ)ݏݑ݈݋ܾ + (௠௘௔௟ݐ)ܤܱܫ − ൨(௘௡ௗݐ)ܤܱܫ ∙ ൤ݐ(|ܯܩܥ∆|)ܥܷܣ௘௡ௗ − ௠௘௔௟ݐ ൨ (4.1)

 

      Both ܵܫ௄ி  and ܵܫ௦௣were obtained for different visit days for each subject. We sorted them 

out by different cycle phases and took the average values of the three cycles. For example, as 

shown in Figure 20, we called the combination of early follicular days “phase 1”, the middle late 

follicular days “phase 2”, the ovulation “phase 3”, the early middle luteal days “phase 4” and the 

late luteal days “phase 5”.   

      The mean and standard error of insulin sensitivity of each phase was computed. Comparison 

between different phases was conducted using standard T-test with a significance level of 5%.  

 

Figure 20: Early Follicular days combined as phase 1, Early Luteal and Mid Luteal days as phase 4, Mid Late 
Follicular, Ovulation and Late Luteal days as phase 2, 3, 5. 
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Insulin sensitivity variations on visiting days (meal recorded) 

a) Nocturnal SI by KF method 

The standard T-test showed SI was decreased significantly (p=0.01) from early follicular to 

middle late luteal phase (4.6±0.5 vs. 3.9±0.9 *e-4/min per mU/l). Other pair comparisons can be 

found in Table 4. 

Table 4: Mean and standard error of SI_KF in different phases and the pair t-Tests 
phases EarlyFoll EarlyMidLut LateLut MidLateLut 

mean ± sd 
(e-4*1/min per mU/l) 

4.6± 
0.5 

4.0± 
0.9 

4.0± 
1.0 

3.9± 
0.9 

t-Test 
EarlyFoll 

vs. 
EarlyMidLut 

EarlyFoll 
vs. 

LateLut 

EarlyFoll 
vs. 

MidLateLut 
P=0.05 P=0.03 P=0.01 

 

b) SI by integration method 

The standard T-test showed SI was decreased significantly from early follicular to middle late 

luteal phase (28±19 vs. 15±6 *e-4/min per mU/l, p=0.04) and from early follicular to early 

middle luteal phase (28±19 vs. 14±7 *e-4/min per mU/l, p=0.03). The difference between the 

early follicular phase and the late luteal phase was not significant. 

 

Table 5: Mean and standard error of SI_sp in different phases and the pair t-Tests 
phases EarlyFoll EarlyMidLut LateLut MidLateLut 

mean ± sd 
(e-4*1/min per mU/l) 

28± 
19 

14± 
7 

17± 
9 

15± 
6 

t-Test 
EarlyFoll 

vs. 
EarlyMidLut

EarlyFoll 
vs. 

LateLut

EarlyFoll 
vs. 

MidLateLut
P=0.03 P=0.1 P=0.04 
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(A) 

 

(B) 

 

Figure 21:  SI (mean±SE) of early follicular phase, early middle luteal phase, late luteal phase and middle late luteal 
phase: A) SI_KF, B) SI_sp. 

 

Insulin sensitivity variations across 3 cycles 

The historical CGM and insulin data of each day across the three cycles was accessible. For those 

days without meal recordings, ܵܫ௄ி	served as an appropriate index to quantify the insulin 
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sensitivity.  We ran the KF from 10 PM to 6 AM and considered the mean value of SI estimations 

as the insulin sensitivity for that day.   

Table 6: Averaged SI before and after ovulation for each subject across 3 cycles 
1st Cycle 2nd Cycle 3rd  Cycle ܵܫ௕௘௙_ை ܵܫ௔௙௧_ை ∆(%) ܵܫ௕௘௙_ை ௔௙௧_ைܫܵ ௕௘௙_ைܫܵ (%)∆  (%)∆ ௔௙௧_ைܫܵ

4.2E-04 3.5E-04 -17.5 3.5E-04 3.4E-04 -3.9 3.9E-04 3.1E-04 -22.8
3.7E-04 3.2E-04 -15.7 3.3E-04 3.2E-04 -2.8 3.6E-04 2.6E-04 -34.8 
4.1E-04 4.2E-04 3.0 4.3E-04 4.1E-04 -4.1 3.8E-04 4.0E-04 6.6 
3.6E-04 3.4E-04 -5.0 3.5E-04 3.5E-04 -0.5 4.2E-04 3.4E-04 -25.1 
4.2E-04 3.6E-04 -17.6 3.7E-04 3.6E-04 -2.3 3.4E-04 3.2E-04 -6.2 
3.4E-04 3.7E-04 7.4 3.8E-04 4.7E-04 18.9 4.0E-04 3.6E-04 -12.1 
3.1E-04 2.2E-04 -37.7 2.5E-04 3.6E-04 29.6 4.5E-04 4.5E-04 0.0 
5.3E-04 4.9E-04 -9.1 4.9E-04 4.7E-04 -3.8 5.0E-04 4.7E-04 -6.2 
3.9E-04 3.9E-04 1.4 5.4E-04 5.0E-04 -7.3 4.1E-04 5.2E-04 21.0
4.3E-04 5.3E-04 19.2 5.0E-04 4.9E-04 -0.2 4.9E-04 4.5E-04 -7.8 
5.0E-04 4.9E-04 -1.3 4.0E-04 4.6E-04 12.2 4.4E-04 4.7E-04 7.6 
5.5E-04 4.1E-04 -35.2 3.8E-04 3.6E-04 -5.3 3.7E-04 3.7E-04 -1.5 
 

      The analysis generated 12 (subjects) by 3 (cycles) SI traces. For each trace, we computed the 

average SI before (follicular) and after (luteal) the ovulation. Table 6 lists the SI of across 3 cycles: 

26 out of 36 traces experienced decreased SI, 13 traces had absolute differences within 5% 

among which 11 underwent decreased SI, 15 traces and 8 traces had decreased SI and increased 

SI greater than 5% respectively. Figure 22 shows the histogram of SI changes before and after 

ovulation and Figure 23 plots the three groups of SI. 

 

Figure 22: Histogram of SI changes before and after ovulation. 
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Figure 23: SI  in luteal phase against SI in follicular phase. 
 

We also computed the phase-average SI across 3 cycles for each subject (refer to Figure 24). And 

the average SI variations across cycle for each group was obtained (refer to Figure 25). 

Figure 24: Cycle-averaged SI for each subject. Phase 1 to 7 corresponds to early follicular 3, early follicular 5, middle 
late follicular, ovulation, early luteal, middle luteal and late luteal respectively. 
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Figure 25: The three patterns of SI variations: A) 15 out of 36 cycles experienced decreased SI in luteal phase, B) 

13out of 36 cycles experienced unchanged SI, C) 8 out of 36 cycles experienced increased SI. 
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We substantiated the hypothesis that a subset of premenopausal women with T1DM would 

experience a decrease in insulin sensitivity during the second half of the menstrual cycle (luteal 

phase). 

      Our ultimate goal is to develop an advisory system aimed at improving the diabetes control 

in younger women experiencing BG variation related to menstrual cycle. The future work 

includes: 1) develop detection algorithms to inform the patients of abnormal BG fluctuations 

related to menstrual cycle, 2) train a model to project the BG based on the historical data and 

the menstrual cycle parameters (date of menses, average length of cycle and timing of 

ovulation), 3) design a user-friendly interface for patients to better interact with the device. 

4.2 Insulin Sensitivity and Physical Exercise  

The association between physical activity and insulin resistance has been vigorously investigated 

for many years. It is confirmed that trained subjects have more insulin resistance than untrained 

subjects 98,99. Devlin et al. reported that a bout of physical exercise improved the insulin 

sensitivity 100. The mechanism behind this has been discussed in 86,87. In 2006, McMahon et al. 

found an biphasic glucose requirement to maintain euglycemia following moderate intensity in 

adolescents with T1D 88. The impact of exercise intensity to the postprandial insulin sensitivity 

remains unclear to the society. 

Hypothesis 

In prediabetic adults, acute exercise has an effect on improving postprandial glycaemia and 

insulin sensitivity.  
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Data 

18 subjects (age 49±14; weight 94.6±21 kg; HbA1c 5.7±0.4 %; fasting BG 105±11 mg/dl; 2h 

glucose 170±32 mg/dl) completed the clinical study designed to investigate the impact of 

exercise intensity to the postprandial insulin sensitivity in prediabetes. Two levels of exercise 

were assigned: moderate-intensity exercise (MIE) and high-intensity exercise (HIE) distinguished 

by the peak ܱଶ consumption and lactate threshold (LT). MIE was characterized at LT and HIE was 

75% difference between LT and peak ܱଶ consumption. As shown in Figure 26, after 30 minutes 

from the initialization, the subject completed a 60-minute exercise (MIE or HIE). A 3-h OGTT (75 

gram) test was followed post the 60-minute recovery time period.  For the control group, the 

subject was seated for 60 minutes instead of any exercise.  Blood was sampled frequently to 

measure the blood glucose value (YSI 2700), plasma insulin concentration and C-peptide level. 

Figure 26: Timeline of the study: 1-h recovery session taken after 1-h physical exercise with a 3h-OGTT test 
followed 101. 

 

Method 

In 2005, Dalla Man 70 reported the validation process of an oral glucose minimal model based 

insulin sensitivity (ܵܫ) against clamp (ܵܫ௖௟௔௠௣). The results showed that the correlation of ܵܫ  
and ܵܫ௖௟௔௠௣ was satisfactory (r=0.81, p<0.001). We decided to apply this validated index to 

extract SI from our clinical data. In this model, ܴ௔	௢௚௧௧ was defined as a piece-wise linear 
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function and the insulin sensitivity as well as blood glucose appearance ܴ௔	௢௚௧௧  was derived by 

matching the oral glucose minimal model to the collected BG and insulin data. The parameter 

set to be estimated was [݌ଶ, ,ଷ݌   .[ࢻ

ሶ(ݐ)ܩ = −[ܵீ + [(ݐ)ܺ ∙ (ݐ)ܩ + ܵீ ∙ ௕ܩ + ܴ௔ ௢௚௧௧(ࢻ, ܸ(ݐ , (0)ܩ = ௕ (4.2)ܩ

ሶ(ݐ)ܺ = ଶ݌− ∙ (ݐ)ܺ + ଷ݌ ∙ (ݐ)ܫ] − ,[௕ܫ ܺ(0) = 0 (4.3)

ܴ௔	௢௚௧௧(ఈ,௧) = ൝ߙ௜ିଵ + ௜ߙ − ௜ݐ௜ିଵߙ − ௜ିଵݐ ݐ) − ,(௜ିଵݐ ݎ݁݌ ௜ିଵݐ ≤ ݐ ≤ ௜ݐ ݅ = 1…7		0,						 																										 ݁ݏ݅ݓݎℎ݁ݐܱ  (4.4)

ܫܵ = ଶ݌ଷ݌ ∙ ܸ (4.5)

 ଶ was the rate describing the dynamic of insulin action, p3 was the parameter governing the݌

magnitude of insulin action, ܩ was plasma glucose concentration, ܺ was the insulin action, ܵீ  

represented the glucose effectiveness that measured the glucose disposal, ܩ௕ and ܫ௕ were set to 

the values at the beginning of the tolerance test (t=0). 

Results and Discussion 

Figure 28 shows an example of the BG fitting. Across the cohort, SI was improved by 47% on the 

MIE (1.55±1.00 vs. 2.30±1.71 e4*1/min per mU/l, p<0.05) and 61% HIE (1.55±1.00 vs. 2.51±1.37 

e4*1/min per mU/l,  p<0.05) compared to the control group, respectively (Figure 27).   

      The results substantiated the hypothesis that after moderate intensity exercise and high 

intensity exercise, whole–body insulin sensitivity derived by the oral minimal model was 

improved.  Acute physical exercise has been advocated for its effect on improving insulin action.  

      The timing of exercise and meal also plays a role here in in affecting the post-prandial 

glycaemia. Consuming meals near the end of exercise was shown to inflect the insulin action 
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whereas in the 30 minutes to 3 hours’ time scale, studies have shown contradicting results 102,103. 

This work was focused on the post-prandial BG variations shortly (1 hour) after the physical 

exercise. It should be pointed out that acute physical exercise also has a prolonged impact to the 

insulin sensitivity. OGTT is a pragmatic tool for measuring insulin sensitivity in the early phase of 

exercise effect; however, ܵܫ௄ி is considered a more appropriate tool for measuring SI in both 

early and late phase of exercise effect. One of our future works is to extract SI from clinical data 

involving physical activity and identify patterns that can be exploited to help in improving 

glycemic control. 

 

 

 

Figure 27: SI (Mean±SE) derived by minimal model in Control, MIE and HIE. 
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(A) 

 

(B) 

 

(C) 

 

 Figure 28: BG fitting by OGTT model of subject008: A) control group, B) MIE and C) HIE. 
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Chapter 5. Enhancing Model-Based 
Short Term Glycemic Prediction in 
T1DM Using Tracking of Dynamic 
Parameter Uncertainties 
 

While the kinetics of insulin to reach the bloodstream vary with each formulation, it is generally 

accepted that modern rapid-acting insulins reach the bloodstream in approximately 15 minutes, 

peak at around 30 to 90 minutes and linger for 3 to 5 hours. As a consequence, dosing decisions 

must be taken not only on the current glucose concentration, but accounting for what glucose 

levels will be when insulin is truly active. Such forecasting of glucose levels has been made 

possible by the appearance in the early 2000s of Continuous Glucose Monitors (CGM) which 

provide frequent BG measurements, compared to Self-Monitoring of Blood Glucose (SMBG, on 

average 3-4 per day). In this manuscript, we focus on improving the performance of short term 

glucose prediction. (Of note, “prediction” will be used interchangeably with “forecasting” in the 

remainder of chapter.) 

      Most published BG prediction methods utilize CGM-based time-series techniques. 

Cameron et al. showed that a multiple statistical linear prediction algorithm rendered a mean 

lead prediction time of 23 minutes without missed hypoglycemic bouts 104. Sparacino et al. 

reported that BG could be predicted 30 minutes in advance by using either a first-order 

polynomial or an autoregressive (AR) model 105. Neural network methods have been used to 
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predict BG for longer time horizons (50 to 180 minutes) and also for the short terms (15 to 45 

minutes) 106,107. Those methods rely heavily on the accuracy of CGM measurements although 

they do not need any historical knowledge on meal, insulin on board, exercise, etc. In contrast, 

methods using physiological models often use these additional inputs to palliate erroneous 

sensors and provide intrinsic interpretation of BG variation rate as well as the direction of 

change. Buckingham et al. and Kuure-Kinsey et al. discussed the application of Kalman filter (KF) 

technique to CGM denoising 56,108 whereas Palerm et al. discussed the trade-off between the 

missed hypoglycemic incidences and the false alarm rate influenced by the parameter tuning of 

the optimal estimator 109. Finally, Hughes et al. developed a model based 30-minute glucose 

prediction as the core of an insulin attenuation technique which reduced the upcoming 

hypoglycemia events significantly 110. 

      Intra-individual and inter-individual variability in insulin-glucose dynamics has long been 

identified as a critical challenge in physiological modeling 111–113, and is one of the causes cited 

for degraded prediction performances. In this chapter, we propose to explore the use of 

physiologically based model in conjunction with Kalman Filtering (KF) to track one of the key 

variable parameters, insulin sensitivity (SI), which corresponds coarsely to the gain of the 

insulin/glucose system. We hope to demonstrate that BG prediction performance then can be 

bolstered by adding SI tracking into the prediction process.  

      For that purpose we study the short-term (up to 45 minutes) BG prediction performance of 

such systems and explore different implementations (full model, feed-forward, with and without 

SI tracking) to better understand the impact of these design choices on glucose prediction.  
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5.1 Structural Design and SI Tracking 
 

The structure of KF is determined by the embedded physiological model. We use in this chapter 

two models: the SOGMM model 110 derived from the seminal minimal model of glucose kinetic 42 

and extended by adding subcutaneous insulin compartment and gut/intestinal compartment, 

and the “LOG” model, a newly designed mathematical description of glucose homeostasis in 

logarithm space (log	( ீீ್ )), influenced by the nonlinear structure of the MMGK 114. Refer to Table 

7 for the equations and parameters.  

      For each model, we optionally add a first order SI dynamic. The feature of the dynamic is to 

drive SI state to the equilibrium value, ܵܫ௕, in a limited time (characteristic time = 60 minutes).  

By integration into the KF, we are capable of tracking SI online. One advantage of LOG model 

over SOGMM in terms of SI tracking is that the logarithm form of SI guarantees that the SI 

estimation is positive. 

      SOGMM is linearized around the operating point which is obtained by solving the continuous 

model in equilibrium state: 

,	௢௣ܩ] ܺ௢௣, ,௢௣݌ܫ ,1௢௣ܿݏܫ ,2௢௣ܿݏܫ ܳ1௢௣, ܳ2௢௣, ,௢௣ܫܵ ,௢௣ܬ [௢௣ܯ = [112.5, 8.4݁ − 3, 257.7, 3.2݁ + 3, 3.2݁ + 3, 0, 0, 4.5݁ − 3, ,௕௔௦௔௟ܬ 0]  
       

      Both models are discretized with 5 minute time interval to pertain to the CGM measurement. ܵܫ௕ is set to 4.46e-4 (1/min per mU/l) , the population averaged insulin sensitivity value 115, and ܩ௕ is equal to 112.5 mg/dl. ܺ௕ corresponds to the subjects basal rate. 
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Table 7: SOGMM and LOG model discretized in 5 minute interval. The states and inputs of SOGMM are deviations from 
the operating point 

SOGMM 

Feed-Forw
ard 

M
eal M

odel 

 
 
 ൤ܳଵ(݇ + 1)ܳଶ(݇ + 1)൨ = ቂ0.6270 00.3617 0.9445ቃ ൤ܳଵ(݇)ܳଶ(݇)൨ + ቂ3.99530.9851ቃ(5.1) (݇)ܯ

Insulin 
M

odel 

቎ܫ௦௖ଵ(݇ + ݇)௦௖ଶܫ(1 + ݇)௣ܫ(1 + 1) ቏ = ൥0.9029 0 00.0922 0.9029 00.0033 0.0544 0.2811൩ ቎ܫ௦௖ଵ(݇)ܫ௦௖ଶ(݇)ܫ௣(݇) ቏ + ൥4.75310.23870.0062൩ (5.2) (݇)ܬ

Core 
M

odel 

൤ܩ(݇ + 1)ܺ(݇ + 1)൨ = ቂ0.8753 −381.20510 0.5123 ቃ ൤ܩ(݇)ܺ(݇)൨ + ൦0.0190ܹܤ −0.66670 ܹܤ0.0022 ൪ [ܳଶ(݇)ܫ௣(݇) ] (5.3)

SI ܵܫ(݇ + 1) = 0.9200 ∙ (݇)ܫܵ + 0.0800 ∙ ௕ܫܵ  (5.4)

LOG 

Feed-Forw
ard 

M
eal M

odel 

 
 
 ൤ܳଵ(݇ + 1)ܳଶ(݇ + 1)൨ = ቂ0.9048 00.0452 0.9048ቃ ൤ܳଵ(݇)ܳଶ(݇)൨ + ቂ4.75810.1170ቃܯ(݇) 
 ܴ௔(݇) = 0.01 ∙ ܳଵ(݇) + 0.02 ∙ ܳଶ(݇) 

 
(5.5)

 
(5.6)

Insulin 
M

odel 

቎ܫ௦௖ଵ(݇ + ݇)௦௖ଶܫ(1 + ݇)௣ܫ(1 + 1) ቏ = ൥0.9029 0 00.0922 0.9029 00.0033 0.0544 0.2811൩ ቎ܫ௦௖ଵ(݇)ܫ௦௖ଶ(݇)ܫ௣(݇) ቏ + ൥4.75310.23870.0062൩ (5.7) (݇)ܬ

Core M
odel 

ێێێۏ					
݇)ܩ)	lnۍ + ௕ܩ(1 )ln	(ܺ(݇ + 1)ܺ௕ ۑۑۑے(

ې = ቂ0.9662 −0.00230 0.9253 ቃ ێێێۏ
௕ܩ(݇)ܩ)lnۍ )ln(ܺ(݇)ܺ௕ ۑۑۑے(

ې + ൦−0.1113 ܹܤ0.0001 −0.00150 0 ܹܤ1.2440 ൪ ێێۏ
௕ܫܵ(݇)ܫܵ)	lnۍ )ܴ௔(݇)ܫ௣(݇) ۑۑے

ې
 (5.8)

SI 

 ln ቆܵܫ(݇ + ௕ܫܵ(1 ቇ = 0.9200 ∙ ln(ܵܫܵ(݇)ܫ௕ ) (5.9)
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Model Implementations 

The most straightforward way of implementing our KF based prediction plant is to integrate all 

equations into the KF and take CGM, pump data and meal as the inputs. “SOGMM-Full model” 

and “LOG-Full model” implementations adopt this strategy. Alternative implementations 

“SOGMM-Core model+∆” and “LOG-Core model+∆”, inspired by the idea of “feed-forward 

modules” described by Grossman 78, separate insulin and meal transport compartments from 

the KF core model as feed-forward compartments leaving only blood glucose G (or ln	( ீீ್ ))and 

remote insulin X (or ln	( ௑௑್)) compartments embedded in the main filter. In this case, computed 

plasma insulin concentration and glucose rate of appearance as well as CGM (or ln	(஼ீெீ್ )) are 

taken as the inputs into the KF. In these implementations, we introduce the ∆ term: ∆= ෠ܺ − ܺ 

(or ln ቀ ௑௑್ቁ෣ − ln	( ௑௑್) ). 	By appropriate process noise setting of ܺ (or ln	( ௑௑್)) in KF, the model 

discrepancy could be extracted and embedded in ∆ through ෠ܺ (or ln ቀ ௑௑್ቁ෣  ). ∆ is then associated 

with a 1000 min characteristic time in the prediction, so as to ensure a quasi constant value 

across the prediction horizon, i.e. model discrepancies are stable across the prediction horizon.  

Finally, by adding SI dynamic equations, two more implementations “SOGMM-Core model with 

SI” and “LOG-Core model with SI” are obtained. The role of SI is similar to ∆. (Refer to Figure 29) 
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Figure 29: 3x2 model implementations: i) SOGMM-Full model, ii) SOGMM-Core+∆, iii) SOGMM-Core model with 
SI, iv) LOG-Full model, v) LOG-Core model+∆, vi) LOG-Core model with SI and structures of prediction vector XI. 

 

Table 8: Prediction vector XI of each implementation 

XI SOMM model LOG model 
Full model 1 2 1 2

ˆ ˆ ˆˆ ˆ ˆ ˆ
sc sc pG X I I I Q Q 

 
1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆln( ) ln( ) sc sc p
b b

G X I I I Q Q
G X

 
 
 

 

Core model 
+∆ 

1 2 1 2
ˆ

sc sc pG X I I I Q Q + Δ 
1 2 1 2

ˆ
ln( ) ln( ) sc sc p

b b

G X I I I Q Q
G X

 
+ Δ 

 
 

Core model 
With SI 

1 2 1 2
ˆ ˆˆ

sc sc pG X I I I Q Q SI 
 

1 2 1 2

ˆ ˆˆ
ln( ) ln( ) ln( )sc sc p

b b b

G X SII I I Q Q
G X SI

 
 
 
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Kalman Filter Setting 

The model embedded in KF is linearized as 5 minute discrete equations in state-space: 

݊]ݔ + 1] = [݊]ݔܣ + [݊]ݑܤ + [݊]ݕ(5.10) [݊]ݓܩ = [݊]ݔܥ + [݊]ݑܦ + [݊]ݓܪ + (5.11)   [݊]ݒ

in which ݓ[݊] and ݒ[݊] stand for processing noise and measurement noise respectively. The 

tuning factors are defined as noise covariance as: (்[݊]ݓ[݊]ݓ)ܧ = (்[݊]ݒ[݊]ݒ)ܧ ,ܳ = (்[݊]ݒ[݊]ݓ)ܧ  ,ܴ = ܰ. 

By solving the discrete Riccati equation, we obtain the gain = ்ܥܲܣ) + ഥܰ)(்ܥܲܥ + തܴ)ିଵ , 

where 

തܴ = ܴ + ܰܪ + ்ܪ்ܰ + ഥܰ(5.12)        ்ܪܳܪ = ்ܪܳ)ܩ + ܰ)  (5.13)

      Refer to Stengel for more fundamentals about the KF 116. For the “SOGMM-Full model” 

implementation, process noise is added to  ܫ௦௖ଵ, ܳଵ, ܳଶ. This is in line with the setting that 

Hughes deployed in her publication 110, while for “LOG-Full model” implementation the process 

noise is involved with 	ln	( ீீ್ ) and ln	( ௑௑್) since we found that the setting from 110 would generate 

a substantial prediction error. For “Core+∆” implementations, process noise is added to G and X 

(or ln	( ீீ್ ) and ln	( ௑௑್) ) and for “Core with SI” implementations, process noise is added to G and 

SI (or ln	( ீீ್ ) and ln	( ௌூௌூ್) ) based on the assumption that the role of ∆ and SI is similar. The 

choices of Q/R were made considering the expected magnitude of variation in the estimation of 

physiological states (G from 40 to 600 mg/dl and and SI from 1e-4 to 1e-2 1/min per mU/l). The 

details of matrices and covariance for all six implementations are listed in appendix B.1. 
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CGM Assessment 

The incidences of anomalies, errors and missing values in CGM are believed to have a non-

negligible impact on the states tracking and prediction, therefore, in addition to the actual CGM 

signal, we generated a smoothed-out CGM trace applying a cubic smoothing spline for each run. 

The predictions based on raw CGM and treated CGM were compared (see below). 

Prediction 

Predictions are computed using the appropriate full, linearized and discretized (5min) models. 2 

different prediction horizons are used: 30 and 45 min. The initial states vector XI for prediction is 

composed of KF outputs and feed-forward outputs if used. In the prediction calculation, basal 

insulin input is assumed. For SOGMM model implementations,  u= ௕௔௦௔௟ܬ − ௢௣ܬ = 0 and for LOG 

model implementations, u=  :௢௣ .  The calculations of N step (5 min interval) prediction areܬ

SOGMM model implementations: 

௣௥௘ௗܩ = ௣ܥ ∙ ௣ேܣ ∙ (5.14) ܫܺ

LOG model implementations: 

i) ݔ = ݅	ݎ݋݂	(݅݅(5.15)       ;ܫܺ = 1:ܰ − 1        

      x = ௣ܣ ∙ ݔ + ௣ܤ ∙   ;ݑ
      ݁݊݀ 

 (5.16)

iii) ln	(ீ೛ೝ೐೏ீ್ ) = ௣ܥ ∙ (5.17)       ݔ

      The prediction model matrices are listed in appendix B.2 and the structures of XI vector can 

be found in Table 8. 
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Data 

Twelve subjects (5 females, 7 males) with type 1 diabetes (mean±SD: age=40±13 yr, body 

weight=70.8±9.6 kg, BMI= 24.3±3.1 kg/m2, HbA1c=7.1%±1.0) underwent clinical trials designed 

to test an Artificial Pancreas control algorithm (NCT01418703). Each subject was admitted to the 

hospital twice to complete the “closed loop” and “open loop” studies, which correspond to 

CGM-based insulin management therapy vs. conventional therapy. Patients were required to 

wear the CGM and an insulin pump from 09:00 AM to 08:00 AM next day. Subcutaneous blood 

glucose concentration was measured every 5 minutes by CGM. Every half an hour, the blood 

glucose concentration was collected using YSI 2300 Stat PlusTM analyzer. Lunch was served at 

11:15 AM, dinner at 19:15 PM and snack at 22:40 PM. A physical exercise was from 16:00 PM to 

16:30 PM.  

Data Analysis 

Four subjects were excluded from the analysis for data missing. We will compare prediction 

performance for 2 different prediction horizons: 30 and 45 minutes. Predictions are made every 

5 minutes for both horizons, and predicted glucose is compared to CGM values 30 and 45 

minutes afterward, respectively, using Mean Relative Absolute Difference (MARD, see equation 

5.18). Prediction horizons including a meal are removed from the analysis as causal predictions 

cannot be expected to be accurate in this case (as the meal input is assumed to be 0 across the 

horizon). 

ܦܴܣܯ = ଵ௡ ∑ |ீ೛ೝ೐೏(௜)ିீ(௜)|ீ(௜)௡௜ୀଵ        (5.18)
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Data are presented as Mean±SE unless otherwise noted, comparison between implementation 

is conducted using standard T-tests with a significance level of 5%. 

5.2 Performance of BG Prediction - Comparison 

MARDs for both prediction horizons are shown in Table 9. At PH=30min, LOG model-based 

predictions performed similarly to SOGMM-based predictions all implementations. “Core model 

+∆ ” implementation consistently outperformed “Full model” implementation (SOGMM: 

6.1%±2.6 vs. 6.9%±2.9, p<0.01, LOG: 6.0%±2.5 vs. 6.8%±2.5, p<0.01), and were in turn 

outperformed by “Core model with SI” implementations with SOGMM (6.1%±2.6 vs. 5.6%±2.1, 

p=0.05), but not using the LOG model. Similar results held for PH=45min (see Table 9) except 

that it was not significant different between “Core model+∆” and “Core model with SI” 

implementations (8.7%±3.5 vs. 8.2%±2.7 p=0.2). 

Table 9: MARDs (±SE) of 6 model implementations for PH=30, 45min 

                            Prediction Horizon
                                                    (min) 
Implementation 

30 45 

SOGMM-Full model 6.9%±2.9 9.3%±3.6 
SOGMM-Core model+∆ 6.1%±2.6 8.7%±3.5 
SOGMM-Core model with SI 5.6%±2.1 8.2%±2.7 
LOG-Full model 6.8%±2.5 10.1%±3.5 
LOG-Core model+∆ 6.0%±2.5 8.3%±3.4 
LOG-Core model with SI 6.1%±2.4 9.2%±3.4 

      Seven pair of hypothesis (PH=30min) were set and the results of standard T-test for each pair 

were: “SOGMM-Full model” vs. “SOGMM-Core model+∆”: p<0.01; “SOGMM-Core model+∆” vs. 

“SOGMM-Core model with SI”: p=0.05; “LOG-Full model” vs. “LOG-Core model+∆”: p<0.01; 

“LOG-Core model+∆” vs. “LOG-Core model with SI”: p=0.5; “SOGMM-Full model” vs. “LOG-Full 

model”: p=0.76; “SOGMM-Core model+∆” vs. “LOG-Core model+∆”: p=0.59; “SOGMM-Core 

model with SI” vs. “LOG-Core model with SI”: p=0.11. 
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Figure 30: BG Prediction MARDs (Mean±SE) by 6 implementations for PH=30, 45min. SOGMM and LOG models 
were compared for each implementation. Raw CGM was used for measurement input. 

 

      In “Core model with SI” implementation, SOGMM model had better prediction performance 

than LOG model for PH=30,45min (5.6%±2.1 vs. 6.1%±2.4 p=0.01 and 8.2%±2.7 vs. 9.2%±3.4 

p=0.01). By feeding smoothed CGM into KF instead of raw CGM data, LOG model seemed 

outperforming SOGMM model for PH=30min and having a close result to SOGMM model for 

PH=45min. However, the results were insignificant (3.5%±1.1 vs. 3.8%±1.0 p=0.14) and 

(6.2%±2.1 vs. 6.2%±1.7 p=0.3).  

      Wang et al. reported the relative error of 30-minute BG prediction by extreme learning 

machine, support vector regression, autoregressive model, and a newly proposed frame  ranged 

from 7.3% to 9.5% 117. Our results showed that methods using physiological models could 

provide more accurate BG forecasting (MARD<7%) for PH=30min.  The “SOGMM-Full model” 

implementation presented in this manuscript was in accordance with the structure that Hughes 
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deployed in her hypoglycemia prevention technique 110. We proved by simplifying the Kalman 

Filter models through extracting parts of the models as feed-forward models and by adding 

dynamic SI tracking technique, the 30 minutes BG prediction was improved for SOGMM 

(6.9%±2.9 vs. 6.1%±2.6 p<0.01; 6.9%±2.9 vs. 5.6%±2.1 p<0.01).  

      By splitting “Full model” into feed-forward compartments and core model, the KF process 

noise setting was limited inside the core model. The KF therefore only focused on the insulin-

glucose interaction without considering the meal and insulin transportations. The ∆ and SI 

techniques were then developed then based on this structure. 

      The application of ∆ improved the BG prediction performance of both SOGMM and LOG 

model compared to full model implementations (PH=30, 45min). The characteristic time of X 

and ln	( ௑௑್) could be approximated as 1/0.13=7 minutes and 1/0.01=100 minutes for SOGMM 

and LOG model respectively. The ∆′s 1000-min characteristic time was significantly larger than 

the PHs that it imposed different dynamics on model discrepancy vs. insulin action in the whole 

prediction horizon. 

      Incidences of large excursions of SI estimations were spotted by LOG model using raw CGM. 

One of the likely causes was the non-white nature of sensor noise 53, especially when there were 

artifacts possibly caused by accidentally pressing the sensor. The exponential transformation of ln	( ௌூௌூ್) further amplified the estimation anomalies which were suspected to deteriorate the BG 

prediction. Use of denoised CGM into the KF effectively avoided those large excursions, further 

confirming their source. In order to examine the impact of CGM defects on BG predictions, we 

generate a smoothed-out CGM trace applying cubic smoothing spline for each run. The 

predictions based on raw CGM and treated CGM were compared. 
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    A rudimentary treatment of CGM was a non-causal smoothing. As shown in Table 10, the BG 

prediction based on non-causal smoothing CGM was significantly better than the  one based on 

raw CGM for PH=30, 45min except “SOGMM-Full model” implementations (p=0.06 and 0.08). 

Refer to Figure 31 as well.  It was expected that the non-causal smoothing would palliate the 

artifacts.  

Table 10: MARDs of 6 model implementations using non-causal smoothed CGM 
 PH = 30min PH = 45min 
 Raw CGM Non-causal P Raw CGM Non-causal P 

SOGMM-Full model 6.98% 5.80% 0.06 9.33% 8.02% 0.08 
SOGMM-Core model+∆ 6.18% 3.59% <0.01 8.72% 5.23% <0.01 

SOGMM-Core model with SI 5.68% 3.45% <0.01 8.21% 5.38% <0.01 
LOG-Full model 6.88% 5.06% <0.01 10.17% 8.18% <0.01 

LOG-Core model+∆ 6.07% 3.36% <0.01 8.82% 5.44% <0.01 
LOG-Core model with SI 6.15% 3.05% <0.01 9.25% 5.68% <0.01 

 

 

 

Figure 31: BG Prediction MARDs (Mean±SE) by 6 implementations for PH=30, 45min. SOGMM and LOG models 
were compared for each implementation. Non-causal smoothed CGM was used for measurement input. 
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A more authentic treatment of CGM was a causal smoothing that where we only adjusted the 

CGM time series prior to the decision time.  As shown in Table 11, the BG prediction based on 

causal smoothing CGM was significantly outperformed by the  one based on raw CGM for PH=30, 

45min (Figure 32). This was due to the introduced latency of CGM signals.    

Table 11: MARDs of 6 model implementations using causal smoothed CGM 
 PH = 30min PH = 45min 

 Raw CGM Causal P Raw CGM Causal P 
SOGMM-Full model 6.98% 8.42% <0.01 9.33% 10.67% <0.05 

SOGMM-Core model+∆ 6.18% 7.76% <0.01 8.72% 9.95% <0.01 
SOGMM-Core model with SI 5.68% 9.27% <0.01 8.21% 11.76% <0.01 

LOG-Full model 6.88% 8.85% <0.01 10.17% 11.88% <0.01 
LOG-Core model+∆ 6.07% 8.26% <0.01 8.82% 10.76% <0.01 

LOG-Core model with SI 6.15% 8.36% <0.01 9.25% 11.11% <0.01 
 

 

 

Figure 32: BG Prediction MARDs (Mean±SE) by 6 implementations for PH=30, 45min. SOGMM and LOG models 
were compared for each implementation. Causal smoothed CGM was used for measurement input. 
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      In the SOGMM model implementation, negative SI estimation was ocationally obtained by KF, 

leading to possible illogical relationship between insulin increase and glucose concentration.  

While short term prediction can remain good under these conditions, use of such model 

structure for optimization of insulin dosing would be inappropriate. In the LOG model 

implementation, the risk space form guarantees that SI estimation will remain positive.   

      In addition to the suitability of the LOG form for SI tracking, one may also consider additional 

desirable properties in constructing the glucose control objective function in risk space (34). As 

described in Patek et al. 2014 paper 114, objective function in risk space allows for appropriate 

balance between hypo and hyperglycemic risk. Further research may demonstrate that 

sacrificing some amount of prediction power (see Table 9) can lead to substantial gain in 

accounting for the intrinsically imbalance glucose scale.  

      For physiological model-driven methods, the short term BG prediction power gets improved 

by extracting the meal and insulin transportation as feed-forward compartments. The “LOG-

Core model with SI” implementation enables online estimation of SI while maintaining 

physiologically reasonable values meanwhile provides a relatively accurate way to carry out the 

BG prediction.  Moreover, LOG model expresses the BG in risk space reflecting that the 

hypoglycemia presents more immediate risk than hyperglycemia. These results place the use of 

logarithm transform and reduced state Kalman Filtering as a good candidate to construct 

automated glucose control objective functions.  
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5.3 Validation by Simulation:  SI or ∆ 

The “SOGMM-Full model” implementation presented in this manuscript had been deployed in 

the “Safety Service Module” in DiAs (Artificial Pancreas developed in University of Virginia). 

Since the “SOGMM-Core model with SI” implementation as well as the “SOGMM-Core model+∆” 

implementation outperformed the “SOGMM-Full model” implementation in PH=30min BG 

prediction, one of them would be chosen as a good candidate for the next generation of SSM. 

The first step was to test the algorithm in-silico for different scenarios. The Virginia/Padova Type 

1 Simulator was equipped with a cohort of in-silico patients (100 adults, 100 adolescents and 

100 children) that spanned the observed variability of metabolic parameters of general 

population. The latest version of the simulator implemented the intraday glucose variations and 

dawn phenomena. This offered an ideal environment for our testing.  

Five testing scenarios and results are listed as follows:  

1) Single meal (open-loop) 

The simulation started at 9 AM. Lunch was provided at 12 PM with 0.5 gram/kg of 

carbohydrates. The corresponding bolus insulin was injected upon the meal arrival time. Figure 

33 shows an example of the simulation (adult #005). True BG concentration, predicted BG by 

“SOGMM-Core model+∆” and “SOGMM-Core model with SI” were recorded for the following 6 

hours. The prediction error (MARD) was averaged across the 5-hour window starting at the 

beginning of the meal. We ran the test on the entire cohort of in-silico adults. The “SOGMM-

Core model with SI” implementation outperformed the “SOGMM-Core model+ ∆ ” 

implementation (MARD: 4.5%±2.6 vs. 5.5%±4.1, p<0.01). 

2) 27 hour simulation without intraday variation and dawn phenomenon (closed-loop) 



69 
 

Simulation started at 6 AM and ended at 9 AM the next day. Breakfast, lunch and dinner were 

served at 8 AM, 12 PM and 19 PM with carbohydrates 0.5, 0.7 and 0.7 gram/kg.  Meal boluses 

were calculated by meal controllers and Basal Rate Modifier (BRM) was active during the entire 

simulation. Again we compared the prediction MARD of those two implementations. The 

“SOGMM-Core model with SI” implementation outperformed the “SOGMM-Core model+∆” 

implementation (MARD: 3.9%±2.4 vs. 4.8%±2.6, p<0.01). 

3) 27 hour simulation with dawn phenomenon (closed-loop) 

People with diabetes usually don’t have a normal insulin response to compensate the elevated 

fasting blood glucose thanks to the surge of glucagon between 4 AM to 5 AM. This effect is 

known as “dawn phenomenon” 118. In this simulation, “dawn phenomenon” was introduced to 

the in-silico patients. Simulation started at 6 AM and ended at 9 AM the next day. Breakfast, 

lunch and dinner were served at 8 AM, 12 PM and 19 PM with 0.5, 0.7 and 0.7 gram/kg of 

carbohydrates respectively.  Meal boluses were calculated by meal controllers and Basal Rate 

Modifier (BRM) was active during the entire simulation. For the entire simulation period, the 

“SOGMM-Core model with SI” implementation outperformed the “SOGMM-Core model+∆” 

implementation (MARD: 4.3%±2.1 vs. 5.4%±2.2, p<0.01); for the dawn period (4 AM to 9 AM), 

the “SOGMM-Core model with SI” implementation still outperformed the “SOGMM-Core 

model+∆” implementation (MARD: 4.4%±5.1 vs. 5.3%±5.6, p<0.01) 

4) 27 hour simulation with intra-day variations (closed-loop) 

The scenario was identical to that descried in the last session except that we introduced the 

intra- day variations instead of dawn phenomenon. The “SOGMM-Core model with SI” 

implementation outperformed the “SOGMM-Core model+∆” implementation (MARD: 4.4%±2.3 

vs. 5.5%±2.4, p<0.01). 
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5) 27 hour simulation with intra-day variations and dawn phenomenon (closed-loop) 

The scenario was identical to that descried in the last session except that we introduced the 

intra-day variations as well as the dawn phenomenon. Figure 34 shows an example of the 

closed-loop simulation (adult #005). The “SOGMM-Core model with SI” implementation 

outperformed the “SOGMM-Core model+∆” implementation (MARD: 4.7%±1.9 vs. 5.9%±2.1, 

p<0.01). 

Table 12: Prediction MARDs by two implementations using five simulation scenarios 

MARD SOGMM-Core 
model+∆ (Mean±SE) 

SOGMM-Core model 
with SI (Mean±SE) t-Test 

Scenario 1 5.5%±4.1  4.5%±2.6 P<0.01 
Scenario 2 4.8%±2.6 3.9%±2.4 P<0.01 
Scenario 3 5.3%±5.6 4.4%±5.1 P<0.01 
Scenario 4 5.5%±2.4 4.4%±2.3 P<0.01 
Scenario 5 5.9%±2.1 4.7%±1.9 P<0.01 

The simulation results showed the “SOGMM-Core model with SI” consistently outperformed the 

“SOGMM-Core model+∆” for 30-minute BG prediction. Thus, we proved “SOGMM-Core model 

with SI” an optimized structure for short-term blood glucose forecasting in-vivo (posteriorly) as 

well as in-silico. Future work is to incorporate such a structure to the DiAs. 
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Figure 33: Simulation of one meal in open loop (adult #005). 
 

Figure 34: 27-hour closed-loop simulation with intra-day variations and dawn phenomenon (adult #005). 
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Chapter 6. Enhancing Model-Based 
Long Term Glycemic Prediction in 
T1DM – Application in Semi-Auto 
Control 
 

Recent years have witnessed the development of sc-to-sc closed loop control systems (Artificial 

Pancreas) 119,120. The modular glucose control architecture proposed by Kovatchev et al. in 2009 

has been widely accepted 121. Characterized by the time-scale, the AP controller is composed of 

multiple layers: the safety supervision layer usually resides at the bottom of the system 

executing the last override of commands from above, one layer above is embedded with real 

time controllers using typical algorithms (Latest achievements in Model Predictive Control, 

Proportional Integral Derivative, and Fuzzy Logic Control can be found in 122–126) and the top 

layer is responsible for tuning the controller parameters using clinical parameters and historical 

inputs into the system 127.  

      Every type 1 diabetic is haunted by an optimization problem: how much insulin do I need to 

compensate the blood sugar without invoking adverse hyperglycemia and fatal hypoglycemia? 

The ultimate goal of AP is to dispense them completely from the cognitive burden on a daily 

basis. The system is expected to have the capacity to automatically cope with not only the 

regular insulin-glucose fluctuations, but also with the vast disturbances, such as meal 
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consumption and physical exercise 128,129. In the journey to the emergence of legitimate closed-

loop system, intermediate semi-auto systems are worthwhile to be exploited 130.  

      Patek et al. presented a Semi-Automated Insulin Advisor (SAIA), which was composed of two 

main modules: On-Demand Bolus Advisor and Meal-Informed Power Brakes (Figure 35) 114. Both 

modules take historical CGM, insulin treatment and meals as the inputs. The former is triggered, 

sending correction bolus advice episodically subject to user’s request. The advisory bolus is 

calculated using MPC by penalizing the control cost (BG in target) subject to constraints. The 

latter serves as the safety supervise layer, constraining basal insulin. This chapter is focused on 

how to provide a robust and predictive model for the On-Demand Bolus Advisor. The design and 

test of SAIA was conducted in the UVA/Padova T1DM simulation environment.  

Figure 35: The two-layer architecture of SAIA 114. 
 

 

6.1 Parameter Uncertainties Characterization In-silico 

According to Rahaghi et al. 62, the time scales of blood glucose dynamics for “Pulsatile secretion 

of insulin”, “Intrinsic oscillatory phenomena”, “Meals, insulin injection, external schedules” and 

“Circadian rhythm” are 5-15 minutes, 60-120 minutes, 150-500 minutes and >700 minutes.  The 
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episodic bolus suggested by Semi-Automated Insulin Advisor therefore inevitably enters the 

third zone, namely 150-500 minutes.  Considering the substantial system uncertainty due to the 

inter-individual or intra-individual variability in this time scale, the stake of the robustness of our 

predictive model has to be raised. The be-all and end-all solution to account for the problem is 

to identify the complete set of parameters for each subject, which seems unrealistic at this stage. 

A compromised approach is to identify a subset of the parameters and tie them to clinical 

parameters and historical data collection.  

      Therefore, to ensure optimal, prediction-based, bolus calculations within the On-Demand 

Bolus Advisor, the model (Table 13) was first tuned using the Virginia/Padova Type 1 Simulator. 

The population used was composed of one hundred T1D in-silico adults. A subset of the 

parameters of the model was chosen to be tuned to maximize the average prediction accuracy 

for each subject while the rest of the parameters were fixed as the population average. The 

adjustable subset of parameters, namely the subject specific parameters were stratified into 4 

groups. Each group of parameters was accounted for by a multiplier (shown in Table 13 and 

Table 14):  [݌ଶ] → [଺݌] ;accounting for  insulin action ,ߙ	 →  accounting for misestimated ߚ

glucose appearance in plasma; [݇ௗ] →  accounting for the speed of dynamics of subcutaneous ߛ

insulin and  [ܽଵ		ܽଶ		ܽௗ] →  accounting for the glucose kinetics in the gastrointestinal tract. BW ߤ

was measured and ܫ௕ corresponded to the subject’s basal rate. 
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The framework was originated from the “LOG-Core model+∆” implementation (Figure 29) 

introduced in chapter 5 (Figure 36). For a long-term (4 hours) prediction, the filtered insulin and 

carb was also fed into the system. 

 
Figure 36: “LOG-Core model+∆” structure for state estimation and prediction 114. 

 

      The tuning procedure used the forcing function methodology by a 2x2 design (Figure 37): i) 

two prediction windows (first between 1 and 5 hours following a meal, and second, 4 and 8 

hours following the meal), ii) two meal scenarios (first, a meal with a corresponding bolus, and 

second, the same meal/bolus plus a correction bolus one hour following the meal). The design 

of two prediction windows was to take into account the prediction performance in the horizon 

close to a meal as well as the horizon away from the meal. The design of two meal scenarios was 

to ensure that the model maintained its prediction performance after a correction bolus.    
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Figure 37: 2X2 tuning design: (top) a meal and bolus served without optimal correction 1 hour afterwards, (bottom) 
a meal and bolus served with optimal correction 1 hour afterwards. Four prediction windows a0, b0, a1, b1 were 

chosen.  
 

For each in-silico subject, the 2x2 design generated 4 pairs of BG traces. The differences of BG 

value were stored in vectors ∆ܽ଴, ∆ܾ଴, ∆ܽଵ, ∆ܾଵ respectively . 

∆ܽ଴ = ௣௥௘ௗ_௔଴ܩ − ௔଴ ∆ܾ଴ܩ = ௣௥௘ௗ_௕଴ܩ − ௕଴ ∆ܽଵܩ = ௣௥௘ௗ_௔ଵܩ − ௔ଵ ∆ܾଵܩ = ௣௥௘ௗ_௕ଵܩ −  ௕ଵܩ

 

(6.9) 

 

For window a, a linear piece-wise weight ߱௔ was applied to the prediction errors ∆ܽ଴	and ∆ܽଵ; 

for window b, a different weight ߱௕was applied to ∆ܾ଴ and ∆ܾଵ.  The weighed prediction errors 

for each meal scenario were concatenated (equation 6.10).  
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଴݌݉݁ݐ = [∆ܽ଴.∗ ߱௔	: ∆ܾ଴.∗ ߱௕]	݌݉݁ݐଵ = [∆ܽଵ.∗ ߱௔	: ∆ܾଵ.∗ ߱௕]	 (6.10) 

 

The introduction of ߱௔ and ߱௕  was to inform the MPC of different penalties for the two 

windows: the further away from a meal event, the more time in target we wanted. Therefore (ݍ)ܮ in equation 2.4 was constructed as: 

௔ݓ = ቊଵଷ 0										,ݐ ≤ ݐ ≤ 31,													3 < ݐ ≤ 4	,																																	 ௕ݓ = ቄݐ, 0 ≤ ݐ ≤ 11, 1 < ݐ ≤ 4 (6.11) 

  

 

Figure 38: Linear piece-wise cost weights for two different prediction windows: Wa starts at 1 hour after the meal, 
Wb starts at 4 hour after the meal. 

 

 

The overall prediction accuracy was computed and imbalanced accuracy between scenarios or 

windows was additionally penalized. A penalty term for parameter variations (∑݌ଶ) was also 

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

hours

W
a

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

hours

W
b



79 
 

added to the ultimate cost function ܬ (equation 6.12). The multipliers were derived by taking the 

exponential form of ݌ (equation 6.13). 

ܬ  =෍݌݉݁ݐ଴ଶ +෍݌݉݁ݐଵଶ +෍|݌݉݁ݐ଴.∗ |ଵ݌݉݁ݐ +෍݌ଶ (6.12) 

 

ߙ = ݁௣(ଵ)						ߚ = ݁௣(ଶ)					ߛ = ݁௣(ଷ)		 ߤ = ݁௣(ସ) (6.13) 

 

      The cost ܬ in equation 6.12 is a classic unconstrained optimization problem. We applied the 

“fminsearch(@costfun, x0)” method in Matlab to search for the optimal solution for this 

problem. “fminsearch” starts at the designated initial point x0 and utilizes the algorithm of 

“Nelder-Mead simplex direct search” to find the minimum of the cost function 131. In our case, 

the initial point p0 was set to [0 0 0 0] (started from the population averaged parameters). 

      After obtaining the optimized parameter set for each subject, we tried to link the 

physiological parameters to the tuned parameters. Backwards-stepwise model selection was 

applied herein. The candidate predictors were CHO:I (CR), correction factor (CF) and basal 

insulin. The selected models are shown in Table 15. 

Backwards-Stepwise Selection:  

Rather than search through all combinations of predictors, backwards-stepwise selection starts 

with the full model (intercept + all candidate predictors) and sequentially deletes the predictor 

that imposes least impact on the regression fit or improves the model the most.  Ultimately, the 

process stops if no improvements can be made. 
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Table 15: Step-wise selection of regression model 

p(1)  
coefficient 95% interval 

b0 (int) -2.208 -4.141 -0.276 
b1 (CR) 0.052 0.024 0.081 

R2 F* p-value error variance 
0.533 25.907 0.000 0.097 

p(2)  
coefficient 95% interval 

b0 (int) 0.235 -3.023 3.493 
b1 (CR) 0.008 -0.041 0.056 

R2 F* p-value error variance 
0.018 0.414 0.744 0.274 

p(3)  
coefficient 95% interval 

b0 (int) 1.239 -2.143 4.620 
b1 (CR) -0.033 -0.083 0.018 

R2 F* p-value error variance 
0.101 2.553 0.063 0.296 

p(4)  
coefficient 95% interval 

b0 (int) -0.178 -2.702 2.347 
b1 (CR) -0.034 -0.071 0.004 

R2 F* p-value error variance 
0.151 4.018 0.011 0.165 
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ܲ = −0.8 + 2.5 ∙ ܴܥ − ܴܥ5 + 15 ܲ(2) = 0.43	

ܲ(3) = −0.02 ∙ ܴܥ + 0.49 ܲ(4) = −0.03 ∙ ܴܥ + 0.28 
Figure 39: Regressions of parameter multipliers to CR. 

 

Performance Evaluation In-silico 

The impact of the new model was assessed in-silico using a predictive optimal (LQR) bolus 

advice system. The test consisted of three underinsulinized meals (50% of the CR-optimal bolus) 

over 24h, each with a bolus advice 1h afterwards; LQR tuning was done to avoid hypoglycemia 

in both cases. 
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Supervision Module (SSM) and Basal Rate Modifier (BRM) were kept active throughout the 

entire admission period while Advisory Module was only active during the day time (0700 AM - 

2300 PM). SMBG readings, CGM data (DexCom® Gen4), meal serve and insulin administration 

were collected.  

Figure 41: Experimental and control sessions of a test day. 
 

Pilot Study 

Two subjects were recruited to participate in the pilot experimental session. The procedure was 

in accordance with what has been described above. Multiple correction bolus advices with or 

without overriding by patients had been taken. The advisory bolus did not meet the expectation. 

A suspension of Advisory Module was called for the rest of the study. The causes of the failure 

were complex and entangled. A posterior analysis based on reconstruction of BG predictions in 

the simulator had given us some insights of the defect residing in our system: 
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1) Under-correction 

Figure 43 (top) shows a snapshot of the BG trace of one of the pilot subject, 28101. A mixed 

meal containing 52 grams of carbohydrate was served at 1900 PM.  The patient reported 2.25 U 

of historical insulin injection within 2 hours and delivered 5.4 U of meal bolus insulin. The blood 

glucose stayed flattened for almost 3 hours and started to climb up. A 0.7 U advisory correction 

bolus was accepted by the patient when BG was reaching 180 mg/dl. For next one hour and a 

half, BRM sent frequent elevated basal insulin to compensate the projected BG that implied the 

amount of advisory correction was underestimated. We confirmed that implication with the 

reconstructed BG prediction in the simulator (Figure 43 bottom). The inaccuracy of BG 

prediction was probably due to the lacking capacity of characterizing delayed meal absorption 

by our model. It has been proven that the meal composition has a massive impact on the post-

prandial glucose response. For example, co-ingestion of fat resulted in a significant flattering of 

the post-prandial BG 132.  Since the framework in which we conducted the model tuning did not 

incorporate this effect, a failure in the in-vivo application occurred.    

 

2) Over-correction  

Figure 44 (top) shows a snapshot of the BG trace of one of the pilot subject, 28102. A 1.9 U 

correction was accepted and injected at 1015 AM.  One and a half hours later, the BG went low 

and SSM was triggered to suspend basal delivery for more than one hour. It implied that the 

system had given the overestimated correction bolus. By reconstructing the BG prediction in-

silico (Figure 44 bottom), we found that the model failed to catch the insulin-glucose kinetic and 

made an inaccurate prediction. The capacity of our model to account for the inter-individual 

variability needed an iterative design.  
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3) Carb-miscounting  

One design of AAA was to ask the subjects to assess their meal (carbohydrate) size and post-

prandial glucose response based on their perception. They were provided a user interface 

(Figure 42) to input their decision. The instruction was as follows: 

      “There are two aspects of how food raises the blood sugar- how high the blood sugar goes 

up and how quickly the blood sugar goes up. For instance, some foods may raise the blood sugar 

quickly, but not increase the blood sugar very much.  Other foods may increase the blood sugar 

slowly but will eventually increase the blood sugar to a high final level. We want  you to rate 

both how high you think the blood sugar will increase, and how quickly it will increase after you 

eat each meal and snack.” 

 
Figure 42: Hyperglycemic Grid 

 

      Without a systematic training, the perception of the carbohydrate content would be 

inaccurate. An extreme case in this study was that one meal with about 90 grams of 

carbohydrates was estimated as 30 grams (three folds underestimated). The miscounting 

amounts of carbohydrates added more complexity to the prediction performance. 
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Figure 43: Clinical study (top) and reconstruction of BG prediction around the first meal in the simulator (bottom) 
of sub28101. 
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Figure 44: Clinical study (top) and reconstruction of BG prediction at decision time in the simulator (bottom) of 
sub28102. 

 

 

4) LOG model: parameter ݌ଵ 

A simulation starting at BG=200 mg/dl with basal delivery was conducted. Figure 45 shows the 

BG traces of subject adult #025. The blue line was the BG predicted by the population-averaged 
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LOG model and the red line is the simulated BG trace. The vast difference of BG the dropping 

rate implied that the actual ݌ଵ (glucose effectiveness) for this in-silico subject was different from 

the population averaged value. Figure 46 shows the simulated BG envelop (light blue) and 

predicted BG envelop (blue) of 100 in-silico adults. Therefore, treating  ݌ଵ as a population 

average value of glucose effectiveness (݌ଵ), which had already been underestimated, was 

inappropriate.   

 
Figure 45: Predicted (blue) and simulated (red) BG traces starting from 200 mg/dl with basal insulin delivered 

(subject adult #025). 
 

 

 
Figure 46: Simulation of 100 subjects starting from 200 mg/dl with basal insulin delivered: light blue) simulated BG 

envelop with mean, blue) predicted BG envelop with mean by LOG model. 
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The examinations listed above implied that despite the parameters of the in-silico patients 

spanned the observed variety of metabolic parameters of general population, the characteristics 

of the meal input had not been well accounted for considering that the meal composition had a 

substantial impact on the post-prandial glucose response. This encouraged us match the model 

to the in-vivo data which possessed more variability than the simulator. We reconsidered the 

selective model and proposed that more predictors should be added to the candidates, such as 

body weight, total daily insulin and meal size. Also, the tuning parameter set should be 

expanded by adding ݌ଵ which had a vast influence on the BG tolerance.   

 

6.3 Parameter Uncertainties Characterization “In-vivo” 
 

The “in vivo” simulator or net effect simulator was essentially a framework combining in-silico 

experiments and collected clinical data to reconstruct the treatment scenarios 46. The 

framework contained 56 pump users with type 1 diabetes and the data for each subject was 

“chopped” into a collection of 11h-length segments yielding a total of 2082 BG segments. Based 

on the SMBG readings, CGM, bolus administration, basal insulin delivery, and meal treatment, a 

signal called “net effect” was extracted for each subject by a deconvolution method using an 

established model of insulin-glucose metabolism. By doing this, the BG variability is accounted 

for: meal perturbation, insulin resistance by a positive net effect and elevated insulin sensitivity 

by a negative net effect. 

      By feeding the net effect in return, along with the complete set of historical data, the original 

CGM can be recovered. It also made possible the simulation of the effect of modified insulin 

delivery.  Additionally, the source data that was collected from the real world users spanned a 
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vast variability of meal composition which was lacking in the T1D simulator. Therefore, the net 

effect simulator was a sound tool for parameter tuning of our model.   

      Out of the 2082 segments, a subset was selected as the training data. The criteria were: 1) 

Two meals must be separated at least 6 hours, 2) The carbohydrate of the meal was greater 

than 40 grams, 3) No hypoglycemic incidences were present during the prediction window. The 

subset contained 46 subjects with 245 BG segments.  

      The tuning design was similar to what has been descried in section 6.1. Several modifications 

had been made due to the structural limitation of the Net Effect Simulator (Figure 47): a) we 

changed the 2X2 design to a 1X2 design by taking out the 2-prediciton-window dimension for 

the very low frequency of meals separated by 8 hours, b) the optimal correction bolus was 

computed by the correction factor (CF) subject to an upper bound: 1U (equation 6.14). As 

discussed in section 6.2, we added [݌ଵ] →  .to the tuning set ߠ

ݏݑ݈݋ܾ = ,1)݉ݑ݉݅݊݅݉ (ܯܩܥ)݉ݑ݉݅݊݅݉) − (ܨܥ/(70 (6.14) 

 

 

 

Figure 47: Prediction started from 1 hour after the meal and lasted 4 hours. 
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Tuning Procedure  

a) Global Search 

The cost function became equation 6.17. ∆ܽ଴ = ௣௥௘ௗ_௔଴ܩ − ௔଴ ∆ܾ଴ܩ = ௣௥௘ௗ_௕଴ܩ −  ௕଴ܩ
 (6.15) 

଴݌݉݁ݐ  = ∆ܽ଴.∗ ߱௔		݌݉݁ݐ଴ = ∆ܽ଴.∗ ߱௔	 (6.16) 

 

ܬ  =෍݌݉݁ݐ଴ଶ +෍݌݉݁ݐଵଶ +෍|݌݉݁ݐ଴.∗ |ଵ݌݉݁ݐ +෍݌ଶ (6.17) 

 

ߙ = ݁௣(ଵ)						ߚ = ݁௣(ଶ)					ߛ = ݁௣(ଷ)		 ߤ = ݁௣(ସ) ߠ = ݁௣(ହ) 			 (6.18) 

 

Similar to what had been tried in in-silico tuning, we conducted backward step-wise linear 

regressions on the subject’s clinical parameters as well the historical data collection (body 

weight (BW), basal insulin delivery (basal), total daily insulin (TDI), correction factor (CF), carb 

ratio (CR), meal (M) and SI (TDI/BW)).  The model selection hardly showed significant candidate 

predictors. This was probably due to the intra-individual variability; i.e., for the same subject, 

different BG segments might present quite different insulin-glucose dynamic (appendix C.1). A 

rudimentary solution was to lump the segments for each subjects. 
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If we combined the set for optimized multipliers by taking the average for each subject, the 

model selection yielded significant results: 

ܹܤܫܦܶ~(1)ܲ ݌)							 < 0.05) 
ܯ~(2)ܲ + ܹܤܫܦܶ ݌)					 < ݌					&				0.05 < 0.05) 
ܯ~(3)ܲ + ݌)       ܨܥ = ݌					&				0.12 < ݌)				ܹܤ/ܫܦܶ~(4)ܲ (0.05 < ܨܥ~(5)ܲ (0.05 + 			݈ܽݏܾܽ ݌) < 0.05				&			 ݌ < 0.05)
 

Appendix C.2 listed the pair plot of each multiplier against the selected predictors.  

 

b) In-depth Search 

Even though the averaged tuning set showed its merit in model selection, it was still coarse. A 

more convincing solution was combining the cost from all BG segments for each subject and 

using the averaged parameter obtained from a) as the starting point for search. The Bayesian 

cost for each parameter was still included in the cost function, with mean ̅݌ and standard error ∆݌ computed from a) except (4)݌. The unconstrained parameter [ܽଵ		ܽଶ		ܽௗ] governed by (4)݌ 
was thereby accounting for the intra-individual variability.  

 

ܬ = ෍ ෍݌݉݁ݐ଴ଶ௡	௦௘௚௠௘௡௧௦
௡ୀଵ + ෍ ෍݌݉݁ݐଵଶ௡ ௦௘௚௠௘௡௧௦

௡ୀଵ + ෍ ෍|݌݉݁ݐ଴.∗ ଵ|௡݌݉݁ݐ ௦௘௚௠௘௡௧௦
௡ୀଵ + ෍ ෍ ݌) − ݌∆̅݌ )ଶ௣ஷ௣(ସ)

௡ ௦௘௧௠௘௡௧௦
௡ୀଵ 	 (6.19) 
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The backwards-stepwise model selection for each parameter was listed as follows: 

 

ܲ(1) = −0.2622 − 0.4564 ∗ 					ܹܤܫܦܶ  

݌) < 0.05			) ܲ(2) = 1.0006 − 0.0043 ∗ ܯ − 0.0343 ∗ ܴܥ − 0.0033 ∗ ݌)݈ܽݏܾܽ < ݌					&				0.05 < ݌					&					0.05 < 0.05) ܲ(3) = −0.5454 + 0.0155 ∗        ܨܥ

݌) < 0.05) ܲ(5) = 0.6319 − 0.01253 ∗ ܨܥ − 0.0289 ∗ ݈ܽݏܾܽ ݌)  < ݌					&				0.05 < 0.05) 
 

Figure 48 lists the pair plot of each multiplier against the selected predictors. The MARD and 
MAD of fitted prediction were 18.8%±6.9 and 30.2 ±13.9 mg/dl. 
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(D) 

Figure 48: Tuned multipliers against the selected predictors. 
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The model tested in the remaining simulated segments included 2763 meals and 270774 BG 
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mean of the prediction error. The averaged MARD and MAD of BG prediction were 26.9%±5.5 
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(0-1hour, 1-2hour, 2-3hour and 3-4hour): 8.3%, 22.7%, 37.5% and 42.1%. The standard errors 

for each were 15.6%, 24.5%, 35.2% and 33.9%.  

 

Figure 49: Distribution of MARD in 4 prediction horizon across all subjects. 
 

      We also computed the mean relative difference (MRD, referring equation 6.20) and the 

interquartile range for each prediction horizon was plotted in Figure 50.  

ܦܴܯ = ଵ௡∑ ீ೛ೝ೐೏(௜)ିீ(௜)ீ(௜)௡௜ୀଵ        (6.20)

 

 

Figure 50: Interquartile range of MRD for each prediction horizon. 
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Figure 51: Distribution of MRD of different prediction horizon: (A)PH=[0 1]h, (B)PH=[1 2]h, (C)PH=[2 3]h, (D)PH=[3 
4]h using the new regression model. 

 

      Compared to the training data, the prediction MARD and MAD of test data was increased by 

43% and 28% respectively. The decomposition of MARD into separate prediction horizons 

(Figure 49) showed that the prediction error increased monotonically: the further away from the 

starting point, the larger the error was. Despite the satisfying accuracy in PH=[0 1]h, the average 

performance of BG prediction got mitigated by the error in PH=[2 3]h and PH=[3 4]h.  

 

-0.5 0 0.5 1
0

1

2 x 104
(A

)

-1 -0.5 0 0.5 1 1.5
0

5000

10000

(B
)

-1 0 1 2 3
0

2000

4000

(C
)

-1 0 1 2 3
0

5000

(D
)



99 
 

Table 16: Interquartile range of MRD for each prediction horizon 
MRD PH=[0 1]h PH=[1 2]h PH=[2 3]h PH=[3 4]h 

Minimum -42.97% -60.43% -97.59% -98.33% 
25th Percentile -0.58% -8.52% -27.13% -44.83% 

Median 1.01% 4.91% -0.49% -16.92% 
75th Percentile 8.18% 25.15% 34.31% 20.20% 

Maximum 62.96% 149.65% 206.50% 229.60% 
 

      We also applied the previous regression model (refer to Figure 39) to repeat the test. The 

averaged MARD and MAD of BG prediction were 29.9%±8.0 and 47.8 ±15.6 mg/dl.  Figure 52 

shows the average MARD for each time horizon of prediction (0-1hour, 1-2hour, 2-3hour and 3-

4hour): 7.3%, 19.3%, 38.5% and 50.6%. The standard errors for each were 12.4%, 20.6%, 37.3% 

and 49.9%. For comparison, the result of using the old regression model is plotted as red bar.  

Table 17: Comparison of MARD using two different regression models 
 MARD MARD [0 1]h MARD [1 2]h MARD [2 3]h MARD [3 4]h 
Old 
regression 29.9% 7.3% 19.3% 38.5% 50.6% 

New 
regression 26.9% 8.3% 22.7% 37.5% 42.1% 

t-test p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 
 

 

Figure 52: Distribution of MARD in 4 prediction horizon across all subjects. Blue uses the new regression model and 
red uses the old regression model. 
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Figure 53: Distribution of MRD of different prediction horizon: (A)PH=[0 1]h, (B)PH=[1 2]h, (C)PH=[2 3]h, (D)PH=[3 
4]h using old regression model. 
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implied that BG was over predicted on average in the first half of the forecasting window. This 

could be explained partially by the effect of delayed meal absorption, which was in line with one 

of the cases in pilot study (section 6.1).  

      Despite the negative bias, multiple outliers were located on the positive side of the MRD box 

plot (Figure 50). It was due to the over-corrected (5)݌ and (2)݌ that governed the glucose 

effectiveness (݌ଵ) and rate of glucose appearance (݌଺) respectively. Refer to Figure 48 (B), on 

the bottom left of the regression line ܲ(2)~ܯ,  the predicted (2)݌ values were larger than the 

measured values. This informed an elevated rate of glucose appearance. In addition to that, the 

predicted (5)݌ values were smaller than the measured values for data points located on the 

right top of the regression line ܲ(5)~ܨܥ in Figure 48 (D). As a result, the glucose effectiveness 

was underestimated for those subjects.  The mixture of the two effects led to the over 

forecasting of BG. 

      Meals are a major perturbation to glucose variability. Accompanied by changes of rates of 

gastric emptying, as well as diurnal patterns of postprandial insulin sensitivity, they bring 

massive challenges to the robustness of physiological models. Regression models that linked the 

tuned parameters to the physiological parameters seemed mitigating the robustness of the 

insulin-glucose model. This increased the burdens of the gastrointestinal parameter, [ܽଵ		ܽଶ		ܽௗ] , which was expected to account for the model discrepancies brought by the 

approximations of the regression line. Applying adaptive methodology is a way to resolve this 

problem. Meanwhile, a comprehensive assessment of the effect of meal composition on the 

post-prandial glucose excursion is anticipated. 

      The confounding factors underlying the inter-variably and intra-variability yanked the chain 

when we tried to account for the prolonged physiological changes in human body. A simple 



102 
 

physiological model which was designed to possess the ability to adapt to various subjects 

encountered a vast challenge in the realistic environment (in-vivo test). Such a traditional 

analytic tool alone has its limitations. With increasing number of diabetes management devices 

getting connected to the “cloud”, we will be exposed unprecedentedly to an enormous size of 

data. The solutions of diabetes management must be rethought in a bigger picture in which 

diabetes management devices, traditional analytics, informatics, leadership technologies, 

cognitive computing are married with big data. Once this field finds its position in “Web 3.0”, a 

game-changing breakthrough will be not far.  
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Chapter 7. Conclusions and Future 
Work 
  

“Essentially, all models are wrong, but some are useful” [George E. P. Box] reveals two basic 

facts in the context of physiological modeling: it is impossible to estimate every single 

parameter of the system based on in-vivo data and even if one is capable of doing that at an 

instant, and it is impossible to keep that capability for the next instant. Therefore, some 

sacrifices have to be made when modeling physiological systems. Combining subsystems into 

one simpler representation is one of such. The consequential reduction of the parameter set 

then brings more difficulty to match the model to the in-vivo data, especially when substantial 

inter-individual and intra-individual variability is present. To compensate for this phenomenon, 

one can keep track of the characteristics of the system parameters and take corresponding 

remedial actions. Considering the complexity of the physiology surrounding the insulin-glucose 

system, any closed loop system dosing insulin needs to at least be robust to these variations, 

and at best account for them. 

      Traditional methods of insulin sensitivity quantification usually require frequent blood 

sampling to measure the plasma insulin and glucose concentration. In this dissertation, we 

proposed an innovative technique, which enables online SI tracking (ܵܫ௄ி) using CGM and pump 

data. The validation of KF-generated SI against minimal-model fitted SI showed a significantly 
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high correlation. We believe this technique can push the boundaries of fast and easy access to SI 

as an auxiliary to the treatment of Type 1 diabetics in their daily lives.  

      Compared to the traditional SI indexing, the dynamic ܵܫ௄ி provides a more granular insight 

into patient’s insulin-glucose kinetics. An interesting application of ܵܫ௄ி  could be a 

hypoglycemia/hyperglycemia warning system. For example, if an elevated  ܵܫ௄ி   (above a 

certain threshold) is detected, a hypo-alarm indicator will be turned on and the patient can 

adjust their insulin infusion rate accordingly.  ܵܫ௄ி can also be integrated into the “Safety 

Service  Module” 110 to facilitate the traffic light decision. Last but not least, since ܵܫ௄ி  is more 

tolerant of the data structure than the traditional SI indexing (for example, ܵܫ௠௠ needs OGTT 

data), the vast majority of modern T1D clinical data can be analyzed by using this technique.  

      As an application of ܵܫ௄ி, we analyzed a set of clinical data collected surrounding the 

menstrual cycle and substantiated the hypothesis that a subset of premenopausal women with 

T1DM would experience a decrease in insulin sensitivity during the second half of the menstrual 

cycle (luteal phase). Our ultimate goal was to develop an advisory system aimed at improving 

the diabetes control in younger women experiencing BG variation related to menstrual cycle. 

The future work includes: 1) develop detection algorithms to inform the patients of abnormal 

BG fluctuations related to menstrual cycle; 2) train a model to project the BG based on the 

historical data and the menstrual cycle parameters (date of menses, average length of cycle and 

timing of ovulation); 3) design a user-friendly interface for patients to better interact with the 

device. 

      By using traditional SI extraction technique, we confirmed that after moderate intensity 

exercise and high intensity exercise, whole–body insulin sensitivity derived by the oral minimal 

model was improved.  OGTT is a pragmatic tool for measuring insulin sensitivity in early phase of 
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exercise effect, however, ܵܫ௄ி  is considered a more appropriate tool for measuring SI in both 

early and late phase of exercise effect. Possible future work on this project would involve 

extracting SI from clinical data involving physical activity and identify patterns that can be 

exploited to help improving glycemic control. 

      We studied the short-term (up to 45 minutes) BG prediction performance based on 

physiological modeling and explored the impact of different structural designs (full model, feed-

forward, with and without SI tracking) on BG prediction.  We found that the short-term BG 

prediction power got improved by extracting the meal and insulin transportation as feed-

forward compartments. The “LOG-Core model with SI” implementation enabled online 

estimation of SI maintaining physiologically reasonable values meanwhile provided a relatively 

accurate way to carry out the BG prediction.  

      Finally, as a robust long-term prediction of BG is indispensable in designing a MPC based 

bolus advisory system (Patek 114), we have tied, in part, the inter-individual and intra-individual 

variability to the patient’s physiological parameters, leaving the unaccounted uncertainties to 

the gastrointestinal models. Future work aims at identifying (tuning) the gastrointestinal 

parameters in an adaptive way.  One approach is run-to-run (R2R) control, namely, adjusting the 

parameter based on the outcome from the last run. The choice of time window for each run and 

the aggressiveness for the tuning are subject to study.  A more intensive approach can be online 

tuning: the parameter is tuned at decision time considering the historical meal announcement 

and the computed glucose changing rate.  

      The invention of the LOG model was originated in the SI tracking research. We found later its 

desirable properties in constructing the glucose control objective function in risk space as 

described in Patek et al. 2014 paper 114 that the objective function in risk space allowed for 



106 
 

appropriate balance between hypo and hyperglycemic risk. Kovatchev 133 published a BG risk 

function that has set standards for a variety of aspects such as BG risk analysis and prediction of 

extreme BG variations.  We are interested in comparing the performance of MPC control by 

using the LOG model-based control objective function to that using the BG risk function.  

      The main contribution of this dissertation was the formalization of a series of techniques 

developed to characterize parameter uncertainties of the insulin-glucose physiological system, 

for the purpose of enhancing model based insulin dosing strategies in diabetes. Through this 

project, we have strived to intertwine knowledge and techniques from multiple disciplines 

(physiology, system engineering, automatic control and medicine to cite but a few) and 

constantly applied newly developed techniques to the design and testing of medical devices. 

This interface, often referred to as translational research, is where the proverbial rubber meets 

the road. It has been my great privilege and honor being a scientist and engineer of diabetes 

technology. I look forward to continuing my dedications to this field. 
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Appendix 
 

A. Terms in integral SI formula 
 

Refer to 71: 

i) AoC: amount of carbohydrates 

 AoC൫meal୧൯ = D൫t୫ୣୟ୪୧ ൯ ∙ f൫tୣ୬ୢ୧ ൯ + COB(tୣ୬ୢ୧ିଵ ) ∙ D(t୫ୣୟ୪୧ିଵ ) 
The amount of CHO ingested of i-th meal includes the current meal constrained by the meal rate 

of appearance f(t) and the last meal (i-1) evaluated by the carbohydrates on board COB(t). 

a b 

Figure 54: a. Meal rate of appearance f(t) and b. carbohydrates on board COB(t). 
 

 

ii) IOB: Insulin on Board 
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Insulin on board curves (Figure 55) was adopted to compute the residual active insulin from the 

bolus administrated before the meal. 

Figure 55: Insulin on board as function of time.
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B.1	KF matrices and noise covariance 
 

Table 18: KF states and noise settings 

KF 
setting SOGMM-Full 

SOGMM
Core+∆ 

SOGMM 
Core withࡵࡿ 

 
States 

௣ܫ	௦௖ଶܫ	௦௖ଵܫ	ܺ	ܩ]  ܳଵ ܳଶ] [ܩ ܺ ܩ] [ ܺ  [ܫܵ
 

G 
 [0	0	1	0	0	1 1]′  ቂ1 00 1݁ − 2ቃ  ൥1 0 00 0 00 0 1݁ − 5൩ 

 
H 

 
0 

 [0 0]  [0 0 0] 
 

Q 
 

1 ቂ1݁ − 3 00 1݁ − 3ቃ ൥1 0 00 1 00 0 1൩ 
 

R 
 5݁ − 4 ݁ − 1 1 

 
N 

 
0 

 [0 0]′  [0 0 0]′ 
KF 
setting 

 
LOG-Full 

LOG
Core+∆ 

LOG
Core with ࡵࡿ 

States 
 [ln ൬ ௕൰ܩܩ ln ൬ ܺܺ௕൰ ௦௖ଵܫ ௦௖ଶܫ ௣ܫ ଵܳ ܳଶ] [ln( (௕ܩܩ ln( ܺܺ௕)] [ln ൬ ௕൰ܩܩ ln ൬ ܺܺ௕൰ ln	(  [(௕ܫܵܫܵ

 
G 

 [0.05	10	0	0	0 0 0 ]′ ቂ5݁ − 2 00 5ቃ ൥5݁ − 2 0 00 0 00 0 1൩ 
 

H 
 

0 
 [0 0]  [0 0 0] 

 
Q 

 
1 ቂ1 11 1ቃ ൥1 1 11 1 11 1 1൩ 

 
R 

 5݁ − 6 5݁ − 3 5݁ − 4 

 
N 

 
0 

 [0 0]′  [0 0 0]′ 
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B.2 Prediction matrices  
 

Table 19: Prediction states and matrices 

௣ܣ   ௣ܥ ௣ܤ

SOGMM-
Full ێێۏ

ێێێ
9.1݁ۍ − 1 −5.7݁ + 2 −9.3݁ − 6 −3.4݁ − 4 −8.6݁ − 3 5.1݁ − 5 2.5݁ − 40 5.1݁ − 1 4.1݁ − 8 1.1݁ିହ 1.5݁ିହ 0 00 0 9.0݁ − 1 0 0 0 00 0 9.0݁ − 2 9.0݁ − 1 0 0 00 0 3.3݁ − 3 5.4݁ − 2 2.8݁ − 1 0 00 0 0 0 0 6.3݁ − 1 00 0 0 0 0 3.6݁ − 1 9.4݁ − ۑۑے1

ۑۑۑ
ې
 

ێێۏ
ێێێ
1.0݁−ۍ − 5 8.9݁ − 55.8݁ − 8 04.8 02.3݁ − 1 06.2݁ − 3 00 4.00 9.8݁ − ۑۑے1

ۑۑۑ
ې
 

ێێۏ
ێێێ
ۑۑے1000000ۍ
ۑۑۑ
ې ′ 

SOGMM 
Core+∆ ێێۏ

ێێێ
9.1݁ۍێ − 1 −7.8݁ + 2 −5.7݁ + 2 −9.3݁ − 6 −3.4݁ − 4 −8.6݁ − 3 5.1݁ − 5 2.5݁ − 40 1.0 0 0 0 0 0 00 0 5.1݁ − 1 4.1݁ − 8 1.1݁ − 6 1.5݁ − 5 0 00 0 0 9.0݁ − 1 0 0 0 00 0 0 9.2݁ − 2 9.0݁ − 1 0 0 00 0 0 3.3݁ − 3 5.4݁ − 2 2.8݁ − 1 0 00 0 0 0 0 0 6.3݁ − 1 00 0 0 0 0 0 3.6݁ − 1 9.4݁ − ۑۑے1

ۑۑۑ
ېۑ
 

ێێۏ
ێێێ
1.0݁−ۍێ − 5 8.9݁ − 50 05.8݁ − 8 04.8 02.3݁ − 1 06.2݁ − 3 00 4.00 9.9݁ − ۑۑے1

ۑۑۑ
ېۑ
 

ێێۏ
ێێێ
ۑۑے10000000ۍێ
ۑۑۑ
ېۑ ′ 

SOGMM 
Core 

withܵێێۏ ܫ
ێێێ
8.8݁ۍێ − 1 −3.8݁ + 2 −6.3݁ − 6 −2.3݁ − 4 −5.8݁ − 3 5.0݁ − 5 2.4݁ − 4 −7.9݁ + 30 5.1݁ − 1 4.2݁ − 8 1.1݁ − 6 1.5݁ − 5 0 0 2.6݁ + 10 0 9.0݁ − 1 0 0 0 0 00 0 9.2݁ − 2 9.0݁ − 1 0 0 0 00 0 3.3݁ − 3 5.4݁ − 2 2.8݁ − 1 0 0 00 0 0 0 0 6.3݁ − 1 0 00 0 0 0 0 3.6݁ − 1 9.4݁ − 1 00 0 0 0 0 0 0 9.2݁ − 1 ۑۑے

ۑۑۑ
ېۑ
 

ێێۏ
ێێێ
6.8݁−ۍێ − 6 8.8݁ − 55.8݁ − 8 04.8 02.4݁ − 1 06.2݁ − 3 00 4.00 9.9݁ − 10 0 ۑۑے

ۑۑۑ
ېۑ
 

ێێۏ
ێێێ
ۑۑے10000000ۍێ
ۑۑۑ
ېۑ ′ 

LOG-Full 

ێێۏ
ێێێ
9.7݁ۍ − 1 −2.3݁ − 3 −1.3݁ − 8 −4.9݁ − 7 −1.3݁ − 5 1.4݁ − 6 2.6݁ − 60 9.3݁ − 1 2.0݁ − 5 5.5݁ − 4 9.2݁ − 3 0 00 0 9.0݁ − 1 0 0 0 00 0 9.2݁ − 2 9.0݁ − 1 0 0 00 0 3.3݁ − 3 5.4݁ − 2 2.8݁ − 1 0 00 0 0 0 0 9.0݁ − 1 00 0 0 0 0 4.5݁ − 2 9.0݁ − ۑۑے1

ۑۑۑ
ې
 

ێێۏ
ێێێ
1.4݁−ۍ − 8 3.5݁ − 62. ݁ − 5 04.8 02.3݁ − 1 06.2݁ − 3 00 4.80 1.2݁ − ۑۑے1

ۑۑۑ
ې
 

ێێۏ
ێێێ
ۑۑے1000000ۍ
ۑۑۑ
ې ′ 

LOG 
Core+∆ ێێۏ

ێێێ
9.7݁ۍێ − 1 −2.4݁ − 3 −2.3݁ − 3 −1.3݁ − 8 −4.9݁ − 7 −1.3݁ − 5 1.4݁ − 6 2.6݁ − 60 1.0 0 0 0 0 0 00 0 9.3݁ − 1 2.0݁ − 5 5.5݁ − 4 9.2݁ − 3 0 00 0 0 9.0݁ − 1 0 0 0 00 0 0 9.2݁ − 2 9.0݁ − 1 0 0 00 0 0 3.3݁ − 3 5.4݁ − 2 2.8݁ − 1 0 00 0 0 0 0 0 9.0݁ − 1 00 0 0 0 0 0 4.5݁ − 2 9.0݁ − ۑۑے1

ۑۑۑ
ېۑ
 

ێێۏ
ێێێ
1.4݁−ۍێ − 8 3.5݁ − 60 02.7݁ − 5 04.8 02.3݁ − 1 06.2݁ − 3 00 4.80 1.2݁ − ۑۑے1

ۑۑۑ
ېۑ
 

ێێۏ
ێێێ
ۑۑے10000000ۍێ
ۑۑۑ
ېۑ ′ 

LOG 
Core 

withܵێێۏ ܫ
ێێێ
9.7݁ۍێ − 1 −2.3݁ − 3 −1.3݁ − 8 −4.9݁ − 7 −1.3݁ − 5 1.4݁ − 6 2.6݁ − 6 −1݁ − 20 9.3݁ − 1 2.0݁ − 5 5.5݁ − 4 9.2݁ − 3 0 0 00 0 9.0݁ − 1 0 0 0 0 00 0 9.2݁ − 2 9.0݁ − 1 0 0 0 00 0 3.3݁ − 3 5.4݁ − 2 2.8݁ − 1 0 0 00 0 0 0 0 9.0݁ − 1 0 00 0 0 0 0 4.5݁ − 2 9.0݁ − 1 00 0 0 0 0 0 0 9.2݁ − ۑۑے1

ۑۑۑ
ېۑ
 

ێێۏ
ێێێ
1.4݁−ۍێ − 8 3.5݁ − 62.7݁ − 5 04.8 02.4݁ − 1 06.2݁ − 3 00 4.80 1.2݁ − 10 0 ۑۑے

ۑۑۑ
ېۑ
 

ێێۏ
ێێێ
ۑۑے10000000ۍێ
ۑۑۑ
ېۑ ′ 

 

 

 

 

 

  



126 
 

 

C. 1 Tuned multipliers against the selected response variable (CR) 
by global search 
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(E) 

Figure 56: Tuned multipliers against the selected response variable (CR) by global search. 
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C. 2 Tuned multipliers against the response variables (segments 
averaged) based on global search 
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(E) 

Figure 57: Tuned multipliers against the response variables (segments averaged) based on global search. 
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