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Abstract

Monolayer protected nanoparticles (MNPs) have a wide variety of ap-
plications from catalysis and photonics to biosensing and drug delivery.
However, characterization of ultrasmall MNPs (< 10nm) has proven dif-
ficult with traditional experimental techniques, making the synthesis and
design of these ultrasmall MNPs challenging. Our work looks to develop
simple and robust characterization methods using both experimental and
computational techniques.

Experimentally we use Transmission Electron Microscopy (TEM) to
assess nanoparticle shape and size and Matrix-Assisted Laser Desorp-
tion and Ionization (MALDI) to assess the degree of order present in
nanoparticle monolayers. In addition, we model the systems using both
Self-Consistent Field Theory (SCFT) and atomistic simulations to model
these nanoparticle monolayers. We are then able to calculate predicted
MALDI spectrum from these simulations which allows us to directly com-
pare theory and experiment.

We validate this method with our first paper looking at a monolayer
with only isotopic differences (dodecanethiol (DDT) and deuterated do-
decanethiol [D25]DDT) as our control monolayer with a physically mis-
matched monolayer (DDT and butanethiol (BT)) that should show signs
of phase separation. Our work looking at these two types of monolayers
shows strong matches confirmed our hypothesized morphologies which
gives strong credence to our technique.

We use our method to explore the dynamics of phase separation in a
variety multi-ligand nanoparticle monolayers. This method is first used
to examine how various degrees of physical mismatch between ligands ef-
fect nanoprticle monolayer phase separation, giving us a detailed look at
how small changes in chain length mismatch between ligands can lead to
a range of differing striped monolayers. We then expand our method to
look at patchy and Janus-like phases by examining multi-ligand nanopar-
ticle monolayers with chemical mismatch. The modelling of chemically
mismatched monolayers required the use of more accurate atomistic sim-
ulations with advanced Monte Carlo sampling. These more advanced
computational techniques allows for an accurate modelling of Janus-like
monolayer phase separation. The CBMC atomistic simulation is also
shown to be even more versatile by de novo predicting monolayer phase
separation in monolayers with a variety of physical and chemical mis-
matches which gives rise to the possibility of computational design of
multi-ligand nanoparticle monolayers for applications in drug delivery,
biosensing, and photonics.
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Chapter 1

Introduction

Nanoparticles have found a wide array of uses from composites and colloids to
drug delivery and biological imaging [1]. One of the unique aspects of nanopar-
ticles are their high surface area to volume ratio which allows surface effects
to dominate. This results in unique effects not seen in bulk materials. These
effects include surface plasmon resonance, surfactant properties, and unique
self-assembled structures. With nanoparticle surfaces playing such a large role
in their overall properties, tuning this interfacial area on the nanoparticle is
crucial to controlling its properties.

One of the most common ways of modifying nanoparticle properties is by
modifying the nanoparticle surface. There are several techniques to achieve
this including core-shell synthesis [2], liposome encapsulation [3], as well as the
addition of a ligand monolayer [4]. In our work, we focus on modifying the
nanoparticle surface with a ligand monolayer as this method allows for a wide
array of differing ligand types and has a straightforward way of attaching useful
molecules via click chemistry [5,6]. Another advantage of monolayer protected
nanoparticles (MPN’s) is the ease of adding additional functionality by using
multiple ligand types. These multifunctional nanoparticles are especially useful
in drug delivery applications, where one wishes to have a ligand with functional
groups suited for targeted delivery along with other ligand types used for car-
rying the drug [7, 8].

One crucial aspect of multi-ligand monolayers is monolayer phase separa-
tion. As two different ligand types adsorb to the surface of the nanoparticle,
they will tend to separate into varying phases depending on the physical and
chemical characteristics of the ligands (see Figure 1.1). Previous work by other
groups has shown that the type of monolayer phase separation on a MPN can
have a drastic effect on its properties as a drug delivery agent [9–12], as a cata-
lyst [13,14], and allows unique self-assembled structures to form [15–18]. Thus,
controlling this phase separation is a crucial step in tuning MPN properties.
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1. Introduction

Figure 1.1: Diagram of phase separation in multi-ligand nanoparticle monolayers. Here we
see that two different ligand types (red and blue) adsorb onto the monolayer
and subsequently undergo phase separation to self-assemble into one of several
different types of monolayer structures.

Our work looks to find the underlying factors behind this phase separation
by studying monolayer phase separation under a variety of conditions using
both experimental and theoretical techniques. In doing so we hope to develop
a systematic method for engineering phase separation from a set of design
principles based on the chemical and physical differences between ligands in
multi-ligand monolayer. These design principles will allow others to predict
and design the spatial patterning of these nanoparticle monolayers and thereby
control the monolayer protected nanoparticle properties (see Figure 1.2). These
design principles can then be applied to facilitate better design of MPN based
catalysts, drug delivery, and bio-imaging devices.
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Figure 1.2: Illustration of how a set of design rules allows the desired monolayer phase
separation to guide ligand selection. These design rules allow design of the de-
sired phase separation in the synthesized nanoparticle and therefore the desired
properties of that monolayer morphology.
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Chapter 2

Merging Experiment and Theory
Developing an Experimental and Computational
Characterization Technique for Noble Metal Nanoparticle
Monolayers

This chapter was adapted from: Farrell, Z.; Merz, S.; Seager, J.;
Dunn, C.; Egorov, S.; Green, D. L. Development of Experiment and
Theory to Detect and Predict Ligand Phase Separation on Silver
Nanoparticles. Angew. Chemie Int. Ed. 2015, 54 (22), 6479-6482.

2.1 Introduction

To develop our method, we analyze silver metal nanoparticles with an alka-
nethiolate monolayer. This system was chosen as an ideal candidate since noble
metals are easily functionalized by alkanethiolates. Additionally, alkanethio-
late monolayers on flat noble metal surfaces have been extensively studied in
the past [19], which gives us a solid framework for predicting the expected
behavior of the nanoparticle monolayer. The silver nanoparticles are synthe-
sized using a one-phase one-step synthesis carried out in ethanol developed by
Farrell et al. [20]. To evaluate our ability to detect phase separation we look
at two multi-ligand monolayers. The first monolayer consists of dodecanethiol
(DDT) and deuterated dodecanethiol ([D25]DDT). As there is only an isotopic
difference between these ligands we expect no phase separation to occur. The
second monolayer consists of DDT and butanethiol (BT). We expect that this
monolayer should undergo phase separation based on the physical mismatch
between the two ligands. The phase separation induced by this physical mis-
match is predicted by several previous computational studies [21–25] and is
driven by the increase of entropy that results from maximizing free volume of
the ligands [23].

13



2. Merging Experiment and Theory

2.2 Experimental

Silver nitrate (99.9999%purity), sodium borohydride (99.99%), 1- Butylphenyl)-
2-methyl-2-propenylidene]malononitrile dodecanethiol (≥ 98%), 1-butanethiol
(99%), and trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile
(DCTB,≥ 99.0%), were purchased from Sigma-Aldrich. Absolute ethanol and
toluene (ACS reagent grade) were purchased from Fisher Scientific. Deuterated
1-dodecanethiol ([D25]dodecanethiol, 98.9 atom% deuterium) was purchased
from C/D/N Isotopes. All reagents were used with no further purification. Ul-
trathin (< 3nm) carbon film on 400 mesh copper holey carbon grids for TEM
imaging were purchased from Ted Pella.

Mixed self-assembled monolayer Ag nanoparticles were synthesized by our
direct method with the molar ratio of thiol ligand to silver nitrate held constant
at 12 throughout all syntheses while varying the individual thiol concentrations
in a given pair [20]. Silver nitrate was maintained at 0.5 mM in ethanol in all
reactions and sodium borohydride was kept at a 12-fold excess at 6 mM. After
initiation of the reaction by combining the reagents, the mixture was stirred
for 30 min and then transferred to centrifuge tubes and centrifuged at 12000
rpm for 20 min. Following centrifugation, the supernatant was decanted and
replaced with fresh ethanol. Subsequently the nanoparticles were redispersed
by sonication and were again centrifuged. This was repeated three times and
after the third and final centrifugation the nanoparticles were redispersed in
toluene.

Nanoparticle samples were characterized using TEM and MALDI mass spec-
trometry. All TEM images were taken with an FEI Titan at an accelerating
voltage of 300 kV. A drop-mounting method was used to prepare TEM sam-
ples. A TEM grid was held within self-closing tweezers and a pipette used
to place a drop of nanoparticle solution onto the grid. A small piece of filter
paper was used to wick away extra solvent and the grid was dried for at least
one hour. Determination of nanoparticle size was performed using automated
routines built into ImageJ software. MALDI measurements were performed
on a Bruker MicroFlex. To prepare solutions for spotting onto a MALDI
plate, trans-2-[3-(4-tert-butyl-phenyl)-2- methyl-2-propenylidene]malononitrile
(DCTB; 0.025 g) were dissolved in 1 mL of nanoparticle solution. 100 mL of
this solution was spotted per well of a standard ground-steel Bruker MALDI
plate. Laser power was kept at 40% across all measurements with the detector
operated in linear mode. Individual ion counts were calculated by integrating
the area under the peak of interest using the trapezoid rule; in every case, these
values were calculated for each ion of interest in the Ag6L5 series.
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2.3. Results and Discussion
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Figure 2.1: MALDI spectrum of the Ag6L5 fragment from Ag nanoparticles functionalized
with DDT and its deuterated analogue [D25]DDT. Depicted above the spec-
trum are the number of DDT (blue) and [D25]DDT (red) ligands on a fragment
corresponding to each MALDI peak.

2.3 Results and Discussion

The experimental technique employed is MALDI mass spectrometry, an
ensemble-based method which produces mass spectra of solid analytes through
ionization with a UV laser, thereby accelerating analyte fragments towards a
detector that typically resolves species by time-of-flight.[8] This technique has
general utility for metallic nanoparticles, but we currently employ only silver
as well as a further study of gold (in the Supporting Information). In the case
of silver, fragments are produced, with a generic formula of Agn+1Ln where n
is the number of ligands (L) on a fragment with n+ 1 Ag atoms [26]. We chose
to analyze the Ag6L5 fragment family as it was prevalent in every spectrum
and its peaks provide good resolution. The parameter L represents ligands, one
being dodecanethiol (DDT) and the other being deuterated DDT ([D25]DDT)
or butanethiol (BT). Analysis of the fragment provides a representative mea-
sure of the mol% of DDT, [D25]DDT, and BT on the surface as well as the
monolayer phase separation. (For a detailed comparison of the Ag6L5 ion fam-
ily with others, see the Supporting Information). Figure 2.1 shows the MALDI
spectrum for the Ag6L5 fragment from silver nanoparticles functionalized with
a 49 : 51 mol% mixture of adsorbed DDT and its deuterated analog [D25]DDT,
respectively.
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2. Merging Experiment and Theory

Anticipating that the Ag6L5 fragment provides a representative sampling
of the surface, it is possible to create a frequency distribution. In the case
of Ag6L5 with dodecanethiol as one of the two ligands, it is convenient to
conceptualize each of the six possible ions in terms of how many DDT are
present in each fragment (i.e., 0 − 5 ligands). Knowledge of the frequency
distribution also facilitates the computation of the relative amounts of each
ligand, enabling a calculation of the binomial distribution, which would be
expected for random ligand mixing. By comparing the experimental frequency
distribution with the binomial distribution in Equation 3.1b (discussed below)
it is possible to calculate a sum of squared residuals (SSR) between them,
which is then representative of the degree of ligand phase separation. Random
mixing is anticipated for the DDT/[D25]DDT monolayer; indeed, its frequency
distribution coincides with the binomial distribution in Figure 2.2b.

Calculations on the volume-fraction profiles from the Scheutjen-Fleer self-
consistent mean-field lattice model (SCF) [27] were used to simulate a theo-
retical spectrum, which could be compared to that obtained experimentally
using MALDI mass spectrometry. It is appropriate to employ the SCF ad-
sorption theory to model ligand interactions on silver as the SAM has a graft
density approaching 5 ligands

nm2 [28], equating to the concentrated brush regime
where the mean-field approximation applies [29]. Further approximations were
made to speed up computations: Although silver nanoparticles are faceted
icosahedrons [30], the particle geometry was modeled as a pixelated sphere,
permitting analyses to be carried out in Cartesian coordinates. Moreover, each
ligand monomer fills a lattice site of constant size, thus ligand and solvent
monomers are the same size in the simulations. To this end, three species are
considered: the solvent and two chemically distinct ligands whose effective in-
teraction are modeled by a Flory parameter, χ. The NP diameter was set to
20 lattice units, equivalent to the actual NP size of 3− 4nm, [20] and the num-
ber of monomers in a ligand were equated to the same number on the lattice;
thus, dodecanethiol and butanethiol, respectively, are twelve and four lattice
monomers long. An additional parameter is the dimensionless surface coverage,
q, which we set to q = 0.44, equating to full monolayer coverage. The adsorbed
ligand concentrations in the simulations were varied by changing the ratio of
the two ligands on the surface. Subsequently, the resulting SCF calculations
were compared to the MALDI results with a similar ligand ratio. The SCF cal-
culations were carried out subject to the constraints of the minimization of the
free energy and the conservation of mass. The resulting equilibrium volume-
fraction profiles were determined by solving the polymer diffusion equation for
each species with the appropriate boundary conditions, where each ligand was
pinned and allowed to move around the interface. The current SCF formalism
does not account for inter-chain crystallization known to occur in alkane thiols
with carbon lengths C ≥ 10 − 12 [31]. The agreement between theory and
experiment below indicate that although the effects of inter-chain crystalliza-
tion may be present, their influence is minimal on the random mixing between

16



2.3. Results and Discussion

DDT/[D25]DDT and phase separation between monolayers of DDT and much
shorter butanethiol(BT) chains.

To simulate a MALDI spectrum, statistical analysis was performed on the
monomer of each ligand pinned at the interface to mimic tracking of the Ag6L5

fragment. In particular, the two species of ligands on the fragment result in
six peaks on a MALDI spectrum, representing the six possible binomial com-
binations. To simulate this distribution, a histogram was calculated from the
probability, Pw,i, which was computed by summing the probability at each lat-
tice space that was treated locally as a binomial of the six possible ligand com-
binations as weighted by the local volume fractions of the pinned monomers.
The probability, Pw,i, is shown in Equation 2.1, where i = 0 . . . n, is the num-
ber of fragments out of a total of n = 5 fragments of the first ligand species;
this species is DDT. The ligand volume fraction is φ and the subscript B de-
notes tracking of the other ligand species; the total interfacial concentration
of DDT and species B is considered when φ includes the subscript T . The
subscript, k = 1 . . .M , is an index for each ligand site for a total number of
sites M . Equation 2.3 displays the SSR, which is determined by squaring and
summing the residual, Pw,i − Pbi,i, where Pbi,i is the binomial distribution in
Equation 3.1b.

Pw,i =

∑M
k=1(φDDTk

+ φBk
)n
(
n
i

)
φiDDTk

φn−iBk∑M
k=1(φDDTk

+ φBk
)

(2.1)

Pbi,i =

(
n

i

)
φiDDTT

φn−iBT
(2.2)

SSR =

n∑
i=1

(Pw,i − Pbi,i)2 (2.3)

To connect experiment and theory, we analyzed the MALDI distributions
of monolayers composed of DDT, an alkanethiol with 12 carbons, in com-
bination with butanethiol (BT), a shorter alkanethiol with four carbons, or
deuterated dodecanethiol [D25]DDT. One purpose is to use MALDI and SCF
to establish the existence of phase separation for the DDT/[D25]DDT and
DDT/BT mixed monolayers, which should result in well-mixed or striped
monolayer, respectively. Well-mixed monolayers are anticipated for the DDT
and [D25]DDT coated nanoparticles as a result of the chemical similarity of
the ligands. Striped monolayers should result from the microphase segregation
of DDT and BT, promoted by an increase in the conformational entropy of the
longer ligand. A Flory parameter of χCH2

= 0 was chosen to model the athermal
interaction between the methyl and methylene groups of DDT, [D25]DDT, BT,
and a simulated ethanol solvent. The Flory parameter between the hydroxy
group of ethanol and the methyl and methylene groups of the ligands was set
at χ

CH2/OH
= 2.0.
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2. Merging Experiment and Theory

Figure 2.2 shows the comparison between the MALDI spectra for the 50/50
mol% DDT/[D25]DDT and DDT/BT monolayers and the corresponding SCF
predictions. The SCF images display the locations for DDT in blue and the
opposing ligand in red. Thus, the color of the well-mixed monolayer is uniform,
that is, one color, denoting random mixing in Figure 2.2a. This random mixing
is supported by the correspondence between the MALDI and SCF spectra
for DDT and [D25]DDT in Figure 2.2b where random mixing is indicated
by the higher probability of having silver fragments with either two or three
DDT ligands. In contrast, Figure 2.2c illustrates microphase separation and
striped nanoparticle formation for semimiscible ligand mixtures, which is also
supported by the agreement between the simulated and experimental spectra
for DDT and BT in Figure 2.2d.

Although the error in the MALDI data is not shown in Figure 2.2 for clarity,
variance in the data is due to random fluctuations in ligand ordering and error
resulting from small variations in the triggering time or accelerating voltage in
the MALDI system. Error in peak alignment is typically measured to be on
the order of 0.1%, [32] which is anticipated to be smaller than random error.
Hence, the standard deviation (σ) resulting from random fluctuations was esti-
mated by comparing the spectra of the well-mixed monolayer DDT/[D25]DDT

to the binomial distribution through σ =
√

SSR
j−1 for j = 84 peaks yielding

σ = 0.04, indicating that the peaks derived experimentally from MALDI mass
spectrometry deviate from those calculated using SCF by 4%.

A plot of the SSR in Figure 2.3 provides another measure of ligand phase
separation by quantifying the deviation from random mixing. To this end,
we employed a one-step reaction scheme [20] to synthesize silver nanoparticles
with monolayers of DDT and [D25]DDT as well as DDT with BT to detect
the effect of differences in the carbon chain length in the ligands, ∆C, on
phase separation over a range of interfacial concentrations. As a result of their
chemical similarity, low SSR values from SCF and MALDI are anticipated for
the DDT/[D25]DDT monolayer with ∆C= 0. For example, the SSR values
from SCF are negligible (SSR ≈ 10−19 ,i.e., smaller than the relative error
caused by rounding in floating-point arithmetic). Thus, the SCF calculation
for favorably interacting, similar-sized ligands converges to the binomial distri-
bution in Equation 3.1b, supporting our choice of this distribution to model a
well-mixed monolayer. The experimental SSR values for the DDT/[D25]DDT
monolayer are low, on the order of 10−3 − 10−2, similar to values obtained
with MALDI for randomly-mixed monolayers by Cliffel and co-workers. [33]
The SSR values should increase with monolayers of DDT and BT with ∆C= 8,
as microphase separation is expected to occur for alkanethiol mixtures with a
sufficient chain-length difference through gains in mixing entropy. [34] The SSR
values obtained from MALDI experiments for DDT/BT monolayers increase
10-fold in comparison to the well-mixed case (10−1 � 10−2). The theoretical
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Figure 2.2: Comparison between the MALDI mass spectra and SCF predictions. (a) SCF
image of well-mixed monolayer with simulated dodecanethiol (DDT) in blue
and [D25]DDT in red, colors mix as purple. (b) MALDI spectra for the well-
mixed DDT/[D25]DDT monolayer functionalized Ag nanoparticles and the cor-
responding SCF prediction. (c) SCF image of the striped nanoparticle with
simulated DDT in blue (overlapping with red to give purple) and butanethiol
(BT) in red. (d) MALDI spectra for microphase separated DDT/BT monolayer
functionalized Ag nanoparticles and corresponding SCF prediction.
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2. Merging Experiment and Theory
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Figure 2.3: Comparison between experimental and theoretical SSR values from MALDI
experiments and SCF calculations.

SSR value matches the trends and magnitude of the MALDI SSR, indicating
good agreement between experiment and theory.

Through this work, we have demonstrated the ability to quantify and pre-
dict the phase separation of alkanethiols on Ag nanoparticles using MALDI and
SCF as a function of both ligand concentration and carbon chain-length differ-
ence. These results indicate that, when pairing DDT with either its deuterated
analogue [D25]DDT or BT, the SAM morphology progressed from a random
ligand distribution to an intermediate degree of phase separation. We an-
ticipate these methods will find utility in the design of nanomaterials with
properties arising from phase-separated SAMs as they offer an inexpensive,
high-throughput method for the measurement of ligand phase separation in
nanoparticle systems.
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Chapter 3

Exploring Stripey Monolayers
Investigation of Physical Mismatch on Phase Separation

This chapter was adapted from: Merz, S. N.; Farrell, Z. J.;
Dunn, C. J.; Swanson, R. J.; Egorov, S. A.; Green, D. L. Theo-
retical and Experimental Investigation of Microphase Separation in
Mixed Thiol Monolayers on Silver Nanoparticles. ACS Nano 2016,
10 (11), 9871-9878.

3.1 Introduction

Due to the high surface area-to-volume ratio of nanoparticles, controlling
their interfacial chemistry is crucial to manipulating material properties. In
particular, by functionalizing nanoparticle interfaces with specific monolayers,
the electronic [35], optical [36], and chemical [14] properties can be modified for
a variety of applications. Examples include uses in drug delivery [9], optics [36],
and self- and directed-assembly [16,17,37]. In addition, researchers have shown
that multi-ligand monolayers with phase separation can promote unique prop-
erties; for instance, ordered monolayers can penetrate cell membranes more eas-
ily [11] as well as dictate the assembly of anisotropic structures. [16] Hence, we
seek to advance the field of interfacial engineering through the development of
methods to detect and predict ligand phase separation on nanoparticle surfaces.
A major thrust of the research is the facile synthesis of metallic nanoparticles
such as silver (Ag) functionalized with ordered mixed ligand monolayers com-
posed of dodecanethiol (an alkanethiol with 12 carbons) in combination with
a second, shorter alkanethiol (having 4-11 carbons). Using Matrix Assisted
Laser Desorption Ionization Mass Spectroscopy (MALDI), a technique typi-
cally used in the characterization of proteins and peptides but adapted by our
lab for functional metallic nanoparticles, [38] we seek to systematically map
the degree of phase separation for the nanoparticle monolayers produced by
these alkanethiol combinations. MALDI combined with self-consistent mean-
field theory (SCFT) calculations provide key details to the degree and type of
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3. Exploring Stripey Monolayers

phase separation that occurs at the nanoparticle surface. Our results follow
the transition from a well-mixed ligand monolayer to a microphase-separated
monolayer, which occurs as the difference in chain length increases between the
two adsorbed thiols.

Previous theoretical studies indicate a similar trend for alkanethiol mix-
tures with a sufficient chain length difference. [22, 24, 25, 34, 38, 39] There is
also extensive experimental basis to complement the theoretical work, such as
Stellacci’s use of scanning-tunneling microscopy (STM) to detect monolayer
morphology. However, aspects of this approach have recently been called into
question. [40–43] Alternative methods of determining phase separation such
as FTIR [44], NMR [45], and SANS [46] can provide some insight; however,
these methods can be unreliable in dilute or polydisperse solutions. Hence,
there is a great need for additional characterization techniques to complement
the current theoretical and experimental framework, and the complementary
use of MALDI and SCFT offers robust alternatives. Recent work within our
group has shown that MALDI provides reproducible results, which correspond
to predictions from SCFT [38]. In this paper we extend the use of MALDI
and SCFT to systematically elucidate the effect of chain length difference on
monolayer phase separation for homologous alkanethiol mixtures.

3.2 Experimental

Silver nitrate (99.9999% trace metals purity), sodium borohydride (99.99%
trace metals purity), 1-dodecanethiol (≥ 98% purity), 1-undecanethiol (98%
purity), 1-decanethiol (96% purity), 1-nonanethiol (95% purity), 1-octanethiol
(≥ 98.5% purity), 1-hexanethiol (95% purity), 1-pentanethiol (98% purity), 1-
butanethiol (99% purity), 2-mercaptoethanol (≥ 99% purity), and trans-2-[3-
(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB, ≥ 99.0%
purity) were purchased from Sigma-Aldrich. 1-heptanethiol (98% purity) was
purchased from Alfa-Aesar. Ethanol (absolute, molecular biology grade) and
toluene (certified ACS reagent grade) were purchased from Fisher Scientific.
Deuterated 1-dodecanethiol (dodecanethiol[D25], 98.9 atom% deuterium) was
purchased from C/D/N Isotopes. All reagents were used with no further pu-
rification. Ultrathin (> 3 nm) carbon film on 400 mesh copper holey carbon
grids for TEM imaging were purchased from Ted Pella.

Mixed self-assembled monolayer Ag nanoparticles were synthesized via our
direct method [20] as well as via a ligand exchange reaction reported by Hutchi-
son. [47] For the direct method, the molar ratio of thiol ligand to silver nitrate,
S, was held constant at 12 throughout all syntheses while varying the indi-
vidual thiol concentrations in a given pair. Dodecanethiol was used in every
synthesis while the second ligand was chosen from a homologous series of thi-
ols: dodecanethiol[D25], undecanethiol, decanethiol, nonanethiol, octanethiol,
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3.2. Experimental

heptanethiol, hexanethiol, pentanethiol, butanethiol, or mercaptoethanol. Sil-
ver nitrate concentration was maintained at 0.5 mM in ethanol in all reactions
and the concentration of sodium borohydride kept at a 12-fold excess, 6 mM.
After reaction initiation via combination of the starting reagents, the reaction
mixture was allowed to stir 30 minutes and then transferred to centrifuge tubes
and centrifuged at 12000 RPM for 20 minutes. Following centrifugation, the
supernatant was decanted and replaced with fresh ethanol, subsequently the
nanoparticles were redispersed via sonication and again centrifuged. This was
repeated three times, and after the third and final centrifugation the nanopar-
ticles were redispersed in toluene instead of ethanol.

Nanoparticle samples were characterized using transmission electron mi-
croscopy (TEM) and matrix assisted laser desorption ionization mass spec-
troscopy (MALDI). All TEM images were taken with an FEI Titan at an ac-
celerating voltage of 300 kV. Sample preparation of the TEM grids was done by
a drop mounting method. A TEM grid was held within self-closing tweezers and
a pipette used to place a drop of nanoparticle solution onto the grid. A small
piece of filter paper is used to wick any extra solvent away and the grid dried
for at least one hour. Determination of nanoparticle size was performed using
automated routines built into the freely available ImageJ software developed
by the National Institutes of Health. MALDI measurements were performed
on a Bruker MicroFlex. To prepare solutions for spotting onto a MALDI plate,
0.025 grams of DCTB were dissolved in 1 mL of nanoparticle solution. 100 µL
of this solution was spotted per well of a standard ground steel Bruker MALDI
plate. Laser power was kept at 40% across all measurements with the detector
operated in linear mode. Individual ion counts were calculated by integrating
the area under the peak of interest using the trapezoid rule; in every case, these
values were calculated for each ion of interest in the Ag6L5 series. These values
were compared to a predicted binomial distribution produced from the surface
concentrations of the two ligands as measured by MALDI, and the residual
sum of squares error (computed as a measure of phase separation) [33].

SCFT simulations were run using SFBOX, a SCFT program created by Frans
Leermakers et. al. The simulation was run with periodic boundary conditions
in a cubic lattice with dimensions 61× 61× 61 lattice units. The nanoparticle
consists of surface monomers that have an athermal attraction to all other
monomers and is centered in the simulation box with a diameter of 20 lattice
units. Since the distance between lattice sites is equivalent to a carbon-carbon
bond (∼ 0.154 nm), this corresponds to a nanoparticle diameter of 3.08nm
and a simulation box size of 9.39nm×9.39nm×9.39nm. The self-consistent
equations underlying the Scheutjen and Fleer SCFT were solved using the
SFBOX L-BFGS algorithm using a maximum acceptable error of 10−7.
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3. Exploring Stripey Monolayers

Figure 3.1: TEM images of (a) dodecanethiol/dodecanethiol[D25], (b) dode-
canethiol/butanethiol, (c) dodecanethiol/octanethiol, and (d) dode-
canethiol/mercaptoethanol mixed monolayer silver nanoparticles. All
syntheses resulted in uniform nanoparticles with diameters ranging from 3 − 4
nm, with a slight increase in diameter observed as the ligand paired with
dodecanethiol was shortened (and thus decreased the average SAM thickness).
Additional TEM images for ligand pairs not pictured above are found in
Figure A.1 in the Appendix.

3.3 Results and Discussion

Silver (Ag) nanoparticles functionalized with a two-component monolayer
of dodecanethiol and another alkanethiol, ranging between 4 − 12 carbons,
were prepared according to the synthesis laid out in a previous paper. [20]
All nanoparticle samples were imaged with TEM to verify that they appear
roughly spherical and relatively uniform in size to increase confidence that
measurements of phase separation are due primarily to the differences in length
and concentration of ligands and not variations in particle size or shape. TEM
images for dodecanethiol/dodecanethiol[D25], dodecanethiol/octanethiol, and
dodecanethiol/butanethiol are shown in Figure 3.1, which are representative
of the mixed-monolayer functionalized nanoparticles examined in this work.
TEM images for the remaining ligand pairs are reproduced in the Appendix as
Figure A.1.

Subsequently, the functionalized materials were subjected to testing with
MALDI, which fragments the nanoparticles while preserving local ligand struc-
ture, enabling quantification of the nearest-neighbor ligand distribution. [33]
The resulting distribution can be compared to a theoretical prediction, such
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as that from SCFT or a binomial distribution — the latter is expected to
occur when ligands distribute randomly across the surface. [33] The sum-of-
squares residual (SSR), or the summed amount of deviation between the bi-
nomial model prediction and the measured ion distribution, correlates to the
degree of phase separation in the ligand monolayer. Using MALDI to char-
acterize nanoparticle monolayers [33,48–50], Cliffel and co-workers found that
thiol-functionalized Au nanoparticles fragment in a particular pattern, MnLn
which contains one ligand, L, per each metal atom, M , and a particular frag-
ment, Au4L4, accounted for most of the mass spectrum [49]. In contrast, we
have shown the tendency of thiol-functional Ag nanoparticles to fragment into
ions of +1 charge whose formula can be generalized as Agn+1Ln [38]; a simi-
lar pattern was also observed by Odriozola and co-workers in a MALDI-TOF
study of silver hydrogels [26]. Throughout the experiments described in this
paper, we chose to single out Ag6L5 fragments, as they were most abundant.
A schematic of the MALDI process is shown in Figure 3.2.

The MALDI-TOF measurements were conducted on the functionalized nanopar-
ticles as outlined in the Methods section. To quantify ligand distribution, the
mass spectra were analyzed by determining the mass-to-charge ratios (m/z)
at which each of the Ag6L5 ions appear, and then numerically integrating the
area under those peaks. The index i is used to track each fragment peak over
a total of n = 5 peaks. The peak values, ci, were then normalized by the total
area count,

∑n
i=0 ci, yielding normalized peak values, θi, which can then be

used to determine the surface fraction, xi, of each ligand, e.g., dodecanethiol
(DDT) - x

DDT, by finding the average number of that ligand in each fragment
as shown in Equation 3.1a. Thus, the surface fraction, x

DDT, is the weighted
average of the number of ligands of DDT in each fragment divided by the total
number of ligands in the fragment family.

The normalized fragment peaks can then be analyzed to determine if the
two ligands are uniformly distributed throughout the NP monolayers as each
fragment can be thought of as a series of Bernoulli trials. A Bernoulli trial is a
random experiment that has two possible mutually exclusive outcomes. Since
each ligand in the Ag6L5 fragment has two mutually exclusive options, ligand
A and ligand B, if the two ligands are randomly distributed then each ligand
choice will behave as a Bernoulli trial. As the fragment contains several ligands
the possible fragment choices are modeled as a series of Bernoulli trials which
result in a binomial distribution, θi,bin, in Equation 3.1b. The Ag6L5 fragment
contains five ligands and therefore can be modeled as a series of five Bernoulli
trials as long as the surface is randomly mixed. However, if the surface is not
randomly mixed then the ligand choices will not behave as a Bernoulli trial
and the fragment distribution will deviate from the binomial distribution.

To find the expected binomial distribution we take that the probability of
choosing a ligand is proportional to its concentration on the surface of the NP.
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3. Exploring Stripey Monolayers

Figure 3.2: Schematic of potential nanoparticle self-assembled monolayer morphologies and
subsequent fragmentation and measurement via MALDI. Starting from a mix-
ture of two ligands (red and blue spheres), a self-assembled monolayer is formed
on the surface of a nanoparticle. For ligands with extreme chemical and phys-
ical differences, phase separation is expected to result in a hemispherically
separated or Janus morphology (top spectrum). For ligands that are chemi-
cally and physically similar, no phase separation is expected, which will result
in a random distribution of ligands (bottom spectrum). Fragmentation of these
nanoparticles results in ions, of which some have the form Ag6L5 composed of
six silver atoms and a combination of five ligands from the ligand pair chosen in
a given experiment. Janus particles are expected to produce MALDI spectra,
which show extreme deviation from the randomly distributed (binomial) model
as in the top graph. Particles with randomly distributed ligand monolayers are
expected to produce MALDI spectra, which closely agree with the randomly
distributed (binomial) model as in the bottom graph.

Once we have the probability for randomly selecting a ligand, the standard
formula for a binomial distribution of five Bernoulli trials is used to produce
the expected binomial spectrum. The deviation of the experimental spectrum
from the binomial spectrum is measured as the sum of the squared residuals
(SSR) between the two spectrums. The SSR indicates how far the experimental
system deviates from a completely random monolayer and thus is a proxy for
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phase separation.

θi =
ci∑n
0 ci

; x
DDT =

∑n
0 iθi
n

(3.1a)

θi,bin =

(
n

i

)
xi

DDT
(1− x

DDT)n−i (3.1b)

SSR =

n∑
0

(θi − θi,bin)2 (3.1c)

We demonstrate an analysis of the data based on the spectrum in Figure 3.3,
which corresponds to a nanoparticle coated with dodecanethiol (DDT) and its
deuterated analog (DDT[D25]). Due to the chemical and physical similarities
between these two ligands a random monolayer is expected, which makes it an
ideal test case for the method. If the monolayer is random as we expect then its
MALDI spectrum calculated by Equation 3.1a should match the prediction of
the binomial distribution in Equation 3.1b. A comparison between the binomial
and experimental spectrum is illustrated in Figure 3.3b. Using the SSR from
Equation 3.1c to quantify the mismatch between the spectrum we arrive at
a low SSR value of 0.002 for the DDT/DDT[D25] monolayer, which can be
reasonably be taken as the baseline for random mixing. Above this baseline,
the experimental SSR values are indicative of ligand phase separation.

Based on previous work [22, 24, 25, 38, 39, 51], it is expected that increasing
the carbon number difference between ligand pairs, ∆C, will promote phase
separation. Therefore, we expect SSR values to increase with decreases in
the carbon number of the second ligand relative to DDT. To test this hy-
pothesis, Ag nanoparticles were synthesized with mixed SAMs consisting of
dodecanethiol paired with a ligand selected from alkanethiol homologues rang-
ing from 4 − 12 carbons (i.e. deuterated dodecanethiol, undecanethiol, de-
canethiol, nonanethiol, octanethiol, heptanethiol, hexanethiol, pentanethiol,
and butanethiol). These ligands are chemically similar, but with either the
same or decreasing carbon number relative to dodecanethiol; thus, increasing
∆C= 0− 8 through the selection of shorter ligands should increase microphase
separation, corresponding to maximizing the conformational entropy of the
system through maximization the free volume of the longer ligand, leading to
striped monolayers.

To interpret the MALDI results, SCFT simulations were performed to elu-
cidate the effect of ligand length difference on ligand phase separation. The
simulations provide valuable information about monolayer morphology includ-
ing the monolayer patterning, which can be only inferred, but cannot be di-
rectly determined using ensemble-averaged techniques such as MALDI. The
simulations consisted of three monomeric components:
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Figure 3.3: Example MALDI-MS spectrum and distribution (A) MALDI spectrum for
the Ag6L5 fragment from Ag nanoparticles with dodecanethiol (DDT) /dode-
canethiol[D25] monolayers; the five-octagon symbol above each peak represents
the number of DDT ligands (in blue) or DDT[D25] ligands (in red) in an Ag6L5

fragment. (B) The experimental and predicted frequency distributions. The
calculated sum of squares residual (SSR) is low at 0.002, which is anticipated
for random ligand mixing.

1. Carbon monomers for the alkanethiols

2. Oxygen monomers for the solvent

3. Surface monomers for the nanoparticle surface.

The nanoparticle, surface was modeled as a pixelated sphere in Cartesian coor-
dinates. The carbon and solvent monomers were used to simulate the following
monolayer components:

1. Dodecanethiol - DDT

2. The corresponding alkanethiol - ALT

3. The solvent - SOL

The alkanethiols were created from the appropriate number of carbon monomers;
thus, simulated dodecanethiol had 12 carbon monomers, and the numbers of
carbons in the simulated alkanethiol homologues varied between 4−12. To sim-
ulate the strong affinity between the metal and the thiol group of the ligand,
the first monomers of the simulated ligands were pinned to the NP surface,
but allowed to move along the NP surface. A Flory, or chi parameter, χ, of
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3.3. Results and Discussion

χ
OC = 2.0 between the solvent and the carbon monomers was chosen to reflect

their chemical mismatch and is consistent with the values used in previous
SCFT simulations. [52] The Flory parameter between alkanethiols was set to
χ
CC = 0, denoting athermal interaction which is expected between chemically

identical monomers. The ratio of dodecanethiol to the shorter ligand was var-
ied in the simulation to correspond to interfacial fractions from experiment.
Similarly, the variance of the chain length difference of ∆C = 0 − 8 in the
two-component monolayer, matched the difference in carbon number between
dodecanethiol and the other alkanethiol homologues used in the study. The lig-
and graft density in the simulations was set at 0.34 ligands/lattice site which
corresponds to previous experimental values of grafting density of alkanethiols
on gold nanoparticles [28] and is consistent with the grafting density values used
in previous SCFT studies. [24, 38] Graft densities approaching 5 ligands

nm2 equate
to the concentrated brush regime where the SCFT mean-field approximation
applies. [29]

As described in our previous work, [38] we predicted the MALDI spectra
from the ligand volume fraction profiles produced from SCFT calculations. To
this end, the local lattice site surface fractions, θi, are found, which solve the
polymer diffusion equation for each simulated species subject to the constraints
of the minimization of the system free energy and the conservation of mass.
To produce the predicted spectrum, each lattice site on the NP surface was
treated as well mixed. Thus, the local mixing of dodecanethiol (DDT) with
another alkanethiol homologue (ALT) results in a binomial distribution in line
with the local surface fractions of both species. The local distributions are then
weighted by the local site densities of both ligands raised to the fifth power to
capture the probability of finding five ligands near each other in the lattice site.
This yields the predicted spectrum, θi, SCFT as shown in Equation 3.2a where
i = 0 . . . n is the ligand index with n = 5 ligands per fragment, and ligand
lattice surface sites are denoted by the index k = 1 . . .M for a total of M sites.

θi,SCFT =

M∑
k=1

(φDDTk
+ φALTk

)n
(
n
i

)
xi

DDTk
xn−i

ALTk

(φDDTk
+ φALTk

)n
(3.2a)

xDDTk =
φDDTk

φDDTk
+ φALTk

(3.2b)

xALTk =
φALTk

φDDTk
+ φALTk

(3.2c)

SSR =

n∑
0

(θi,SCFT − θi,bin)2 (3.2d)

The theoretical SSR in Equation 3.2d is produced by comparing θi, SCFT
from Equation 3.2a, to θi,bin from Equation 3.1b. Comparisons between the
experimental and theoretical frequency distributions (Equation 3.1a and Equa-
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tion 3.2a) and sum-of-squares residuals (the SSR in Equation 3.1c and Equa-
tion 3.2d) allow us to better gauge how well the computational results reflect
the experimental system. In the case of random ligand mixing, the θi, SCFT,
will converge to θi, bin resulting in a SSR near zero. This is consistent with the
experimental SSR= 0.002 of the well-mixed system in Figure 3.3. In our pre-
vious work [38] we synthesized Ag nanoparticles functionalized with monolay-
ers of dodecanethiol (DDT) with either deuterated dodecanethiol (DDT[D25])
or butanethiol (BT), and we used MALDI and SCFT to detect and predict
the effect of carbon number difference at ∆C = 0 and ∆C = 8 on ligand
phase separation while spanning a wide range interfacial ligand fractions from
x
DDT = 0.05 − 0.90. The SCFT predictions corresponded well with the spec-

tra and SSR from MALDI, indicating random mixing for the DDT/DDT[D25]
monolayer and ligand phase separation and stripe formation for the DDT/BT
monolayer. In particular in Figure 3.3 of the previous work [38] we plotted
the experimental and theoretical SSR as a function of xDDT to demonstrate a
low SSR = 0.002 at ∆C = 0, and up to a two-order magnitude increase in
SSR= 0.02− 0.20 at ∆C = 8 with a peak in the SSR observed at xDDT = 0.80.
In this paper we extend the previous work to more clearly determine the ef-
fect of ∆C on ligand phase separation with monolayers of DDT/DDT[D25]
through DDT/BT to produce mixtures spanning ∆C = 0−8. Further analysis
will also bring about a better understanding of the possible range of patterning
exhibited through the use of SCFT visualizations.

In Figure 3.5 of this manuscript, we continue to see the pattern of SSR
peaking around x

DDT = 0.80 for the ∆C = 0 − 8 monolayers. In addition,
we also detect increasing phase separation, as quantified by the SSR, as the
chain length difference increases from ∆C = 0− 8 as expected. To better show
the effects of ∆C on phase separation, the SSR was plotted against ∆C for
x
DDT ≈ 0.80, the peak in the SSR at each ∆C, as shown in Figure 3.4. In

addition, the SCFT SSR values for each ∆C at xDDT ≈ 0.80 are also plotted in
Figure 3.4 to see how well SCFT captures the effect of ∆C on phase separation.
The predicted SSR increase with ∆C, indicating greater phase separation in
the monolayer, and a good correspondence is observed between experiment and
theory.

The final comparison between all the experimental and SCFT SSR values is
shown in Figure 3.5. While there are some minor disagreements the compu-
tational data captures the same trend of increasing SSR value with increasing
chain length mismatch. In addition, the computational data shows a peak in
SSR values near a concentration of 80% dodecanethiol on the surface which
is also reflected in the experimental data. The minor disagreement between
experimental and computational data may be due to minor differences in the
nanoparticle shape between the simulation and the experiment as well as ex-
cluded volume effects which are not fully accounted for in the SCFT. Addition-
ally, the SCFT simulation does not include the effects of chain crystallization
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Figure 3.4: The trend in ligand phase separation around the maximum value of the sum-
of-squares residual (SSR) as a function of the increasing chain length mismatch
(∆C) for interfacial dodecanethiol (DDT) fractions around xDDT ≈ 0.80.

which can become significant for alkanethiols of chain length 9 or more [53].
Despite these deficiencies the good agreement between computational and ex-
perimental results suggest that the SCFT simulation captures the major effects
relevant to the nanoparticle monolayer (see Figure 3.4 and Figure 3.5).

In addition to the prediction of the SSR from MALDI, the SCFT simulations
also provide predictions of the spatial volume fraction profiles of the monolayer
shell, indicating the most thermodynamically favorable ligand arrangements,
and thus, monolayer patterning. Figure 3.6 shows the pinned monomer of the
ligands to indicate how the ligand distribution changes as a function of interfa-
cial mole fraction of DDT (xDDT ) and the carbon length difference between DDT
and the shorter alkanethiols, ∆C. Figure 3.6 illustrates the pinned monomer of
the ligands to show how the ligand distribution changes as a function of inter-
facial mole fraction of DDT (xDDT ) and the carbon length difference between
DDT and the shorter alkanethiols, ∆C. In Figure 3.6 the DDT volume fraction
profile is shown in blue and the shorter ligand volume fraction profile is shown
in red, mixing between the two profiles results in a purple color, which is ob-
served in the bottom row. Consistent with the SSR value results the volume
fraction profiles show a decrease in mixing (i.e., an increase in phase separa-
tion) as the chain length mismatch, ∆C, increases. One observes the increase
in ligand phase separation in Figure 3.6 through the elevating intensity of DDT
in blue while moving diagonally from the bottom left to the upper right. The
nanoparticle monolayers that show the most phase separation at each chain
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Figure 3.5: Comparison of sum-of-squares residual (SSR) from MALDI experiment (the
symbols) and SCF theory (the lines). The parameter xDDT is the surface frac-
tion of dodecanethiol (DDT) and ∆C is the carbon number difference between
DDT and shorter alkanethiol homologues from the study.

length mismatch occur at xDDT = 0.80, which is in agreement with both the
experimental and SCFT derived SSR values. It can also be seen that dode-
canethiol segregates to the corner and edge sites of the nanoparticle surface as
chain length mismatch increases. This is due to the larger free volume avail-
able at these sites, which provides a greater gain in conformational entropy to
dodecanethiol ligands than the shorter ligands. This result is consistent with
previous simulation work by Glotzer et. al. [23]

The volume fraction profiles can also be analyzed to determine the char-
acteristic length scales of the stripes formed. The analysis was carried out
by examining the variation of the corresponding alkanethiol, ALT, across the
nanoparticle surface. Hence, the 3-D volume fraction values of xALT were pro-
jected onto the x-axis by summing the values across the y- and z-axis at each
point on the x-axis and normalizing by the total number of surface sites, Nx, at
that point in the x-axis, or xALT = 1

Nx

∑
y

∑
z
x

ALTk
. This process is illustrated

in Figure 3.7 at xDDT = 0.80. The flat profile for ∆C = 0 is anticipated for
random ligand mixing and the normalization results in x

ALT = 0.20 for a cor-
rect baseline. In contrast, the variation for ∆C = 8 represents a length-scale
dependent clustering of ligands on the nanoparticle surface.

To better quantify the characteristic lengths involved in the monolayer phase
separation, Matlab was used to take the fast Fourier transform (fft) of xALT (x)
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Figure 3.6: Predicted monolayer patterns from SCF theory as a function of carbon num-
ber difference, ∆C, and mol fraction of dodecanethiol (DDT), XDDT . DDT is
shown in blue and the corresponding shorter alkanethiol in red, only the pinned
monomer of each ligand is shown to better show patterning at the nanoparti-
cle surface. Areas of uniform random ligand mixing are denoted by the color
purple upon mixing of colors red and blue.

(a) ∆C=0

(b) ∆C=8

Project to XY plane

Project to XY plane

Project to X plane

Project to X plane

Figure 3.7: Demonstration of projection procedure for conversion of a 3-D SCF volume
fraction profile to a 1-D distribution. The procedure, which is discussed in the
text, is shown for (a) ∆C = 0 and (b) ∆C = 8 for xDDT = 0.80.
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Figure 3.8: Fourier transform of the 1-D projections for each chain length difference, ∆C.
Peaks are seen at inverse space points of 0.313, 0.9404 − 1.254, 2.194, and 3.5
nm−1, which respectively corresponds to length scales of 3.19, 1.06−0.80, 0.46,
and 0.29 nm.

for each ∆C in Figure 3.8 at xDDT = 0.80, corresponding to maximum phase sep-
aration. To focus solely on the deviations in the monolayer, we first subtracted
the mean value of the volume fraction, xavg,∆C = 1

N

∑N
i=1[xavg,∆C(xi)] from the

projection so that the Fourier transform stems from deviations from the mean
value. Increasing intensity represents higher accumulation, and the length scale
of each peak is given as L = q−1. The resolution of the fft is 0.313nm−1. Based
on the Fourier transform the smallest length scale of monolayer variation is 0.29
nm, corresponding to the resolution limit of the lattice. Larger more promi-
nent variations occur at 3.19, 1.06 − 0.80, and 0.46 nm. The 3.19nm, peak
corresponds roughly to the diameter of the particle. This increase is related
to the increasing concentration of corner and edge sites near the edge of the
particle in the x-axis projection. This increasing concentration of higher free
volume sites drives segregation of the longer chain to these sites which causes
a sharp depletion of the shorter chain. This effect is shown in the 1D projec-
tion pictured in Figure 3.7b. The 1.06 − 0.80nm peak is consistent with the
distance between stripes observed by Stellacci et. al. [54] Finally, the 0.46nm
peak corresponds to the characteristic nearest neighbor distance of alkanethiols
on silver. [55] The prominence of these peaks increases with ∆C as the chain
length difference promotes stronger segregation.
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3.4 Conclusion

Through this work we have demonstrated our ability to characterize several
different mixed thiol monolayers using MALDI-TOF, SCFT, and TEM. The
homologous nature of the ligands and the stepwise experimental changes have
permitted us to utilize the MALDI method for detecting ligand phase separa-
tion in mixed SAMs to produce a detailed map of variation in phase separation
as a function of both ligand concentration and chain length mismatch in our
nanoparticle systems. These results indicated that when pairing dodecanethiol
with one of a homologous series of alkanethiol ligands from deuterated dode-
canethiol [D25] through butanethiol, the SAM morphology progressed from
a random ligand distribution to microphase separation. Further information
about the monolayer was gathered using SCFT simulations. The simulation
results agree well with experimental results and provide additional information
on the patterning of ligands in the monolayer.
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Chapter 4

Exploring Patchy Monolayers
Characterization of Noble Metal Nanoparticles with
Chemical Mismatch

This chapter was adapted from: Merz, S. N.; Farrell, Z. J.;
Pearring, J.; Hoover, E.; Kester, M.; Egorov, S. A.; Green, D. L.;
DuBay, K. H. Computational and Experimental Investigation of
Janus-Like Monolayers on Ultrasmall Noble Metal Nanoparticles.
ACS Nano 2018, acsnano.8b05188.

4.1 Introduction

Monolayer protected nanoparticles (NPs) have a wide variety of applications
in photonics, [16, 36, 56–58] drug delivery, [59–62] radiotherapy, [63–67] and
protein sensing. [68,69] Previous work has shown that multi-ligand monolayers
can undergo phase separation, [33, 70–72] which can have a significant impact
on the properties of both flat [71] and nanoparticle monolayers. [9, 59, 73, 74]
Structured monolayers containing multiple types of ligands promise to increase
the functionality of the NP monolayer. [7, 8, 13, 75, 76] For example, in drug
delivery applications, NPs with patchy and Janus-like monolayer phases are
better able to penetrate cell membranes, [9, 59, 75, 77] while also enabling the
delivery of multiple agents into a cell. [8] The primary drivers for phase separa-
tion within these monolayers lie in the physical size and chemical composition
mismatches between ligands.

In addition to ligand patterning, size can also play a key role in determining
NP properties. Ultrasmall NPs, i.e. those less than 10nm, are particularly
effective in radiotherapy, [64] and NPs with hydrodynamic diameters less than
5.5nm can be cleared from the body through the renal system, mitigating
unwanted side-effects. [78] Noble metal nanoparticles are particularly attractive
due to their relatively good biocompatibility. [79, 80] Ultrasmall NPs are also
attractive options for gene therapy as their small diameter allows them to pass
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4. Exploring Patchy Monolayers

into the cell nucleus. [81] However, in order to reliably design and synthesize
ultrasmall NPs with the desired functional properties, we must first be able to
accurately characterize their surface ligand morphologies.

Although the characterization of Janus particles larger than 20nm can be
readily accomplished with traditional visualization techniques such as AFM,
[82] STM, [54] and TEM, [83] characterizing Janus-like monolayers on ultra-
small NPs has proven difficult. Early attempts using STM were made by
Stellacci et. al in 2004, [84] but this study has drawn controversy due to the
complications inherent in imaging particles with a curvature comparable to
that of the STM tip. [40–43] Cryo-TEM techniques have analyzed NPs with
ligands containing large atomic weight atoms, such as polyoxometalate (POM)
clusters, [85] however this technique is restricted to a particular set of ligands.
As a result of these imaging limitations, several indirect experimental methods
have been used to characterize nanoparticle monolayers, including FTIR, [44]
SANS, [46,86] NMR, [45] and MALDI-MS. [33,38,87] These methods indicate
the degree of mixing within the monolayer; however, they fail to give detailed
information on its exact morphology. [41,42] FTIR and NMR detect the prox-
imity of different functional groups within the multi-ligand monolayer through
shifts in the spectrum, and SANS can provide information on the radial distri-
bution of surface ligands by taking advantage of the contrast between deuter-
ated and un-deuterated molecules. [41,42] Similarly, MALDI-MS examines the
clustering of ligands on a small scale by finding the ratio of each ligand type
within sampled clusters containing 4 − 5 ligands. Although these techniques
provide information on ligand spacing and clustering, a complete picture of the
NP monolayer cannot be obtained from their data alone.

Numerical simulations can help fill in the missing information by providing
insight on the various driving forces behind ligand phase separation as well
as atomistically detailed information on expected monolayer configurations.
Work by Glotzer et. al [34] and Stellacci et. al [86] used dissipative particle
dynamics with a soft repulsive potential to model ligand monolayers. While
these studies provide insight on the effects of physical and chemical mismatch
on phase separation in the ligand monolayers, the simulations do not explicitly
include attractive interactions between ligands or nanoparticle faceting, both
of which have been shown to be important in subsequent work on NP [22, 88]
and flat [89] monolayer phase separations. Other groups have modelled NP
monolayers using molecular dynamics. [88, 90] However, the equilibration of
thiol monolayers in the laboratory can take up to 4 days, [91] making it im-
possible for traditional molecular dynamics simulations to reach equilibrium.
Our own previous work used self-consistent field theory (SCFT) to model the
nanoparticle monolayer. [38, 87] SCFT determines the equilibrium monolayer
configuration by solving a set of self-consistent equations. Such calculations are
free of the time scale constraints suffered by MD simulations. However, SCFT
breaks down for systems with chemical mismatch, since typical implementa-
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tions rely on simple, isotropic Flory-Huggins contact potentials. This isotropic
potential cannot accurately describe important anisotropic intermolecular in-
teractions, such as hydrogen bonding, that occur in chemically mismatched
monolayers.

One of the main drawbacks of previous computational work is the lack of
direct comparison to experimental measurements. Most computational stud-
ies involve a qualitative comparison between electron microscopy images from
techniques such as STM and TEM and snapshots of the simulations. Recent
work by Stellacci and coworkers works to bridge this gap through the use of
simulated annealing to fit the location of various ligand head groups to exper-
imental SANS data. [46, 86] Using this technique, Luo et al. analyzed several
different monolayers with both chemical and physical mismatch on gold and
copper metal NPs and were able to achieve a quantitative fit to SANS-derived
pair distribution functions. A qualitative match between the fitted head group
locations and DPD simulations was also found. The method outlined by Luo et
al. shows promise as a versatile technique for characterizing nanoparticle mono-
layers. However, there are some drawbacks to this technique as SANS requires
one of the head groups be deuterated, and a large polydispersity (> 10%) can
alter the form factor data, complicating interpretation. Finally, since the struc-
tural information primarily comes from fitting ligand locations to experimental
data rather than from independent models designed to realistically represent
the physical forces acting upon the ligands, extensions of this computational
technique to prediction and design are limited.

In this work, we make use of advanced MC sampling algorithms on atomistic
models to enhance our ability to interpret MALDI-MS results that report on
multi-ligand monolayer organization for physically and chemically mismatched
ligands. MALDI-MS can characterize the NP monolayers without modifying
the NPs and can distinguish between a wide variety of head groups with only
mass differences. Both computational and experimental results indicate that
the synthesized NPs have a Janus-like monolayer, and the correspondence be-
tween the two lends credence to the atomistic insight provided by the simula-
tions.

4.2 Methods

Experimental

Reagents and Materials

Silver nitrate (99.9999% trace metals purity), sodium borohydride (99.99%
trace metals purity), 1-dodecanethiol (≥ 98% purity), 1-butanethiol (99% pu-
rity), 2-mercaptoethanol (≥ 99% purity), and trans-2-[3-(4-tert-Butylphenyl)-
2-methyl-2-propenylidene]malononitrile (DCTB, ≥ 99.0% purity) were pur-
chased from Sigma-Aldrich. 1-heptanethiol (98% purity) was purchased from
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4. Exploring Patchy Monolayers

Alfa-Aesar. Ethanol (absolute, molecular biology grade) and toluene (certified
ACS reagent grade) were purchased from Fisher Scientific. All reagents were
used with no further purification. Ultrathin (< 3 nm) carbon film on 400 mesh
copper holey carbon grids for TEM imaging were purchased from Ted Pella.

Nanoparticle Synthesis

Mixed self-assembled monolayer silver metal NPs were synthesized via our
one-step synthesis method. [20] In brief, the molar ratio of thiol ligand to silver
nitrate, S, was held constant at 12 throughout all syntheses while varying the
concentration ratio between the two thiol types. Silver nitrate concentration
was maintained at 0.5 mM in ethanol in all reactions and the concentration of
sodium borohydride was kept at a 12-fold excess, 6 mM. After reaction initia-
tion via combination of the starting reagents, the reaction mixture was allowed
to stir 30 minutes and then transferred to centrifuge tubes and centrifuged at
12000 RPM for 20 minutes. Following centrifugation, the supernatant was de-
canted and replaced with fresh ethanol. Subsequently the NPs were redispersed
via sonication and again centrifuged. This wash process was repeated three
times, and after the third and final centrifugation, the NPs were redispersed in
toluene instead of ethanol. To verify that the wash process successfully elimi-
nated free ligands from solution an H NMR spectrum was taken after the three
washes and compared with the H NMR spectrum of free ligands in solution.
The H NMR showed no fine peaks with the peak broadening and shifting asso-
ciated with thiols bound to metal nanoparticle cores. [92] The H NMR of the
free ligands along with the washed nanoparticles is shown in Figure B.8.

Nanoparticle Characterization

Nanoparticle samples were characterized using transmission electron mi-
croscopy (TEM) and MALDI-MS. All TEM images were taken with a FEI
Titan at an accelerating voltage of 300 kV. Sample preparation of the TEM
grids was done by a drop mounting method. A TEM grid was held within
self-closing tweezers and a pipette used to place a drop of nanoparticle solution
onto the grid. A small piece of filter paper is used to wick any extra solvent
away, and the grid dried for at least one hour. Determination of nanoparticle
size was performed using automated routines built into the freely available Im-
ageJ software developed by the National Institutes of Health. [93] MALDI-MS
measurements were performed on a Bruker MicroFlex. To prepare solutions for
spotting onto a MALDI-MS plate, 0.025 grams of matrix assist agent DCTB
(trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile) were
dissolved in 1 mL of nanoparticle solution. 100µL of this solution was spotted
per well on a standard ground steel Bruker MALDI-MS plate. Laser power was
kept at 40% across all measurements with the detector operated in linear mode.
Individual ion counts were calculated by integrating the area under the peak
of interest using the trapezoid rule; in every case, these values were calculated
for each ion of interest in the Ag6L5 series. The surface concentration of each
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ligand on the surface can be calculated by weighting the concentration of the
ligand with each fragment by the normalized area under each fragment peak.
This is shown Equation 4.1 with χDDT being the surface fraction of DDT on the
surface and Ai as the area of the Ag6L5 peak with i DDT ligands. These values
were compared to a predicted binomial distribution produced from the surface
concentrations of the two ligands as measured by MALDI, and the residual
sum of squares error (computed as a measure of phase separation).

χ
DDT =

∑5
i=0Ai(

i
5 )∑5

i=0Ai
(4.1)

Computational

Atomistic Simulation

The atomistic simulation consists of a 4nm icosahedral nanoparticle made
of silver atoms arranged in an FCC lattice with a lattice constant of 4.08Å,
which corresponds to the experimentally measured silver lattice constant. [94]
The two ligands are represented by a united atom model. The united atom do-
decanethiol is represented as 12 point particles, one for each carbon monomer,
with one point particle for the sulfur atom. The mercaptoethanol is modelled
as a point particle for the sulfur, carbon monomers, and the oxygen atom
with the addition of a point particle for the hydrogen atom directly bonded to
the oxygen atom, allowing for a more accurate representation of the hydrogen
bonding interaction that occurs between mercaptoethanol molecules.

The force field for the atomistic simulation is the commonly used OPLS
united atom force field. [95] Intermolecular interactions are modelled using a
Lennard-Jones term, ELJ , shown in Equation 4.2 with ε corresponding to the
well depth of the potential, r representing the interatomic distance, and σ
representing the point of zero potential between two atoms.

ELJ = 4ε[
(σ
r

)12

−
(σ
r

)6

] (4.2)

Solvent molecules were not explicitly included, however a Debye screened
Coulombic potential was used to model coulombic interactions and to capture
the screening effect of the solvent. The form of the coulombic screened potential
is shown in Equation 4.3 with qi and qj standing for the charges of two charged
atoms i and j, rij representing the interatomic distance between the two atoms,
ε the dielectric constant, κ the inverse Debye length, and C the Coulomb’s
constant. Based on the experimental salt concentration a Debye length, κ−1,
of 5Å was used.

Ecol =
Cqiqj
εrij

e−κrij (4.3)
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4. Exploring Patchy Monolayers

The binding potential between sulfur and silver metal atoms was modelled
as a Morse potential (see Equation 4.4) in keeping with previous modelling of
alkanethiolates on noble metal surfaces. [53, 96–98] A well depth (Dε) of 5.78
kcal/mol, equilibrium bond distance (ro) of 2.87Å, and potential well width
parameter α = 0.746Å is used for the Morse potential and taken from previous
DFT work examining silver thiolate binding. [99,100]

Emorse = Dε[e
−2α(r−ro) − 2e−α(r−ro)] (4.4)

Configurationally-biased Monte Carlo simulations were carried out via a
Python program using LAMMPS [101] for energy evaluations. The move set
consists of four different moves: translation, rotation, configurationally biased
regrowth, and configurationally biased identity swap. This suite of moves was
based on previous MC moves used to model alkanethiol monolayers. [102–104]
Translation moves consist of a 0− 5Å translation of a randomly chosen ligand
in the direction of a randomly chosen unit vector. The rotation move rotates a
ligand about a randomly chosen axis centered at the sulfur atom to which the
ligand is bound. The configurationally biased regrowth move regrows a ligand
in place using the Rosenbluth weight which gives higher preference to more en-
ergetically favorable chain configurations. Finally, the configurationally biased
identity swap move swaps the identity of two randomly selected ligands of op-
posite type and regrows them using configurationally biased regrowth. The use
of configurationally biased regrowth biases selection to diminish the sampling
of physically unrealistic chain collisions, greatly increasing acceptance rates of
moves involving chain regrowth. This increased sampling efficiency becomes
more important with the dense monolayers found in the experimental system
as close packing causes most of the configurational space to be highly ener-
getically unfavorable. Simulations were run at 298K as the experimental NPs
are synthesized at room temperature. Simulations were run for 800,000 (800k)
steps.

Equilibration

Results from six simulations run at 0.50χDDT show that after 800k steps the
acceptance rate of swap moves had remained near zero for over 100k steps. The
near zero acceptance rate of swap moves over the period of 100k steps suggests
that we have reached a stationary state by 800k steps, however this state may
not be the equilibrium state. We achieve a high degree of confidence that our
simulation has reached equilibrium using several different checks.

The first check to make sure each simulation reaches equilibrium was to run
six simulations for every DDT surface fraction point. The six simulations were
started from different randomly mixed initial configurations generated using the
Packmol software. [105] Thus, if a similar final configuration is obtained across
simulations it can be said with some degree of confidence that an equilibrium
state has been reached. The final configurations were then characterized by
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calculating an expected MALDI-MS distribution and its corresponding SSRsim

with respect to the binomial distribution expected from a totally randomly
mixed monolayer. A small spread in the SSR values of the final configurations
was taken as a quantitative measure of the convergence of the six random
starting points.

While these results strongly suggest we have reached a stable configuration,
it does not guarantee that we have sufficiently sampled the monolayer config-
uration phase space to find the true equilibrium. We also ran four additional
simulations that began at different possible monolayer configurations, random,
5Å stripes, 10Å stripes, and Janus monolayers. For each morphology six trials
were run. The configurations were compared using their SSR values after 800k
steps. The SSRsim comparison between simulations starting from different ini-
tial morphologies is plotted in Figure B.4 and shows the starting simulations
all arriving at Janus-like morphologies suggesting equilibrium is reached.

To complement the SSRsim an additional quantitative measure of the mono-
layer was created to characterize the NP monolayer domains. While SSR is a
standard experimental measure for characterizing the degree of phase separa-
tion in NP monolayers, it provides an incomplete understanding of the type
of phase separation. To provide a more descriptive measure of the monolayer
morphology we measure the patch areas within the monolayer. To measure
the patch size, we group the ME ligands into clusters. We considered any ME
ligands separated by a distance less than 6Å to be within the same cluster.
We group all ME ligands into clusters based on this criterion and characterize
them by the how much of the NP surface area they cover. As a demonstration
of the usefulness of this metric, we look at a Janus-like patchy particle from our
simulation and compare it to a NP monolayer with 1nm stripes. These two NP
monolayers map to nearly the same SSR even though these monolayers show
different morphology. However, the largest ME cluster area of these two NP
monolayers is significantly different as the circular patches have a greater area
to circumference ratio. An example of this is shown in Figure B.5, here we
compare a patchy particle with a striped particle with 1nm stripes. Though
the striped and patchy particles show different morphologies the SSR values
map to nearly the same value, however the area of the largest ME patches
show significant difference due to the cluster shape in each monolayer. Taking
this into consideration we also apply the largest cluster size analysis to the
configurations used in our equilibration check. Comparing the initial and final
largest ME patch area from all the configurations show a convergence (see Fig-
ure B.6) which again suggests that after 800k steps the simulation has reached
equilibrium.
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4.3 Results & Discussion

In this section, we begin with a discussion of our nanoparticle monolayer
system, focusing on its components, synthesis, and characterization via TEM.
Then we will discuss our computational model and sampling algorithm. From
both approaches, we obtain distributions of 5-ligand fragment clusters and dis-
cuss the information they provide on the degree of phase separation in the NP
monolayer. In the process, we explain the origin of an unexpectedly large vari-
ance in the experimental data. Finally, we make use of the atomistic structures
that we’ve obtained to understand the monolayer morphology in greater detail.

Synthesis and TEM Characterization of Ultrasmall NPs with
a DDT/ME Monolayer

Ultrasmall silver metal NPs were synthesized as described in our previous
paper,56 with a dodecanethiol (DDT) and mercaptoethanol (ME) monolayer.
We chose to focus on a mercaptoethanol (ME) and dodecanethiol (DDT) mono-
layer as these ligands differ both physically and chemically. Additionally, the
expected hydrogen bonding between the ME alcohol functional groups as well
as the crystallization among the DDT ligands [?] presented a good test system
with a range of interactions that might be expected to drive bulk phase separa-
tion. The presence of these common NP monolayer intermolecular interactions
afford us a chance to ensure that our computational model is sufficiently accu-
rate to model their effects. The ratio of DDT to ME in the synthesis solution
ranged from 50 : 50 to 80 : 20 in order to vary the ligand ratio on the nanopar-
ticle surface. To ensure any excess reactants were removed after each synthesis
the NP solution was centrifuged at 12000 RPM for 20 minutes. Following
centrifugation, the supernatant was decanted and replaced with fresh ethanol.
Subsequently the NPs were redispersed via sonication and again centrifuged.
This wash process was repeated three times, and after the third and final cen-
trifugation, the NPs were redispersed in toluene instead of ethanol. The NPs
were imaged using TEM to determine the size distribution and general shape
of the NPs. Ligand protected NPs appeared roughly spherical and ranged from
2− 10 nm in diameter, with a median diameter of 4 nm, an average diameter
of 5nm, and a standard deviation of 2 nm (see Figure 4.1).

Simulations of Ultrasmall NPs with a DDT/ME Monolayer

For our computational work, we set up our simulations to include a realis-
tically faceted NP (important for accurately modelling ligand crystallization),
an accurate atomistic potential (important for accurately modelling hydrogen
bonding and other enthalpic effects), and a configurationally biased sampling
algorithm (important for equilibrating our system). In addition, to connect ex-
periment and theory, we devised a method to analyze the resulting structures in
a way that can be directly compared to experimental results. Our simulations
took place on icosahedrally faceted NPs. We used an atomistic OPLS united
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Figure 4.1: NP shapes and size distributions from TEM. (a) A representative TEM image
of silver NPs with dodecanethiol (DDT) and mercaptoethanol (ME) monolayer.
(b) Histogram of particle sizes derived from TEM measurements.

atom potential that appropriately represents the intermolecular interactions
found in our system. Additionally, to overcome problems associated with the
long time required for equilibration, we implemented a Monte Carlo method
that utilizes unphysical moves to improve sampling by more easily bypassing
large potential energy barriers. When modelling chain molecules, the potential
number of self-avoiding walks grows rapidly with chain length, making it dif-
ficult to appropriately sample their conformations. The sampling difficulty is
compounded within dense monolayers, since a significant fraction of the con-
figuration space is unphysical due to chain overlaps. To combat this problem,
our simulations included an unphysical move, first described by Siepmann et
al., [106] that biases the selection process of chain configurations using Rosen-
bluth weights while maintaining detailed balance. [106] This configurationally
biased Monte Carlo (CBMC) method has been used successfully to determine
phase separation in multi-ligand monolayers on flat surfaces. [104, 107] More
recently, it has been utilized to study monolayer phase separation on spherical
gold nanoparticle for monolayers with physical mismatch. [103] Here, we ex-
tend the CBMC method to our physically and chemically mismatched system,
enabling us to more efficiently approach equilibrium than we would be able
to with comparable molecular dynamics simulations. This improved efficiency
is even more vital, since the alkanethiol ligand monolayer has extremely slow
kinetics-recent work by Luo et al. shows it can take up to 4 days for alkanethiol
monolayers to reach equilibrium. [91]
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Six simulations were run at 298K for each ratio of DDT/ME, all starting
from a randomly mixed initial configuration. The number of steps, 800, 000,
was determined through several equilibration checks including a series of test
simulations starting from a diverse set of initial monolayer morphologies in-
cluding mixed, striped, and Janus (see Figures S3-S5 for more information).
Additional simulation details are provided in the Methods section.

Experimental and Simulated MALDI-MS Results

The synthesized NPs were analyzed via MALDI-MS as described in our pre-
vious studies [38, 87] to determine the actual ratios of DDT to ME on the NP
surface for each sample as well as the degree of ordering in the corresponding
thiolate monolayer. Performing MALDI measurements with thiolate monolay-
ers on noble metal NPs produces characteristic fragments with a predictable
ratio of thiolate ligands and metal atoms. For thiolate monolayers on silver
metal NPs, the characteristic fragments follow the pattern Agn+1Ln where L
represents a thiolate ligand and n is an arbitrary integer. [26, 50] As in our
previous work, [38, 87] we analyze the Ag6L5 fragments of the mass spectrum
as they show the strongest signal to noise ratio in our spectrum. With two
different thiol ligand types on the surface (ME and DDT), the Ag6L5 fragment
type has six possible MS peaks, one for each of the following ligand combina-
tions: 5 ME/0 DDT ligands, 4 ME/1 DDT ligands, 3 ME/2 DDT ligands, 2
ME/3 DDT ligands, 1 ME/4 DDT ligands, and 0 ME/5 DDT ligands. The left
of Figure 4.2a shows a sample mass spectrum of these peaks where the mole
fraction of DDT (χDDT ) is equal to 0.60. If the ligands are randomly mixed
within the monolayer, then it is expected that the relative frequencies of the
Ag6L5 peaks will follow a binomial distribution. Therefore, a departure from
the binomial distribution indicates a departure from a randomly mixed mono-
layer. To the right in Figure 4.2a we show both the binomial distribution (red)
expected for a random monolayer as well as the experimentally determined
distribution (black) from the mass spectrum shown on the left. We quantify
the departure from the expected binomial distribution by taking the sum of the
squared residuals (SSR) of each of the experimental peaks from the expected
binomial distribution for the experimentally measured χDDT , as can be seen on
the right in Figure 4.2a. Thus, the SSR quantifies the non-random nature of
the nanoparticle monolayer, with an increasing SSR indicating an increasing
amount of phase separation among the ligands in the monolayer.

The data obtained by the MALDI-MS experiments are then compared to
results from the CBMC simulations run at five different values of χDDT , ranging
from 0.20 to 0.80. To bridge the gap between our simulated and experimen-
tal data, we developed a technique to determine the expected MALDI-MS
spectrum from the XYZ coordinates produced by the atomistic simulation, as
outlined in Figure 4.2b. A single ligand was chosen at random from the NP,
and its four closest nearest neighboring ligands (within 6Å of the chosen ligand)
were then selected to collectively represent a single 5-ligand fragment in the
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Figure 4.2: Diagram of the process for obtaining the MALDI-MS distribution for both the
experimental and computational systems. (a) Representative raw MALDI-MS
spectrum of a DDT/ME monolayer protected silver nanoparticle with . Ag6L5
fragment peaks are each represented by 5 hexagonal tiles, one for each ligand,
with red hexagons representing ME ligands and blue hexagons representing
DDT ligands. Ag5L4 fragment peaks are also marked in the spectrum as the
three heaviest peaks of the Ag5L4 fragment type lie within the m/z range of the
Ag6L5 fragment type. (b) Illustration of method to extract expected MALDI-
MS distributions from the atomistic simulations. Here carbon is shown in gray,
silver in orange, oxygen in red, hydrogen in white and sulfur in yellow. To build
up these distributions, a ligand is selected at random (circled in dark blue),
then four of the nearest neighbors are selected (highlighted in the dashed light
blue line). The sampled fragment is then categorized by its DDT count and
added to the count of the associated fragment type. The distributions for the
experimental (c) and computational (d) results are normalized and compared
to the binomial distribution for the corresponding ratio of DDT/ME ligands
on the surface. A quantitative comparison is then made by comparing their
respective SSR values.

MALDI-MS distribution. This procedure was then repeated 50, 000 times to
build up an expected fragment distribution for each simulated monolayer, as
can be seen on the right in Figure 4.2b. From this distribution, we calculated
an SSRsim to quantify the difference between it and the expected binomial
distribution.

To quantitatively relate the computationally and experimentally generated
spectra, values of SSRexp (black circles) and SSRsim (grey triangles) are plotted
in Figure 4.3a against the experimentally determined and input, respectively,
χ
DDT . The SSR values from our simulations match well to the experimental

values, giving confidence in the accuracy of the atomistic simulations. Exam-
ining both SSR values for the DDT/ME monolayers we find significantly higher
values (average SSRexp = 0.32 and average SSRsim = 0.28) than in our pre-
vious work on physically mismatched monolayer mixtures, where the ligands
differed only in carbon number (average SSRexp = 0.06). [38] These high SSR
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values when compared to the binomial distribution suggest a much greater de-
gree of phase separation in the ME/DDT monolayers than in the physically
mismatched monolayers in our previous work. [38,87] The higher range of SSR
is in agreement with previous studies that suggest Janus-like monolayer phases
correspond to SSR values greater than 0.1. [33,108] The consistently high value
in the SSR data suggests that Janus-like phases are seen throughout the range
of values. While the simulation data shows a good match with the mean values
of the experimental data, there is a substantial spread within the experimental
results. The large spread in the SSRexp values, both experimental and sim-
ulation (SD=0.12, 0.07, respectively) is in line with previous work looking at
highly phase separated monolayer protected noble metal NPs. [108] Further
analysis of the SSRexp spread is explored in the next section.

The calculated MALDI-MS distributions at 0.6 χDDT were also compared to
an averaged representation of the experimental MALDI-MS distributions in
Figure 4.3b. The MALDI-MS distribution shown in black in Figure 4.3b is
composed of all experimental points within 0.01 χ

DDT of 0.60 χ
DDT , shown as

the range bracketed in yellow in Figure 4.3a, while the MALDI-MS distribu-
tion shown in grey in Figure 4.3b is composed of the six simulations run at
0.60 χ

DDT . 0.60 χ
DDT was chosen here since the 0.60 ± 0.01 χ

DDT concentra-
tion range has the most experimental MALDI-MS measurements near a value
explored in the simulation. In addition to the large number of MALDI-MS mea-
surements at this point, the SSRexp values in this range also display a large
variance which is typical of the rest of the experimental data. The comparison
in Figure 4.3b shows an excellent match between the experimental MALDI-MS
distribution and the MALDI-MS distribution produced from the CBMC simu-
lation. Both distributions show a Janus-like shape with large 0DDT/5ME and
5DDT/0ME peaks and much smaller intermediate peaks. A quantitative mea-
sure of the fit between these two distributions can also be obtained by taking
the sum of the squared residuals between the experimental and computational
MALDI-MS distributions. For the distributions shown in Figure 4.3b we ob-
tain a SSRexp-sim value of 0.03 which is an order of magnitude smaller than the
SSRexp value between the experimental spectrum and the binomial spectrum
of 0.33, and indicates an excellent correspondence between the experimental
and simulation distributions. From these results it is clear that the DDT/ME
nanoparticle monolayers are in a Janus-like phase across the tested range of
surface concentrations.

Explanation of Large Variance in MALDI-MS SSR Values

The SSR values calculated for the DDT/ME monolayers show a larger spread,
(SSRexp = 0.32 ± 0.12 and SSRsim = 0.28 ± 0.07) than in our previous do-
decanethiol/butanethiol (DDT/BT) system (SSRexp = 0.06 ± 0.04). [38, 87]
A higher variance in SSR values for ordered monolayers has also been seen
in previous work by Iida et al., where a higher deviation in SSR values was
reported for monolayers with SSR values greater than 0.1. [108] We hypoth-

48



4.3. Results & Discussion

(a)

0.0

0.2

0.4

0.6

0.2 0.4 0.6 0.8
DDT Fraction

S
S

R

Experimental Simulation (b)

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5
#DDT Ligands/Fragment

F
ra

ct
io

n

Experimental Simulation

Figure 4.3: A comparison of experimental and simulated MALDI-MS results for ME/DDT
monolayers. (a) The SSR values across a range of dodecanethiol fractions
on the nanoparticle surface for both experimental results (open circles) and
CBMC results (triangles). The error bars in the computational results are
produced from the six simulations run at each point starting from different
random configurations. (b) The MALDI-MS distribution, shown in black, was
constructed from all seven experimental samples we measured that have a mole
fraction of DDT of 0.60 ± 0.01 (enclosed by the orange shaded area). The
calculated MALDI-MS distribution (shown in grey) was constructed from the
six CBMC simulations run at χDDT 0.60.

esize that the increase in variance was due to two main effects. First, more
highly ordered monolayers map to a larger range of SSR values than random
monolayers, creating a large possible range of SSR values for relatively small
fluctuations in well-ordered NP monolayers. Secondly, the variance observed
in more highly ordered monolayers is magnified at lower nanoparticle diame-
ters as each ligand represents a larger fraction of the total monolayer. To test
these effects, we constructed a series of atomistic models of 0.50 monolayers
for particles with diameters ranging from 2 − 6nm. Janus monolayer models
were simply constructed by randomly placing all DDT ligands on one half of
the NP and all ME ligands on the other half. Random monolayer models were
similarly constructed, but each ligand was randomly placed anywhere on the
surface. For each combination of particle diameter and morphology, six such
models were constructed. MALDI-MS distributions were then calculated for
each of these constructed NP models, and their associated SSRsim values are
plotted in Figure 4.4. As expected, the results from the Janus monolayers show
a much higher variance than those from the random monolayers. Additionally,
smaller nanoparticle diameters Janus nanoparticles result in a lower expected
SSR as well as higher variability in the expected SSR value. The variability
in SSRsim values for Janus-like monolayers in this exercise range from 0.16 to
0.62, which covers the majority of the variability seen in the experimental re-
sults in Figure 4.3a, where SSRexp ranges from 0.06 to 0.62. Another potential
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Figure 4.4: Analysis of sensitivity of SSRsim in Janus and random monolayers at varying
nanoparticle diameters. Here DDT and ME ligands are placed over the entire
surface of the differently sized NPs either randomly (square points labeled
”Random”) or in separate hemispheres, creating Janus monolayers (triangle
points labeled ”Janus”). The SSRsim is then calculated for each monolayer as
outlined in Figure 4.2b. The square and triangle points are the average SSRsim

values for each particle diameter, and the error bars represent the standard
deviations across the six trials conducted for each point.

factor in the SSR variance could be caused by the larger diameter particles
forming stripy domains, as seen by Liu et al. [45] As seen in Figure B.4 these
monolayers have a much lower variance contained within the SSR range of 2nm
Janus NPs seen in Figure 4.4. Due to the lower variance of larger diameter
striped NPs the effect on variance is expected to be minimal compared to that
of Janus monolayers. Additionally, the transition in the observed monolayer
morphology in Liu et al occurred between NPs of 2nm, which displayed a Janus
morphology, and NPs of 4 − 5nm, which displayed a striped morphology. As
our simulated NP is 4nm in diameter and no striped phases are seen it is a
strong indication that striped monolayers do not contribute to the majority of
the experimental NP variance.

Analysis of Simulation Morphologies

More information about the underlying nature of the observed phase sep-
aration can be found by visually analyzing the atomistic structures of the
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Figure 4.5: Representative monolayer morphologies from CBMC simulation at varying
mole fraction of DDT from 0.2-0.8. The SSRsim value of the structure shown
is placed beneath each image in the last row. Carbon is shown in gray, silver
in orange, oxygen in red, hydrogen in white and sulfur in yellow.

NP monolayer surface we obtained from our simulations. Figure 4.5 shows
representative monolayers from the CBMC simulations spanning the range of
DDT/ME ratios plotted in Figure 4.3a. Large, patchy, Janus-like domains can
clearly be seen. This type of phase separation is consistent with previous simu-
lation work which suggests that chemical mismatch induces patchy monolayer
phase separation. [22,34,83,88]

While SSRexp is a standard experimental measure used to characterize the
degree of phase separation in NP monolayers, it does not provide a complete
picture of the monolayer morphology. To compliment the SSRexp analysis, we
also quantified the patchiness of the NP monolayers by measuring the area of
the largest patch of ME ligands within each monolayer for all of our simulated
structures. To do this we grouped all ME ligands separated by 6Å or less into
clusters. We then characterized those clusters by the fraction of the NP surface
area they cover. The results are shown in Figure 4.6, where we can see that
the largest ME patch for each χME covers a proportional fraction of NP surface
area. In addition, a large fraction of the NP surface area is covered by the
largest ME patch, suggesting a Janus-like phase separation, and quantitatively
confirming the visual interpretation of the computational monolayer snapshots
in Figure 4.5 as well as the experimental MALDI-MS results.

Several physical forces are at play in the emergence of the observed Janus-like
phase separation. First, the high energetic favorability of hydrogen bonding
between ME ligands in the nanoparticle monolayer creates a large enthalpic in-
centive for clustering of ME ligands. Secondly, the Janus-like phase separation
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is further favored by the clustering of DDT ligands, which is driven by crys-
tallization of the longer DDT ligands. Crystallization of alkanethiols of similar
chain lengths has been observed in previous simulation work on spherical and
flat gold surfaces, [53,109] and can be seen in the structures shown in Figure 4.5.
Because there is also a length mismatch between the two ligands, there is also an
entropic driving factor which would drive the monolayer toward striped phases
to maximize free volume of the longer ligands. [34] However, striped phases
are not seen throughout the range of χDDT values. Indeed, simulations that
start from a striped phase form Janus-like monolayers upon equilibration (see
Figure B.4) suggesting that the chemical mismatch effects play a much larger
role than the physical mismatch effects within this DDT/ME monolayer.

4.4 Conclusion

Using both the atomistic CBMC simulations and MALDI-MS experiments we
have shown the ability to characterize the monolayer morphology of sub-10nm
Janus-like NPs. Experimentally we find that our chemically and physically
mismatched monolayer shows a higher degree of phase separation than the
previously examined physically mismatched striped monolayers, [87] indicating
the existence of large patchy domains. Computationally we find that the use
of an atomistic simulation with a standard OPLS-UA force field and a CBMC
algorithm to efficiently sample the relevant phase space provides an efficient
method to arrive at the equilibrium monolayer structure. Using our method
of deriving a MALDI-MS distribution from the atomistic simulations, we can
make a direct quantitative comparison between the experimental MALDI-MS
spectra and the atomistic simulations. This comparison shows good agreement,
both when we compare fragment distributions and in terms of the trend across
the range of χDDT values. This agreement gives us additional confidence in our
computational results, which show a patchy, Janus-like morphology. The com-
putational approach described here provides an efficient method for predicting
the expected Janus-like phase separation in monolayers where both physical
and chemical mismatch exists, since the more accurate atomistic potential can
capture the effects of important intermolecular forces and the CBMC sampling
can accelerate the simulation’s approach towards equilibrium. We expect that
it should prove similarly effective at predicting other ligand-shell morphologies,
but additional work is needed to confirm its efficacy in those cases. Application
of this technique may allow for a more rapid design of multi-ligand ultra-small
NPs with specific monolayer morphologies for use in applications ranging from
drug delivery to photonics.
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Figure 4.6: Analysis of the largest ME patch in each simulated NP monolayer. Surface
area of the largest ME patch of each monolayer plotted as a function of ME
surface fraction. The y-axis is in units of the fraction of total surface area of
the NP surface. Final structures from all six simulations at each were used to
calculate the averages and standard deviations plotted here.
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Chapter 5

Predicting Phase Mismatch
Using CBMC simulations to predict trends in
mercapto-alcohol/alkanethiol monolayers with varying
chain length mismatch

This chapter was adapted from unpublished work by: Steven N.
Merz, Elise Hoover, David Green, Kateri DuBay

5.1 Introduction

Multifunctional nanoparticle monolayers (NP-SAMs) from mixtures of alka-
nethiol ligands have a wide variety of applications from photonics [16,36,56–58]
and catalysis [13, 110] to biological sensors [68, 69] and drug delivery [59–62].
As such the design and characterization of these monolayers has attracted a
wide variety of interest [10, 111, 112]. The design of these MNPs is especially
centered around designing SAMs on the NP surface that add functionality to
the NP. This design is critical to MNP properties as the interfacial area of the
MNP comprises a large percentage of the NP. These SAM monolayers can be
enhanced with the use of multiple ligand types which can add multifunctional
properties to the MNP [8,10,111,113].

With the use of multiple ligand types many multi-ligand monolayers will
undergo some type of phase separation [22,112,114], especially if these ligands
include different functional groups. Several studies have shown that monolayer
phase separation can have a significant impact on the properties of multifunc-
tional nanoparticles [9, 10, 73, 82, 115] making controlling and understanding
NP monolayer phase separation a key component to effectively designing multi-
functional MNPs. To investigate this phenomenon several experimental studies
have been done to investigate the underlying factors of NP monolayer phase
separation [45, 46, 54, 71, 75, 112]. These experimental studies give clues to the
degree and type of phase separation, but do not give a detailed picture of the
monolayer morphology. As the nature of the phase separation detected by
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indirect experimental methods additional work is needed to understand self-
assembly in NP monolayers.

Previous studies have looked at modelling phase separation of NP mono-
layers using molecular simulations to assist in filling in this gap [23, 34, 53,
83, 90, 103, 116, 117]. These studies aid in revealing the detailed interplay be-
tween ligands that occurs during phase separation of multi-ligand monolayers.
However, much of this work lacks direct comparison to experimental results.
Without this direct comparison it is difficult to tell whether these simulations
fully capture all the relevant details of NP monolayer phase separation. Some
recent studies have made progress in comparing experimental and computa-
tional results. This includes work by Luo et al. [86] which looks at comparing
SANS analysis of NP monolayers with DPD simulations. This method has a
few drawbacks including the use of SANS which requires the use of a neutron
source as well as selective deuteration of ligands which adds a higher level of
complexity than most other experimental methods. Additionally, the use of
DPD simulations to determine the equilibrium monolayer morphology can be
problematic as the largest time scale that can be probed by DPD simulations
is on the order of microseconds and the time scale of equilibration of thiol
monolayers on noble metal nanoparticles can take up to 4 days [91].

Recently, we have shown the efficiency and simplicity of using molecular
modeling in tandem with MALDI-MS to analyze NP-SAMs. MALDI-MS is
a much more accessible technique than SANS only requiring a UV laser for
ablation and a mass spectrometer. Our recent work with MALDI have shown
the ability to detect phase separation in physically mismatched alkanethiol
monolayers [38,87] as well as in a physically and chemically mismatched mono-
layers [118]. To gain a full picture of the monolayer morphology we also model
the monolayer computationally. As noble metal nanoparticle thiol monolayers
can take up to 4 days to equilibrate [91] we use simulations that can search
phase space in unphysical manners allowing the bypass of large kinetic barriers
in monolayer equilibration.

In this manuscript, we show the versatility of using atomistic simulation as a
tool for predicting monolayer phase separation by using CBMC to predict the
trends in ligand patterning for hydrophobic/hydrophilic monolayers with vary-
ing degrees of chain length and chemical mismatch. To this end, three combina-
tions of ligand mixtures were chosen from alkanethiols and mercapto-alcohols
to explore the interplay of differing carbon chain length and varying functional
groups on monolayer self-assembly (see Figure 5.1). The three monolayers
explored include two with chain length mismatch – dodecanethiol/mercapto-
hexanol (DDT/MHA) and hexanethiol/mercapto-undecanol (HT/MUDA) as
well as one with no chain length mismatch - dodecanethiol/mercapto-undecanol
(DDT/MUDA). On the basis of the theoretical predictions, we synthesized Ag
NPs with the same 50:50 monolayers for analysis with MALDI-MS, facilitating
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comparisons between theoretically and experimentally-derived spectra, whose
agreement engenders confidence in the predicted CBMC profiles of the self-
assembled monolayers. The ability to predict phase separation of NP monolay-
ers will allow facile design of multi-functional MPNs for a variety of applications
including drug delivery.

5.2 Methods

In this work we use the atomistic CBMC simulation used in our previous
work [118] which uses the OPLS-UA potential along with a CBMC sampling
scheme. The atomistic OPLS-UA potential allows a much more accurate model
of interatomic interactions than other coarse grained modelling attempts such
as those using DPD [34,72,86,119]. This added accuracy aids in the modelling
of the complex intermolecular interactions in chemically mismatched monolay-
ers and showed excellent agreement with the chemically mismatched monolayer
in our previous paper [118]. The CBMC sampling scheme is necessary to over-
come the large kinetic barriers seen in thiol noble metal monolayers. Previous
work by Stellacci et al. has shown that equilibration of these monolayers can
take up to 4 days [91]. As standard molecular dynamics techniques can only
probe up to microsecond time scales the enhanced sampling provided by CBMC
allows a much more efficient approach to equilibrium.

The atomistic CBMC simulations can then be compared directly to exper-
imental MALDI results, through the use of the statistical sampling technique
used in our previous paper [118]. In this technique a random ligand is chosen
from the NP monolayer then the four nearest neighbors within a 6Å cutoff are
chosen to create an Ag6L5 fragment. After 50,000 fragments are sampled from
the NP monolayer they are binned by the ratio of the two ligand types within
each fragment (i.e. 0 Ligand A/5 Ligand B, 1 Ligand A/4 Ligand B, 2 Ligand
A/3 Ligand B, 3 Ligand A/2 Ligand B, 4 Ligand A/1 Ligand B, and 5 Ligand
A/0 Ligand B) and then normalized by the total amount of fragments in order
to compare with the experimental spectrum.

The synthesis of the multi-ligand coated silver nanoparticles was carried out
using the one-step synthesis outlined in our previous work [20]. This technique
allows the synthesis of uniform noble metal nanoparticles with multi-ligand
monolayers without the need for ligand exchange steps. This reduces possible
complicating variables that these steps introduce. To characterize the degree
of phase separation of the NPs monolayers we use MALDI-MS which has been
used successfully for this purpose in our previous work [38,87]. In this technique
the nanoparticle samples are co-crystallized with a matrix agent, in this case
trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB),
which allows facile ionization of the AgNPs using a soft UV laser. Once the
AgNPs are ionized they are then fed through a time-of-flight mass spectrometer
to quantify each ionized fragment by their mass to charge ratio.
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In noble metal thiol monolayers these mass spectra contain characteristic
fragment families with a specified ratio of metal to ligands in each fragment.
In silver thiol MPNs the characteristic ratio is n+ 1 silver atoms to n ligands
or Agn+1Ln. In our work we have found that the Ag6L5 fragment family
has the highest signal to noise ratio and therefore is used for analysis in this
study. As each ligand has two ligand types with two distinct masses the Ag6L5

fragment family consists of 6 peaks one for each possible ratio between ligand
A and ligand B in the Ag6L5 fragment (i.e. 0 Ligand A/5 Ligand B, 1 Ligand
A/4 Ligand B, 2 Ligand A/3 Ligand B, 3 Ligand A/2 Ligand B, 4 Ligand A/1
Ligand B, and 5 Ligand A/0 Ligand B). If these two ligands are randomly mixed
on the surface they should each appear within a fragment with probability
proportional to their surface concentration. This suggests that the frequency
of any one of the six peaks of the Ag6L5 fragment family should follow a
binomial distribution, B(n = 5, p = xA), where n = 5 is used as a 5 trial
binomial distribution models each of the 5 ligands in the Ag6L5 fragment and
p = xA models the probability that any of the 5 ligands will be ligand A (the
heavier ligand). This has been confirmed through several works including our
own showing that monolayers with ligands containing only isotopic differences
produce characteristic fragment peaks that follow the binomial distribution
very closely [33, 38]. Based on this observation we can determine the degree
of phase separation of a NP monolayer by its deviation from this binomial
distribution. To quantify this, we take the squared residual between each peak
and the binomial distribution and sum them to find the sum of squared residuals
(SSR). As the SSR measures the deviation from the binomial distribution the
larger the SSR value the greater the deviation from a well-mixed monolayer.
Both the normalized Ag6L5 MALDI distribution as well as the SSR can be
directly compared to the computational results. As such we can quantitatively
confirm the accuracy of the computational simulations predictions of the NP
monolayer phase separation through direct comparison to experiment.

5.3 Results & Discussion

Three different combinations of monolayer ligands were chosen to explore
the effect of chain length mismatch on chemically mismatched monolayers. As
we previously explored self-assembly in an alkanethiol and mercapto-alcohol
monolayer we now look at how varying degrees of physical mismatch affect
this phase separation. By understanding the effects of physical mismatch in
multi-functional monolayers it should be possible to create multi-functional
monolayers with any type of phase separation through alteration of chain
length. Here we explore the effect of changing chain length mismatch in alka-
nethiol monolayers by looking at three alkanethiol/mercapto-alcohol monolay-
ers with different degrees of chain length mismatch. One monolayer with a
longer mercapto-alcohol and a shorter alkanethiol (mercapto-undecanol and
hexanethiol), another with a shorter mercapto-alcohol and longer alkanethiol
(mercapto-hexanol and dodecanethiol), and finally one monolayer with an
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equal length mercapto-alcohol and alkanethiol (mercapto-undecanol and do-
decanethiol).

The equilibrium monolayer morphologies were predicted via an atomistic
CBMC simulation used to great effect in modelling mercapto-ethanol/dodecanethiol
AgNP monolayers in our previous work [118]. This simulation uses an atom-
istic OPLS united atom potential in concert with a configurationally biased
Monte Carlo sampling of phase space. The use of an atomistic potential allows
for capturing of subtle intermolecular interactions important in chemically mis-
matched monolayers such as hydrogen bonding [118]. The use of the CBMC
sampling scheme allows for a more efficient sampling of phase space of dense
ligand monolayers as configurationally biased sampling avoids the large degree
of physically unfeasible phase states that come from chain overlaps [104,106].

To make sure that simulations were converging to the equilibrium morphol-
ogy each simulation was run at two different start points - randomly mixed
monolayers and Janus monolayers. By running the simulation from two points
with large degrees of separation in phase space we gain a higher confidence
that the simulation has reached equilibrium if the both simulations reach the
same final configuration. This in addition to the six replicates for each starting
point give a good sampling of the possible phase space of the NP monolayers.

Each set of simulations were run for 800,000 (800k) steps in line with our
previous work on alkanethiol/mercapto-alcohol monolayers [118]. After the
simulations the SSR values for each of the simulations’ ending states were cal-
culated for both the simulations starting at randomly mixed monolayers as well
as the simulations starting at a Janus configuration. The comparison between
the final SSRs of the two types of simulations are then compared to determine
convergence. The results of this comparison are shown in Figure C.1 and show
good agreement between the Janus initialized and randomly initialized mono-
layers all lying within the standard error of each other indicating the simulation
approaches equilibrium after 800k CBMC steps.

Once we have ensured that our simulations have reached equilibrium we can
then analyze the results with confidence. The SSR of the computational results
from the 6 random trials of the trial with chain length mismatch (DDT/MHA
and HT/MUDA) shows a large patchy degree of phase separation. Both values
are above 0.10 which previous work are indicative of patchy monolayers [108].
The DDT/MHA monolayer (SSRavg = 0.20) showed a higher degree of phase
separation than the HT/MUDA monolayer (SSRavg = 0.14). This is can be
accounted for by the fact that a driving factor in alkanethiol segregation and
this is not seen for HT monolayers on noble metal nanoparticles at room tem-
perature [53]. In the DDT/MHA monolayers the alkanethiol ligand (DDT) is
long enough for alkanethiol crystallization to occur and as the larger driving
factor in mercapto-alcohol segregation is hydrogen bonding the shorter length
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DDT/MHA HT/MUDA DDT/MUDA

Figure 5.1: Diagram showing the three monolayer ligand systems chosen for this study.

of the MHA does not significantly hinder the segregation of the two ligands.
However, the monolayer with no chain length mismatch shows little to no de-
gree of phase separation. This seems to be due to the fact that the similar
length ligands allow the mercapto-alcohols to incorporate into the alkanethiol
crystallization process.

To confirm this prediction the simulated monolayer protected nanoparticles
were synthesized experimentally. These silver nanoparticles were synthesized
with the one-step synthesis process developed in our previous work [118]. This
allows us to easy incorporation of multiple ligands into the nanoparticle mono-
layer without the use of multiple ligand exchange steps.

The synthesized particles were then analyzed using MALDI-MS using the
same procedure as in our previous work [38,87,118]. This gives us a mass spec-
trum with characteristic fragment families with distinct ratio of silver atoms to
monolayer ligands. For silver thiol monolayers this ratio is Agn+1Ln in our case
we analyze the Ag6L5 fragment family as this has the highest signal to noise
ratio in our mass spectrum. After normalizing this spectrum and obtaining
the SSR we obtain a direct quantitative comparison to the CBMC simulation
predictions. In Figure 5.2 and Figure 5.3 we compare both the SSR values
of the experimental and theory as well as their Ag6L5 MALDI distribution.
For experimental MALDI results all spectra within 0.05 χDDT of 0.50 χDDT were
included, while all simulations were run at precisely 0.50 χDDT . In all cases we
show the CBMC simulations produce a good prediction of both the experimen-
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Figure 5.2: Comparison of simulation derived SSR values with the computational values

tal SSR as well as the experimental MALDI distribution, especially considering
the wider variance of χDDT in the experimental spectrum.

In addition to predicting experimental results, the CBMC simulation can
also provide additional information on the nanoparticle monolayer including
the size of the patchy phases on the surfaces and detailed visualization of the
monolayer morphology. While the experimental MALDI gives us an approxi-
mate measure of the NP monolayer’s departure from a well-mixed monolayer
through SSR, this provides little information on the detailed morphology of
the NP monolayer. To gain further insight into the NP monolayer morphology
we analyze the simulation results. Examining the atomistic CBMC simula-
tions we see more clearly that the NP monolayers with chain length mismatch
show large patchy morphology. Looking at the HT/MUDA monolayer we see
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Figure 5.3: Comparison of experimental MALDI-MS spectrum with computationally pre-
dicted MALDI-MS spectrum

that while MUDA ligands show tightly clustered and segregated patches the
HT ligands show little to no organization as the HT ligands are too short for
crystallization to be favored at this temperature [53].

We can more quantitatively describe the monolayer morphology by quantify-
ing the area of the largest hydrophilic patch in the NP monolayer. This trend is
shown below in Figure 5.5 where the maximum patch area for each NP mono-
layer ligand system is quantified as the area of the largest mercapto-alcohol
patch. A patch is considered to consist of all ligands within 6AA of each other,
the total area is calculated as the half the area of the convex hull that contains
the ligands sulfur atoms and is normalized by the total surface area of the NP.
The trend in patch sizes follows a similar trend to the SSR values of the mono-

62



5.3. Results & Discussion

Figure 5.4: Snapshots of final configurations for each of the three simulations.

layers with the DDT/MUDA monolayer showing the smallest maximum patch
sizes and DDT/MHA showing the largest maximum hydrophilic patches. It is
interesting to note, however, that the maximum patch size of the HT/MUDA
monolayer does not deviate as significantly from the maximum patch size of the
DDT/MHA as the SSR values do. This also points to the fact that while the
mercapto-alcohol ligands in both monolayers have a sufficient enthalpic driving
force for segregation in hydrogen bonding the lack of an enthalpic driving force
in the alkanethiol ligands in HT/MUDA monolayers is what causes the reduced
degree of phase separation in HT/MUDA monolayers.

We can more quantitatively describe the monolayer morphology by quantify-
ing the area of the largest hydrophilic patch in the NP monolayer. This trend is
shown below in Figure 5.5 where the maximum patch area for each NP mono-
layer ligand system is quantified as the area of the largest mercapto-alcohol
patch. A patch is considered to consist of all ligands within 6AA of each other,
the total area is calculated as the half the area of the convex hull that contains
the ligands sulfur atoms and is normalized by the total surface area of the NP.
The trend in patch sizes follows a similar trend to the SSR values of the mono-
layers with the DDT/MUDA monolayer showing the smallest maximum patch
sizes and DDT/MHA showing the largest maximum hydrophilic patches. It is
interesting to note, however, that the maximum patch size of the HT/MUDA
monolayer does not deviate as significantly from the maximum patch size of the
DDT/MHA as the SSR values do. This also points to the fact that while the
mercapto-alcohol ligands in both monolayers have a sufficient enthalpic driving
force for segregation in hydrogen bonding the lack of an enthalpic driving force
in the alkanethiol ligands in HT/MUDA monolayers is what causes the reduced
degree of phase separation in HT/MUDA monolayers.

63



5. Predicting Phase Mismatch

0.0

0.2

0.4

0.6
M

ax
 C

lu
st

er
 A

re
a 

(F
ra

ct
io

n)

Figure 5.5: Maximum patch size for each multi-ligand monolayer predicted by CBMC sim-
ulations.

5.4 Conclusions

Our work demonstrates the ability for CBMC simulations to predict mono-
layer phase separation of alkanethiol and mercapto-alcohol monolayers. Our
predictions shed light on the interactions of length and chemical mismatch on
nanoparticle monolayer phase separation that cannot be observed through ex-
perimental techniques alone. Our analysis shows that while mercapto-alcohol
ligands can show strong segregation through a wide range of chain lengths,
alkanethiol monolayers need longer chain lengths for segregation. Addition-
ally, we see that when the mercapto-alcohol and alkanethiol ligands have the
same chain length the mercapto-alcohol start to integrate into the alkanethiol
crystal structure drastically reducing segregation of the two ligands producing
well-mixed monolayers. This allows the prediction and design of nanoparticle
monolayers for a variety of purposes including drug delivery, bioimaging, and
biosensing.
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Chapter 6

Conclusion

6.1 Summary

In this work we have taken large strides in developing a simple and efficient
method for characterizing ultrasmall (< 10nm) monolayer protected nanopar-
ticles. These monolayer protected nanoparticles have a wide variety of appli-
cations including uses in optics [16, 36, 56–58], self-assembly [120], drug deliv-
ery [59–62], and biosensing [68, 69]. The ability to characterize and predict
the phase separation of these NP monolayers will allow facile design of MPNs
with multi-functional monolayers with increased drug delivery [9, 59, 75, 77]
and unique self-assembled structures [120]. With the addition of this research,
future work designing multi-functional can be sped along with the aid of pre-
dictive computational work and fast and efficient MALDI-MS validation.

Previous work with traditional techniques such as STM proved insufficient
for characterizing small NP monolayers [40–43]. Several indirect experimen-
tal techniques have been used to characterize these ultrasmall NP monolay-
ers [54, 82, 83]. But the interpretation of the results of these indirect experi-
mental techniques has led to some debate [40–43]. Our work fills in this gap
by weaving together simulation and experiment to create a characterization
method that provides experimentally validated detailed information on NP
monolayer morphology.

We take the simple and robust experimental technique of MALDI-MS along
with computationally efficient techniques to create a new method for NP char-
acterization which gives a detailed look at monolayer morphology through simu-
lation with experimental validation. Previous work by Harkness et al. showed
the potential of MALDI-MS for characterization of NP monolayers, but did
not provide a direct link between the MALDI-MS distribution and detailed
monolayer morphology. We fill in this gap through the use of computationally
efficient SCFT simulations. We confirm the validity of this technique using a

65



6. Conclusion

control monolayer with only isotopic techniques along with a physically mis-
matched monolayer which we expect to show phase separation. The match
between our hypothesis with experimental MALDI-MS and SCFT results vali-
date our method and gives rise to a more robust method of characterizing noble
metal nanoparticles.

With our method validated, we used MALDI-MS and SCFT to look at phase
separation in monolayers with a range of physical mismatch to determine the
relationship between physical mismatch and NP monolayer phase separation.
By examining monolayers with alkanethiol ligands ranging from C4-C12 co-
adsorped with dodecanethiol, we were able to accurately model monolayers
with a range of physical mismatch. By combining the experimental charac-
terization of MALDI-MS with the insight provided by computational simula-
tions we developed confidence in previous hypotheses about phase separation
in physically mismatched monolayers.

We extend our work to modelling monolayers with Janus-like monolayers by
studying monolayers that include a chemical mismatch. The extension of our
previous modelling work is necessary in order to be capable of characterizing
the full range of monolayer phase separations. With the added complexity of a
chemical mismatch we found SCFT unable to accurately model the intermolec-
ular interactions involved in chemically mismatched monolayers. Through the
use of atomistic simulations with a CBMC sampling of phase space, we were
able to use a detailed atomistic simulation that still efficiently converges to
the equilibrium monolayer morphology. Comparison with MALDI-MS again
validates our success, demonstrating that our method has the capability of
modelling both chemically and physically mismatched monolayers.

We then tested the predictive power of our method with three different NP
monolayers containing both physical and chemical mismatch. Simulations de-
signed to predict the monolayer morphology of each of the three monolayer
systems (DDT/MHA, MUDA/HT, and DDT/MUDA) were run before any
synthesis work was performed. Results from these simulations coincided re-
markably well with the experimental MALDI-MS results, confirming the pre-
dictive power of these simulations. The predictive power shown in this work
lays the ground work for the computational design of multi-functional, mono-
layer protected NPs for a wide variety of uses including biosensing and drug
delivery.

6.2 Future Work

With the validation of the predictive power of our method, there are several
directions for future work. A simulation with predictive power would be useful
for designing a wide array of monolayer protected NPs for a variety of appli-
cations. While the completed work has produced a simulation that can design

66



6.2. Future Work

and predict an extensive variety of NP monolayers, extensions to this simula-
tion could increase the applications of the simulation by modelling monolayers
with more exotic functionalities.

One possible extension of our current work would be to increase our simula-
tion to cover monolayers with a wider variety of functional groups, including
amine and carbozylic acid head groups. These functional groups will bring in
their own unique functionalities, which can broaden the array of self-assembled
structures as well as their potential applications. Additionally these functional
groups allow for facile bioconjugation of larger ligands as well as drug payloads
that could increase their usefulness. The incorporation of these functional
groups should be possible with the current OPLS-UA potential, however vali-
dation with experimental MALDI will take more time. Additionally, branched
functional groups such as carboxylic acids will need a CBMC sampling that
accounts for branching within ligands.

To extend the utility of our design method for nanoparticles in drug delivery,
it is also possible to integrate cell membrane translocation simulations to pre-
dict ease of drug delivery for various monolayer phases. By coarse graining the
predicted NP monolayer morphologies to a simpler DPD force field, it would
also be possible to model the translocation with the aid of a metadynamic
technique such as umbrella sampling. This technique aids in sampling the
phase space of processes such as cell membrane translocation that have large
kinetice barriers. These simulations will provide the free energy of each mono-
layer morphology alongside the morphology information given by the atomistic
CBMC simulations. The added information provided by these metadynamic
DPD simulations will allow for a streamlined pipeline for desigining MPNs for
drug delivery applications.
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Appendix A

Exploring Stripey Monolayers

A.1 TEM Images of Mixed Thiol-ligand Nanoparticles

In addition to the four TEM images shown in the main chapter, we col-
lected TEM images for each of the other ligand systems. In Figure A.1 be-
low are reproduced the TEM images for the dodecanethiol/pentanethiol, dode-
canethiol/hexanethiol, dodecanethiol/heptanethiol, dodecanethiol/nonanethiol,
dodecanethiol/decanethiol, and dodecanethiol/undecanethiol systems.
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DDT/PT DDT/HT

DDT/HPT DDT/NT

DDT/UDT

Figure A.1: TEM Images of Mixed Thiol-ligand Nanoparticles (DDT/PT) TEM im-
age of dodecanethiol/pentanethiol functionalized nanoparticles. The mea-
sured sum of squares error for this sample was SSR= 0.0840, with a do-
decanethiol surface mole fraction of χDDT = 0.52. (DDT/HT) TEM im-
age of dodecanethiol/hexanethiol functionalized nanoparticles. The mea-
sured sum of squares error for this sample was SSR= 0.0215, with a do-
decanethiol surface mole fraction of χDDT = 0.46. (DDT/HPT) TEM im-
age of dodecanethiol/heptanethiol functionalized nanoparticles. The mea-
sured sum of squares error for this sample was SSR= 0.0076, with a dode-
canethiol surface mole fraction of χDDT = 0.46. (DDT/NT) TEM image of
dodecanethiol/nonanethiol functionalized nanoparticles. The measured sum
of squares error for this sample was SSR= 0.0077, with a dodecanethiol
surface mole fraction of χDDT = 0.44 (DDT/UDT) TEM image of dode-
canethiol/undecanethiol functionalized nanoparticles. The measured sum of
squares error for this sample was SSR= 0.0043, with a dodecanethiol surface
mole fraction of χDDT = 0.55.
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Appendix B

Exploring Patchy Monolayers

B.1 TEM Analysis

B.2 Nearest Neighbor Criteria

B.3 Testing Simulation Equilibration

B.4 SSR Sensitivity Analysis
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Figure B.1: Representative TEM images taken of DDT/ME monolayer silver metal NPs.
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B.4. SSR Sensitivity Analysis
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Figure B.2: RDF of DDT sulfur atoms at varying surface concentration of DDT on the
surface. The first peak of the RDF shows the average distance between the
sulfur atoms of DDT ligands to lie between 4 − 6Å. A vertical line is placed
at 6Å to illustrate the fact that 6Å lies at the trough between the first and
second RDF peak making it a good cutoff for the nearest neighbor distance
between ligands.
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Figure B.3: Acceptance ratio of identity swap move over six trials of CBMC simulation at
0.50 χDDT . Blue ribbon shows standard deviation over the six trials and the
average acceptance ratio, calculated every 10000 steps, is shown with the black
line.
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B.4. SSR Sensitivity Analysis
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Figure B.4: SSR comparison between simulations with varying initial starting morphologies
including Janus, random, thin 0.5nm stripes (Thin Stripe), and thicker 1nm
stripes (Striped) for CBMC simulations run for 800k steps. The initial SSRs
are shown in black circles while the SSRs of the final configuration are shown
in red circles. Error bars represent standard deviation of the six simulations
run for each data point.
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Figure B.5: Comparison of the two quantitative characterization techniques used for our
nanoparticle monolayers SSR and max cluster area. (a-b) Example configura-
tions of a striped and patchy monolayers. The striped monolayer is generated
by constricting ligands within 1nm stripes and the patchy monolayer is the
result of an 800k CBMC simulation at 298K, both monolayers contain a 50/50
ratio of DDT and ME. (c) SSRsim values derived from the calculated MALDI-
MS distribution for the patchy and striped monolayers shown in figures a and
b respectively. (d) The area of the largest ME ligand patch on the surface
normalized by the total surface area of the NP for the patchy and striped
monolayers shown in figures a and b respectively
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Figure B.6: Comparison of largest ME patch area of simulations with varying initial mono-
layer morphologies. Janus, random, 0.5nm thick striped, and 1nm thick striped
monolayers are used as starting configurations for CBMC simulations run for
800k steps. Error bars represent standard deviation of the six simulations run
for each data point.
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Janus
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Figure B.7: Representative monolayers used for the SSR sensitivity analysis. The mono-
layers shown are for the 2nm, 4nm, and 6nm diameter particles. For Janus
monolayer morphologies, the ME ligands were placed randomly within one
hemisphere while the DDT ligands were placed randomly within the other
hemisphere (top row). For random monolayers, both ME and DDT ligands
are placed randomly across the entire NP surface (bottom row).
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Figure B.8: 1H NMR of free thiol ligands along with a batch of silver DDT/ME nanoparti-
cles after the three washes with ethanol used in our method. All samples were
measured in 600µL of deuterated chloroform. After three washes the 1H NMR
spectrum shows no sharp peaks indicating all ligands are bound to the noble
metal nanoparticle surface.
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Predicting Phase Mismatch
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Figure C.1: Plot of convergence of SSR values for simulations started from Janus and
randomly mixed monolayers.
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