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Abstract

Today, on average, humans spend over 90% of their time indoors. Given the consid-

erable amount of time spent indoors, sensing context in these human-centric indoor

environments can enable several applications in healthcare, energy, elderly moni-

toring, personal welfare, etc. Despite the potential slew of applications, people are

resistant to having cameras and/or microphones in many indoor human environments

such as homes, office cubicles or automobiles, due to privacy concerns. Furthermore,

this context sensing must be performed without an onus on the human to wear/carry

any device, owing to the well documented forget to wear, forget to charge problem.

Given these sensing constraints, this dissertation explores the usage of wireless

radar signals to sense context in indoor human environments. Quite unlike their

primary usage in outdoor spaces, radars in indoor environments are subject to (a)

very strong indoor multipath reflections, (b) power consumption constraints, (c) space

constraints, (d) transmit power regulations, and (e) an incomplete observation of the

entire sensing region (i.e. partial field-of-view).

We address these challenges by building a suite of hardware and software so-

lutions that builds on past radar literature to sense context in two indoor human

environments — homes and cars, by leveraging the structure of the environment. In

particular, the components of FormaTrack and Doorpler perform room-level local-

ization of home occupants using radar sensors mounted atop room transition spots

such as doorways via the Doppler Effect. To prevent sensing errors produced by these

devices from becoming tracking errors, we build TransTrack – a tracking algorithm

that uses sensor data from (subsequent) doorway events. Finally, we build CaraoKey,

a system that repurposes the radar setup that pre-exists in automobiles for keyless

entry, as a sensing modality to infer the state of a car. It does so in a manner that is

robust to location changes and does not warrant any form of transceiver synchroniza-



tion. The dissertation concludes by pointing out other context sensing applications

that can be enabled by this infrastructure. Such features will become increasingly

important as driverless cars and shuttles become the norm, resulting in an increased

importance to passengers’ sense of in-vehicle security and well-being.
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Chapter 1

Introduction

1.1 Overview and Motivation

The term environment refers to the world around us – the aerial and aquatic life,

the mountains, our homes and offices, our automobiles, etc. This environment can be

classified into two main heads based on the nature of origin – the natural environment

and the built environment [1]. The natural environment refers to our surroundings

that came into existence without human intervention such as oceans, forests etc. On

the other hand, the built environment refers to the human constructed space around

us such as homes, automobiles, bridges, dams, the drainage system, etc.

In this dissertation, we refer to the built environment that is occupied by humans

as a human environment – e.g. buildings, cars, etc. According to the Environmental

Protection Agency (EPA), the average American spends over 90% of one’s life in an

indoor human environment – 87% in spaces such as a home or an office, and 6% of

one’s life in automobiles [2]. Given the considerable amount of time spent inside an

indoor human environment, sensing context of these environments can start to enable

several applications that can improve the quality of our lives. Such applications

include healthcare, personal welfare, energy savings and safety/security systems to
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name a few.

However, many of these indoor human environments such as our homes, our au-

tomobiles, our office cubicles, etc. are privacy sensitive. We refer to such built

environments as private indoor human environments. In such spaces, people do not

prefer to have their audio or video recorded as a sensing modality. Put another way,

while people accept such privacy invasive sensors in public spaces such as commercial

buildings like shopping malls and office hallways, they are resistant to having these

sensors in the aforementioned private indoor human environment. This motivates the

need for a non-invasive and privacy preserving sensing modality to infer context.

To satisfy this sensing need, this dissertation explores the possibility of using

wireless signals to sense context in private indoor human environments. Given the

multitude of wireless enabled devices that already exist in our private living spaces

such as WiFi, Bluteooth, GSM or FM transceivers, people are already accustomed

to have wireless devices in their private spaces. Hence, this dissertation explores the

usage of such wireless signals as a sensing modality. Wireless signals when emitted

by a transmitter (contained in the environment), travel through the indoor human

environment, getting reflected by the objects (and humans) present in the environ-

ment, before reaching the receiver. As a result, information about the environment

is contained within these wireless signals. This dissertation analyzes this complex

received wireless signal, which is a combination of a plethora of reflections, to make

sense of the environment.

Radars, first built nearly a century ago, aim to achieve this in outdoor environ-

ments. These devices drew immense popularity during World War II where they were

primarily used to detect enemy aircrafts [3]. These radar devices emit radio frequency

(RF) waves which bounce off the outdoor environment. These reflections are ana-

lyzed by a receiver to make inferences about the outdoor environment. Quite unlike

their primary usage in outdoor spaces, radars in indoor human environments such
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as homes and automobiles are subject to strong indoor multipath. Said differently,

in these environments, the transmitted wireless signal reflects not just of the human

but also other objects in the environment. To make things worse, these (primary)

reflections can get further reflected by (other) objects creating secondary and tertiary

reflections. When all these reflections arrive at the receiver, the key challenge for the

receiver lies in separating out the reflection of interest. In this dissertation, we develop

novel algorithms that help perform context sensing in indoor human environments

despite the rich multipath by leveraging the structure of the environment.

Next, despite the potential benefits of context sensing applications to humans,

people cannot be expected to wear/carry a device at all times – referred to as the

forget to wear, forget to charge problem [4]. This motivates the need for a device-free

sensing mechanism. Consequently, this dissertation explores the usage of wireless

sensing in a device-free manner – i.e. there is no onus on any individual to carry or

wear a device.

Also, unlike exterior radar sensing systems where power consumption is not a

constraint, indoor human environments such as homes and cars treat power as a scarce

resource. Power is a precious resource in homes [4] because power outlets might not

readily be available, where necessary (particularly near vantage sensing points such

as doorways). Furthermore, people cannot be expected to draw long wires to power

these sensors, as they become aesthetically very unfriendly to have in a home. While

environments such as cars benefit from a battery, the supply is still limited and shared

by other components in the car. Consequently, in this research we aim to build low-

power sensing solutions that adhere to the power constraints of the environment.

Additionally, radars built for outdoor environments typically do not have transmit

power restrictions. However, radars designed for indoor human environments must

adhere to FCC’s requirement on power levels for safety reasons. The challenge though

is weaker the transmitted signal, the weaker becomes the human-induced reflection
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that needs to be understood.

Furthermore, radar systems built for outdoor environments have spatial luxury

– i.e. there is loose constraint on the space of the antenna array (diameter) of the

radar. This is because the angular resolution of the radar is inversely proportional

to the diameter (length of a linear array). However, for indoor human environments,

space is a precious resource because of both aesthetics and the lack of available de-

ployment space (e.g. in cars or in vantage sensing points like doorways of a building).

Consequently, in this research we aim to build space-aware radar sensing systems that

adhere to the space constraints of the indoor human environment.

Finally, from a convenience and practicality standpoint we want our radar sys-

tem to be easy to deploy/install. Said differently, we do not want a system that is

expensive and cumbersome to deploy – e.g. like smart-floors [5] in homes. Similarly

in environments like automobiles, additional sensors come with secondary wiring and

harnessing costs for manufacturers. This gets exacerbated as power might not readily

be available where the sensors are deployed. Consequently, in this research we aim to

build radar sensing systems that is easy to deploy in the indoor human environment

of interest.

This leads us to the hypothesis of our research which states that “we can enable

context sensing in indoor human environments in a non-invasive, device-free, low

power, easy to deploy/install, space-constrained manner with a higher accuracy than

state of the art using FCC-compliant COTS hardware by applying radar principles that

leverage the structure of the multipath rich environment”. To test this hypothesis, we

build Panoptes, a suite of hardware and software solutions that builds on past radar

literature. Panoptes deals with the two private human environments we spend the

most time in – homes and cars [2]. We perform context sensing in a home by inferring

the room location of the occupants in a home (with identity). We perform context

sensing in cars by sensing the state of a car – unoccupied, occupied, door open, window
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open, trunk open etc. Panoptes performs context sensing using consumer electronics

available to ordinary uses (i.e. non military hardware). Each component of Panoptes

is FCC compliant and is implemented in practice - i.e. the components were physically

implemented, deployed and empirically evaluated to demonstrate their feasibility.

1.2 Outline

The rest of this dissertation which explains Panoptes in greater detail, is organized

as follows.

Chapter 2 provides a background of radars, and how the different pieces of Panoptes

is related to prior works in identity sensing, device-based localization, radar-sensing,

occupancy sensing, multi-target tracking and non-intrusive sensing in vehicles.

Chapter 3 introduces FormaTrack, an impulse radar based system for inferring

the room location of the occupants of a home by sensing at room transition points

such as doorways. It does so by introducing body shape as a new weak biometric

(i.e. biometrics that are not globally unique but distinct for a small population

such as a home). The basic idea is to scan the body with a radar sensor when the

person is exactly at the doorway, and to compute the reflection profile: the amount

of energy that reflects back from each part of the body. By sensing the occurrence

of each crossing, the corresponding direction of transition and the person involved,

FormaTrack identifies the room location of its inhabitants.

Like any piece of hardware, the FormaTrack radar can produce sensing errors.

These errors can manifest in four main ways -(i) false positives (when FormaTrack

detects someone walking through a doorway when they have not), (ii)false nega-

tives(when FormaTrack misses someone walking through a doorway), (iii)direction

errors(FormaTrack indicates a person likely moved from room1 to room2, but in re-

ality the person moved from room2 to room1), and (iv)identity errors(the computed
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reflection profile looked similar to person P2 as opposed to person P1). Chapter 4

introduces TransTrack, inspired by the multiple hypothesis tracking algorithm from

radar literature [6]. TransTrack uses the intuition that future can disambiguate the

past – i.e. it leverages data from subsequent doorway crossings to fix the afore-

mentioned sensing errors. Said differently, TransTrack prevents sensing errors from

becoming tracking errors.

Chapter 5 addresses another important metric of practicality, namely power. It

makes the observation that the high-power FormaTrack identity sensor is powered

on at all times. Ideally, it would need to be powered off at all times, and powered

on only when someone is at the doorway. To realize this, Chapter 5 introduces

Doorpler, a Doppler-radar based sensing system that adheres to the time, space and

power constraints of the application. It detects a crossing via the Doppler Principle,

and infers the direction of crossing by measuring the angle-of-arrival of the human

reflection. By simply performing crossing detection and direction estimation from

atop a doorway, other applications such as automatic heating and lighting control,

elderly monitoring in the 13 million elderly single-person households, or “eyes-off”

security (e.g. when a person exits a home through the back door, an unlocked front

door locks itself) can be enabled by Doorpler.

Chapter 6 introduces CaraoKey which senses the state of a car (empty, door, win-

dow or trunk open, person inside the car, etc.) using the pre-existing Ultra WideBand

(UWB) radar infrastructure that is present in cars for keyless entry and start. It does

so by building a multipath profile based on the Channel Impulse Response (CIR) that

is computed by an UWB receiver. This multipath profile is indicative of reflections

in the environment, and changes as the state of the car changes. CaraoKey captures

these changes to sense the state of the car.

Chapter 7 concludes the dissertation by summarizing the contributions and dis-
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cussing future improvements as well as new directions.

1.3 Technical Challenges

This dissertation addresses a number of key technical challenges in inferring the state

of homes and cars using wireless signals, while facilitating this line of research in the

future.

• Firstly, as mentioned earlier, unlike outdoor environments, wireless systems

in indoor environments are subject to strong multipath reflections. The key

challenge in FormaTrack and Doorpler, which aim to determine the direction

and/or identity of every crossing, is to isolate the reflection of the crossing

individual. For this, it relies on the Doppler Effect, receiver fusion, transceiver

gain mismatching, and a moving target indication (MTI) filter [7] to capture

the reflection due to human motion.

• Secondly, FormaTrack, which identifies people based on their body shape needs

a means to ensure a repeatable (body shape) signature for comparison. For this,

it leverages the Doppler Effect to identify the exact moment the person is at the

doorway. There exists positive Doppler Shift when the person is approaching

the doorway, and negative Doppler Shift when the person exits the doorway.

Thus, the zero crossing point of Doppler Shift tells the exact moment when the

person is at the doorway.

• Thirdly, Doorpler aims to be a radar setup that adheres to time, space and

power constraints of a doorway based occupancy sensing system. Doorpler iden-

tifies the direction of human transition by computing the angle of arrival of the

human induced reflection. Conventional radar based angle of arrival algorithms

take tens of seconds to run on an ultra low power microcontroller unit (MCU)
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which make them infeasible for smart lighting applications. As there is a coarser

requirement on the angular accuracy (i.e. we need to differentiate whether the

angle of arrival of the human reflection is positive or negative depending on the

side of the doorway), Doorpler employs an FFT-based technique that trades

angular accuracy for computational complexity. Furthermore, Doorpler suffers

from a space-power tradeoff. Accordingly, a lower frequency of Doorpler oper-

ation will result in a lower power consumption [8]. However, a lower operating

frequency also results in a large antenna array that can out-span the door (as

the array size depends on the wavelength [9]). In other words, Doorpler wants

to transmit at a low frequency for power sake but also at a high frequency

for spatial benefits. To handle this trade-off, Doorpler uses a technique called

dual-band wake up radio [10, 11] by operating radios at two different ISM bands

(2.4GHz and 5.8GHz). The lower power 2.4GHz radio performs crossing detec-

tion and triggers the higher power 5.8GHz array for direction estimation, only

when a crossing is detected.

• Fourthly, TransTrack is a generic variant of the multi-target tracking prob-

lem in which the tracking region is divided into zones and targets can only

be monitored as they transition between these zones. We call this the transi-

tion tracking problem. This is different from conventional tracking where the

sensor can observe the entire field of view at all times. The key challenge in

Transition Tracking is to estimate the number of targets in the tracking re-

gion without being able to sense all targets simultaneously. Unlike most other

tracking algorithms that maximize the likelihood of the sensor data, TransTrack

applies penalty functions to find the minimum number of targets that can ex-

plain the sensor data. This is because existing tracking algorithms that solve

for a maximum likelihood solution will always overestimate the number of tar-
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gets in the tracking region for a transition sensing application. On the other

hand, TransTrack allows tracks with larger numbers of targets only if they have

sufficiently fewer errors than other, alternative tracks.

• Finally, CaraoKey which builds a multipath profile based on a computed Chan-

nel Impulse Response (CIR) to identify the car state of interest must deal with

two key challenges while building this profile. Unlike atop a “small region” such

as a doorway which permits transceiver synchronization, the UWB transceivers

in the car are not synchronized as they would require long wiring to be placed

along the length and breadth of the car. Because of this absence of synchroniza-

tion, each CIR computed by a receiver will be randomly shifted with respect

to previously computed CIRs from the same transmitter. CaraoKey addresses

this challenge by identifying the first (direct) path in the CIR, and aligning the

CIRs about this path, thus yielding a repeatable signature. Next, unlike a home

which does not move, CaraoKey must be robust to changes in the location of

the automobile (i.e. the same solution must work in a multipath rich indoor

garage, a parking lot with cars on the sides, in free space, etc.). To address this

challenge, CaraoKey leverages the internal UWB nodes to build the multipath

profile which were determined to be more robust to location changes. Further-

more, since no automobile in the market has the UWB keyless infrastructure as

yet, we start from first principles – i.e. over-instrument a car and narrow down

the UWB node locations of interest.

1.4 Contributions

Recognizing these challenges, we make the following contributions in this dissertation:

• To sense the state of the home, we built a proof-of-concept system for Forma-
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Track which measures body shape using a monostatic pulse radar. The radar

measures total reflected energy at a given distance d, producing a single dimen-

sional measurement vector, that does not at all resemble the 3D imaging output

produced by sub-millimeter wave radars such as an airport scanner. Yet, this

simpler, lower-power, and more compact radar sensor could adequately differen-

tiate people in a home while still achieving higher accuracy than existing weak

biometric sensors.

• To prevent (doorway) sensing errors from becoming tracking errors, we build a

tracking algorithm called TransTrack. This tracking algorithm is applicable to

a broader set of real-world problems wherein complete coverage of the sensing

region is not practical. For example, vehicle sensors are typically installed only

at major intersections and do not cover the entire road network. Similarly,

people sensors such as security cameras are typically installed at entryways and

corridors but do not cover the entire building. As such, people and vehicles can

be tracked as they transition between zones of the building or road network,

but their position is not monitored while inside a zone.

• Existing systems that attempt to sense occupancy are power consuming, non

real-time, pet unfriendly and/or sensitive to ambient heat, light and air flow.

To overcome these limitations, we built Doorpler, a Doppler-radar based system

that detects occupancy at zone transition points such as doorways by sensing

crossings and their direction. We point out that the broader concept of Doorpler

is applicable to other transition sensing applications – gesture recognition in

wearables, smart televisions, smart photo frames etc.

• To sense the state of the car, we built CaraoKey using off-the-shelf impulse

radars. CaraoKey is the first sensing system that uses the RF keyless infrastruc-

ture in cars as a sensing modality. By leveraging a pre-existing infrastructure,
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CaraoKey mitigates the need for extra hardware resulting in cost and space

savings for automobile manufacturers. This notion of using a pre-existing in-

frastructure (built for a different primary use-case) to sense is referred to as sen-

sorless sensing [12]. While several sensorless sensing applications that leverage

(RF) transceivers (such as WiFi, GSM or FM) [13–15], the microphone-speaker

pair [16, 17] or the visible light infrastructure [18, 19] have been built in the

past, this work introduces the research community to a new sensorless sensing

modality in automobiles. This modality can enable several more applications

at minimal added costs (since the infrastructure pre-exists) such as monitor-

ing vital signs of the occupants, counting the number of occupants, detecting

human movement near the car, enabling personalization, activity/gesture recog-

nition, and so on while ensuring complete privacy. These features will become

increasingly important in driverless cars and shuttles where passengers’ sense

of in-vehicle security and well-being will be of paramount importance [20].
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Chapter 2

Background

As mentioned earlier, Panoptes builds on past literature of radar systems and algo-

rithms, albeit in a completely different context – private indoor human environment.

Consequently, in this chapter we first provide a quick overview of radars that will

better understand the subsequent chapters. After that, we present state-of-the-art in

topics related to Panoptes.

2.1 Radar Background

A radar is a system that consists of one or more transmitters and receivers that uses

radio waves to determine the range (distance), angle, speed or other features like size

or type of the target of interest. The transmitter(s) beam(s) out electromagnetic

energy into its field of view. This transmitted signal travels through the medium,

impinging and reflecting off the object of interest. This reflection is analyzed by

receiving antenna(s) to determine properties of the object such as range, direction,

velocity, etc. This signal incident on the receiver has a power level which is given by

the radar range equation [3]:
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where, Pr is the received power, Pt is the transmitted power, Gt and Gr refer to the

transmitter and receiver gain, λ is the radar’s frequency of operation, σ is the radar

cross section, Rt is the range from the transmitter to the target, Rr is the range from

the receiver to the target, and L refers to losses such as system and propagation loss.

The urge to use such wireless signals to sense the environment goes as far back

as the Second World War, where radar systems were originally designed for detecting

and tracking large metallic objects such as airplanes in the sky or tanks on the ground,

and that too in open spaces [3]. Since then radars have been built for other outdoor

applications such as weather, police speed guns, vehicle proximity sensing, etc. This

dissertation explores the usage of radars in multipath rich indoor environments where

there exists not just primary reflections off the object of interest, but also a plethora

of secondary and tertiary reflections.

A radar system can be classified into different types based on the location of the

transmitter and receiver, the type of transmitter and the nature of the transmitted

signal. A radar is said to be monostatic when the transmitter(s) and receiver(s) are

colocated. On the other hand, a radar is said to be bistatic (or multistatic) when the

transmitter(s) and receiver(s) are physically not located in the same place. Two com-

ponents of Panoptes, namely FormaTrack and Doorpler are examples of monostatic

radars where the transmitter and receiver are situated atop a doorway. On the other

hand, CaraoKey which senses the state of the car using the car key infrastructure

which has transceivers distributed around the car is an example of a multistatic radar.

Typically, monostatic radars benefit from transceiver synchronization owing to their

physical proximity. This helps mitigate sources of noise such as carrier frequency
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offset and sampling frequency offset.

A radar system can be classified as an active or a passive radar depending on

the nature of the transmitting source. If a radar system has no active transmission

source – i.e. it relies on some form of ambient (pre-existing) radio signal such as FM

or TV signals, then such a radar system is said to be passive. On the other hand, a

radar system is said to be active, if it has a dedicated transmitter. All components

of Panoptes have a dedicated transmitter, and are thus active radars.

Finally, a radar system can also be classified into different types based on the

nature of the transmitted signal. A radar is said to be a continuous wave (CW) radar

when the transmitter continually transmits a signal. On the other hand, a pulse

radar is one in which the transmitter sends electromagnetic waves for a very short

duration of time. The number of pulses transmitted per second is called the pulse

repetition frequency. The duration of a pulse is referred to as pulse width, and the

fraction of time the radar is transmitting during one transmit cycle is referred to as

the duty factor (or duty cycle). A CW radar has a duty cycling rate of 100% (i.e. it

is on all the time). Amongst the components of Panoptes, Doorpler is an example

of a continuous wave radar. It leverages on the frequency shift of the transmitted

continuous wave to perform zone occupancy sensing. Such CW radars that rely on

the Doppler shift of the reflected signal are referred to as Doppler radars. On the

other hand, FormaTrack and CaraoKey are examples of pulse radars that rely on the

computed Channel Impulse Response (CIR) based on the received reflected pulse, for

state sensing.

A radar system senses data about targets in the environment. Aside from the

detection aspect, many radar systems also have an algorithmic component called

the tracking algorithm [21]. The goal of the tracking algorithm is to associate the

observed data with the correct target in the presence of sensing and environmental

noise, creating tracks that are observed by the same sources. This is referred to as a
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data association problem. If multiple targets can be in the field of view of a radar, then

it is referred as multi-target tracking (MTT). Numerous techniques to perform data

association exist, such as Nearest Neighbor, Probabilistic Data Association, Multiple

Hypothesis Tracking, etc [22]. These algorithms typically incorporate a motion model

factoring in the physics of the objects’ motion. TransTrack is a Multiple Hypothesis

Tracking inspired algorithm that associates data collected by the doorway sensors to

the inhabitants of the home.

2.2 Related Work

Panoptes is related to prior works in identity sensing, device-based localization, radar

sensing, occupancy sensing, multi-target tracking and vehicular sensing.

2.2.1 Identity Sensing Systems

Non-intrusive identification and tracking of people in the home environment has been

an open problem for several years. Early work used smart-floor based sensing sys-

tems [5, 23, 24] to track people based on their weights. However, this approach would

mis-identify somebody if they wear something heavy such as a backback. Subsequent

work tracked people based on height [25, 26], but this approach would mis-identify

people if they wore a hat or shoes. This approach was extended by complementing

height with smartphone connectivity data [27], infrared sensors [28], or person width

measurements [29], but these approaches are subject to compliance issues or error

based on body position, respectively. Another system attempts to identify people

by sensing their shadows [30, 31] but requires a dense deployment of photodiodes on

the floor, which would be difficult to install in homes. Several wireless-based device-

free systems exist that attempt to identify people based on their gait [32–35]. These

systems typically analyze the variation of the received wireless signal to infer gait
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information (such as gait cycle time, walking speed, stride length, torso speed etc).

However, these systems require a person to walk in a straight line for about 5m [32,

34], in order to collect enough information about the gait of the person, and gait

can be affected by shoes, carried objects, the use of walking aids, and other factors.

Vision based systems [36–39] can also identify and track a person. For example, vi-

sion systems capture a facial image [38], the gait [36] or iris data [37] as biometrics.

Other vision based systems [40, 41] try to extract the silhouette of a person from the

video frames and identify them based on their body shape. One limitation of these

techniques, however, is the need to deal with lighting issues such as darkness. Addi-

tionally, people often do not accept video based systems into their homes, especially

given the possibility that the device could be hacked. FormaTrack avoids these prob-

lems by using wireless signals to sense the identity of people in a non-invasive way.

Other RF based sensors can perform much higher resolution imaging of humans to

obtain their shape [42, 43]. These systems use sub-millimeter (for e.g. airport scan-

ners) or millimeter waves, but are expensive and large in size [42], making it currently

unsuitable for people tracking in homes. RF-Capture [44] is a centimeter-wave system

similar to ours that senses the body shape of people in a room. However, it requires

people to walk towards the device for shape sensing, and also has a more complicated

hardware than FormaTrack involving 4 transmitters and 16 receivers. FormaTrack

attempts to infer people’s identity at the doorway with a single transceiver. Finally,

depth imaging sensors such as the Microsoft Kinect can detect human body shape

with high accuracy [45], but it is not yet a low power device and therefore would be

difficult to use for body scanning. However, future versions of this sensor will be able

to serve well for body shape sensing.

22



2.2.2 Device-based localization

Aside from the systems described above, many indoor tracking systems sense and

track people upto a decimeter level but infer their identities by requiring wearable

tags or electronic devices. So called device-based localization systems [46] include

Cricket [47], Active Badges [48], RADAR [49], and Blue Sentinel [50] that use ul-

trasound, infrared, wireless fingerprinting, and Bluetooth Low Energy, respectively.

Some other works have attempted to localize people based on FM-signal [13, 51], the

powerline infrastructure [52] or GSM signal fingerprinting [53]. More recently, several

device-based sensing techniques using WiFi attempt to localize the device (person)

by measuring the angle-of-arrival or time of flight with respect to one or more access

points [14, 54–57]. In addition, there are motion-capture systems, such as Vicon,

Xsens, Zebra etc [58–60], that can capture the human figure and infer their identity,

but requires the person to have several markers (sensors) on their body. However,

all these systems require a person to carry/wear a device (or at times even rotate

the device [56]) to be localized. While such systems may be practical in commercial

settings, they are not accepted in homes due to the so-called forget to wear, forget to

charge problem [4]. We refer the reader to Xiao et al. [61] for a more detailed survey

of device-based and device-free localization systems.

2.2.3 Radar-based Sensing

Our system, Panoptes is a radar-based system that leverages radar principles to

sense the state of a home with and without identity. Far from its initial domains of

aviation, navigation or weather forecasting, radars have now entered into homes with

applications such as non-intrusive vital signs measurement [62], gait analysis [35], and

fall detection [63]. Furthermore, with the advent of Google Soli [64], millimeter-wave

based radar systems have been designed for hand-gesture recognition [65], object and
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material identification [66], or even to be a musical instrument interface [67]. However,

FormaTrack is different from these systems in that it uses a radar for identification

via body shape and room-level tracking of people.

Similar to Doorpler, CW radars have long been used to detect targets and their

direction by analyzing the reflections of a transmitted tone signal [21]. However, many

of these solutions [68] cannot be directly applied to our use-case, as these systems

tend to be space-heavy [9, 69, 70] (i.e. we want Doorpler to have a form-factor that

fits onto a doorjamb whose width can be as small as 10cm [71]) or time-heavy [72,

73] (i.e. we want Doorpler to be real-time). Examples of space-heavy techniques

include Time Difference of Arrival [69], Amplitude-based AoA [70] which require a

large antenna separation such that RF path loss difference can be used to determine

the direction - a spatial luxury unavailable atop a doorway. On the other hand, time-

heavy techniques include those that have a large scan-time [74] or employ subspace

techniques [72, 73] that are computationally heavy to run in real-time on an ultra low

power microcontroller.

However, Doorpler adheres to the space, time and power-constraints of the use

case. It only requires a coarser angular accuracy (i.e. whether the angle of the

reflection from the human is positive or negative depending on the doorway side)

in estimating the direction of transition. Consequently, it employs an FFT-based

technique that isolates the reflection from the crossing human and trades-off angular

accuaracy for computational complexity.The coarse nature of the angular accuracy

also eliminates the need for large phased arrays, a common space-heavy direction

finding solution [9]. The coarseness also permits Doorpler to transmit at very low-

power and work with low sampling rates.

Secondly, radars employ different techniques to mitigate direct path interference

such as delayed sampling (pulse radars), shadowing or beam-steering [75]. In contrast,
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Doorpler employs a technique by orienting the nulls of the omni-directional transmit

and receive antennas towards each other (i.e. antennas point at each other so that the

antenna gains mismatch). Consequently, most of the energy is radiated downwards

into the doorway, and the direct path is weakened.

Finally, Doorpler identifies the moment a person crosses the doorway via a tech-

nique inspired by Doppler and pseudo-Doppler direction finders [76]. In such systems,

an RF transmitter is localized by a rotating receiver – there will be positive Doppler

when the receiver is rotating towards the active RF source, and negative while moving

away, with the zero-crossing informing the direction of the RF source. Doorpler uses

a similar technique but instead of a rotating radio, it leverages the moving human. A

person crossing the doorway causes positive and negative Doppler during approach

and exit respectively. The zero-crossing thus tells Doorpler when the person was

underneath the sensor, creating a temporal reference for AoA comparison.

Furthermore, FormaTrack and Doorpler use the Doppler principle to identify when

the person walks from one side of the doorway to the other. The principle of Doppler

has been used for several applications such as inferring hand gestures [64, 77, 78],

sleep-sensing [79], connecting mobile devices [80], and tracking phone position [81].

They all rely on the phenomenon that the frequency of the signal changes when the

transmitter or receiver or a nearby reflector (virtual transmitter) moves. FormaTrack

and Doorpler build on the same principle but uses it in a different context.

2.2.4 Occupancy Sensing

The current state-of-the-shelf system that is commonly deployed in rooms of homes

and offices for occupancy sensing is a motion sensor. However, a single motion sensor

cannot provide a direction estimate, and movements near the sensor can trigger false

positives. Furthermore, these motion sensors are also not real-time, particularly dur-
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ing exit-events (i.e. lack of motion for a period of time is perceived as an exit). Since

lack of motion is perceived as exit, occupied periods get mis-classified as unoccupied

(“the hand-waving at motion sensor problem”). Finally, motion sensors can also get

triggered by external factors such as sunlight, car lights (if used in exterior doorways)

or HVAC air flows [82] (a limitation even if they are placed on either side of the door-

way). Several doorway tracking systems have been built that can perform crossing

detection and direction estimation [25, 28, 29, 45, 83]. However, these systems either

consume high power [28, 29, 45, 83] (i.e. outside a harvestable limit), are not highly

accurate in direction estimation [25, 28], are pet unfriendly (ultrasonic sensors) [25,

29], cannot distinguish between movements near the doorway and doorway crossing

events [25] or make assumptions about the heat profile of a human [83, 84]. Doorpler

mitigates the above limitations of both state-of-the-art and state-of-the-shelf systems

by using the phase and amplitude of low-power RF signals that cause no harmful

effects, distinguishes near-door events from crossing events, and is independent of the

lighting, air flow or the heat profile of the person.

2.2.5 Multi Target Tracking

The problem of multi-target tracking (MTT) has been well explored by many prior

works. We refer the reader to Blackman [21] and Pulford [85], for a survey of MTT

methods. In this dissertation, we are interested in a variant of the MTT wherein only

the transition of targets from one zone to another are sensed. One common approach

is to use a sequential Bayesian estimation algorithm such as the Kalman Filter, Hidden

Markov Model (HMM), or Particle Filter [86–88]. However, these approaches choose

a track by maximizing the likelihood of the data, which is not a viable approach for

Transition Tracking because the number of targets is unconstrained and not all targets

are sensed. Thus, the maximum likelihood solution will typically contain phantom
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targets in order to explain away any sensing errors.

Several other papers have performed multi-target tracking by creating sensing

zones. For example, Oh [86], Wilson [89], Kruger [90], Muller [91] treat the home as

a graph of zones, each with its own sensors. However, these papers assume that the

sensors are located within the zones, whereas our work assumes that the sensors are

located on the transitions between the zones. In other words, they assume complete

sensing coverage of the tracking region. Additionally, those papers assume the use

of motion sensors, which do not have identifying information such as size, color, or

shape. Thus, the papers do not need to address the data association problem in

the same way. TransTrack deals with the additional challenges of observing target

transitions rather than target states and, as a result, uncertainty grows quickly about

both the number of targets and the state of each target.

The most similar solution to ours was developed for doorway tracking [25, 27, 92]

- wherein the identity and direction of a target are sensed as it crosses the doorway.

However, the solutions presented here assume a fixed number of targets with known

identities, even though the occupants of a typical home come and go at different

times, and occasionally bring guests into the home. Therefore, the algorithm that

was analyzed did not need to address the complexity of estimating the number of

targets in this environment, which is a key part to making the doorway tracking

solution practical. Even if an application does not want to track guests, they can

cause errors for resident tracking if the system cannot differentiate the guests from

the residents. Consequently, there is a need for a tracking algorithm that tracks a

variable number of targets by sensing only their transitions.

One common approach to the MTT problem is the Multi-Hypothesis Tracking

algorithm (MHT), which is a deferred logic technique that delays uncertain data

associations until more data become available by maintaining and scoring several

alternative hypotheses. Originally developed for radar tracking systems [6] where the

27



measured features are a set of discrete blips, it has since seen use in a diverse set of

applications like pedestrian tracking [93], eddy current tracking [94], opponent player

tracking in autonomous soccer robots [95] etc.

However, inherent to these applications is the concept of periodically observing

all targets in the tracking region, which is not a valid assumption in the transition

tracking problem. To the best of our knowledge, this is the first work applying MHT

in a multi-target transition sensing context.

2.2.6 Non-intrusive Vehicular Sensing

There exists systems that leverage the acoustic or WiFi infrastructure in cars to sense

context [96–102]. This context could be in the form of recognizing gestures for hands-

free control [96], detecting phone usages while driving [97, 98], tracking the drivers

head [99], detecting emotions [100], sensing driver distractions [101], inferring driver

actions [102], etc. Our work is different from these systems in that we use a different

sensing modality (UWB) to infer car states. To the best of our knowledge, ours is the

first system that leverages UWB radios to infer car states. In current automobiles,

car states are sensed via explicit sensors [103] – contact sensors for trunk and doors,

glass break sensor for windows, pressure sensor for occupancy (only in the front seats

for cost reasons). More recently, solutions are being built for occupancy sensing using

RF in cars [104–106]. The difference between the above techniques and CaraoKey

is that we aim to infer car states using a pre-existing infrastructure as opposed to

specialized sensors.
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Chapter 3

Room-level Tracking of People

based on Body Shape

3.1 Introduction

Knowledge of a person’s whereabouts in the home is key to context-aware applica-

tions, such as personalized heating and cooling, entertainment, task assistance, and

behavioral or health analysis. Most tracking systems today require people to wear

tags, carry mobile devices, or have cameras or microphones but many people do not

accept these technologies in the home [4], and particularly not the aging population

that needs in-home care the most. As an alternative, many tracking systems are

using so-called weak biometrics: physical characteristics of the body that can dif-

ferentiate people, but that do not necessarily uniquely identify them. For example,

several systems over the past several years have tracked people based on height [25,

26], weight [5, 23], and width [29]. Weak biometrics can be effective in a home envi-

ronment because there are typically only a handful of residents and they often have

different biometric features due to age, gender, and/or family role. However, weak

biometrics break down in environments with a large number of people (such as office
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buildings) or with people who have similar biometric features by chance.

In this dissertation, we propose a new weak biometric feature called body shape that

differentiates people based on features such as head size, shoulder size, or torso size.

The basic idea is to scan the body with a radar sensor and to compute the reflection

profile: the amount of energy that reflects back from each part of the body. These

energy levels are indicative of the relative size of each part of the body. Many people

have different body shapes even if they have the same height, weight, or width, which

makes body shape a stronger biometric. Even twins often have different body shapes.

The most accurate body shape measurements would be achieved with sub-millimeter

wave radars, such as those used as airport scanners [42], but we hypothesize that

simpler, lower-power, and more compact radar sensors could adequately differentiate

people in a home while still achieving higher accuracy than existing weak biometric

sensors.

To test this hypothesis, we built a proof-of-concept system called FormaTrack

using a monostatic pulse radar that measures total reflected energy at a given distance

d, without collecting any information about angle of arrival. Thus, it produces a

single dimensional measurement vector, as illustrated in Figure 3.1, that does not at

all resemble the 3D imaging output produced by an airport scanner. We mounted the

sensor at the top of a door frame pointed downward so that it measures the distance

to the ground. When a person walks through the door frame, the sensor receives

different levels of reflected energy from each part of their body. We use Doppler shift

to detect the exact moment when the person is in the door frame, and collect the

reflection profile at that moment to ensure the signature is repeatable. Then, we

compare the signature to previous measurements in order to recognize the occupant.

Additionally, we tilt the sensor in order to create an asymmetric sensing region, similar

to prior work [25], in order to detect the walking direction. The identity and direction
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combined is sufficient for room-level tracking of occupants in the home.

The sensor that we use has a maximum sensing range of 1m and therefore does

not pick up most of the torso size or any gait features observable in the arms and

legs. It senses the person from above and therefore features of the face and neck

are also occluded. Nevertheless, this sensor demonstrates that body shape can be

an effective biometric feature. We evaluate FormaTrack using eight participants of

varying height and weight who were asked to walk through a doorway in different

ways every day for seven days. This process generated over 2800 crossing events

while capturing a wide range of factors such as clothing, hats, shoes, and backpacks.

Results show that FormaTrack can achieve a precision, recall, direction and identity

accuracy (over all possible groups of 2 people) of 100%, 99.86%, 99.7% and 95.3%

respectively. Additionally, on testing FormaTrack for 36 hours (over 12 days) when

no one crossed the doorway, FormaTrack produced no false detections. To evaluate,

how FormaTrack translates to a whole-home tracking accuracy, we use the empirical

data to emulate 15 different floor plans varying from 3 to 9 rooms and test with data

from 2 to 4 participants. We observe that FormaTrack can achieve over 99% tracking

accuracy with 2 people in a home with 5 or more rooms. Even with 4 people in a

home with only 3 rooms, room-level tracking accuracy is still above 92%. Finally, we

demonstrate that simple techniques can be used to reduce average power consumption

by over 70% while missing fewer than 1% of all doorway crossings.

3.2 Approach

Any doorway tracking system should perform three main tasks : (i) detect when a

person crosses through the doorway, (ii) estimate their direction of movement, and

(iii) infer the identity of the person who made the doorway transition. Our system

FormaTrack is a radar-based system mounted atop the doorway that analyzes the
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signals reflected back from the environment to perform the aforementioned tasks.

Since FormaTrack is radar-based, we first provide a quick overview of key radar

terminology and concepts.

A pulse radar is a device that emits a pulse of electromagnetic energy towards an

expected target area, where a portion of this radiated energy is reflected back by a

target. The radar device analyzes this reflected signal to obtain information about

the target. For example, the amount of reflected energy indicates the target’s radar

cross section (size, curvature, reflectivity, etc) and the frequency of the reflected signal

indicates the targets velocity, as per the Doppler principle. A radar device is said

to be monostatic when its transmitter and receiver are collocated. In FormaTrack, a

monostatic radar is mounted atop the doorway. The transmitter of our monostatic

radar radiates pulses towards the target area, while the receiver measures the reflected

energy from the pulse interfering with targets.

The output of a pulse radar is a radar frame that contains information about

the total reflected power at varying distances from the radar. These distances are

quantized into bins called range bins, and the size of each bin corresponds to the

range resolution of the radar (i.e. the minimum distance between two distinguishable

targets). This range resolution of a radar depends on the sampling rate of the receiver.

For example, a receiver that samples at 40GS/s can provide a range resolution of about

4mm. The total number of bins in a radar frame depends on the maximum detectable

range of the radar (i.e. how far can a target be positioned to be detected by the

radar). Figure 3.1 shows an example of a radar frame with two dominant reflectors

at about 0.4m and 0.6m respectively. The size of each range bin in this frame is 4mm.

There are a total of 256 range bins in this frame resulting in a maximum detectable

range of 1.024m.

Radars typically deal with two time dimensions - fast time and slow time [7]. Fast

time refers to the time between two pulses - i.e. it represents the range bins for a given
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Figure 3.1: An example of a radar frame: the
radar measures the reflected power at various
distances.

Figure 3.2: The total energy reflected back on
to the radar during a crossing (a peak in the
figure) is much larger than that in the absence
of a crossing.

pulse (frame), and is a function of the sampling rate of the radar. On the other hand,

slow time refers to the time dimension in the granularity of a pulse. It is a function of

the pulse repetition frequency (frame rate) of the radar. For a more detailed review

of radar and its principles, we point the readers to [3, 7]. The following sub-sections

explain how we use the radar to detect crossings, direction and body shape.

3.2.1 Crossing Detection:

Having seen the basic working of a radar system, we next explain how we use such a

system to perform doorway tracking. The first step in any doorway tracking system

is to detect when a person actually walks through the doorway. For this, we leverage

the intuition that the total amount of energy reflected back on to the radar when a

person is crossing the doorway is much higher than when no one walks through.

To capture this intuition, we first pass the captured radar frame through a 3-frame

moving target indication (MTI) filter [7], to eliminate any unwanted static clutter.

Next, we calculate the total power in each radar frame as the sum of the absolute

reflected power at each distance in the frame. Formally, the power of the ith radar
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Figure 3.3: The distance to the head from
the radar takes a V-shape during a crossing,
but occupies the noise-floor during a non-
crossing event.

Figure 3.4: The range of the distance to
head estimates during a crossing and non-
crossing event are vastly different.

frame denoted as RFP (i) (read as radar frame power of the ith frame) is given by:

RFP (i) =
N−1∑
d=0

∣∣Pd(i)∣∣ , (3.1)

where N is the total number of range bins, and Pd(i) is the reflected power at the dth

bin, in the ith radar frame.

We next filter the radar frame power values via a two-stage discrete FIR filter [107]

to eliminate any impulse noise. Figure 3.2 shows the result of this filtering, for 10

doorway crossings. We can clearly see that the radar frame power during a crossing

is much larger than during its absence. Consequently, we detect a crossing when the

total radar frame power exceeds a threshold Thcross (set as 4 times the noise floor).

This technique of using the radar frame power to detect a crossing is only the first

step towards crossing detection. A second filtering step is needed to eliminate false

positives - i.e. to filter out those non-crossing events (events where no one is crossing

the doorway) that have a high radar frame power because of transient device noise.

We eliminate these false positive (FP) crossing events by leveraging on the intu-

ition that since there is no one crossing the doorway, the height estimates (or the lack
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of it) during a potential crossing event, can be used to filter out FP events. We next

explain how these height estimates are obtained. With FormaTrack mounted atop

the doorway, the head is the dominant reflector during a doorway crossing. Conse-

quently, the distance to the head at radar frame t corresponds to the range-bin with

the maximum reflected power. Formally,

Distance to Head(t) = arg max
d
|Pd(t)|. (3.2)

Figure 3.3 shows the distance to the head from the radar during a crossing and

non-crossing event (FP). We observe that the distance to head follows the expected V-

shaped pattern during a crossing, but occupies the noise floor during a non-crossing.

Hence by looking at the range of the distance to head estimates in a small window (we

use 100 frames) around the actual doorway crossing frame (obtained in Section 5.2.2),

we can filter out false positives1. Figure 3.4 shows this range estimate calculated for

350 doorway crossing events of a person and for all FP events detected in one of the

days of our study (35 non crossing events passed the radar frame power test). We can

see a clear separation between true positive and false positive events. We consider an

event to be a false positive if it has a range estimate less than a threshold Thhead range

(0.24m; determined to be 50% of the 1st percentile of 900 crossing events collected

during a testing period).

3.2.2 Direction Estimation

Having detected a crossing event, the next step of a doorway tracking system is

to determine the direction of target motion (i.e. from which room to which room

1On looking at a sufficiently large window around the doorway crossing radar frame for a crossing
event, the distance to head measure actually takes an M-shape - i.e. rising from the noise floor when
the person comes in the vicinity of the device, and dropping to the noise floor when the person
goes outside its vicinity. The noise floor is due to a low-power static path that remains after MTI
filtering.
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did the person move). For this, we leverage two key factors: (i) the principle of

Doppler to identify when the person is exactly at the doorway, and (ii) tilting the

radar towards one of the rooms so that the total reflected power from one side of the

doorway is greater than the other, during a crossing. From classical physics, a target

moving towards the receiver of a transmission causes a positive Doppler shift at the

receiver, while a target moving away from the receiver induces a negative Doppler

shift. Consequently, we determine the direction of motion by identifying the point

of transition from positive to negative Doppler shift, and then comparing the total

radar frame power in a small window around this point of Doppler transition. Since

the radar is tilted towards one of the rooms, by comparing the reflected power on

both sides of the Doppler transition point, we can determine the direction of motion.

Given this overview, we next describe the details of our direction estimation - i.e.

how we go from the radar frames described in Section 3.2.1 to a direction estimate.

Our first step in Doppler-based direction estimation is to convert a sequence of

radar frames into a range-Doppler matrix that shows the Doppler shift at varying

distances from the radar. As shown in Figure 3.5, this is done by horizontally stacking

K(= 32) consecutive radar frames and performing a K-point FFT over each of the

N(= 256) range bins in a frame [7]. The outcome of this transformation is the

range-Doppler matrix having N rows and K columns. Each row of the range-Doppler

matrix corresponds to a range bin, while each column of the range-Doppler matrix

corresponds to a Doppler-shift bin. The size of each Doppler bin equals Radar Frame

Rate/K Hz [108], where Radar Frame Rate is the total number of emitted pulses

(radar frames) per second. For example, with a Radar Frame Rate of 170 Hz and a

horizontal stacking of K = 32 frames, each Doppler bin has a resolution of 5.31 Hz.

The left half of the range-Doppler matrix corresponds to negative Doppler fre-

quencies, and the right half corresponds to positive Doppler shifts. Each cell (i, j)
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Figure 3.5: The range-Doppler matrix is formed by aggregating K radar frames, and then performing
an FFT over each range-bin.

in the matrix represents the Doppler power for the ith range bin and jth frequency

bin. Essentially, the range-Doppler matrix captures the amount of frequency shift at

each distance. Figure 3.6 shows an example of a range-Doppler matrix captured by

FormaTrack when a person is approaching the doorway. As the person approaches

the doorway, she causes a positive Doppler shift, resulting in higher power in the right

half of the matrix.

The Doppler shift caused by a target moving at velocity v at an angle θ relative

to the receiver, is given by [109]

∆f =
2 ∗ fc ∗ v ∗ cosθ

c
(3.3)

where fc is the transmitter’s center frequency and c is the speed of light in the trans-

mission medium.

With a radar frame rate of F frames per second, the X-dimension of the range-

Doppler matrix spans from -F/2 Hz to +F/2 Hz. In other words, we can measure

Doppler shifts induced by targets up to F/2 Hz. At higher speeds, the frequency

”wraps around” the edge of the matrix, leading to Doppler aliasing [110]. Given our

radar center frequency of 7.2 GHz and a radar frame rate of 170 Hz, from Equation 5.5,

we can measure targets moving at speeds up to 1.77 ms−1. This is beyond the average
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Figure 3.6: Range Doppler Matrix: As the tar-
get moves towards the radar, she induces a pos-
itive Doppler shift. This is seen by higher power
in the right half of the matrix.

Figure 3.7: Doppler during a doorway cross-
ing: A person causes a positive Doppler shift
while walking towards the doorway, and a
negative Doppler shift while walking away.

human walking speed of 1.2 to 1.3 ms−1 [111].

For a crossing detection frame tcross, identified in Section 3.2.1, we compute

RDcross, the set of range-Doppler matrices for wrd frames around tcross. Formally,

RDcross = {RD(t, d, f) | tcross − wrd ≤ t ≤ tcross + wrd}. (3.4)

In our system, we use wrd = 200 frames (translating to around 1.2 s). To capture

the intuition that a person causes positive Doppler shift while approaching the door-

way, and negative while exiting it, we transform RDcross into the dominant Doppler

matrix DD (t,d) - a matrix that contains the Doppler frequency with the highest

reflected power at every distance over time. We perform this transformation by cal-

culating the dominant Doppler frequency for every range-bin, for each range-Doppler

matrix in RDcross. Said more formally,

DD(t, d) = arg max
f

RD(t, d, f), where RD(t, d, f) ∈ RDcross. (3.5)

In other words, the relationship between RD(t, d, f) and DD(t, d) is as follows:

the former captures at each radar frame t, the amount of frequency shift at each
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distance, while the latter takes it one step further and gives the frequency with the

largest reflected power at each distance, over multiple radar frames. Figure 3.7 shows

an example of the dominant Doppler matrix DD (t,d) during a crossing. Here, we

can clearly see positive Doppler frequencies dominating when a person approaches the

doorway, and negative frequencies dominating during exit. Our next step is to identify

the Doppler transition point, which corresponds to when the person is actually at the

doorway.

For this we define another term called the Approach Away Power (AA). This

term weights the sign of the dominant Doppler (+1 for positive Doppler and -1 for

negative Doppler) by the corresponding Doppler Power, for each range bin in the

dominant Doppler Matrix. Formally,

AA(t) =
N−1∑
d=0

sign(f) ∗RD(t, d, f), (3.6)

where f = DD (t, d), sign(f) =


+1, f > 0 (Positive Doppler)

−1, f < 0 (Negative Doppler)

. (3.7)

Intuitively, AA captures the cumulative dominant Doppler power over the covered

range of radar, factoring in the direction of movement. Via this measure, a person

approaching the doorway causes positive Approach Away Power, while a person ex-

iting the doorway causes negative Approach Away Power. Hence, if we calculate AA

(t) over the entire crossing window, then capturing the zero-crossing would give us

the Doppler transition point. Figure 3.8 shows the normalized Approach Away Power

during a doorway crossing. We can clearly see our zero crossing of interest around

frame 240. However, we also notice other zero-crossings due to noise cropping up (i.e.

the Approach Away Power oscillates about 0 during a non-crossing).

To identify the zero-crossing of interest, we use the observation that the zero-
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Figure 3.8: The Approach Away (AA) Power
is used to identify the point of transition
from positive Doppler to negative Doppler.
There is positive AA power when the per-
son approaches the doorway, and negative
AA power when the person leaves. Identify-
ing the zero-crossing tells us when the person
crosses the sensor.

Figure 3.9: Two people of similar height reflect very
differently as they walk through the doorway. The
bigger person reflects back a stronger signal to For-
maTrack.

crossing during a doorway crossing is much more widely spaced than during a non-

crossing (i.e. the frequency of oscillations about 0 during a non-crossing is much higher

than during a crossing). Hence to identify our zero-crossing of interest (corresponding

to the person being at the doorway), we first compute the widest zero-crossing interval

(zc1, zc2). In Figure 3.8, this could correspond to the (a,b) interval or (b,c) interval

(i.e. the approach or the exit part of a doorway crossing). For the chosen widest

zero-crossing interval (zc1, zc2), we next check the Approach Away Power values in

the interval (zc1, zc2). If they are all positive then (zc1,zc2) corresponds to a doorway

entry, and we choose the right-end (zc2 ) as our zero-crossing of interest. On the other

hand, if they are all negative, then (zc1,zc2) corresponds to a doorway exit, and we

choose the left-end (zc1 ) as our zero-crossing of interest. As mentioned earlier, this

computed zero-crossing of interest (referred to as ZCinterest) corresponds to the person

actually being at the doorway.

Now that we know the exact point of doorway crossing, we can determine direction.

As mentioned earlier, FormaTrack is tilted towards one of the rooms adjoining the

40



doorway. This tilt creates asymmetric reflected power during a crossing; reflected

power from one room is always greater than the other. As a result, by comparing

the total radar frame power in a small window of wdir(= 200) frames on either side

of the ZCinterest, we can determine direction. If we define motion from tilted side to

the non-tilted side as being IN, and vice versa as being OUT, then we can formally

define our direction estimate as:

Direction =



IN, if
ZCinterest∑

t1=ZCinterest−wdir
RFP (t1) >

ZCinterest+wdir∑
t2=ZCinterest

RFP (t2)

OUT, otherwise

. (3.8)

3.2.3 Body Shape Sensing

The third piece of any doorway tracking system is to infer the identity of the crossing

individual. For this, FormaTrack uses knowledge of when the person is exactly at the

doorway (Section 5.2.2), and the distance to head estimate (Section 3.2.1), to sense

the shape of the person.

According to the radar range equation [7], the total power reflected back on to the

radar depends not just on the distance to the target, but also the radar cross section.

This radar cross section is a property of the target [64] and is a measure of the target’s

ability to reflect signals back on to the radar. In the case of a person walking through

a doorway, this becomes a function of the body shape of the person. Moreover, as a

bigger person occupies more area, he would also reflect power at more distances than

the smaller person. Figure 3.9 shows an example of two people of similar height but

very different shapes as they cross the doorway. We see that the bigger person (on

the right) reflects back more energy towards the sensor than the smaller person (on

the left). FormaTrack leverages this intuition and computes a reflection profile (RP)
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to sense the body shape when the person is at the doorway.

FormaTrack computes the reflection profile by capturing the intuition that two

differently shaped people will reflect different power at different distances while at

the doorway. To compute the reflection profile, FormaTrack first aggregates a small

number of wid(= 50) frames around the doorway crossing point (ZCinterest). Next for

each frame t, FormaTrack first computes the distance to the head dhead (Distance to

Head (t) in Section 3.2.1). This distance estimate, which corresponds to the start of

the person’s body in a frame, is used as an anchor point. Next, we collect the power

values at the remaining distances relative to this anchor point, and integrate over the

2*wid crossing frames to obtain the reflection profile as the following:

RP =


ZCinterest+wid∑
t=ZCinterest−wid

Pd(t)

 , for d ∈ [dhead, N − 1] . (3.9)

We then pass this computed reflection profile of the person (a measure of how

the person’s body reflects while at the doorway), which is a vector of aggregated

reflected power at various distances, and the distance to head estimate at ZCinterest,

to a support vector machine classifier with the RBF kernel (C=0.5, gamma=100) to

infer the identity of the person.

3.3 Experimental Setup

To test our hypothesis, we mounted the Salsa Ancho kit [112] atop the doorway of a

home, as shown in Figure 3.10. The Salsa Ancho kit uses the Novelda Xethru X2 ultra-

wideband impulse radar transceiver chip [113], which operates at a center frequency

of about 7.2 GHz, and provides a range resolution of 4mm (i.e. a sampling rate of 39

GS/s). The kit outputs raw radar baseband frames as shown in Figure 3.1, which are
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Figure 3.10: The Xethru radar is
mounted atop the doorway tilted towards
one side.

Figure 3.11: Participants were asked to walk through
the instrumented doorway in 5 different ways.

Participant # P1 P2 P3 P4 P5 P6 P7 P8
Height (cm) 161 165 167 169 170 172 175 183
Weight (kg) 60.8 58.1 73.5 77.1 78.0 56.7 97.9 68.0

Table 3.1: The height and weight of the 8 participants who walked through an instrumented doorway
for 7 days generating 2800 doorway crossing events

then transferred via a BeagleBone Black to a host computer for analysis. We used a

6dBi sinuous directional antenna on the kit which provided a horizontal and vertical

beamwidth of 85°and 65°respectively. We also modified the X2 radar registers to

output an average of 170 frames per second to prevent any Doppler aliasing. There

are no health concerns associated with FormaTrack as the average transmit power

from the Salsa Ancho kit is -13dBm (50µW) at 7GHz2. This is over 450 times less

than the regulations set by the International Commission on Non-Ionizing Radiation

Protection (ICNIRP)3[114]. For comparison, the maximum FCC permitted transmit

power for an indoor 5GHz WiFi access point is 1W4.

We asked 8 participants to walk for 7 days through the instrumented doorway (i.e.

one session of 25 back and forth crossings per day for 7 days to capture variations

due to speed and clothing). The height and weight of these participants are shown in

Table 5.1. On each day, as shown in Figure 5.13, they were asked to walk a total of

2https://www.xethru.com/chips-salsa-uwb-radar-development-kit.html/
3http://www.icnirp.org/
4https://bit.ly/2MBPgF8
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25 times - 5 times back and forth through the doorway in each of the following ways

: (i) straight from one room to the other (henceforth referred to as room1 and room2

respectively), (ii) anywhere from the left-side of room1 to the right-side of room2, (iii)

anywhere from the left-side of room1 to the left-side of room2, (iv) anywhere from the

right-side of room1 to the right-side of room2, and (v) anywhere from the right-side of

room1 to the left-side of room2. No restrictions were imposed on the type of clothing

the participants wore, or the time of experiment. Our study had participants walking

shortly after waking up, after a gym workout, on the way to/from work, during an

illness etc. The crossings of the participants were recorded by a video camera, which

were then manually analyzed. In all, we collected a total of 2800 doorway crossings.

We evaluate FormaTrack via four metrics:

• Recall : The fraction of actual doorway crossings that were correctly detected

by FormaTrack.

Recall =
# Correctly detected crossings by FormaTrack

# Ground truth crossings
(3.10)

• Precision: Amongst the doorway crossings detected by FormaTrack, the fraction

that actually occurred.

Precision =
# Correctly detected crossings by FormaTrack

Total # crossings detected by FormaTrack
(3.11)

• Direction Accuracy : The fraction of correctly detected doorway crossings having

the correct direction.

Direction Accuracy =
# Correct direction crossings by FormaTrack

# Correct crossings detected by FormaTrack
(3.12)

• Identity Accuracy : The fraction of correctly detected doorway crossings classi-

fied to be the right person.
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Identity Accuracy =
# Correctly classified crossing person’s identity by FormaTrack

# Correct crossings detected by FormaTrack

(3.13)

In this study, we did not ask multiple people to walk through the doorway one

behind the other in a platoon fashion. This is because such platooning is not a

common scenario in homes (for e.g., in a study, the median time difference between

two different people walking through the same doorway in an 8-room home was 10

minutes [28]).

3.4 Evaluation

3.4.1 System Accuracy

Of the 2800 crossings collected, only 4 of them were missed due to the conservative

threshold ( Thcross), and there were no spurious crossings detected. Among the 2796

crossings correctly detected, 8 of them had an incorrect direction. We evaluated

the identity accuracy by testing all possible combinations of 2 people from the 8

participants (8 choose 2), for a total of 28 combinations. For each combination,

each person is trained on all crossings collected from a day (one day at a time), and

tested on the remaining 6 days. This gives us an overall precision, recall, direction

and identity accuracy of 100%, 99.86%, 99.7%, 90.3% respectively. Table 3.2 shows

the average accuracy of FormaTrack. Using more training data through 7-fold cross

validation (i.e. training on 6 days and testing on 1) would give 95.3% identification

accuracy, as illustrated in Figure 3.15. The identity accuracy of FormaTrack increases

with the number of days used for training, and we evaluate this in Section 3.4.7.
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Metric Accuracy (%)
Precision 100
Recall 99.86
Direction Accuracy 99.17
Identity Accuracy 90.3 (95.3)

Table 3.2: FormaTrack achieves over 90% accuracy in all metrics of interest for 2800 doorway
crossings. The identity accuracy increases from 90.3% with 1 day of training to 95.3% with 6 days
of training.

Figure 3.12: FormaTrack‘s reflection-profile based technique consistently out-performs the height
biometric baseline. FormaTrack is also more robust - i.e. accuracy decreases more slowly with
people. FormaTrack achieves nearly 80% identity accuracy even while sensing a group size of 4.

3.4.2 Effect of False Positives

We next test FormaTrack for false positives. We do this by collecting 36 hours of

data (3 hours for 12 days) from the instrumented doorway on an empty room, where

no person crossed the doorway. We compare our distance filter algorithm against

the no filtering technique (i.e. simply relying on radar frame power alone to detect

a crossing). In the absence of any filtering, 152 energy peaks were observed over the

36-hour period. This is due to transient noises on the radar device, as mentioned

earlier. However, our distance filter technique filtered them all out, resulting in 0

false positives over the study period.
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3.4.3 Effect of Number of People

We next evaluate how FormaTrack’s reflection profile technique performs as we start

increasing the number of people being tracked. For an N -person group, we calculate

the average identity accuracy by generating all possible N -person combinations from

the 8 participants. Each combination is trained on a day (one day at a time), and

tested on the remaining 6 days. We compare our approach of using reflection profile

against a baseline algorithm that used heights alone. The height estimate is obtained

as the distance to the dominant reflector (i.e. the head), as explained in Section 3.2.1,

when the person is at the doorway (i.e. the radar frame corresponding to the Doppler

sign change).

From Figure 3.12, we notice that FormaTrack not just consistently out-performs

the height alone approach, but is also more robust, i.e. the accuracy drops more

slowly as more people are added to the system. We see that for 2, 4 and 8 people,

the reflection profile technique is 7%, 14% and 18% better than the height-alone

approach. As expected, as the number of people being sensed increases, the identity

accuracy starts to drop. However, FormaTrack still manages to achieve nearly 80%

accuracy while sensing a 4-person group.

3.4.4 Energy Analysis

We next explore the potential of a low-power variant of FormaTrack. In particular,

we explore the following options to save energy:

• Lowering the frame rate of the radar (down-sampling in Slow Time)

• Lowering the sampling rate of the radar (down-sampling in Fast Time)
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Figure 3.13: Down sampling in slow time (ST)
for energy savings: FormaTrack’s performance
remains comparable even after lowering the
frame rate by a factor of 2. At even lower frame
rates, Doppler aliasing impacts accuracy.

Figure 3.14: Down sampling in fast time (FT)
for energy savings: FormaTrack’s performance
remains unaffected even after lowering the
sampling rate of the radar by a factor of 2.

3.4.5 Down sampling in Slow Time:

We next explore the possibility of lowering the frame rate of the radar to save energy

(i.e. the radar can start to sleep between every pulse transmission). We do this by

considering every N th radar frame, and measuring our metrics of interest. As before,

for identity accuracy, we consider all possible 2 person groups. Every group is trained

one day at a time, and tested on the remaining 6 days. Figure 3.13 shows that we can

down-sample by a factor of 2, and still achieve comparable performance to the non

down-sampled case. At greater down-sampling factors, Doppler aliasing dominates,

affecting the calculation of our zero-crossing of interest, resulting in direction and

identity performance loss.

3.4.6 Down sampling in Fast Time:

A third approach to save energy in FormaTrack is by lowering the sampling rate of the

radar (resulting in lesser stress on the samplers of the radar). This effectively trans-

lates to a decrease in the range resolution of the radar. We simulate a fast-time down

sampling rate of N , by averaging every N range bins of a radar frame. Figure 3.14
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shows that similar to the slow-time case, we can down-sample by a factor of 2 with

no performance loss. Even at greater down sampling rates (up to a factor of 16), the

precision and recall remains over 98%. However, the direction and identity accuracies

start to suffer. This is because the range-Doppler matrix, as seen in Figure 3.6 is not

smooth (as the target is moving). An aggregation of range bins means we no longer

see a clear transition from approach to away, thus affecting the determination of our

desired zero-crossing. As a result, both direction and identity accuracies suffer.

We conclude that the greatest amount of energy savings can be observed by duty-

cycling FormaTrack with an augmented motion sensor. Furthermore, even while ON,

we see that lowering the frame rate and the sampling rate of the sensor by a factor of

2 does not cause any significant performance degradation. In the future, we plan to

explore the option of building an energy-harvesting FormaTrack that stores energy

for most of the day, and uses them during the active times of the day.

3.4.7 Effect of Training Size

Figure 3.15 shows the effect of the number of training samples (back and forth doorway

crossings) on identity accuracy for all combinations of two people. We see that the

identity accuracy increases as we increase the number of training samples with nearly

85% accuracy from just 10 training samples. This shows that FormaTrack’s training

would not be very cumbersome to the users. These training samples can potentially

be collected without controlled walk-throughs, by using any events when the person

is known to be home alone.

3.4.8 Effect of Objects

We next analyze the effect of carried objects on FormaTrack’s reflection profile tech-

nique. For this, we asked five of the participants (P1, P2, P5, P6 and P7), to walk
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Figure 3.15: Effect of training size on identity
accuracy: the identity accuracy increases with
more training samples. With just 10 back and
forth crossings for training, FormaTrack can
achieve an identity accuracy of over 85%.

Figure 3.16: The identity accuracy of Forma-
Track remains comparable even in the pres-
ence of some commonly used objects.

through the instrumented doorway, 25 times as mentioned in Section 3.3, but under

different scenarios - (i) with a mobile phone near the ear (simulating talking on the

phone), (ii) with a baseball cap, (iii) wearing a backpack with a laptop inside, (iv)

carrying a 5lb dumbbell in each hand, (v) wearing flip-flops.

We calculate the identity accuracy for each scenario, by considering all possible

2-person groups involving the participant. For every group, we train the two people

on each day (one day at a time). We test the object mounted person, with the

object mounted walk, and test the non-object mounted participant with each of the

remaining 6 days (one at a time).

From Figure 3.16, we see that the identity accuracy is not affected greatly by

objects such as mobile phone, cap, backpack and dumbbells, because these objects

only occupy a small additional area on the body, and hence do not affect the reflection

profile greatly. We also noticed that in the presence of heels, for participants P1 and

P7 (two participants comfortable with heels), the identity accuracy was 66% and

89% respectively. We believe this accuracy drop is because heels not just translate

the height significantly but also changes the posture of the person while underneath
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the sensor. This issue can potentially be fixed via more training data.

3.5 Limitations

3.5.1 In-situ study

FormaTrack is tested on over 2800 crossings in different crossing angles, and a handful

of scenarios in Section 3.4.8 to provide a proof-of-concept of sensing the shape of the

person when the person is at the doorway. As a future work, we plan to do a more long-

term in-situ study after establishing a feasible ground-truth collection method [25,

28].

3.5.2 Effect of Doors

While we do not explicitly consider door interactions in this chapter, we hypothesize

that FormaTrack can be made to handle these interactions by filtering out the effect

of doors. For direction and identity estimation, since the door is taller than an average

human, we can filter the door by only considering the dominant Doppler shifts and

radar frame power at distances corresponding to the average human height range. An

alternate way to address doors would be a data-driven approach that is trained on

the door actions. We leave it as a future work to test FormaTrack in the presence of

door movements.

3.5.3 Effect of walking up to the doorway and turning back

One potential limitation of FormaTrack is the case of a person walking all the way

to the threshold of the door, turning around and walking back. This motion shows

all signs of a crossing event - RFP would cross Thcross, there would be positive and

negative Doppler, and the distance to head filter would see the expected V-shaped
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pattern. We believe this can be filtered by measuring the total RFP before and after

the Doppler crossing, and observing them to be similar. An alternate solution is to

place a small antenna array that is triggered during a crossing. This array which

measures the angle of arrival (-90°to +90°) of incident paths [72], can filter out such

events by observing the angle of the reflected path to be on one-side of 0°.

3.5.4 Effect of running through the doorway

With drastic speed changes such as running through the doorway, FormaTrack’s

direction estimation algorithm can obtain the correct direction so long as the person’s

velocity is less than 1.77ms−1 cos θ (Section 5.2.2). However, the identity algorithm

could be impacted as a clear shape signature might not be obtainable. This can

potentially be handled by deriving the velocity from the Doppler shift, and using it

as a feature or falling back to using height when the speed of the target is significantly

different from what was trained. Since this is not a common occurrence, we leave the

velocity incorporation as a future work.

3.6 Summary

In this chapter, we present FormaTrack, a privacy-preserving radar-based doorway

tracking system that estimates the room-location of people in a home. FormaTrack

determines the direction of room transition of people via the Doppler effect, and

infers the identity of people by sensing their shape. We evaluate the system on an

instrumented doorway in a home using 2800 doorway crossings. Our results indicate

that FormaTrack can achieve over 90% tracking accuracy even while tracking 4 people.
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Chapter 4

Improving Room-level Tracking by

Data Fusion

Thus far, we have been describing the work from the perspective of a single door-

way. However, sensing errors (false positives, false negatives, direction errors, identity

errors) can happen in that single doorway. In this chapter, we describe how these

sensing errors can be retroactively corrected by subsequent doorway crossing events

in order to improve the overall tracking accuracy of the system.

4.1 Introduction

The multi-target tracking problem (MTT) [115] is essential to the functioning of

many applications including air traffic control, robotics, and biomedical research. The

most general form of this problem typically involves an unknown number of targets

that move continuously throughout a region and that can appear or disappear [116].

Sensors estimate the positions of the targets at periodic intervals and also estimate

identifying properties of the targets such as size, color, or shape. These measurements

are subject to noise and the sensors may also generate false positives (a.k.a. false
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detections due to clutter) and false negatives (missed detections). In practice, the

targets are typically observed with periodically scanning sensors such as a RADAR,

an imager, or a LIDAR that can monitor the entire tracking region.

In this dissertation, we consider a variant of MTT in which the tracking region

is divided into zones and targets can only be monitored as they transition between

these zones. We call this the transition tracking problem. This problem formulation is

representative of an important set of real-world problems where complete coverage of

the sensing region is not practical. For example, vehicle sensors are typically installed

only at major intersections and do not cover the entire road network. Similarly, people

sensors such as security cameras are typically installed at entryways and corridors but

do not cover the entire building. As such, people and vehicles can be tracked as they

transition between zones of the building or road network, but their position is not

monitored while inside a zone.

Unlike traditional MTT, the sensors in transition tracking do not estimate the

position of the target. Instead they estimate the destination zone of the target as

it passes through the transition area. Just like traditional MTT, sensors gather

identifying properties of the target (e.g. size, color, or shape) for the purposes of data

association, and are subject to three types of errors: sensor noise, false positives, and

false negatives.

The key challenge in Transition Tracking is to estimate the number of targets in

the tracking region without being able to sense all targets simultaneously. Transition

sensors only detect a target when it transitions from one zone to another and so

stationary targets are not detectable. No matter how many transitions are detected

at any moment in time, that data is consistent with a larger number of targets being

in the tracking region, assuming that most of them are stationary. This creates a bias

toward estimating a larger number of targets because any sensor value that is not
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consistent with true target movement can instead be explained by phantom targets :

targets that do not actually exist, but that are postulated to have moved at the

right place and time to be consistent with the sensor data. Because phantom targets

are never inconsistent with the sensor data, they can only increase the likelihood.

Therefore, any maximum likelihood solution will overestimate the total number of

targets in the tracking region.

In this dissertation, we propose an approach to the Transition Tracking problem

called TransTrack that jointly estimates the number of targets and their zone loca-

tions. Unlike most other tracking algorithms that maximize the likelihood of the

sensor data, TransTrack applies penalty functions to find the minimum number of

targets that can explain the sensor data. First, it creates a target penalty for having a

larger number of targets in the tracking region, and applies this penalty only when a

sensing error is observed. The intuition behind this approach is to allow tracks with

larger numbers of targets only if they have sufficiently fewer errors than other tracks.

Second, it creates a mover penalty for the number of targets that have moved since

the last error. Again, this penalty is only applied when a sensing error is observed.

The intuition behind this approach is to eliminate tracks in which different phantom

targets are used to explain each sensor reading.

To evaluate, we modify a traditional multi-hypothesis tracking (MHT) algorithm

to incorporate the TransTrack principles described above. We used the MHT to

reduce computation time and TransTrack could also have been implemented as a

HMM or Particle Filter. We then applied this implementation to a dataset created

by the Doorjamb sensor [25], which is designed to sense the height and direction of

people as they transition between rooms in a home. We use data from 3 controlled

studies and 6 days of real-world in-situ deployment involving 2 to 3 participants and

totalling 3275 doorway crossings. We observe an average room accuracy of 94.5% and

88.2% in the controlled and in-situ studies respectively.
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4.2 Approach

There are two parts typically to a transition tracking system: (i) signal processing

phase which handles the raw sensor data and produces a discrete set of transition

events (observations), and (ii) tracking phase which operates on the output of signal

processing and produces a discrete set of zone locations for each target. This dis-

sertation focuses on the latter. The tracking algorithm must deal with any mistake

made by the signal processing algorithm - viz false positives (FP), false negatives

(FN), identity errors (IE) and direction errors (DE). Moreover, since we model a

variable number of targets, the tracking algorithm must seek to prevent M targets

from explaining away N-target data (where M 6= N).

Phantom Target Problem : Because of modeling a variable number of targets,

maximizing the likelihood would always favor tracks with extra targets (M > N). This

is because of the Phantom Target problem. In Transition Tracking, targets can remain

stationary for long periods of time in a zone without being detected. Consequently,

observations that are not easily explainable by existing targets will trigger the creation

of phantom targets : spurious targets created by the tracking algorithm who do not

actually exist. For e.g., consider a tracking area with two targets in it. As the two

targets move, they cause sensing errors. We wish to prevent choosing those tracks

which have extra (phantom) targets that sit idle and then move to explain these error

events (caused by the two real targets). Such phantom targets can be brought into

the tracking area by a track in several ways - for e.g. (i) via a FP entry event, (ii)

by treating the exit observation of a real target to be a FP and retaining the target,

(iii) by treating the exit of a real target to be a DE, and bringing in another target,

resulting in two phantom targets etc. As these phantom targets are unobservable until

they actually move, there is little-to-no penalty in having them sit idle indefinitely,

until an event occurs which no other target can explain. Indeed, the likelihood of any
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given data set will increase with a larger number of phantom targets

As a result, our goal is to accept the possibility of a new target entering the

tracking area, only if it explains the data better. In the case that it does, we want to

choose the shortest possible stay of the extra target, i.e. the latest arrival and earliest

departure of the extra target that achieves the benefits of the extra target. To address

this issue, we define an objective function that penalizes tracks based on the number

of targets present, on non-compliance with an observation. The goal is to choose

tracks with the minimum number of targets required to explain the observed data.

We refer to this balance between phantom targets and unexplained observations as

the target-error tradeoff.

Hidden Target Problem : However, such an objective function now suffers

from the Hidden Target problem; since idle targets are unobserved, targets that are

idle for a long period of time are evicted out of the tracking area with the goal to

minimize the number of targets explaining the observations. To mitigate this, we

incorporate a second penalty factor that penalizes a track based on the number of

targets who actually move. In other words, a track does not get penalized for having

idle targets. The notion of mover penalty can be incorporated in many ways: (i)

by calculating the number of movers since the last non-compliance, (ii) by ranking

the targets based on the total number of moves they have made, and then selecting

the maximum movers’ rank since last non-compliance etc. We use the former. As a

result, the state of a track which normally contains the current location of the targets

is augmented with the list of movers.

Finally, among the four error types, IEs alone are not target-agnostic. Therefore,

performing data association in the presence of unknown targets requires a notion of

identity to be incorporated into a track’s state. Addressing this by the inclusion of

the identity vector for each target (containing its history of identity assignments)

achieves two goals: (i) data association for unknown targets can be performed by
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comparing the observed value with past values, (ii) prevent an unknown target from

impersonating a known-identity target by better complying with the observations via

techniques like T-Test. Summarizing, for tracks to progress and be scored, the current

location of targets, the list of movers since last non-compliance and identity vectors

for each target become part of a track’s state.

We capture these concepts via the approximate tracking technique of Multiple Hy-

pothesis Tracking (MHT). TransTrack differs from classical MHT in that it performs

multi-target tracking in the presence of infrequent observation of targets (transitions)

as opposed to an entire field-of-view (FoV) scan.

4.3 Implementation

In this section, we explain how we incorporate the TransTrack concepts into the

classical Multiple Hypothesis Tracking (MHT) [6]. The TransTrack concepts could

equally be incorporated into other tracking algorithms, such as the HMM, but doing

greatly increases the state space. We chose to implement with the MHT because

several heuristic algorithms enable computational tractability, albeit at the expense

of optimality. To understand how the classical MHT must be modified to incorporate

TransTrack concepts, we explain each of the key MHT steps below, including our

modifications.

Initialization: Let Z = {z0, z1, ... z(N-1)} be the set of N possible zones

a target can be in, with z0 denoting the outside. Next, let T be the maximum

number of targets trackable by the system. We define a target state tuple after the

oth observation to be a T-element tuple containing the zone location of the T-targets

tracked - viz ρo = (s1, s2, ... , sT) where si ∈ Z. Let δt be the identity vector of a

target t - i.e. the list of identity values for the transitions assigned to target t. Let

M be the list of movers since the last non-compliance with the sensor-observation. A
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Figure 4.1: The overall operation of a MHT (adopted from [21]).

hypothesis Hi refers to one possible explanation of the o observations, and thus exists

as [(ρ1, ρ2, ... ρo) , (δ1, δ2 ... δt), M]. This can be understood as a sequence of target

state tuples according to Hi, identity assignments made to each target, and the list

of movers since Hi ’s last non-compliance with the sensor-observation. We abbreviate

the tracking area (all zones besides the outside) as TA. The last target-state tuple

(most recent zone location of targets), the identity vector for each target and the list

of movers since last non-compliance constitute the state of a hypothesis.

On start-up, TransTrack starts with a blank slate, and considers each of the T

targets to be equally likely in each of the N zones. As a result, TransTrack creates

a hypothesis for every (zone, target) combination, resulting in NT initial hypotheses.

The identity vectors of targets with known identity are initialized to the known value,

while those of unknown targets are set to φ. For e.g. consider a two-target case in a

3 zone state-space {z0, z1, z2} with one target of known identity id1 and another of

unknown identity. Then, two of the initial hypotheses are : H1 = [ [(z0, z1)], ([id1]

,φ), φ] and H2 = [ [(z1, z2)], ([id1],φ), φ]. H1 thinks only the unknown-identity

target is in the TA (in z1 ). H2 is another hypothesis which thinks both targets are

inside - one in z1 and another in z2.

59



Figure 4.10 shows an overview of the classical MHT algorithm, adopted from [21].

We next describe how each block in this diagram behaves in TransTrack.

Gating: Gating determines if an observation can be physically caused by a target.

In classical MHT, where the entire FoV is scanned, gating helps eliminate certain

impossible data associations based on the kinematics of the moving object. However,

in transition tracking gating is of little help because the sampling period (how often

a target can be observed) is large relative to the potential speed of the target. For

e.g., a target can remain idle in a zone for 1 minute but it can also move to the other

end of the TA via a small number of FNs within the same 1 minute. This makes

most observations in the TA ambiguous. The presence of identity errors exacerbates

this problem. As a result, transition tracking does not benefit from gating as each

observation become explainable by many targets.

Hypothesis formation: The hypothesis formation step is similar to conventional

MHT. Here, the current set of hypotheses are extended by considering all possibil-

ities. In transition tracking this means every observation causes each hypothesis to

duplicate itself upto (2T+1) times and progress as:

1. Someone who is inside and has the transition area within his gate, has moved

through it in either direction

2. Someone who is outside and has the transition area within his gate, has come

in, and moved through it in either direction

3. Observation was a false detection

For example, consider a 3-target scenario in a 3-zone state space (z0↔ z1↔ z2),

where z1 ↔ z2 is the exterior transition sensor. Upon detecting a z1 → z2 transition

event with observed identity idobs, a hypothesis ending in zone-locations (z1, z2, z0),

say [ ... (z1, z2, z0) , (δ1, δ2 , φ), {t1} ] would duplicate itself (2T+1) times and

progress them in the following way:
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H1 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}] FP−→ [...(z1, z2, z0), (δ1, δ2, φ), φ]

H2 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}] −→ [...(z2, z2, z0), (δ′1, δ2, φ), t1]

H3 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}] 1FN,DE−→ [...(z1, z2, z0), (δ′1, δ2, φ), φ]

H4 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}] 1FN−→ [...(z1, z2, z0), (δ1, δ
′
2, φ), φ]

H5 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}] DE−→ [...(z1, z1, z0), (δ1, δ
′
2, φ), φ]

H6 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}] 1FN−→ [...(z1, z2, z2), (δ1, δ2, [idobs]), φ]

H7 : [...(z1, z2, z0), (δ1, δ2, φ), {t1}] 2FN−→ [...(z1, z2, z1), (δ1, δ2, [idobs]), φ]

where, δ′1 = δ1 ⊕ idjobs , δ′2 = δ2 ⊕ idjobs, and ⊕ denotes append

H1 is the hypothesis that thinks the observation is a false detection. H2, H3,

H4 and H5 move the two targets inside the TA through the (z1,z2) sensor in either

direction. H6 and H7 hypothesize that some target from the outside has come in

and transitioned in either direction. Hypotheses H3, H4, H6 and H7 think that some

observations have been missed (FN). Note that each hypothesis also appends the

identity vector for the hypothesized mover with the observed value.

Next, each hypothesis explores the possibility that someone inside has exited the

TA after the current observation via a missed detection. For example, H7 duplicates

itself three times, and advances them the following way:

H8 : [...(z1, z2, z1), (δ1, δ2, [idobs]), φ]
FN−→ [...(z0, z2, z1), (δ1, δ2, [idobs]), φ]

H9 : [...(z1, z2, z1), (δ1, δ2, [idobs]), φ]
2FN−→ [...(z1, z0, z1), (δ1, δ2, [idobs]), φ]

H10 : [...(z1, z2, z1), (δ1, δ2, [idobs]), φ]
FN−→ [...(z1, z2, z0), (δ1, δ2, φ), φ]

Note that the unknown target’s identity vector is reset on exit (H10). This is to

capture the intuition that no two unknown targets (visitors) are necessarily the same.
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Time τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9
GT track (H1) (z1, z2) (z1, z3) (z1, z4) (z1, z3) (z1, z3) (z1, z4) (z1, z5) (z1, z4) (z1, z3) (z2, z3)
Inferred error of H1 - DE IE - FP - DE & IE - IE -
Score (H1) 0 3 6 6 9 9 15 15 18 18
Chosen Track (H2) (z1, z2) (z0, z2) (z0, z3) (z0, z4) (z0, z3) (z0, z3) (z0, z4) (z0, z5) (z0, z4) (z0, z3) (z1, z3) (z2, z3)
Inferred error of H2 - FN DE IE - FP - DE & IE - IE FN -
Score (H2) 0 3 5 7 7 9 9 13 13 15 17 17

Table 4.1: Example of Hidden Target Problem: GT track (H1) gets evicted by an alternate hypothesis
(H2) at time τ9. H2 has a lower score because the idle target was evicted after τ0, and brought
back in before τ9.

Given that there are NT initial hypotheses, (NT ) ∗ (T ∗ (2T + 1))D hypotheses are

formed after D events. This exponential explosion of hypotheses necessitates track

pruning.

Hypothesis evaluation/deletion: Temporal pruning techniques such as n-

scanback [22, 94, 95] which are commonly employed in conventional MHT, cannot

be applied in our case as a target can remain idle in a zone for an indefinite amount

of time. The intuition behind n-scanback is that ambiguities get resolved in atmost

n scans. Secondly, given the large gating challenge, n cannot be high as it will result

in storing a large number of hypotheses. For a TA of 8 zones and at most 4 targets,

3-scanback itself results in the maintenance of over 50 million hypotheses.

Therefore, we develop an alternate two-step pruning strategy that leverages the

discretization of states. First, if two hypotheses have the same current zone location

of each target, same movers since last inferred error and same identity statistic (e.g.

mean of identity vector) for each target, then only the most likely one is retained (i.e.

either H1 or H10 in the above example). We refer to this as equal state pruning. To

further keep the state space tractable and maintain enough diversity and coverage

across all possible zone locations, we maintain the top-M (M=4) hypotheses ending

in each combination of target state tuple. This results in the constant maintenance

of M ∗ NT hypotheses. However, choosing one hypothesis over another necessitates

a scoring function.

Score function: Scoring in MHT is done in an application-specific manner de-

pending on the constraints of the problem. The aim of our scoring algorithm is to
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address the phantom target and hidden target problems. As a result, each hypothesis

on non-compliance with an observation suffers a penalty depending on the number of

targets present and the number of movers since the last inferred error. We refer to

such a non-compliance as an ‘inferred error’. For e.g. if the observation says someone

moved from zone z1→ z2, but the hypothesis moves the target from z2→ z1, then it

has inferred a direction error (DE), and suffers a penalty. The other different inferred

error types are identity errors (IEs), false positives (FPs) and false negatives (FNs).

More formally, a hypothesis after the ith observation gets penalized according to

the following score function:

pen(i) = pen(i− 1) + α ∗
∑

j∈E
ejwj (4.1)

where: E : set of inferred errors {FP, FN, DE, IE}

ej : error penalty associated with the inferred error

wj: weight of the inferred error type

α : correction term for target-error tradeoff = (m + t + k)

t : number of targets in the TA during the error

m : number of movers since last inferred error (m≤t)

k : constant offset to eliminate bias towards certain tracks

We now explain the terms in the above equation, and the intuition behind them.

ej Error Penalty – Each noncompliance by a hypothesis with an observation suf-

fers a penalty depending on the inferred error type. TransTrack makes use of a

probability value passed up from signal processing, whenever available, and a unit

penalty otherwise. FNs suffer a penalty equal to the minimum distance to the transi-

tion sensor. IEs are different because the identity of some of the targets are unknown

a priori during deployment. We refer to such targets as visitors. We infer IE for

visitors by comparing the observed identity with the hypothesis’ maintained identity
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value (e.g. mean) for that visitor. As each visitor is unique, every hypothesis resets

its visitor identity vector on the exit of the visitor. Since, we learn the identity of

visitors online, a visitor can impersonate a known-identity target by better complying

with the observations resulting in incorrect data association. To eliminate this, each

hypothesis upon exit of a visitor performs an equal variance T-test (p = 0.05) between

its visitor identity vector and identity vector of each known-target who has been out-

side since entry of that visitor. If p-value > 0.05, then the identity distributions are

similar, and the visitor hypothesis gets evicted.

wj: The weight of the inferred error type – This term captures the likelihood of

each error type across different error types. This is a sensor property. For e.g. if

missed detections are less likely than false detections, then wfp < wfn.

t: The number of targets in the sensing-area during the error – This term is used

to address the Phantom Target problem. To eliminate any bias on the hypothesis

which has all targets outside (i.e. t = 0), we use (t + 1) ∗ Σejwj. As mentioned

earlier, using the target-factor alone in scoring results in hypotheses being subject

to the ‘hidden target problem’. Table 4.1 shows an example of the problem with two

known-identity targets t1 and t2. Let us say that the arrangement of the zones are

(z0 ↔ z1 ↔ z2 ↔ z3 ↔ z4 ↔ z5), where z0 denotes the outside-zone. τ0 is the time

that target t1 becomes idle at zone z1 and τ9 is the time t1 moves out of z1. At τ9,

hypothesis H2 evicts H1 with a lower score. This is because H2 having incorrectly

evicted the hidden target t1 out of the TA, ends up with a lower total penalty. For

brevity sake the identity vectors are not shown, as they are always identical for H1

and H2.

We next calculate the bounds for the eviction of a hidden target - i.e. the minimum

number of errors an idle target can tolerate before being evicted by a hypothesis with

a lower score. For simplicity of derivation, we assume uniform unit weighting. Let
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τa be the time that t1 becomes ‘idle’, and τb be the time that t1 makes a transition

again. Let d denote the minimum number of hops from the ‘hidden’ zone to the

outside. Between τa and τb, targets t2 to tT move and cause e errors. We wish to

compare two hypotheses, H1 : t1 rightly remains idle, and H2 : t1 gets evicted via

FNs just after τa, and brought in via FNs just before τb.

Score (H1) = e errors caused with T targets in TA

Score (H1) = (T + 1) ∗ e

Score (H2) = FN to evict t1

+ e errors caused with (T - 1) targets in TA

+ FN to enter t1

Score (H2) = (T + 1) ∗ (d) + ((T − 1) + 1) ∗ e

+ (T + 1) ∗ (d)

To retain t1, score(H1) < score(H2). Therefore,

(Te+ e) < 2d ∗ (T + 1) + Te

=⇒ e < 2d ∗ (T + 1) (4.2)

Consequently, in a 2-target case, a static target in the leaf-node (d=1) gets evicted

after 6 errors of the other target.

m: The number of movers since last inferred error – To mitigate the hidden target

problem, we add in a second factor that penalizes a hypothesis based on the number

of targets who actually move- the number of movers since last inferred error. As

before, to eliminate any bias towards an all FP track (i.e. m = 0), we use the factor

of (m+ 1). This results in our score formula of: (t+m+ k) ∗ Σejwj where k = 2.

We next analyze this scoring function using the same notation. For the sake of

simplicity in the derivation, let us consider that every target except t1 moved between
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each of the e inferred errors. This consideration is just for ease of understanding as

the derived inequality is independent of the actual number.

Score (H1) = e errors caused with T targets in TA

Score (H1) = (T + T + 2) + ((T − 1) + T + 2) ∗ (e− 1)

Score (H2) = FN to evict t1 +

e errors caused with (T − 1) targets in TA+

+ FN to enter t1

Score (H2) = (1 + T + 2) ∗ (d) + ((T − 1) + (T − 1) + 2) ∗ e)

+ (1 + T + 2) ∗ (d)

To retain t1, score(H1) < score(H2). Therefore,

(2 + 2T ) + (2T + 1) ∗ (e− 1) < (3 + T ) ∗ (2d) + 2Te

=⇒ e < ((3 + T ) ∗ 2d)− 1. (4.3)

Comparing inequalities 4.2 and 4.3, it can be shown that ( (3+T) * 2d ) - 1 >

2d*(T+1), since d >= 1, confirming that the bounds have increased. In a 2-target

case, a static target in the leaf-node now gets evicted after 11 errors of the other

target.

In order to avoid growing memory costs, we define a commit policy. After every

observation, if all hypotheses agree on a common prefix (i.e. they agree on the zone-

locations of each target, from event E0 to Ei), then the prefix is committed to disk.

Subsequent prefix checks happen from event Ei+1.

At any time instant, the lowest scored hypothesis is the most likely one. We point

out that the recursive nature of the score function makes it unnecessary to have the

complete dataset to generate state estimates, making TransTrack conducive for near

real-time tracking.
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Study Participant Heights # crossings
Controlled Study1 5’4” , 5’11” 400
Controlled Study2 5’4” , 5’11” 398
Controlled Study3 5’0” , 5’4” , 5’9” 516
In-situ study (6days) 5’0” , 6’2” 1961

Table 4.2: Experiment details: A total of 9 studies with 3275 doorway crossings involving 2 to 3
participants was performed

Filtering/Prediction: In classical MHT, every hypothesis uses a motion model

to predict the location of each target for the next scan. However, in transition tracking

because of (i) the possibility that a target can stay in a zone for an indefinite amount

of time, and (ii) the inevitability of large gates, no prediction is made by a hypothesis

on the next location of a target.

4.4 Experimental setup

We first evaluate our tracking algorithm with a doorway tracking application using a

Doorjamb-like sensor setup [25] in a detached home of 9 rooms involving 2 to 3 person

(targets). The system is mounted on top of each doorway and measured the height

and direction of a target as they transitioned through the doorway. We perform 3

controlled studies and 6 days of real-world in-situ deployment. The diameter (distance

between the farthest two rooms) of the house was 4. This meant one could move

from one end of the state space to the other with just 4 FNs, making each doorway

transition event became explainable by any of the targets. Table 4.2 describes details

of each study and its participants. The first two controlled studies had the same

participants. They were asked to leave all doors open in Study1, but open and close

doors as they performed the experiment in Study2. This was to study the effect

of errors on tracking, as the movement of doors lead to signal processing errors.

Controlled Study3 had no constraints, and the participants were asked to enter, exit

and walk around as naturally as possible. Ground truth for the study was collected
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using cameras installed on the doorway. To ensure that participants lived as naturally

as possible the field of view of the cameras were restricted in hardware to only the

doorjamb of the doorway. The recorded video was processed, to extract the identity

and direction of participant involved in the crossing.

We evaluate tracking using the Room Accuracy metric. This metric evaluates if

a person is ever detected in the correct room during the time he was in that room.

This is calculated as the F-score of the room recall and room precision. Room recall

is defined as the fraction of the total number of room occupancy periods (the time a

person is in a specific room) in ground truth where tracking also correctly placed the

same person in the same room at least once during that occupancy period. Room

precision is the complement to room recall, where room occupancy periods found by

tracking are evaluated. More formally, room precision is defined as the fraction of

the number of room occupancy periods in tracking, where ground truth also had the

same person in the same room at least once during that period.

The final equation for room accuracy then becomes:

Room Accuracy (F-score) =
2 ∗ Room precision * Room recall

Room precision + Room recall

We compare TransTrack against three baselines that can track a variable number

of targets and have the same set of requirements as TransTrack. Our first baseline

Nearest Identity is a stateless approach to tracking that moves occupants based on

the identity data observed at the doorway, with no regard to his previous location. It

chooses an occupant based on the height measurement and puts him into a room based

on the observed direction. Our second baseline, Nearest Neighbor is a well known

stateful greedy target tracking approach [21, 117]. Each observation is assigned to

the occupant closest to the doorway with heights used as a tie-breaker. The location

of the occupant is updated after an assigned observation. Our third baseline K-
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Figure 4.2: TransTrack consistently performs better than the baselines. Nearest Identity and Nearest
Neighbor approaches suffer as they do not use future information. The absence of equal state pruning
affects accuracy of K-best

best is a variant of [118] and maintains the K lowest-scored hypotheses after every

observation. The K-value was chosen such that its time and space complexity were

identical to that of TransTrack. No equal-state pruning is performed here, but the

score function is identical to TransTrack. To have all algorithms on an equal footing,

they are all started with a known initial state of the home.

Finally, we use uniform unit weighting on all errors except FNs. FNs have twice

the weight for two key reasons : (i) the signal-processing recall of our system is better

than signal-processing precision, and (ii) to increase the bound on the hidden target

problem. We start off by tracking a maximum of 4 targets in a home (i.e. T = 4),

and then study the behavior as we vary the maximum number of targets tracked.

We refer to the targets with known identities as residents, and those with unknown

identity as guests.

4.5 Results

As seen in Figure 4.2, TransTrack observes the highest average accuracy of 94.5%

and 88.2% in the controlled and in-situ studies respectively. The Nearest Identity

approach’s average accuracy of 86.2% and 78.3% in controlled and in-situ respectively
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is lower than TransTrack because it does not use the future to disambiguate the past.

The lower 73.2% and 65.1% average accuracy of the Nearest Neighbor approach can

also be attributed to the lack of use of future. However, the maintenance of state

exacerbates the problem here. K-best has an average accuracy of 88.2% and 64.5%. It

is lower than TransTrack because of the absence of equal-state pruning. Consequently,

the K-best hypotheses have many redundant hypotheses having the same last state,

evicting out the desired hypotheses.

We also performed two additional analysis: (i) On comparing TransTrack with

Doorjamb’s algorithm, we noted that it performs almost as well as Doorjamb (average

less than 5% off) even without assuming the number of targets at all times. (ii) We

also evaluated the algorithms by calculating the average resident room accuracy, after

making each of the residents as guests. We noticed an identical trend to Figure 4.2

with TransTrack suffering an average accuracy drop of 3.8%.

Figure 4.3 shows how different parts of the scoring function affect in-situ tracking

accuracy. Simply maximizing the likelihood of the observations gives only 77.5%

accuracy. This is because of the presence of phantom persons who sit idle and move
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to explain the errors of the real targets. The addition of a mover penalty alone does

not increase the accuracy as it still suffers from the phantom effect. However, the

addition of a target penalty alone increases the accuracy to 81.6%. This increase is

because there is now a penalty of having extra idle persons in the home. However,

such an approach suffers from the hidden target problem. Adding the mover and

target penalty together increases the accuracy to 83.5%. As previously stated, a

guest can still impersonate a resident by complying with the observed heights better.

We see that the subsequent addition of explicit guest-resident reasoning via the T-

Test increases the accuracy to 85.4%. We next notice that the subsequent addition of

a motion model does not increase accuracy. The motion model is that it takes a target

at least 1 second to pass through every room. In other words, no hypothesis exists

wherein a target t can explain the doorway event of another target t’ which is H hops

away, if the last moved time of t is less than H seconds. Such a motion model does

not increase accuracy because we noticed that the percentage of concurrent moves

by persons is low, and even during the times of concurrent moves TransTrack was

already doing a reasonable job in associating the observations to targets. Finally, we

notice that starting at a known initial room location for each person increases the

accuracy to 88.2%.

We next calculate room accuracy as we start varying the maximum number of

tracked targets (T) from 4 to 2. As seen in Figure 4.4, decreasing T increases the

accuracy of all algorithms. This is because each observation can potentially be ex-

plained by a lesser number of persons resulting in lesser ambiguity. TransTrack which

achieves 93.4% and 89.8% with T = 2 and T = 3 respectively, still continues to con-

sistently perform better than the other baselines. Since the same trend can be seen

in the controlled study too, in the interest of space, we show the graph for in-situ

alone.

One of the main reasons for the performance difference between in-situ and con-
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Figure 4.6: Degree of future analysis: Most of the ambiguities get resolved within 5 future events.
As the inter-arrival time between nearly 90% of events is less than 30 seconds, this roughly translates
to within 150 seconds of future.

trolled studies was due to error-clustering (bursts of errors). The boxplots in Fig-

ure 4.5 show the number of FPs or FNs in any 20 event window for each data set. It

is seen that in in-situ, there exists several cases in which more than half of the events

in a 20-event window are either FPs or FNs. Since TransTrack ’s scoring assumes

a uniform error distribution, when such bursts of errors happen, it tries to explain

these erroneous events with extra persons, as the height and direction estimates are

inconsistent with the targets at home. Consequently, the accuracy suffers. These

bursts of errors were mostly due to a target moving back and forth near a doorway.

Other causes were due to crouching, moving hurriedly etc.

Next, we study the effect of removal of each error type on tracking accuracy.

Figure4.7 shows that an increase in accuracy is generally observed with the removal

of each error type, approaching 100%. This is because as errors get removed, there is

lesser ambiguity in data association for TransTrack.

Since, TransTrack uses the future to disambiguate the past, we next calculate

how much future is required to correctly resolve a doorway crossing event, in the

in-situ study. Figure 4.6 shows that most ambiguities can be resolved within 5 future

doorway crossing events. To quantify this in terms of time, we looked at the inter-
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arrival time between consecutive doorway events. We noticed that nearly 90% of

events arrive within 30seconds of the previous event. This effectively means 5 future

events roughly translates to around 150 seconds of future. These results indicate that

TransTrack could support applications such as HVAC control.

We next calculated another metric Target Count Accuracy defined as the fraction

of observations for which tracking and ground truth had the same number of targets.

Figure 4.8 shows that TransTrack achieves nearly 30% better accuracy than its nearest

baseline. The Maximum Likelihood approach gave nearly 0% accuracy. TransTrack

performs better than the rest as it addresses the Phantom Target and Hidden Target

problems.

Next, we calculated the benefits of the equal-state pruning strategy. Figure 4.9

shows the cumulative number of hypotheses pruned by TransTrack’s equal-state prun-

ing strategy upto every observation. It was noted that on average 394397 hypotheses

were pruned in every observation. This large pruning also explains why TransTrack

performs better than K-best.

We point out that there is an inherent accuracy-complexity trade-off in using

TransTrack. Even though TransTrack achieves higher accuracy than the greedy base-

lines, it trades-off higher time and space complexity (exponential in number of targets)
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Figure 4.10: Whole home tracking simulation of FormaTrack with 15 different floorplans obtained
from Google Images and various number of people: FormaTrack can achieve an average room-level
tracking accuracy of over 99%, 98% and 91% for 2, 3 and 4 people respectively.

as it retains state information to help in disambiguation. However, this is typically

not an issue for transition tracking in domains like homes, given the low number of

targets at any given time.

4.5.1 TransTrack on FormaTrack data

For cost reasons, we were unable to measure room-level tracking accuracy of Forma-

Track via a full-home deployment. As an alternative, we perform a tracking simula-

tion by considering 15 different floor plans (obtained from Google Images) of homes

varying from 3 to 9 rooms. For each home under test, we consider 2 to 4 inhabitants

(limited by the computational complexity of the tracking algorithm [6, 119, 120]).

These inhabitants were chosen at random from our pool of 8 participants. For each

person we model their room transitions via a uniform distribution, and model their

dwell time (in a room) based on 6 days of in-situ data [119]. For each simulated

crossing of a person, we pick a random crossing event performed by the correspond-

ing participant on our instrumented doorway. We repeat the entire process 10 times,

and obtain a total of 223,982 simulated crossings. We pass these crossings through

TransTrack [119], a multiple-hypothesis tracking (MHT) [6] algorithm for doorways,

and measure the transition accuracy [119] (F-score of precision and recall of crossings).
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Figure 4.10 shows the average transition accuracy for different number of rooms

and people. We see that even though the individual identity accuracies for 2, 3 and 4

person groups (from Figure 3.12) are 90%, 84% and 79% respectively, they translate

to an average of over 99%, 98% and 91% of transition accuracy, respectively. This

increase is because the tracking algorithm leverages future doorway crossing events

to help rectify mistakes in prior crossing events.

4.6 Summary

In this chapter, we present TransTrack, an algorithm to track a variable number of

targets by sensing only their transitions. The presence of sensing errors and large

sampling period relative to the potential speed of the target leads to uncertainty in

the number of targets. We show that there exists a fundamental tradeoff between

the number of targets tracked and the sensing errors they cause. Our evaluation of

TransTrack on 3 controlled studies and 6 days of real-world in-situ data showed that

TransTrack consistently performed better than the baselines.

We believe that the findings presented here will become more important with

time as more diverse and non-invasive sensors get deployed. For instance, we envi-

sion the evaluated doorway tracking system to be augmented with motion sensors,

which can observe state. This warrants the need for novel fusion tracking algorithms

with transition sensors observing identity, and state-observing sensors detecting pres-

ence. Such algorithms could augment our findings with the well-studied state sensing

literature [21, 22, 86].
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Chapter 5

Towards Low Power Room-level

Tracking

Thus far, we have been talking about one metric of interest namely accuracy. How-

ever, there is another important metric of practicality – power. This is because most

doorways do not have a power outlet near them, and we cannot expect people to draw

long wires in order to power these sensors. The next component Doorpler addresses

this problem by performing crossing detection and direction estimation, and turning

on the higher power FormaTrack hardware only when someone is at the doorway for

identity estimation. At a higher level, since Doorpler performs crossing detection and

direction estimation, it can alternatively be also thought of as a stand-alone system

that performs room occupancy sensing.

5.1 Introduction

Many homes today are logically or physically “zoned” — based on HVACs [121],

tasks performed (rooms), physical layout (floors), etc. A sensing technology that

can accurately sense this zone occupancy can obtain energy savings (in the order
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of 20-30% [122]), perform automatic lighting control (i.e. lights automatically come

on when one enters a room, and goes off during an exit in real-time — just like a

human would do), aid in energy disaggregation in 35 million single-person households

in the US [123], perform elderly monitoring in the 13 million elderly single-person

households [124], and help carry out “eyes-off” security (e.g. when a person exits a

home through the back door, an unlocked front door locks itself).

The most common off-the-shelf solution for zone occupancy that exists in homes

is a motion sensor. However, a single motion sensor has no notion of direction (i.e. it

cannot distinguish between a zone crossing and a nearby hover). Furthermore, these

motion sensors infer zone exit from lack of motion. Consequently, occupied periods

can be mis-classified as unoccupied (“the waving hand at motion sensor problem”),

and zone exit events become non real-time. On the other hand, many doorway track-

ing systems exist in literature [25, 28, 29, 45, 125] that can sense zone occupancy

at zone transition spots (e.g. doorway) by detecting a crossing and the direction of

movement. However, these systems are high-power [28, 29, 45, 125], cannot distin-

guish between a near-door event (e.g. hover) and a real crossing [25, 28, 125], are

pets unfriendly [25, 28, 29], or depend on the ambient lighting, air flow or tempera-

ture [83, 84]. Consequently, in this chapter, we ask the question, how can we build

a system that can perform crossing detection and direction estimation at low-power

(in a harvestable range as most zone transition spots such as doorways do not have

a nearby power outlet), in real-time and with a small form-factor (since space is at a

premium in a doorway), while addressing the above limitations.

To answer this question, we build Doorpler, a radar-based sensing system that per-

forms crossing detection and direction estimation using the simplest radio frequency

(RF) signal, namely a tone (a continuous wave at a constant frequency), while adher-

ing to the time, space, and power constraints of the application. Doorpler is mounted
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atop a zone transition spot such as a doorway, and detects a crossing by leveraging

the Doppler Effect — a person walking towards the radar causes an increase in the

frequency of the transmitted signal. It estimates the direction of crossing by comput-

ing the angle-of-arrival (AoA) of the signal reflected by the human. It leverages the

intuition that a person walking through the doorway creates a few “good” reflections

where they reflect directly towards the radar [44], and ensures that these reflections

are not inundated by the “bad” multi-path reflections coming off the environment.

However, unlike many conventional radar direction finding systems which consume

time, space, and power [9, 69, 70, 72, 73], Doorpler is real-time, space-efficient, and

power-aware (i.e. within harvestable range). As there is a coarser requirement on

the angular accuracy (i.e. we need to differentiate whether the angle of arrival of

the human reflection is positive or negative depending on the side of the doorway),

Doorpler employs an FFT-based technique that trades angular accuracy for computa-

tional complexity and relies on the phase difference between pairs of receiver elements.

Doorpler operates these receiver elements in the 5.8GHz ISM band which allows for a

compact array size of 7.8cm. Finally, since the interesting crossing events are sparse,

Doorpler saves power via a dual-band wake-up radio technique [10, 11]. Accordingly,

a lower frequency 2.4GHz radar (and hence lower power) is used for crossing detection,

while a triggered higher frequency 5.8GHz (and hence higher power) array performs

direction estimation.

To evaluate Doorpler, we study its accuracy, power consumption and real-timeness.

We first conducted a scripted study with 8 participants of varying height and weight

who were asked to walk through an instrumented doorway in different ways, every

day for 6 consecutive days, producing over 1400 doorway crossing events. Our results

show that Doorpler can achieve a precision, recall and direction accuracy of over 99%

accuracy. Next, we performed two in-situ studies for 200 hours, on an instrumented

doorway in a lab and a 2-person home, generating nearly 250 crossings. Despite the
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Figure 5.1: The envelope of the Doppler signal reflected back to Doorpler during a doorway crossing
(a peak in the figure) is much larger than that in the absence of a crossing. There are 12 crossings
in this figure.

uncontrolled environment, Doorpler achieves an average precision, recall and direction

accuracy of 98.7%, 95.4% and 100%, respectively. Next, we estimate that a realization

of Doorpler when instrumented atop a doorway would consume 6.1mW of power,

falling in the harvestable solar range for indoor environments [126]. When Doorpler

is augmented with a PIR sensor, we estimate that the average power consumption

can be further reduced to 2.7mW. To evaluate the real-timeness of the system, we

implemented the digital baseband processing on an ultra-low power microcontroller.

Our results show an execution time of 13.8ms, thus having the potential to enable

several real-time smart home applications like smart-lighting, HVAC control.

5.2 Approach

Doorpler is a radar-based system mounted atop the doorway. It performs crossing

detection and direction estimation using only an RF tone. It detects a crossing by

leveraging the Doppler effect – i.e. the receiver observes a shift in the transmitted

frequency due to human motion. It estimates the direction of human transition by
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Figure 5.2: A positive Doppler shift followed by a negative Doppler shift can occur not only when
a person walks through the doorway (cases (i) and (ii), but also due to other movements near the
doorway such as hovers and U-turns (cases (iii) - (vi)).

computing the angle-of-arrival (AoA) of the reflection coming from the human onto

an antenna array. To realize this, Doorpler takes a layered approach owing to a space-

power tradeoff. Accordingly, a lower frequency of operation results in a lower power

consumption [8]. However, a lower operating frequency also results in a large antenna

array that can out-span the door (as the array size depends on the wavelength [9]).

In other words, Doorpler wants to transmit at a low frequency for power sake but

also at a high frequency for spatial benefits. To handle this trade-off, Doorpler uses

a technique called dual-band wake up radio [10, 11] by operating at two different

ISM bands (2.4GHz and 5.8GHz). The lower power 2.4GHz radio performs crossing

detection and triggers the higher power 5.8GHz array for direction estimation, only

when a crossing is detected. We next explain the design details of Doorpler.

5.2.1 Crossing Detection

In order to detect a crossing event, Doorpler relies on the Doppler Effect. Accordingly,

when a target moves towards the receiver during a radio transmission, the target acts

as a virtual transmitter by reflecting the transmitted signal with a frequency larger
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than the transmitted frequency. This phenomenon is referred to as the Positive

Doppler Effect. We next describe how this Positive Doppler is leveraged by Doorpler.

Doorpler uses a 2.4GHz RF transmitter which transmits a carrier signal that is

given by [127]

x(t) = A cos(2πfct) (5.1)

where A is the transmit signal magnitude and fc represents the carrier frequency of

2.4GHz. This transmitted signal propagates through air and is received by an antenna

placed at the other end of the doorway. This received signal is given by [128]

y(t) = ηA cos(2πfc(t− τ)) (5.2)

where η is the attenuation factor, and τ represents the propagation time. However,

the transmitted signal does not travel along just one path from the transmitter to

the receiver. The transmitted signal gets reflected by the objects in the environment

resulting in multiple copies of the same signal arriving at the receiver. This is referred

to as multipath propagation, and the super-imposed received signal at the receiver due

to the N propagation paths is given by

y(t) =
N∑
i=1

ηiA cos(2πfc(t− τi)) (5.3)

where ηi and τi represent the attenuation factor and propagation time for the ithpath.

Now, when a person walks towards the doorway during such a radio transmission,

she will reflect a signal which will arrive at the receiver with a frequency (fc’) larger

than the transmitted frequency. This is given by

y′(t) = ηA cos(2πf ′c(t− τ)) (5.4)

This frequency difference (∆f) between the transmitted (fc) and received frequency

(fc’) is referred to as the Doppler shift. The Doppler shift caused by a target moving

at velocity v at an angle θ relative to the receiver, is given by [109]

∆f =
2 ∗ fc ∗ v ∗ cosθ

c
(5.5)
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Figure 5.3: Each receiver com-
putes an amplitude spectrogram
- a measure of the strength of
each frequency component over
time. The faint signal on either
side of the baseband tone shows
the Doppler reflections due to
a human walking through the
doorway1.

Figure 5.4: Each receiver
performs spectrogram enhance-
ment on the amplitude spectro-
gram resulting in a more vis-
ible Doppler signal, and base-
band tone mitigation.

Figure 5.5: The Doppler
Power (DP) is a measure to
infer the moment, the person
crosses the sensor. There is
positive DP when the person
approaches the doorway, and
negative DP when the per-
son exits. Hence, the zero-
crossing of DP tells us when
the person crosses the sensor.

where fc is the transmitter’s center frequency and c is the speed of light in the trans-

mission medium. Given a center frequency of 2.4GHz, and an average human walking

speed of 1.2 to 1.3 ms−1 [111], the maximum Doppler shift will be about 21Hz. Sim-

ilarly, when the person walks away from the doorway during an RF transmission,

her reflection will arrive at the receiver with a frequency less than the transmitted

frequency, resulting in a negative Doppler shift.

Doorpler captures the positive Doppler shift in order to detect a crossing (negative

Doppler happens after the person has crossed the doorway threshold). It does so in

two steps. First, it tries to extract y’(t) from the received signal via a Butterworth

bandpass filter (cutoff frequency of 3 to 25Hz), such that only the reflection from the

human remains. Next, it obtains the envelope of the filtered signal, and detects a

crossing only when the envelope power is larger than a threshold (set as 5 times the

noise-floor). Fig. 5.1 shows the envelope power of the Doppler filtered signal for 12

doorway crossings. We can clearly see that the envelope power during a crossing is

much larger than that during a crossing absence. The advantage of this technique is

also that both the filtering and the envelope detection can be performed entirely in

analog at just a few microwatts of power [129, 130].
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When a potential crossing is detected, the 2.4GHz sensor triggers on a higher

power 5.8GHz radio array. The 5GHz radio performs two tasks - (i) direction esti-

mation, and (ii) crossing confirmation. Crossing confirmation is necessary because

the crossing detected via the above technique by the 2.4GHz radio can result in false

positives. This is because any approaching movement by a person towards the door-

way, when she is close to the doorway can cause positive Doppler. For example, all

cases shown in Fig. 5.2 will result in positive Doppler (until the person reaches the

line of the receiver), followed by a negative Doppler. However, only cases (i) and (ii)

are true doorway crossing events. As the above approach will treat all 6 cases to be

true crossing events, the 5GHz radio is used to filter out these false positive cases.

5.2.2 Direction Estimation

The triggered 5.8GHz receiver-array is used for direction estimation. We point out

that Doorpler cannot simply use positive and negative Doppler to obtain direction

because irrespective of which side the person crosses the doorway from, she will cause

positive Doppler during approach and a negative Doppler during exit. As a result,

Doorpler estimates the direction of the person crossing the doorway by calculating

the angle-of-arrival (AoA) of the weak reflected signal coming off the human. The

AoA of this signal will be positive when the person is on one-side of the doorway, and

negative when the person is on the other side. Finally, Doorpler fuses angle estimates

from multiple (four) antennas in order to improve the direction estimate. Given this

overview, we next explain the details of Doorpler’s direction estimation.

Upon being triggered by the 2.4GHz radio, each element of the 5.8GHz array trans-

forms the received multipath-rich raw time-domain baseband samples into spectro-

grams via the Short Time Fourier Transform (STFT). The STFT essentially employs

1 All spectrogram figures are best viewed in color.
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Figure 5.6: Each receiver com-
putes a phase spectrogram in-
dicative of the starting phase
of each frequency component
over time. The phase spectro-
gram by itself is not very use-
ful, but phase difference com-
puted on a pair of antennas re-
veals useful direction informa-
tion.

Figure 5.7: If two anten-
nas are separated by a dis-
tance d, then a signal in-
cident at angle θ, trav-
els an extra distance of
d sinθ to the second an-
tenna. This results in an
instantaneous phase differ-
ence of 2π*d*sinθ/λ be-
tween the two antennas.

Figure 5.8: Each receiver pair
computes an angle-of-arrival
(AoA) spectrogram on either
side of the doorway crossing
point. The AoA of the Doppler
signal is predominantly nega-
tive when the person is on one
side of the doorway, and pos-
itive when she is on the other
side.

a sliding window over the received time-domain samples and then performs a Fast

Fourier transform (FFT) on each window. The resulting spectrogram is essentially a

three dimensional plot representing the frequency domain of the received signal over

time (i.e. x-axis is time, y-axis is frequency and z-axis is corresponding metric that

is analyzed, namely amplitude or starting phase of the signal). We henceforth refer

to the spectrogram with an amplitude z-axis as the amplitude spectrogram, the one

with a phase z-axis as the phase spectrogram, and so on. For example, Fig. 5.3 shows

an example of an amplitude spectrogram.

Step 1: Compute Amplitude Spectrogram - At first, each array element

computes an amplitude spectrogram (Fig. 5.3). Each cell (i,j) represents the power

of a certain frequency component at a given time. The strong signal at the center

of this spectrogram represents the transmitted signal and its multipath reflections

(Equation 5.3). The thin contour (4 to 6s) around it shows the Doppler reflections

(Equation 5.4) of a human walking through the doorway. In the frequency domain,

a spectrogram stretches from 0 to S Hz, where S is the baseband sampling rate. Not

all these frequencies are of interest - i.e. we only care about the frequencies around

the transmitted tone frequency where the Doppler shifts occur. From Equation 5.5,
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for an average human walking speed of 1.3m/s during a 5.8GHz RF transmission, this

corresponds to a Doppler shift of about 50Hz. As a result, Doorpler only considers a

“smaller” amplitude spectrogram that is +/- 50Hz around the transmitted baseband

tone frequency (ftone). We refer to this frequency range as fmin to fmax. This reduces

the computational load on the microcontroller that performs the digital baseband

processing.

Step 2: Perform Spectrogram Enhancement - The Doppler reflected sig-

nals in the frequency bands around the transmitted tone are extremely faint. Conse-

quently, each receiver performs spectrogram enhancement [32, 131] on the aforemen-

tioned amplitude spectrogram in order to extract the weak Doppler signal. This is

done by first normalizing the amplitude spectrogram with respect to each time bin

(i.e. a normalization per column). As a result of this step, the tone-band will have

the highest (unit) magnitude. Next, we subtract each column (frequency) of this

computed spectrogram from a background column-vector. This background column

vector is computed by averaging a similarly normalized background spectrogram of

5 seconds (that is computed initially). Consequently now, the tone band gets mit-

igated, and the Doppler bands become “visible”, during motion. Fig. 5.4 shows an

example of an enhanced amplitude spectrogram (ASenh(f,t)), and we see the Doppler

bands becoming more visible.

Step 3: Identify Zero Crossing - In order to compare the AoA of the human-

reflected signal on each side of the doorway, Doorpler first determines the moment

the person was at the doorway (i.e. underneath the sensor). It does so by identifying

the point of transition from positive to negative Doppler (similar to pseudo-Doppler

direction finding radars [76]). It identifies this Doppler transition point by comput-

ing a measure called Doppler Power (DP). This measure is obtained by weighting

the power value from the enhanced amplitude spectrogram with the corresponding
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Figure 5.9: Since Doorpler
only cares about the direc-
tion of doorway transition,
each receiver pair quantizes
the AoA estimates to -1,
0 or +1, depending on the
sign of the AoA.

Figure 5.10: Doorpler mitigates
the effect of secondary Doppler
reflections by fusing AoA es-
timates from multiple antenna
pairs. It computes a consensus
spectrogram where each quan-
tized AoA cell must be agreed
upon by all antenna pairs.

Figure 5.11: Doorpler fur-
ther reduces the effect of sec-
ondary reflections by weighting
the consensed quantization with
the corresponding power value
from all the receivers. Con-
sequently, Doppler reflections
coming straight from the human
get weighted higher than the
secondary Doppler reflections.

Doppler sign (+1 for positive Doppler bands and -1 for negative Doppler bands).

More formally,

DP (t) =

fmax∑
f=fmin

sign(f)× ASenh(f, t), (5.6)

where sign(f) =


+1, f > ftone (Positive Doppler)

−1, f < ftone (Negative Doppler)

. (5.7)

Intuitively, the above is a measure that captures the cumulative Doppler power (in

the frequency bands corresponding to human motion), factoring in the manner of

movement (approach v/s exit). Via this measure, a person approaching the doorway

causes positive Doppler Power, while a person exiting causes negative Doppler Power.

Hence, if we calculate Doppler Power over the entire crossing duration, then the zero-

crossing would give us the Doppler transition point. Fig. 5.5 shows the Doppler Power

during a doorway crossing for one of the antennas. In this figure, we can clearly see

the zero-crossing of interest around 4.5 second. Doorpler determines this zero-crossing

point via a technique similar to FormaTrack [125]. We denote this zero-crossing time

as Tcross.
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Step 4: Compute Phase Spectrogram - Having determined the moment

the person is in the doorway, Doorpler next determines the direction of transition.

As mentioned before, Doorpler determines direction by computing the AoA of the

human-induced reflection. To measure this AoA, each array element first computes a

phase spectrogram – x-axis is time, y-axis is frequency and z-axis is the starting phase

of the signal. Fig. 5.6 shows an example of a phase spectrogram at a receiver, which

appears to reveal little information.

However, as seen in Fig. 5.7, when two antennas A1 and A2 are placed at a

distance d apart, a signal arriving at an angle θ to the antennas will travel an extra

distance of d sinθ to A2. This additional distance results in an instantaneous phase

difference [55] between the two antennas of ∆φ = 2∗π∗d∗sin∗θ
λ

, where λ is the carrier

wavelength (=5.17cm for a 5.8GHz signal). When d is half-wavelength (λ/2), the

AoA is given by

θ = arcsin
∆φ

π
(5.8)

Consequently, Doorpler takes the phase spectrogram for two successive receivers (i.e.λ/2

apart) , and calculates the phase difference ( ∆φ) between them at every spectrogram

cell. This results in a phase difference spectrogram, for every antenna pair.

However, the received signal in an antenna is the superposition of multiple paths,

and hence the above equation breaks down if applied directly on the received sig-

nal. To isolate the reflection from the moving target alone, Doorpler computes the

phase difference only in the Doppler bands (+/- 6Hz to +/- 50Hz from the tone fre-

quency), leveraging the intuition that the Doppler reflections come from the moving

human. We mitigate the effect of secondary reflections - i.e. transmitter –> human

–> environment –> receiver via Step 7.

Step 5: Compute Angle-of-Arrival (AoA) Spectrogram - From each com-
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puted phase difference spectrogram, Doorpler next computes an AoA spectrogram

based on Equation 5.8. Intuitively, it is the AoA of the Doppler induced reflection

(when it exists), for each time step. Next, we leverage the fact that a person causes

positive Doppler while approaching the doorway, and negative Doppler while exiting.

Consequently, the AoA spectrogram is only computed in the positive Doppler bands

before the person reaches the doorway (i.e. Tcross), and in the negative Doppler

bands after the person exits the doorway. More formally, given a phase difference

spectrogram ∆φsgram , the AoA spectrogram AoAsgram is given by

AoAsgram(f, t) =


arcsin ∆φ(f,t)

π , if (i) f > ftone and t < Tcross

(ii) f < ftone and t > Tcross

0 , else

(5.9)

Fig. 5.8 shows an example of an AoA spectrogram. We can see that the AoA in the

Doppler bands are mostly on one-side of 0°before Tcross (around 4.5 seconds), and on

the other side of 0°after Tcross.

Step 6: Obtain Quantized AoA Spectrogram - In order to determine the

direction of doorway transition, Doorpler only needs to know if the human reflection

is at a positive or negative angle. Consequently, Doorpler quantizes the computed

AoA spectrogram such that the cells with positive and negative angles are set to

+1 and -1 respectively. This results in the Quantized AoA spectrogram, as shown in

Fig. 5.9.

Step 7: Secondary Reflections Mitigation - In order to mitigate the effect

of secondary reflections coming from the human, Doorpler fuses data from multiple

antenna pairs. It leverages the intuition that as a person walks through the doorway,

there will be a few “good” reflection points where the person reflects directly to the

radar [44]. With the antennas located in far-field, all pairs will agree on the angle
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quantization at these reflection points. Consequently, Doorpler forms a consensus

spectrogram wherein each cell (i,j) has a quantized angle only when agreed upon by

all receiver pairs. The consensus spectrogram in Fig. 5.10 shows a reduction in the

number of bad angle estimates, compared to Fig. 5.9.

The consensus spectrogram could have certain ‘bad’ cells which do not agree with

the actual direction of doorway crossing because of noise. However, these noisy cells

have low power if they are not a reflection from the human. Consequently, we elim-

inate these noisy cells by weighting each cell (i,j) of the consensus spectrogram with

the corresponding power value obtained by summing the (i,j)th cell in the amplitude

spectrogram of all the antenna pairs. This step further mitigates secondary reflec-

tions as they will have lower power compared to those coming directly off the person.

Fig. 5.11 shows the spectrogram after amplitude-weighting which exhibits a clear dif-

ference on the two sides of the doorway. (amplitude-weighting increases the recall

by about 20%). Formally, if CS represents the consensus spectrogram, and ASn rep-

resents the amplitude spectrogram of the nth receiver, then the resulting amplitude

weighted consensus spectrogram (CSwt) is given by

CSwt(f, t) = CS(f, t) ∗ (
N∑
n=1

AS(f, t)) (5.10)

, where N is the number of receivers.

Step 8: Sign comparison - Finally, Doorpler determines the direction of tran-

sition by comparing the sum of the sub-matrices, pre and post doorway crossing (i.e.

the left and right half of CSwt). This weighted sum will change from positive to

negative when the person walks from one side of the doorway to another, and from

negative to positive, when she walks the other way. More formally, if we define tran-

sition from the positive to the negative side as IN, and vice versa as being OUT, then
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(a) Doorpler was mounted atop an office doorway. A
scripted study and an 80-hour in-situ study was performed
on this doorway yielding over 1500 doorway crossing events.

(b) Doorpler was mounted atop the most commonly used
doorway in a 2-person home for 120 hours yielding 113
doorway crossing events.

Figure 5.12: Doorpler Experimental Setup

the direction estimate is given by

Dir =


IN , if

∑
t<tcross

CSwt(f, t) > 0 and
∑

t>tcross

CSwt(f, t) < 0

OUT, if
∑

t<tcross

CSwt(f, t) < 0 and
∑

t>tcross

CSwt(f, t) > 0

Step 9: Crossing Confirmation - As mentioned earlier, the 2.4GHz radio

which performs crossing detection based on positive Doppler shifts can trigger false

positives for near-door events such as hovers and U-turns. These false positives are

eliminated via the sign comparison in Step 9. If the weighed sums on either side of the

doorway crossing point are both positive (or) both negative, then Doorpler perceives

that the person did not actually cross the doorway, and discards the event.

Finally, we also point out that we have a layered approach (i.e. 2.4GHz triggering

on the 5GHz array) because a 2.4GHz phased array with four antenna elements

placed half-wavelength apart will occupy a total of 18.75cm. This is longer than most

doorjamb widths [71]. A 5.8GHz array on the other hand occupies a much smaller

width spanning just 7.8cm, which can fit atop most doorways.
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Figure 5.13: In the scripted study, participants walked through the instrumented doorway in 6
different ways yielding 1440 crossings.

5.3 Experimental Setup

To test our hypothesis, we implement the 2.4 GHz and the 5.8 GHz RF transceivers

using software defined radios. The 2.4 GHz transmitter and receiver were realized

by two USRP N210s [132] with an SBX daughterboard [133] each. The 5.8 GHz

transmitter was implemented on a USRP N210 with a CBX daughterboard [134].

The 4-element 5.8 GHz receiver array was implemented on a USRP X310 [135]

with two TwinRX daughterboards [136] that provide four phase-coherent RF receive

chains. Each transceiver pair was frequency synchronized via a common reference

clock, Octoclock-G [137]. Without frequency synchronization, the Doppler signal

gets submerged in the carrier frequency difference between the transceivers (Carrier

Frequency Offset [138]). The receivers were time synchronized (sample-aligned) via a

pulse-per-second signal provided by the same Octoclock-G. The 5.8GHz transmitter

loaded a 100 Hz baseband tone on its carrier whose Doppler was analyzed for both

crossing confirmation and direction estimation. Both transmitters transmitted at just

-10dBm (100µW) transmit power, while the receivers sampled at 250Hz. Each RF
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Participant P1 P2 P3 P4 P5 P6 P7 P8
Height (cm) 161 167 168 170 172 175 177 181
Weight (kg) 60.8 61.0 56.1 78.0 56.7 97.9 82.5 80.0

Table 5.1: The height and weight of the 8 participants who walked through an instrumented office
doorway for 6 days generating 1440 doorway crossing events

chain was terminated by a 3dBi omni-directional antenna, and these antennas were

mounted atop a doorway as shown in Fig. 5.12a and Fig. 5.12b. The transmit and

receive antennas were mounted in a gain-mismatch fashion (pointing at each other so

that the nulls align). This reduced the direct path by 10.2dB. The antennas in the

5.8 GHz phased-array are placed half-wavelength apart (2.58cm).

Finally, there is a constant but repeatable phase-offset between each of the 5.8

GHz receive-chains due to the different local oscillators involved. These phase offsets

were eliminated via a one-time calibration [55]. The phase offset if left uncalibrated,

would appear as an added phase difference in Equation 5.8, resulting in an incorrect

angle estimate. We performed two sets of studies with this setup :

1. A scripted study was performed on an office doorway (Fig. 5.12a), involving 8

participants of varying heights and weights as shown in Table 5.1. The participants

were asked to walk for 6 days through the instrumented doorway. On each day, each

participant walked 6 times (3 times back and forth) through the doorway in the 6

ways shown in Fig. 5.13. No restrictions were imposed on the type of clothing the

participants wore, or the time of the experiment. In all, this study yielded 1440

doorway crossings (+ 144 U-turn events).

2. Two sets of in-situ experiments were performed. A first in-situ study was

performed on the same office door for 80 hours which yielded 133 doorway crossings.

A second in-situ study was performed on the most commonly used doorway in a 2-

person home (Fig. 5.12b). This study was performed for 120 hours, and resulted in

113 doorway crossing events.

The crossings were recorded by a video camera pointed at the doorway, which

92



were then manually analyzed. We evaluate Doorpler accuracy via four metrics:

• Recall : The fraction of actual doorway crossings that were correctly detected

by Doorpler.

• Precision: Amongst the doorway crossings detected by Doorpler, the fraction

that actually occurred.

• Direction Accuracy (DirAcc): The fraction of correctly detected doorway cross-

ings having the correct direction.

• Effective Direction Accuracy (EffDirAcc): The crossing confirmation (Section 5.2.2)

depends on the direction estimate. Consequently, an incorrect direction esti-

mate can manifest itself as a false negative, false positive or a direction error.

This metric captures this manifestation as the mean of recall, precision and

direction accuracy.

Finally, there are no health concerns with Doorpler as its Effective Isotropic Radiated

Power (EIRP) after accounting for antenna gain and cable loss is just 125µW (-

9dBm). In comparison, the maximum FCC permitted transmit power for an indoor

5GHz WiFi access point is 1W [139] (nearly 8000x higher).

5.4 Evaluation

5.4.1 Doorpler Accuracy

Table 5.2 shows that Doorpler achieved over 99% and 95% accuracy across all metrics

of interest in the scripted and in-situ study respectively. The missed detections in

the in-situ study are attributable to the following causes: (a) two people walking one

behind the other through the doorway (occlusion), (b) several cases of people walking

all the way up to the door, talking to someone in the room for a few seconds, and

then continuing motion into the room, (c) direction-errors (i.e. a true crossing event
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Study
Metric(%)

Recall Precision DirAcc EffDirAcc

Scripted 99.0 99.9 100.0 99.6
In-situ 95.4 98.7 100.0 98.0

Table 5.2: Doorpler achieves over 99% accuracy across all metrics of interest in the scripted study.
It also achieves an average accuracy of over 95% across all metrics in the 200 hours of in-situ data.

was incorrectly detected as a U-turn/near-door event), (d) not all the 5GHz radio

chains were triggered because of the conservative threshold that trades-off precision

and recall, and finally (e) a case of a person located very close to the doorway, walks

through the doorway. In this case, the positive Doppler received by the 2.4GHz

radio was not significant. The causes for the 3 false detections over the 200 hours of

data collection were due to direction errors (i.e. a U-turn/near-door event was not

detected). In all these cases, the weighted consensus sum on one of the sides was only

marginally greater (or lesser) than zero. We leave it as a future work to filter out

these low-confidence crossing events.

5.4.2 Power Consumption

We next study the power consumption of Doorpler. We cannot take power numbers

directly from the USRPs as they are over-engineered for our use-case. For e.g., the

components in its radio chain (i) operate over a multi-GHz band (while we operate

at a single frequency), (ii) can transmit at over +10dBm (we transmit 100x lower at

-10dBm), (iii) can receive signals as low as -130dBm (a human reflection 1m away

from the setup comes at -66dBm [140]), (iv) has an ADC with a sampling rate of

200MHz (we sample at 250Hz), etc. Consequently, we come up with an equivalent

realization of Doorpler based on the USRP radio chain, and obtain power numbers

of this realization from literature. We leave it as a future work to engineer the

analog integrated system based on the provided design. Fig. 5.14 shows a high-level

block diagram of Doorpler ’s power hungry RF components with the 2.4GHz RF chain
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System Doorjamb [25] SonicDoor [29]
FORK
[45]

PeopleFlow [84] FormaTrack [125] Doorjamb 2.0 [28]
Lethe [83]

Doorpler
(5GHz)

Technology Ultrasound Ultrasound
Depth
Camera

IR UWB Radar Ultrasound + IR
Thermal
Camera

CW
Radar

Power (mW) 150 300 26500* 714.9* 2450* 595.5 300 66.3*

Table 5.3: The triggered component of Doorpler (5.8GHz array) consumes 2.3x lesser power than
the nearest doorway tracking system (*includes signal processing power consumption when real time
claim reported by authors).

waking up the 5GHz array upon crossing detection.

2.4GHz radio : Liu et al. [141] built a -10dBm RF front-end similar to Doorpler

for Bluetooth Low Energy, Zigbee and Medical Body Area Network applications. It

consumes 4.6mW for transmission and 3.8mW for reception. However with shareable

components like the oscillator, the power consumption becomes 6.6mW. In our stud-

ies, we observed that the 2.4GHz radios can be 15% duty-cycled without accuracy

loss. This results in a power-consumption of 5.8mW. We point out that this system

exceeds Doorpler’s necessity. For e.g., the receiver sensitivity is -96dBm (Doorpler is

about -61dBm), the data rate is over 950Kbps (Doorpler samples at just 250 sam-

ples/sec, i.e. 2Kbps), the radio chains support modulation techniques like GFSK,

DQPSK, etc (Doorpler runs on an unmodulated tone). The envelope detector to

trigger the 5GHz chain can be realized in tens of microwatts of power [129]. Further-

more, we point out that unlike typical transceivers, we do not require components

like the oscillators to be stable over a long-term (as they are shared between TX and

RXs). Said differently, Doorpler is not drift sensitive, and only cares about short-term

stability (crossing duration).

5GHz RF chain : Similarly, Homayoun et al. [142] built a 11.6mW receiver for

802.11a applications. With 4 receive chains, the total power consumption becomes

46.4mW. This receiver has a sensitivity of -70dBm at 54Mbps, and a noise figure

of 6dB which exceed Doorpler’s requirements. The transmitter can be realized via

a -7dBm, 13.5mW frequency synthesizer [143], eliminating the need for an on-chip

power amplifier, as the output power is high enough. This results in a total power

consumption of 59.9mW for the 5GHz chain.

95



Digital Baseband Processing : To measure the power consumption of the

micro-controller unit (MCU), we implemented the digital baseband processing of

Doorpler on an ultra-low power MCU, MSP432 [144], and measured its power con-

sumption. We observed that the MSP432 consumed 6.4mW of power. This results

in a total power consumption of the 5GHz chain of 66.3mW (= 59.9 + 6.4)mW.

Average power and comparison with other doorway tracking systems :

The average power consumption of Doorpler is given by (Power Draw of 2.4GHz ra-

dio) +

(On Time of 5GHz array)*(Power Draw of 5GHz array). In our study, we observed

that the 2.4GHz radio triggers the array 0.4% of the time. This results in an average

power consumption of 6.1 (=5.8 + (0.4% * 66.3)) mW.

Table 5.3 compares the power consumption of the triggered component of Doorpler

with other doorway-tracking systems. We report the power numbers this way as all

of these systems can technically be triggered by the 2.4GHz radar, even though it is

not part of their setup. From this table, we observe that the triggered component

of Doorpler consumes 2.3x lower power than the nearest baseline. An alternate way

to interpret its advantage is that should Doorpler be part of an environment where

near-door events occur frequently (e.g., adjacent to a busy hallway), it will result in

2.3x less power consumption each time it is triggered by a person walking close to

the door in the hallway. Furthermore as mentioned earlier, Doorpler being an RF-

based system does not suffer from many of the limitations of other doorway tracking

systems.

Energy harvesting feasibility: Prior work [126] has shown that indoor incident

solar irradiation varies from 11-115µW/cm2. Given a 1m x 10cm solar panel of with

20% efficiency, mounted in the doorway, this translates to a power supply of 2.2 to

23mW. Consequently, Doorpler’s demand of 6.1mW can be satisfied by many of the

doorways. For those doorways with low irradiance, Doorpler could still potentially be
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Figure 5.14: High-level Doorpler block dia-
gram: The lower power 2.4GHz radio triggers
the higher power 5.8GHz chain upon crossing
detection.

Figure 5.15: As the transmit power of
Doorpler is reduced, the accuracy starts
to decrease. This is because the reflected
Doppler signal becomes weaker and starts
to submerge itself in the noise-floor.

harvestable by placing larger solar panels and/or placing them above the door frame

on either side of the doorway. From Table 5.3, we also point out that Doorpler can

be within the harvestable range so long as the 5GHz radio chain is triggered for less

than 32% (=23mW/(5.8+66.3)mW) of the time.

PIR Augmentation: We next consider the possibility of a three-tier system

wherein the 2.4GHz radio gets triggered by an even lower power system – a PIR

motion sensor. For this, we analyze the data from one of our prior in situ studies [119].

The 6-day study contained 1756 doorway crossing events from 8 doors in a home. Each

doorway was equipped with two PIR motion sensors facing each of the adjoining

rooms. Figure 5.16 shows the recall (i.e. the fraction of crossings detectable by a

system like Doorpler that would be triggered by a motion sensor) compared against

the fraction of time a system like Doorpler would be ON. We see that we can achieve

99% recall by keeping the 2.4GHz radio of Doorpler ON for just 30% of the day. (i.e.

the 2.4GHz radio can be turned OFF for 70% off the time). With PIRs consuming

180µW and 600µW of idle and active power draw [145], this dual PIR augmentation

results in an average power consumption of 2.7mW (= 0.18 * 70% + (1.2+5.8)*
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Figure 5.16: By augmenting Doorpler with a motion sensor, Doorpler can achieve 99% recall with
the 2.4GHz radio remaining ON for less than 30% of the time.

30% + (0.4% * 66.3). When augmented with the identity sensing system such as

FormaTrack which consumes 2.2W, the aggregate estimated power draw of the entire

system would be 11.5mW (=2.7 + (0.4% * 2200). This results a lower power draw

compared to the 2-tier system and continues to be in the harvestable range of indoor

environments.

5.4.3 Real-timeness of Doorpler

We next evaluate if Doorpler can operate in real-time by measuring the run-time

of the baseband processing on the MSP432. We observed that the direction can

be estimated by the MSP432 at an average of 13.8 ms. With 750ms of crossing

data (Section 5.4.6) on each side of the doorway needed to achieve a high accuracy,

a direction estimate can be provided just 763.8ms(=750+13.8ms) after the person

crosses the sensor. Anecdotally, at an average walking speed of 1.2m/s, a human

covers just over a step within a 763ms duration. Thus, Doorpler can enable several

real-time smart home applications like smart-lighting or automatic HVAC control.

From an implementation perspective, to save memory on the MCU, steps 1, 2, 4 to

6 of Section 5.2.2 were implemented in a streaming manner (i.e. per arriving FFT
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Figure 5.17: Effect of number of receive chains : The recall and effective direction accuracy increase
as we add more receivers. This is because AoA errors made by a single receive pair get mitigated
while taking a consensus. Doorpler uses 4 receive chains.

frame).

5.4.4 Effect of Number of Receive Chains

The number of receivers has an impact on the total power consumption of Doorpler.

From Fig. 5.17, we see that the recall and effective direction accuracy increases as we

add more receivers. This is because AoA errors made by a single receiver pair gets

mitigated during consensus. We point out that there is an inherent power-accuracy

trade-off here - with more receivers, even though the accuracy increases, the power

consumption also increases by 11.6mW for every RX-chain. However, Doorpler still

uses all 4 RX-chains because the array comes on for only a small fraction (0.4%) of

the time.

5.4.5 Effect of Transmit Power

We next study the effect of lowering the transmit power, as a lower transmit power

typically results in lower power consumption [8]. One person was asked to walk a

total of 120 times in varying directions (Fig. 5.13), through an instrumented doorway
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Figure 5.18: The 5GHz array works with high accuracy as long as it is triggered at least 750ms
before the person crosses the doorway. With a late trigger, the accuracy suffers because the Doppler
is not significant. With an early trigger, the accuracy suffers as noisy spectrogram cells, or data
from a prior crossing starts to dominate.

(Fig. 5.12b). Fig. 5.15 shows that as we lower the transmit power from -10dBm to

-30dBm (by attaching attenuators), the ability to detect crossings decreases. This is

because the reflected Doppler becomes weaker and submerges itself in the noise-floor.

The precision and direction accuracy do not suffer because the fraction of crossings

detected is low. As before, there is a power-accuracy tradeoff here. However, the

accuracy gain by transmitting at -10dBm outweighs the power benefits at -15dBm

and lower. Hence, Doorpler transmits at -10dBm.

5.4.6 Effect of Wake-up Time

We next study the effect of the wake-up time of the 5GHz chain on accuracy and

timing. If the 2.4GHz radio triggers too late, then the Doppler is not significant (θ

˜= 0°), while if it triggers too early then noisy spectrogram cells, or data from a

prior crossing starts to dominate. From Fig. 5.18, we observe that the 5GHz array

can be woken up as late as 750ms before a doorway crossing event. This also says

that any future work that replaces the 2.4GHz radio with an alternate sensor must

ensure that the 5GHz array is woken up at least 750ms before the person reaches
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the doorway threshold. Since we consider an equal time window on either side of the

doorway crossing point to determine direction, this result places a lower bound on the

real-timeness of the system (i.e. at least 750ms after the person crosses the doorway

threshold).

5.4.7 Effect of Degree of Spectrogram Overlap

The degree of spectrogram overlap is a measure of how often an FFT must be per-

formed by the MCU. A high overlap results in a tighter real-time bound as lesser

‘fresh’ samples are required for each subsequent FFT (stream processing of Steps

1, 2, 4 to 6). From Fig. 5.19, we see that as the overlap decreases, the accuracy

also starts to decrease. This is because with lower overlap, the useful signal data

gets “out-weighed” by the noisy spectrogram cells. Consequently, Doorpler uses 90%

overlap. Despite the high overlap, the MCU performs all the streaming FFT-related

operations on a single batch of 64 samples from all receive chains, on average 13ms

before the next set of 6 samples (90% overlap) arrives. A high overlap also results in a

higher power draw as the on-time of the MCU increases. This does not impact Door-

pler as the MCU consumes only 6mW, and the accuracy benefits of a high overlap

outweigh the MCU “sleeping” benefits of low overlap.

5.5 Limitations

5.5.1 The Integrated System

We have demonstrated that Doorpler can perform doorway crossing detection and

direction estimation using just a -10dBm tone via software defined radios. However,

this prototype is both expensive and bulky. Our next step is to engineer an integrated

system based on Section 5.4.2. We would then aim to incorporate it with identity
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Figure 5.19: As the degree of overlap between FFT samples in the spectrogram decreases, the
accuracy of Doorpler starts to decrease. This is because with lesser overlap, the useful Doppler data
gets out-weighed by noisy spectrogram cells.

sensing from Doorjamb [25] or FormaTrack [125]. Such a system would take us closer

to the vision of plug-and-play doorway tracking systems [4, 25].

5.5.2 Multi-Person Crossings

Doorpler has trouble when multiple walk through the doorway one behind the other

(occlusion), a strong point of FORK [45]. However, this is typically not a common

scenario in homes (for instance, in a prior study, the median time gap between two

different individuals walking through the same doorway in an 8-room home was 10

minutes [119]).

5.5.3 Effect of Pets and Doors

Doorpler can be triggered by crossing pets as they too create Doppler. However, their

gait is different from humans [146]. We leave it as a future work to differentiate pets

based on gait.

While we do not explicitly consider door interactions in this work, we hypothesize

that Doorpler can be made to handle the common case of a person walking up to the
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door, opening/closing it and continuing motion. The more challenging scenario occurs

when the door moves simultaneously in the direction opposite to human motion,

resulting in simultaneous Doppler from both sides. However, this can potentially be

addressed by leveraging the cyclicity of human gait. We leave it as a future work to

test Doorpler with door movements.

5.6 Summary

In this paper, we present Doorpler, a low-power and real-time Doppler-based zone

occupancy sensing solution that performs crossing detection and direction estimation

using just an RF tone signal. Doorpler infers the direction of human transition by

computing the angle-of-arrival of the reflection coming from the human. We evaluate

Doorpler via a scripted study and two in-situ studies. Our results indicate that

Doorpler can achieve over 99% and 95% accuracy across all metrics of interest in

the scripted and in-situ studies, respectively. Our analyses also estimate that an

analog realization of Doorpler would consume 6.1mW of power, falling in the indoor

harvestable solar range. Our implementation of the baseband processing on an ultra

low power MCU took 13.8ms, thus having the potential to enable several real-time

smarthome applications like smart-lighting, HVAC control, etc.
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Chapter 6

Car State Sensing via the UWB

Keyless Infrastructure

Thus far we have described evidence for our claim from the perspective of one indoor

human environment – namely homes. This chapter describes how context sensing is

performed in another multi-path rich indoor human environment, namely automobiles

by sensing the state of a car – occupied, unoccupied, door open, window open, trunk

open, etc.

6.1 Introduction

The keying system in automobiles has evolved significantly from the initial usage of a

mechanical key. Car manufacturers have the passive keyless entry vision [147, 148] –

a car automatically unlocks itself when the person (who carries a compatible device

such as a key fob or smartphone) is in its vicinity, and the car can be started only

when the device is inside the car. To realize this vision, the current state-of-the-

art solution uses LF-UHF (a combination of low-frequency and ultra high frequency)

channels. However, these systems can be subject to relay attacks [148, 149] – as recent
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Figure 6.1: The UWB keyless infrastructure can enable several applications that can benefit
from a pre-existing deployment. CaraoKey detects car states using such an infrastructure.

as October 2018 [150]. Consequently, car manufacturers are now developing Ultra

Wideband (UWB)-based solutions for keyless entry [151–153]. These UWB systems

are more robust to relay attacks as the IEEE 802.15.4-2015 UWB standard [154]

explicitly incorporates timing information. In fact, the IEEE 802.15.4z Enhanced

Impulse Radio Task Group is currently tasked with developing more accurate ranging

methods with UWB keyless access as one of its main pilot applications [155]. Given

this impending installation of UWB radios for keyless entry, we ask the question if we

could multi-purpose these UWB radios – i.e. leverage them for secondary use-cases

beyond keyless entry. More specifically, we explore the possibility of using the UWB

keyless infrastructure as a sensing modality.

Sensing systems that leverage an already existing infrastructure (e.g. WiFi [55],

acoustic [16], visible light infrastructure [18], etc.) can be used in three main ways

– (i) in a standalone manner that mitigates the need for extra hardware resulting in

cost, space and/or power savings, or (ii) be used in combination with other sensing

systems to improve data fidelity, or (iii) to trigger a power hungry or more privacy

invasive sensing system like cameras. In this chapter, we are the first to explore

the UWB keyless infrastructure of automotives as a sensing modality. Such a sens-

ing system that piggybacks on the existing UWB infrastructure can enable several
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Figure 6.2: The CIR is rep-
resentative of the multipath
reflections inside the car.
Changes in this CIR are
leveraged to infer the car
state.
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Figure 6.3: An example of two
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path profile that aid in state iden-
tification. The other features in
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Figure 6.4: An UWB packet
consists of header and payload
symbols. Each UWB symbol
contains multiple narrow pulses.
The preamble pulses help com-
pute the CIR.

applications. As shown in Figure 6.1, it can potentially enable a car to detect its

state (unoccupied, occupied, door open, window open, trunk open, etc.), monitor

vital signs of the occupants, count the number of occupants, detect human movement

near the car, detect intrusion in the car as a function of several states in succession,

enable personalization, activity/gesture recognition, and so on while ensuring com-

plete privacy. These features will become increasingly important in driverless cars

and shuttles where passengers′ sense of in-vehicle security and well-being will be of

paramount importance [20]. In this research, we build CaraoKey, which explores the

possibility of inferring car states using these UWB sensors. Such a car state sensing

system could be used in a standalone manner for state-sensing resulting in cost ben-

efits for manufacturers (since sensing comes for ‘free’ from a pre-existing hardware),

or be used as a building block for other applications (for e.g. occupancy counting or

child/pet presence detection can benefit from knowledge of state), or be used along

with other sensing systems (e.g. a door contact sensor – a door contact sensor cannot

detect an intrusion when an intruder opens the door after the door was not closed

properly when the user left the car).

CaraoKey performs UWB-based sensing of car states by leveraging the channel

impulse response (CIR) computed by UWB receivers. As shown in Figure 6.2, the
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CIR is indicative of reflections in the environment, and changes as the state of the

car changes. CaraoKey captures these CIR changes to identify the car state in two

steps. First, it prunes the state space (identifies the most likely states) by correlating

the CIRs observed by the receivers with a corpus of reference CIRs. Next, it narrows

down the car state by computing a multipath profile, a measure of how the car is

reflecting in each state as observed by the UWB nodes. Figure 6.3 shows an example

of how two features contained in the multipath profile help separate some of the states.

However, CaraoKey must deal with two key challenges while building the multipath

profile. Firstly, the UWB transceivers in the car are not synchronized. Consequently,

each CIR computed by a receiver will be randomly shifted with respect to previously

computed CIRs from the same transmitter. CaraoKey addresses this challenge by

identifying the first (direct) path in the CIR, and aligning the CIRs about this path,

thus yielding a repeatable signature. Secondly, CaraoKey must be robust to changes

in the location of the automobile (i.e. the same solution must work in a multipath

rich indoor garage, a parking lot with cars on the sides, in free space, etc.). To address

this challenge, CaraoKey leverages the internal UWB nodes to build the multipath

profile which are more robust to location changes.

To test our hypothesis, we deploy 14 UWB nodes (placed inside and outside the

car) in two different configurations of a sedan. These node locations are chosen

from a superset of possible node locations [156–158]. This allows us to determine

optimal number of nodes and their locations for CaraoKey which can further motivate

manufacturers to install UWB nodes at those locations. We evaluate CaraoKey at

7 different physical locations – 2 indoor locations in a multipath rich garage, and

5 outdoor locations with cars, people, walls on the sides, etc. We show that using

8 UWB nodes, CaraoKey can distinguish between the 8 states of interest with an

accuracy of 98%. In comparison, a system that is based on received signal strength

(RSS) (such as Bluetooth), achieves only 49% accuracy. We then show that using
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only 4 nodes, CaraoKey can achieve a comparable accuracy of nearly 94%, but at

a lower power draw. With a measured power draw of 28.2mW at a 1Hz blink rate,

CaraoKey consumes 20.8Wh over a 30-day period, or runs for nearly 2.5 years (885

days) on a typical 12V 50A-hour car battery.

6.2 Background

To understand CaraoKey better, we first provide some background on the evolution

of the automobile key infrastructure and the UWB PHY Layer which CaraoKey

leverages as a sensing modality.

Automobile Key Infrastructure: Automobile keys have evolved significantly

from the traditional access control method involving physical keys. This conventional

method was augmented with remote access wherein users can remotely lock or unlock

their vehicles via a key press on an explicit key fob. In the last decade, automobile

manufacturers have started introducing a passive keyless system [159] (i.e. no user

action is required) - a convenience system which permits users to lock, unlock or start

the car in a “touch-less” manner, even if their key fobs were in their pockets. These

systems typically use a combination of LF and UHF channels to detect if the key fob

is Inside or in Close Proximity (within 2m).

However, these passive keyless entry systems can be subject to relay attacks [148,

149], as recent as a theft in October 2018 [150]. In such an attack, the attacker

positions one device in the proximity of the key (or phone), and another in the vicinity

of the car. The attacker then creates a relay channel between the key and the car

enabling the car to be unlocked and started [148]. In other words, the relay channel

makes the car falsely believe that the user is in close proximity to it. To eliminate

these attacks, car manufacturers are considering the possibility of using UWB radios

around the car for keyless entry [152, 160–162]. UWB based keyless entry systems

108



are more robust to relay attacks as they explicitly carry timing information as part

of the IEEE 802.15.4-2015 UWB standard [154] (i.e. the messages sent and received

by the UWB node in the car are timestamped). As a result, a packet coming via

the relay channel will be delayed as the valid key/phone signal which is being relayed

is physically distant. This delay allows the car to infer that the user is not in its

vicinity, thus thwarting the attack. We point out that such timestamping is now

possible in WiFi with the recent IEEE 802.11-2016 [163] which standardized a Fine

Time Measurement (FTM) protocol that enables a pair of WiFi cards to estimate the

distance between them [164]. However, these timestamps are not as accurate as UWB

systems due to the narrow bandwidth of these signals (i.e. 20 to 80MHz vs. 500MHz

to 1.2GHz). This narrow bandwidth makes it difficult to determine the exact arrival

time of the signal, especially in multi-path rich environments, yielding several meters

of error [165]. Consequently, automobile manufacturers prefer the usage of UWB for

keyless entry. Hence, in this research, we ask the question “can we leverage these

UWB nodes to sense the state of the car - viz empty, door open, trunk open, window

open, person inside, etc.?”

UWB PHY Primer: In keyless entry cars, the UWB nodes help localize the

keyfob’s position when it is in the car’s vicinity. During other times, these nodes

remain idle. In this idle time, CaraoKey uses the UWB nodes for sensing state. We

next introduce some UWB terms that will help understand the approach better.

In CaraoKey, a transmitter (referred to as a tag) periodically beacons (blinks)

an UWB message. This blink message is in the IEEE 802.15.4 UWB format [154].

As shown in Figure 6.4, an UWB Packet contains header (preamble, start of frame

delimiter, PHY header) and payload symbols. Each transmitted UWB symbol (as

seen in Figure 6.4) can be represented as [166, 167]:
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s(t) =
√
Ep

Nf−1∑
j=0

bjω(t− jTf − cjTc) (6.1)

where ω(t) denotes the UWB pulse of duration Tp, Tf is the duration of a frame

(i.e. a symbol is divided into Nf frames), bj ∈ {-1,+1} denotes the polarity code, cj

denotes the hopping sequence - cj ∈ {1,2...Nh} (Nh is the number of hopping slots) -

i.e. the hopping code determines the location of the pulse within the Nh slots of the

frame, Tc is the chip duration, and Ep represents the energy of the symbol. Figure 6.4

shows an UWB Symbol with a chipping sequence of {1,0,2,3}, and four pulses with

a polarity of +1,-1,-1,+1 respectively.

These UWB symbols travel over the air across multiple paths and reach the re-

ceiver UWB nodes (slaves). This aggregate signal received by a node from L different

paths can be represented as :

r(t) =
√
Ep

Nf−1∑
j=0

L∑
l=1

αlbjω(t− τl − jTf − cjTc) (6.2)

where αl and τl refer to the complex attenuation and time of flight of the lth path

respectively.

An UWB receiver uses the perfect periodic autocorrelation property of the known

preamble sequence [168] to compute the impulse response of the channel. Said differ-

ently, it runs a correlator that correlates the received signal with the known preamble

sequence to compute a channel impulse response (CIR) which is given by :

h(t) =
L∑
l=1

αkδ(t− τl) (6.3)

where δ(.) refers to the Dirac delta function. CaraoKey uses this CIR which is

indicative of the L reflected paths, to identify the car state by leveraging the intuition

that the different states affect the CIR differently.
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Figure 6.5: System overview of CaraoKey : Processing steps to convert the raw CIRs to car state.

6.3 Approach

6.3.1 Design Goals

As mentioned earlier, car manufacturers are considering the possibility of placing

UWB nodes in cars for keyless entry. These nodes are leveraged by CaraoKey for

car state identification. We build CaraoKey with the following design goals. (i)

Low Cost: Cost is a major factor for car manufacturers as a unit additional sensor

has a multiplicative effect on cost based on the number of produced cars. It is

for this reason that cars typically do not have pressure sensors on the rear seats.

Furthermore, an extra sensor comes with secondary costs such as wire harnessing,

installation costs etc. Hence, CaraoKey is a sensorless sensing system. (ii) Low

Power: Unlike many RF sensors deployed in buildings which have a continuous power

source, CaraoKey must run on battery power. Consequently, we want CaraoKey to

be low-power so as to run for months on a typical 12V 50Ah car battery. (iii)

Synchronization-free: We leverage UWB nodes placed in and around the car to

sense. However, these transceivers are not synchronized as the primary use case of

keyless entry does not warrant synchronization. Consequently, we want CaraoKey to

address the lack of synchronization from the computed CIRs (i.e. without increasing

the cost or complexity of the system). (iv) Robustness to location changes: As

cars move from place to place, we want CaraoKey to be robust to changes in location

- i.e. the solution should work in a multipath rich indoor garage, in free-space, with
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Figure 6.6: 14
node deployment:
We over instru-
ment a car to
identify possible
node positions.
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Figure 6.7: Connectivity test : Al-
most all the 14 nodes can deliver
UWB packets to one another ir-
respective of their position. The
links are also symmetrical with re-
spect to packet delivery.
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Figure 6.8: The average RSS for an
interior UWB transmission is higher
because of the lack of any significant
attenuating object such as a car frame.
The links are also mostly symmetrical.

cars on the sides, etc.

6.3.2 Overview

Figure 6.5 provides an overview of CaraoKey’s working. As no automobile that

performs UWB-based passive keyless entry exists yet in the market, CaraoKey over-

instruments a car with 14 nodes placed in and around the car (Figure 6.6). With this

over-deployment, CaraoKey first selects a transmitter based on connectivity (UWB

packet deliver ratio), strength of the received packet and location of the nodes. Next,

the resolution of each CIR computed by a receiver is increased by interpolating and

upsampling in the frequency domain to aid in accurate alignment (Section 6.3.5) and

feature extraction (Section 6.3.7). Thirdly, in the absence of transceiver synchro-

nization, the CIRs computed by a receiver are randomly shifted with respect to one

another. In the alignment step, each receiver aligns its CIR by pivoting its direct

path at a reference tap. Next, CaraoKey must be robust to location changes as it

is deployed in automobiles. In receiver selection, CaraoKey narrows down the set

of potential receivers to those nodes that are more robust to location changes. We

point out that the transceiver selection is a one-time event and is not repeated at
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Figure 6.9: CIR upsampling:
Each receiver upsamples its CIR
via an FFT. This takes the dis-
crete CIR closer to its analog
waveform, aiding CIR alignment
and feature extraction.
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Figure 6.10: CIRs pre-
alignment: The CIRs
computed by a receiver are
misaligned due to the absence
of transceiver synchroniza-
tion and receiver hardware
imperfections.
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Figure 6.11: CIRs post-
alignment: Each receiver
performs CIR alignment by
identifying the tap correspond-
ing to the first (direct) path,
and shifting it to a pivot tap.

runtime. Finally, having chosen the transceivers of interest and converted the CIRs

to a desired format, CaraoKey is ready to identify the car state. It does so in two

phases. In the first phase, it identifies the K-most likely states by correlating the

CIRs observed by the nodes with a reference corpus. In the second phase, features

are extracted from the observed CIRs of the nodes– referred to as multipath profile.

This multipath profile is used to identify the car state from the K-shortlisted states.

With this overview, we provide details of CaraoKey’s working.

6.3.3 Connectivity Test – Transmitter Selection

There exists no automobile yet in the market that performs UWB-based passive

keyless entry. Hence, in order to identify node locations to perform sensing of car

states via UWB nodes, we start from first principles. In other words, we start by over-

instrumenting a car with 14 nodes, as shown in Figure 6.6, and then narrow down

the node positions of interest for car-state sensing. These 14 nodes are distributed

both inside and outside the car as UWB nodes for keyless entry are expected to be

placed both inside and outside to precisely localize the access device. In the keyless

system, these nodes help the car unlock itself and set itself up by adjusting seats,

mirrors, powering on the rear-view camera, HVAC, etc., depending on the “profile”
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of the associated person who is in the vicinity of the car, and also start the car only

when the keyfob is ascertained to be inside the car. The 14 UWB nodes are deployed

as follows: four exterior bumper nodes (nodes 1, 2, 5 and 6) - i.e. two nodes on either

side of the front and rear bumpers, two exterior nodes at the center top on each side

(nodes 3, 4), four interior nodes on the four interior corners (nodes 7-10), a node on

the rear-view mirror (node 0), a node each behind the glove compartment (node 11),

on the interior light switch (i.e. center rooftop) (node 12), and inside the trunk (node

13).

As a first step, in nodes selection, we test connectivity - i.e. we ask the question,

“which nodes can communicate with which other nodes in the car?” For this, we

park the car in an indoor garage, and ask each of the 14 nodes to send 6000 blinks

sequentially, and compute the blink delivery rate at each node. Figure 6.7 shows the

connectivity matrix (i.e. blink delivery ratio between every pair of nodes) from our

test. We observe that most nodes can communicate with one another except those

in the trunk and the front bumper whose connectivity suffers because of the distance

and presence of multiple signal attenuators along the path(s). From Figure 6.8, we

also observe that the RSS for an interior transmission is on average much larger than a

transmission from an interior (or exterior) node to an exterior (or interior) node, (or)

between two exterior nodes. This is primarily because of the lack of any significant

attenuating objects for an indoor transmission such as metal (car frame). We also

observe link symmetry - i.e. given a pair of nodes Ni, and Nj, the RSS and blink

delivery rates in link L(Ni,Nj) is similar to the one in link L(Nj,Ni).

With these observations, we set the node on the rear-view mirror (node 0) as the

transmitting node (tag), and the remaining nodes as receivers (slaves). We choose

node 0 as the transmitter for the following reasons : (i) it can communicate with all

the nodes in the car at reasonably high power, (ii) it creates a symmetric sensing

region in the car from an experimental standpoint, and (iii) every car has a rear-view
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mirror.

6.3.4 CIR Upsampling

As mentioned earlier, each node that receives a blink (transmitted by node 0) will

have an associated CIR. Given a Nyquist rate of 1GHz, each CIR tap is 1ns apart. We

increase the resolution of this CIR by upsampling [165, 169]. This upsampling process

takes us closer to the original analog waveform, and thus helps in more accurate

alignment (Section 6.3.5). Figure 6.9 shows an example of upsampling. Specifically,

we take a fast Fourier transformation (FFT) of the time-domain CIR y. Next, we

zero-pad this frequency domain signal by factor of N*(K-1), where N is the number

of taps in the CIR and K is the upsampling factor. Finally, we obtain the upsampled

CIR ŷ by taking the the inverse-FFT of the upsampled frequency domain signal. Said

formally,

yfreq = fft(y) (6.4)

ˆyfreq = [y
(1)
freq, ..., y

(N/2−1)
freq , 0(1), ..., 0(N(K−1)), y

(N/2)
freq , ..., y

(N)
freq] (6.5)

ŷ = ifft( ˆyfreq) (6.6)

6.3.5 CIR Alignment

As the transmit and receive nodes are not synchronized, the CIR frames computed by

a receiver node are randomly shifted with respect to one another. Figure 6.10 shows

this misalignment in 5 CIRs computed by a receiver node. While it is possible to

mitigate this by synchronizing the nodes via a common reference clock, it will result

in added cost and complexity as the keyless setup does not require synchronization for

its primary use-case. Consequently, each node performs alignment by identifying an

“event” that occurs in all CIRs independent of the environment, and then shifting the
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location (tap) of that “event” to a reference pivot tap. Said differently, each CIR is

shifted differently with the degree of a CIR shift depending on the tap corresponding

to the arrival of the first (direct) path. As a result of this shifting, the first path

of every CIR computed by a node now occurs at the pivot. We point out that this

first path is not necessarily the strongest path and that the nodes in the bumpers

can also observe the first path, albeit heavily attenuated. Figure 6.11 shows the

aligned version of the 5 misaligned CIRs shown in Figure 6.10. The tap location

corresponding to the arrival of the first path, referred to as First Path Index (FPidx) is

typically exported by UWB chips such as the Decawave DW1000 [170]. This first-path

based alignment benefits from upsampling as the FPidx is at a much finer resolution

of 15.625ps [170] (compared to the raw CIR 1ns tap resolution). We also verified

the alignment process by computing the “lag” between any two CIRs received by a

node via cross correlation. We observed that the “lag” corresponds to the difference

between their first path indices. Formally, we obtain the aligned CIR ŷ’(t) where t

refers to a tap as :

ŷ′(t) = ŷ′(t+ ∆), (6.7)

where ∆ = FPidx − Pivot (6.8)

6.3.6 Receiver Selection

Having aligned the CIRs received by a node with respect to each other, we next ask the

question, “which of the remaining nodes can actually become receivers?” To answer

this, we first park the car at 4 different locations - two spots in an indoor garage,

an outdoor location with cars on either side and a free-space setup (i.e. the car has

nothing in its vicinity). We set node 0 to transmit and the rest to receive. In each

location, we collect CIRs of different car states (empty, occupied, door, window and
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Figure 6.12: Raw CIRs for an empty car
as observed by an interior and an exterior
node at 4 different locations. The interior
nodes are more robust to location changes
than the exterior nodes.
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Figure 6.13: For each state, the CIRs collected
in a location (outdoor1 in this example), cor-
relate highly with CIRs collected at other lo-
cations for the interior nodes but not for the
exterior nodes.

trunk open). Next, we compute the average Pearson correlation coefficient between

the CIRs (of a given state) computed in free-space (called Outdoor1 ) and all the 4

locations, for each of the internal and external nodes. This correlation coefficient R̂

between two CIRs x and y of duration t taps is given by:

R̂xy =

∑t
i=1(xi − x)(yi − y)√∑t

i=1(xi − x)2

√∑t
i=1(yi − y)2

(6.9)

where xi, yi refer to the CIR amplitude in the ith tap of CIRs x and y respectively,

and x, y refer to the sample mean of the two CIRs.

From Figures 6.12 and 6.13, we observe that irrespective of the location, the

CIR of the internal nodes correlate much higher than their external counterparts.

This is because the internal nodes are more robust to location changes than the

external nodes. The robustness arises primarily because the metallic car frame acts

like a shield from outside reflections. When the doors/windows are open, the exterior

reflections potentially incident on some nodes (depending on the angle of reflection)

only affect a small portion of the CIR. Consequently, the CIRs of a state continue to

correlate better with itself than any other state. Furthermore, we also look only at
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Figure 6.14: CaraoKey prunes the state space
by choosing the Top-K most likely states via a
Maximum Likelihood Approach based on CIR
correlation with a reference corpus.

Figure 6.15: CaraoKey computes a multipath
profile by extracting peak-based features from
each node’s observed CIR.

a narrow CIR window of interest after the arrival of the direct path (Section 6.5.7).

Consequently, given the increased robustness to location changes, we use the internal

nodes as receivers.

6.3.7 State Identification

CaraoKey leverages the CIR to identify the car state. At a high level, it uses the fact

that the changes in a car state (door open, window open, trunk open, person inside,

etc.) alter the multipath reflections inside the car, which is observed in the CIR. For

example, an open door will eliminate (or create) reflections that previously existed

(or did not exist). Such reflection changes are leveraged to infer the state. CaraoKey

performs this state inference in two steps. In Step 1, each node correlates its observed

CIR with reference CIRs (in a maintained corpus) to identify the top-K likely states

(Figure 6.14). Having pruned the state space, CaraoKey next extracts features from

the CIR – referred to as the Multipath Profile (Figure 6.15), in order to identify the

car state. We next explain how CaraoKey differentiates the states of interest shown

in Figure 6.16.
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Figure 6.16: CaraoKey attempts to distinguish 8 car states – empty, front and rear door open, front
and rear window open, trunk open, and a person in the front or the rear of the car.

Step 1: Maximum Likelihood Based State Pruning:

CaraoKey leverages the intuition that some states can be captured better by some

nodes, while other nodes observe a CIR similar to Empty. We capture this intuition

in Step 1 via a Maximum Likelihood approach. Here, given an observed CIR (by

each node) due to a transmitted blink, each node votes on a particular state based on

correlation. CaraoKey then computes the likelihood of being in each of the possible

states, given this vote. It then fuses the likelihood estimates from all the nodes, to

obtain the top-K (we use K=4) most likely states. This is achieved in two phases : a

training phase and a testing phase, as shown in Figure 6.14.

Training Phase: We explain this phase by first defining some notations. Let R

= {R1, R2,..., Rn} be the set of n (receiver) nodes deployed in the car. Let S = {S1,

S2,..., Ss} be the set of s car states of interest. Let Ci = {CS1
i , CS2

i ,..., CSs
i } (1≤i≤n)

be a corpus of reference CIRs maintained for each state by a receiver Ri. Each node

Ri first builds a likelihood matrix LMi of dimensions s × s. Each cell (x,y) of the

likelihood matrix LMi essentially denotes the probability of the car being in state Sx,

when node Ri votes that the observed CIR is in state Sy (where Sx, Sy ∈ S)’. We next

explain how a node votes and builds the likelihood matrix.

Given a CIR of state Sx ( Sx ∈ S), a receiver Ri correlates this CIR with (other)
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CIRs in its corpus Ci, and computes the mean correlation with the reference CIRs

of each state. This results in a correlation vector CVi of dimension s×1. Node

Ri then chooses the state of maximum correlation Sxmax(i) as its vote. Formally,

Sxmax(i) = argmax(CVi). This process is repeated for m different CIRs (m = 50

in CaraoKey) of state Sx by the node Ri, resulting in a maximum vote vector Mx
i

= [Sx,1max(i), Sx,2max(i),...,S
x,m
max(i)]. From this vector, node Ri computes a row of the

likelihood matrix which can be formally represented as P(Sx|Sy), ∀ Sy ∈ S, where

P(Sx|Sy) =
# of occurrences of Sy in Mx

i

m
. Anecdotally, this vector can be understood as:

“the probability of being in state Sx (say Empty) when the node votes Empty, node

votes front door open, node votes front window open etc. A node that can detect a

particular state Sx well will have a high LMi(Sx,Sx), while a node which cannot detect

a particular state well will have LMi(Sx,Sx) similar to LMi(Empty,Sx) and LMi(Sx,

Empty). This process is repeated for each of the s states, and for each of the n nodes,

resulting in n s×s likelihood matrices.

Testing Phase: In the testing phase, each node Ri correlates its observed CIR

with the corpus (as in the training phase), and makes a vote based on maximum

correlation (Smax(i)). From this vote, Ri obtains a likelihood vector (a column of the

likelihood matrix), LVi. Formally, LVi = LMi(Sx, Smax(i)) ∀ Sx ∈ S. This s-element

vector essentially says : ‘when node Ri votes Smax(i), how likely is the car to be in

each of the s states. CaraoKey repeats the process for each of the n nodes and then

fuses the likelihood vector from each node via a vector sum (i.e. the probability value

of being in each state according to every node is summed). CaraoKey then passes

the top-K most likely states for this observed CIR, on to the next step.

Step 2: Multipath Profile based State Inference:

In this step, CaraoKey identifies the state of the car. It does so by extracting features

from the CIRs observed by the nodes – referred to as the multipath profile. We next

120



Experimental 
Car

Indoor Garage

Location 2

Experimental 
Car

Indoor Garage

Location 1

Location 3

Outdoor Parking Lot 1

Experimental Car

Location 4

Outdoor Parking Lot 2

Experimental Car

Walking 
person

Location 5

Outdoor Parking Lot 3

Experimental Car

Location 6

Outdoor Parking Lot 4

Experimental Car

Location 7

Outdoor Parking Lot 5

Experimental Car

Concrete
wall

Figure 6.17: Experimental locations and scenarios: We evaluate CaraoKey at 7 different locations
(two indoors and five outdoors), under various scenarios. Locations 1 and 2 are different indoor
environments of varying multipath, in Location 3 the car is parked in free space, in Location 4 there
is a person walking on the side, in Locations 5 and 6 car(s) are parked on one and both side(s)
respectively, and in Location 7, the car is parked next to a concrete wall.

explain how this multipath profile is computed.

As mentioned earlier, the CIR is representative of how the environment impacts

the transmitted signal. The peaks in the CIR represent the reflections from the envi-

ronment. These peaks look different when the state of the car changes. Consequently,

CaraoKey performs “peak-driven” feature extraction to build the multipath profile.

These peak-based features are extracted based on position and amplitude. More pre-

cisely, as shown in Figure 6.15, each node extracts the following features from its

observed CIR – (i) ratio of the power (amplitude) of the first p peaks - (P1

P2
, P1

P3
, ...,

P1

Pp
), where Pk refers to the kth peak ordered by position, (ii) ratio of the power of

the top p peaks - (
P ′
1

P ′
2
,
P ′
1

P ′
3
, ...,

P ′
1

P ′
p
), where P’k refers to the kth peak ordered by power

and P’1 = Pmax, (iii) relative (tap) distance between the first p peaks (T2 - T1, T3 -

T1, ..., Tp - T1), where Tk refers to the tap of the kth peak ordered by location, (iv)

relative (tap) distance between the top p peaks (T’p - T’1), where T’k refers to the

tap of the kth peak sorted by power such that T’1 = Tmax, (v) power of the maximum

valued peak (Pmax), (vi) position of the maximum valued peak (Tmax). (CaraoKey

uses p = 3). Figure 6.3 shows an example of a pair of features – P1

P2
and

P1′
P2′

from

two nodes helping separate many of the states. By adding the remaining features
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Figure 6.18: Internals of
a CaraoKey node. Data
and control messages are
transferred between 14 such
nodes and a host via a USB
hub.

Figure 6.19: CaraoKey achieves
98% accuracy by performing
a leave-one-out cross validation
(i.e. by training on 6 locations
and testing on the remaining 1
location).

Figure 6.20: Pure location inde-
pendence : CaraoKey achieves
over 92% average state classifi-
cation accuracy by training on
just 1 location (with cross vali-
dation).

and nodes, CaraoKey starts to better distinguish the states of interest. Furthermore,

in Step 1, the correlation values obtained when the test CIR is correlated with the

corpus, are reduced to a single value (max). In this step, the correlation values are

also used as features. More precisely, let c1
i , c2

i , ..., csi be the mean correlation value

obtained by node Ri on correlating the test CIR with elements of the corpus CS1
i ,

CS2
i ,..., CSs

i respectively. As the correlation values from the different nodes are not

in the same scale (i.e. the correlation values are locally ordered per node, but not

globally ordered across nodes), we compute a relative correlation vector : [c1
i - c1

i , c2
i

- c1
i , ..., csi - c1

i ]. Said differently, the relative correlation vector is a measure of change

relative to a reference state, namely the empty state (i.e. c1
i is mean correlation with

respect to the corpus of empty CIRs).

These features are computed by each of the n nodes, and are together referred to

as multipath profile. The resulting 147-element feature vector is next passed through

a Random Forest Classifier (100 estimators) which identifies the car state from the K

shortlisted states.
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6.4 Implementation and Experimental Setup

Implementation : Figure 6.18 shows an overview of our implementation. To imple-

ment CaraoKey, we program 14 Radino32 Spider boards [171]. Each board consists

of a Decawave DW1000 transceiver chip [170] that complies with the IEEE802.15.4

UWB standard [154], and an STM32L151 microcontroller [172] to control the chip.

These boards are programmed to output a 250-tap CIR at 33Hz. Each tap is rep-

resented as a 4-byte complex number from which the amplitude is computed as its

magnitude. We point out that CaraoKey only uses 25 of the 250 taps. However, we

read out 250 taps to perform sensitivity analysis (Section 6.5.7). These “truncated”

CIRs are read from each Radino board via its serial port that is connected to a host

laptop via a Silicon Labs CP2102N USB-UART bridge [173] and a USB 3.0 hub.

These CIRs are upsampled by a factor of 4 in the host laptop. Each board is ter-

minated by a 3.3dBi omni-directional antenna [174]. Each node is powered via USB

through an 1800mAh SM3921 power bank [175], and placed inside a plastic enclosure.

The boards are programmed to use Channel 5 of the UWB standard - occupying the

6.24 to 6.74 GHz frequency band. We use a 1024-length preamble with a 64MHz

pulse repetition frequency. Finally, the CIRs that are read onto the host laptop are

processed (Section 6.3) in Python.

Experimental Setup : To test our hypothesis, we mount the 14 nodes as previ-

ously shown in Figure 6.6, on two configurations of a Volkswagen CC. We place the

instrumented cars at 7 different locations of varying multipath – two indoors (L1 and

L2) (in a multipath rich garage) and five outdoors (L3-L7), as shown in Figure 6.17.

The five chosen outdoor locations were all different and tested different factors. In L3

the car was parked in free space (i.e. no person or vehicle besides the instrumented

car), in L4 a person was walking close (roughly 50cm) to the car, in L5 a car (SUV)

was parked on one side, in L6 (different) cars (a hatchback on the left, a sedan on the
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Figure 6.21: CaraoKey outper-
forms baselines that use RSS
and the exterior nodes by 49%
and 28% respectively. These
baselines suffer from lack of
multipath information and lo-
cation dependence respectively.
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Figure 6.22: As the number of
training locations increase, the
accuracy increases because of
the observation of a similar sce-
nario in training. CaraoKey
achieves 92% accuracy with
just 1 training location.

Figure 6.23: As the number
of internal receivers increase,
the accuracy increases. With
just 3 receiver nodes (one each
in the front, rear and trunk),
CaraoKey can achieve nearly
94% accuracy.

right) were parked on both sides, and in L7 the car was parked next to a concrete wall.

In each location, we collect 3 minutes of data for each state – empty, front door open,

front window open, rear door open, rear window open, person in front, person in back

and trunk open. The experiments for all states (except empty and trunk open) were

performed on the left-side of the car alone. This is because of the symmetric nature of

the setup. For the person inside experiments, two different people sat inside the car.

During the study, other vehicles and people moved freely in the adjacent lanes of the

parking lot (or) adjoining roads. We evaluate CaraoKey in terms of two metrics – ac-

curacy and power consumption. To measure power consumption, we use the Keysight

N6705B DC Power Analyzer [176]. From a power dissipation standpoint, there are

no health concerns associated with CaraoKey as it is UWB-standards compliant. Its

Effective Isotropic Radiated Power after accounting for antenna gain and cable loss

is just 79µW. In comparison, a typical 5GHz WiFi access point transmits at 200mW

which is nearly 2500x higher. (FCC limit is 1W [177]).
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6.5 Evaluation

6.5.1 System Accuracy

We first evaluate CaraoKey’s ability to differentiate the states of interest. In this

evaluation, we first perform a leave-one-out cross validation (i.e. train on 6 locations

and test on the remaining 1 location), and report the average. From Figure 6.19,

we observe that CaraoKey has an average state classification accuracy of about 98%

(across all states). Each state individually also has an average classification accuracy

of nearly 95% and above. At times, the Empty state tends to get confused with one

of the window open states (or vice-versa), but not the door open states. This is be-

cause doors (unlike windows) are typically made of metal, and hence their open/close

actions affect the multipath profile more drastically, thus making them more distinct

from the empty state. Figure 6.20 shows the individual state classification accuracy

under pure location agnosticism. Here the location under test uses training data from

just one location. Each cell in the matrix is the average state classification accuracy of

all 42 possible combinations per dataset (7C1×6) of training on 1 location, and testing

on one other location. Even under such conditions, CaraoKey achieves an average

state classification accuracy of 92% (across all states). This accuracy is lower than

the leave-one-out scenario because of the absence of observation of similar scenarios

in training. CaraoKey increases the accuracy by adding more diverse training data.

However, the accuracy can also be improved by increasing the number of transmitters

(i.e. a round-robin set of transmitters). If N is the number of nodes in the car, then

this creates N(N-1)/2 links that can be sensed, instead of (N-1), albeit at the cost of

complexity. We leave it as a future work to increase the number of transmitters.
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6.5.2 Baseline Comparison

We compare CaraoKey’s performance with two baselines – an RSS-based baseline

and a CaraoKey variant that uses only the exterior nodes. In this comparison, all

systems employ leave-one-out cross validation.

RSS-based baseline: This baseline is representative of keyless systems that only

use RSS information which are currently exported by technologies like Bluetooth [178].

Using RSS alone, the average accuracy drops down to nearly 49%. This is because

CaraoKey uses features derived from the CIR which provides information about the

multipath within the car. On the other hand, RSS is a single aggregate metric with

no information about individual paths incident on a receiver, and which also does not

change significantly between states (roughly 3dBm). As seen in Figure 6.21, even the

top-5 classification accuracy (the fraction of blinks where the ground truth state is

in the top-5 most likely states of the classifier) of an RSS-based system is lower than

CaraoKey’s top-1 accuracy.

CaraoKey with exterior nodes : As CaraoKey only uses internal nodes (Sec-

tion 6.3.6), we compare its results with a CaraoKey variant that only uses the external

nodes. As seen in Figure 6.21, using the exterior nodes causes the average accuracy to

drop to 70%. This is because as mentioned earlier the exterior nodes are less robust

to location changes than the interior nodes. Hence, at two different locations, a given

state Si looks “more similar” to another state Sj, than itself. However, the external

node variant still has a higher (top-1) accuracy than the RSS-baseline as it uses the

CIR which contains more details than the aggregate RSS metric.

6.5.3 Effect of Number of Training Locations

We evaluate how CaraoKey’s accuracy changes as we vary the number of training

locations. If t is the number of training locations, we generate all 7Ct×(7-t) scenarios
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of training and testing, and compute the classification accuracy across all states, for

each scenario, per dataset. From Figure 6.22, we observe that even if we train on

just one location (i.e. pure location independence), we can obtain an average state

classification accuracy of 92%. We also observe that as we start to increase the number

of diverse training locations, the accuracy starts to increase, with over 95% accuracy

by training on any two locations. With 50 training CIRs per state (Section 6.3.7), 14

states (states of interest can happen on either side of the car) and 6 training locations,

the total training time for CaraoKey is only 127s (=50
33
×14×6). We point out that

such a training can be performed on only one model of a car (in the factory), and not

necessarily on every shipped model of a car.

6.5.4 Effect of Number of Internal Nodes

We next study how the number of internal receiver nodes affects the accuracy of

CaraoKey. This attempts to answer the question “given a node budget by a car

manufacturer, what is the highest achievable state classification accuracy?” For this

evaluation, we vary the number of nodes and perform a leave-one-out cross validation.

Furthermore, for a given node count (N) we take the (a)symmetry properties of our

experiments into account. For example, as we experiment with only the left front

door open, and in the scenario where we consider only one front node, we emulate

the effect of either door being open by taking the average accuracy of both the front

nodes. Hence, say for N = 1, the highest average state classification accuracy (ASCA)

is given by max ( ASCA(Node 7,Node 8), ASCA(Node 9, Node 10), ASCA(Node11),

ASCA(Node12), ASCA(Node13). From Figure 6.23, we notice that in general the

ASCA increases as we add more nodes. We also observe that with just 3 internal

nodes, CaraoKey can achieve nearly 94% accuracy in the best arrangement of the 3

nodes. Figure 6.23 also shows the node combination which gives us the highest ASCA
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for a given node count. We observe that the trunk node is the most important receiver

node, if only one receiver is permitted. This is because it is central and can receive

reflections from both sides of the car, and the trunk itself. Similar to Section 6.5.1,

we point out that the accuracy for a given receiver node count can potentially be

improved by increasing the number of transmitters, thus creating more sense-able

links.

6.5.5 Power Analysis

We next measure the power consumption of CaraoKey. The average current con-

sumption of a transmitter and receiver during a transmit and receive event is 80.5mA

and 94mA respectively. Figure 6.24 shows the detailed breakdown of the current

consumption measured via the Keysight N6705B DC Power Analyzer [176] during a

transmit and receive event. We make two main observations: (i) in addition to the

active current draw, the idle/listening current draw for the receiver is much larger

than that of the transmitter (154mA vs. 22mA) because of the power-hungry cor-

relator that computes the CIR, and (ii) during the actual UWB transmission (or

reception) of the packet, the current draw varies. This is because different parts of

the UWB packet (Figure 6.4) are modulated differently. By duty-cycling the device

(sleep current draw is 2µA) between the blinks, the average current consumption of

the transmitter and receiver reduces to 12.6mA and 57.8mA respectively. This is seen

in Figure 6.25 as power draw of 63mW and 289mW respectively (current draw * 5V),

at 33Hz. We wake the receiver 10ms before scheduled wake-up time to account for

lack of synchronization. When the 7 interior receivers are used along with the single

tag, the total current consumption is 417.2mA (= 12.6 + 57.8*7). However, from

Section 6.5.4, we observed that we can obtain 94% accuracy using just 3 receivers.

This results in a current draw of 186mA (= 12.6 + 57.8*3). For a typical 12V 50Ah
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Figure 6.24: From our measurements, a CaraoKey transmitter draws an average of 80.5mA during
transmission, while a receiver draws an average of 94mA during reception. The receiver draw is
higher due to the preamble correlation for computing the CIR.

car battery, the system can be powered up for only 27 days.

However, CaraoKey can reduce power consumption by lowering the blink rate

from 33Hz. This is called down-sampling in slow time [179]. The required operational

blink rate of CaraoKey depends on the duration of the event being detected. In other

words, a single blink must exist within the start and end of an event (else the event will

be missed). For example, as it takes a minimum of 3.5s (empirically determined) to

perform an event such as (open door, take an object from the seat and close the door),

CaraoKey is operational so long as a blink occurs within this 3.5s event window. This

permits CaraoKey to have an operational blink rate of 0.3Hz. Figure 6.25 shows the

transceiver power draw (= current draw * 5V) and lifetime of CaraoKey on a 12V,

50Ah car battery, as we lower the blink rate from 33Hz to 1Hz. For a conservative

blink rate of 1Hz (which is higher than the desired 0.3Hz), a 3-receiver CaraoKey now

consumes 28.2mW of power, yielding a lifetime of 885 days on the same car battery.

This is also interpretable as a power draw of 20.8Wh over a 30-day period (a metric

of interest for car manufacturers).
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Figure 6.25: A 3-receiver, 33Hz
blink rate CaraoKey lasts only 27
days on a 12V 50Ah battery. By
lowering the blink rate to 1Hz,
the lifetime increases to nearly
2.5 years.
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Figure 6.26: As a CIR is down-
sampled in fast time, the accu-
racy starts to decrease. This is
because the CIR peaks begin to
fuse or get missed.
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Figure 6.27: At low CIR win-
dow lengths, an insufficient
number of separable peaks be-
tween states affects accuracy.
At high window lengths, noise
affects the correlation.

6.5.6 Effect of Tap Resolution

CaraoKey uses the DW1000 chipset which has a 1ns tap resolution. We study

CaraoKey’s working as we lower this tap resolution. This is referred to as fast time

down-sampling [179]. This can potentially further reduce power consumption as it

places a lower stress on the ADC. We simulate a fast-time down sampling rate of N,

by taking every Nth CIR tap. From Figure 6.26, we observe nearly 90% accuracy after

downsampling by a factor of 2 (= increasing tap resolution to 2ns). However after

that, we notice that the accuracy decreases rapidly as we downsample in fast time.

This is because multiple peaks start to fuse as one (or are missed), and the multipath

profile that is leveraged to distinguish states becomes no longer distinguishable.

6.5.7 Effect of CIR Length

CaraoKey looks at a window of 100 taps, (roughly 6m two-way distance after upsam-

pling) to compute the multipath profile. We next study the effect of tap duration,

as a smaller window places lesser stress on execution. We observe that as we start

to shrink this tap window, the accuracy starts to decrease. This is because with a

smaller window there are lesser peaks to build the multipath profile and the profile

for the different states start to look similar to one another. Similarly as we start
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to increase the window length the accuracy begins to decrease. This is because the

“noisy” part in the tail of the CIR begins to dominate, and the CIRs (of different

states) start to correalte with one another.

6.6 Discussion

Effect of Configuration Changes: The multipath profile can be affected by con-

figuration changes - i.e. changes in the positions of the seats, mirrors, etc. However,

this is typically not an issue, as most modern cars have a notion of “memory” [180].

Consequently, whenever the car is locked, the car can move its seats and mirrors back

to its preset configuration. Similarly, when the car is unlocked, the car can adjust

itself back to the user’s configured location.

Effect of Objects: We evaluate CaraoKey’s state identification in the presence

of objects inside the car. With small commonly used objects like backpacks, the

accuracy is not impacted. With a large moving box placed inside the car, CaraoKey

mis-classified the empty car to have a person inside 40% of the time. This is addressed

by fusing data from multiple CIRs and measuring the variance of a given tap (across

time). Intuitively, over time, a human inside the car shows some form of macro (limbs

movement, head movement) or micro (chest displacement due to breathing or heart

rate) movement, while an inanimate object shows no such movement.

Multiple Transmitters: CaraoKey uses a single transmitter (tag). With N

nodes, (N-1) RF links are treated as sensors. However, if the N nodes also transmit

in a round-robin manner, then N(N-1)/2 links can be treated as sensors. This can

potentially improve the robustness of the system at a lower node count, and lower

average power draw (since an UWB transmitter draws lesser current than an UWB

receiver). We leave it as a future work to make CaraoKey multi-tag based.

Use of Dedicated Sensors: Car states can be determined via the use of ded-
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icated sensors too (e.g. contact sensors for trunk and doors, glass break sensor for

windows, pressure sensor for occupancy). However, besides primary and secondary

costs these systems have other drawbacks – e.g. a door contact sensor cannot detect

an intrusion which occurs when the door was not closed properly when the user left

the car, glass break sensor cannot detect if the window is open/closed, and the occu-

pancy sensor is only in the front seats (for cost reasons). Furthermore, from a logistical

standpoint in automotives, even if door open/close information can be determined by

the door contact sensor, CaraoKey still needs to ”understand” the door state be-

cause the keyless infrastructure is independent from other sensor systems (which are

typically developed by different manufacturers). This ”self-compiled” knowledge of

car states can be used as the building block for other sensing applications (e.g. child

presence detection or vital signs monitoring) based on keyless infrastructure.

Effect of multi-state and sub-states: In the current version, we can only detect

a single state. This suffices for many practical scenarios involving a parked car, where

unexpected states will happen in succession and not altogether. For e.g. during an

intrusion, an intruder will open/break window followed by opening a door. However,

a car can potentially be in more than one state or can have partially open doors,

windows too. This can be handled in two ways - (i) training for combination of states

or adding sub-states, or (ii) using the probability values of the classification process

to identify the multi-state or sub-states possibility. We point out that CaraoKey

is the first system that shows the feasibility of using the keyless infrastructure of

automobiles as a sensing modality via a state sensing application. However, for any

practical solution, we need to maintain a balance between usability and complexity

of the developed system. As a future work, we plan to work with car manufactures

to identify the limited number of additional states that suffices to realize a practical

solution.
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Other applications Using the Infrastructure: In this paper, we introduce

a novel application of car state sensing using the UWB keyless infrastructure that

will be present in future cars. However, this is just one application. Numerous other

applications can be enabled using this infrastructure such as vital signs monitoring,

person counting (for shared car applications), emotion recognition, distracted driving

detection, etc.

6.7 Summary

In this chapter, we present CaraoKey, a sensorless sensing system that estimates the

car state via the UWB keyless infrastructure. It does so by leveraging the multipath

information contained in the CIR computed by an UWB receiver. We implement a 14-

node setup and evaluate it in 7 different locations and scenarios. Our results indicate

that CaraoKey can detect the car state with 98% accuracy using 8 nodes, and 94%

accuracy using just 4 nodes while drawing 28.2mW of power, at 1Hz blink rate. These

numbers can potentially be further improved by using multiple RF links. CaraoKey

is an example of using the UWB keyless infrastructure as a sensing modality. This

infrastructure can also be used to build several other applications like monitoring the

vital signs of the occupants, performing occupancy counting, in-car activity recog-

nition, etc. Such features will become increasingly useful in future driverless cars,

shuttles and taxis where passengers′ in-vehicle security and well-being will become

increasingly important.
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Chapter 7

Conclusion

This dissertation introduces novel algorithms and software-hardware systems that

leverage radar principles to sense the state of two private indoor human environments

– the home and the car. The technologies presented in this dissertation provide

evidence that we can sense the occupancy of rooms in a home, the corresponding

identity of the occupant, and the state of a car (viz empty, occupied, door, window or

trunk open, etc.) by only leveraging the RF reflections coming from the environment.

All this is done in a privacy-preserving (i.e. without cameras or microphones), device-

free (i.e. without placing any onus on the user to carry or wear a device), low-

power and space-compliant manner in complex multipath-rich enclosed environments.

From a ubiquitous sensing perspective, this dissertation introduces radars as context

sensors for multipath rich indoor human environments. From a wireless networking

perspective, this dissertation builds on the recent trend that wireless media which

has thus far been predominantly used as a means to communicate, can also be used

as a sensing medium. In this regard, it also introduces a new sensing modality

in automobiles. From a biometric standpoint, this dissertation introduces a new

(stronger) weak biometric namely ”body shape” that can be used to separate small

populations of people. From a tracking perspective, this dissertation introduces and

134



solves a new form of tracking called transition tracking which is representative of

many real-world applications that warrant sensing in transition spots.

Our hypothesis was that we could sense the state of a private indoor human envi-

ronment in a non invasive, device-free, low power manner with higher accuracy than

state of the art, by applying radar principles and techniques. To test this hypothesis,

we built Panoptes, a suite of solutions containing FormaTrack, TransTrack, Doorpler

and CaraoKey. In Chapter 3, we explained FormaTrack, a radar based system for

room-level tracking of occupants based on their body shape. We showed that body

shape is a better weak biometric than state-of-the-art. We computed this body shape

via a radar sensor that computed a reflection profile, a measure of how different parts

of a person’s body reflects the transmitted RF signal. We observed that a simple

radar that measures 1-dimensional reflected energy which does not at all resemble

the 3D imaging output produced by sub-millimeter wave radars such as an airport

scanners, is sufficient to distinguish between people in a home with a higher accuracy

than existing systems. However, like any piece of hardware, FormaTrack can also

produce sensing errors. To prevent sensing errors from becoming tracking errors, we

designed TransTrack in Chapter 4. TransTrack is a multi-target tracking algorithm

that deals with the challenges of only observing transitions between one state to an-

other. TransTrack applies penalty functions to find the minimum number of targets

that can explain the sensor data. This is because a conventional maximum likelihood

solution will always overestimate the number of targets in the tracking region. In

Chapter 5, we presented Doorpler, a Doppler-radar based system for detecting if a

room is occupied or not (i.e. state sensing without identity). Doorpler relied on the

Doppler reflections from the crossing human, and was designed to adhere to the time,

space and power requirements of the application. Finally, in Chapter 6, we presented

CaraoKey, a system that uses the existing UWB keyless infrastructure in cars to

sense its state. It does so in a manner that is robust to location changes and does
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not warrant any form of synchronization between the transceivers.

7.1 Looking Beyond

The techniques provided in this dissertation have broader applicability than the use-

cases mentioned here. For example, the applicability includes :

• Internet of ”Intelligent” Things : The Internet of Things era has resulted in

connectivity provided to several everyday objects such as appliances, doors,

mirrors, etc. The wireless systems that are in place to ensure connectivity can

be leveraged to create “smart objects”. As an example, FormaTrack, explained

in Chapter 3 uses the reflection profile to identify the crossing individual. It does

so by identifying the point of transition from positive to negative Doppler, with

the zero crossing indicating the exact moment of the individual under the door

sensor. Such a technique of computing the reflection profile at the opportune

moment, can also be used to identify the user of appliances such as microwaves,

refrigerators etc. Besides the personalization benefits, this information can help

provide individual utility bills which are known to cut an individual home’s bills

by 20-50% [181], and thus taking us closer to the vision of a green smart home.

• Beyond Transition Tracking in Doorways: TransTrack, explained in Chapter

4 prevents sensing errors of FormaTrack from becoming tracking errors. More

specifically, it uses multiple (future) FormaTrack observations to fix any sensing

errors. Such a tracking algorithm that operates by only sensing at transition

points has applicability beyond simply doorways. For example, while tracking

vehicles for smart city applications, it is practically impossible to deploy sensors

that cover the entire road network. Such sensors would typically be installed

only at major intersections. Similarly, the operator of a shopping mall/store
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for provisioning sake, might only be interested in knowing the sections of the

mall (viz bakery, jewellery, toy store) frequented by an individual, but do not

care about their specifics within a section. Under such circumstances, only the

“section transition spots” would be instrumented. The algorithm and principles

of the hidden target and phantom target find applicability in the above use-case.

Akin to the travelling salesman problem, we anecdotally call this problem for

future researchers as the frog-lily pad problem – a frog cannot be sensed while

on a lily pad, but it can only be sensed while it jumps (transitions) from one

lily pad to another. The goal of this problem is to form tracks of all frogs in

the pond.

• Low Power Transition Sensing : Doorpler, presented in Chapter 5, identifies

the direction of a person crossing the doorway to infer the occupancy of the ad-

joining room. Its principle of trading-off computational complexity for angular

accuracy to be real-time, the space-power tradeoff handled by a dual-band wake

up radio, and the ability to isolate the reflection of interest via the Doppler Effect

can all see applicability beyond simply a doorway into a general class of appli-

cations called transition sensing. A transition sensing application essentially

needs to determine when an object of interest is crossing, and its correspond-

ing direction. Hence, for instance, the principles of Doorpler can be used to

sense gestures (where a gesture is a sequence of transitions) in wearables, smart

picture frames, smart televisions etc.

• Safety Applications: Chapters 3-5 describe the usage of radar principles to

perform room-level occupancy sensing in a known environment. However, dur-

ing firefighting or first responder operations the environment is unknown, and

the goal of these first responders is to detect whether each room is occupied

or not as they walk through the length and breadth of the building. Panoptes
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can be extended to handle such environments with the first responder mounted

with a radar device, and room occupancy being sensed by this device via the

application of synthetic aperture radar techniques.

• Other Applications using the Car Key(less) Infrastructure: CaraoKey, pre-

sented in Chapter 6, demonstrates car state sensing using the keyless infras-

tructure in automobiles. This application has only scratched the surface of pos-

sibilities using the keyless infrastructure. The fact that “sensing comes for free”,

given that the infrastructure exists for keyless entry results in minimal added

costs – a key factor for automobile manufacturers due to the multiplicative effect

of cost with the cars sold. The potential applications using the infrastructure

include person counting, vital signs monitoring to answer questions like ‘is the

person in the car still alive?’, child monitoring, gesture recognition for hands-

free control, etc. We expect these applications to become more important with

time, as driverless cars and taxis become more commonplace in the foreseeable

future, thus resulting in increasing importance to passengers’ in-vehicle security

and well-being.
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