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Abstract

Most of the stars in the universe were formed by disk galaxies like our own Milky

Way during an era poetically called “cosmic noon.” This era, occurring t ≈ 3 billion

years after the Big Bang, marked the peak of not only star formation, but also black

hole growth and dust attenuation. The dust that permeates all galaxies absorbs and

scatters the ultraviolet and optical light primarily generated by massive stars, whose

lives are so short that they provide an effectively instantaneous measurement of the

star formation rate. Understanding the formation and evolution of galaxies at cosmic

noon is essential to understanding how the universe appears and acts today—but

the uncertainties imposed by dust are worst during this influential period. Radio

emission is entirely unaffected by dust and is generated by supernova remnants of the

same massive stars emitting primarily in the UV and optical. Radio observations of

star-forming galaxies are therefore a powerful tracer of star formation rate, but it has

not been until the past decade that radio observations have been sensitive enough to

detect Milky Way-like galaxies at cosmic noon. In this dissertation, I calculate and

combine the source counts from the deepest radio continuum image to date with the

local luminosity function of radio sources to model the star formation history of the

universe.

I determined the local luminosity functions for both star-forming galaxies (SFGs)

and active galactic nuclei (AGNs) using N ∼ 10, 000 radio sources from the NRAO

VLA Sky Survey (NVSS) cross-identified with galaxies in the 2MASS Extended

(2MASX) catalog (Chapter 2). The AGNs and SFGs were separated using only

radio and infrared data rather than optical emission-line diagnostics, which are not

good quantitative measures of AGN-powered radio emission. Our sample of radio

sources with log[L1.4 GHz(W Hz−1)] > 19.3 account for > 99% of the total 1.4 GHz

energy density in the nearby universe. The local radio-derived star formation rate

density (SFRD) value of 0.0128M� yr−1 Mpc−3 is consistent with previous models for

the SFRD derived using ultraviolet and infrared data.

In Chapter 3, I present radio source counts across eight decades of flux density
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spanning 0.25µJy < S < 25 Jy determined from the deepest ν = 1.4 GHz radio

continuum image taken by the MeerKAT radio interferometer in South Africa and

the archival NVSS component catalog. With an rms noise σ = 0.56µJy beam−1 and

a resolution of θ1/2 = 7.′′6, the MeerKAT DEEP2 image is confusion-limited, so below

S = 10µJy I calculated the source counts statistically from the confusion brightness

distribution P (D). Above S = 10µJy the source counts were measured directly from

the DEEP2 image and the NVSS component catalog.

The evolving energy-density function udex(Lν |z) is the comoving energy density of

radiation produced by sources at redshift z having spectral luminosity (W m−2 Hz−1)

Lν at frequency ν. Simple equations relate the brightness-weighted differential source

counts S2n(S) with udex(Lν |z) integrated over all redshifts (Appendix C). Using a

combination of luminosity and density evolution, I developed evolutionary models

(Chapter 4) for SFGs and AGNs that accurately predict the observed source counts

given the local luminosity functions. Through the FIR/radio correlation, the product

of luminosity and density evolution of radio sources is directly related to the total

SFRD evolution ψ(z), describing how many stars (by mass) were formed per year per

comoving cubic megaparsec. The radio-derived model for SFRD evolution is similar to

previous models based on UV/IR data, but predicts stronger star-formation evolution.

Chapter 5 reviews the main conclusions of this dissertation and discusses future work.
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1

Chapter 1

Introduction

1.1 The Star Formation History of the Universe

The electromagnetic energy and “heavy” elements (anything with an atomic num-

ber greater than that of Helium) in today’s universe were forged by the cumulative

star formation activity that came before. When astronomers began measuring how

quickly stars formed at a given time (the star formation rate; SFR) ∼7 billion years

ago (a redshift of z ∼ 1), they found that galaxies had SFRs dramatically greater

than those today at z = 0 (e.g. Songaila et al. 1994; Ellis et al. 1996; Lilly et al.

1996). Astronomers continued this work and began measuring the SFRs of increas-

ingly distant galaxies, finding that at the beginning of the universe’s history, the star

formation rate density (SFRD; the SFR per unit comoving volume) rose rapidly until

it peaked at an age of ∼ 3 billion years and has been exponentially declining ever

since.

1.1.1 Cosmic Dawn

Within the first few hundred million years after the big bang (the exact time is still

debated), the universe expanded and cooled down enough to allow dense hydrogen

and helium gas to succumb to gravity and collapse into the first population of stars.

These stars coalesced into the first galaxies, and somewhere along with them grew the



Figure 1.1. Graphic representation of the evolutionary eras of the universe adapted
from National Geographic. “Cosmic Dawn” and “Cosmic Noon” are labeled on the
non-linear timeline.

first black holes. The exact processes of how the first stars, galaxies, and black holes

formed may be unknown, but a quick glance at the nearby universe assures us that

it did indeed happen. As the first stars fused hydrogen in their cores, their radiation

ionized the dark, neutral atoms that filled the universe at that time. This period

is poetically referred to as “cosmic dawn” (labeled in reference to the evolution of

the universe in Figure 1.1). Detecting signatures from this “epoch of reionization”

could inform us on the physical conditions and formation mechanisms behind the first

stars, galaxies, and black holes. Unsurprisingly, it is among the hottest pursuits in

modern astronomy, but this thesis focuses on the peak epoch of star formation and

evolution—cosmic noon.

1.1.2 Cosmic Noon

The production rate of stars, galaxies, and black holes rose rapidly after cosmic

dawn until reaching a peak when the universe was t ≈ 3 billion years old (Madau &

Dickinson 2014). Keeping with the theme, this period is known as “cosmic noon.”

Approximately half of the stars in our universe (by mass) were formed in the ∼ 3 Gyr

years surrounding cosmic noon when the universe was t = 2−5 Gyr years old. During
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this period, the universe was only 1/4− 1/2 of its current size and galaxies and stars

were undergoing more-frequent mergers and had more interstellar gas. Interactions

in merging systems create dense environments that drive the collapse of gas into

protostars, leading to an extreme burst of star formation. Even in individual star-

forming disk galaxies at cosmic noon, the rate of star formation was ∼ 10× that of

disk galaxies today (see Figure 1.2).

Figure 1.2. Left: From Madau & Dickinson (2014), the rate of star formation (in solar
masses per year) per comoving cubic megaparsec (Mpc3) as a function of redshift. The
data points are independent measurements of the SFRD from UV or IR observations
and the black curve shows the best model of the SFRD evolution based on these data.
The peak of star formation, cosmic noon, occurs at z ≈ 2. Right: From Madau &
Dickinson (2014), the black curve shows the same evolutionary model for the SFRD
as shown in the left panel. The blue and green shaded regions and red curve show
measurements of the black hole growth (in mass) as a function of redshift. This
similarity between these curves is evidence that the stellar masses and black hole
masses of galaxies coevolve.

There are several reasons why the star formation rate began to decline after cosmic

noon. For one, much of the massive gas reservoirs powering the boom had been

converted into stars, thus limiting the supply for the production of future stellar

generations. Further, gas needs to be both dense and cold in order for gravity to

dominate over the internal pressure of a molecular cloud and cause it to collapse into

stars. There are a number of processes that impart energy in the form of heat into
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gas clouds and prevent star formation from continuing: supernovae, stellar winds,

and active galactic nuclei (to name a few).

An “active galactic nucleus” (AGN) occurs when the central supermassive black

hole (widely believed to exist in nearly every galaxy; Kormendy & Ho 2013) is ac-

creting surrounding gas. Observations of black hole masses and calculations of their

accretion rates have revealed that the evolution of black hole growth follows a strik-

ingly similar function as that of star formation (see right panel of Figure 1.2). This is

one piece of evidence that the feedback of energy from supermassive black holes in the

center of galaxies regulates the amount of star formation—in other words, galaxies

and black holes co-evolve (e.g. Kormendy & Ho 2013).

1.2 Star Formation Rate Measures

Every measure of an extragalactic star formation rate fundamentally measures the

rate at which massive stars are forming. Stars greater than 8M� have lifetimes

τ ≤ 30 Myr, significantly less than the lifetime of a galaxy—making them a relatively

instantaneous probe of how many stars are forming at a given time. In order to

understand the total mass of stars forming, astronomers extrapolate to lower masses

using an initial mass function (IMF), which specifies the relative rate of star formation

as a function of mass down to ∼ 0.1M�. The various IMFs (e.g. Chabrier 2003;

Salpeter 1955) indicate different numbers of lower mass (M < 8M�) stars forming

for a given star formation rate of massive stars. Thus the choice of an IMF heavily

influences the total SFR of a galaxy and introduces a major systematic uncertainty

in the measurements of extragalactic star formation. Astronomers specify the IMFs

they are using, so comparisons between different measures of SFRs done at various

wavelengths remain valid.

Stars with masses M > 8M� emit primarily in the ultraviolet portion of the

electromagnetic spectrum, making observations at these wavelengths desirable for

determining the SFR of a galaxy. Ultraviolet observations of nearby galaxies are in-

accessible from the ground, but at redshifts z ≥ 1.4 the rest-frame ultraviolet emission
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is redshifted into the ground-observable optical bands. While the UV emission of a

galaxy directly probes the formation rate of massive stars, it has a major downside;

it is easily obscured by dust. At the peak of star formation, at redshift z ∼ 2, mea-

surements of the dust attenuation imply that > 80% of star formation is obscured

(Reddy et al. 2012; Howell et al. 2010).

Dust particles obscuring the UV radiation re-emit it at mid-infrared (MIR; 8 −
25µm) and far-infrared (FIR; 42.5 − 122.5µm) wavelengths, making the luminosity

of a galaxy at these wavelengths a practical method of measuring its SFR. The total

infrared spectrum of a galaxy (8 − 1000µm) is complex, and the reradiation of UV

photons from massive stars is not the sole source of emission. The metallicity and

geometry of dust particles affects how much of the UV luminosity they absorb, and at

wavelengths longer than λ ∼ 100µm the infrared luminosity is powered primarily by

dust heated by evolved stars (Hirashita et al. 2003; Bendo et al. 2010). The warm dust

in the surrounding areas of massive stars emits at MIR wavelengths and is therefore

tightly correlated with star formation, but polycyclic aromatic hydrocarbons (PAHs)

complicate the emission spectrum near λ = 8µm and active galactic nuclei (AGNs)

dilute these PAH features while also contributing significantly to the 24µm continuum

emission.

1.3 Sources of Radio Emission

Radio sources in galaxies (the leftmost line in Figure 1.3) contribute only a small

fraction of the electromagnetic background. Most of the electromagnetic energy in the

universe is in radiation left over from the big bang—the cosmic microwave background

(CMB). Nevertheless, the radio sky provides a unique window to some of the most

energetic and extreme objects (e.g. black holes and pulsars). “Normal” objects

such as star-forming, disk galaxies also emit at radio frequencies, but they are much

weaker sources than the most luminous AGNs. Early observations of the radio sky

were dominated by luminous AGN-powered radio galaxies and quasars, but recent

upgrades to the receivers and computers of radio telescopes have paved the way for
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Figure 1.3. The spectral energy distribution of the sky as a function of logarithmic
frequency. The emission of radio sources comprises a small fraction of the overall
electromagnetic energy budget of the universe.

observations of normal galaxies—often providing an independent and complementary

perspective from other wavelengths. Sources of radio emission include

• powerful radio galaxies and quasars powered by supermassive black holes;

• spectral-line emission from cold interstellar gas;

• pulsars and magnetars;

• the cosmic microwave background;

• neutral hydrogen in and among galaxies;

• star formation.

1.4 Radio Emission from Star-Forming Galaxies

Stars more massive than 8M� end their short lives in a dramatic explosion, and the

remaining supernova remnants are threaded with magnetic field lines. The relativistic,

free electrons that permeate the surrounding area spiral around the magnetic field

lines and, due to this acceleration, emit radio light in the form of synchrotron emission.

This emission can be described by a power-law in the form S ∝ να, where α is

the spectral index (α ∼ −0.8 for pure synchrotron radiation). In this way, radio
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Figure 1.4. A typical radio spectrum of a star-forming galaxy from 1 to 100 GHz.
Synchrotron radiation with a spectral index of α = −0.8 is shown as the dashed line.
Free-free emission with a spectral index of α = −0.1 is shown as the dotted line.
Only above ν ∼ 30 GHz that the weaker free-free emission starts to dominate the
spectrum.

observations of normal galaxies are sensitive to the star formation rate of massive

stars.

There is another radiative process contributing to the radio spectrum of a star-

forming galaxy that is directly correlated to the number of ionizing photons from mas-

sive stars: free-free emission. Also called bremsstrahlung (from the German bremsen

to brake and strahlung radiation), it occurs when a free electron is accelerated by the

electric field of an ion (usually a proton), but remains a free particle both before and

after the interaction. Massive, short-lived stars emit radiation that ionizes surround-

ing gas, creating a plethora of free electrons and protons that frequently interact and

emit free-free radiation at radio frequencies.

Free-free emission is a minor component of the total radiation at ν ∼ 1 GHz

(see Figure 1.4). Only at frequencies ν > 10 GHz does it start to dominate over
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synchrotron radiation. A well-understood relation between radio, dust-unaffected

free-free emission and massive stars makes it a valuable tracer of star formation in

galaxies. There are, unfortunately, a few obstacles preventing it from being the

obvious choice of radio astronomers for tracing star formation.

First, it is an unavoidable reality that the free-free emission of a SFG is weak at

low GHz frequencies, but more importantly it is much weaker than the synchrotron

emission at 1.4 GHz. This leads to longer integration times in order to detect it in

distance sources. Second, observing at these higher frequencies is more difficult and

necessitates dryer weather conditions—at frequencies above 20 GHz absorption by

atmospheric water vapor absorbs radio radiation and emits noise. Third, both the

primary beam (field of view) becomes smaller and the resolution increases at these

frequencies. This makes it observationally expensive to survey a large area of sky,

and the lower surface brightness sensitivity introduces the possibility of resolving out

(or partially resolving) faint objects whose angular sizes are larger than the restoring

beam.

The next generation of radio telescopes (e.g. the next-generation VLA; ngVLA)

will alleviate many of these concerns. Increasing the number of dishes and redesigning

the dishes to have unblocked apertures will enhance the sensitivity of radio observa-

tions at these frequencies. It will then be much more tractable and enticing to use

free-free emission to trace extragalactic star formation both nearby and at cosmic

noon. Until then, synchrotron radiation at lower frequencies ν ∼ 1 GHz remains the

dependable workhorse for radio observations of star-forming galaxies. It, of course,

comes with its own selection of problems; it lacks a physical derivation connecting

itself to the star formation rate and is also generated by active galactic nuclei (AGNs).

Fortunately, there is strong empirical evidence connecting synchrotron radiation with

star formation—the FIR/radio correlation found for nearby galaxies.

1.4.1 The FIR/radio Correlation

The relation between synchrotron luminosity and SFR is not well understood theo-

retically. The physics governing the steps from the supernova explosion to the accel-
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eration of relativistic electrons in the supernova remnant, to the cooling of the cosmic

rays as they propagate through the galaxy is poorly understood. The reliability of

radio synchrotron emission as a SFR tracer is therefore dependent on confirmation

from multi-wavelength observations.

The release of the IRAS Point Source Catalog in 1985 provided an optimal com-

parison sample for 1.4 GHz radio observations of normal galaxies. The far-infrared

(FIR) flux, combined from 60 and 100µm measurements, should be an excellent in-

dicator of star formation activity since dust heating in disk galaxies and starbursts is

dominated by young massive stars (Sauvage & Thuan 1992; Bell et al. 2003; Bendo

et al. 2012). From a sample of 38 IRAS sources with corresponding ν = 1.4 GHz

observations the FIR flux in W m−2

FIR = 1.26× 10−14[2.58fν(60µm) + fν(100µm)], (1.1)

where fν(60µm) and fν(100µm) are flux densities in Jy, was compared with the

Sν(1.4 GHz) flux density in Jy. Helou et al. (1985) found a tight correlation between

FIR and radio flux densities in normal galaxies across “a wide range of objects and

conditions: from quiescent disks like M31, to the steady state activity in late-type

spirals, to galaxies dominated by a nuclear starburst.”

Helou et al. (1985) defined the parameter q as the logarithm of the FIR/radio

flux-density ratio:

q = log

[
FIR/(3.75× 1012 Hz)

Sν(1.4 GHz)

]
, (1.2)

where 3.75×1012 Hz is the bandwidth spanned by the 60µm and 100µm flux densities

and Sν(1.4 GHz) is in W m−2 Hz−1, has been measured for thousands of additional

galaxies since the initial studies in the late 1980s. The correlation has held for galax-

ies with magnetic field strengths, star formation rates, and stellar masses spanning

multiple orders of magnitude, earning itself a reputation as a “conspiracy.” The phys-

ical processes responsible for the FIR and radio emission are quite different, so it is

remarkable that they are so tightly correlated.

The FIR-radio correlation (Figure 1.5) was initially derived from galaxies in our
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Figure 1.5. The FIR/radio correlation as presented in Condon (1992) for galaxies in
the IRAS Revised Bright Galaxy Sample.

local universe, so its validity as a tracer of the star formation rate of distant galaxies

hinges upon either a lack of evolution with redshift or a detailed understanding of

its evolution. There is a theoretical reason to be concerned that the radio luminosity

due to synchrotron radiation may evolve with redshift (Condon 1992). The total

energy density of a galaxy is the combination of its magnetic energy density Um and

its radiation energy density Ur such that Ut = Um + Ur. The ratio of the magnetic

energy density Um to total energy density Ut dictates the fraction of relativistic elec-

trons (and positrons) that cool due to synchrotron radiation and the fraction Ur/Ut

is lost to inverse Compton scattering. In order for the FIR/radio correlation to hold

in distant galaxies, this ratio Um/Ut needs to remain nearly constant with redshift.
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Locally, the radiation energy density component Ur comes primarily from stars. As

redshift increases, the radiation energy density from the Cosmic Microwave Back-

ground (CMB) increases as UCMB ∝ (1 + z)4 and will eventually dominate over the

magnetic energy density of star-forming galaxies. Under this scenario, the radio lu-

minosity would begin to decrease with redshift for the same FIR luminosity and q

would increase.

In studies that report slight evolution of the FIR/radio correlation q with red-

shift, the opposite trend was observed. These have found that the radio luminosity

seems to be increasing with redshift for the same FIR luminosity. Recently, using

ν = 3 GHz VLA data from the Cosmological Evolution Survey (COSMOS), Delhaize

et al. (2017a) found that the ratio of FIR to radio luminosities q has evolved as

q ∝ (1 + z)k with k = −0.21 ± 0.1. A further study of the same data by Molnár

et al. (2018) split the sample of star-forming galaxies into those dominated by disks

to those dominated by spheroids. They found that there is no evolution with red-

shift for the disk-dominated galaxies, but the q ratio of spheroid-dominated galaxies

evolves with an exponent k similar to that of Delhaize et al. (2017a). It is important

to note that there have also been numerous studies which have found no evolution of

q with redshift (Sargent et al. 2010; Bourne et al. 2011; Barger et al. 2012; Del Moro

et al. 2013; Pannella et al. 2015). These results are all based on the assumption that

the FIR/radio ratio is linear and do not clearly distinguish between evolution with

z and nonlinearity. It largely remains unclear whether q indeed evolves with z or if

the measured evolution is simply a symptom of systematic uncertainty. Sargent et al.

(2010) noted that using flux-limited samples selected solely from radio or infrared

surveys can introduce a bias that artificially produces an evolution in the FIR/radio

correlation.

1.5 Star-forming galaxies in the nearby universe

Regardless of the wavelength astronomers use to measure the cosmic evolution of the

star formation rate density (SFRD) they first need to understand the current level of
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star formation activity. While dust properties within and among local galaxies can

differ greatly depending on environment (Dale & Helou 2002; Smith et al. 2007), the

FIR/radio correlation is remarkably tight across orders of magnitude changes in the

physical characteristics of galaxies.

In the case that the waveband of observation is dominated by young stars (e.g.

radio, FIR), the primary method for measuring how much star formation is occurring

in our local universe is through the local luminosity function of star-forming galaxies.

The local luminosity function ρ(L) describes the mean space density of galaxies as a

function of luminosity. The range of spectral luminosities spanned by galaxies is so

large that it is convenient to define a logarithmic spectral luminosity function,

ρdex(Lν) ≡ ρ(Lν)
dL

d log(L)
= ln(10)Lρ(L), (1.3)

specifying the space density of sources per decade of spectral luminosity. While the

luminosity function is the basic measurement, we are more interested in the energy

output per unit volume as a function of luminosity—that is what contains information

on the star formation rate. The energy density function generated by sources with

luminosities between L and L+ dL is

u(L) = Lρ(L). (1.4)

It is similarly convenient to define a logarithmic spectral power density (or energy

density) function

udex(L) ≡ ln(10)Lu(L) = Lρdex(L), (1.5)

which specifies the energy density per decade of spectral luminosity. The total energy

produced by star formation per unit volume is the integral of the local radio energy

density function over luminosity:

USF =

∫ ∞
0

uSF(L) dL. (1.6)

For an energy density function measured at radio frequencies, the total energy put
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out by star-forming galaxies is related to the local SFRD through the FIR/radio

correlation. The local radio-derived SFRD value is an essential ingredient for deter-

mining the evolution of radio galaxies (and the SFRD) across cosmic time. In the

next section I will describe the second essential ingredient for determining the star

formation history of the universe at early times: radio source counts.

1.6 Radio Source Counts

Some radio galaxies and quasars are so luminous that they are strong radio sources

even at cosmological distances. In 1955, the steep slope of the integral source counts

from the 2C radio survey implied dramatic cosmic evolution for this population of

“radio stars” in luminosity or space density (Ryle & Scheuer 1955; Shakeshaft et al.

1955), contradicting the prevailing “Steady-State” cosmology (Hoyle 1948; Bondi &

Gold 1948). This result was rejected years later after it was found that the majority

of the 2C sources were instead “confusion bumps” caused by the blending of multiple

faint sources within the beam (Mills & Slee 1957). When the Cambridge group of

astronomers compiled the subsequent 3C and 4C surveys—well aware of the problem

of confusion—they had a new tool at their disposal: the P (D) analysis, which can

statistically extract the true source count from a confusion-limited survey Scheuer

(1957).

The 1960’s brought a consensus in the source counts brighter than S > 0.1 Jy: a

steeper than Euclidean slope above 1 Jy followed by a decrease to sub-Euclidean slopes

below 1 Jy (Hewish 1961; Gower 1966). In the 1980’s, the discovery of a flattening of

the source count slope around S ∼ 1 mJy (see Figure 1.6) implied the emergence of a

new population of faint radio sources corresponding to star-forming galaxies (SFGs)

(Condon & Mitchell 1984; Windhorst et al. 1985; Hopkins et al. 1998).

There were large discrepancies among previous attempts to measure the source

counts of faint radio sources below S ∼ 1 mJy (see Figure 1.6). Many of the measure-

ments were made using high angular resolution observations that enable observers to

distinguish among galaxies in crowded fields (e.g. Owen & Morrison 2008; Murphy
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Figure 1.6. Figure from Vernstrom et al. (2016). Euclidean-normalized differential
source counts at 1.4 GHz. Counts measured at 3 GHz were converted to 1.4 GHz
assuming a spectral index α = −0.7.

et al. 2017; Smolčić et al. 2017). While having high angular resolution ensures as-

tronomers do not fall into the same predicament of the 2C survey, it carries its own

caveats. As the image resolution θ approaches the intrinsic angular size of the source

φ the sources become resolved. Image sensitivity limits are brightnesses in units of

flux density per beam solid angle. Since the flux density of a resolved source is spread

over several beam solid angles, the peak brightness is lowered and the source may fall

below the detection limit. Even if the integrated flux density S of a source is above

the flux-limit of an observation, if the peak flux density Sp is below the detection

limit it will be missing from the observations.

The presence of resolved (or partially resolved) sources necessitates corrections on

population statistics such as source counts and angular size distributions. The large

and uncertain corrections for missing sources are responsible for large discrepancies

in the source counts of galaxies around S ∼ 100µJy (Figure 1.6). These persistent

discrepancies among source counts are much larger than Poisson counting errors and

cannot be reconciled by taking galaxy clustering into account (Heywood et al. 2013).
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Observations of the same field taken at multiple angular resolutions and similar sen-

sitivity levels yield better corrections, but take significant amounts of telescope time

(e.g. Cotton et al. 2018). Counts from a statistical analysis of the confusion distribu-

tion P (D) avoid the source-resolution problem because they are made using images

with θ > φ. However, sources much bigger than the beam (e.g. sources with φ� θ)

also alter the P (D) distribution. Fortunately, Cotton et al. (2018) showed that nearly

all sources in the µJy population have small angular sizes φ < 1′′, so P (D) counts

made from images with θ ∼ 7.′′6 as in the MeerKAT DEEP2 image need no resolution

corrections.

1.6.1 The µJy Radio Population

Star-forming galaxies are not the only sources of radio synchrotron emission. At flux

densities S ≥ 400µJy, most of the observed radio sources are high redshift (z > 1)

AGNs. In order to accurately measure the source counts of star-forming galaxies,

SFGs must be disentangled from the population of sources powered by AGNs. The

possibility of contamination by AGNs in a sample of star-forming galaxies is a leading

source of uncertainty in radio continuum measurements of extragalactic star forma-

tion. Fortunately, at fainter flux densities the primary driver of radio emission is

no longer AGNs. Below S ∼ 100µJy, star-forming galaxies comprise > 60% of the

radio sources (Van der Vlugt et al. 2020; Vernstrom et al. 2016). Recent studies

suggest that below S ∼ 30µJy at 3 GHz (S ∼ 50µJy at 1.4 GHz assuming a spectral

index α ≈ −0.7), the fraction of radio sources primarily powered by star formation

approaches unity (Algera et al. 2020).

1.6.2 Measuring Source Counts Through Confusion

The number of radio sources per unit solid angle detectable in an image and reliability

of their measured properties is limited by (1): the rms noise of the image σn, and (2)

the angular resolution of the observation. A combination of these factors—especially

poor angular resolution—leads to “confusion”, sky-brightness fluctuations caused by
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numerous faint sources in the telescope beam. Ignoring the effects of confusion can

lead to errors in the number counts due to the blending of radio sources, spurious

sources by the unfortunate superposition of sidelobes, and false enhancement of the

apparent intensities of genuine radio sources. Figure 1.7 shows a 3D view of sources

in a detailed simulation of a radio observation with the MeerKAT telescope, where

the height reflects the flux density of the source(s). The 2D contour view atop the

3D model shows what the radio image would look like, with the black dots showing

the positions of simulated sources with flux densities greater than S ∼ 0.1µJy. It

is clear from both the fluctuations in the 3D view and the clustering of black points

within a “source” in the contour map that it is impossible to accurately measure the

flux densities and positions of individual sources.

The brightness of a pixel in a radio image is determined by the underlying distri-

bution of radio sources, the rms image noise fluctuations σn, the size of the resolving

beam θ1/2, and the primary beam attenuation pattern. For a two-element interfer-

ometer, Scheuer (1957) derived a relationship between the differential source counts

n(S) dS—the mean number of radio sources per steradian in the flux density interval

dS—and the probability P (D) that the measured deflection D lies in the interval dD.

The term “deflection” D was used historically for the deflection of the needle on a

chart recorder when recording a signal. The modern equivalent of the deflection D

is pixel brightness or peak flux density Sp with units (Jy beam−1). The theory has

been expanded beyond the two-element interferometer to apply to modern arrays (e.g.

Condon 1974) and has been used to constrain radio source counts of point sources so

faint that they are blended in the beam and can no longer be counted individually.

The observed P (D) distribution is a convolution of the noiseless P (D) distribu-

tion (how the sources would appear in a noiseless image) and the rms image noise

distribution. Since these two components are independent, the two rms widths add

quadratically to yield the rms width of the observed P (D) confusion distribution. If

the noise distribution is Gaussian and uniform throughout the image (as it is in aper-

ture synthesis images), it can be deconvolved to yield the noiseless P (D) distribution

that is directly related to the differential source counts.
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Figure 1.7. A 3D model of the confusion-limited DEEP2 image, where the height of
the peaks reflects the strength of the signal. The color scale “heat” map plotted above
displays the 2D view typical of a radio image. The black points represent positions
of all sources stronger than 0.1µJy, demonstrating the flux enhancement of sources
and obstruction of faint sources.

Analytical expressions for the noiseless P (D) distribution can only be derived for

differential source counts following a power-law (e.g. n(S) ∝ S−γ), where the value γ

determines the shape of the distribution. Figure 1.8 shows P (D) distributions for two

values of γ. The value of γ = 1.5 is representative of source counts below S ∼ 10µJy,

where the nature of confusion changes completely. When γ = 1.5, at any flux density

the ratio of the numbers of stronger to fainter sources is much higher than when γ is

larger. Sub-µJy sources are more likely to be obscured by stronger sources than to
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Figure 1.8. Noiseless P (D) distributions derived analytically from power law differ-
ential source counts. The value of γ determines the shape of the distribution. These
two values γ = 1.5, 1.9 are appropriate approximates for the source counts below
S ∼ 10µJy and in the range 10µJy < S < 0.1 Jy.

be boosted in flux density by a background of even fainter sources.

Real source counts across many orders of magnitude in flux density do not follow

a simple power law. Since it is impossible to derive an analytic formula for their

noiseless P (D) distribution, computer simulations of the radio population are neces-

sary to constrain the counts. In Chapter 3, I describe how creating a detailed and

careful simulation of a deep radio field uncovered source counts down to sub-µJy flux

densities.

1.7 Modeling the evolution of radio sources

Evolutionary functions applied to the local (z ∼ 0) luminosity function ρdex(Lν |0)

predict the luminosity function at any redshift z. The same is true for the luminosity-

weighted spectral luminosity function, the energy density function udex:

udex(Lν |z) = g(z)udex

[
Lν
f(z)
|0
]
, (1.7)

where f(z) describes the luminosity evolution and g(z) describes the density evolution.

Figure 1.9 plots the energy density function at a redshift of z ∼ 0 from Condon et al.

(2019) and again at a redshift of z ∼ 2 assuming either pure luminosity evolution or

pure density evolution. Pure positive luminosity evolution shifts the energy density
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Figure 1.9. Top: local energy-density functions for SFGs and AGNs from Condon
et al. (2019) are plotted as the blue and red solid lines, respectively. If local radio
sources experienced 10× luminosity or density evolution at redshift z ≈ 2 the energy-
density functions would appear as the dashed and dotted lines, respectively. Bottom:
the brightness-weighted radio source counts at redshift z ≈ 2 assuming no evolution
(solid), pure luminosity evolution (dashed), and pure density evolution (dotted) for
SFGs (blue) and AGNs (red), respectively.

function equally upward and rightward, while pure positive density evolution shifts

udex directly upward.

The energy density function, which describes the spectral luminosity output per
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unit volume, is directly related to the total brightness-weighted source counts (see

Appendix C)

S2n(S) =
DH0

4π ln(10)

∫ ∞
0

udex(Lν |z)

[
(1 + z)α−1

E(z)

]
dz, (1.8)

where DH0 is the Hubble distance, α is the spectral index at frequency ν, and E(z)

describes the evolution of the Hubble parameter H(z)

E(z) =
H(z)

H0

=
√

Ωr(1 + z)4 + Ωm(1 + z)3 + ΩΛ , (1.9)

where Ωr, Ωm, and ΩΛ are the present radiation energy density, matter density, and

dark energy density. The observed source counts from Matthews et al. (2021) are plot-

ted for the SFGs and AGNs in Figure 1.9. The form of the brightness-weighted source

counts is similar to that of the local energy density function. This is no coincidence—

both the brightness-weighted source counts and the energy density function have

dimensions of brightness. Applying luminosity and density evolutionary functions

shifts the source counts in the same directions as for the energy density function.

The SFRD at redshift z can be expressed in terms of the luminosity and density

evolutionary functions
ψ(z)

ψ0

= f(z)g(z), (1.10)

where ψ0 = ψ(z = 0) is the SFRD now. Radio source counts constrain ψ by de-

termining the evolutionary functions f(z) and g(z) that evolve the local luminosity

function to correctly predict the observed source counts. This method does not re-

quire redshifts of individual galaxies, but rather determines the evolution independent

of redshift measurements by modeling the entire SFG and AGN population across

cosmic time.
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Figure 1.10. The MeerKAT array in the Karoo desert in the Northern Cape of South
Africa.

1.8 MeerKAT

The MeerKAT telescope (Figure 1.10) was established as a precursor to the Square

Kilometer Array (SKA) and resides in the dry Karoo desert in the Northern Cape

of South Africa. The location is far from bustling civilization so as to minimize the

effects of radio interference. It is composed of 64 antennas, each of which is 13.5 m in

diameter but is just as sensitive as a 25 m VLA dish. The 64 dishes are arranged in a

centrally concentrated group of 48 antennas (good for surface brightness sensitivity)

with the remaining dishes at longer baselines (good for resolution) with a maximum

baseline of 8 km. It currently operates at frequencies from ∼ 500 MHz to ∼ 1.7 GHz,

but will expand this range into higher frequencies as construction of the larger SKA

continues.
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Chapter 2

Local Radio Luminosity Function

2.1 Preface

The star formation rate density (SFRD) of the local universe can be measured from

the local luminosity function (the mean space density of galaxies as a function of

spectral luminosity) of star-forming galaxies and the FIR/radio correlation. This

chapter presents the 1.4 GHz local luminosity functions based on a large sample (N ∼
104) of radio sources stronger than 2.45 mJy at 1.4 GHz in the NRAO VLA Sky Survey

(NVSS) identified with bright galaxies (k20fe < 11.75) in the 2 Micron All-Sky Survey

eXtended (2MASX). The 2MASX sample at λ = 2.16µm—a wavelength at which

dust extinction is fairly weak and luminosity is roughly proportional to total stellar

mass—is spectroscopically complete and covers a sky area of Ω = 7.016 sr. The

remainder of this chapter has been published in the Astrophysical Journal (Condon

et al. 2019).

2.2 Abstract

We identified 15,658 NRAO VLA Sky Survey (NVSS) radio sources among the 55,288

2 Micron All-Sky Survey eXtended (2MASX) galaxies brighter than k20fe = 12.25 at

λ = 2.16µm and covering the Ω = 7.016 sr of sky defined by J2000 δ > −40◦



and |b| > 20◦. The complete sample of 15,043 galaxies with 1.4 GHz flux densities

S ≥ 2.45 mJy contains a 99.9% spectroscopically complete subsample of 9517 galaxies

with k20fe ≤ 11.75. We used only radio and infrared data to quantitatively distinguish

radio sources powered primarily by recent star formation from those powered by ac-

tive galactic nuclei. The radio sources with log[L(W Hz−1)] > 19.3 that we used to

derive the local spectral luminosity and power-density functions account for > 99% of

the total 1.4 GHz spectral power densities USF = (1.54± 0.20)× 1019 W Hz−1 Mpc−3

and UAGN = (4.23± 0.78)× 1019 W Hz−1 Mpc−3 in the universe today, and the spec-

troscopic subsample is large enough that the quoted errors and dominated by cos-

mic variance. The recent comoving star formation rate density indicated by USF is

ψ ≈ 0.015M� yr−1 Mpc−3.

2.3 Introduction

The 1.4 GHz continuum emission from galaxies is powered by a combination of recent

star formation in star-forming galaxies (SFGs) and supermassive black holes (SMBHs)

in active galactic nuclei (AGNs). The tight and nearly linear far-infrared (FIR)/radio

correlation observed among low-redshift galaxies makes 1.4 GHz spectral luminosity

a good dust-unbiased tracer proportional to the recent star-formation rate (SFR)

(Condon 1992), while sources that are radio-loud relative to the FIR/radio correlation

reveal the presence of radio-dominant AGNs, even those deeply embedded in dust.

This paper presents separate local radio luminosity functions for both source types.

When used in conjunction with sensitive radio surveys made by the JVLA, MeerKAT,

the SKA, or the ngVLA, local luminosity functions anchor models for the cosmological

co-evolution of star formation and SMBH growth. Our large (N = 9, 517) spectro-

scopically complete sample of the brightest (k20fe ≤ 11.75 and S1.4 GHz ≥ 2.45 mJy)

galaxies covers most of the extragalactic sky (Ω = 7.016 sr) in order to (1) reach the

low radio spectral luminosities log[L1.4 GHz(W Hz)−1] ≥ 19.3 needed constrain the full

range of sources accounting for nearly all (> 99%) recent star formation and SMBH

growth and (2) minimize cosmic variance.
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Bright galaxies are also more likely to have the multiwavelength data needed to

distinguish between radio sources powered by star formation and by AGNs. The

total radio emission from any galaxy is actually the sum of both types, so quanti-

tatively accurate criteria are needed to determine which is dominant. We used only

quantitative FIR, MIR (mid-infrared), and radio data to determine which type is

energetically dominant. We did not use BPT diagrams (Baldwin et al. 1981) or other

optical emission-line diagnostics because they are not good quantitative measures of

AGN-powered radio emission. It turns out, however, that the Mauch & Sadler (2007)

AGN/SFG classifications based on optical spectra agree surprisingly well with ours.

The cosmological evolution of radio sources is so strong that nearby sources com-

prise only a small fraction of all sources in flux-limited samples. Radio continuum

emission alone cannot separate the nearby needles from the haystack of distant

sources, so statistically complete and reliable samples of nearby radio sources are

usually selected by position-coincidence cross-identifications with optical or infrared

samples of bright galaxies. For example, of all NRAO VLA Sky Survey (NVSS) (Con-

don et al. 1998) sources stronger than S ≈ 2.5 mJy at ν = 1.4 GHz, < 1% can be

identified with galaxies brighter than mp = 14.5 (Condon et al. 2002). About 85%

of those sources are in relatively low-luminosity star-forming galaxies (SFGs) whose

median face-on surface brightness is just 〈Tb〉 ∼ 1 K at ν = 1.4 GHz (Hummel 1981),

so reasonably complete samples of nearby radio sources can be constructed only from

radio surveys having lower surface-brightness detection limits. The NVSS is suitable

because its sensitivity limit is Tb = 5σT ≈ 0.7 K.

This paper presents and analyzes a large catalog of NVSS sources identified with

2 Micron All-Sky Survey eXtended (2MASX) galaxies (Jarrett et al. 2000) brighter

than k20fe = 12.25 at λ = 2.16µm, where k20fe is the magnitude measured inside the

20 mag arcsec−2 isophote. The 2MASX galaxy sample is described in Section 2.4, and

the NVSS radio identification procedure is explained in Section 2.5. The resulting

2MASX/NVSS catalog (Section 2.6) contains a statistically complete sample of 15,043

galaxies brighter than k20fe = 12.25 and 1.4 GHz flux densities S ≥ 2.45 mJy. Most

of the analysis in this paper is based on the spectroscopically complete subsample
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of 9,517 galaxies with k20fe ≤ 11.75 and S ≥ 2.45 mJy. All but 19 had published

spectroscopic redshifts, and we measured new spectroscopic redshifts for 12 of the

19 (Appendix 2.7.1). Only FIR, MIR (mid-infrared), and radio data were used to

distinguish 2MASX/NVSS radio sources primarily powered by recent star formation

from those dominated by AGNs (Section 2.6.1). The counts of 2MASX/NVSS sources

powered by star formation and AGNs as functions of 1.4 GHz flux density are plotted

and discussed in Section 2.6.2. Separate 1.4 GHz local luminosity functions for SFGs

and AGNs are reported in Section 2.8, and Section 2.9 presents the corresponding

spectral power density functions. Cosmic variance exceeds the Poisson variance for the

large 2MASX/NVSS spectroscopic sample (Section 2.10). The total 1.4 GHz spectral

energy density produced by SFGs today, USF = (1.54± 0.20)× 1019 W Hz−1 Mpc−3,

indicates that the recent SFRD is ψ ≈ 0.015 M� yr−1 Mpc−3.

All calculations of absolute quantities (comoving distance, spectral luminosity,. . . )

from the observables (redshift, flux density,. . . ) are based on the relativistically cor-

rect equations for a ΛCDM universe from Condon & Matthews (2018) with Ωm = 0.3,

ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1 (h = 0.70).

2.4 The 2MASX Galaxy Sample

Large samples of bright galaxies necessarily cover a significant fraction of the sky.

The Two Micron All Sky Survey (2MASS) (Skrutskie et al. 2006) Extended Source

Catalog (2MASX) (Jarrett et al. 2000) is ideal because:

(1) It is complete and reliable over the whole extragalactic sky for galaxies brighter

than ks ≈ k20fe + 0.2 ≈ 13.5 (S2.16µm ≈ 2.9 mJy) at the longest infrared wavelength

(λ ≈ 2.16µm) yielding good atmospheric transparency. Dust extinction in our Galaxy

and dust absorption in nearby galaxies are both small at this wavelength, and confu-

sion by stars is negligible at galactic latitudes |b| ≥ 20◦.

(2) The λ = 2.16 µm luminosity of a normal galaxy is nearly proportional to its

total stellar mass (Bell et al. 2003) because dust absorption is low and late-type stars

dominate the near-infrared (NIR) luminosity. Thus the 2MASX sample most directly
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samples the stellar masses in galaxies; it is less biased than optical or FIR samples

by recently formed massive stars. The NVSS/2MASX flux-density ratio is a good

measure of the recent star formation rate per unit stellar mass, or the specific star-

formation rate (SSFR), which is a constraint on the star-formation history of the

universe.

(3) The 2MASX photometric errors for galaxies brighter than ks ∼ 12.5 are . 4%.

(4) Nearly all 2MASX galaxies have such small absolute position errors (< 1′′ rms)

that complete and reliable radio identifications of 2MASX galaxies can be made by

position coincidence alone.

(5) Spectroscopic redshifts are now available for nearly all galaxies brighter than

k20fe = 11.75 (Huchra et al. 2012).

Our 2MASX galaxy sample includes all galaxies with: (1) 2MASX catalog fiducial

magnitudes k20fe ≤ 12.25 mag measured within the 20 mag arcsec−2 (≈ 3σ) fiducial

elliptical aperture. According to the 2MASS Explanatory Supplement (), the mea-

sured fiducial flux density typically contains about 85% of the extrapolated total flux

density.

(2) 2MASX fiducial semi-major axes r20fe ≥ 5′′, above which the 2MASX catalog is

nominally complete, and

(3) J2000 δ > −40◦, the NVSS southern declination limit, and absolute galactic lati-

tude |b| > 20◦, the limit of the InfraRed Astronomical Satellite (IRAS) Faint Source

Catalog (FSC) (Moshir et al. 1992). This Ω ≈ 7.016 sr (Appendix C) sky area is

shown in Figure 2.1.

The 2MASX all-sky data release catalog (https://www.ipac.caltech.edu/2mass/

releases/allsky/) contains NIR = 55, 288 infrared galaxies satisfying all three re-

quirements. Their mean sky density is ρIR ≈ 2.40 deg−2.

2.5 NVSS Identifications of 2MASX Galaxies

To find all plausible NVSS identification candidates for the 2MASX galaxies, we

used the NVSS catalog browser (http://www.cv.nrao.edu/nvss/NVSSlist.shtml)
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Figure 2.1. The shaded 2MASX/NVSS area in this equal-area Hammer projection
covers the Ω ≈ 7.016 sr (56% of the sky) with J2000 δ > −40◦ and absolute galactic
latitude |b| > 20◦.

to select the 18,360 2MASX sample galaxies having (1) at least one NVSS radio

component within a search radius rs = 60′′ or (2) at least 2 NVSS components

within rs = 120′′. These search radii are compromises large enough to ensure high

completeness but small enough to avoid including too many unrelated background

sources. Note that the NVSS catalog lists elliptical Gaussian radio components fitted

to peaks on NVSS images, so the extended radio source produced by one galaxy

may be represented by more than one radio component. If the radio emission from

a galaxy is confused, asymmetric, or significantly larger than the θ = 45′′ FWHM

Gaussian NVSS beam, the radio positions may be significantly offset from the host

galaxy position. This is the case for ∼ 5% of 2MASX/NVSS galaxies, so initial search

radii much larger than the combined 2MASX and NVSS position errors are needed

to capture all radio identifications and include all of their radio emission.

Our large search areas contain an unacceptable number of unrelated background

sources because the mean sky density of NVSS components is ρ ≈ 53 deg−2. The rms

statistical sampling error in a catalog of N ∼ 104 identifications is N1/2 ∼ 102, so

exploiting the statistical power of such a large catalog requires identification reliability
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& 99%. Most background radio sources are so distant (mean 〈z〉 ∼ 1) that they are

quite randomly distributed on the sky. Thus the Poisson probability P that one or

more unrelated NVSS components will lie within rs = 60′′ of any 2MASX galaxy is

P (≥ 1) = 1− P (0) = 1− exp(−πρr2
s ) ≈ 0.045 , (2.1)

where the mean number of unrelated components in a search circle is µ = πρr2
s and the

probability of finding none is P (0) = exp(−µ). In addition, some 2MASX galaxies are

members of physical groups and clusters, so the radio emission from close companion

galaxies must be excluded. Thus at least NIRP (≥ 1) = 55, 288× 0.045 & 2500 of the

18360 candidate fields with rs = 60′′ are likely to contain unrelated NVSS components,

leaving . 16, 000 genuine 2MASX/NVSS identifications. The probability of finding

two or more background sources within rs = 120′′ is

P (≥ 2) =1− P (0)− P (1) (2.2)

=1− (1− πρr2
s ) exp(−πρr2

s ) ≈ 0.015 .

Genuine 2MASX/NVSS identifications with neither a single component within 60′′

nor two or more components within 120′′ are rare but may have been missed.

Recognizing and weeding out the background sources required extensive and time-

consuming human intervention, as described below.

Most of the radio sources produced by bright 2MASX galaxies are fairly compact

or at least symmetric. Nearly all 2MASX galaxies have rms position errors σα ≈
σδ � 1′′, and NVSS position errors for unresolved components decline with catalog

flux density from σα ≈ σδ ≈ 5′′ at S = 2.45 mJy to . 1′′ for S > 15 mJy. Such

candidates can be reliably accepted or rejected on the basis position coincidence

alone. We define σ as the quadratic sum of the 2MASX and NVSS rms position

errors in each coordinate,

m ≡ rs/σ (2.3)
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as the identification search radius in units of σ, and

k ≡ 1 + 2πρσ2 . (2.4)

For ρ = 53 deg−2 ≈ 4.09 × 10−6 arcsec−2 and the worst case σ ≈ 5′′, k ≈ 1.000642.

In terms of m and k the completeness of the identifications is (Condon et al. 1975)

C =
1− exp(−m2k/2)

k
. (2.5)

Even when σ = 5′′, m = 3 (rs = 15′′) ensures C ≈ 0.99. The fraction of 2MASS

galaxies actually having NVSS counterparts is f ≈ 15, 658/55, 288 ≈ 0.3. The iden-

tification reliability (Condon et al. 1975)

R = C

[
1

f
+

(
1− 1

f

)
exp[m2(1− k)/2]− exp

(
−m

2k

2

)]−1

(2.6)

is also & 99% because the probability that an unrelated NVSS source lies within

3σ ≈ 15′′ of any position is < 0.003.

Figures 2.2 and 2.3 present examples illustrating both typical and difficult 2MASX/N-

VSS cross-identifications. The upper left panel of Figure 2.2 shows the Digitized Sky

Survey (DSS) gray-scale optical image, the NVSS 1.4 GHz brightness contours, and

the IRAS 2σ position error ellipse for the typical spiral galaxy IC 1526. Its 1.4 GHz

flux density S = 5.4 ± 0.5 mJy and its 2MASX/NVSS position offset r = 3 .′′8

(m = 1.3) are close to the sample medians. The radio sources in nearly all spiral

galaxies are fairly symmetric and roughly coextensive with their optical host galaxies

of stars.

Nonetheless, some radio sources in spiral galaxies could not be found by position

coincidence alone. In the upper right panel of Figure 2.2, the confused 2MASX

position of NGC 5668 is marked by the cross on a bright spot ∼ 22′′ north of the

galaxy nucleus. A few large face-on and edge-on spiral galaxies have significantly

offset or even multiple 2MASX positions that can be recognized most easily by visual
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inspection of finding charts like this one.

The NVSS contours and accurate 2MASX position for the very extended low-

brightness galaxy M74 are shown in the middle row, left panel of Figure 2.2. The

closest NVSS catalog component is 93′′ from the 2MASX position, so M74 is not in

the list of candidates within the rs = 60′′ search radius. To find similar cases, we

searched for identifications among all galaxies in the 1.49 GHz atlas of spiral galaxies

with BT ≤ 12 (Condon 1987). M74 emphasizes the importance of high surface-

brightness sensitivity for identifying reasonably complete radio samples of nearby

galaxies. Its total 1.4 GHz flux density is S ≈ 180 mJy, but its surface brightness

is barely above the NVSS 5σ ≈ 5 × 0.45 mJy beam−1 ≈ 2.3 mJy beam−1 detection

limit.

The price of high brightness sensitivity is low angular resolution. The θ = 45′′

NVSS beam only marginally resolves the pair of galaxies UGC 00644 and UGC 00644

NOTES01 (Figure 2.2 middle row, right panel), and the NVSS catalog lists only a

single extended Gaussian component whose radio centroid position is midway between

the galaxies. Finding charts make it easy for humans to recognize such blends and

decompose the radio sources into unresolved components on the galaxy positions.

The majority of AGN-powered radio galaxies are also sufficiently compact and/or

symmetric to permit simple position-coincidence identifications. The lower left panel

of Figure 2.2 shows the radio emission from an anonymous S = 15.0 mJy (about the

median flux density of AGNs in the sample) galaxy. However, a significant minority

of low-luminosity radio galaxies are distinctly asymmetric. In the lower right panel

in Figure 2.2 are the 2MASX position cross and NVSS contours of a head-tail radio

galaxy whose centroid is significantly offset to the north. The head-tail morphology

of this source is confirmed by the high-resolution VLA image of Owen et al. (1993).

Slightly bent radio jets are common, but truly one-sided radio jets are rare in low-

luminosity radio sources. The radio galaxy IC 1695 in the cluster Abell 0193 appears

in the upper left panel of Figure 2.3. About half of its flux density arises from a

compact component in the galaxy, and half originates in a slightly curved one-sided

jet extending ∼ 1′ to the northeast (Owen & Ledlow 1997).
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Radio galaxies powered by AGNs may emit most or even all of their power in jets

and lobes lying well outside the host galaxies of stars. Thus it is necessary to search

for radio components quite far from each 2MASX position, whether or not there is

a radio component close to the 2MASX position. The right panel in the top row of

Figure 2.3 is centered on an anonymous elliptical galaxy at redshift z ≈ 0.0885, so this

6′ × 6′ finding chart is ≈ 640 kpc on a side and the triple radio source is even larger.

Mauch & Sadler (2007) identified only the S = 17.5 mJy central NVSS component

with the 2MASX galaxy, even though other NVSS components lie within their rs = 3′

candidate search radius and yield a total flux density S ≈ 680 mJy. Sources like

this are difficult to recognize from component lists alone; there is no substitute for

visual inspection of finding charts that extend at least ±3′ in both directions. The

much larger ±8′ finding chart in the left panel, middle row of Figure 2.3 is centered

on the S ≈ 430 mJy triple radio galaxy 2MASX J15280499+0544278. Only the

S = 45.1 mJy central component was identified by Best & Heckman (2012), and the

lobes are only partially visible and not easily recognized on our usual 6′ × 6′ finding

chart, so we might have missed other sources with even more widely separated lobes.

Although large triple sources like these are rare among bright galaxies, they are

usually so luminous that capturing their total flux densities is important for deriving

accurate radio luminosity functions.

Some “empty double” radio sources have no NVSS components within 60′′ of their

2MASX host galaxies. To find them, we searched for pairs or multiple components

offset by up to 120′′. The nearest NVSS components in the X-shaped radio source

4C +32.25 = B2 0828+32 (right panel, middle row of Figure 2.3) are the bright FR II

lobes symmetrically offset from 2MASX J08312752+3219270 by 104′′ and 119′′. The

larger but fainter north-south extension has a steep radio spectrum and may be

the relic of an earlier outburst in a precessing system (Parma et al. 1985). Most

coreless double sources can be recognized because their lobes have roughly equal

flux densities, are about equally distant from their host galaxies, and are at position

angles differing by ∼ 180◦. Somewhat more difficult to recognize are bent coreless

doubles. The left panel, bottom row of Figure 2.3 shows the luminous (S ≈ 650 mJy
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Figure 2.2. Selected finding charts. DSS gray-scale images are shown under NVSS
contours plotted at Sp = ±1 mJy beam−1×20, 21/2, 21, . . . 2MASX source positions
are marked by crosses, ellipses outline IRAS position errors.
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Figure 2.3. Additional selected finding charts. DSS gray-scale images are shown
under NVSS contours plotted at Sp = ±1 mJy beam−1 × 20, 21/2, 21, . . . 2MASX
source positions are marked by crosses.
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at z ≈ 0.0830) bent double source having no NVSS components within 60′′ of the cross

on 2MASX J08284360+2437220. Finally, the lower right panel of Figure 2.3 shows

a large but faint double source that illustrates the limit of reliable identifications.

Secondary evidence supporting this identification as a double source includes (1)

the two components are roughly equidistant from the 2MASX galaxy, (2) the two

components have comparable brightness, (3) the line between them passes close to

the galaxy, and (4) the southwest component has a tail pointing back toward the

galaxy.

2.6 The 2MASX/NVSS Catalog and Samples

Following the procedures described in Section 2.5, we identified NVSS sources with

15,658 of the 55,288 2MASX galaxies having k20fe ≤ 12.25 and semi-major axes

r20fe ≥ 5′′ in the Ω ≈ 7.016 sr solid angle defined by J2000 declination δ > −40◦ and

absolute galactic latitude |b| ≥ 20◦. The resulting 2MASX/NVSS galaxy catalog is

displayed in part as Table 2.1, which lists for each galaxy its 2MASX J2000 coordinate

name, 2MASX fiducial λ = 2.16µm magnitude k20fe, 2MASX fiducial major-axis

diameter d20fe = 2 r20fe in arcsec, 1.4 GHz NVSS total flux density S in mJy, dominant

radio energy source type (either recent star formation S or active galactic nucleus A)

derived from FIR data, from MIR data, and the final type derived from both as

explained in Section 2.6.1, heliocentric radial velocity cz in km s−1 usually from

the NASA/IPAC Extragalactic Database (NED), and the most common alternative

galaxy name (e.g., UGC 12890) from NED.

All NVSS catalog flux densities are rounded to the nearest 0.1 mJy, so the 15,043

galaxies with 1.4 GHz catalog flux densities S ≥ 2.5 mJy comprise a flux-limited

sample complete to S = 2.45 mJy. The spectroscopically complete subsample of the

9,517 galaxies with k20fe ≤ 11.75 and S ≥ 2.45 mJy now has redshifts for all but 7

(99.9% redshift completeness).
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Table 2.1. 2MASX/NVSS catalog

2MASX k20fe d20fe S1.4 Energy Source Type cz

J2000 name (mag) (′′) (mJy) FIR MIR Final (km s−1) NED name

00000701 + 0816448 10.779 23.6 82.7 A A A 11602 UGC 12890

00001278 + 0107123 11.839 15.3 2.1 S S S 7390 CGCG 382-016

00002880 + 3246563 11.108 13.4 5.2 S S S 9803 IC 5373

00003138 + 2619318 11.967 13.2 7.5 S S S 7653 UGC 12896

00003564− 0145472 11.488 16.1 2.8 ? S (S) 7274 CGCG 382-017

00005234− 3550370 11.548 15.2 48.4 A A A 15581

00010444 + 0430001 12.013 15.4 2.7 S S S 8932 IC 5374

00011996 + 1306406 9.920 27.4 12.3 S S S 5366 NGC 7803

00013148 + 1120465 11.341 16.0 5.4 S S S 9099 IC 1526

00013359 + 0900445 11.234 15.0 2.7 ? S (S) 9252 UGC 12912

Note—Table 2.1 is published in its entirety in the electronic edition of the Astrophysical
Journal. A portion is shown here for guidance regarding its form and content.
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2.6.1 Radio Energy Sources

The ultimate energy sources powering the radio continuum continuum emission from

galaxies are recently formed massive short-lived stars and SMBHs in AGNs. In order

to use radio continuum luminosity as a quantitative tracer of the SFR, we classi-

fied the radio emission of each galaxy in Table 2.1 as being powered primarily by

recent star formation “S” or by an AGN “A”. Labels “(S)” and “(A)” indicate uncer-

tain classifications. Note that these are quantitative classifications because both star

formation and an AGN may contribute to the total radio luminosity a single galaxy.

Optical emission- and absorption-line spectra have often been used to classify

galaxies as SFGs or AGNs. For example, Sadler et al. (2002) and Mauch & Sadler

(2007) classified as AGNs all galaxies with absorption-line spectra like those of giant

elliptical galaxies, absorption-line spectra with weak LINER-like emission lines, or

stellar continua dominated by nebular emission lines stronger than Balmer emission

lines; and they classified as SFGs all galaxies with spectra dominated by strong narrow

Hα and Hβ emission lines.

We decided not to use any optical indicators to determine the dominant radio

energy sources in our galaxies. AGN signposts such as [O III] luminosity are often

not correlated with radio luminosity (Best et al. 2005). We did not assume that

star formation powers the radio sources in spiral galaxies or that AGNs drive radio

emission from E and S0 galaxies. We did not use optical colors and fluxes, which may

be biased by dust absorption. We did not use BPT (Baldwin et al. 1981) diagrams

which plot the [O III]/Hβ ratio as a function of the [N II]/Hα ratio because ∼ 40%

of nearby radio-loud AGN are too gas poor and optically inactive to be detected this

way (Geréb et al. 2015). Thus our energy-source classification method is independent

of the (Sadler et al. 2002) and (Mauch & Sadler 2007) classification method based on

optical spectra.

Instead, we used only a combination of radio and infrared data to classify our radio

sources. Radio sources powered by stars can be recognized because (1) > 99% obey

the tight and nearly linear FIR/radio flux correlation (Condon et al. 1991), (2) they

have the steep FIR spectral indices α(25µm, 60µm) < −1.5 characteristic of cold dust
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emission (de Grijp et al. 1985), (3) they usually reside in galaxies having “dusty” MIR

colors, and (4) they are roughly coextensive with their optical host galaxies. Radio

sources powered by AGNs (1) are usually much stronger than expected from the

FIR/radio correlation, (2) may be associated with warmer FIR sources, (3) usually

reside in galaxies having the nearly blackbody MIR colors of “naked” stars, and (4)

may contain jets and lobes extending well outside their host galaxies.

We used a combination of these four indicators as described in detail below to

assign a primary energy source type to each 2MASX/NVSS galaxy in Table 2.1:

(1) The IRAS FIR/NVSS 1.4 GHz flux-density ratio was parameterized by the

quantity

q ≡ log

[
FIR/(3.75× 1012 Hz)

S1.4 GHz (W m−2 Hz−1)

]
, (2.7)

where

FIR (W m−2) ≡ 1.26× 10−14[2.58S60µm (Jy) + S100µm (Jy)] (2.8)

(Helou et al. 1988).

If a galaxy was detected by IRAS (IRAS flux quality code 2 or 3) at both 60µm

and 100µm, the value of q was calculated directly from Equation 2.7. If a galaxy

was detected at 60µm but not detected (IRAS flux quality code 1) at 100µm, an

approximate q was estimated using the median observed S100µm ∼ 2S60µm (Yun et al.

2001). Conversely, if a galaxy was detected at 100µm but not at 60µm, q was

estimated assuming S60µm ∼ S100µm/2. If a galaxy was observed by IRAS but not

detected at either 60µm or 100µm, an upper limit to q was calculated from the IRAS

FSC 90%-completeness upper limits S60µm < 0.36 Jy and S100µm < 1.2 Jy. Finally,

if a galaxy was in an area not adequately covered by IRAS, we set q = ? and used

only other classification methods.

The normalized probability distribution P (q) of all galaxies in the complete 1.4 GHz

flux-limited sample that were observed by IRAS is plotted as a histogram in Fig-

ure 2.4. Within that histogram the unshaded area indicates upper limits to q for

galaxies observed but not detected by IRAS at either 60µm or 100µm, and the
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Figure 2.4. For 2MASX/NVSS galaxies with S1.4 GHz ≥ 2.45 mJy, the normalized
probability distribution of the measured FIR/radio ratio q is shown by the shaded
histogram and upper limits for those observed but not detected by IRAS are indicated
by the unshaded part of the histogram. The vertical dashed line separates SFGs with
measured q > 1.8 from AGNs with upper limits or measured q < 1.8. Abscissa:
FIR/radio flux ratio q (Equation 2.7). Ordinate: Probability density P (q).

shaded area shows measured or estimated q values. Star-forming galaxies obeying

the FIR/radio correlation are clustered in the narrow peak with mean 〈q〉 ≈ 2.30 and

rms scatter σq ≈ 0.17. The intrinsic scatter in q (Condon et al. 1991) is nearly equal

to our measured σq, so the peak in Figure 2.4 has not been broadened significantly

by flux-density measurement errors. Adding a dominant AGN to a q = 2.3 SFG

would result in q < 2.0. To allow for the observed scatter in q, we classified galaxies

with measured q > 1.8 as SFGs and galaxies with upper limits or measured values of

q < 1.8 as primarily AGN-powered.

Galaxies with upper limits to q larger than 1.8 and galaxies not observed by IRAS

could not be classified by this method. The NVSS and IRAS are comparably sensitive

to SFGs: the value of q corresponding to the sensitivity limits S1.4 GHz = 2.45 mJy,

S60µm = 0.36 Jy, and S100µm = 1.2 Jy is q ≈ 2.4. Thus many galaxies not detected

by IRAS do have upper limits to q larger than 1.8 (Figure 2.4).

38



(2) A FIR source warm enough to have

α(25µm, 60µm) > −1.5 (2.9)

indicates concentrated dust heating by a single AGN, rather than by a comparably

luminous but more extended cluster of stars (de Grijp et al. 1985). The spectral-index

error resulting from a 20% error in the 25µm flux density is ∆α(25µm, 60µm) ∼
±0.25. To allow for spectral-index errors of sources with λ = 25µm signal-to-noise

ratios as low as 5, we conservatively classified only galaxies with α(25µm, 60µm) >

−1.25 as primarily AGN-powered. There are 247 such “warm” galaxies, of which 77

also have q < 1.8 and the remaining 170 were newly classified as AGN-powered by

their warm FIR spectra.

(3) Wide-field Infrared Survey Explorer (WISE) (Wright et al. 2010) MIR magni-

tudes in bands W1 (λ = 3.4µm), W2 (λ = 4.6µm), and W3 (λ = 12µm) determine

the colors (W1−W2) and (W2−W3) that help to distinguish AGNs residing in el-

liptical galaxies and Seyfert galaxies from dusty spiral galaxies dominated by ongoing

star formation, as illustrated in Figure 2.5. Stars alone and dustless elliptical galaxies

(lower left circle in Figure 2.5) have low values of (W1−W2) and (W2−W3) because

the W1, W2, and W3 wavelengths are on the Rayleigh-Jeans side of the blackbody

peak of most stars, and the limiting Rayleigh-Jeans spectral index α = +2 corre-

sponds to (W1−W2) ≈ −0.05 and (W2−W3) ≈ −0.07 for the WISE flux-density

scales and frequencies listed in Table 1 of Jarrett et al. (2011). The sublimation

temperature of large interstellar dust grains is too low for them to affect (W1−W2)

significantly, but dust in SFGs increases (W2−W3). Nuclear emission from Seyfert

galaxies (upper right circle in Figure 2.5) can increase (W1−W2) enough to separate
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AGNs from SFGs. Thus radio sources in galaxies above the broken line specified by

W1−W2 = + 0.8 (W2−W3 ≥ 3.1) (2.10)

W1−W2 =(W2−W3− 1.82)/1.6 (W2−W3 < 3.1)

are probably AGN-powered, and those below the line are likely powered by ongoing

star formation. Although the WISE MIR colors are less reliable indicators than the

IRAS FIR/radio correlation, they are available for nearly all 2MASX/NVSS galaxies,

so we used them to classify cases that have neither measured q values nor upper limits

q < 1.8.

WISE does not have the far-infrared coverage needed to yield q (Equation 2.7),

but the λ = 22µm WISE magnitude W4 can be used to define a similar quantity

q22 ≡ log[S(22µm)/S(1.4 GHz)] , (2.11)

where

log

[
S(22µm)

Jy

]
= 0.918− 0.4W4 (2.12)

(Jarrett et al. 2011). The normalized probability distribution P (q22) is shown in Fig-

ure 2.6 for all 2MASX/NVSS galaxies with k20fe ≤ 12.25 and S(1.4 GHz) ≥ 2.45 mJy

(black histogram). Galaxies with WISE MIR colors below the broken line in Fig-

urefig:figure5 (WISE energy source S) are represented by the blue histogram, and

galaxies above the broken line in Figure 2.5 (WISE energy source A) by the red his-

togram. Like the distribution of q in Figure 2.4, the distribution of q22 in Figure 2.6

has a narrow peak dominated by SFGs and a long tail of galaxies containing radio-

loud AGNs. Thus WISE MIR colors and WISE MIR/radio flux ratio parameters q22

provide independent energy-type classifications that largely agree.

The main advantage of the WISE q22 distribution over the IRAS q distribu-

tion is that all but a handful of 2MASX/NVSS galaxies were detected by WISE at

λ = 22µm. The drawback of q22 is contamination of S(22µm) by emission from

warm dust heated by AGNs, making it a somewhat less reliable parameter than q for
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Figure 2.5. The mid-infrared colors (W1−W2) ([3.4µm]− [4.6 m]) and (W2−W3)
([4.6µm] − [12µm]) can be used to separate galactic stars and elliptical galaxies
(lower left dashed circle) from Seyfert galaxies (upper right dashed circle) and from
dusty spiral galaxies with ongoing star formation (below the broken line), as shown
in Wright et al. (2010) Figure 12. Galaxies listed as A or (A) in Table 2.1 are shown
as red points; S or (S) galaxies are blue. Abscissa: (W2 −W3) (mag). Ordinate:
(W1−W2) (mag).

distinguishing SFGs from AGNs. For our final MIR classifications, we used the WISE

color criterion (Equation 2.10). We used q22 only for a few galaxies having no IRAS

data, as described in items 3. through 5. in the list at the end of Subsection 2.6.1.

(4) Radio morphology complements the three photometric indicators above. Radio

sources powered by star formation are roughly coextensive with the star-forming

regions, their synchrotron emission broadened only slightly by diffusion of cosmic-

ray electrons (Murphy et al. 2008). Coextensive synchrotron emission and free-free

absorption by ionized hydrogen at electron temperature Te ∼ 104 K limits the 1.4 GHz

brightness temperature of SFGs to Tb . 105 K (Condon 1992). AGNs can produce
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Figure 2.6. The normalized probability distribution P (q22) of q22 ≡
log[S(22µm)/S(1.4 GHz)] for all 2MASX/NVSS galaxies with S(1.4 GHz) ≥
2.45 mJy is indicated by the black histogram. The blue and red histograms show the
galaxies classified as S or A by their WISE MIR colors (Equation 2.10 and Figure 2.5).
The vertical dashed line at q22 = +0.4 separates most SFGs (q22 > +0.4) from most
AGNs (q22 < +0.4). The Gaussian fit to the narrow peak has mean 〈q22〉 = 0.89 and
rms width σ = 0.24. Abscissa: WISE MIR/radio flux-ratio parameter q22. Ordinate:
Probability density P (q22).

radio jets and lobes that extend well outside their host galaxies, and they can produce

compact radio cores with brightness temperatures Tb � 105 K.

To identify very extended radio jets and lobes, we inspected the finding charts of

all galaxies having two or more NVSS components. Most are either elliptical galaxies

or spiral galaxies larger than the radio sources and much larger than the θ = 45′′

FWHM NVSS beam.

The only spiral galaxy with radio emission outside the galaxy of stars is the Seyfert

NGC 4258 (2MASX J12185761+4718133) with unique “anomalous radio arms” (van

der Kruit et al. 1972). NGC 4258 was not covered by the IRAS FSC, but we classified

its radio source as primarily AGN-powered on the basis of WISE photometry (q22 =

−0.10).
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All but one of the multicomponent NVSS sources not identified with large spiral

galaxies are so radio-loud (either q < 1.8 or q22 < 0.4) that they had already been

photometrically classified as AGN-powered. The sole exception is luminous triple

radio source in 2MASX J23415138−3729306, which has neither IRAS nor WISE

photometry and was classified as AGN-powered on the basis of radio morphology

alone.

Sub-arcsecond resolution is needed to resolve sources brighter than Tb ∼ 105 K,

so the NVSS alone is unable to distinguish AGN cores from compact SFGs.

The four indicators above do not always agree, so the final energy source types A,

(A), S, and (S) listed in Table 2.1 were derived by reconciling the various IRAS and

WISE classifications as follows:

1. If IRAS and WISE agree on A or S, the final classification is A or S.

2. if IRAS and WISE disagree on A or S, the IRAS result was kept but qualified

as uncertain (A) or (S).

3. If IRAS = ? (no IRAS data) and q22 < 0.4 (radio loud), then the final classifi-

cation is M if the WISE MIR color classification = ? and (M) if it = S.

4. If IRAS = ?, 0.7 > q22 ≥ 0.4, and WISE = S, then the final classification is

(S).

5. If IRAS = ?, q22 ≥ 0.7, and WISE = S, then the final classification is S.

Among our 15,043 galaxies classified by radio and infrared criteria are 3,466 that

had been classified by Mauch & Sadler (2007) on the basis of optical line spectra.

Their star-forming galaxies were labeled SF, and their AGNs were divided into three

subtypes: Aa (pure absorption-line spectra like those of giant elliptical galaxies), Aae

(spectra with absorption lines and weak narrow LINER-like emission lines), or Ae

(conventional Type II AGN spectra with nebular emission lines such as [Oii], [Oiii], or

[Nii] that are stronger than any hydrogen Balmer emission lines, or conventianal Type
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Table 2.2. Source classifi-
cation matrix

A (A) S (S)

Aa 644 32 6 8

Aa? 27 5 1 5

Aae 101 18 27 15

Aae? 24 10 27 10

Ae 41 28 19 16

Ae? 10 17 23 5

SF 17 48 2018 103

SF? 3 12 64 18

? 21 5 33 5

I AGN spectra with strong and broad hydrogen Balmer emission lines). Uncertain

optical classifications were indicated by ‘?’.

Table 2.2 compares our independent galaxy classification methods for these 3,466

galaxies, and the agreement is better than we had expected. Of the 888 galaxies we

classified as A, Mauch & Sadler (2007) classified 867, 847 (97.7%) as various AGN

types and only 20 (2.3%) as SF or SF?. We classified 2218 galaxies as S and Mauch

& Sadler (2007) classified 2185 of them, 2082 (95.3%) as SF or SF? and 103 (4.7%)

as various AGN types. Of their 2186 SF galaxies, we classified 2121 (97.0%) as S or

(S), 17 (0.8%) as A, and 48 (2.2%) as (A). They classified 690 galaxies as Aa; we

classified 676 (98.0%) as A or (A) and 14 (2.0%) as S or (S). The agreement is lower

for the 161 Aae galaxies (74%) and the 104 Ae galaxies (66%). Most of these are

star-forming LINERs or Seyfert II galaxies whose AGN radio luminosities appear to

be less than half their total radio luminosities.

2.6.2 1.4 GHz Nearby Galaxy Counts

The differential source count n(S)dS is the number of sources per steradian with flux

densities between S and S + dS. The differential contribution d TB of radio sources
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Figure 2.7. The brightness-weighted 1.4 GHz differential counts S2n(S) are plotted
separately for all radio sources (Condon 1984) (solid curve) and for 2MASX/NVSS
galaxies brighter than k20fe = 12.25 whose radio sources are powered by stars (open
circles) or AGNs (filled circles). S2n(S) is proportional to the contribution per decade
of flux density to the 1.4 GHz sky brightness temperature. The light straight line
matching the P (Sp) distribution (Figure 2.8) suggests that most galaxies with k20fe ≤
12.25 have 1.4 GHz flux densities S & 0.1 mJy. Abscissa: 1.4 GHz flux density S
(Jy). Ordinate: Brightness-weighted differential count S2n(S) (Jy sr−1).

between S and S + d log(S) to the Rayleigh-Jeans sky brightness temperature Tb is

d Tb

d log(S)
= S2n(S)

[
ln(10)c2

2kBν2

]
, (2.13)

where kB ≈ 1.38×10−23 J K−1 is the Boltzmann constant. Figure 2.7 is a logarithmic

plot comparing the brightness-weighted 1.4 GHz counts S2n(S) for all extragalactic

sources (Condon 1984) (upper solid curve), all 2MASX/NVSS sources with k20fe ≤
12.25 and S1.4 GHz ≥ 2.45 mJy (lower solid curve), 2MASX/NVSS sources powered

primarily by star formation (open circles), and 2MASX/NVSS sources powered by

AGNs (filled circles). Below S ≈ 0.1 Jy the nearby (z . 0.1) 2MASX/NVSS sources

contribute . 1% of the total radio-source background.

45



The 2MASX catalog is quite complete for k20fe ≤ 12.25 and bright 2MASX galaxies

have a nearly static Euclidean source count n(S) ∝ S−5/2 (Jarrett 2004). Radio

sources powered by star formation typically have relatively low absolute spectral

luminosities L ∼ 1022 W Hz−1 (Condon et al. 2002) yielding flux densities S ∼ 0.01 Jy

at the distances d ∼ 100 Mpc (cz ∼ 7, 000 km s−1) typical of 2MASX/NVSS SFGs.

At flux densities S > 0.01 Jy the volume accessible to the 2MASX/NVSS sample of

SFGs is almost completely IR-limited, so their radio source count should also be nearly

Euclidean: S2n(S) ∝ S−1/2 as suggested by the dotted line connecting the open points

in Figure 2.7. At lower flux densities the 2MASX/NVSS sample depth becomes more

radio-limited, so the contribution by SFGs to S2n(S) flattens out and eventually turns

over. Nearby 2MASX/NVSS radio AGNs are typically more luminous than SFGs by

factors of ∼ 102.5 (Condon et al. 2002), so their source count is IR-limited and nearly

Euclidean only for the small number of AGNs stronger than S ∼ 1 Jy. Nearly all

2MASX/NVSS AGNs are much weaker and the volume sampled is strongly limited

by the radio sensitivity limit. The dotted straight line fitted to the AGN count (filled

circles) in Figure 2.7 has a slope d log[S2n(S)]/d log(S) ≈ +0.6 for S � 1 Jy. This

slope is close to the slope α ≈ +0.5 of the 1.4 GHz spectral power density function

Udex(L) at spectral luminosities L� 1024 W Hz−1 (see Section 2.9.2).

Only 15,043 of the 55,288 (27%) 2MASX galaxies brighter than k20fe = 12.25

contain NVSS sources stronger than 2.45 mJy at 1.4 GHz. However, the normalized

probability distribution P (Sp) of NVSS peak flux densities Sp at the positions of

all 55,288 2MASX sample galaxies (heavy histogram in Figure 2.8) constrains the

radio source count well below 2.45 mJy. The light histogram shows the matching

distribution of peak flux densities at “blank” positions offset 1◦ to the north. It is

well fit by a noise Gaussian with rms width σ = 0.47 mJy beam−1 (light curve) plus a

thin positive-going tail produced by background radio sources. The NVSS on-source

distribution is the convolution of the off-source distribution and the peak flux density

distribution of 2MASX galaxies. To the extent that most weak 2MASX radio sources
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Figure 2.8. The distribution of NVSS peak flux densities Sp at the positions of all
2MASX sample galaxies is plotted as the heavy histogram, and the light histogram
shows the corresponding peak flux densities at “blank” positions offset 1◦ to the north.
The source count indicated by the light solid line in Figure 2.7 yields the best fits
(solid curves) to these histogrrams. The dashed curve that doesn’t fit the data is the
P (Sp) distribution corresponding to the dashed source count in Figure 2.7.

are unresolved in the θ = 45′′ FWHM NVSS beam, Sp ≈ S and

Ωn(S) dS = N P (Sp) dSp . (2.14)

For any S2n(S) (Figure 2.7) we can solve for

P (Sp) =

(
Ω

NS2

)
S2n(S) . (2.15)

To the degree that the weighted differential count can be approximated by a power

law S2n(S) ≈ kSγ over the flux-density range S1 to S2, the number of sources ∆N

with flux densities between S1 and S2 is

∆N ≈ Ω

∫ S2

S1

kSγ−2 dS =

(
Ωk

1− γ

)
(Sγ−1

1 − Sγ−1
2 ) . (2.16)
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Among the N = 55, 288 2MASX galaxies brighter than k20fe = 12.25 in Ω = 7.016 sr,

there are ∆N = 40, 245 with peak flux densities S2 < 2.45 mJy.

Equation C.16 is an integral constraint on S1 (there can’t be more 2MASX/NVSS

radio sources than 2MASX galaxies) as a function of the other two source-count

variables k and γ. Continuity of the direct source count S2n(S) ≈ 4 sr−1 at S ≈
0.003 Jy (Figure 2.7) fixes k for any γ. The best value of the remaining unknown

γ is the one that yields the best fit to the heavy P (Sp histogram in Figure 2.8.

For example, the power-law extrapolation S2n(S) = 17.9S0.25 of the direct count of

2MASX galaxies with k20fe ≤ 12.25 above S = 2.45 mJy yields the dashed line in

Figure 2.7 that must break at S1 ≈ 0.46 mJy lest the number of radio sources exceed

the number of galaxies. However, this solution is unsatisfactory because it predicts

the dashed P (Sp) distribution in Figure 2.8 that is shifted far to the right of the

observed distribution (heavy histogram).

The best power-law fit is S2n(S) ≈ 880S−0.90 cutting off at S1 ≈ 0.0001 Jy, as

shown by the light straight line in Figure 2.7 and the continuous curve that is a good

match to the heavy histogram in Figure 2.8. We conclude that (1) the brightness-

weighted count of nearby sources fainter than 2.45 mJy must converge rapidly, and

(2) the NVSS is sufficiently sensitive to have detected individually those sources that

contribute most of the low redshift (z . 0.05) sky brightness. It also appears that

most 2MASX galaxies brighter than k20fe = 12.25 are radio sources stronger than

S ∼ 0.1 mJy and should be detectable above the planned Sp ≈ 0.05 mJy sensitivity

limit of the upcoming EMU survey (Norris 2011).

2.7 The Spectroscopically Complete Subsample

All but 7 of the 9,517 2MASX/NVSS galaxies with k20fe ≤ 11.75 have published

spectroscopic velocities cz or new velocities reported in Section 2.7.1.
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2.7.1 New Spectroscopic Redshifts

We obtained spectra for 12 of the 19 galaxies lacking published spectroscopic redshifts

with the Dual Imaging Spectrograph (DIS) on the Apache Point Observatory (APO)

3.5 m telescope. Observations were carried out over three half-nights occurring in

October through December of 2017. DIS is a medium dispersion double spectrograph

that has separated red and blue channels. The standard “high” resolution DIS III

grating setup B1200/R1200 was used. The wavelength ranges were centered on the Hβ

and Hα lines at the median redshift of the 2MASX/NVSS sample, 5021 Å and 6780 Å

for the blue and red cameras, respectively. This resulted in a wavelength coverage of

4401− 5641 Å and 6200− 7360 Å for the blue and red channels, respectively.

Total exposure times ranged from 1620 s to 3360 s, taken in intervals of 120 s to

420 s so as to mitigate cosmic-ray contamination. The two galaxies with the weakest

spectral lines were observed on multiple nights to increase exposure time and im-

prove the quality of the redshift measurement. Bias and flat frames were obtained

before each observing run. Comparison spectra were obtained before and after each

observation run using a He, Ne, and Ar lamp.

The spectra were reduced and analyzed in a uniform manner with IRAF. Initial

2D frames were bias-subtracted and flat-fielded using subroutines in the CCDRED

package. Apertures were extracted with the APEXTRACT package. Dispersion

functions were derived from the HeNeAr lamp spectra and fit to the object frames

using routines in the ONEDSPEC package. Multiple sub-exposures of each target

were combined for the blue and red spectra.

The blue and red portions of the spectrum were combined and processed using the

XCSAO procedure in the RVSAO package to determine barycentric radial velocities.

Sample spectra are shown in the top portion of Figure 2.9. The XCSAO routine

follows the cross-correlation technique developed by Tonry & Davis (1979). We used

the SDSS galaxy templates1, specifically 23–28, in the cross-correlation. Hot pixels

and the unobserved wavelength range between the blue and red cameras were ignored

by the cross-correlation routine. Typical results from the cross-correlation technique

1http://classic.sdss.org/dr7/algorithms/spectemplates/
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are shown in the bottom panel of Figure 2.9 for the two galaxies shown in the top

panel. The resulting barycentric radial velocities are given in Table 2.3.
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Figure 2.9. Top panels: Examples of typical spectra obtained for the 12 galaxies with
the APO 3.5 m telescope. Left: Absorption line spectrum with the DIS blue camera.
Right: Emission line spectrum with the DIS red camera. Bottom panels: Results of
the cross-correlation technique used to measure the redshifts for the corresponding
top panel galaxies.

The reliability of the velocities can be estimated by the r statistic, a confidence

measure. Calibration done in the development of the XCSAO cross-correlation rou-

tine (Kurtz & Mink 1998) suggests that cross-correlations with r > 3 can be deemed

reliable, but note that many of the spectra in their test study with 2 < r < 3 also

yield correct velocities. Of the twelve galaxies observed, all but one of the spectra has

r > 3. The exception, 2MASX J21352090+8906537, has r = 2.55 for the template

with the highest cross-correlation signal.
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Table 2.3: 2MASS Supplemental Velocities

2MASX R.A. Dec. l b v = cz σv

J2000 name hh:mm:ss.ss dd:mm:ss.s (deg) (deg) (km s−1) (km s−1)

02570403+2000446 02:57:04.03 +20:00:44.6 159.08 −33.90 9500.6 14.4

03215557+2149375 03:21:55.57 +21:49:37.5 163.32 −29.00 14302.0 12.2

03390103+1419217 03:39:01.03 +14:19:21.7 172.61 −31.94 9523.9 31.0

03402770+1533113 03:40:27.70 +15:33:11.3 171.90 −30.82 9823.3 11.1

04141963+2025240 04:14:19.63 +20:25:24.0 174.24 −21.65 6316.2 59.9

07134975+8729044 07:13:49.75 +87:29:04.4 125.75 +27.35 15157.5 59.9

17272375+1521110 17:27:23.75 +15:21:11.0 37.88 +25.37 9045.2 37.3

17494097+5333541 17:49:40.97 +53:33:54.1 81.29 +30.50 28187.3 161.8

17543888+6803287 17:54:38.88 +68:03:28.7 98.12 +30.30 23869.6 83.9

20510128−1710242 20:51:01.28 −17:10:24.2 29.78 −33.95 19387.9 82.2

21352090+8906537 21:35:20.90 +89:06:53.7 122.18 +26.55 21094.2a 125.0

23074944−1236479 23:07:49.44 −12:36:47.9 58.71 −61.74 20378.2 37.0

2.7.2 Corrections for Solar Motion and Galaxy Peculiar Ve-

locities

To estimate accurate distances from the observed heliocentric velocities, we first con-

verted the heliocentric velocities v ≡ cz to velocities vCMB in the frame of the cosmic

microwave background (CMB) using

vCMB = v + vapex[sin(b) sin(bapex)

+ cos(b) cos(bapex) cos(l − lapex)] ,
(2.17)

where (lapex, bapex) = (264.14◦, 48.26◦) and vapex = 371.0 km s−1 (Fixsen et al. 1996).

Large-scale structures (e.g., galaxy clusters) cause additional deviations from the
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local Hubble flow that depend on position and redshift. We adopted the local bulk

flow models of Carrick et al. (2015) to correct for this effect.

The Carrick et al. (2015) model of the peculiar velocity field is given as a 2573

voxel cube in right-handed galactic Cartesian coordinates with i, j, and k indices

corresponding to galactic X, Y, Z in Mpc h−1, with the i index running fastest. The

voxel centers run from−200h−1 to 200h−1 Mpc so the voxel spacing is 1.5625h−1 Mpc.

The i, j, k indices can be converted to Cartesian galactic coordinates using

X = (i− 128)× 400./256. (2.18)

Y = (j − 128)× 400./256. (2.19)

Z = (k − 128)× 400./256. (2.20)

The center of the cube [128,128,128] represents the Local Group. All peculiar ve-

locities vpec in the cube are relative to the CMB and are generated by the galaxy

density models of Carrick et al. (2015), which depend upon the cosmological density

of matter Ωm (taken to be 0.3 in this study) and the bias b∗ of an L∗ galaxy. Along

the radial line to each galaxy, we solved

H0 r + vpec(r) = vCMB (2.21)

to obtain the corrected galaxy velocity vc = czc.

The histograms in Figure 2.10 show the normalized probability distributions P (cz)

of corrected velocities czc for galaxies whose radio sources are powered by stars (un-

shaded area) or by AGNs (shaded). Star-forming galaxies outnumber AGNs by a

ratio of >2:1 in this sample of bright galaxies, especially at lower redshifts. The

median velocity of star-forming galaxies is only 〈czc〉 ≈ 0.6× 104 km s−1, about half

the median velocity 〈czc〉 ≈ 1.2 × 104 km s−1 of galaxies with AGN-powered radio

sources.
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Figure 2.10. All but 7 of the 9,517 2MASX/NVSS galaxies with k20fe ≤ 11.75 have
spectroscopic redshifts. Histograms of their corrected velocities czc are shown sepa-
rately for galaxies whose radio sources are powered by AGNs (A) or by stars (S).
The corresponding Hubble distances for H0 = 70 km s−1 Mpc−1 are also shown.
Lower Abscissa: czc (km s−1). Upper Abscissa: Hubble distance D (Mpc) Ordinate:
104 P (czc) (km s−1)−1.

2.8 Local 1.4 GHz Luminosity Functions

The local luminosity function specifies the mean space density of galaxies in the

nearby universe as a function of spectral luminosity. The universe is evolving and

homogeneous on large scales, so the local luminosity function more usefully repre-

sents the universal average space density during the present epoch rather than our

particular location in space. We derived separate 1.4 GHz luminosity functions for

radio sources powered by star formation and by AGNs. They are today’s benchmarks

for comparing with higher-redshift samples to constrain models for the cosmological

evolution of star formation and AGN activity.

The 2MASX/NVSS spectroscopic subsample should yield reliable 1.4 GHz lu-

minosity functions because redshifts are available for nearly all galaxies and it is
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complete for galaxies that are brighter than k20fe = 11.75 at λ = 2.16µm, stronger

than S = 2.45 mJy at 1.4 GHz, and lie in the solid angle Ω = 7.016 sr defined by

J2000 δ > −40◦ and |b| > 20◦. The 2MASX catalog itself is actually complete and

reliable for galaxies much fainter than k20fe = 11.75; our magnitude limit reflects the

availability of spectroscopic redshifts. The NVSS sample includes all sources with

catalog flux densities S ≥ 2.5 mJy. However, the NVSS catalog flux densities are

rounded to the nearest 0.1 mJy, so sources as faint as S = 2.45 mJy are listed as

having S = 2.5 mJy in the catalog. The spectroscopic redshifts are from Huchra

et al. (2012) or from new optical and NIR spectra obtained with the Apache Point

Observatory (APO) 3.5 m telescope, as described in Appendix 2.7.1.

The 1.4 GHz spectral luminosity function ρ(L) dL is defined as the space density

of sources with 1.4 GHz spectral luminosities between L and L + dL. The range of

spectral luminosities spanned by galaxies is so large that it is convenient to define a

logarithmic spectral luminosity function

ρdex(L) ≡ ρ(L)
dL

d log(L)
= ln(10)Lρ(L) (2.22)

specifying the space density of sources per decade of spectral luminosity.

The 1.4 GHz spectral luminosity of each source is

L = 4πD2
LS1.4(1 + z)−(1+α) , (2.23)

where DL = (1 + z)DC is the luminosity distance to the radio source, DC is the

comoving distance, S1.4 is the 1.4 GHz NVSS flux density, and α = −0.7 is the mean

spectral index (S ∝ να) of sources selected at 1.4 GHz (Condon 1984). The absolute

magnitude K20fe was calculated using

K20fe = k20fe − 5 log

(
DL

10 pc

)
− k(z) , (2.24)

where k(z) = −6.0 log(1 + z) is the k-correction that is independent of galaxy type

and valid for all z ≤ 0.25 (Kochanek et al. 2001). We therefore used zmax = 0.25 as
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the maximum possible redshift when calculating Vmax values for our galaxy sample.

2.8.1 Maximum Redshifts

We plotted the maximum redshifts zmax at which galaxies could remain in our spec-

troscopic subsample as functions of both 1.4 GHz spectral luminosity (Figure 2.11)

and λ = 2.16 µm absolute magnitude K20fe (Figure 2.12). Star-forming galaxies (blue

triangles) span the majority of the redshift range (0.0017 . z . 0.12) and absolute

magnitudes (−18 & K20fe & −27), but are mainly limited to 1.4 GHz luminosities

log[L(W Hz−1)] . 23. AGNs (black circles) dominate both the high radio luminosi-

ties and absolute magnitudes K20fe, but are fewer in number at the lowest redshifts

(z . 0.007).

Figure 2.11. Maximum redshifts out to which a 2MASX/NVSS source could be moved
and remain in the spectroscopic subsample, as a function of 1.4 GHz luminosity. The
maximum redshifts for star-forming galaxies (blue triangles) and AGNs (black circles)
are shown as a function of 1.4 GHz radio luminosity.
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Figure 2.12. Maximum redshifts out to which a 2MASX/NVSS source could be moved
and remain in the spectroscopic subsample, as a function of K20fe. The maximum
redshifts for star-forming galaxies (blue triangles) and AGNs (black circles) are shown
as a function of K20fe.

2.8.2 Correction for Local Overdensity

Galaxies cluster and we are located in a galaxy, so the space density ρP of the nearest

galaxies is somewhat greater than the mean density ρ of all galaxies. We corrected

our local luminosity function for the local overdensity within a distance r using the

equation (Fisher et al. 1994)

ρP

ρ
= 1 +

3

3− γ

(
r0

r

)γ
. (2.25)

The correlation function parameters of IRAS galaxies are appropriate for describing

the clustering of the 2MASX/NVSS galaxies; they are r0 = 3.76h−1 and γ = 1.66
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for r < 20h−1 Mpc (Fisher et al. 1994). For r < 20h−1 Mpc, the volume within

r was multiplied by ρP/ρ in our calculation of Vmax; otherwise the volume was left

unchanged. To minimize uncertainties introduced by large values of this correction for

local-group galaxies, we excluded 48 galaxies in the volume with r < 5 Mpc (corrected

czc < 350 km s−1, or z . 0.0017) when calculating luminosity functions. Only about

5% of our sample galaxies have r < 20h−1 Mpc ≈ 29 Mpc, so correcting for the local

overdensity has only a small effect on our radio luminosity functions.

2.8.3 The Distribution of V/Vmax

If the radio sources are randomly distributed throughout the corrected volume, the

distribution of V/Vmax should be uniform in the interval [0,1] and have a mean

〈V/Vmax〉 ≈ 0.5. The standard deviation of a uniform distribution on the interval [0,1]

is 12−1/2, so the rms uncertainty in 〈V/Vmax〉 of N � 1 radio sources is σ ≈ (12N)−1/2.

A statistically significant departure from a uniform distribution with mean 0.5 may

indicate one or more of the following: poor corrections for the local overdensity, in-

correct sample limits, strong clustering, or monotonic evolution of sources during

the lookback times spanned by the sample volume. For the 2MASX/NVSS galaxies

used to determine the local luminosity function, the 6699 star-forming galaxies have

〈V/Vmax〉 = 0.500 ± 0.004, the 2763 AGNs have 〈V/Vmax〉 = 0.494 ± 0.005, and all

9462 galaxies have 〈V/Vmax〉 = 0.497 ± 0.003. Thus our 〈V/Vmax〉 test detects no

monotonic evolution during the sample-limited lookback time τ ∼ 1− 2 Gyr.

The normalized probability densities of V/Vmax in 20 bins of width ∆(V/Vmax) =

0.05 are plotted separately for star-forming galaxies and AGNs in Figure 2.13. The

V/Vmax distribution for AGNs closely follows a uniform distribution with a χ2
ν ≈ 1.08.

In contrast, the distribution for star-forming galaxies appears to deviate slightly, with

a χ2
ν ≈ 2.04, marginally significant at the ∼ 0.01 level. This slight deviation from a

uniform distribution can be mostly attributed to the peak in the bin of V/Vmax from

0.80 − 0.85. This is caused mainly by galaxies whose zmax is limited by radio lumi-

nosity rather than K band magnitude. This peak would be a marginally statistically

significant 3.6σ bump for the star-forming galaxies if galaxies were distributed ran-
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domly in space. However, our V/Vmax fluctuations are consistent with the statistical

fluctuations expected in clustered galaxy samples mildly exacerbated by the NVSS

catalog flux-density quantization.

Figure 2.13. Binned distributions of V/Vmax for star-forming galaxies (solid line) and
AGNs (dashed line) with the rms uncertainties expected for randomly distributed
galaxies. Abscissa: V/Vmax. Ordinate: Binned probability density.

2.8.4 Luminosity Function Results

We sorted our galaxies into luminosity bins of width ∆ log(L) = 0.2 (5 bins per

decade) centered on log[L(W Hz−1)] = 19.4 to 27.6 and calculated separate local
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luminosity functions of star-forming galaxies and AGNs using

ρdex = 5
N∑
i=1

(
1

Vmax

)
i

. (2.26)

Our 1.4 GHz local luminosity functions ρdex for star-forming galaxies and AGNs are

listed in Table 2.4 and plotted in Figure 2.14. The listed errors are the rms Poisson

counting errors for independent galaxies

σ = 5

[
N∑
i=1

(
1

Vmax

)2

i

]1/2

(2.27)

quadratically summed with a 3% flux-scale uncertainty. If the number N of galaxies

in a luminosity bin is small (N < 5), the quoted errors are the 84% confidence

limits tabulated in Gehrels (1986). Clustering and cosmic variance are addressed in

Section 2.10.

The luminosity functions of SFGs and AGNs intersect at log[L(1.4 GHz)] ≈
22.7 in agreement with the earlier result of Condon et al. (2002) and close to the

log[L(W Hz−1)] ≈ 22.9 found by Mauch & Sadler (2007) despite the different sam-

ples and classification methods used. This crossover marks the 1.4 GHz spectral

luminosity below which star-forming galaxies outnumber AGNs within the local uni-

verse.
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Table 2.4: 1.4 GHz Local Luminosity Functions (h =

0.70)

Star-forming Galaxies AGNs

log L N log ρdex N log ρdex

(W Hz−1) (dex−1 Mpc−3) (dex−1 Mpc−3)

19.4 6 −1.81+0.16
−0.26 1 −2.65+0.52

−0.76

19.6 3 −2.39+0.30
−0.34 0 · · ·

19.8 10 −2.29+0.12
−0.17 0 · · ·

20.0 11 −2.37+0.14
−0.21 1 −3.53+0.52

−0.76

20.2 21 −2.46+0.09
−0.11 3 −3.33+0.30

−0.34

20.4 59 −2.20+0.07
−0.08 5 −3.17+0.20

−0.36

20.6 103 −2.29+0.05
−0.05 4 −3.80+0.25

−0.28

20.8 147 −2.36+0.04
−0.04 9 −3.68+0.13

−0.18

21.0 244 −2.39+0.04
−0.05 22 −3.51+0.09

−0.12

21.2 411 −2.47+0.03
−0.03 22 −3.90+0.09

−0.11

21.4 584 −2.58+0.02
−0.02 65 −3.65+0.06

−0.07

21.6 823 −2.68+0.02
−0.02 85 −3.73+0.10

−0.13

21.8 975 −2.88+0.02
−0.02 171 −3.81+0.04

−0.04

22.0 1124 −3.00+0.02
−0.02 216 −3.94+0.04

−0.04

22.2 893 −3.25+0.02
−0.02 281 −4.02+0.04

−0.04

22.4 624 −3.57+0.02
−0.02 280 −4.12+0.05

−0.06

22.6 368 −3.90+0.03
−0.03 286 −4.26+0.03

−0.04

22.8 168 −4.34+0.04
−0.05 239 −4.37+0.04

−0.05

23.0 87 −4.74+0.05
−0.06 209 −4.46+0.04

−0.05

Continued on Next Page. . .
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Table 2.4 – Continued

Star-forming Galaxies AGNs

log L N log ρdex N log ρdex

(W Hz−1) (dex−1 Mpc−3) (dex−1 Mpc−3)

23.2 30 −5.30+0.10
−0.13 184 −4.51+0.05

−0.06

23.4 13 −5.63+0.12
−0.17 133 −4.74+0.05

−0.06

23.6 1 −7.39+0.52
−0.76 97 −4.82+0.08

−0.10

23.8 1 −6.96+0.52
−0.76 103 −4.88+0.05

−0.06

24.0 0 · · · 69 −5.03+0.06
−0.08

24.2 0 · · · 70 −5.17+0.06
−0.07

24.4 0 · · · 59 −5.23+0.06
−0.08

24.6 0 · · · 41 −5.45+0.07
−0.09

24.8 0 · · · 41 −5.50+0.08
−0.10

25.0 0 · · · 30 −5.76+0.09
−0.12

25.2 0 · · · 24 −5.88+0.10
−0.12

25.4 0 · · · 8 −6.01+0.18
−0.33

25.6 0 · · · 2 −6.91+0.37
−0.45

25.8 0 · · · 0 . −7.68

26.0 0 · · · 1 −6.91+0.52
−0.76

26.2 0 · · · 0 . −7.68

26.4 0 · · · 1 −7.23+0.52
−0.76

26.6 0 · · · 0 · · ·

26.8 0 · · · 0 · · ·

27.0 0 · · · 0 · · ·

27.2 0 · · · 0 · · ·

Continued on Next Page. . .
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Table 2.4 – Continued

Star-forming Galaxies AGNs

log L N log ρdex N log ρdex

(W Hz−1) (dex−1 Mpc−3) (dex−1 Mpc−3)

27.4 0 · · · 0 · · ·

27.6 0 · · · 1 −8.68+0.52
−0.76

Star-Forming Galaxies

The FIR/radio correlation shows that the radio and FIR luminosities of star-forming

galaxies are nearly proportional, so their logarithmic radio and FIR luminosity func-

tions should be similar in form. Saunders et al. (1990) found that the FIR (40µm <

λ < 120µm) logarithmic luminosity function φ(L) derived from seven large samples

of IRAS sources is well fit by the parametric form

φ(L) = C

(
L

L∗

)1−α

exp

[
− 1

2σ2
log2

(
1 +

L

L∗

)]
(2.28)

that approaches a power law at with slope (1 − α) when L � L∗ and falls like a

Gaussian with log(L) when L� L∗.

Equation 2.28 also fits the local 1.4 GHz logarithmic luminosity function ρdex(L)

of star-forming galaxies very well, in congruence with the FIR/radio correlation,

and it gives a better fit than the Schechter (1976) luminosity function. The dot-

ted curve fitting the filled points in Figure 2.14 has the best-fit parameters for the

2MASX/NVSS star-forming galaxies stronger than log[L(W Hz−1)] = 19.3: C =

3.50× 10−3 dex−1 Mpc−3, L∗ = 1.9× 1021 W Hz−1, α = 1.162, and σ = 0.558. Despite

the good parametric fit to the data, we have not quoted errors on these four param-
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Figure 2.14. The 2MASX/NVSS 1.4 GHz logarithmic luminosity functions for sources
whose radio emission is dominated by star formation (filled circles) and AGNs (unfilled
circles). The two dotted curves represent the Saunders et al. (1990) and double
power-law fits to the local luminosity functions of star-forming galaxies and AGNs,
respectively.

eters because they are so highly correlated that they “grossly overestimate the total

acceptable volume of parameter space” (Saunders et al. 1990).

Mauch & Sadler (2007) used a deeper (ks < 12.75) sample of 2MASX galaxies

identified with NVSS sources and having 6dF spectra in a smaller area of sky (Ω ≈
2.16 sr) to calculate ρdex(L) in the luminosity range 19.8 . log(L) . 23.8 for galaxies

they classified as star-forming on the basis of their optical spectra. Their fit to the

Saunders et al. (1990) form in Equation 2.28 gave C = 1.48±0.17×10−3 dex−1 Mpc−3,

L∗ = 1.5 ± 0.5 × 1021 W Hz−1, α = 1.02 ± 0.15, and σ = 0.60 ± 0.04. Again,

these four parameters are so highly correlated that apparently significant differences

between their values and ours are not meaningful. Direct comparisons of our binned

luminosity functions show that they agree within the expected errors after cosmic
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variance (Section 2.10) has been taken into account.

AGNs

For the high-luminosity bins in which no sources were detected, we are able to place

upper limits on the space density of AGNs. Given their large radio luminosities,

hypothetical sources in these empty bins would likely be volume-limited by the

k20fe = 11.75 cutoff. The mean absolute magnitude of AGNs in our sample with

log[L1.4 GHz(W Hz−1)] > 24.5 is 〈K20fe〉 ≈ −25.84. We used this value to determine

the maximum volume within which such a source would have k20fe ≤ 11.75. For

luminosity bins with N = 0, the resulting 84%-confidence = 1σ upper limit given

by Poisson statistics (Gehrels 1986) is log[ρdex(dex−1 Mpc−3)] . −7.68. These limits

are shown by downward pointing arrows in Figure 2.14 and were used as additional

constraints on the AGN luminosity function. Above log[L(W Hz−1)] ∼ 26.4 those

limits are well above the measured data points and provide no useful constraints on

the luminosity function.

A double power-law has traditionally been used to describe the local logarithmic

luminosity function of AGNs:

ρdex(L) =
C

(L/L∗)
α + (L/L∗)

β
. (2.29)

Here α is the power-law slope in the limit L � L∗ and β is the slope for L � L∗.

Both C and α are well constrained by our data. However, radio-luminous AGNs are

so rare in the local universe that we can only weakly constrain the local turnover

luminosity L∗ and high-luminosity slope β. The deeper (ks < 12.75) Mauch & Sadler

(2007) AGN luminosity function gives a slightly better constraint on β.

The dotted curves matching the filled and unfilled points in Figure 2.14 indi-

cate the best-fitting Saunders et al. (1990) parametric luminosity functions for the

2MASX/NVSS star-forming galaxies and AGNs, respectively.
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2.9 Local 1.4 GHz Spectral Power Density Func-

tions

The spectral power density function u(L) is defined as the spectral power density

generated by sources with 1.4 GHz spectral luminosities in the range L and L+ dL:

u(L) ≡ Lρ(L). (2.30)

The symbol u is a reminder that the dimensions of spectral power density (W Hz−1 Mpc−3)

are the same as those of energy density (J Mpc−3). The range of spectral luminosities

spanned by galaxies is so large that it is convenient to define a logarithmic spectral

power density function

udex(L) ≡ ln(10)Lu(L) = Lρdex(L) (2.31)

equal to the spectral power density (or energy density) per decade of spectral lumi-

nosity.

To calculate udex(L) we separated our galaxies into bins of logarithmic width

∆ log(L) = 0.2 centered on log[L(W Hz−1)] = 19.4, 19.6, . . . , 27.6 and counted the

number N of galaxies in each bin. There are 5 bins per decade of luminosity, so each

bin centered on luminosity L yields the estimate

udex(L) = 5
N∑
i=1

(
L

Vmax

)
i

, (2.32)

with rms counting uncertainty

σ = 5

[
N∑
i=1

(
L

Vmax

)2

i

]1/2

. (2.33)

Our 1.4 GHz local power density functions for star-forming galaxies and AGNs are

listed in Table 2.5 with rms errors equal to the quadratic sum of the rms counting
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uncertainty and 3%.

Table 2.5: 1.4 GHz Spectral Power Density Functions

(h = 0.70)

Star-forming Galaxies AGNs

log L N log udex N log udex

(W Hz−1) (W Hz−1 dex−1 Mpc−3) (W Hz−1 dex−1 Mpc−3)

19.4 6 17.56+0.16
−0.25 1 16.76+0.52

−0.76

19.6 3 17.18+0.30
−0.34 0 · · ·

19.8 10 17.53+0.12
−0.17 0 · · ·

20.0 11 17.66+0.14
−0.22 1 16.45+0.52

−0.76

20.2 21 17.72+0.09
−0.11 3 16.85+0.30

−0.34

20.4 59 18.22+0.07
−0.08 5 17.21+0.19

−0.34

20.6 103 18.32+0.04
−0.05 4 16.83+0.25

−0.28

20.8 147 18.45+0.04
−0.04 9 17.12+0.13

−0.18

21.0 244 18.60+0.04
−0.04 22 17.47+0.09

−0.12

21.2 411 18.74+0.03
−0.03 22 17.33+0.09

−0.11

21.4 584 18.81+0.02
−0.02 65 17.74+0.06

−0.07

21.6 823 18.92+0.02
−0.02 85 17.88+0.10

−0.13

21.8 975 18.91+0.02
−0.02 171 18.00+0.04

−0.04

22.0 1124 19.00+0.02
−0.02 216 18.06+0.04

−0.04

22.2 893 18.94+0.02
−0.02 281 18.19+0.04

−0.04

22.4 624 18.82+0.02
−0.02 280 18.29+0.05

−0.06

22.6 368 18.68+0.03
−0.03 286 18.33+0.03

−0.04

22.8 168 18.45+0.04
−0.05 239 18.43+0.04

−0.05

Continued on Next Page. . .66



Table 2.5 – Continued

Star-forming Galaxies AGNs

log L N log udex N log udex

(W Hz−1) (W Hz−1 dex−1 Mpc−3) (W Hz−1 dex−1 Mpc−3)

23.0 87 18.24+0.05
−0.06 209 18.54+0.04

−0.05

23.2 30 17.86+0.09
−0.12 184 18.69+0.05

−0.06

23.4 13 17.74+0.12
−0.17 133 18.65+0.05

−0.06

23.6 1 16.28+0.52
−0.76 97 18.80+0.09

−0.11

23.8 1 16.85+0.52
−0.76 103 18.92+0.05

−0.06

24.0 0 · · · 69 18.97+0.07
−0.08

24.2 0 · · · 70 19.03+0.06
−0.07

24.4 0 · · · 59 19.17+0.06
−0.08

24.6 0 · · · 41 19.15+0.07
−0.09

24.8 0 · · · 41 19.31+0.08
−0.09

25.0 0 · · · 30 19.25+0.10
−0.12

25.2 0 · · · 24 19.30+0.10
−0.12

25.4 0 · · · 8 19.36+0.18
−0.33

25.6 0 · · · 2 18.66+0.37
−0.45

25.8 0 · · · 0 . 18.16

26.0 0 · · · 1 19.27+0.52
−0.76

26.2 0 · · · 0 . 18.56

26.4 0 · · · 1 19.27+0.52
−0.76

26.6 0 · · · 0 · · ·

26.8 0 · · · 0 · · ·

27.0 0 · · · 0 · · ·

Continued on Next Page. . .
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Table 2.5 – Continued

Star-forming Galaxies AGNs

log L N log udex N log udex

(W Hz−1) (W Hz−1 dex−1 Mpc−3) (W Hz−1 dex−1 Mpc−3)

27.2 0 · · · 0 · · ·

27.4 0 · · · 0 · · ·

27.6 0 · · · 1 18.88+0.52
−0.76

2.9.1 Star-Forming Galaxies

As expected, the local 1.4 GHz spectral power density function of star-forming galax-

ies is well fit by

udex(L) = C

(
L

L∗

)2−α

exp

[
− 1

2σ2
log2

(
1 +

L

L∗

)]
(2.34)

with the same parameters C = 3.50 × 10−3 dex−1 Mpc−3, L∗ = 1.9 × 1021 W Hz−1,

α = 1.162, and σ = 0.558 that fit the local logarithmic luminosity function. This fit

is indicated by the dotted curve matching the filled circles in Figure 2.15.

The total 1.4 GHz spectral power produced per unit volume by star-forming galax-

ies USF is the integral the local power density function of star-forming galaxies over

spectral luminosity:

USF =

∫ ∞
0

uSF(L) dL . (2.35)

USF is an extinction-free measurement proportional to the SFRD ψSF (M� yr−1 Mpc−3).

We calculated USF directly by summing L/Vmax over the unbinned sample of all star-
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Figure 2.15. Local spectral power density functions for radio sources powered pri-
marily by star formation (filled circles) and AGNs (open circles) derived from the
2MASX/NVSS spectroscopic sample shown as functions of radio luminosity L1.4 GHz.
The SFGs were fitted by the Saunders et al. (1990) parametric form (Equation 2.28)
multiplied by L1.4 GHz. The AGNs were fitted by both the Saunders et al. (1990)
form (dashed curve) and by the Equation 2.29 double power law (dotted curve). The
shaded region shows the wide range of possible slopes β in Equation 2.29 such that
χ2 < 2.

forming galaxies in the 1.4 GHz 2MASX/NVSS spectroscopic subsample; it is

USF = (1.54± 0.05)× 1019 W Hz−1 Mpc−3 (2.36)

for H0 = 70 km s−1 Mpc−1. The rms error in USF includes a 3% flux-density calibra-

tion uncertainty.

Let USF(> L) be the cumulative spectral power density produced by star-forming

galaxies with 1.4 GHz spectral luminosities > L, so the ratio USF(> L) /USF is the

fraction of USF produced by galaxies more luminous than L. The curve in Fig-

ure 2.16 shows that ratio calculated from our fit to Equation 2.34. It is 0.99 for

log[L(W Hz−1)] = 19.3, the lowest luminosity in the 2MASX/NVSS spectroscopic
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subsample, suggesting that sources fainter than our sample limit account for < 1%

of all nearby star formation.

Figure 2.16. This curve shows the fraction USF(> L)/USF of the 1.4 GHz spectral
power density generated by star-forming galaxies with luminosities > L predicted by
extrapolating the fitting function in Equation 2.34.

2.9.2 AGNs

Excluding the anomalous quasar 3C 273 at log[L(W Hz−1)] ∼ 27.4, the parameters

of the double power-law fit were determined by minimizing the reduced χ2 statistic

of the fit to the measurements weighted by their uncertainties. The dashed line in

Figure 2.15 represents this best fit to Equation 2.29 with parameters C = 3.58×10−6,

L∗ = 9.55 × 1024 W Hz−1, α = 0.498, and β = 1.55. Because luminous AGNs are so

rare, the value for β can range from 1 to 2.58 for χ2 < 2 (shaded region in Figure

2.15).

Lacking the data needed to constrain the high-luminosity power-law slope β for

the AGN luminosity function, we considered an alternative approach. There is strong
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evidence supporting the notion of co-evolution of star-forming host galaxies and AGNs

(e.g. Gebhardt et al. 2000). This co-evolution indicates that the luminosity functions

of these populations might be represented by the same functional form, so we applied

the Saunders et al. (1990) form (Equation 2.28) used for the SFGs to the AGNs.

There remains the issue of the poorly sampled high-L end of the AGN luminosity

function, so we held our SFG value σ = 0.558 fixed while fitting the AGN luminosity

function. The dotted curve following the unfilled points in Figure 2.14 represents

the best-fitting Equation 2.28 parameters for the 2MASX/NVSS AGNs: C = 4.59×
10−6 dex−1 Mpc−3, L∗ = 4.65× 1024 W Hz−1, α = 1.516, and σ = 0.558.

We calculated the total 1.4 GHz spectral power density produced by AGNs UAGN

directly by summing L/Vmax over the unbinned sample of all AGNs in 1.4 GHz

2MASX/NVSS spectroscopic subsample; it is

UAGN = (4.23± 0.55) W Hz−1 Mpc−3 (2.37)

for H0 = 70 km s−1 Mpc−1. The rms error in UAGN includes a 3% flux-density cali-

bration uncertainty.

2.10 Cosmic Variance

The small statistical errors quoted in Tables 2.4 and 2.5 and in Equations 2.36 and

2.37 inlcude only the Poisson counting errors for unclustered galaxies added in quadra-

ture with the 3% absolute flux-density calibration uncertainty of the NVSS (Condon

et al. 1998). The mean accessible redshifts of galaxies used to estimate the local

spectral luminosity and power density functions, weighted by each source’s contri-

bution to the total star formation density, are 〈z〉 = 0.026 and 〈z〉 = 0.070 for the

2MASX/NVSS star-forming galaxies and AGNs, respectively. The corresponding dis-

tances D ∼ 100 − 300 Mpc are comparable with the size D ∼ 150 Mpc of baryon

acoustic oscillations, so significant cosmic variance from large-scale clustering is ex-

pected. To extend our local results (e.g., the local USF) derived from observations
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made from only one point in the universe to the whole universe (e.g, the recent USF

averaged over all space), it is necessary to add this cosmic variance to the Poisson

and calibration variances.

To estimate the amplitude of the cosmic variance, we divided our sample cover-

ing 7.016 sr of the sky into two equal-area hemispheres split by the vertical plane

passing through J2000 α = 12h51m26s, the right ascension of the north galactic

pole (Figure 2.17). We call the hemisphere covering J2000 α = 00h51m26s through

α = 12h51m26s “RA1” and the other hemisphere “RA2.”

The 3603 star-forming galaxies in RA1 produce USF,1 = (1.75±0.06)×1019 W Hz−1 Mpc−3

and the 3103 star-forming sources in RA2 produce USF,2 = (1.35±0.04)×1019 W Hz−1 Mpc−3,

where these errors do not include cosmic variance. The fractional difference in USF

between the two hemispheres is actually ∼ 0.26, so if the two halves of the sky are

nearly independent, the rms fractional uncertainty in their mean is ∼ 0.13. Thus

our spectroscopic subsample is large enough that cosmic variance exceeds its Poisson

and calibration variances. Our estimate of the recent “universal” USF based on local

measurements must include the cosmic variance; it is

USF = (1.54± 0.20)× 1019 W Hz−1 Mpc−3 . (2.38)

The corresponding numbers for radio sources primarily powered by AGNs are UAGN,1 =

(4.72±0.55)×1019 W Hz−1 Mpc−3 and UAGN,2 = (3.74±0.53)×1019 W Hz−1 Mpc−3,

so adding the cosmic variance implies the recent universal AGN spectral energy den-

sity is

UAGN = (4.23± 0.78)× 1019 W Hz−1 Mpc−3 . (2.39)

Figure 2.17 suggests that bisecting the sky at the chosen meridian gives a larger

difference than most other choices would have, so we believe the overall error estimates

in Equations 2.38 and 2.39 are conservative.

Figures 2.14 and 2.15 show our luminosity and power-density function data points

with error bars that do not include cosmic variance. We note that the data still match,

within those small error bars, the smooth parametric fits shown as dotted curves. We
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Figure 2.17. AGNs (upper panel) and SFGs (lower panel) in our sample are shown
on Hammer equal-area projections of the sky centered on J2000 α = 12h51m26s and
δ = 0. Right ascension increases to the left, so the RA1 hemisphere is to the right
of the vertical dividing line and the RA2 hemisphere is to the left. Blue indicates
galaxies with cz < 7000 km s−1, and cz > 7000 km s−1 galaxies are red. The color
boundary at cz = 7000 km s−1 corresponds to a distance D ∼ 100 Mpc.

conclude that cosmic variance affects the overall space density of galaxies but not

their detailed luminosity distributions.

We can also use our local sample to estimate how the expansion dynamics of
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a ΛCDM universe might be affected by density fluctuations on small scales. The

λ = 2.16 µm spectral luminosity densities of our sample galaxies in RA1 and RA2 are

1.734 × 1020 W Hz−1 Mpc−3 and 1.065 × 1020 W Hz−1 Mpc−3, respectively. Using the

λ = 2.16 µm luminosity as a proxy for baryonic mass and assuming dark matter has

a similar large-scale distribution, relative to the mean matter density, RA1 and RA2

have densities 1.239 and 0.761. For the global cosmological parameters Ωm = 0.3,

ΩΛ = 0.7, and Ωr = 8.5× 10−5,

ΩRA1 = (0.3× 1.239 + 0.7 + 8.6× 10−5) = 1.0718

ΩRA2 = (0.3× 0.761 + 0.7 + 8.6× 10−5) = 0.9284.

The “local” Hubble constant is proportional to Ω1/2, so in regions RA1 and RA2 the

local Hubble constant could beH0,1 ≈ 72.5 km s−1 Mpc−1 andH0,2 = 67.5 km s−1 Mpc−1.

This scatter is comparable to that of published values of H0, with the difference be-

ing that the lower published value is a global measurement rather than a small-scale

measurement such as this. Regardless, differing densities on ∼ 100 Mpc scales may

prevent local measurements of the global H0 to better than ∼ ±2.5 km s−1.

2.11 Recent Star Formation Rate Density

Radio continuum emission is a tight, nearly linear, and dust-unbiased independent

tracer of the SFRD ψ. Steep-spectrum (〈α〉 ≈ −0.8) synchrotron radiation from

relativistic electrons accelerated in the core-collapse SNRs of short-lived massive

(M > 8 M�) stars dominates the radio emission of SFGs at all frequencies below

ν ∼ 30 GHz, and flat-spectrum (α ≈ −0.1) free-free radiation from thermal elec-

trons in H ii regions ionized by by even more massive short-lived stars emerges above

30 GHz (Condon 1992). At ν ∼ 1 GHz, ∼ 90% of the radio emission from SFGs can

be attributed to synchrotron radiation and the remaining ∼ 10% to free-free emis-

sion. The FIR/radio correlation shows that SFR is proportional to radio luminosity

in all but the least-luminous SFGs (Condon et al. 1991), indicating that the con-
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stant of proportionality between radio luminosity and SFR is remarkably insensitive

to potentially confounding variables such as interstellar magnetic field strength.

Thus SFR can be related to 1.4 GHz luminosity by an equation of the form

SFR(M > 5M�)

M� yr−1
=

1

x

(
L1.4 GHz

W Hz−1

)
, (2.40)

where x is a dimensionless constant whose value has been found to range from ∼
1.8× 1021 to ∼ 8.9× 1021. For example, (Condon et al. 2002) reported

SFR(M > 5M�)

M� yr−1
=

1

4.6× 1021

(
L1.4 GHz

W Hz−1

)
. (2.41)

Radio emission is insensitive to lower-mass stars. To account for their contribution

to the total star-formation rate, we followed Madau & Dickinson (2014) and assumed

a Salpeter initial mass function Ψ(M) ∝M−2.35 over the mass range 0.1M� < M <

100M�. Then the total star-formation rate is

SFR(M > 0.1M�) ≈ 5.5 SFR(M > 5M�) . (2.42)

Because the conversion factor between 1.4 GHz luminosity and total SFR is still un-

certain, with values ranging from 5.5x ∼ 0.8 × 1021 to 1.7 × 1021, we adopted the

easily rescalable midrange number 1.0×10−21. Dividing SFR and 1.4 GHz luminosity

by volume gives the SFRD ψ in terms of USF:

ψ(M > 0.1 M�)

M� yr−1 Mpc−3
≈ 1.0× 10−21

(
USF

W Hz−1 Mpc−3

)
. (2.43)

Then our measured USF = (1.54±0.20)×1019 W Hz−1 with the quoted error including

cosmic variance implies that the “universal” recent SFRD is

ψ = (0.0154± 0.0020)M� yr−1 Mpc−3 . (2.44)

This value of ψ is lower than the ψ = (0.022±0.001) M� yr−1 Mpc−3 (Poisson errors
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only) Mauch & Sadler (2007) calculated using the higher conversion factor ψ = 1.13×
10−21USF. However, rescaling their conversion factor to ψ = 1.0×10−21USF and adding

cosmic variance to their rms uncertainty yields ψ = 0.0195± 0.0036 M� yr−1 Mpc−3.

Thus these two measurements of ψ agree within their uncertainties.

Multiwavelength compilations of SFRD estimates can be found in Hopkins &

Beacom (2006) and Madau & Dickinson (2014). After scaling to the Salpeter IMF,

Hopkins & Beacom (2006) adopted the Cole et al. (2001) parametric fit to describe

the evolution of the SFRD over the redshift range 0 < z < 7:

ψ(z) =
(a+ b z)h

1 + (z/c)d
M� yr−1 Mpc−3 . (2.45)

For h = 0.7 they found a = 0.0170, b = 0.13, c = 3.3, and d = 5.3. At the

weighted average redshift 〈z〉 ∼ 0.026 of our SFG sample, Equation 2.45 yields ψ =

0.015 M� yr−1 Mpc−3. From a compilation of FUV and IR rest-frame measurements

of ψ spanning 0 < z < 8, Madau & Dickinson (2014) found the best-fit function

ψ(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M� yr−1 Mpc−3 . (2.46)

Equation 4.37 gives ψ(0.026) = 0.016 M� yr−1 Mpc−3. Our ψ = 0.0154 ± 0.020

M� yr−1 Mpc−3 centered on 〈z〉 ≈ 0.026 agrees with both of these independent SFRD

evolutionary models. The blue point in Figure 2.18 compares our measurement with

the FIR and UV data points and the dashed curve showing the Madau & Dickinson

(2014) model.
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Figure 2.18. The Madau & Dickinson (2014) SFRD model (Equation 4.37) is indicated
by the dashed curve fitted to their black FIR and UV data points. The blue data point
at expansion scale factor a = (1 + z)−1 ∼ 0.98 (z = 0.026) represents our estimate of
the recent SFRD from based on USF measured at 1.4 GHz. Lower abscissa: expansion
scale factor a = (1 + z)−1. Upper abscissa: redshift z. Ordinate: star formation rate
density (M� yr−1 Mpc−3).
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Chapter 3

Radio Source Counts

3.1 Preface

The total brightness-weighted source count can be calculated by integrating the en-

ergy density function (along with other factors) over all redshifts. A comparison

between counts predicted for various prescriptions of the evolution of the energy den-

sity function and observed brightness-weighted source counts constrain the evolution

of the SFRD ψ(z). The total count has two peaks, one at log[S (Jy)] ∼ −1 produced

by AGNs and one at log[S (Jy)] ∼ −4.5 attributed to SFGs. Normal galaxies (e.g.

our own Milky Way) are responsible for forming the bulk of the current stellar mass

in the universe, but their flux densities at the peak of star formation (“cosmic noon”)

can be as faint as log[S (Jy)] ∼ −6.6. This chapter presents eight decades in flux den-

sity of observed 1.4 GHz brightness weighted source counts from the DEEP2 image

taken by the MeerKAT telescope and the NVSS. A statistical analysis of the DEEP2

confusion distribution constrains the source counts of normal star-forming galaxies

down to log[S (Jy)] ∼ −6.6. The remainder of this chapter has been published in the

Astrophysical Journal (Matthews et al. 2021).



3.2 Abstract

Brightness-weighted differential source counts S2n(S) spanning the eight decades of

flux density between 0.25µJy and 25 Jy at 1.4 GHz were measured from (1) from the

confusion brightness distribution in the MeerKAT DEEP2 image below 10µJy, (2)

the counts of DEEP2 sources between 10µJy and 2.5 mJy, and (3) counts of NVSS

sources stronger than 2.5 mJy. We present our DEEP2 catalog of 1.7 × 104 discrete

sources complete above S = 10µJy over Ω = 1.04 deg2. The brightness-weighted

counts converge as S2n(S) ∝ S1/2 below S = 10µJy, so > 99% of the ∆Tb ∼ 0.06 K

sky brightness produced by active galactic nuclei and ≈ 96% of the ∆Tb ∼ 0.04 K

added by star-forming galaxies has been resolved into sources with S ≥ 0.25µJy. The

∆Tb ≈ 0.4 K excess brightness measured by ARCADE 2 cannot be produced by faint

sources smaller than ≈ 50 kpc if they cluster like galaxies.

3.3 Introduction

There have been persistent discrepancies in the faintest direct source counts at S1.4 GHz <

100µJy(see de Zotti et al. 2010, for a review and compilation of previous source

counts), far exceeding the errors caused by Poisson fluctuations and clustering un-

certainties (Owen & Morrison 2008; Heywood et al. 2013). Direct counts of faint

radio sources rely primarily on high angular-resolution images, and must account for

possible “missing” resolved sources whose peak flux density falls below the surface

brightness sensitivity of the image. Corrections on the source counts due to these

missing sources depend on the highly uncertain, intrinsic angular source size distri-

bution of faint radio sources Bondi et al. (2008). The large uncertainty in these res-

olution corrections propagates into the integrated flux measurements, source counts,

and number of missing sources due to limited surface brightness sensitivty. This ef-

fect is further magnified by the steep slope of differential source counts n(S) ∝ S−5/2,

which exacerbates flux density overestimates and leads to higher counts at faint flux

densities.
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Following the pioneering P (D) method of Scheuer (1957), radio astronomers have

utilized confusion to measure accurate source counts (see Condon et al. 2012; Vern-

strom et al. 2014, for recent examples). A low resolution image ensures that all faint

radio galaxies appear as point sources—eliminating the need for uncertain resolution

corrections. The term “confusion” means fluctuations in sky brightness caused by

multiple faint sources inside the point-source response. Historically, confusion was

described by the probability distribution P (D) of pen deflections of magnitude D on

a chart-recorder plot of detected power (Scheuer 1957). The analog of the deflection

D in a modern image is the sky brightness expressed as a peak flux density Sp in

units of flux density per beam solid angle, so a P (D) distribution is the same as a

P (Sp) distribution.

Low resolution, confusion-limited images offer an independent way of measuring

faint radio source counts and are free from uncertain angular size corrections. While

unable to determine properties of individual galaxies, confusion studies are able to

constrain source counts of the radio population far below the noise and do not require

multi-wavelength cross-identifications as priors (unlike source counts measured from

“stacking”, e.g. Mitchell-Wynne et al. 2014).

The differential source count n(S)dS at frequency ν is the number of sources

per steradian with flux densities between S and S + dS. The Rayleigh-Jeans sky

brightness temperature dTb per decade of flux density added by these sources is[
d Tb

d log(S)

]
=

[
ln(10) c2

2kBν2

]
S2n(S) , (3.1)

where kB ≈ 1.38× 10−23 J K−1. Can one or more “new” populations of radio sources

fainter than 0.25µJy make comparable contributions to the sky brightness at 1.4 GHz?

The ARCADE 2 instrument measured the absolute sky temperature at frequencies

from ν = 3− 90 GHz, and Fixsen et al. (2011) reported finding an excess power-law

brightness temperature

(
Tb

K

)
= (24.1± 2.1)

(
ν

ν0

)−2.599±0.036

(3.2)
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from 22 MHz to 10 GHz, where ν0 = 310 MHz. Removing the contribution from

known populations of extragalactic sources leaves

(
∆Tb

K

)
= (18.4± 2.1)

(
ν

ν0

)−2.57±0.05

, (3.3)

(Seiffert et al. 2011). Possible explanations for this large excess fall into three cate-

gories: 1) the excess was overestimated owing to the limited sky coverage of ARCADE

2 and the zero-point levels of low frequency radio maps may be inaccurate, 2) the

excess is primarily smooth emission from our Galaxy, 3) the excess is primarily extra-

galactic, making it the only photon background that does not agree with published

source counts dominated by radio galaxies and star-forming galaxies. Vernstrom et al.

(2011) and Seiffert et al. (2011) explored the possibility of a new source population

contributing an extra “bump” to the source counts at flux densities < 10µJy. In

order to match the ARCADE 2 excess background, this hypothetical new popula-

tion must add ∆Tb ∼ 0.4 K to the sky brightness at 1.4 GHz. Condon et al. (2012)

showed that the brightness-weighted counts S2n(S) of this new population must peak

at flux densities below S1.4 GHz = 0.1µJy to be consistent with their observed P (D)

distribution.

This paper presents 1.4 GHz brightness-weighted source counts S2n(S) covering

the eight decades of flux density between S = 0.25µJy and S = 25 Jy based on

the very sensitive ν = 1.266 GHz MeerKAT DEEP2 sky image (Mauch et al. 2020)

confusion brightness distribution between S = 0.25µJy and S = 10µJy, the DEEP2

discrete-source catalog from S = 10µJy to S = 2.5 mJy, and on the 1.4 GHz NRAO

VLA Sky Survey (Condon et al. 1998, NVSS) catalog above S = 2.5 mJy. Nearly all of

these sources are extragalactic. We present the first complete catalog of disrete sources

with S > 10µJy in the DEEP2 field. While Mauch et al. (2020) derived the best-

fitting power-law source counts to describe the DEEP2 P (D) distribution, the actual

source counts do not follow a simple power law. To improve upon the Mauch et al.

(2020) fit, we allowed the source counts to be any continuous function. We further

explore the possibility of “new” populations of faint extragalactic sources contributing
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to the total radio background, and constrain the lower limit to the number of such

sources adding ∆Tb ∼ 0.4 K to the sky brightness at 1.4 GHz remaining consistent

with the DEEP2 P (D) distribution.

The data used to construct the source counts across eight decades is presented in

Section 3.4. The radio sky simulations needed to constrain the source counts from the

P (D) distribution and derive confusion corrections to the discrete counts is detailed

in Section 3.5. Statistical source counts with 0.25µJy < S < 10µJy estimated from

the P (D) confusion distribution are reported in Section 3.6. Section 3.7 presents the

complete S > 10µJy discrete source catalog from the DEEP2 field, and Section 3.7.4

presents the source counts derived from this catalog. Differential source counts for

the NVSS catalog are calculated in Section 3.8. The contributions of SFGs and AGNs

to the 1.4 GHz sky background and constraints on “new” populations of faint sources

explaining the ARCADE 2 radio excess are described in Section 3.9. Section 3.10

summarizes this work.

Absolute quantities in this paper were calculated for a ΛCDM universe with H0 =

70 km s−1 Mpc−1 and Ωm = 0.3 using equations in Condon & Matthews (2018). Our

spectral-index sign convention is α ≡ +d lnS/d ln ν.

3.4 Data

3.4.1 Selecting the sky position for a deep radio field

The dynamic range of a long-integration radio observation is limited by telescope

pointing errors ∆θ and fractional gain calibration errors ∆G acting on every source

of flux density S offset by angle θ from the pointing center. For a Gaussian primary

beam of full width at half maximum (FWHM) Θ1/2 the resulting flux-density errors

are
∆Sθ
S
≈
(

8 ln 2

Θ1/2

)
θ G(θ)∆θ (3.4)

due to pointing errors and
∆SG
S
≈ G(θ)∆G (3.5)
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due to gain calibration errors. The total flux-density error due to each source from

adding these errors quadratically is

S2 =
[
(∆Sθ)

2 + (∆SG)2
]
, (3.6)

and the total flux-density error (which we will call the “demerit score” d) summing

across all N sources is

d =

[
N∑
i=1

(∆Si)
2

]1/2

. (3.7)

To locate the best single-pointing field in the sky observable by the MeerKAT tele-

scope, we used the Sydney University Molongolo Sky Survey (SUMSS) for δ < −35◦

and the NVSS survey from −35◦ ≥ δ < 10◦. A map of the demerit scores in the sky

area near DEEP2 is shown in Figure 3.1.

We calculated the demerit scores d of potential pointings spaced ∼ 1′ apart

throughout the entire sky observable by MeerKAT and with |b| > 10◦. Of the five

pointings with the smallest demerit scores, we chose the southernmost field with J2000

α = 04:13:26.4 and δ = −80:00:00 to ensure it would be easy to schedule during the

commissioning of the MeerKAT telescope. Lying at an ecliptic latitude of β ≈ 75◦,

DEEP2 is easily observed by orbiting telescopes and is minimally affected by zodaical

dust—enhancing the quality of possible infrared and other multi-wavelength follow-up

observations.

3.4.2 The MeerKAT DEEP2 Field

The 1.266 GHz DEEP2 image (Mauch et al. 2020) covers the Θ1/2 = 69.′2 diameter

half-power circle of the MeerKAT primary beam centered on J2000 α = 04h 13m 26 .s4,

δ = −80◦ 00′ 00′′. Its point-source response is a θ1/2 = 7 .′′6 FWHM Gaussian, and

the rms noise is σn = 0.56± 0.01µJy beam−1 at the pointing center (Table 3.1). The

wideband DEEP2 image is the average of 14 narrow subband images weighted to

maximize the signal-to-noise ratio (SNR) of sources with spectral index α = −0.7

(Table 3.2). The dirty DEEP2 image was CLEANed down to residual peak flux
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Figure 3.1. The demerit score d of potential MeerKAT pointings near the DEEP2
field is shown from d = 1 mJy in deep violet to d = 200 mJy in bright yellow. The
location of DEEP2 α = 04:13:26.4 δ = −80:00:00 is outlined by the white circle of
2 deg in diameter.

density Sp = 5µJy beam−1.

The DEEP2 image is strongly confusion limited, so we could not treat its posi-

tion and flux-density error distributions analytically. Therefore we created radio sky

simulations (Section 3.5) to model the statistical source counts consistent with the

confusion brightness distribution, refine our catalog of discrete DEEP2 sources, and

correct our counts of the faintest sources (Section 3.7).

3.4.3 NRAO VLA Sky Survey

The 1.4 GHz NRAO VLA Sky Survey (NVSS) (Condon et al. 1998) imaged the entire

sky north of J2000 δ = −40◦ with θ1/2 = 45′′ FWHM resolution and σn ≈ 0.45 mJy beam−1

rms noise. The NVSS catalog lists source components as Gaussian fits to signifi-
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Table 3.1. DEEP2 Survey Parameters

Parameter Value

Right Ascension (J2000) 04:13:26.4

Declination (J2000) −80:00:00

Primary FWHM Θ1/2 69.′2

Solid angle Ω1/2 1.04 deg2

Synthesized FWHM θ1/2 7 .′′6

Central rms noise σn 0.56± 0.01µJy beam−1

P (D) on-sky noise σn 0.57± 0.01µJy beam−1

cant peaks in the NVSS images. From it we selected the 1117067 components with

S ≥ 2.5 mJy in the Ω ≈ 7.016 sr solid angle with absolute Galactic latitude |b| ≥ 20◦.

In Section 3.8 we detail how we derived the NVSS direct source counts above 2.5 mJy.

3.5 The Radio Sky Simulations

We produced computer simulations of the 1.266 GHz DEEP2 image (along with mock

catalogs) to calculate source counts below 10µJy, assess the quality of the algorithms

(e.g. our source finding algorithm) used on the real data, and to derive corrections

and uncertainties for the discrete source catalog between 10µJy < S < 2.5 mJy.

The confusion brightness distribution can be calculated analytically only for scale

free power-law differential source counts of the form n(S) ∝ S−γ (Condon 1974).

Likewise, population-law biases in counts of faint discrete sources can easily be esti-

mated only in the power-law count approximation (Murdoch et al. 1973). The actual

source counts are not well approximated by a single power law near S ∼ 10µJy be-

cause that flux density corresponds to the bend in the SFG luminosity function of

sources at z ∼ 1 (Condon et al. 2012, fig. 11), so we used computer simulations of

the 1.266 GHz DEEP2 image to estimate statistical source counts below 10µJy from

the DEEP2 image brightness distribution and to correct for biases in the DEEP2
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discrete-source counts above 10µJy. We simulated only point sources because the

measured median angular diameter 〈φ〉 ≈ 0 .′′3 of real µJy sources (Cotton et al.

2018) is much smaller than the DEEP2 restoring beam FWHM and only ∼ 0.2% of

the DEEP2 sources stronger than S = 10µJy are clearly resolved (Section 3.7.3).

The simulated sources all have spectral index α = −0.7, the median spectral in-

dex of extragalactic sources (Condon 1984). Varying α by ±0.14, the rms width of

the observed spectral-index distribution of faint sources, changes the 1.266 GHz flux

densities of the simulated sources by only ∓1%.

The input for each simulation is an arbitrary user-specified 1.266 GHz source count

n(S). In every flux-density bin of width ∆ log(S) = 0.001 the actual number of

simulated sources is chosen by a random-number generator sampling the Poisson

distribution whose mean matches the input n(S). The sources are scattered randomly

throughout the DEEP2 half-power circle. The real µJy sources in DEEP2 are nearly

all extragalactic and very distant (median redshift 〈z〉 ∼ 1), so they are spread

out over a radial distance range ∆z ∼ 1 much larger than the galaxy correlation

length and their sky distribution is quite random and isotropic (Benn & Wall 1995;

Condon & Matthews 2018), unlike the visibly clustered sky distribution of nearby

optically selected galaxies. In addition, clustering appears to have little effect on FIR,

millimeter, and radio confusion brightness distributions observed with resolutions

close to the DEEP2 restoring beam diameter (Béthermin et al. 2017).

The simulations also reproduce the DEEP2 observational effects and imaging pro-

cesses described by Mauch et al. (2020). The simulated image replicates CLEANing

by representing each source as the sum of two components: (1) a component whose

brightness distribution is the DEEP2 dirty beam and whose peak flux density is

the lesser of the input source flux density or subband CLEAN threshold plus (2)

a CLEAN component whose brightness distribution matches the circular Gaussian

restoring beam and whose amplitude is the difference between the input source flux

density and the subband CLEAN threshold. The subband CLEAN threshold was

determined from the wideband value of 5µJy and scaled to the subband central fre-

quency assuming a spectral index of α = −0.7. The dirty beam used for each subband
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Table 3.2. DEEP2 imaging
subband frequencies and weights

Subband νi σi wi for

number (MHz) (µJy beam−1) max SNR

i = 1 908.040 4.224 0.0378

2 952.340 5.044 0.0248

3 996.650 3.196 0.0580

4 1043.460 2.882 0.0669

5 1092.780 2.761 0.0683

6 1144.610 2.580 0.0733

7 1198.940 4.203 0.0259

8 1255.790 3.981 0.0271

9 1317.230 1.851 0.1170

10 1381.180 1.643 0.1389

11 1448.050 1.549 0.1463

12 1519.940 1.871 0.0938

13 1593.920 2.888 0.0368

14 1656.200 1.850 0.0850

Note—Column 1 is the subband number i, column 2 the subband central frequency νi,
column 3 the rms noise σi in the subband image, and column 4 is the subband image weight
wi used to produce the wideband DEEP2 image with the highest signal-to-noise ratio (SNR)
for sources with spectral index α = −0.7.

of the simulation is the actual DEEP2 subband dirty beam, which is nearly circular

and does not have strong diffraction spikes since the MeerKAT antennae are not dis-

tributed along straight arms. The first negative sidelobe of the weighted dirty beam

is at the ∼5% level (Figure 3.2). A 5µJy residual leaves a ∼ 0.25µJy negative ring

in the image, which is less than half the rms sky noise in the P (D) region. The first

positive sidelobe of the dirty beam is at the ∼1% level.

The simulation generates sources with spectral index α = −0.7 and combines the

subband images with the weights listed in column 4 of Table 3.2. To incorporate the
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Figure 3.2. The SNR-weighted DEEP2 dirty beam, cut along the maximum sidelobes
direction, has a 5% negative sidelobe and a 1% positive sidelobe. Abscissa: Offset
from the beam center (arcsec) Ordinate: Dirty beam power profile a.

Figure 3.3. These contour plots compare 4.2′ × 4.2′ regions of one DEEP2 simula-
tion (left panel) and the actual DEEP2 image (right panel). Contours are drawn at
1.266 GHz brightness levels Sp = ±(21.5, 22, 22.5, ...)µJy beam−1.

DEEP2 primary beam attenuation, the simulated subband images were multiplied

by the frequency-dependent MeerKAT primary beam specified by equations 3 and
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4 in Mauch et al. (2020). After multiplying by the primary beam attenuation, the

simulation adds to each pixel of the wideband image a randomly generated sample of

Gaussian noise. The noise in an aperture-synthesis image has the same (u, v)-plane

coverage as the signal, so the DEEP2 image noise is smoothed by the same dirty beam

(Figure 3.2). To duplicate this smoothing, the simulation convolved the pixel noise

distribution with the dirty beam. The rms amplitude of the convolved noise was set

to match the observed rms noise in the actual DEEP2 image prior to correction for

primary beam attenuation.

Finally, this simulated image must be divided by primary beam attenuation to

yield a simulated sky image. Figure 3.3 compares 4.′2× 4.′2 (200× 200 square pixels,

each 1.′′25 on a side) cutouts from one simulated sky image with the actual DEEP2

sky image to show that the simulated image looks like the real image.

3.6 The DEEP2 P (D) Distribution

3.6.1 Observed P (D) Distribution

The peak flux density Sp at any point in an image is the sum of contributions from

noise-free source confusion and image noise. Confusion and noise are independent,

so the observed P (D) distribution is the convolution of the confusion and noise dis-

tributions. The noise amplitude distribution in an aperture-synthesis image is easy

to deconvolve because it is extremely stable, Gaussian, and uniform across the image

prior to correction for primary-beam attenuation (Condon et al. 2012), unlike the

noise in a single-dish image, which usually varies significantly with position and time

during an observation. Consequently we were able to measure the DEEP2 rms noise

and confirm its Gaussian amplitude distribution with very small uncertainties. The

noise distribution is narrower than the noiseless P (D) distribution in the very sensi-

tive DEEP2 image, so we could deconvolve the Gaussian noise distribution from the

observed P (D) distribution to calculate the desired noiseless P (D) distribution with

unprecedented accuracy and sensitivity.
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Figure 3.4. The normalized 1.266 GHz P (Sp) = P (D) distribution extracted from
the central r = 500′′ circle in the θ1/2 = 7 .′′6 resolution DEEP2 image corrected
for primary beam attenuation is shown by the heavy black dots representing bins of
width ∆Sp = 0.1µJy beam−1. It is quite smooth because it is based on 2.40 × 104

independent samples. The dotted parabola on this semilogarithmic plot represents
the σn = 0.57µJy beam−1 Gaussian noise distribution inside the P (D) circle. The
red curve is the mean of 1000 simulated P (D) distributions based on the best-fit
source counts specified by Equation 3.9, and the red dotted curves bound the range
that includes 2/3 of those simulated P (D) distributions. The black curve shows the
best-fit noiseless P (D) distribution. These new fits are significantly more accurate
than those shown in Mauch et al. (2020, fig. 13), which were based on a power-law
approximation to the source counts.
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Following the same procedure used in Mauch et al. (2020), we extracted the P (D)

distribution from the circle of radius r = 500′′ covering solid angle Ω = 1.85× 10−5 sr

centered on the SNR-weighted 1.266 GHz DEEP2 image corrected for primary-beam

attenuation and shown in figure 11 of Mauch et al. (2020). The P (D) circle is small

enough (2r � Θ1/2) that the mean primary-beam attenuation is 0.98 inside the circle

and 0.96 at the edge, so its rms noise after correction for primary-beam attenuation

is only σn = (0.56 ± 0.01µJy beam−1)/0.98 = 0.57 ± 0.01µJy beam−1. The P (D)

circle is still large enough to cover Nb = 1.20 × 104 restoring beam solid angles

Ωb = πθ2
1/2/(4 ln 2) = 1.54 × 10−9 sr. The solid angle of the square of the restoring

beam attenuation pattern determines the number of independent samples per unit

solid angle of sky (Condon et al. 2012). For a Gaussian restoring beam, the solid

angle of the beam squared is half the beam solid angle, so the observed DEEP2

P (D) distribution shown by the large black points in Figure 3.4 actually contains

2Nb = 2.40× 104 statistically independent samples. The observed P (D) distribution

is the convolution of the noiseless sky P (D) distribution (black curve) with the σn =

0.57 ± 0.01µJy beam−1 Gaussian noise distribution accurately represented by the

parabolic dotted curve in the semi-logarithmic Figure 3.4.

The 1.266 GHz DEEP2 P (D) distribution shown in Figure 3.4 is 4× as sensitive to

point sources with α ≈ −0.7 as the most sensitive published 3 GHz P (D) distribution

(Condon et al. 2012). Such sources are 1.83× stronger at 1.266 GHz than at 3 GHz,

so the rms noise σn = 1.255µJy beam−1 of the 3 GHz P (D) distribution is equivalent

to σn = 2.30µJy beam−1 at 1.266 GHz. The peak of the DEEP2 noise distribution is

higher than the peak of the noiseless P (D) distribution (Figure 3.4), indicating that

DEEP2 is strongly confusion limited, while the peak of the 3 GHz noise distribution

is only half as high as the peak of the 3 GHz noiseless P (D) distribution. The DEEP2

P (D) distribution also has smaller statistical uncertainties because it includes 3.1×
as many independent samples. Finally, the DEEP2 P (D) distribution was extracted

from the very center of the image where the primary beam attenuation ≥ 0.96, so sys-

tematic errors caused by antenna pointing fluctuations or primary-beam attenuation

corrections are negligible.
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3.6.2 P (D) statistical counts of 0.25 ≤ S(µJy) ≤ 10 sources

The noiseless confusion P (D) distribution is sensitive to the differential counts n(S)

of sources more than 10× fainter than the usual 5σn detection limit for individual

sources. In terms of the number N(> S) of sources per steradian stronger than S,

the mean number of sources stronger than S per beam solid angle Ωb is µ = [N(>

S)Ωb] and the Poisson probability that all sources in a beam are weaker than S is

PP = exp(−µ). The DEEP2 image Ωb ≈ 1.54× 10−9 sr and the best-fit source counts

from Mauch et al. (2020) imply PP ≈ 0.4 at S = 0.25µJy beam−1. The DEEP2

P (D) distribution was extracted from a solid angle containing 2.40×104 independent

samples of the sky, so changes in the source count down to S = 0.25µJy beam−1 can

be detected statistically from the 104 independent samples that contain only fainter

sources if the rms noise σn . σc, the noise due to source confusion.

We used the radio sky simulations described in Section 3.5 to constrain the source

counts consistent with the observed P (D) distribution. The DEEP2 P (D) distribu-

tion is smoothed by Gaussian noise with rms σn = 0.57 ± 0.01µJy beam−1 which

degrades its sensitivity to significantly fainter sources. To estimate the sensitivity of

DEEP2 to faint sources in the presence of noise, we simulated noisy P (D) distributions

using a variety of differential source counts below S = 10µJy. Above S = 10µJy,

we used the direct source counts from DEEP2 and the NVSS presented in Sections

3.7.4 and 3.8. The simulation accepts brightness-weighted differential source counts

S2n(S) specified in bins of width ∆ log(S) = 0.2. Directly binning counts n(S) that

vary rapidly with S can introduce a significant bias (Jauncey 1968). We mitigated

this bias by binning the quantity S2n(S) which changes little across a flux-density

bin.

The source counts S2n(S) in the flux range −8 < log[S(Jy)] < −4.9 are well

fit by a cubic polynomial. To measure goodness-of-fit for each input source count

we defined a statistic that quadratically combines the reduced χ2
P(D) from differences

between the simulated and observed P (D) distributions for all Sp < 15µJy beam−1

with the χ2
DC of the differences between the simulated counts and the direct counts
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of DEEP2 sources in bins centered on logS = −4.9 and −4.7:

χ2 =

√(
χ2

P(D)

)2

+
(
χ2

DC

)2

. (3.8)

We optimized the parameters for the cubic polynomial by minimizing Equation

3.8. We inspected the residuals ∆N/σN , where N is the number of independent

samples per bin and σN is the Poisson error per bin associated with the observed P (D)

distribution, of the resulting best-fits for the presence of correlations as a function

of brightness D. The existence of a signal akin to red-noise in our residuals would

imply our counts under- or over-estimate the counts of sources in specific flux density

ranges.

The 3rd-degree polynomial source count

log[S2n(S)] = 2.718 + 0.405(logS + 5)

− 0.020(logS + 5)2

+ 0.019(logS + 5)3 ,

(3.9)

where S is the 1.266 GHz flux density in Jy, gave the simulated P (D) distribution

(red curve in Figure 3.4) best fitting the observed distribution (black points) while

maintaining continuity in the transition from the P (D) to direct counts at S = 10µJy.

We converted the 1.266 GHz flux densities and brightness-weighted source counts

in Equations 3.9, 3.13, and 3.14 to the common source-count frequency ν = 1.4 GHz

for sources with spectral index α = −0.7 using

log(S1.4 GHz) = log(S1.266 GHz) + α log

(
1.4

1.266

)
≈ log(S1.266 GHz)− 0.0306

(3.10)
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and

log[S2n(S)]1.4 GHz = log[S2n(S)]1.266 GHz + α log

(
1.4

1.266

)
≈ log[S2n(S)]1.266 GHz − 0.0306 .

(3.11)

We also calculated the commonly used static-Euclidean source counts from the brightness-

weighted source counts via

log[S5/2n(S)] = 0.5 log(S) + log[S2n(S)] . (3.12)

Our 1.4 GHz differential source counts with both normalizations are plotted —along

with the discrete source counts calculated in Sections 3.7.4 and 3.8— in Figure 3.12.

In the following subsections, we describe our accounting of the various biases and

uncertainties in our statistical fit of the source counts.

3.6.3 Zero-level offset

Before calculating the value of this statistic for a given simulation, we removed the

brightness zero-point offset between the simulated and observed P (D) distributions.

Numerous faint radio sources produce a smooth background which is invisible to

MeerKAT and other correlation interferometers lacking zero-spacing data. Thus the

brightness zero level of our observed P (D) distribution is unknown and must be fitted

out. We minimized the zero-level offset by comparing the observed and simulated

P (D) distributions shifted in steps of 0.001µJy beam−1, this step size being smaller

than the rms noise divided by the square root of the number 2.40×104 of independent

samples in the DEEP2 P (D) area.

3.6.4 DEEP2 rms noise uncertainty

Although the simulation includes sources as faint as S = 0.01µJy, the DEEP2 image

is not sensitive to the counts of such faint sources. The biggest cause of uncertainty

in our sub-µJy source counts is the ±0.01µJy beam−1 uncertainty in the DEEP2 rms
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Figure 3.5. The reduced χ2 statistic from 1.266 GHz DEEP2 simulations is shown as a
function of the starting source count bin increasing from the nominal log[S(Jy)] = −8
to −6.1. At log[S(Jy)] = −6.5, the χ2 statistic of the P (D) distribution from DEEP2
simulations with σn = 0.57µJy averaged over the r = 500′′ P (D) circle (black points)
exceeds the value of the mean minimum χ2 plus 1σ (black dotted line). This indicates
that we are sensitive to changes in the source count down to log[S(Jy)] = −6.6. The
χ2 values for DEEP2 simulations with ±1σ in rms noise are shown in blue and red
for 0.56 and 0.58µJy beam−1, respectively.

noise. To estimate the flux density of the faintest sources we can usefully count, we set

the rms noise to σn = 0.57µJy beam−1 and iteratively removed the lowest flux-density

bin before using that sub-sample of bins to produce the DEEP2 simulation. After

repeating this process for a total of 50 trials, we found that removing the source count

bin at log[S(Jy)] = −6.6 increases the simulation χ2 to more than one-sigma above the

mean minimum χ2, as shown by the the black points above the dotted line in Figure

3.5. The same process was repeated for for σn = 0.56µJy beam−1 (blue points) and

0.58µJy beam−1 (red points). The results are consistent with a count sensitivity limit

log[S(Jy)] ≈ −6.6 or S ≈ 0.25µJy in the presence of σn = 0.57 ± 0.01µJy beam−1
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noise.

To determine the sensitivity of our best-fitting P (D) distribution above S =

0.25µJy to small changes in the rms noise, we ran 1000 simulations of the DEEP2

P (D) distribution using the counts given by Equation 3.9 and varying the σn =

0.57µJy beam−1 noise by adding values drawn randomly from a Gaussian distribution

of rms width 0.01µJy beam−1. The range of P (D) containing 68% of these simulations

best fitting (according to Equation 3.8) the average of all 1000 simulations defines

the ±σ uncertainty region of our model P (D). Figure 3.4 includes dotted red lines

showing this narrow uncertainty region, which is easily visible only in the Sp >

10µJy beam−1 tail of the distribution.

3.6.5 Estimating the source-count uncertainty

To estimate the ±σ source-count errors resulting from the above P (D) distribution

range, we ran 500 simulations with the following variations: (1) the noise was drawn

randomly from Gaussian distributions with mean σn = 0.57µJy beam−1 and scatter

0.01µJy beam−1; (2) the input source counts were modeled with a fourth-degree poly-

nomial to allow for the rapidly growing count uncertainty at the lowest flux densities

caused by noise as well as by a possible “new” population of very faint radio sources;

and (3) the coefficients of the fourth-degree polynomials were drawn randomly from

gaussian distributions centered on the best-fitting values given in Equation 3.9 with

an rms of 0.1 (the unknown fourth-degree coefficient was initially centered on zero).

Each combination of coefficients and rms noise was repeated an additional six

times to determine the effects of noise on the goodness-of-fit. We considered a set

of coefficients to be in agreement with the DEEP2 P (D) distribution if at least

five of the total seven simulations fell within the ±σ uncertainty region determined

from the original, un-altered 1000 simulations. The subset of the 500 coefficient-

varying simulations that satisfied this criterion define the statistical uncertainty of

the measured source counts. Then we added quadratically a 3% count uncertainty

to absorb possible 3% systematic flux-density calibration errors. In the flux density

range −6.6 < log[S(Jy)] < 5, the 1-σ lower limit of the 1.266 GHz source-count error
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region is

log[S2n(S)] = 2.677 + 0.489(logS + 5)

+ 0.077(logS + 5)2

+ 0.061(logS + 5)3

− 0.058(logS + 5)4

(3.13)

and the 1-σ upper limit is

log[S2n(S)] = 2.768 + 0.367(logS + 5)

− 0.076(logS + 5)2

− 0.009(logS + 5)3

+ 0.023(logS + 5)4 .

(3.14)

3.7 The DEEP2 Source Catalog and Direct Counts

We used the attenuation-corrected “sky” image to search for discrete sources. The

“effective frequency” of the wideband SNR-weighted DEEP2 image for sources with

median spectral index 〈α〉 ≈ −0.7 is νe = 1.266 GHz (Mauch et al. 2020). Even after

correction for primary-beam attenuation, the DEEP2 image is strongly confusion lim-

ited with rms noise σn < 1.12µJy beam−1 everywhere inside the primary beam half-

power circle. Consequently our catalog brightness sensitivity limit Sp(1.266 GHz) =

10µJy beam−1 > 9σn is uniform over the whole primary half-power circle, unlike the

variable sensitivity limit of a deep source catalog extracted from an image still at-

tenuated by the primary beam. Nearly all µJy radio sources are unresolved by the

θ1/2 = 7 .′′6 DEEP2 restoring beam, so the DEEP2 catalog should be nearly complete

for sources with total flux densities just above S(1.266 GHz) = 10µJy. The relatively

large DEEP2 restoring beam is actually advantageous because incompleteness cor-

rections for partially resolved sources can be large and uncertain when the beam size

is not much larger than the median source size (Morrison et al. 2010; Owen 2018).
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3.7.1 The DEEP2 Component Catalog

We applied the Obit (Cotton 2008) source-finding task FndSou to the DEEP2 sky im-

age inside the DEEP2 primary beam half-power circle. FndSou searches for islands of

contiguous pixels and decomposes each island into elliptical Gaussian components as

faint as Sp = 10µJy beam−1. Most radio sources with S(3 GHz) & 5µJy (equivalent

to S & 9µJy at 1.266 GHz for 〈α〉 = −0.7) have angular diameters φ . 0 .′′66 (Cotton

et al. 2018) and would be completely unresolved in the DEEP2 image. This point-

source approximation is supported by the qualitative similarity of our point-source

simulation and the actual DEEP2 image shown in Figure 3.3. A small fraction of

the DEEP2 sources stronger than ∼ 100µJy are clearly resolved jets or lobes driven

by unresolved central AGNs, and they can be represented by combining multiple

components as described in Section 3.7.3.

The sky density of sources reaches one per 25 restoring beam solid angles at

S(1.266 GHz) ≈ 17µJy (Mauch et al. 2020), so a significant fraction of our S & 10µJy

components partially overlap, and our catalog accuracy, completeness, and reliabil-

ity are limited more by confusion than by noise. To optimize the DEEP2 component

catalog and understand its limitations, we used FndSou to extract catalogs of compo-

nents from simulated images and compared those catalogs with the simulation input

source lists. We compared catalogs in which the fitted elliptical Gaussians were al-

lowed to vary in width to “point source” catalogs in which they were not and found

that forcing point-source fits generally gave better matches to the “true” simulation

input catalogs. Therefore we forced point-source fits to make the DEEP2 component

catalog, and we later combined components as needed to represent multicomponent

extended radio sources.

In a few crowded regions, FndSou reported spurious faint components very close

to much stronger sources. To decide which components to reject from our catalog,

we generalized the original Rayleigh criterion for resolving two equal point sources

observed with an Airy pattern PSF: the peak of one lies on or outside the first zero

of the second, which ensures that the total response has a minimum between them.

The total image response R at position x between unequal components S1 at
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x1 = 0 and S2 < S1 at x2 = ∆ to a Gaussian PSF with FWHM θ1/2 is

R = S1 exp

(
−4 ln 2

θ2
1/2

x2

)
+ S2 exp

[
−4 ln 2

θ2
1/2

(x−∆)2

]
. (3.15)

For R to have a minimum between the components, dR/dx = 0 for some 0 < x < ∆.

The continuous curve in Figure 3.6 shows the required component separation ∆/θ1/2

as a function of the flux-density ratio S1/S2. All DEEP2 catalog components stronger

Figure 3.6. The continuous curve shows the calculated minimum separation ∆ in
Gaussian beamwidths θ1/2 needed to produce a minimum between two point sources
as a function of their flux-density ratio S1/S2. The dashed curve shows the empirical
minimum separation for reliable DEEP2 components stronger than 10µJy.

than S > 10µJy have SNR> 9, so the requirement in Equation 3.15 is stricter than

necessary. By comparing ten catalogs of components extracted from simulated images

with the “true” input components used to generate the simulated images, we found

that faint components near stronger components are reliable if they satisfy the weaker
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criterion

∆

θ1/2

≥ 0.574 + 0.357[log(S1/S2) + 0.01]1/2+

0.082 log(S1/S2) if (S1/S2) < 9

∆

θ1/2

≥ 1 if (S1/S2) ≥ 9 (3.16)

shown by the dashed curve in Figure 3.6. We rejected the 334 probably spurious

DEEP2 components (< 2% of the total) failing to satisfy Equation 3.16.

To estimate the effects of confusion and noise on the completeness, reliability,

positions, and flux densities of the surviving 17,350 DEEP2 components, we ran

ten independent simulations of the DEEP2 field out to the half-power circle of the

primary beam using input source counts consistent with the differential source counts

in Table 3.5 and the 1.4 GHz statistical count S2n(S) = 1.07 × 10−5S−0.48 Jy sr−1 of

fainter sources from Mauch et al. (2020). For each simulated image, we used FndSou

to find all components stronger than 10µJy and rejected the components that did not

satisfy the resolution criterion in Equation 3.16. The positions and flux densities of

the resulting ten catalogs were compared with the “true” simulation input positions

and flux densities of all simulated sources stronger than 5µJy.

We matched a simulated source to a cataloged component if (1) its position was

within θ1/2/2 = 3 .′′8 of the cataloged position and (2) the catalog-to-true flux ratio

satisfied 0.5 ≤ Scat/Strue ≤ 2. If there were two or more matches, only the strongest

simulated source was matched with the cataloged component. If there were no sim-

ulated sources that satisfied these criteria, the cataloged component was rejected as

spurious. The ten simulations yielded ∼ 1.6 × 105 matches. Only ∼ 0.5% of the

cataloged components had no simulated-source counterpart, for a catalog reliability

≈ 99.5%.

FndSou measures intensities relative to the image zero level. The DEEP2 inter-

ferometric image is insensitive to the smooth background of very faint radio sources.

Our simulations of the radio sky brightness include such a background, so the aver-
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age confusion P (D) distribution from ten simulations of DEEP2 appears shifted by

∆D = +0.28µJy beam−1 compared with the P (D) distribution of the real DEEP2

image. The final flux densities of components in the DEEP2 source catalog were

corrected for the zero-level offset by subtracting 0.28µJy beam−1 from the peak flux

densities reported by FndSou.

3.7.2 DEEP2 Catalog Position Uncertainties

The random position errors of DEEP2 source components are dominated by confusion

errors whose non-Gaussian distributions are difficult to calculate analytically, so we

estimated the random position errors from the differences ∆α, ∆δ between the cat-

aloged and “true” input positions of source components in our ten simulations. The

normalized probability distributions P (∆) are shown separately for right ascension α

(red histogram) and declination δ (blue histogram) in Figure 3.7. The distributions

of ∆α and ∆δ are indistinguishable, as expected for a circular PSF. Also as expected,

the distributions of random positions errors are symmetrical about ∆ = 0 and have

long non-Gaussian tails—a Gaussian distribution would look like a parabola in the

semilogarithmic Figure 3.7. The formal rms width of P (∆) is dominated by these

tails and is not a stable measure of the position error distribution. In a Gaussian dis-

tribution with rms σ, 68% of the sources would lie within the range −σ < ∆ < +σ, so

we used the range of actual position offsets ∆α ≈ ∆δ and defined the “rms” position

errors σα and σδ such that 68% of the components lie in the range −σα < ∆α < +σα

or −σδ < ∆δ < +σδ. The DEEP2 random position errors vary with component flux

density S. For bins of width 0.2 in log(S) centered on log[S(µJy)] = 1.1, 1.3, . . . , 2.9,

we determined the distributions of position offsets ∆α and ∆δ in the ten simulations.

Figure 3.8 shows σα ≈ σδ as a function of log(S).

The relationship between this error limit and flux density is well described by a

broken power-law of the form

∆α

arcsec
=

∆δ

arcsec
= C

[(
S∗
S

)R/2
+

(
S∗
S

)R]1/R

, (3.17)
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Figure 3.7. The distributions P (arcsec)−1 of differences in right ascension ∆α (red
curve) and declination ∆δ (blue curve) between the cataloged and “true” simulation
positions for all sources with S ≥ 10µJy from ten simulated DEEP2 images. The
small peaks at integer multiples of ∆ = 1.′′25 are artifacts from measuring distances in
simulated images composed of 1.′′25 pixels but do not affect the rms position errors.

where the parameter R controls the sharpness of the break at S = S∗. A nonlinear

least squares fit to Equation 3.17 yields R = −11.97, C = 0.219, and S∗ = 78.6µJy.

As the catalogs were made for simulated images, there are no systematic position

errors included in Equation 3.17. The dashed black curve in Figure 3.8 shows the

random rms errors σα ≈ σδ as a function of component flux density. The slope of

the dashed curves in Figures 3.8 and 3.10 changes from −1 to −0.5 below S∗ because

the DEEP2 image is strongly limited by confusion, the source-count slope changes by

∆γ ≈ −1 near S = S∗, and the rms confusion from weaker sources is proportional

to S(3−γ)/2 (see eq. 20 in Condon et al. 2012). No such break occurs in noise-limited

images.

To estimate the DEEP2 systematic position uncertainties and offsets, we selected

the 268 strong components with calculated random errors σα = σδ ≤ 0 .′′05 and

used the NASA/IPAC Infrared Science Archive (IRSA) to find eight identifications

with Gaia DR2 sources whose position errors are much smaller than 0 .′′05. Their

DEEP2 minus Gaia offsets have rms σα = σδ = 0 .′′12 ± 0 .′′04, an insignificant mean
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offset +0 .′′03 ± 0 .′′04 in right ascension, and a 3σ significant mean declination offset

+0 .′′12 ± 0 .′′04. We therefore added −0 .′′12 to our fitted DEEP2 declinations and

added the 0 .′′12 systematic position errors to the random errors in quadrature to get

the total DEEP2 position error shown by the continuous curve in Figure 3.8. The

total position errors reported in the final component catalog (Table 3.3) reflect this

quadrature sum and the corrected declinations.

Figure 3.8. The simulation “rms” (defined as half the 68% confidence interval) ran-
dom position error in either right ascension α and declination δ is shown as a function
of flux density S by the points. The black dashed curve shows the best-fitting broken
power-law from Equation 3.17. The total DEEP2 “rms” position uncertainties esti-
mated by the quadrature sum of Equation 3.17 random errors and 0 .′′12 systematic
position errors are indicated by the solid curve.

We compared the flux densities calculated from the forced point-source fits of cat-

aloged components in the ten simulated images with their “true” input flux densities.

The distribution of these differences ∆S = Scat−Strue is shown in Figure 3.9 for four

flux density ranges: 10µJy < S < 101.2 ∼ 16µJy, 101.2 µJy < S < 101.4 ∼ 25µJy,
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101.4 µJy < S < 101.6 ∼ 40µJy, and S > 101.6 µJy. The flux-density error distribu-

tions all peak near ∆S = 0µJy but have positive tails that grow with flux density

because stronger components are able to obscure stronger confusing components.

Figure 3.9. The differences ∆S = Scat − Strue between the cataloged and “true”
simulation flux density are shown for four catalog flux-density ranges: 10µJy < S <
101.2 ∼ 16µJy (black), 101.2 µJy < S < 101.4 ∼ 25µJy (blue), 101.4 µJy < S <
101.6 ∼ 40µJy (red), and S > 101.6 µJy (gray).

The fractional flux density errors σS/S were calculated for all ten catalogs of the

simulated images in bins of width 0.2 dex centered on log[S (µJy)] = 1.1, 1.3, . . . , 2.9

and are shown in Figure 3.10. In the ideal case of uncorrelated Gaussian noise, high

signal-to-noise S/σS, and a circular Gaussian beam of FWHM θ1/2, Equation 21 of

Condon (1997) gives

σS
S

=
√

8 ln 2

(
σα
θ1/2

)
=
√

8 ln 2

(
σδ
θ1/2

)
, (3.18)
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so for either α or δ,

log

(
σS
S

)
= log(8 ln 2)/2 + log(σα)− log(θ1/2)

= log(σα)− 0.51, (3.19)

for θ1/2 = 7 .′′6. This gives conservative flux-density fitting errors. To them we add in

quadrature a 2% uncertainty for telescope pointing errors and primary attenuation

uncertainty inside the primary beam half-power circle plus a 3% for the absolute

flux-density uncertainty of the gain calibrator PKS B1934−638 (Mauch et al. 2020)

to get the total fractional uncertainty

σS
S

=

(
8 ln 2

σ2
α

θ2
1/2

+ 0.0362

)1/2

. (3.20)

The fractional flux density errors calculated from Equation 3.20 are shown by the solid

black curve in Figure 3.10. This method yields more conservative error estimates than

directly fitting the measured flux differences from the simulated images with a broken

power law for flux densities logS < 2.5 when these measured differences are added in

quadrature with the cumulative calibration uncertainties (shown as the dotted line

in Figure 3.10).

The ten simulated images were corrected for primary beam attenuation before the

catalog was created, so the noise contribution increases distance r from the pointing

center as

σn(r) =
0.56µJy beam−1

a(r)
, (3.21)

where

a(r) = exp

(
−4 ln 2

r2

Θ2
1/2

)
, (3.22)

is the primary beam attenuation. The simulation placed sources in the sky randomly

but uniformly, so we subtracted the average noise variance within the half-power circle

〈σn〉 = 0.824µJy beam−1 from the total average flux-density variance calculated from
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Figure 3.10. The random fractional flux density errors per catalog flux density bin
was calculated as the narrowest range of the distribution containing 68% of the sim-
ulated sources (black points). The dashed line shows a broken power-law fit to these
calculated errors. The total component error σS/S) from Equation 3.20 is shown as
the solid black curve.

Equation 3.20. We added back the distance-dependent rms noise variance to get a

better estimate of errors on the individual source flux densities at various distances

from the pointing center.

3.7.3 Multicomponent Sources

We visually inspected the DEEP2 image and found 35 groups of components that

appear to comprise multicomponent radio sources. We labeled these components by

their group numbers G01 to G35. For an extended source well approximated by a col-

lection of Gaussian components, we summed the individual component flux densities

to determine the source flux density. For a source containing diffuse emission regions,

we estimated the flux density of such regions by directly summing over the pixel

brightness distribution. Table 3.4 lists the 35 multicomponent sources, the number of
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Table 3.3. The 1.266 GHz DEEP2 Component Catalog

Right Ascension Declination S(1.266 GHz) Group

(J2000) (J2000) (µJy) Code

04:08:34.781 ± 0.170 −79:51:43.08 ± 0.45 20.0 ± 2.1 · · ·
04:08:34.897 ± 0.089 −80:20:26.14 ± 0.22 87.2 ± 5.3 G09

04:08:34.956 ± 0.166 −79:35:02.48 ± 0.45 20.0 ± 2.2 · · ·
04:08:34.986 ± 0.160 −80:24:19.47 ± 0.40 25.5 ± 2.5 · · ·
04:08:35.066 ± 0.051 −79:47:01.95 ± 0.13 278.0 ± 10.5 · · ·

Note—Table 3.3 is published in its entirety in machine-readable format. A portion is shown
here for guidance regarding its form and content. The quoted uncertainties are similar to
rms errors in that they encompass 68% of the sources but are insensitive to the long tails
of confusion-limited error distributions. There are 35 multicomponent sources labeled by
their component group numbers G01 through G35, as described in Section 3.7.3.

components in each source group, our best estimate of the source core position, and

the source flux density. Figure 3.11 shows the contour map of multicomponent source

G01 with crosses marking the positions of its three components. Similar contour

maps of all multicomponent sources appear in the Appendix.

Table 3.4: DEEP2 Multicomponent sources

Group Right Ascension Declination S

Code N (J2000) (J2000) (µJy)

G01 3 04:00:47.04 −79:51:31.4 817

G02 3 04:01:31.81 −79:59:08.6 159

G03 8 04:03:54.19 −80:08:49.1 757

G04 4 04:04:05.81 −79:58:56.2 709

G05 3 04:04:14.84 −79:56:21.5 13536

G06 3 04:06:15.50 −80:10:57.5 2742

G07 3 04:06:26.05 −79:38:01.0 168

G08 7 04:06:27.83 −80:18:48.0 19200

G09 14 04:08:42.38 −80:20:40.9 885

Continued on Next Page. . .
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Table 3.4 – Continued

Group Right Ascension Declination S

Code N (J2000) (J2000) (µJy)

G10 12 04:08:47.70 −80:24:02.4 1569

G11 5 04:11:32.60 −79:48:41.3 766

G12 3 04:11:38.97 −79:48:17.5 2867

G13 11 04:11:59.21 −80:14:54.8 1422

G14 7 04:12:16.93 −79:46:33.2 6772

G15 5 04:12:32.00 −79:34:36.4 509

G16 8 04:13:24.93 −79:49:21.2 5455

G17 9 04:13:41.22 −79:46:34.9 6680

G18 4 04:13:58.03 −79:42:19.2 1369

G19 18 04:14:17.93 −80:11:38.4 5455

G20 5 04:14:58.85 −80:29:08.4 1261

G21 3 04:16:10.11 −80:03:31.9 169

G22 6 04:16:23.34 −80:20:54.5 4699

G23 3 04:16:47.09 −79:48:50.3 54268

G24 5 04:16:58.32 −79:54:46.2 1953

G25 9 04:17:02.19 −80:12:33.9 6115

G26 3 04:17:06.86 −79:51:28.6 3682

G27 7 04:18:58.15 −79:51:23.5 1603

G28 10 04:19:10.77 −80:30:32.4 3051

G29 4 04:20:03.10 −80:27:11.3 2769

G30 14 04:22:05.41 −80:03:30.1 10882

G31 5 04:23:19.81 −79:51:10.6 11408

G32 8 04:25:02.63 −80:14:15.9 26271

G33 6 04:25:18.38 −79:52:22.3 15983

G34 9 04:25:51.5 −79:54:38 731

G35 8 04:26:07.75 −80:09:23.7 766

3.7.4 DEEP2 Direct Source Counts

We counted DEEP2 sources in bins of width 0.2 dex centered on 1.266 GHz flux den-

sities log[S(Jy)] = −4.9,−4.7, . . . ,−2.5. Component groups comprising an extended

source were counted as a single source whose flux density is the sum of its individual
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Figure 3.11. Multicomponent source G01. Contour levels ±5µJy beam−1 ×
20, 21/2, 21, . . . are plotted (negative contours, where present, shown as dashed lines).
Crosses mark the three components comprising this source. The complete figure set
(35 images) is available in the online journal.

component flux densities. For the few extended sources with diffuse emission regions,

we estimated the flux densities of these regions by directly summing over their pixel

brightness distributions.

Sources near the catalog lower limit S(1.266 GHz) = 10µJy may be biased up by

confusion or biased down and missed entirely. We estimated the effects of confusion

on the direct source counts by comparing the measured counts in the ten simulated

images with their “true” input counts. Their differences in each flux-density bin were

calculated individually for the ten simulations. We added the mean differences ∆ in

log[S2n(S)] from the simulations to the raw DEEP2 counts to yield more accurate

counts of radio sources with −5.0 < log[S(Jy)] < −2.5.

Table 3.5 shows the ν = 1.266 GHz corrected counts based on the 17,350 DEEP2

components with S > 10µJy inside the half-power circle of the primary beam. For

the 13 flux-density bins of width 0.2 in log(S), Column 1 lists the bin center log[S(Jy)]
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Table 3.5. DEEP2 1.266 GHz direct source
counts

log[S(Jy)] Nbin ∆ log[S2n(S) (Jy sr−1)]

−4.90 5504 +0.054 2.730 +0.028 −0.029

−4.70 4460 +0.020 2.801 +0.017 −0.018

−4.50 3010 −0.022 2.788 +0.018 −0.019

−4.30 1998 −0.027 2.802 +0.020 −0.021

−4.10 1053 −0.034 2.716 +0.025 −0.027

−3.90 559 −0.035 2.639 +0.029 −0.031

−3.70 289 −0.028 2.563 +0.031 −0.034

−3.50 126 −0.012 2.423 +0.040 −0.044

−3.30 72 −0.011 2.366 +0.050 −0.057

−3.10 46 −0.005 2.393 +0.061 −0.072

−2.90 24 −0.006 2.305 +0.082 −0.102

−2.70 15 −0.001 2.317 +0.101 −0.132

−2.50 18 −0.009 2.587 +0.093 −0.119

and column 2 lists the number Nbin of sources in the bin. The corrections ∆ in column

3 were added to the values of log[S2n(S) (Jy sr−1)] in column 4. Columns 5 and 6

are the rms positive and negative uncertainties in log[S2n(S)]. These uncertainties

are the quadratic sum of the Poisson uncertainties in samples of size Nbin, the count

correction uncertainties which we conservatively estimate to be ∆/2, and a 3% overall

flux-density scale uncertainty.

3.8 NVSS Source Counts

The NVSS catalog reports flux densities rounded to the nearest multiple of 0.1 mJy.

For example, all NVSS components with fitted flux densities 2.45 ≤ S(mJy) < 2.55

are listed as having S = 2.5 mJy. We separated the NVSS components into flux-

density bins of nearly constant width 0.2 in log(S) whose exact boundaries Smin

and Smax are midway between multiples of 0.1 mJy. Thus the lowest flux-density
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bin covers 2.45 ≤ S(mJy) < 3.95 and includes all NVSS components listed with

S(mJy) = 2.5, 2.6, 2.7, . . . , 3.9. The first column of Table 3.6 lists the bin centers,

the second lists the numbers nbin of components in each bin, and the third column

shows the brightness-weighted counts log[S2n(S)] at log[S(Jy)] = −2.5, −2.3, . . . ,

+1.3. The fourth and fifth columns are the total rms uncertainties in log[S2n(S)].

Complex radio sources significantly more extended than the 45′′ FWHM NVSS

restoring beam may be represented by two or more catalog components, and such

large multicomponent sources are more common at flux densities S & 1 Jy. To

estimate the fraction of components comprising strong extended sources, we com-

pared the NVSS component catalog with the low-resolution 1.4 GHz Bridle et al.

(1972) catalog of 424 sources having S ≥ 1.7 Jy and equivalent angular diameters

φ . 10′ in the area defined by −5◦ < δ < +70◦, |b| > 5◦. We combined NVSS

components within ∼ 5′ of each Bridle et al. (1972) source, after excluding those that

appeared to be unrelated background sources. In the six flux-density bins centered on

log[S(Jy)] = +0.3 through +1.3, grouping NVSS components into sources changed the

brightness-weighted source count log[S2n(S)(Jy sr−1)] by −0.013, +0.013, +0.109,

+0.193, +0.133, and 0.000, respectively.

The differential source count n(S) is a rapidly declining function of flux density,

so simply counting the number of sources in each fairly wide flux-density bin throws

away flux-density information and can bias the resulting estimate of n(S). If n(S) dS

is the number of sources per steradian with flux densities between S and S + dS and

η(S) d ln(S) is the number per steradian with flux densities between S and S+d ln(S),

then n(S)dS = η(S) d lnS and n(S) = η(S)/S. We added the flux density of each

source into its bin of logarithmic width ∆ ≈ dex(0.2) to calculate the more nearly

constant quantity

S2n(S) = Sη(S) =

[
1

Ω ln(∆)

]
nbin∑
i=1

Si (3.23)

directly.

Finally, counts in the faintest bins must be corrected for population-law bias (Mur-

doch et al. 1973): faint sources outnumber strong sources, so noise moves more faint
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Table 3.6. NVSS 1.4 GHz source
counts

log[S(Jy)] Nbin log[S2n(S) (Jy sr−1)]

−2.50 350531 2.475 +0.030 −0.030

−2.30 217350 2.498 +0.019 −0.019

−2.10 161525 2.598 +0.015 −0.015

−1.90 120302 2.676 +0.014 −0.014

−1.70 90072 2.743 +0.013 −0.013

−1.50 63706 2.793 +0.013 −0.013

−1.30 43803 2.831 +0.013 −0.013

−1.10 29035 2.849 +0.013 −0.013

−0.90 18094 2.844 +0.013 −0.013

−0.70 10891 2.822 +0.013 −0.013

−0.50 5950 2.757 +0.014 −0.014

−0.30 3089 2.670 +0.015 −0.015

−0.10 1477 2.551 +0.017 −0.017

+0.10 718 2.434 +0.021 −0.021

+0.30 303 2.247 +0.028 −0.028

+0.50 143 2.137 +0.038 −0.038

+0.70 51 1.995 +0.080 −0.080

+0.90 15 1.739 +0.140 −0.140

+1.10 6 1.523 +0.214 −0.229

+1.30 3 1.285 +0.295 −0.341

sources into a bin than it moves strong sources out. We used their Table 2 and the cu-

mulative source-count approximation N(> S) ≡
∫∞
S
n(S) dS ∝ S−1 for S & 2.5 mJy

to calculate the required corrections to log[S2n(S)]. They are −0.030, −0.012, and

−0.004 in bins centered on log[S(Jy)] = −2.5, −2.3, and −2.1, respectively.

The rms statistical uncertainty in S2n(S) for each bin with nbin � 1 is

σstat ≈
[

1

Ω ln(∆)

](
nbin∑
i=1

S2
i

)1/2

. (3.24)
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There are only nbin = 6 sources in the log[S(Jy)] = +1.1 bin and nbin = 3 sources in

the log[S(Jy)] = +1.3 bin, so we replaced their rms statistical errors in log[S2n(S)] by

the Gehrels (1986) 84% confidence-level errors +0.203,−0.219 and +0.295,−0.341,

respectively. To these statistical uncertainties we added quadratically the 3% error in

S2n(S) caused by the 3% NVSS flux-density scale uncertainty (Condon et al. 1998)

and systematic uncertainties equaling half the corrections for component grouping

and population-law bias.

3.9 Discussion

Figure 3.12 shows our 1.4 GHz differential source counts with traditional static-

Euclidean weighting S5/2n(S) and with brightness weighting S2n(S). Counts from

S = 0.25µJy to S = 10µJy were derived statistically from the DEEP2 confusion

P (D) distribution extracted from solid angle Ω = 0.061 deg2. Individual sources uni-

formly covering solid angle Ω = 1.04 deg2 between 10µJy and 2.5µJy were counted

directly, as were NVSS sources above 2.5 mJy in solid angle Ω = 7.016 sr (0.56

of the sky). Together these counts span the eight decades in flux density from

log[S(Jy)] = −6.6 to log[S(Jy)] = +1.4. Their largest fractional uncertainties are

caused by the rms noise σn = 0.57± 0.01µJy beam−1 and finite resolution θ1/2 = 7 .′′6

just above S = 0.25µJy, by statistical fluctuations in the small numbers of sources in

the DEEP2 half-power circle between 0.5 mJy and 2.5 mJy, and by cosmic variance

in the NVSS counts above S ≈ 3 Jy.

Figure 3.13 compares our 1.4 GHz direct counts (black points) of sources fainter

than 10 mJy with those of Hopkins et al. (2003) (red triangles), Prandoni et al. (2018)

(filled red points), Heywood et al. (2020) (open red points), plus the Smolčić et al.

(2017) (filled blue points) and Van der Vlugt et al. (2020) (blue triangles) 3 GHz

counts converted to 1.4 GHz assuming the median spectral index is 〈α〉 = −0.7.

The Smolčić et al. (2017) counts have small (σ ∼ 10%) uncertainties because they

are based on the large (10,830 sources) noise-limited (median σn = 2.3µJy beam at

3 GHz) VLA-COSMOS catalog. They are ∼ 20% ∼ 2σ lower than most other counts
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Figure 3.12. Our 1.4 GHz differential source counts between 0.25µJy and 25 Jy are
shown with both the traditional static Euclidean normalization S5/2n(S) (top panel)
and the brightness-weighted normalization S2n(S) (bottom panel). The heavy curve
and light ±1σ error curves from S = 2.5 × 10−7 Jy to 10−6 Jy are statistical counts
derived from the DEEP2 confusion P (D) distribution (Section 3.6). The black data
points and their ±1σ error bars show the 1.4 GHz DEEP2 source counts between
S = 10−5 Jy and S = 0.0025 Jy (Section 3.7) plus the NVSS counts (Section 3.8) at
higher flux densities.
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and ∼ 30% lower than the Van der Vlugt et al. (2020) counts, possibly because reso-

lution corrections for the small (θ1/2 = 0 .′′75) VLA COSMOS beam were insufficient

or the median spectral index of µJy sources is more negative than the assumed −0.7.

In any case, the agreement among all of these µJy source counts is much better than

other counts have agreed in the recent past (Heywood et al. 2013), suggesting that

the large earlier discrepancies were caused by observational and analysis errors, not

by surprisingly strong source clustering.

Figure 3.13. The 1.4 GHz differential source counts between 10µJy and 10 mJy are
shown with the traditional static Euclidean normalization S5/2n(S). The black data
points show the DEEP2 source counts below S = 0.0025 Jy (Section 3.7) and the
NVSS counts (Section 3.8 at higher flux densities. The red data points are 1.4 GHz
counts from Heywood et al. (2020) (open circles), Hopkins et al. (2003) (solid trian-
gles), and Prandoni et al. (2018) (filled circles). The blue data points are based on
the Smolčić et al. (2017) and the Van der Vlugt et al. (2020) 3 GHz counts converted
to 1.4 GHz with a spectral index α = −0.7.
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3.9.1 Resolving the AGN and SFG backgrounds

The 1.4 GHz brightness-weighted counts S2n(S) shown in Figure 3.12 have two broad

peaks. The peak S ∼ 0.1 Jy is dominated by AGNs and the peak at S ∼ 3× 10−5 Jy

by SFGs. If the counts below S = 0.25µJy do not exceed the extrapolation with slope

d log[S2n(S)]/d log(S) = +0.5, sources stronger S = 0.25µJy resolve > 99% of the

AGN contribution ∆Tb ≈ 0.06 K to the sky brightness temperature and > 96% of the

∆Tb ≈ 0.04 K SFG contribution. Thus most of the stars in the universe were formed

in SFGs stronger than 0.25µJy. For example, our fairly typical Galaxy currently has

1.4 GHz spectral luminosity Lν ≈ 2.5× 1021 W Hz−1. With 10× luminosity evolution

(Madau & Dickinson 2014), it would be a 1.2µJy source around “cosmic noon” at

z ∼ 2 and a 0.25µJy source even at z = 4.

3.9.2 P (D) limits on “new” source populations

The MeerKAT correlation interferometer used to make the DEEP2 image does not

respond to backgrounds smooth on angular scales� θ1/2 = 7 .′′6, and the resolution of

ARCADE 2 is too coarse to detect individual < 0.1µJy sources, so there is actually

no observational tension between our results in Section 3.9.1 and the ARCADE 2

background. However, the DEEP2 P (D) distribution can set a lower limit to the

number of faint sources not much larger than θ1/2 = 7 .′′6 ≈ 50 kpc in the redshift

range 0.5 < z < 5 that can produce a ∆Tb ∼ 0.4 K background smooth enough

to be consistent with the DEEP2 P (D) distribution. Very numerous faint sources

contribute a nearly Gaussian P (D) distribution similar to the instrumental noise

distribution. A source population with rms confusion not much larger than σc ≈
(0.582 − 0.572)1/2 µJy beam−1 ∼ 0.1µJy beam−1 is consistent with the uncertainty in

the measured DEEP2 rms noise. Figure 3.14 plots the brightness-weighted source

counts S2n(S) as a function of log(S). The two broad peaks corresponding to star-

forming galaxies and AGN are well represented by the approximation (Condon et al.
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Figure 3.14. Source counts at 1.4 GHz consistent with the DEEP2 P (D) distribution
are shown by the thin black line surrounded by its ±1σ error region. A hypothetical
new population with logarithmic FWHM φ = 2 and A = 150 located at log(Spk) = −8
(thick black parabola) is consistent with DEEP2, but it contributes only 10 mK to
the radio source background. A hypothetical population contributing the necessary
0.4 K to agree with the background measured by ARCADE 2 must have A ≈ 5000
and S2n(S) peaking at Spk ≤ 0.5 nJy (black dashed parabola) to remain consistent
with our DEEP2 P (D) observation.

2012) log[S2n(S)] ≈ a− b[log(S)− log(Spk)]2 or

S2n(S) ≈ A exp

{
−4 ln(2)

[log(S)− log(Spk)]2

φ2

}
, (3.25)

where φ is the logarithmic FWHM and Spk is the flux density of the S2n(S) peak;

log(Spk) ∼ −5 and log(Spk) ∼ −1 for SFGs and AGNs, respectively, while both

populations are well described by φ = 2. Inserting Equation 3.25 into Equation 3.1

and integrating over flux density determines the peak amplitude A for FWHM φ for

a new population adding ∆Tb to the total sky brightness:

Aφ =
4kBν

2

ln(10)c2

[
ln(2)

π

]1/2

∆Tb. (3.26)
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Equation 3.26 is valid for any count peak flux density Spk. Because ∆Tb fixes the

product Aφ, a new population with Tb either has a small number of sources N with

a narrow FWHM φ but large amplitude A, or a broad peak φ with a larger number

of sources per square arcmin and a fainter peak flux density.

The known AGN and SFG populations are well characterized by Gaussians of

FWHM φ = 2, so we assumed φ = 2 for the hypothetical new population. In

order to explain the excess ∆Tb = 0.4 K, the amplitude of this population must be

A ∼ 5000 Jy sr−1.

For any Spk we can find the maximum value of A that is consistent with the

DEEP2 P (D). Inserting a new population of sources with φ = 2 and log(Spk) = −8,

we ran DEEP2 image simulations starting at log[S(Jy)] = −10 for increasing values

of A in steps of 10 from A = 0. They were repeated for 〈σn〉 = 0.56µJy beam−1 and

0.58µJy beam−1 in addition to the measured rms noise averaged throughout the P (D)

region of radius 500′′, 〈σn〉 = 0.57µJy beam−1. Having run a minimum of 50 iterations,

we determined the χ2 value of each simulated P (D) distribution (containing the new

population of amplitude A) to the observed P (D). The value of A such that 16%

of the simulations had χ2 < χ2
0 is the 1σ upper limit to the amplitude A that is

consistent with our observed P (D).

For rms noise values σn = 0.56 and 0.57µJy beam−1 the maximum amplitude

consistent with the observed DEEP2 P (D) distribution is A ≈ 65. Simulations

assuming rms noise σn = 0.55µJy beam−1 allow A < 150. The final 1σ upper bound

on the counts of nJy sources is the combination of Equation 3.13 and the curve

representing the sum of the new population and the measured counts from DEEP2

(dotted curve in Figure 3.14).

Figure 3.14 shows the brightness-weighted source counts for the hypothetical pop-

ulation with A = 150, φ = 2, and Spk = 10 nJy as the thicker black curve. That new

population adds only ∆Tb ∼ 0.01 K to the total radio source background at 1.4 GHz,

yet it must contain at least 3,000 sources per arcmin2, exceeding by a factor of 30 the

sky density of galaxies brighter than mAB+29, the magnitude of the Large Magellanic

Cloud at redshift z = 2) in the Hubble Ultra Deep Field (Beckwith et al. 2006).
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A hypothetical new population contributing the full 0.4 K ARCADE 2 excess

background is consistent with the narrow DEEP2 P (D) distribution only if log(A) ≈
3.7, the sources are randomly distributed on the sky, and Spk < 0.5 nJy at 1.4 GHz.

as indicated by the dashed parabola in Figure 3.14). This upper limit to Spk is a

factor of ten lower than the Condon et al. (2012) limit and more strongly excludes

any bright population of numerous faint sources that cluster like galaxies or parts of

galaxies.

3.10 Conclusions

In this work, we presented source counts in the eight decades of flux density from

S = 0.25µJy to S = 25 Jy using the MeerKAT DEEP2 field and archival NVSS data.

• Statistical source counts betwen S = 0.25µJy and S = 10µJy (Section 3.6)

were estimated from the confusion P (D) distribution within 500′′ of the DEEP2

pointing center. Simulations of the radio sky were developed and used to con-

strain the counts and their uncertainties.

• We constructed a uniformly sensitive catalog of ≈ 17, 000 discrete sources

stronger than S = 10µJy at 1.266 GHz in Ω1/2 = 1.04 deg2 (Section 3.7) and

used it to count discrete sources in the flux-density range 10µJy ≤ S < 2.5 mJy

(Section 3.7.4).

• The NVSS catalog of radio source components was used to determine 1.4 GHz

source counts between S = 2.5 mJy and S = 25 Jy in Ω ≈ 7.016 sr. (Section 3.8).

We find good agreement with previously published 1.4 GHz counts, but report

higher source counts (at the 2σ level) than previously published 3 GHz counts from

the VLA-COSMOS catalog. The agreement among all µJy source counts is much

improved from past studies.

Sources stronger than our lower limit of S = 0.25µJy resolve > 99% of the AGN

contribution and > 96% of the SFG contribution to the sky brightness temperature.
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The maximum source count amplitude for a hypothetical “new” population explain-

ing the ARCADE 2 excess radio background is log(A) ≈ 3.7, and the peak of the

distribution must be fainter than Spk ∼ 0.5 nJy to remain consistent with the DEEP2

P (D) distribution. In a second paper (Matthews et al., in prep) we will use the results

from this paper to estimate the star formation history of the Universe.
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Chapter 4

Star Formation History of the

Universe at 1.4 GHz

4.1 Preface

Previous measurements of the evolution of the SFRD have relied on IR and UV

data, which suffer from dust extinction that reaches its worst at the peak of star

formation. These measurements show that the SFRD rose rapidly during the first

∼ 3 billion years after the big bang, reached an apex at a redshift of z ≈ 2—“cosmic

noon”, and has been declining exponentially since. Radio source counts down to

faint flux densities S < 1µJy probe SFRs of normal galaxies responsible for building

the bulk of the stellar mass in the universe and do not suffer from dust extinction.

In this chapter, we model the evolutionary functions that when applied to the local

luminosity function accurately predict the observed source counts. We derive an

updated, robust, sub-linear FIR/radio correlation and apply it to the evolutionary

models to constrain the evolution of the SFRD ψ(z). The remainder of this chapter

was accepted for publication in the Astrophysical Journal (Matthews et al. 2021b).



4.2 Abstract

We matched the 1.4 GHz local luminosity functions of star-forming galaxies (SFGs)

and active galactic nuclei to the 1.4 GHz differential source counts from 0.25µJy

to 25 Jy using combinations of luminosity and density evolution. We present the

most robust and complete local far-infrared (FIR)/radio correlation to date in a

volume-limited sample of ≈ 4.3 × 103 nearby SFGs, finding that it is very tight

but distinctly sub-linear: LFIR ∝ L0.85
1.4 GHz. If the local FIR/radio correlation does not

evolve, the evolving 1.4 GHz luminosity function of SFGs yields the evolving star-

formation rate density (SFRD) ψ(M� yr−1 Mpc−3) as a function of time since the big

bang. The SFRD measured at 1.4 GHz grows rapidly at early times, peaks at “cosmic

noon” when t ≈ 3 Gyr and z ≈ 2, and subsequently decays with an e-folding time

scale τ = 3.2 Gyr. This evolution is similar to, but somewhat stronger than, SFRD

evolution estimated from UV and FIR data.

4.3 Introduction

Fundamental to our understanding of galaxy evolution, reionization of the universe,

and heavy element production is an evolutionary timeline of the cosmic star formation

rate density (SFRD). In the 1990s, it was first suggested that star-formation activity

at redshift z ∼ 1 dwarfed that at z ∼ 0 (e.g. Songaila et al. 1994; Ellis et al. 1996;

Lilly et al. 1996). In the decades since, star-forming galaxies have been detected out

to increasing redshifts, most recently z & 10 (e.g. Coe et al. 2013; Oesch et al. 2016),

well within the reionization era. Compilations of SFR measurements made at various

redshifts informs our understanding of SFRD evolution (see Hopkins & Beacom 2006;

Madau & Dickinson 2014, for reviews of the topic). Virtually all SFR diagnostics are

sensitive to massive stars only; an initial mass function (IMF) must be assumed to

tally the total stellar mass formed at a given time. Possible variations in the IMF

within and among galaxies and redshifts remains a source of uncertainty.

Most extragalactic radio sources fainter than S ≈ 0.4 mJy at 1.4 GHz are distant
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star-forming galaxies (SFGs), while stronger sources are primarily radio galaxies or

quasars powered by active galactic nuclei (AGNs) (Prandoni et al. 2001; Smolčić et al.

2008; Condon et al. 2012; Vernstrom et al. 2016). The 1.4 GHz continuum emission

from SFGs is a combination of synchrotron radiation from electrons accelerated in

the supernova remnants of short-lived (τ ≤ 3×107 yr) massive (M > 8M�) stars plus

thermal bremsstrahlung from Hii regions ionized and heated by even more massive

stars (Condon 1992). The cosmic-ray electrons responsible for the synchrotron radia-

tion dominating the 1.4 GHz continuum emission eventually diffuse throughout their

host galaxy and cool on timescales τcool ∼ 5 Myr (for a spiral galaxy that stopped

forming stars after a single episode; Murphy et al. 2008). The combined lifetimes of

such massive stars with the cooling timescale of cosmic-ray electrons are much less

than the age of the universe, so the radio continuum luminosities of SFGs depend

only on their current star-formation rates uncontaminated by older stellar popula-

tions. Although the radio continuum luminosity is only a tiny fraction of the total

power emitted by massive stars, its tight correlation with the energetically dominant

far-infrared (FIR) emission from dust heated by massive stars justifies the use of radio

emission as a quantitative tracer of star formation in galaxies (Condon 1992).

Stars with masses M & 8M� emit primarily in the ultraviolet (UV) continuum.

The rest frame wavelength range 1400 Å to 1700 Å is accessible to ground-based tele-

scopes for galaxies with redshifts z & 1.4, but the UV emission of nearby galaxies

must be measured either at longer UV wavelengths or from space. The contribution

from longer-lived (τ ∼ 250 Myr) radio-quiet stars increases at longer UV wavelengths.

The biggest downside for UV emission as a tracer of the SFR is dust obscuration.

At redshifts z ∼ 2, dust attenuation measured via infrared/UV luminosity ratios

LIR/LUV implies that >80% of star formation is obscured (Reddy et al. 2012; Howell

et al. 2010), resulting in a small UV contribution to the total SFRD.

The UV energy absorbed by dust grains is reemitted at mid-infrared (MIR) and

far-infrared (FIR) wavelengths, making MIR and FIR luminosities practical SFR

indicators (in the case of minimal contribution from diffuse dust). Although FIR

(42.5 − 122.5µm; Helou et al. 1988) dust extinction is low, the infrared spectrum
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(spanning λ = 8 − 1000µm) of a galaxy is complex. The fraction of UV luminosity

absorbed by dust depends on the metallicity and geometry of the dust distribution,

and the dust emission at wavelengths longer than λ ∼ 100µm in the source frame is

powered primarily by evolved stars (e.g. Hirashita et al. 2003; Bendo et al. 2010). At

MIR wavelengths, emission from warm dust is tightly correlated with star formation,

but polycyclic aromatic hydrocarbons (PAHs) complicate the emission spectrum near

λ = 8µm and active galactic nuclei (AGNs) dilute these PAH features while also con-

tributing significantly to the 24µm continuum emission. Luminous infrared galaxies

(LIRGS) with LIR > 1011L� and ultra-luminous infrared galaxies (ULIRGS) with

LIR > 1012L� are rare today but were responsible for most of the luminosity density

during the z ∼ 2 “cosmic noon” (Magnelli et al. 2011) when most stars were formed.

The MIR emission due solely to star formation must be disentangled from the total

MIR emission before converting to a SFR to ensure a correct result.

The cosmic history of star formation can be constrained by a combination of the

1.4 GHz local luminosity function and the differential numbers n(S)dS of faint radio

sources per steradian with flux densities between S and S + dS. A very low 1.4 GHz

detection limit S = 0.25µJy is needed to reach SFRs of evolving “normal” galax-

ies like the Milky Way: 5M� yr−1 at z = 2, 12M� yr−1 at z = 3, and 22M� yr−1

at z = 4 (assuming a Salpeter IMF). Thus the top continuum science goal of the

proposed Square Kilometre Array SKA1-MID is “Measuring the Star-formation His-

tory of the Universe” using the proposed “Ultra Deep Reference Survey” to count

sources as faint as S = 0.25µJy in a solid angle Ω ≈ 1 deg2 (Prandoni & Seymour

2015). Recently Condon et al. (2019) measured the 1.4 GHz local (z < 0.1) radio lu-

minosity functions of SFGs and AGNs from sources in the 1.4 GHz NRAO VLA Sky

Curvey (Condon et al. 1998, NVSS) cross-identified with 2MASX galaxies (Jarrett

et al. 2000). Matthews et al. (2021) determined accurate 1.4 GHz brightness-weighted

source counts S2n(S) over the eight decades of flux density between S = 0.25µJy

and S = 25 Jy using the very sensitive ν = 1.266 GHz MeerKAT DEEP2 sky image

(Mauch et al. 2020) for sources counts below S = 2.5 mJy, and the 1.4 GHz NVSS

catalog above S = 2.5 mJy (see Matthews et al. (2021) for details).
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In this paper we present the cosmic star-formation history derived from only (1)

the 1.4 GHz local luminosity function, (2) the local volume-limited FIR/radio correla-

tion, and (3) the 1.4 GHz counts of sources as faint as S = 0.25µJy. We do not need

to “stack” radio sources to achieve the required sensitivity, so we do not depend on

a complete sample of optically selected galaxies with measured redshifts and do not

discriminate against galaxies so obscured by dust that they drop out of optical sam-

ples. The faintest radio sources were detected statistically via their confusion P (D)

distribution, so we actually cannot optically identify them or measure their redshifts.

Instead, their radio evolution is constrained entirely by matching features in the lo-

cal luminosity function to features in the source counts. This independent approach

complements the traditional methods reviewed by Madau & Dickinson (2014).

Section 4.4 reviews and updates the 1.4 GHz local luminosity functions of SFGs

and AGNs derived from a spectroscopically complete sample of∼ 104 2MASX (Jarrett

et al. 2000) galaxies brighter than k20fe = +11.75 at λ = 2.2µm and stronger than S =

2.5 mJy at ν = 1.4 MHz. Basic equations relating the evolving 1.4 GHz luminosity

functions and spectral-index distributions to the counts of distant sources in the flat

ΛCDM universe are introduced in Section 4.5. The non-evolving model source counts

are discussed in Section 4.6 to highlight the features that evolutionary models must

have to fit the 1.4 GHz data. Models for the radio evolution of both AGNs and SFGs

that successfully match their evolving luminosity functions to the 1.4 GHz source

counts are presented in Section 4.7. We calculated an improved local FIR/radio

correlation using a large volume-limited sample of SFGs in our 2MASX sample and

found it to be a slightly nonlinear power law: LFIR ∝ L0.85
1.4 GHz. We used this local

FIR/radio correlation to convert the evolving 1.4 GHz SFG luminosity functions into

FIR star-formation rate densities (SFRDs) and to make an independent estimate

of the cosmic history of star formation (Section 4.8). Section 4.9 summarizes and

evaluates these results.

Absolute quantities were calculated for the flat ΛCDM universe withH0 = 70 km s−1 Mpc−1

and Ωm = 0.3. Our spectral-index sign convention is α ≡ +d lnS/d ln ν. The

Salpeter (1955) IMF was used to calculate total star-formation rates in terms of
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M� yr−1. These rates should be multiplied by 0.61 for the Chabrier (2003) IMF or

by 0.66 for the Kroupa (2001) IMF.

4.4 Local 1.4 GHz Luminosity Functions

The evolving spectral luminosity function ρ(Lν |z)dLν specifies the comoving number

density of sources at redshift z having absolute spectral luminosities Lν to Lν+dLν at

frequency ν. The corresponding density of sources per decade of spectral luminosity

is

ρdex(Lν |z) = ln(10)Lνρ(Lν |z) . (4.1)

Sources with this luminosity function produce a comoving spectral power density per

decade of luminosity

udex(Lν |z) ≡ Lν ρdex(Lν |z) . (4.2)

We call udex the energy-density function because spectral power density has the same

dimensions as energy density (SI units W Hz−1 m−3 = J m−3). Astronomically prac-

tical units for udex are W Hz−1 dex−1 Mpc−3.

The local 1.4 GHz energy-density functions udex(Lν |0) of radio sources powered

primarily by active galactic nuclei (AGNs) or by star-forming galaxies (SFGs) were

determined separately (Condon et al. 2019) and are shown by the data points and er-

ror bars in Figure 4.1. These local 1.4 GHz energy-density functions were determined

from a large sample (N ∼ 1 × 104) of radio sources in the NVSS catalog covering

Ω = 7.016 sr of sky and cross-identified with λ = 2.16µm galaxies in the 2MASX.

All 9517 sources have spectroscopic redshifts, and radio sources powered primarily

by AGNs were separated from those powered by SFGs using the following radio and

infrared diagnostics: (1) an IRAS FIR/NVSS 1.4 GHz flux-density ratio q < 1.8, (2)

a FIR spectral index α(25µm, 60µm > −1.25, (3) have WISE colors W1−W2 > 0.8

for (W2−W3 ≥ 3.1) and W1−W2 > (W2−W3−1.82)/1.6 for (W2−W3 > 3.1, and

(4) showed a radio morphology with multiple components (e.g. jets, lobes in the case

of resolved NVSS sources). The median redshift (corrected for the local flow due to
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nearby galaxy clusters) is 〈z〉 ≈ 0.02 for the SFG sample (N = 6699) and 〈z〉 ≈ 0.04

for the AGNs (N = 2763). For further details on the derivation of these energy-

density functions, we refer the reader to Condon et al. (2019). For computational

convenience, we approximate the AGN energy-density function by

udex(Lν |0) =
CaLν

(Lν/L∗a)α + (Lν/L∗a)β + (Lν/Lmin)γ
(4.3)

with comoving density factor Ca = 2.0 × 10−6 Mpc−3 dex−1, AGN high-luminosity

turnover spectral luminosity L∗a = 2.0× 1025 W Hz−1, low-luminosity downturn lumi-

nosity Lmin = 1.0 × 1011 W Hz−1, intermediate-luminosity power-law slope α = 0.55,

high-luminosity power-law slope β = 1.9, and low-luminosity downturn slope γ =

−0.25. This function is shown by the red curve in Figure 4.1. Its parameters are

highly correlated, so their values and their uncertainties have limited physical signif-

icance. However, the uncertainty of β is especially large because there are few AGNs

with Lν > L∗a and redshifts z < 0.1.

The tight FIR/radio correlation implies that the radio and FIR luminosity func-

tions of SFGs should have similar functional forms, so we followed the standard form

established by Saunders et al. (1990) for the λ = 60µm luminosity function to write

udex(Lν |0) = Cs

(
Lν
L∗s

)2−αs

exp

[
− 1

2σ2
log2

(
1 +

Lν
L∗s

)]
(4.4)

with comoving density factor Cs = 3.50 × 10−3 Mpc−3 dex−1, turnover spectral lu-

minosity L∗s = 1.9 × 1021 W Hz−1, αs = 1.162 for low-luminosity power-law slope

(2 − αs) = +0.838, and high-luminosity Gaussian taper with rms width σ = 0.558.

Our value of L∗s is close to the Lν = 2.5 × 1021 W Hz−1 1.4 GHz spectral luminosity

of the Milky Way (Berkhuijsen 1984). The local energy-density function of SFGs

is plotted as the blue curve in Figure 4.1, and the sum of the AGN and SFG local

energy-density functions is indicated by the wider green curve.

The accessible volumes and hence numbers of galaxies with low 1.4 GHz luminosi-

ties used to calculate the local energy-density functions are limited primarily by the
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Figure 4.1. The measured local energy-density functions udex(Lν |0) at ν = 1.4 GHz
are shown by the black data points. The red curve plots the Equation 4.3 fit for
AGNs, the blue curve plots Equation 4.4 for SFGs, and the wider green curve is the
sum of both.

S ≈ 2.5 mJy sensitivity limit of the NVSS catalog, so the statistical uncertainties in

these energy-density functions increase for AGNs below Lν ∼ 1021 W Hz−1 and for

SFGs below Lν ∼ 1020 W Hz−1.

4.5 Basic Equations

The differential source count n(S)dS is the number of sources per steradian with flux

densities between S and S + dS. Defining η(S)d log(S) as the number of sources per

steradian per log(S) and substituting dS = Sd ln(S) = ln(10)Sd log(S) shows that

ln(10)S2n(S) = Sη(S) is the flux density per steradian (a spectral brightness) per

decade of flux density. Thus the Rayleigh-Jeans sky brightness temperature dTb per

decade of flux density contributed by sources is[
d Tb

d log(S)

]
=

[
ln(10) c2

2kBν2

]
S2n(S) , (4.5)
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where kB ≈ 1.38 × 10−23 J K−1. We call S2n(S) the brightness-weighted differential

source count to distinguish it from the traditional static-Euclidean weighted count

S5/2n(S).

In a flat ΛCDM universe, the total brightness-weighted count at frequency ν of

sources with spectral index α can be written as the integral of udex(Lν |z) over redshift

(Condon & Matthews 2018):

S2n(S) =
DH0

4π ln(10)

∫ ∞
0

udex(Lν |z)

[
(1 + z)α−1

E(z)

]
dz , (4.6)

where DH0 ≡ c/H0 is the Hubble distance, Lν = 4πD2
C(1+z)1−αS, DC is the comoving

distance to the source, and E(z) = [Ωm(1 + z)3 + ΩΛ + Ωr(1 + z)4]1/2.

It is instructive to rewrite Equation 4.6 in terms of lookback time tL(z) by sub-

stituting the relations (Condon & Matthews 2018)

dDC = DH0

dz

E(z)
= (1 + z)c dtL (4.7)

to yield

S2n(S) =
c

4π ln(10)

∫ tL(∞)

0

udex(Lν |z)(1 + z)αdtL , (4.8)

where tL(z = ∞) ≈ 0.964H−1
0 ≈ 13.47 Gyr is the current age of the universe. Equa-

tion 4.8 shows that the sources in any narrow range ∆tL of lookback time near redshift

z(tL) contribute

∆[S2n(S)] ∝ udex(Lν |z)(1 + z)α∆[tL(z)] (4.9)

to the brightness-weighted source count. Thus in a plot of S2n(S) versus log(S),

the contribution to S2n(S) by sources in each narrow time range ∆tL(z) mimics the

evolving energy-density function attenuated by the factor (1 + z)α.

Both the AGN and SFG source populations span a range of spectral indices α char-

acterized by their redshift-dependent normalized spectral-index distributions p(α|z),
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so a more accurate version of Equation 4.6 is

S2n(S) =
DH0

4π ln(10)
×∫ ∞

−∞

{∫ ∞
0

udex(Lν |z)p(α|z)

[
(1 + z)α−1

E(z)

]
dz

}
dα . (4.10)

-1 0
0

1

2

3

Figure 4.2. The 1.4 GHz normalized spectral-index distributions P (α|z) of SFGs
(blue curves) and AGNs (red curves) for sources at redshifts z = 0, 1, and 4 (left to
right).

The 1.4 GHz spectral-index distribution of nearby AGNs can by approximated

by the the sum of two Gaussians representing the steep-spectrum and flat-spectrum

source populations (Condon 1984):

pa(α|0) =

(
Asteep√
2πσsteep

)
exp

[
−(α− ᾱsteep)2

2σ2
steep

]
+(

Aflat√
2πσflat

)
exp

[
−(α− ᾱflat)

2

2σ2
flat

]
(4.11)

with Asteep = 0.86, σsteep = 0.17, ᾱsteep = −0.8 and Aflat = 1 − Asteep = 0.14,

σflat = 0.38, ᾱflat = −0.5.

The 1.4 GHz spectral-index distribution of nearby SFGs can be represented by a
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single population, but each SFG has two spectral components—a nonthermal com-

ponent with a Gaussian spectral-index distribution characterized by mean spectral

index ᾱn ≈ −0.8 and rms width σn ≈ 0.17 plus a thermal component with spec-

tral index αt ≈ −0.1. At frequency ν in the source frame, the nonthermal/thermal

flux-density ratio is St is (Condon & Yin 1990)

Sn

St

≈ 10

(
ν

GHz

)αn+0.1

. (4.12)

For ν0 = 1.4 GHz observations, Sn/St declines with redshift in the observed frame

from 8 for galaxies at z = 0 to 2.56 at z = 4. Because nonthermal emission is always

dominant, the mean SFG spectral indices increase only slightly, from 〈α〉 ≈ −0.72 at

z = 0 to 〈α〉 ≈ −0.60 at z = 4.

We have assumed that the locally measured spectral-index distributions do not

evolve in the source rest frame. Even so, the observed ν0 = 1.4 GHz spectral-index

distributions of sources at redshift z are actually the spectral-index distributions

of sources selected at the higher frequency ν = (1 + z)ν0 in the source rest frame

and are biased toward “flatter” spectra with higher α (see Condon 1984, appendix).

The expected 1.4 GHz spectral-index distributions of AGNs and SFGs at redshifts

z = 0, 1 , and 4 are compared in Figure 4.2. Small changes in these spectral-index

distributions (e.g., varying ᾱn by ±0.1) actually have very little effect on the predicted

source counts and redshift distributions.

4.6 The Non-evolving Model

We integrated Equation 4.10 numerically to calculate S2n(S) for the non-evolving

model defined by udex(Lν |z) = udex(Lν |0). In order to show the contributions to

S2n(S) from sources seen at different lookback times tL, we broke the integration

over z into 13 redshift ranges corresponding to the 13 eons of lookback time 0 <

tL(Gyr) < 1, 1 < tL(Gyr) < 2, 2 < tL(Gyr) < 3, . . . , 12 < tL(Gyr) < 13. These

lookback times and redshifts are listed in Table 4.1.
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Table 4.1: Lookback Times and Redshifts

tL (Gyr) Redshift z

0 0.000

1 0.076

2 0.160

3 0.256

4 0.366

5 0.494

6 0.648

7 0.835

8 1.075

9 1.395

10 1.855

11 2.602

12 4.111

13 9.977

With no evolution of the measured local energy-density functions, Equation 4.10

gives the brightness-weighted source counts S2n(S) plotted in Figure 4.3. The 13

thin red curves from right to left are the AGN contributions from the 13 eons

0 < tL(Gyr) < 1 through 12 < tL(Gyr) < 13, and the thick red curve is the to-

tal contribution from all AGNs with tL < 13 Gyr (z < 9.977). The blue curves show

the analogous SFG contributions. The wider green curve is their sum, the total source

count S2n(S) for the non-evolving model.

At the highest flux densities the model counts indicated by the heavy red, blue,

and green curves all must approach the static Euclidean limit of nearby sources n(S) =

kS−5/2 whose plotted slope is d log[S2n(S)]/d log(S) = −1/2. The static Euclidean

number of sources per steradian stronger than S is N(> S) = (2k/3)S−3/2, and

the thick curves have been truncated at the flux densities above which they are

statistically ill-defined because they imply only one source in the entire sky: N(> S) =

(4π)−1. Non-evolving sources in every ∆tL = 1 Gyr range of lookback time emitted
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Figure 4.3. The heavy black curve spanning −6.6 < log[S(Jy)] < −5.0 marks the 1.4
GHz source count S2n(S) determined from the DEEP2 confusion P (D) distribution
(Matthews et al. 2021), and the light black curves bound its rms uncertainties. The
data points and their rms error bars are the 1.4 GHz DEEP2 direct source counts in
the range −5 < log[S(Jy)] < −2.7 Jy and the NVSS counts for log[S(Jy)] > −2.6.
Below the data are curves showing the calculated source counts S2n(S) with no
evolution. The thick red curve is the total AGN count, the thick blue curve is the
total SFG count, and the wider green curve is their sum, the total non-evolving model
source count. The dashed extrapolation of the thick blue curve shows the static
Euclidean slope d[log[S2n(S)]/d[log(S)] = −0.5 expected in the limit of high flux
densities where only low-redshift sources exist. The count contributions by sources
in the 13 ranges of lookback time are shown by the lighter red and blue curves. From
right to left, the lookback time ranges are tL = 0–1 Gyr, 1–2 Gyr, . . . , 12–13 Gyr. The
arrows labeled f and g indicate how much a light curve covering a limited time range
would be shifted by f = 10× luminosity evolution or by g = 10× density evolution
in that time range.

the same total energy, so their contributions to the sky brightness temperature Tb are

nearly equal, reduced moderately by the (1 + z)α attenuation factor in Equation 4.9.

Not only does the wide green curve lie well below the observed source count, it

is too smooth because the thick red and blue model curves produced by summing

over lookback times are much broader than the peaks in the observed brightness-
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weighted source counts. The arrows labeled f and g in Figure 4.3 indicate the effects

of 10× luminosity or density evolution, respectively, on counts covering a limited time

range. Luminosity evolution moves the model curves diagonally upward and to the

right while density evolution moves them straight up. The peak in the thick blue

curve lies diagonally below and left of the SFG peak in the actual source counts near

log[S(Jy)] = −4.5, so nearly pure luminosity evolution should match the observed

SFG counts. The peak in the thick red curve must move to the right more than it

must move up to match the AGN source-count peak near log[S(Jy)] = −1, suggesting

stronger luminosity evolution and negative density evolution. The strongest evolu-

tion should be confined to a narrow range of early times in order to bunch up the

light red and blue curves and narrow the peaks of the heavy red and blue curves.

Just making the local energy-density functions (Figure 4.1) match these features of

the brightness-weighted source counts (Figure 4.3) strongly constrains the redshift

dependences of the luminosity evolution f(z) and density evolution g(z), without

depending on measured redshifts for individual sources.

4.7 Evolutionary Models

We considered so-called backward evolutionary models ( i.e. a local luminosity func-

tion is evolved backwards to match the observed source counts) in which the forms

of the AGN and SFG energy-density functions on a log-log plot (Figure 4.1) do not

change, but both populations may evolve independently in both luminosity and den-

sity. Pure luminosity evolution f(z) shifts the curves in Figure 4.1 diagonally upward

and to the right, while pure density evolution g(z) shifts them vertically. Then for

each source population

udex(Lν |z) = g(z)udex

[
Lν
f(z)
|0
]
. (4.13)

For any combination of luminosity evolution f(z) and density evolution g(z), the total

comoving spectral power density produced by galaxies of all luminosities at redshift
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z is proportional to the product f(z)g(z). Thus

USFG(z) ≡
∫ ∞
−∞

udex(Lν |z) d log(Lν) =

f(z)g(z)

∫ ∞
−∞

udex(Lν |0) d log(Lν) . (4.14)

The total 1.4 GHz spectral luminosity density produced by SFGs today is (Condon

et al. 2019)

USFG(0) = (1.54± 0.20)× 1019 W Hz−1 Mpc−3 (4.15)

Evolution is often described by functions of the observable source redshift z, but

for a specific cosmological model (e.g., our ΛCDM model with H0 = 70 km s−1 Mpc−1

and Ωm = 0.3), z can be used to calculate the world time t elapsed between the big

bang and when the source emitted the radiation we see today. We prefer to describe

evolution in terms of t because (1) the evolution experienced by a source depends

only on the time t of emission , while z also depends on the time of the observation

and (2) z is a very nonlinear measure of time (Table 4.1), so that equations expressing

evolution as a function of z present a distorted picture of the time scales involved.

Thus we chose to describe evolution as

udex(Lν |t) = g(t)udex

[
Lν
f(t)
|0
]
, (4.16)

subject to the boundary condition f(0)·g(0) = 0 at the big bang and f(t0) = g(t0) = 1

at the present time t0 ≈ 13.47 Gyr.

Models with strong luminosity evolution predict the existence at high redshifts of

extremely luminous AGNs that should have been observed, but were not. Peacock

(1985) suggested cutting off the high end of the luminosity function at all redshifts:

ρ(Lν) ∝ exp(−Lν/Lc). We applied this exponential cutoff with Lc = 1029 W Hz−1.

We model the luminosity and density evolution of both SFGs and AGNs as the

product of factors representing their rise at early times and later exponential decay.
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The rise is modeled in terms of

erf(t) ≡ 2

π1/2

∫ t

0

e−x
2

dx, (4.17)

the S-shaped error function that increases from erf(−∞) = −1 through erf(0) = 0

to erf(+∞) = +1, where t is the age of the galaxy in Gyr. An exponential decay at

larger t is justified empirically by the UV and IR data points from Madau & Dickinson

(2014) that fall on a nearly straight line for t > 4 Gyr.

We represent luminosity evolution f(t) and density evolution g(t) by the forms:

f(t) =

{
0.5

[
erf

(
t− tf
τf

)
+ 1

]} [
exp

(
t0 − t
τ1

)]
(4.18)

g(t) =

{
0.5

[
erf

(
t− tg
τg

)
+ 1

]} [
exp

(
t0 − t
τ2

)]
, (4.19)

where tf and tg are the midpoint times in Gyr of the turn-on phase of luminosity and

density evolution, τf and τg are the time scales of the turn-on, and τ1 and τ2 are the

time scales in Gyr of luminosity and density decay. In Equations 4.18 and 4.19 f and

g are the products of the turn-on function in curly braces and the decay function in

square brackets, and both factors approach unity at t = t0 ≈ 13.47 Gyr. The six free

parameters are the time scales τf , τg, τ1, and τ2 and the midpoint times tf and tg.

Our choice of functional form has the following desirable features: (1) it is continuous

and smoothly varying, (2) the asymptotic rise of the error function to +1 at large t

makes the rise and decay factors cleanly separable, and (3) the parameters have real

physical meanings that can be compared with independent measurements or theories

(e.g. the rise time scale τr must agree with theoretical predictions for the minimum

time needed for the first galaxies to assemble).

AGNs dominate the 1.4 GHz differential source counts (black points in Figure 4.6)

for all log[S(Jy)] > −3.4 (S > 0.4 mJy) and SFGs outnumber AGNs at lower flux

densities. Nearly all of the AGNs contributing to S2n(S) below log[S(Jy)] ≈ −2

come from the low-luminosity (Lν < L∗) end of the AGN energy-density function

(Equation 4.3), which is nearly a power law. Thus all AGN evolutionary models

136



consistent with Equations 4.13 or 4.16 and that match S2n(S) for log[S(Jy)] > −2

must yield similar power-law count contributions throughout the flux-density range

dominated by SFGs, as shown by the heavy red line in Figure 4.6. Consequently,

uncertainties in the counts attributed to AGNs have little effect on the modeled SFG

counts for log[S(Jy)] < −3.4].

It is mathematically inappropriate to judge the goodness-of-fit of our evolution-

ary functions through a traditional non-linear least-squares fit (or similar) of the

predicted to the observed source counts because the source-counts in adjacent flux-

density bins are strongly correlated and thus violate the independence assumption

behind these fitting methods. We used Gaussian processes (Rasmussen & Williams

2006) to accomodate these correlations and derive evolutionary models with appropri-

ately conservative uncertainties in the fitted parameters. There are 6 free parameters

in Equations 4.18 and 4.19 for both SFGs and AGNs (a total of 12). Because we

assumed no late-time density evolution of SFGs, τ2,SFG is infinite, we simultaneously

fit only 11 free parements in Equations 4.18 and 4.19, plus two more parameters that

describe the covariance between data points, using the affine-invariant Monte Carlo

Markov Chain (MCMC) code emcee (Foreman-Mackey et al. 2013). We assumed

uniform priors for all parameters and enforced a slightly relaxed boundary condition

f(0) · g(0) � 0.1 ≈ 0. More details of our incorporation of Gaussian processes,

the parameter contours resulting from the MCMC fitting, and marginalized posterior

distributions can be found in the next Section 4.7.1.

4.7.1 Gaussian Process Model Fitting

Radio source counts and their uncertainties in individual flux-density bins are not

independent from their neighbors, so fitting models to these data by minimizing

χ2 will underestimate the model uncertainties and may introduce biases. We use

Gaussian processes to allow for possible correlations and derive evolutionary models

with conservative uncertainties in the parameters.

For a complete review of the theory behind (and applications of) Gaussian pro-

cesses, we refer the reader to Rasmussen & Williams (2006). Briefly, a Gaussian
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process is a generalization of a Gaussian probability distribution that takes into ac-

count stochastic effects like correlated noise by modeling both the function (the phys-

ical model) and also the covariance function. This ability presents itself through the

generalization of the likelihood function as a matrix equation

log p({yn} | {xn, σn}, θ) = −1

2
rθ

TK−1 rθ −
1

2
log detK − N

2
log(2π) (4.20)

where rθ is the residual vector

rθ
T =

(
y1 − f(x1; θ) · · · yN − f(xN ; θ)

)
(4.21)

and K is the “covariance matrix.” When the data points are independent, the off-

diagonal elements of the N ×N matrix K are 0. Covariance between data points n

and m are quantified by non- zero n, m off-diagonal elements. In our case (and in

most others) it is difficult or impossible to estimate the covariances accurately, which

makes the ability to fit for them using Gaussian processes especially helpful.

It would be extremely computationally expensive to add ∼ N2 parameters that

need to be fit. Instead of fitting each n, m-th element of the matrix directly, we

parameterize it using a functional form

Kn,m = σn
2 δn,m + k(xn, xm; α) (4.22)

where δn,m is the Kronecker delta and k(xn, xm; α) is the covariance function (or

kernel) that parameterizes by α) the covariance between by data points using a func-

tional form. It is then up to the user to choose a covariance function that approximates

the (unknown) actual covariance between data points.

Using the python Gaussian process package george (Ambikasaran et al. 2015), we

first maximized the log-likelihood for various covariance functions to determine which

was best suited for our data. We know that the covariance between data points varies

smoothly, and found that the “squared exponential covariance function” maximizes
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the log-likelihood

kSE(r) = σ2
f exp

(
− r

2

2l2

)
, (4.23)

where r = |xn−xm| defines the distance between data points, σ2
r is a positive constant

describing the process variance, and l defines the characteristic length scale (the reach

of influence on neighboring data points).

We used the generalized likelihood function (Equation 4.20) with the squared

exponential covariance function and the affine-invariant Markov Chain Monte Carlo

code emcee (Foreman-Mackey et al. 2013) to fit for the 13 free parameters: 5 in the

equations governing the evolution of SFGs: tf,SFG, τf,SFG, τSFG, tg,SFG, and τg,SFG, 6

in the evolutionary equations for AGNs: tf,AGN, τf,AGN, τ1,AGN, tg,AGN, τg,AGN, and

τ2,AGN, plus the two parameters of the covariance function: σ2
f and l. We assumed

uniform priors for the input parameters and enforce the boundary condition f(0) ·
g(0) ≈ 0. The resulting SFG evolutionary parameter contours and marginalized

posterior distributions are shown in Figure 4.4. The parameter values derived from

their marginalized posterior distributions and their 1σ uncertainties are listed in Table

4.2. Source counts resulting from 15 randomly-selected parameter samples from these

posterior distributions and the corresponding evolutionary functions are shown in

Figure 4.5.

4.7.2 AGN radio evolution

As expected, pure luminosity evolution (g = 1) cannot match the observed sharp

peak in S2n(S) near log[S(Jy)] = −1, so we had to supplement luminosity evolution

with negative density evolution (g < 1). Our best model for AGN evolution has:

fa =

{
0.5

[
erf

(
t− 3.97

1.41

)
+ 1

]} [
exp

(
t0 − t
2.26

)]
(4.24)

and

ga =

{
0.5

[
erf

(
t− 2.59

3.31

)
+ 1

]} [
exp

(
t0 − t
−7.62

)]
(4.25)
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Figure 4.4. Parameter contours and marginalized posterior distributions from the
MCMC chains.

where t is the time in Gyr since the big bang. The negative decay time scale

τ2 = −7.62 Gyr indicates a slow exponential growth in AGN density at late times.

Uncertainties of the derived parameters and their correlations are shown in Section

4.7.1. Figure 4.7 plots fa(t) and ga(t) separately as dotted and dashed red curves,
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Table 4.2. MCMC-derived pa-
rameter values and uncertainties

Parameter Best-fit value +1σ −1σ

tf,SFG 2.74 +0.32 − 0.26

τf,SFG 1.30 +0.18 − 0.29

τ1,SFG 2.90 +0.07 − 0.07

tg,SFG 1.38 +0.29 − 0.44

τg,SFG 1.99 +0.67 − 0.76

tf,AGN 3.97 +0.36 − 0.51

τf,AGN 1.41 +0.54 − 0.65

τ1,AGN 2.26 +0.05 − 0.05

tg,AGN 2.59 +0.75 − 0.89

τg,AGN 3.31 +1.09 − 0.81

τ2,AGN −7.62 +0.84 − 0.67

Figure 4.5. Left: 1.4 GHz brightness-weighted source count data shown as black points
(source counts derived via P (D) confusion analysis shown as black curves). Fifteen
randomly selected parameter vectors from the MCMC fitting routine were used to
generate predicted source counts (blue curves). Right: The corresponding fifteen total
evolutionary (fg) functions for SFGs. The best-fitting total evolutionary function is
shown as the black solid line.

respectively. The total AGN spectral luminosity density

UAGN(t) ≡
∫ ∞
−∞

udex(Lν |t) d log(Lν) (4.26)
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Figure 4.6. The 1.4 GHz differential source counts between 0.25µJy and 25 Jy are
shown with the brightness-weighted normalization S2n(S). The thick black curve
spanning −6.6 < log[S(Jy)] < −5 is based on the DEEP2 confusion P (D) distribu-
tion. The data points with error bars show the 1.4 GHz DEEP2 source counts between
in the range −5 < log[S(Jy)] < −2.6 Jy and the NVSS counts for log[S(Jy)] > −2.6.
The thick curves show the total model counts for AGNs (red), SFGs (blue), and their
sum (green). The counts contributed by sources in the 13 ranges of lookback time
are shown by the lighter red and blue curves. From right to left, the time ranges are
0–1 Gyr, 1–2 Gyr, . . . 12–13 Gyr.

is proportional to the product fa(t)ga(t) shown by the continuous red curve in Fig-

ure 4.7 and UAGN(t0) = (4.23± 0.78)× 1019 W Hz−1 Mpc−3 at ν = 1.4 GHz (Condon

et al. 2019).

Recall from Section 4.4 and Figure 4.1 that the local energy-density function of

AGNs is well determined down to log[Lν(W Hz−1)] ∼ 21, which is four decades below

the peak spectral luminosity log[Lν(W Hz−1)] ≈ 25. Thus the AGN contribution

to the brightness-weighted counts (Figure 4.6) peaking at log[S(Jy)] ≈ −1 is well

determined down to log[S(Jy)] ∼ −5, where the AGN contribution is only ∼ 3% of

the SFG contribution. Any uncertainty in the numbers of fainter AGNs is too small

to affect either the total source counts or the counts of SFGs.
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Figure 4.7. The amounts of radio luminosity evolution f (dotted curves), density
evolution g (dashed curves), and their products fg (solid curves) best fitting the
observed source counts are shown separately for SFGs (blue) and AGNs (red).

4.7.3 SFG radio evolution

The radio evolution of SFGs at 1.4 GHz is best fit by

fs =

{
0.5

[
erf

(
t− 2.74

1.30

)
+ 1

]}[
exp

(
t0 − t
2.90

)]
(4.27)

and

gs =

{
0.5

[
erf

(
t− 1.38

1.99

)
+ 1

]}
, (4.28)

where t is the time in Gyr since the big bang and erf(t) is the error function. For

both luminosity evolution fs and density evolution gs, the quantities in braces specify

the S-shaped growth at early times. At later times, the luminosity evolution decays

exponentially on a 2.9 Gyr e-folding time scale, and there is no density evolution.

These evolution functions fs, gs, and their product fsgs are shown by the blue curves

in Figure 4.7. Today USFG(t0) = (1.54± 0.20)× 1019 W Hz−1 Mpc−3 (Equation 4.15),

and the resulting fits to the observed faint-source counts are shown by the heavy blue

(SFGs only) and green (all sources) curves in Figure 4.6.

To estimate the overall uncertainty in SFG evolution, we selected those MCMC
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parameter vectors yielding log-likelihood values in the highest 68% of all samples. In

the selected subsample, the minimum amount of SFG evolution consistent with the

1.4 GHz source counts is

fs =

{
0.5

[
erf

(
t− 3.10

1.12

)
+ 1

]} [
exp

(
t0 − t
3.04

)]
(4.29)

gs =

{
0.5

[
erf

(
t− 1.79

0.42

)
+ 1

]}
(4.30)

and the maximum is

fs =

{
0.5

[
erf

(
t− 2.51

2.50

)
+ 1

]} [
exp

(
t0 − t
2.76

)]
(4.31)

gs =

{
0.5

[
erf

(
t− 1.79

0.97

)
+ 1

]}
. (4.32)

The broad green curve in Figure 4.8 shows the range of counts bounded by these

minimum and maximum evolution equations. We stress that although the individual

parameters describing the luminosity and density evolution have larger uncertainties

(Section 4.7.1), the resulting total evolutionary curves remain consistent because the

parameters are correlated. This ensures that the resulting implications for the star-

formation history of the universe are stable.

When calculating far-ultraviolet (FUV) and FIR luminosity densities of SFGs,

Madau & Dickinson (2014) truncated their luminosity functions below 0.03L∗s (their

equation 14). As a test, we tried truncating our 1.4 GHz SFG luminosity function

below 0.03L∗s ≈ 6 × 1019 W Hz−1. The predicted counts above S ≈ 0.25µJy re-

mained well within the green curve in Figure 4.8 and log[S2n(S)] fell by only 0.08 at

S log[S(Jy)] = −8.

144



-8 -7 -6 -5 -4 -3 -2
0

1

2

3

4

AGN
Both

Figure 4.8. The broad green curve spans the range of total source counts bounded
by the minimum and maximum SFG evolution models (Equations 4.29 through 4.32.
The best-fit AGN counts are shown by the red curve. The black data points with
error bars are the DEEP2 and NVSS discrete source counts, and the black curves are
the upper and lower limits of the P (D) counts.

4.7.4 Sky brightness contributed by extragalactic sources at

1.4 GHz

Integrating Equation 4.5 yields the Rayleigh-Jeans sky brightness temperature con-

tributed by all sources stronger than S0:

Tb(> S0) =

[
ln(10)c2

2kBν2

] ∫ ∞
logS0

S2n(S)d(logS). (4.33)

As shown in Figure 4.9, the model that best fits the brightness-weighted source counts

S2n(S) of AGNs adds Tb ≈ 69 mK to the Rayleigh-Jeans sky brightness temperature

at 1.4 GHz, half of which comes from sources stronger than log[S(Jy)] = −1.2 and

99% from sources with log[S(Jy)] > −4.8. The acceptable range of SFG model counts

adds Tb = 43 ± 6 mK to the background, of which ≈ 96% is resolved into sources

145



stronger than S = 0.25µJy. By integrating the backward evolutionary model for

SFG out to increasing redshifts, we determine that half of the total SFG background

is produced by sources having redshifts z < 0.93± 0.10.
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Figure 4.9. Model contributions to the 1.4 GHz sky brightness temperature Tb from
AGNs (red), SFGs (blue), and the sum of both (green) by sources with flux densities
> S.

The ν = 1.4 GHz sky brightness temperature Tb produced by SFGs (blue curve in

Figure 4.9) was converted to the 1.4 GHz sky brightness νIν = 2kBTbν
3c−2 in units

of nW m−2 sr−1 and is shown by the blue curve plotted against the lower abscissa

and left ordinate of Figure 4.10. The λ = 160µm sky brightness of faint FIR sources

was measured by Berta et al. (2011) and is shown by the red curve plotted against

the upper abscissa and right ordinate of Figure 4.10. The left end of the red curve

at S160µm = 0.3 mJy marks the sensitivity limit of the Herschel PACS P (D) counts,

and the right end between S160µm = 0.2 Jy and 1 Jy is the static Euclidean extrapo-

lation (Berta et al. 2011). The upper abscissa was shifted left by the expected mean

flux-density ratio 〈S160µm/S1.4 GHz〉 ≈ 310 of faint SFGs at median redshift 〈z〉 ≈ 1

(Condon et al. 2019; Berta et al. 2011), and the right ordinate for νIν was shifted

down by 4.16 × 105, the flux-density ratio multiplied by the frequency ratio. See

Appendix C.5 for the derivation of these numbers. The surprisingly good agreement
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of the λ = 160µm and ν = 1.4 GHz SFG backgrounds is reassuring evidence that (1)

contamination of the SFG population by radio-loud AGNs is small and (2) the local

FIR/radio correlation does not break down at redshifts z ∼ 1.

The COBE Far Infrared Absolute Spectrophotometer (FIRAS) measured the to-

tal cosmic infrared background contributed by all extragalactic sources to be νIν =

12.8 ± 6.4 nW m−2 sr−1 at λ = 160µm (Fixsen et al. 1998), with zodiacal dust

emission causing most of the uncertainty. If 〈S160µm/S1.4 GHz〉 ≈ 310, the corre-

sponding 1.4 GHz SFG background νIν = 3.1± 1.5× 10−5 nW m−2 sr−1 is consistent

with the νIν ≈ 3.5 ± 0.5 × 10−5 nW m−2 sr−1 we obtained for SFGs stronger than

S1.4 GHz = 0.25µJy. Thus any hypothetical “new population” of fainter radio sources

bright enough to produce the large extragalactic brightness at ν = 3.02 GHz reported

by Fixsen et al. (2011) cannot obey the FIR/radio correlation.

4.8 The Cosmic History of Star Formation

Section 4.7 describes the radio evolution needed to match the local radio energy-

density function to the counts of radio sources associated with SFGs. By themselves,

these quantities do not directly constrain the comoving SFRD ψ(t) (M� yr−1 Mpc−3).

To calculate the evolving SFRD, we need a prescription relating the radio luminosi-

ties of SFGs to their star-formation rates. The radio continuum is an energetically

negligible tracer of star formation: the FIR/radio luminosity ratio ∼ 4× 105 of SFGs

is comparable with the elephant/mouse mass ratio. Furthermore, most of the 1.4 GHz

emission is synchrotron radiation whose luminosity depends on poorly known quan-

tities such as the interstellar magnetic field strength and ambient radiation energy

density. It took the discovery of the surprisingly strong empirical FIR/radio correla-

tion in nearby galaxies (Helou et al. 1985) to convert radio continuum photometry of

SFGs from a hobby into a quantitative science.
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Figure 4.10. The ν = 1.4 GHz sky brightness temperature contributed by SFGs (blue
curve in Figure 4.9) was converted to the cumulative sky brightness νIν contributed
by sources with flux densities > S1.4 GHz and is shown by the blue curve (against
the lower abscissa and left ordinate). The red curve (against the upper abscissa and
right ordinate) shows the λ = 160µm brightness contributed by sources stronger than
S160µm (Berta et al. 2011). The curves overlap as shown when S160µm/S1.4 GHz = 310
(Appendix C.5).

4.8.1 The linear FIR/radio correlation

If the FIR/radio correlation is linear (LFIR ∝ L1.4 GHz) and does not evolve, then only

the local FIR/radio flux-density ratio is needed to convert from radio luminosity to

star-formation rate. That ratio is usually expressed in terms of the dimensionless

constant q (Helou et al. 1985):

q ≡ log

[
FIR/(3.75× 1012 Hz)

S(1.4 GHz)

]
, (4.34)

where FIR is the flux between 42.5 and 122.5µm in units of W m−2 estimated from

the IRAS 60 and 100µm flux densities in Jy

FIR = 1.26× 10−14[2.58S(60µm) + S(100µm)] (4.35)
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and 3.75 × 1012 Hz is the frequency corresponding to the midpoint wavelength λ =

80µm. (Beware that the FIR in Equation 4.35 is a flux with units of W m−2 so the

numerator in Equation 4.34 is a flux density with units of W m−2 Hz−1. Thus either

the denominator S(1.4 GHz) should be specified in units of W m−2 Hz−1 = 1026 Jy

or, if S(1.4 GHz) is specified in Jy, the numerator should be multiplied by 1026.) For

the flux-limited IRAS sample of galaxies with S(60µm) > 2 Jy, Yun et al. (2001)

reported a nearly linear FIR/radio correlation with scatter σ = 0.26 in the q values

of individual galaxies and sample mean 〈q〉 = 2.34± 0.01.

If the 1.4 GHz spectral luminosities of SFGs are indeed proportional to their star

formation rates and the constant of proportionality does not evolve, then the radio

evolution of SFGs implies SFRD evolution

ψ(t)

ψ0

= fs(t)gs(t) , (4.36)

where ψ0 ≡ ψ(t0) is the SFRD now. The thick blue curve in Figure 4.11 indicates

the radio SFRD evolution based on Equations 4.27 and 4.36.

Using FIR and FUV data, Madau & Dickinson (2014) estimated the evolving

SFRD and approximated it by the function

ψ(z)

ψ0

≈ (1 + z)2.7

1 + [(1 + z)/2.9]5.6
(4.37)

shown by the black curve in Figure 4.11. Both the blue and black curves peak around

the same “cosmic noon” near t = 3 Gyr, z = 2 and decline exponentially at later

times, but the radio estimate implies a significantly stronger overall evolution of the

SFRD. If the FIR/radio correlation is linear and the 1.4 GHz energy density function

underwent luminosity evolution specified by Equation 4.37, the predicted radio source

counts of SFGs would fall well below the observed counts. Integrating the predicted

radio source counts (see Equation 4.33) determines that SFGs would contribute only

Tb = 21 mK to the sky brightness temperature.

About half of the observed 43 mK SFG background is produced by sources with

log[S(Jy)] > −4.8 (S > 16µJy), nearly half by sources with −6.6 < log[S(Jy)] <
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Figure 4.11. The thick blue curve, which is the same as the thick blue curve in
Figure 4.7, shows the best-fit evolution of the radio SFRD if ψ/ψ0 = fsgs for SFGs,
and the thin blue curves indicate the minimum and maximum amounts of evolution
specified by Equations 4.29 through 4.32. All are significantly higher than the black
curve showing the evolution ψ/ψ0 = fg of the SFRD based on FUV and FIR data
(Madau & Dickinson 2014, equation 15). The red curve is our best fit to the product
faga for AGN. It is closer to the Madau & Dickinson (2014) curve for stars, indicating
comparable amounts of SFG and AGN evolution, but the AGN peak lags by & 1 Gyr.
Abscissa: time t in Gyr since the big bang. Ordinate: Normalized evolution fg.

−4.8, and only ∼ 4% of the model SFG background is produced by sources below our

P (D) count limit log[S(Jy)] = −6.6 (S = 0.25µJy). Stronger luminosity evolution

and negative density evolution with fixed fs(z)gs(z) could fit the 1.4 GHz source counts

above log[S(Jy)] ∼ −4.8, but no separate adjustments of luminosity evolution f or

density evolution g consistent with a given ψ/ψ0 or product fg can significantly

change these SFG contributions to Tb and match the counts between log[S(Jy)] =

−6.6 and log[S(Jy)] = −4.8. We conclude that the large difference between the

radio and FUV/FIR SFRDs cannot be avoided if the FIR/radio correlation is linear

and does not evolve. Thus authors who assume a linear FIR/radio correlation to

150



model deep FIR and radio counts necessarily find that q decreases with redshift; e.g.,

Delhaize et al. (2017b) used sensitive Jansky Very Large Array (VLA) and Herschel

images to find q ∝ (1 + z)−0.19±0.01 in the redshift range 0 < z < 6.

4.8.2 The nonlinear FIR/radio correlation

The difference between SFRD evolution estimates based on our 1.4 GHz data and

on the FUV/FIR data in Madau & Dickinson (2014) can be reduced if the FIR/ra-

dio correlation is sub-linear; that is, x < 1 in LFIR ∝ Lx1.4 GHz. To determine the

degree of nonlinearity, we measured the local q (Equation 4.34) as a function of

log[L(1.4 GHz)]. The q distribution of sources in a flux-limited sample is biased by

the selection frequency; thus the mean 〈q〉 in a FIR-selected sample is higher than 〈q〉
in a radio-selected sample (see Condon 1984, appendix). Such biases can be removed

by assigning to each source a weight inversely proportional to the maximum volume

Vmax in which it could remain in the sample, yielding the unbiased volume-limited

distribution of q.

To measure the unbiased local distribution of q, we started with the large sample

of NVSS sources stronger than S = 2.5 mJy used in Section 4.4 to determine the

local radio luminosity function, but kept only the sources with S ≥ 5 mJy to ensure

that nearly all (98%) of the sample SFGs were detected by IRAS and have accurately

measured values of q. Although purely flux-limited samples of all radio sources with

S ≥ 5 mJy are dominated by faint and distant (〈z〉 ∼ 1) AGNs, our bright (k20fe <

+11.75) and thus local (〈z〉 ∼ 0.02) sample is not, so the SFGs can be separated from

the AGNs, as shown in Figure 4.1.

This sample was divided into 1.4 GHz luminosity bins of width ∆ log(Lν) = 0.2

centered on log(Lν) = 19.7 through 23.5. We weighted the value of q for each source

by its Lν/Vmax ratio, where Vmax is the smaller of its λ = 2.16µm or ν = 1.4 GHz

maximum volumes, so that the overall weighted mean of the entire sample is an

unbiased measure of the volume-limited FIR/radio luminosity-density ratio. Within

each narrow radio luminosity bin, the rms scatter of individual q values is only σq ≈
0.16. The weighted means 〈q〉 and their rms uncertainties σ〈q〉 are plotted for all
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populated luminosity bins in Figure 4.12. The bent line in Figure 4.12 shows the fit

〈q〉 =2.69− 0.147[log(Lν)− 19.1] if log(Lν) < 22.5

〈q〉 =2.19 if log(Lν) ≥ 22.5 (4.38)

indicating a clearly sub-linear FIR/radio relation LFIR ∝ L0.85
ν in the 1.4 GHz lu-

minosity range log(Lν) < 22.5 that includes > 90% of nearby SFGs. Sub-linearity

implies that FIR luminosity evolution, and hence SFRD evolution, is not as strong

as 1.4 GHz evolution. The volume-limited average for nearby SFGs of all luminosities

is q̄ = 2.30 ± 0.01. These results are quite stable, varying by ∼ 0.1% when the 2%

of galaxies with only IRAS upper limits are included or excluded. To the extent

that the star-formation rates of galaxies are proportional to their stellar masses M?

(Brinchmann et al. 2004) (that is, there is a “main sequence” of star-forming galax-

ies), the recent finding that dq/d log(M?) = −0.148 ± 0.013 nearly independent of

redshift (Delvecchio et al. 2020) is consistent with our sublinear local FIR/radio cor-

relation dq/d log(Lν) = −0.147 and our assumption that the FIR/radio correlation

itself does not evolve with redshift. While we know that the local FIR/radio correla-

tion is sublinear and can fit our data with a non-evolving FIR/radio correlation, we

cannot demonstrate that no such evolution exists.

For our evolutionary models, the FIR luminosities LFIR of individual SFGs at any

redshift were estimated by inserting 〈q〉 values from Equation 4.38 into

LFIR = 3.75× 1012 Hz · L1.4 GHz · 10〈q〉 . (4.39)

The matching energy-density equation is[
udex(FIR)

W Mpc−3

]
= 3.75× 1012 Hz ·

[
udex(1.4 GHz)

W Hz−1 Mpc−3

]
· 10q . (4.40)
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Figure 4.12. The logarithmic FIR/radio ratio parameter decreases as d〈q〉/d log(Lν) =
−0.147 below log[Lν(W Hz−1)] = 22.5 and is a constant 〈q〉 = 2.19 at higher lumi-
nosities.

4.8.3 Converting LFIR to star-formation rates

The total SFR associated with a given infrared luminosity depends on the assumed

initial mass function (IMF) and stellar model spectra. Murphy et al. (2011) assumed

a Kroupa (2001) IMF and used the Starburst99 spectrum integrated over the infrared

(IR) band covering 8 < λ(µm) < 1000 to obtain(
SFR

M� yr−1

)
= 3.88× 10−37

(
LIR

W

)
. (4.41)

The widely referenced conversion factor in table 1 of Kennicutt & Evans (2012) is

based on this Murphy et al. (2011) value. A Salpeter IMF (Salpeter 1955) has a

larger fraction of low-mass stars and implies total SFRs including all stars in the

mass range 0.1 < M� < 100 are factor of 1/0.66 = 1.52 higher for a given LIR. Most

nearby SFGs have only measured FIR luminosities, not IR luminosities. Bell et al.

(2003) compared the q values for IR and FIR luminosities and found 〈LIR/LFIR〉 ≈
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dex(2.64− 2.36) ≈ 1.91, so for a Kroupa (2001) IMF(
SFR

M� yr−1

)
= 7.39× 10−37

(
LFIR

W

)
. (4.42)

Combining these results and integrating over logLν yields our radio estimate of

the evolving SFRD ψ for a Kroupa (2001) IMF at any time t :[
ψ(t)

M� yr−1 Mpc−3

]
= 7.39× 10−37 · 3.75× 1012 Hz ·∫ [

udex(Lν |t) · 10〈q(Lν)〉

W Hz−1 Mpc−3

]
d log(Lν) , (4.43)

where Lν is the 1.4 GHz spectral luminosity. Again, for a Salpeter (1955) IMF, ψ

is a factor of 1.52 larger. For a Salpeter (1955) IMF and USFG = 1.54 ± 0.2 ×
1019 W Hz−1 Mpc−3 (Equation 4.15), ψ(t0) = 0.0128M� yr−1 Mpc−3 is the radio esti-

mate of the SRFD today.

Figure 4.13 compares our 1.4 GHz estimate of the evolving SFRD ψ(t) (thick

blue curve) with the standard Madau & Dickinson (2014) FUV/FIR data points and

estimate (black curve), all for a Salpeter (1955) IMF. Our best 1.4 GHz estimate is

well approximated by

log

[
ψ(t)

M� yr−1 Mpc−3

]
= −3.473 + 1.818

(
t

Gyr

)
−3.653

(
t

Gyr

)2

+ 0.02216

(
t

Gyr

)3

(4.44)

when 0.5 < t(Gyr) < 5 and by

log

[
ψ(t)

M� yr−1 Mpc−3

]
= −0.0529− 0.1373

(
t

Gyr

)
(4.45)

when t(Gyr) > 5. The light blue curves indicate the range of SFRDs consistent with

the 13% uncertainty in the SFRD today quadratically added to the SFRD ranges

from our acceptable evolutionary models (Section 4.7.3). To convert Figure 4.13

from a Salpeter (1955) IMF to a Kroupa (2001) IMF, subtract 0.18 from log(ψ). The
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sub-linear FIR/radio correlation has increased the 1.4 GHz late-time e-folding time

scale τ = 2.9+0.07
−0.07 Gyr (Equation 4.27) to τ = 3.2+0.08

−0.08 Gyr for the SFRD ψ, bringing

it closer to but still smaller than the Madau & Dickinson (2014) τ ≈ 4.4 Gyr.
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Figure 4.13. The evolving SFRD ψ for a Salpeter (1955) IMF is shown as a function of
time t (Gyr) since the big bang. The UV and IR data points and the black curve fitted
to Equation 4.37 with ψ0 = 0.015M� yr−1 Mpc−3 are from the Madau & Dickinson
(2014) review. The heavy blue curve is our best-fit 1.4 GHz SFRD estimate, and the
light blue curves bound the range of acceptable fits to our 1.4 GHz data.

4.9 Discussion and Conclusions

This paper presents an independent estimate of the cosmic star-formation history

based on radio evolutionary models matching the 1.4 GHz local luminosity function
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and counts of sources as faint as S = 0.25µJy at 1.4 GHz, the flux density of the

Milky Way at z = 4 with 10× luminosity evolution.

• Radio source evolution of AGNs and SFGs at 1.4 GHz was determined by match-

ing local luminosity functions ρdex(Lν) or local energy-density functions udex(Lν)

with the brightness-weighted source counts S2n(S).

• We made the first measurement of the local volume-limited FIR/radio correla-

tion and found it to be sub-linear: LFIR ∝ L0.85
1.4 GHz.

• We used our sub-linear FIR/radio correlation to convert radio-source evolution

to an evolving SFRD ψ (M� yr−1 Mpc−3). This radio estimate reproduces the

usual SFRD peak near z ≈ 2, but the peak SFRD indicates stronger evolution

than the standard FUV/FIR estimate (Madau & Dickinson 2014).

4.9.1 What are the main strengths and weaknesses of this

radio SFRD model?

• The 1.4 GHz emission from a star-forming galaxy is a mixture of synchrotron

radiation from electrons accelerated in core-collapse supernova remnants of

M > 8M� stars and thermal bremsstrahlung from Hii regions, making it

less sensitive than FIR luminosity to contamination by older stellar popu-

lations. However, radio emission is more vulnerable to unrecognized AGN

contamination, primarily in galaxies with high SFRs and high radio lumi-

nosities. The sample of SFGs used to generate the local 1.4 GHz luminos-

ity function was carefully vetted (Condon et al. 2019), and the local radio

SFRD ψ(t0) = 0.0128M� yr−1 Mpc−3 is slightly lower than the FUV/FIR

ψ(t0) = 0.015M� yr−1 Mpc−3 (both for a Salpeter (1955) IMF). Thus the local

1.4 GHz sample does not seem to be badly contaminated. AGN contamination

of SFGs at high redshifts might cause their source counts and hence radio evolu-

tion to be overestimated, but the excellent agreement of the background bright-

nesses νIν produced by SFGs at ν = 1.4 GHz and λ = 160µm (Figure 4.10) is
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reassuring.

• AGNs dominate the source counts above S ≈ 0.4 mJy, but their contributions

to the total counts of significantly fainter sources can be estimated accurately

because they are smooth power laws at the low-luminosity end of their energy

density function.

• The peak contribution of SFGs to S2n(S) occurs near S = 10µJy, and about

half the total SFG contribution is from fainter sources. The main obstacle to

radio measurements of the SFRD has been measuring accurate source counts

down to S ≈ 0.25µJy. That is now possible, but only statistically via the

confusion P (D) distribution (Matthews et al. 2021), so it is not possible to

identify individual S ≈ 0.25µJy sources or measure their redshifts. Instead,

the amounts of luminosity evolution f and density evolution g depend en-

tirely on fitting features in the local energy-density functions to features in

the brightness-weighted source counts. Only smoothly varying f and g can be

modeled accurately, and rare populations (e.g., SFGs at very high redshifts)

can easily be overlooked. The 1.4 GHz spectra of SFGs are power laws with

spectral indices near α = −0.7, so their K-corrections are easy to calculate but

large enough that 1.4 GHz SFRDs are best determined at redshifts up to and

slightly beyond “cosmic noon,” but submm continuum sources with low or neg-

ative K-corrections and submm spectral lines are better for determining SFGs

at redshifts z & 4.

• The dominant synchrotron luminosity at 1.4 GHz is only an energetically neg-

ligible tracer of star formation and is not simply proportional to the SFR; it

depends on unknown or unrelated quantities such as the interstellar magnetic

field strength and inverse-Compton (IC) scattering off the ambient radiation

field produced by starlight plus the cosmic microwave background (CMB). Thus

the use of 1.4 GHz luminosity to measure the SFR is justified primarily by the

empirical FIR/radio correlation. The locally measured FIR/radio correlation

might fail at high redshifts owing to IC scattering losses off the CMB ∝ (1+z)4.
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This does not seem to be a problem because it can only lower the radio SFRD

estimate, and the radio SFRD estimate is slightly higher than expected. The

FIR/radio correlation is often treated as being linear, but we found it to be

sub-linear: LFIR ∝ L0.85
1.4 GHz. Sub-linearity significantly reduces the discrepancy

between the radio and FIR SFRD models as shown by Figures 4.11 and 4.13,

so the resulting radio SFRD models lie above but just within the error bars of

the FIR data points.
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Chapter 5

Conclusions and Future Work

The main take-aways of this dissertation are as follows:

• In Chapter 2, I present the most complete local radio luminosity function from

a spectroscopically-complete sample of cross-identifications of ∼10,000 2MASX

sources (with 2.16µm magnitude k20fe ≤ 11.75) in the NVSS (with flux densities

S ≥ 2.45 mJy). Radio sources powered primarily by SFGs and AGNs with

radio luminosities log[L1.4 GHz (W Hz−1)] > 19.3 account for over 99% of the

total 1.4 GHz energy density in the nearby universe.

• The AGNs and SFGs were separated using only radio and infrared data rather

than optical emission-line diagnostics, which are not good quantitative measures

of AGN-powered radio emission. We compared our SFG/AGN identifications

of an overlapping sample with Mauch & Sadler (2007)—whose SFG/AGN iden-

tifications were based solely on optical spectra—and found surprisingly good

agreement.

• The local radio-derived SFRD value of ψ(z ∼ 0) = 0.0128M� yr−1 Mpc−3 is

consistent with the model of ψ(z) derived by Madau & Dickinson (2014) using

only UV/IR data. The sample is large enough that the uncertainties on this

measurement are no longer dominated by statistical variance, but instead by

cosmic variance.



• In Chapter 3, I present 1.4 GHz source counts over eight decades of flux density

from 0.25µJy to 25 Jy. From 0.25µJy < S < 10µJy the counts were statistically

derived from the P (D) confusion distribution of the MeerKAT DEEP2 field,

from 10µJy < S < 2.5 mJy from direct detections of individual sources in the

DEEP2 field, and above 2.5 mJy from cataloged components of the NVSS.

• I developed a simulation of the radio sky as well as the effects of deep radio

observations (e.g. convolution with the beam, noise) to determine the source

counts for the radio population with S < 10µJy. The simulation allowed us to

account for specifics of the observation (e.g. the dirty beam) and to constrain

a source count that did not follow a simple power law. These simulations also

determined the corrections needed for the direct source counts from 10µJy <

S < 2.5 mJy due to confusion.

• Chapter 3 includes differential source counts derived from the NVSS above

S = 2.5 mJy. Despite the survey and catalog being completed over two decades

prior, differential counts had not yet been published.

• Using the local 2MASX/NVSS sample presented in Chapter 2, I present a

volume-limited measurement of the FIR/radio correlation. This correlation is

often assumed to be linear, however we found that it is distinctly sublinear, with

the FIR luminosity LFIR ∝ L0.85
1.4 GHz. This insight slightly decreases the degree

of discrepancy between the SFRD evolution of radio-based and UV/IR-based

models, but does not completely resolve the differences. It also eliminates the

need for an evolving FIR/radio correlation.

• In Chapter 4, I present an evolutionary model for the SFRD ψ(t) derived from

the local radio luminosity function, 1.4 GHz source counts, and the FIR/radio

correlation. The SFRD rises rapidly from t = 0 to t ≈ 3 Gyr and subsequently

declines exponentially to present day. The time of the peak SFRD and shape

of ψ(t) agrees well with the model from Madau & Dickinson (2014), but the

radio-derived SFRD predicts stronger evolution than the UV/IR-based models.
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• Luminosity and density evolution was determined for SFG and AGN popula-

tions individually. The total evolution of SFGs is largely dominated by lu-

minosity evolution—peaking at t ∼ 3 Gyr—with no density evolution after

t ∼ 4 Gyr. The peak of AGN evolution occurs slightly later than for SFGs,

at approximately t ∼ 4 Gyr, after which AGNs experience slow exponential

density growth.

5.1 Future Work: Characterizing galaxies in the

MeerKAT DEEP2 field

Most massive galaxies with z ≤ 1.5 lie on the star-formation ‘main-sequence’ relat-

ing stellar mass and SFR: SFR ∝ M0.8 (Pannella et al. 2015). The normalization

of the main sequence is the specific star-formation rate (sSFR=SFR/M∗) for some

fiducial mass M∗, and indicates the rate at which stars are forming in galaxies of a cer-

tain mass. Until now, dust-unbiased SFRs were only available for relatively massive

galaxies and starbursts. While UV/optical emission may probe normal main sequence

galaxies, the SFR corrections for dust attenuation of less massive galaxies are still

significant and relatively uncertain at z & 2 (Whitaker et al. 2017). Understanding

the efficiency of stellar mass buildup as a function of redshift requires dust-unbiased

SFRs for normal, disk galaxies beyond cosmic noon. It is these normal galaxies that

contribute the majority of the mass at cosmic noon; starburst galaxies have been

found to contribute only a small fraction to the SFRD at z ≤ 2 (Rodighiero et al.

2011). The unprecedented sensitivity of the MeerKAT-DEEP2 field will provide a

dust-unbiased view of star formation in these normal galaxies at z ≥ 2 for the first

time.

The MeerKAT-DEEP2 field spans over one-square-degree and hosts a previously

unexplored population of faint, normal, disk galaxies across cosmic time. The Spitzer

IRAC bands at 3.6µm and 4.5µm—accessible without cryogenics—are the best trac-

ers of stellar mass at redshifts z ≥ 1, so they inevitably detect most host galaxies to

radio sources. Cotton et al. (2018) demonstrated that ∼ 98% of radio sources with
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S(3 GHz) ≥ 3µJy have a NIR counterpart. During its last few months of operation,

warm-Spitzer imaged the MeerKAT DEEP2 field. I will use these moderately-deep

observations to identify the host galaxies for the vast majority of radio sources in

DEEP2. As shown in Matthews et al. (2021), direct counts of radio sources in the

confusion-limited DEEP2 field can only be reliably calculated down to ∼ 10µJy. The

positions of NIR cross-identifications can be used as accurate priors to deblend radio

sources and push the lower flux density limit of direct counts to slightly fainter flux

densities (S ∼ 5µJy), equivalent to ∼ 100M� yr−1 at z ∼ 2, a SFR well below Her-

schel or other FIR/submillimeter surveys could detected at cosmic noon. Further, a

flux density limit of S(1.28 GHz) ∼ 5µJy is equal to that of the deepest COSMOS

S-band image at 3 GHz but covers a much larger sky area.

Redshift measurements are essential to calculate the intrinsic characteristics of

individual galaxies (mass, luminosity, etc.) that will help explain the discrepancy

between radio-based and UV/IR-based SFRD evolutionary models. The MeerKAT-

DEEP2 field is a treasure trove of ∼20,000 radio continuum sources, but it is ob-

servationally expensive to measure traditional spectroscopic redshifts for all these

galaxies. An alternative is to use the photometric redshift (photo-z) method to ob-

tain distances through fitting and modeling spectral energy distributions (SEDs) that

match the observed broadband fluxes at each wavelength. But even with dense wave-

length coverage over the optical and NIR regime, the photometric redshift errors

remain on the order of 3-4% (Rowan-Robinson et al. 2008). Redshift errors of a few

percent translate to significant uncertainty in flux-dependent properties of galaxies

(e.g. stellar mass and SFR).

There is a third option that produces more-accurate redshifts than photo-z’s, but

takes a tiny fraction of the time needed for high-resolution spectroscopic surveys. Re-

placing the transmission grating used with a CCD camera with a low-dispersion prism

produces low-resolution spectra across a wide range of wavelengths. This technique

was first utilized on the Inamori Magellan Area Camera and Spectrograph (IMACS)

for the PRIsm MUlti-object Survey (PRIMUS), where they were able to observe

∼2,500 objects at once (Coil et al. 2011). I will utilize this method to obtain high-
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quality redshifts (. 1% errors) for the ∼20,000 radio sources in the MeerKAT-DEEP2

field.

With redshift information, it will be possible to determine intrinsic properties

(e.g. mass, luminosity) of galaxies in the MeerKAT-DEEP2 field. I plan to supple-

ment the warm-Spitzer data with optical photometry obtained with the Dark Energy

Camera at the Cerro Tololo Inter-American Observatory (CTIO) for the g, r, I, z,

and J bands. I will apply for these observations separately since the DEEP2 field

is just south of the region covered by the Dark Energy Survey. Additionally, during

the period of my postdoctoral fellowship, the NOAO Extremely Wide-Field Infrared

Imager (NEWFIRM) will be recommissioned at CTIO. I plan to capitalize on the

recommissioning of NEWFIRM to obtain deep NIR imaging of the DEEP2 field.

These λ = 1.25 − 2.1µm data are key for identifying the Balmer/4000 Å Balmer

break at 1.5 ≤ z ≤ 3, will fill in the continuous wavelength coverage of the SEDs, and

increase the accuracy of the spectrophotometric redshifts.

The optical photometry, NIR photometry, and Spitzer data combine to form

spectral energy distributions (SEDs) for the galaxies, and the addition of the low-

resolution spectra from IMACS yields continuous wavelength coverage through the

optical regime. I will test and use a variety of stellar population synthesis models and

templates to fit the galactic SEDs and determine their redshift and stellar masses.

The low-dispersion spectra are key for isolating Balmer breaks and emission lines in

star-forming galaxies, leading to small uncertainties on the redshift measurements.

The galactic SEDs also reveal the type of galaxy, whether it is indeed star-forming

or if it is transitioning into quiescence. Since the observed optical/NIR photometry

corresponds to UV/optical luminosity measurements in the rest-frame of the source,

it constrains the dust-unobscured SFRs for these normal, Milky Way-like galaxies. A

comparison between the radio-based and UV/optical SFRs will be a powerful char-

acterization of the effects of dust and the systematic uncertainties it causes in solely

optical and IR pictures of star formation. The wealth of information encoded into

the SEDs will allow for the most statistically robust characterization of faint, radio

galaxies at cosmic noon.
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Appendix A

Dictionary of Terms & Variables

Table A.1: Dictionary of Terms & Variables

Variable Definition Reference

Greek Symbols

α spectral index Section 1.4

Right Ascension Section 2.2

δ Declination Section 2.2

θ FWHM of the Gaussian restoring beam Section 1.6

Θ1/2 FWHM of the primary beam Section 3.4.1

ν frequency in Hz (1/s) Figure 1.3

ρdex(Lν) space density of sources per decade of spectral

luminosity [Mpc−3 dex−1]

Equation 1.3

σn rms of statistical noise Section 1.6.2

φ angular size of radio source Section 1.6

Ω1/2 Sky area within half-power point of primary beam Section 2.6

Other Functions, Symbols, and Abbreviations

AGN active galactic nuclei

CMB cosmic microwave background Section 1.3

D Historically, the deflection of the pen on a chart recorder when

detecting a signal

Section 1.6



FIR far-infrared wavelength range (this work assumes

40µm ≤ λ ≤ 123µm)

Jy Jansky, a unit of flux density = 10−26 W m−2 Hz−1

L luminosity

M� mass of the Sun = 1.989× 1033 g

MIR mid-infrared wavelength range (typically 15µm ≤ λ ≤ 40µm)

NIR near-infrared wavelength range (typically 1.2µm ≤ λ ≤ 5µm)

pc parsec, a unit of distance = 3.086× 1018 cm

P (D) Distribution of image pixel brightness

SFG star-forming galaxy Section 1.6

SFR star formation rate [M� yr−1]

SFRD star formation rate density [M� yr−1 Mpc−3]

S flux density [Jy]

Sp peak flux density [Jy beam−1]

S5/2n(S) Euclidean-weighted source counts [Jy3/2 sr−1] Figure 1.6

S2n(S) brightness-weigthed source counts [Jy sr−1] Figure 1.9

udex(Lν) spectral power density (or energy-density) per decade

of spectral luminosity [W Hz−1 dex−1 Mpc−3]

Equation 1.5

Note: Click to return to Chapter: 1 2 3 4 5 Appendix: B C
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Appendix B

Cosmology for Astronomers

“Innocent, light-minded men, who think that astronomy can be learnt by looking at

the stars without knowledge of mathematics will, in the next life, be birds.”—Plato,

Timaeus

According to the cosmological principle and confirmed by observation (e.g., Fig-

ure B.1), the universe is isotropic and homogeneous on large scales. It began with a

very dense “big bang” and has been expanding uniformly ever since. General relativ-

ity can describe both the geometry and expansion dynamics of the universe. However,

general relativity permits spatially curved universes which are mathematically compli-

cated. Extragalactic astronomers were once faced with the choice of learning general

relativity or applying published relativistic results without really understanding them,

at the risk of being birds in the next life.

In today’s ΛCDM (Λ for dark energy with constant energy density and CDM

for cold dark matter) concordance model, the universe is spatially “flat,” so its ge-

ometry is Euclidian, its expansion is not affected by curvature, and locally correct

Newtonian calculations can be extended to cosmological scales. Fortunately for non-

mathematicians, flatness allows simple (no tensors) derivations of accurate equations

for the kinematics and dynamics of cosmic expansion that an undergraduate physics

major can understand. Such derivations are presented in Sections B.1 and B.2, and

the main results used by observational astronomers are developed in Section B.3.



Figure B.1. Positions of the N ∼ 4× 104 radio sources stronger than S = 2.5 mJy at
1.4 GHz are indicated by points on this equal-area plot covering the sky within 15◦

of the north celestial pole. Nearly all of these sources are extragalactic and so distant
(median redshift 〈z〉 ∼ 1) that their distribution is quite isotropic.

See David Hogg’s useful “cheat sheet” (Hogg 1999) listing results from relativistic

models with nonzero curvature, and the books by Peebles (1993) and Weinberg (1972)

for their derivations. The astropy.cosmology Python package at http://docs.astropy.org/

en/stable/cosmology/ contains utilities for calculating many of the quantities dis-

cussed in this paper.

In this paper, the present (redshift zero) values of evolving quantities are distin-

guished by the subscript 0 for clarity. Unless otherwise noted, all numerical results are

based on a Hubble constantH0 = 70 km s−1 Mpc−1 so h ≡ H0/(100 km s−1 Mpc−1) =

0.7, plus the following normalized densities at redshift zero: total Ω0 = 1, baryonic

and cold dark matter Ω0,m = 0.3, radiation and relic neutrinos Ω0,r = h−2 ·4.2×10−5,

and dark energy Ω0,Λ = 1 − (Ω0,m + Ω0,r) ≈ 0.7. Note that many authors just write

Ω, Ωm, Ωr, and ΩΛ without the subscript 0 to indicate the present values of these

densities. Also, 1 Mpc ≈ 3.0857× 1019 km and 1 yr ≈ 3.1557× 107 s.
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B.1 Expansion Kinematics

According to the equivalence principle, all fundamental observers locally at rest rel-

ative to their surroundings anywhere in the isotropically expanding (and hence ho-

mogeneous) universe are in inertial frames, and their clocks all agree on the time t

elapsed since the big bang. This universal time t is sometimes called world time or

cosmic time, and it equals the proper time of all fundamental observers. Fundamental

observers didn’t have to be present at the creation to synchronize their clocks; the

temperature of the cosmic microwave background (CMB) radiation is a suitable proxy

for time. Likewise, the CMB appears isotropic only to fundamental observers, and

others can use the CMB dipole anisotropy (Kogut et al. 1993) to deduce their usually

small (v2 � c2, where c ≈ 299792 km s−1 is the vacuum speed of light) peculiar

velocities and correct for them if necessary.

Homogeneity and isotropy are preserved if and only if the small proper distance

D(t) between any close pair of observers expands as

D(t) = a(t)D0 , (B.1)

where D0 is the proper distance now and a(t) is the universal (meaning, it is the same

at every position in the universe) dimensionless scale factor that grew with time from

a ≈ 0 just after the big bang to a(t0) ≡ 1 today (Figure B.2). Equation B.1 applies

to any expansion that preserves homogeneity and isotropy—the separations of dots

on a photo being enlarged, for example. The cosmological expansion affects only

to the separations of non-interacting objects, and the dots representing rigid rulers,

gravitationally bound galaxies, etc. do not expand with the universe.

From Figure B.2 it is clear that

d lnD

dt
=

1

D

dD

dt
=

1

aD0

D0 da

dt
=
ȧ

a
≡ H(t) (B.2)

can depend on time but not with position in space. H(t) is called the Hubble param-

eter, and its current value is the Hubble constant H0. The time derivative Ḋ of D in
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Figure B.2. To preserve homogeneity and isotropy, all distances D = aD0, 2D =
2aD0,. . . between fundamental observers must grow in proportion to the universal
scale factor a(t).

Equation B.1 defines the recession velocity of the nearby observer:

vr ≡ Ḋ = ȧ D0 =

(
ȧ

a

)
D = HD . (B.3)

Successive wave crests of light emitted with frequency νe and wavelength λe = c/νe

are separated in time by dt = ν−1
e in the source frame. If the source is receding from

the observer with velocity vr � c, successive waves must travel an extra distance

vr dt = vr/νe, so their observed wavelength is

λo =
c

νe

+
vr

νe

= λe + λe

(
vr

c

)
(vr � c) (B.4)

and vr is measurable via the first-order Doppler shift:

vr

c
=
λo − λe

λe

(vr � c) . (B.5)

The redshift z of a source is defined by

z ≡ λo − λe

λe

, (B.6)

and the domain of this definition extends to all z. Note that most recession “veloci-

ties” reported by astronomers are actually vr = cz and may be much larger than the

vacuum speed of light.
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Combining Equations B.3 and B.5 for a nearby source at distance D = c∆t gives

vr

c
=

∆λ

λ
=
D

c

ȧ

a
= ∆t

ȧ

a
=

∆a

a
(vr � c) . (B.7)

Integrating the local Equation B.7 over time:

∫ λo

λe

dλ

λ
=

∫ 1

a

da

a
(B.8)

gives the global result that λo/λe = 1/a and νo/νe = a. Thus the observable redshift

z of any distant source can be used to calculate the scale factor a of the universe

when it emitted the light seen today:

a = (1 + z)−1 . (B.9)

Because 1 ≤ (1 + z) < ∞ is the reciprocal of the scale factor 0 < a ≤ 1, at high

redshifts both z and (1 + z) are very nonlinear and potentially misleading functions

of fundamental quantities such as lookback time (Section B.3.1). Had astronomers

always been able to measure accurate frequency ratios νo/νe = a instead of just small

differential wavelengths (λo − λe)/λe = z, most cosmological equations and results

would probably be presented in terms of a today.

The dimension of H is inverse time, but astronomers originally measured the

Hubble constant as the mean ratio vr/D of nearby galaxies, so it is usually written

in mixed units of length and time:

H0 = 100h km s−1 Mpc−1 . (B.10)

Isolating the dimensionless factor h makes it easy to compare results based on different

measured values of H0. The most recent measurements of h range from the low h =

0.669 ± 0.006 (Planck Collaboration et al. 2016) derived by comparing the observed

angular power spectrum of CMB fluctuations with a flat ΛCDM cosmological model

to the high h = 0.732±0.017 (Riess et al. 2016) based on relatively local measurements
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of Cepheid variable stars and Type Ia supernovae used as standard candles. The 3σ

“tension” between these results is a topic of current research (Freedman 2017).

The Hubble time is defined by

tH ≡ H−1 , (B.11)

and its present value

tH0 ≡ H−1
0 ≈ 9.778× 109 h−1 yr ≈ 14.0 Gyr (B.12)

is a convenient unit of time comparable with the present age of the universe t0.

Likewise, the current Hubble distance

DH0 ≡
c

H0

≈ 2998h−1 Mpc ≈ 4280 Mpc (B.13)

is a distance comparable with the present radius of the observable universe.

The lookback time tL(z) to a source at any redshift z is the time photons need

to travel with speed c from the source to the observer at z = 0. In a homogeneous

universe, this global quantitity is just the sum of the small locally measured proper

times dt. In terms of the scale factor a and H = d ln(a)/dt, it is

tL =

∫ t0

t

dt′ =

∫ 1

a

(
dt′

d ln(a′)

)
d ln(a′) (B.14)

tL =

∫ 1

a

da′

a′H(a′)
. (B.15)

The lookback time is usually written in terms of z:

tL =

∫ t0

t

dt′ =

∫ 0

z

(
dt′

dz′

)
dz′ . (B.16)

To calculate dt/dz, take the time derivative of Equation B.9:

dz

dt
=
−1

a2

da

dt
= −1

a

(
ȧ

a

)
= −(1 + z)H (B.17)
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so

tL =

∫ z

0

dz′

(1 + z′)H(z′)
. (B.18)

The dynamical equation specifying the evolution of H is derived in Section B.2.

B.2 Expansion Dynamics

Figure B.3. Expansion of the spherical shell with radius r(t) and mean density ρ
centered on any fundamental observer is affected only by the enclosed gravitational
mass M = E/c2 = (4πr3/3) ρ.

The expansion of any small spherical shell with radius r(t) = r0 a(t) � DH0 and

mean density ρ centered on any fundamental observer is Newtonian in our flat universe

because (1) the net gravitational effect of the surrounding isotropic universe is zero,

in both Newtonian and general relativistic mechanics (Birkhoff & Langer 1923), and

(2) there is no relativistic curvature acceleration. The only relativistic results needed

are (1) the mean gravitational mass density ρ is the total relativistic mass density
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E/c2, not just the Newtonian rest mass density, and (2) in a flat universe, the actual

mean density ρ always equals the critical density ρc for which the sum of the kinetic

and gravitational potential energies per unit mass of the shell is zero:

ṙ2

2
− 4πGρr3

3r
= 0 , (B.19)

where G ≈ 6.674× 10−11 m3 kg−1 s−2 is Newton’s gravitational constant. The actual

radius r0 in r = r0 a(t) cancels out, leaving an equation for the scale factor a

ȧ2

2
− 4πGρa2

3
= 0 (B.20)

which can be solved for the Hubble parameter

H2 =

(
ȧ

a

)2

=
8πGρ

3
. (B.21)

Equation B.21 is the same as the equation Friedmann derived from general relativity

for a homogeneous, isotropic, and flat universe.

The present mean density of the flat universe is

ρ0 =
3H2

0

8πG
≈ 1.878× 10−26 h2 kg m−3

≈ 9.20× 10−27 kg m−3 . (B.22)

The normalized density parameter Ω is defined as

Ω ≡ ρ

ρc

, (B.23)

and Ω = 1 for all time in a flat universe. There are three dynamically distinct

contributors to Ω: (1) matter consisting of ordinary baryonic matter plus cold dark

matter particles whose rest mass nearly equals their total mass, (2) dark energy

whose density is constant, and (3) radiation, primarily CMB photons plus the cosmic

neutrino background (CνB) of relic neutrinos from the big bang.
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Planck Collaboration et al. (2016) observations of the CMB angular power spec-

trum indicate that Ω0 = Ω0,m + Ω0,Λ + Ω0,r = 1.0023± 0.0055, Ω0,m = 0.315± 0.013,

and Ω0,Λ = 0.685 ± 0.013. Blackbody radiation at temperature T has energy den-

sity U = 4σT 4/c, where 4σ/c ≈ 7.566 × 10−16 J m−3 is the radiation constant.

The T0 ≈ 2.73 K CMB has energy density U0 ≈ 4.20 × 10−14 J m−3 and gravi-

tational mass density ρ0,r = U0/c
2 ≈ 4.67 × 10−31 kg m−3. Massless relic neutri-

nos have energy density U0 ≈ 2.86 × 10−14 J m−3 and gravitational mass density

ρ0,ν ≈ 3.18× 10−31 kg m−3 (Peebles 1993). The total from photons plus neutrinos is

Ω0,r ≈ 4.2× 10−5 h−2 ≈ 8.6× 10−5.

Mass conservation of non-relativistic matter implies ρm ∝ a−3 = (1 + z)3. In

the ΛCDM model, dark energy is assumed to behave like a cosmological constant:

ρΛ ∝ a0 = (1 + z)0. The density of radiation (and massless neutrinos) scales as

ρr ∝ a−4 = (1 + z)4 because the number density of photons is ∝ a−3 = (1 + z)3 and

the mass E/c2 = hν/c2 of each photon scales as E ∝ λ−1 ∝ (1 + z)1 ∝ a−1. Inserting

these results into Equations B.21, B.22, and B.23 leads to

ρ

ρ0

=
H2

H2
0

=
Ω0,m

a3
+

Ω0,Λ

a0
+

Ω0,r

a4
. (B.24)

Using Equation B.9 to replace the scale factor a by the observable (1 + z)−1 yields

the dynamical equation specifying the evolution of H:

H

H0

= [Ω0,m(1 + z)3 + Ω0,Λ + Ω0,r(1 + z)4]1/2 . (B.25)

The symbol

E(z) ≡ [Ω0,m(1 + z)3 + Ω0,Λ + Ω0,r(1 + z)4]1/2 (B.26)

is a convenient shorthand for subsequent calculations. Figure B.4 showsH/H0 = E(z)

as a function of z for Ω0,m = 0.3.

The densities of radiation and matter were equal when Ω0,r(1 + zeq)4 = Ω0,m(1 +

zeq)3 at zeq = (Ω0,m/Ω0,r) − 1 ≈ 3500. The density of matter fell below that of dark

energy at z ≈ (Ω0,Λ/Ω0,m)1/3 − 1 ≈ 0.33 about 4 Gyr ago. In the distant future com-
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Figure B.4. The normalized Hubble parameter H/H0 is nearly constant after (1+z) .
(Ω0,Λ/Ω0,m)1/3 ≈ 1.33 and ρΛ > ρm. H/H0 ∝ (1 + z)3/2 at higher redshifts when
ρm > ρΛ, and H/H0 ∝ (1 + z)2 at the highest redshifts z > zeq ∼ 3500 when ρr > ρm.

pletely dominated by dark energy, the Hubble parameter will asymptotically approach

H = H0 Ω
1/2
0,Λ ≈ 84h km s−1 Mpc−1 ≈ 59 km s−1 Mpc−1 and the scale factor will grow

exponentially [a ∝ exp(Ht)] with a time scale H−1 ≈ 1.17× 1010 h−1 yr ≈ 17 Gyr.

B.3 Results

B.3.1 Cosmic Times

The lookback time tL(z) to a source at redshift z can be calculated by inserting

Equations B.25 and B.26 into Equation B.18:

tL
tH0

=

∫ z

0

dz′

(1 + z′)E(z′)
. (B.27)

This integral cannot be expressed in terms of elementary functions, but the integrand

is smooth enough that the integral can be evaluated numerically by Simpson’s rule,

at least for finite z.
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The proper age of the universe t(z) at redshift z is better evaluated in terms of

a = (1 + z)−1:

t

tH0

=

∫ (1+z)−1

0

a da

(Ω0,ma+ Ω0,Λa4 + Ω0,r)1/2
. (B.28)

The ratios tL/tH0 and t/tH0 are plotted as functions of redshift in Figure B.5. The

present age of the ΛCDM universe starting with the big bang (z = ∞) is t0 ≈
0.964 tH0 ≈ 9.42× 109 h−1 yr ≈ 13.5 Gyr for Ω0,m = 0.3.

Figure B.5. The normalized lookback time (tL/tH0) and the normalized age (t/tH0) in
a flat ΛCDM universe with Ω0,m = 0.3.

Figure B.5 shows that redshifts z � 1 contribute little to the age of the universe,

so extremely good analytic approximations to tL/tH0 , t/tH0 , and t0/tH0 can be made

by ignoring the radiation term Ω0,r(1 + z)4 that dominates E(z) only during the brief

period when z > zeq ∼ 3500 (t/tH0 ∼ 3.4× 10−6, or t ∼ 5× 104 h−1 yr ∼ 7× 104 yr).

This simplifies Equation B.27 to

tL
tH0

≈
∫ z

0

dz′

(1 + z′)[Ω0,m(1 + z′)3 + Ω0,Λ]1/2
, (B.29)

which can be integrated analytically. See Appendix C.2 for analytic approximations
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to tL/tH0 (Equation C.17) and t/tH0 (Equation C.22). The current age of the universe

normalized by the Hubble time is very nearly

t0
tH0

≈ 2

3 Ω
1/2
0,Λ

ln

[
1 + Ω

1/2
0,Λ

(1− Ω0,Λ)1/2

]
. (B.30)

Figure B.6 plots t0/tH0 from Equation B.30 as a function of the matter density pa-

rameter Ω0,m = 1−Ω0,Λ. In the limit Ω0,m = 1−Ω0,Λ → 0, the universe would expand

exponentially and t0/tH0 would diverge.

Figure B.6. The normalized age of the universe t0/tH0 as a function of Ω0,m = 1−Ω0,Λ

The observable redshift z is the traditional proxy for lookback time tL in models

of cosmological evolution. However, it can be misleading because the lookback time

is an extremely nonlinear function of redshift when z & 1. For example, the top panel

in Figure B.7 shows the Madau & Dickinson (2014) best fit to the star formation rate

density (SFRD) ψ in solar masses per year of per (comoving) Mpc3 as a linear of

function of lookback time back to z = 8. This plot accurately displays the fact that

only 10% of today’s stellar mass was assembled before z ≈ 2.9. The very nonlinear
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upper abscissa indicates the redshifts z matching the lookback times on the lower

abscissa. The time between z = 0 and z = 1 is ≈ 7.8 Gyr, but the time between

z = 2 and z = 3 is only ≈ 1.1 Gyr. The middle panel plots the same function ψ

as a linear function of redshift, with lookback time now on the very nonlinear upper

abscissa. This plot makes it look like � 10% of today’s stellar mass was assembled

before z ≈ 2.9. This nonlinearity at high redshifts is primarily caused by the fact that

(1 + z) is the reciprocal of the scale factor a. When ψ is plotted as a linear function

of a (bottom panel), the upper abscissa showing lookback time is nearly linear and

the plot of ψ(a) looks much more like the plot of ψ(tL).

B.3.2 Light Travel Distance

The vacuum speed of light c is invariant, so the light travel distance DT corresponding

to lookback time tL is

DT = c tL = c

∫ z

0

dz′

(1 + z′)H
. (B.31)

The light travel distance in meters can be interpreted physically as the number of

meter sticks laid end-to-end that the photon must pass on its journey from the source

to the observer.

The light travel distance is of limited use in cosmography because it is the distance

between two events occurring at two different proper times, t and t0. This limitation

can be illustrated by a nonrelativistic terrestrial example: two trains moving in oppo-

site directions with speed v passed each other at time t = 0 (Figure B.8). The horn on

one train sounded at time te when the distance between the trains was de = 2vte. The

sound reached the other train at a later time to when the distance between the trains

was do = 2vto. The sound travel distance is dT = vte + vto = cs(to− te), where cs > v

is the speed of sound. Some algebra reveals that dT = de [cs/(cs−v)] = do [cs/(cs +v)]

equals neither de nor do.
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Figure B.7. The three panels in this figure show the Madau & Dickinson (2014) fit to
the evolving star formation rate density as linear functions of lookback time tL (top
panel), redshift z (middle panel), and scale factor a (bottom panel). Clearly a is a
much better proxy for tL than z is.
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Figure B.8. Two trains moving with speed v passed each other at time t = 0, and
the train moving left emitted a sound at time te when the trains were separated by
de = 2vte. The sound reached train moving right at time to when the trains were
separated by do = 2vto. The sound travel distance dT = vte + vto equals neither de

nor do.

B.3.3 Comoving Coordinates

Comoving coordinates expand with the universe. The comoving distance DC between

any close (D � DH0) pair of fundamental observers defined by

DC ≡
D(t)

a(t)
= D0 (B.32)

(see Equation B.1) is independent of t and equals the present proper distance D0.

Thus comoving rulers are like rubber bands connecting neighboring fundamental ob-

servers, and their markings agree with rigid rulers today. At redshift z, the vacuum

speed of light in comoving coordinates is a−1c = (1 + z)c and

dDC = (c/a) dt = (1 + z)c dt . (B.33)

In the homogeneous universe, summing over the “local” comoving distances dDC

yields the global “line of sight” comoving distance to a distant source at any redshift
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z:

DC = c

∫ t0

t

(1 + z) dt′

= c

∫ 0

z

(1 + z′)

(
dt′

dz′

)
dz′ . (B.34)

Inserting Equations B.17 and B.26 into Equation B.34 gives

DC = DH0

∫ z

0

dz′

E(z′)
. (B.35)

Unfortunately, this indefinite integral for DC cannot be expressed in terms of elemen-

tary functions, only elliptic integrals that must be evaluated numerically. It is smooth

enough to be evaluated by Simpson’s rule (Appendix C.3). Alternatively, the simple

empirical fit

DC(fit) ≈DH0/ [a/(1− a) + 0.2278+

0.2070 (1− a)/(0.785 + a)−

0.0158 (1− a)/(0.312 + a)2] , (B.36)

where a = (1 + z)−1, can be used to avoid the numerical integration for most as-

tronomical applications. Equation B.36 is accurate to within 0.2% for z . 50 and

Ω0,m = 0.3 (Figure B.9).

The comoving distance in meters equals the number of meter sticks laid end-to-end

that would connect the source to the observer today. It is the proper distance between

us and the source at time t0, so the comoving distance is the most fundamental

distance for use in ΛCDM cosmology.

The “observable” universe refers to the sphere in which signals emitted at any

time t > 0 and traveling at the vacuum speed of light could have reached the observer

today. Its light-travel radius is therefore ct0, and the current comoving radius of the
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Figure B.9. Equation B.36 fits the comoving distance up to z ≈ 50 within 0.2% for
Ωm = 0.3.

observable universe is

R0,C = DH0

∫ ∞
0

dz′

E(z′)
. (B.37)

If h = 0.7 and Ω0,m = 0.3, then R0,C ≈ 3.24DH0 ≈ 3.24 · 2998h−1 Mpc ≈ 13.9 Gpc.

This number is not particularly significant, but it is often used to make amusing

calculations like the following: The comoving volume of the observable universe is

V0 = 4πR3
0,C / 3 ≈ 1.12 × 104 Gpc3 ≈ 3.3 × 1080 m3 and the present mean density is

ρ0 ≈ 9.2× 10−27 kg m−3, so the total mass of the observable universe is M0 = V0ρ0 ≈
3× 1054 kg.

Figure B.10 shows how the observable radius R0,C varies with the normalized

matter density Ω0,m.

The comoving volume VC measured in comoving coordinates is valuable for track-

ing the cosmic evolution of source populations because the number of permanent

objects (e.g., immortal fundamental observers, baryons, or galaxies if mergers are

ignored) in a comoving volume element is constant. (See Appendix C.4 for a sample

application of VC to calculate source counts from local luminosity functions.) The

Euclidean geometry of a flat universe implies that the total comoving volume out to

redshift z is

VC =
4πD3

C

3
, (B.38)
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Figure B.10. The normalized comoving radius of the observable universe today
R0,C/DH0 as a function of Ω0,m.

and the comoving volume in a shell covering solid angle ω sr between z and z+ dz is

dVC = ωD2
C dDC . (B.39)

Differentiating Equation B.35 yields

dDC = DH0

dz

E(z)
(B.40)

so

dVC =
ωD2

CDH0

E(z)
dz . (B.41)

B.3.4 Angular-diameter and Proper-motion Distances

The flat ΛCDM universe is Euclidean, so the angular distance θ (rad) between two

fundamental observers at the same redshift with comoving transverse separation l0

at comoving distance DC is simply

θ =
l0
DC

(θ � 1) . (B.42)
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A rigid source (e.g., a transverse meter stick or a gravitationally bound galaxy) has a

fixed proper transverse length l⊥, so its comoving transverse length is l0 = (1 + z) l⊥

and

θ =
(1 + z)l⊥
DC

. (B.43)

The angular diameter distance DA is a “convenience” distance defined to satisfy

the static Euclidean equation

DA ≡
l⊥
θ

(B.44)

for a rigid source. Equations B.43 and B.44 imply

DA =
DC

(1 + z)
(B.45)

in a flat universe. The angular diameter in arcsec (1 arcsec = π/648000 rad) of a

source with fixed proper diameter l⊥ = 1 kpc is shown as a function of redshift in

Figure B.11.

Figure B.11. The angular diameter θ of a source with a fixed proper diameter l⊥ =
1 kpc has a minimum θ ≈ 0 .′′118 at z ≈ 1.6 in a ΛCDM universe with h = 0.7 and
Ωm = 0.3.

184



The proper motion µ of a source is its observed angular speed across the sky:

µ ≡ dθ

dt
. (B.46)

For example, the radio source in the quasar 3C 279 at z = 0.5362 appears to consist of

a stationary “core” plus moving components whose proper motions µ ∼ 0 .′′0005 yr−1

were measured by very long baseline interferometry (Piner et al. 2003).

The proper-motion distance DM of a source with proper transverse velocity v⊥ =

dl⊥/dt(z) defined by

DM ≡
v⊥
µ

(B.47)

is also called the “transverse” comoving distance. In terms of the angular diameter

distance,

DM =
dl⊥
dθ

dt

dt(z)
= DA(1 + z) , (B.48)

where dt(z) is the proper time measured by a fundamental observer at the source red-

shift z. The proper-motion distance is just the angular diameter distance multiplied

by the (1 + z) time dilation factor. In a flat universe,

DM = DC , (B.49)

so the “line of sight” comoving distance DC equals the “transverse” comoving distance

DM and the two can be treated simply as a “the” comoving distance. In the non-

Euclidean geometry of a curved universe DM 6= DC (Hogg 1999).

B.3.5 Luminosities and Fluxes

Let L be the total (or bolometric) luminosity (emitted power, SI units W) of an

isotropic source measured in the source frame and F be the total flux (power received

per unit area, SI units W m−2) in the observer’s frame. (If the source is not isotropic,

L should be replaced by 4π times the power per steradian beamed in the direction of

the observer.)
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In a static Euclidean universe, the inverse-square law accounts for the transverse

spatial dilution of photons spread over the area A0 of the spherical surface containing

the observer and centered on the source: F = L/A0. In the Euclidean but expanding

ΛCDM universe, the present area of the spherical shell centered on a source at redshift

z and containing the observer is A0 = 4πD2
C. It is not 4π times the square of the

distance DT covered by the photons in an expanding universe; the name “inverse-

square (of the distance) law” is misleading and “inverse area law” would be better.

In an expanding but Euclidean flat universe, the observed flux is lower than in

a static universe because (1) the observed rate at which photons cross the t = t0

surface centered on the source and containing the observer is a factor (1 + z) lower

than the rate at which they were emitted and (2) the observed energy E = hc/λo

of each redshifted photon is a factor (1 + z) lower than its energy E = hc/λe in the

source frame. Consequently

F =

(
L

4πD2
C

)(
1

1 + z

)2

. (B.50)

The luminosity distance DL is another “convenience” distance defined by the form

of the static Euclidean inverse-square law:

F ≡ L

4πD2
L

. (B.51)

Equation B.50 implies

DL = (1 + z)DC . (B.52)

B.3.6 Comparison of Distance Types

Figure B.12 compares the luminosity distance DL, the comoving distance DC, the

light travel distance DT, and the angular-diameter distance DA in a ΛCDM universe

with current matter density parameter Ω0,m = 0.3. All of the plotted distances

are normalized by the current Hubble distance DH0 = c/H0 ≈ 2998h−1 Mpc ≈
4280 Mpc.
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Figure B.12. The luminosity distance DL, the comoving distance DC, the light travel
distance DT, and the angular diameter distance DA, all normalized by the current
Hubble distance DH0 , are compared for Ω0,m = 0.3.

These distances also vary slowly and smoothly with Ω0,m, but the effect of changing

Ω0,m cannot be represented by a scale factor like h. Figure B.13 shows the ratios

of DC(Ω0,m) to DC(Ω0,m = 0.3) for matter densities from Ω0,m = 0.28 (top curve)

through 0.34 (bottom curve) that include the best measured Ω0,m = 0.315 ± 0.013

(Planck Collaboration et al. 2016) and its quoted uncertainty. Near Ω0,m = 0.3,

dDC/dΩ0,m ≈ −0.006 at z = 1 and dDC/dΩ0,m ≈ −0.013 when z � 1.

B.3.7 Spectral Luminosities and Flux Densities

The spectral luminosity Lν(ν) of a source is its luminosity per unit frequency (SI

units W Hz−1). In this notation, the subscript ν just means “per unit frequency” in

the source frame and doesn’t refer to any particular frequency. The ν in parentheses

is the actual frequency in the source frame, so Lν(1.4 GHz) is the power per unit

frequency emitted at ν = 1.4 GHz in the source frame. The spectral flux density Fν

(or S) of a source is the observed flux per unit frequency in the observer’s frame (SI

units W m−2 Hz−1, or the astronomically practical Jy ≡ 10−26 W m−2 Hz−1).

All of the photons received in a narrow logarithmic frequency range centered on
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Figure B.13. The comoving distances DC are plotted for Ω0,m = 0.28 (top curve)
through Ω0,m = 0.34 (bottom curve) in steps of ∆Ω0,m = 0.01, all normalized by
DC(Ω0,m = 0.3) (heavy line).

frequency ν were emitted in the equally narrow logarithmic frequency range centered

on [(1 + z)ν], so the bolometric Equation B.50 implies

ν Fν(ν) = [(1 + z)ν]
Lν [(1 + z)ν]

4πD2
L

(B.53)

and

Fν(ν) = (1 + z)
Lν [(1 + z)ν]

4πD2
L

. (B.54)

The leading factor of (1 + z) in Equation B.54 comes from bandwidth compression:

photons emitted over the frequency range [(1+z)∆ν] are squeezed into the frequency

range ∆ν in the observer’s frame.

The spectral index α between frequencies ν1 and ν2 is defined by

α(ν1, ν2) ≡ +
ln[L(ν1)/L(ν2)]

ln(ν1/ν2)
. (B.55)

[Beware that some authors define α with the opposite sign.] In terms of α[ν, (1+z)ν],

Equation B.54 becomes

Fν(ν) = (1 + z)α+1 Lν(ν)

4πD2
L

. (B.56)

If the spectral luminosity distance DLν is defined by analogy with Equation B.51:
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Figure B.14. Spectral luminosity distances normalized by the current Hubble distance
are plotted for spectral indices α = −1, 0, +1, +2, and +3. Ω0,m = 0.3 in all cases.

Fν ≡
Lν

4πD2
Lν

, (B.57)

then Equation B.54 implies

DLν = DL (1 + z)−(α+1)/2 . (B.58)

Figure B.14 shows DLν (z)/DH0 for a range of spectral indices. Steep-spectrum (α ≈
−1) synchrotron sources have DLν ≈ DL and consequently are quite faint at high

redshifts. Flat-spectrum self-absorbed synchrotron sources and optically thin free-

free emitters (α ≈ 0) are only slightly stronger. For a source with α = +1, DLν =

DC. Blackbody emission in the long wavelength Rayleigh-Jeans limit has α ≈ +2.

Optically thin dusty galaxies have α ∼ +3 at wavelengths 0.1 . λe . 1 mm, so the

DLν ∼ DA and their submillimeter flux densities are nearly independent of redshift

over a broad range centered around z ∼ 1.6.

The spectral flux density Fλ measured per unit wavelength (SI units W m−3) is
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related to Fν by

|Fλ dλ| = |Fν dν| (B.59)

so

Fλ =
c

λ2
Fν and Lλ =

c

λ2
Lν . (B.60)

The wavelength counterparts of Equations B.53 and B.54 are

λFλ(λ) =
[λ/(1 + z)]Lλ[λ/(1 + z)]

4πD2
L

. (B.61)

and

Fλ(λ) = (1 + z)−1 Lλ[λ/(1 + z)]

4πD2
L

. (B.62)

B.3.8 Magnitudes and K Corrections

The apparent magnitude m and absolute magnitude M of a source are related by

m−M = 5 log10

(
DL

10 pc

)
+K , (B.63)

where

DM ≡ 5 log10

(
DL

10 pc

)
(B.64)

is the bolometric distance modulus (Figure B.15) in magnitudes (1 mag ≡ 10−0.4).

The K correction converts the apparent magnitude measured through a filter covering

a fixed wavelength range (Oke & Sandage 1968; Hogg et al. 2002) in the observer’s

frame to yield the absolute magnitude over the same wavelength range in the source

frame. The bolometric K correction is zero. There are many magnitude systems

covering different bandpasses and having different zero points (Blanton & Roweis

2007) relating m = 0 to flux density.
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Figure B.15. The bolometric distance modulus DM as a function of redshift z for
h = 0.7, Ω0,m = 0.3.

Equation B.54 implies that

K = −2.5 log10

{
(1 + z)

Lν [(1 + z)ν]

4πD2
L

}
+

2.5 log10

{
Lν(ν)

4πD2
L

}
K = −2.5 log10

{
(1 + z)

Lν [(1 + z)ν]

Lν(ν)

}
. (B.65)

In terms of the spectral index α,

K = −2.5 log10

[
(1 + z)α+1

]
= −2.5 (α + 1) log10(1 + z) . (B.66)

In terms of wavelengths,

K = −2.5 log10

{
(1 + z)−1Lλ[λ/(1 + z)]

Lλ(λ)

}
. (B.67)
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B.3.9 Spectral Lines

Spectral lines are narrow (line width ∆ν � ν) emission or absorption features in the

spectra of gaseous or ionized sources. The total line luminosity L is related to the

total line flux F and the line flux density Fν by Equation B.51, so

L = 4πD2
LF = 4πD2

L Fν∆ν . (B.68)

In Equation B.68, the SI units of F are W m−2 = 1026 Jy Hz. However, line fluxes

are often reported in the dimensionally confusing units Jy km s−1 based on the non-

relativistic Doppler equation
∆ν

ν
≈ ∆v

c
� 1 . (B.69)

Solving Equation B.69 for ∆v yields the factor needed to convert from Jy km s−1 to

Jy Hz:

1 km s−1 ≈ ν

299792
Hz . (B.70)

See Carilli & Walter (2013) for a detailed discussion of this equation and its uses.

B.3.10 Total Intensity and Specific Intensity

The total intensity or bolometric brightness B of a source is the power it emits per

unit area per unit solid angle ω (SI units W m−2 sr−1). In a static Euclidian universe,

intensity is conserved along any ray passing through empty space and the brightness

B0 seen by an observer at rest with respect to the source equals B. For a source at

redshift z in the Euclidean but expanding ΛCDM universe, the observed brightness

B0 can be calculated with the aid of Equations B.45 and B.52. For a source at any

comoving distance DC, expansion multiplies its luminosity distance by (1 + z) and

divides its angular diameter distance by (1 + z), so

B0

B
=
F0

F

ω

ω0

= (1 + z)−2(1 + z)−2 (B.71)
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and
B0

B
= (1 + z)−4 . (B.72)

The specific intensity or spectral brightness Bν(ν) of a source is its power per

unit frequency per unit solid angle (SI units W m−2 Hz−1 sr−1) at frequency ν in the

source frame.

All of the photons received in a narrow logarithmic frequency range centered on ν

were emitted in the equally narrow logarithmic frequency range centered on [(1+z)ν],

so the bolometric brightness Equation B.72 implies

νBν0 =
[(1 + z)ν]Bν [(1 + z)ν]

(1 + z)4
. (B.73)

Bν0(ν) = (1 + z)−3Bν [(1 + z)ν] . (B.74)

For a source with spectral index α,

Bν0(ν) = (1 + z)α−3Bν(ν) . (B.75)

The Planck brightness spectrum of a blackbody source at temperature T is

Bν(ν |T ) =
2hν3

c2

[
exp

(
hν

kT

)
− 1

]−1

. (B.76)

If the source is at redshift z, the observed spectrum

Bν0(ν) = (1 + z)−3Bν [(1 + z)ν |T ]

=
2h

c2

[
(1 + z)ν

(1 + z)

]3{
exp

[
hν

k

(1 + z)

T

]
− 1

}−1

(B.77)

is just the Planck spectrum Bν(ν|T0) of a blackbody with temperature T0 = T/(1+z).

The source of the T0 ≈ 2.73 K CMB seen today is the T ∼ 3000 K blackbody surface

of last scattering when the universe became transparent at z ∼ 1100.
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B.3.11 Nonrelativistic Approximation Errors

In the low-redshift limit, it is tempting to calculate intrinsic source parameters from

the observables using the nonrelativistic distance approximation

DN ≡
cz

H0

. (B.78)

Figure B.16 displays ratios of the relativistically correct luminosity distance DL, co-

moving distance DC, light travel distance DT, and angular diameter distance DA in

a ΛCDM universe with Ω0,m = 0.3 to DN.

Figure B.16. The ratios of the relativistically correct distances DL, DC, DT, and DA

to the nonrelativistic distance approximation DN ≡ cz/H0 at low redshifts z indicate
the errors that can result from using DN.

For example, the bolometric luminosity L of a source at redshift z is proportional

to D2
L, so the luminosity calculated using DN instead will be too low by a factor of

(DL/DN)2. It will be 5% too low for a source at redshift z ≈ 0.032 (cz ∼ 104 km s−1),

and the maximum redshift at which the luminosity error is < 10% is z ≈ 0.065

(cz ∼ 2× 104 km s−1).
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The calculated linear size of a source is proportional to DA < DN, so using DN

will overestimate source size by 5% at z ≈ 0.043 (cz ∼ 1.3× 104 km s−1) and 10% at

z ≈ 0.089 (cz ∼ 2.7× 104 km s−1).

Such errors are systematic, so they can easily dominate the Poisson errors in sta-

tistical properties of large source populations. Luminosity functions are particularly

vulnerable because they depend on the maximum redshifts at which sources could

have remained in the flux-limited population, not just the actual source redshifts.

B.3.12 Example Calculation: A Single Source

The bent triple radio source 4C +39.05 (Figure B.17) is identified with the galaxy

2MASX 02005301+3935003 at z ≈ 0.0718. Its 1.4 GHz flux density is S ≈ 635 mJy

and its angular diameter is θ ≈ 200′′.

The light-travel time from 4C +39.05 can be found by inserting z = 0.0718 and

Ω0,Λ ≈ 1−Ω0,m = 1−0.3 = 0.7 into Equation C.17; it is tL/tH0 ≈ 0.0682. For h = 0.7,

tH0 ≈ 14 Gyr (Equation B.12) and tL ≈ 9.5× 108 yr.

For h = 0.7 and Ω0,m = 0.3, its comoving distance from either Equation B.35 or

Equation B.36 is DC ≈ 303 Mpc. The comoving volume within the sphere (ω = 4π sr)

of this radius is (Equation B.38) VC = 4πD3
C/3 ≈ 4 · 3.14 · (303Mpc)3/3 ≈ 1.17 ×

108 Mpc3.

The angular-size distance (Equation B.45) to 4C +39.05 is DA = DC/(1 + z) ≈
283 Mpc, so its projected linear size is l⊥ = θDA ≈ 200 arcsec ·π/648000 rad/arcsec ·
283 Mpc ≈ 0.27 Mpc. Notice that the angular diameter of this source would remain

θ > 30′′ if it were moved to any redshift (Figure B.11).

At 4.85 GHz 4C +39.05 has flux density S ≈ 200 mJy, so its spectral index

(Equation B.55) is

α = +
ln(635 mJy/200 mJy)

ln(1.4 GHz/4.85 GHz)
≈ −0.9 . (B.79)

The absolute spectral luminosity of 4C +39.05 at ν = 1.4 GHz in the source frame
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Figure B.17. The bent triple radio source 4C +39.05 (contours at
±1, 2, 4, . . . , 128 mJy beam−1 in a 45′′ FWHM Gaussian beam) originated in
the elliptical galaxy 2MASX 02005301+3935003 at the center of this optical finding
chart (gray scale).

can be obtained by solving Equation B.56 for Lν(ν):

Lν(1.4 GHz) = 4πD2
L(1 + z)−α−1Fν(1.4 GHz) , (B.80)

where DL = (1 + z)DC ≈ 1.0718 · 303 Mpc ≈ 325 Mpc · 3.0857 × 1022 m Mpc−1 ≈
1.00× 1025 m (Equation B.52).

Lν(1.4 GHz) ≈ 4 · 3.14 · (1.00× 1025 m)2 ·

1.0718−0.1 · 635 mJy · 10−29 W m−2 Hz−1 mJy−1

Lν(1.4 GHz) ≈ 7.9× 1024 W Hz−1 . (B.81)

The λ ≈ 2.2 µm magnitude of the host galaxy is k20fe ≈ 11.788. The K correction
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at this wavelength is K ≈ −6.0 log10(1+z) independent of galaxy type and is valid for

any z . 0.25 (Kochanek et al. 2001). At z = 0.0718, K ≈ −0.181 and Equation B.63

can be used to calculate the absolute magnitude of the host galaxy at λ ≈ 2.2 µm in

the source frame:

K20fe ≈ k20fe − 5 log10

(
DL

10 pc

)
−K

≈ 11.778− 5 log10(303× 106 pc/10 pc) + 0.181

≈ 11.778− 37.407 + 0.181 ≈ −25.448 . (B.82)

The k20fe = 0 flux density is S = 666.7±12.6 Jy at νo ≈ 1.390×1014 Hz (http://www.ipac.caltech.edu/

2mass/releases/allsky/faq.html#jansky) so K20fe = 0 corresponds to a spectral lumi-

nosity

Lν ≈ 4π (10pc · 3.0857× 1016 m pc−1)2 ·

666.7 Jy · 10−26 W m−2 Hz−1 Jy−1

≈ 7.98× 1012 W Hz−1 (B.83)

and K20fe = −25.448 corresponds to a spectral luminosity

Lν ≈ 7.98× 1012 W Hz−1 · 100.4 · 25.448

≈ 1.2× 1023 W Hz−1 (B.84)

at νe ≈ 1.390× 1014 Hz in the source frame.

From Equation B.75, the observed 1.4 GHz spectral brightness of the α ≈ −0.9

radio source at z ≈ 0.0718 is lower than its 1.4 GHz specific intensity in the source

frame by the factor

Bν0

Bν

= (1 + z)α−3 ≈ 1.0718−3.9 ≈ 0.76 . (B.85)
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B.3.13 Example Calculation: A Source Population

The 1.4 GHz spectral luminosity of a star-forming galaxy is a linear and dust-unbiased

tracer of the recent star formation rate (SFR) (Murphy et al. 2011):(
SFR

M� yr−1

)
= 1.0± 0.1× 10−21

(
L1.4 GHz

W Hz−1

)
. (B.86)

If the comoving space density of 1.4 GHz sources in star-forming galaxies is ρ(L1.4 GHz),

then the local luminosity-weighted spectral power density function (Equation C.35)

is

Udex(Lν | z) = ln(10)L2
νρ(Lν | z) . (B.87)

Figure B.18. The local 1.4 GHz spectral energy density function Udex of galaxies
whose radio emission is powered primarily by star formation, not by AGNs.

The observed Udex(L1.4 GHz | z ≈ 0) (Condon et al. 2019) is shown by the data

points in Figure B.18, and it can be approximated by the function (dotted curve in
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Figure B.18)

Udex(L1.4 GHz | z ≈ 0) ≈ L1.4 GHz(W Hz−1) ·

4.0× 10−3 Mpc−3 dex−1

(
L1.4 GHz

L∗ν

)β
·

exp

[
− 1

2σ2
log2

(
1 +

L1.4 GHz

L∗ν

)]
, (B.88)

where L∗1.4 GHz = 1.7× 1021 W Hz−1, β = −0.24, and σ = 0.585.

The evolution of the the SFRD ψ(z) can be constrained by comparing the observed

brightness-weighted 1.4 GHz source count S2n(S) (Condon et al. 2012) shown as

the heavy curve in Figure B.19 with counts predicted by Equation C.37 for various

evolving Udex(L1.4 GHz | z). The total count has two peaks, the peak at log[S(Jy)] ∼
−1 produced by AGN-powered radio sources and the peak at log[S(Jy)] ∼ −4.5

attributed to star-forming galaxies.

Figure B.19. The brightness-weighted count S2n(S) of all 1.4 GHz radio sources
is shown by the heavy curve. The lower light curve is the count of radio sources
that would be produced by a non-evolving population of star-forming galaxies, and
the upper light curve is the count that would result from pure luminosity evolution
consistent with the Madau & Dickinson (2014) formula for the evolving SFRD ψ(z).
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For the case of no evolution in the SFRD ψ, inserting Udex(L1.4 GHz | z) = Udex(L1.4 GHz | z ≈
0) and the median spectral index α ≈ −0.7 yields the lower light curve in Figure B.19.

The slope of this curve is ≈ −0.5 at high flux densities because the stronger star-

forming galaxies are at such low redshifts that their counts approach the static Eu-

clidean limit S5/2n(S) = constant.

The Madau & Dickinson (2014) model for the evolution of the SFRD ψ is shown

in Figure B.7. Their result might be modeled in terms of pure luminosity evolution:

the comoving density of star-forming galaxies is constant and the luminosity of each

galaxy is proportional to ψ, so Udex(L1.4 GHz | z) = [ψ(z)/ψ(0)]Udex(L1.4 GHz | z ≈ 0).

Inserting this Udex(L1.4 GHz | z) into Equation C.37 yields the higher thin curve in

Figure B.19. Both thin curves agree for the low-redshift sources at high flux densities,

but the evolving SFRD produces a peak at log[S(Jy)] ∼ −5 that is much closer to

the observed faint-source count.
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Appendix C

Important Calculations

C.1 2MASX/NVSS Sky Area

The 2MASX/NVSS sample covers the sky with J2000 δ > δ0 = −40◦ except for

absolute galactic latitudes |b| < b0 = 20◦. The sample solid angle is the solid angle

with δ > δ0 minus the solid angle with |b| < b0, except for (therefore plus) the solid

angle with |b| < b0 and δ0:

Ω = Ω(δ > δ0) − Ω(|b| < b0) + Ω(|b| < b0, δ < δ0) . (C.1)

On a unit sphere the Cartesian coordinates corresponding to the J2000 equatorial

coordinates α, δ are

x = sinα cos δ (C.2)

y = cosα cos δ

z = sin δ

The circle of constant declination δ has radius r = (x2 + y2)1/2 = cos δ, so the solid



angle covering all right ascensions α and declinations north of δ0 = −40◦ is

Ω(δ > δ0) = 2π

∫ π/2

δ0

cos δ dδ = 2π(1− sin δ0) ≈ 10.3219 sr (C.3)

Likewise, the band covering all galactic longitudes l and absolute galactic latitudes

|b| < b0 = 20◦ covers solid angle

Ω(|b| < b0) = 2π

∫ b0

−b0
cos b db = 4π sin b0 ≈ 4.2980 sr (C.4)

The third term of Equation C.1 is the solid angle with |b| < b0 and δ < δ0. It can be

written in the form

Ω(δ < δ0, |b| < b0) =

∫ b0

−b0
cos b

∫ lmax(b)

lmin(b)

dl db (C.5)

where lmax(b) − lmin(b) is the range of galactic longitudes at galactic latitude b and

declination δ. Calculating that range requires converting between equatorial and

galactic coordinates.

The J2000 equatorial coordinates of the North Galactic Pole (NGP) are αp =

12h51m26s and δp = +27◦7′42′′ ≈ 27.1283 deg.1 The 2MASX/NVSS region spans all

α, so only δp matters. We can define “shifted” galactic coordinates (λ, b) with αp = 0

so converting from (α, δ) to (λ, b) needs only a single rotation about the x axis and

x = sinλ cos b (C.6)

y = cosλ cos b

z = sin b .

Counterclockwise rotation through any angle ψ about the x axis yields new coordi-

1http://astronomy.swin.edu.au/cosmos/N/North+Galactic+Pole
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nates

x′ =x (C.7)

y′ =y cosψ + z sinψ

z′ =z cosψ − y sinψ

Rotating these coordinates clockwise by the codeclination of the galactic pole (π/2−
δp) corresponds to ψ = (δp − π/2). Thus the three equations for λ, b as functions of

α, δ, and ψ are:

x′ = sinλ cos b = sinα cos δ (C.8)

y′ = cosλ cos b = (cosα cos δ) cosψ + sin δ sinψ

z′ = sin b = sin δ cosψ − (cosα cos δ) sinψ

Solving the z′ equation for

(cosα cos δ) =
sin δ cosψ − sin b

sinψ
(C.9)

and substituting this into the y′ equation gives

cosλ cos b =

(
sin δ cosψ − sin b

sinψ

)
cosψ + sin δ sinψ (C.10)

The longitude λ(b, δ0) at which galactic latitude b crosses J2000 declination δ0 is

λ(b, δ0) = arccos

[(
sin δ0 cosψ − sin b

sinψ cos b

)
cosψ +

sin δ0 sinψ

cos b

]
(C.11)

Thus Equation C.5 becomes

Ω(δ < δ0, |b| < b0) =

∫ b0

−b0
2λ(b, δ0) cos b db (C.12)
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in (λ, b) coordinates. Integrating Equation C.12 numerically for δ0 = −40◦ and

b0 = 20◦ gives Ω(δ < δ0, |b| < b0) ≈ 0.9920 sr. Inserting Equations C.3, C.4, and this

result into Equation C.1 gives the total 2MASX/NVSS solid angle Ω ≈ 7.0160 sr.

C.2 Analytic Approximations for Lookback Time

and Age

Equation B.18 for the lookback time tL:

tL =
DL

c
= tH0

∫ z

0

dz′

(1 + z′)E(z′)
(C.13)

can be integrated analytically if the small radiation term Ωr is ignored in E(z′). Then

tL
tH0

≈
∫ z

0

dz′

(1 + z′)[Ω0,m(1 + z′)3 + Ω0,Λ]1/2
. (C.14)

Substituting Ω0,Λ = 1− Ω0,m and x = (1 + z′)−3/2 reduces Equation C.14 to

tL
tH0

≈ 2

3 Ω
1/2
0,Λ

∫ 1

(1+z)−3/2

dx√
(1− Ω0,Λ)/Ω0,Λ + x2

. (C.15)

The indefinite integral∫
dx√
a2 + x2

= ln
(
x+
√
a2 + x2

)
+ C . (C.16)

can be found in integral tables or evaluated via the trigonometric substitution x =

a tan(u). Thus

tL
tH0

≈ 2

3 Ω
1/2
0,Λ

ln

[
1 + Ω

−1/2
0,Λ

(1 + z)−3/2 +
√

(1 + z)−3 + (1− Ω0,Λ)/Ω0,Λ

]
(C.17)
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In the limit z →∞, tL becomes the present age of the universe t0:

t0
tH0

≈ 2

3 Ω
1/2
0,Λ

ln

[
1 + Ω

1/2
0,Λ

(1− Ω0,Λ)1/2

]
. (C.18)

The fractional errors in Equations C.17 and C.18 are< 10−3 for all z and all Ω0,m > 0.1

only because the high redshifts at which the omitted Ω0,r(1 + z′)4 term is significant

contribute little to tL and t0. Equation C.17 can be used to calculate accurate look-

back time differences ∆tL = tL(z + ∆z) − tL(z) only if z � 3500. The fractional

errors in differential lookback times are < 10−3 if z < 10 and rise to 10−2 at z ∼ 60

and to 10−1 at z ∼ 500.

The age of the universe at redshift z was

t

tH0

≈
∫ ∞
z

dz′

(1 + z′)[Ω0,m(1 + z′)3 + Ω0,Λ]1/2
(C.19)

without the radiation term Ω0,r(1 + z′)4. This approximation is safe at redshifts

z . 25 (t & 0.045 tH0 ∼ 6 × 108 yr) because radiation dominated E(z) for only the

first t ∼ 3.4×10−6 tH ∼ 5×104 h−1 yr ∼ 7×104 yr after the big bang (Section B.3.1).

t

tH0

≈
∫ (1+z)−1

0

a1/2 da

[(1− Ω0,Λ) + Ω0,Λa3]1/2
. (C.20)

Substituting x ≡ a3/2Ω
1/2
0,Λ yields the elementary form

t

tH0

≈ 2

3 Ω
1/2
0,Λ

∫ (1+z)−3/2Ω
1/2
Λ

0

dx

[(1− Ω0,Λ) + x2]1/2
. (C.21)

This is similar to Equation C.16, so

t

tH0

≈ 2

3 Ω
1/2
Λ

ln

{(
Ω0,Λ

1− Ω0,Λ

)1/2

(1 + z)−3/2 +

[
Ω0,Λ

(1 + z)3 (1− Ω0,Λ)
+ 1

]1/2
}

.

(C.22)

Equation C.22 directly gives the same t0/tH0 as Equation C.18, t/tH0 with fractional
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errors < 10−2 for all z < 25, and smaller errors in time differences ∆t = −∆tL at

high z than Equation C.17.

C.3 Numerical Calculation of Comoving Distance

Equation B.35 for comoving distance:

DC = DH0

∫ z

0

dz′

E(z′)
, (C.23)

where

E(z) ≡ [Ω0,m(1 + z)3 + Ω0,Λ + Ω0,r(1 + z)4]1/2 , (C.24)

cannot be expressed in terms of elementary functions. However, DC varies smoothly

with both redshift z (Figure B.12) and normalized matter density Ω0,m (Figure B.13),

so the integral can be approximated by Simpson’s rule. For very large redshifts z � 1,

it is more efficient to integrate over a = (1 + z)−1 instead. Integrating Equation B.33

dDC = (c/a) dt (C.25)

gives

DC = c

∫ t0

t

dt

a
= c

∫ 1

a

1

a′
dt

da′
da′ = c

∫ 1

a

1

a′2
a′

ȧ′
da = c

∫ 1

z

da′

a′2H
= DH0

∫ 1

a

da′

a′2E(a′)
(C.26)

and finally

DC = DH0

∫ 1

a

da′

[Ω0,m a′ + Ω0,Λ a′
4 + Ω0,r]1/2

. (C.27)

The Python function dc.py below evaluates Equation C.27 to return an accuate DC

(in Mpc) for redshifts z even into the photon-dominated era z > zeq, given h ∼ 0.7

and Ω0,m ∼ 0.3.

1 #!/usr/bin/env python

2

3 import numpy as np

4 from scipy.integrate import quad

206



5

6 def intgnd(a, h, Om0 , Ol0 , Or0):

7 #Define the integrand by Equation B5 in J.J. Condon &

8 #A.M. Matthews (PASP , 2018).

9 H0 = 100. * h

10 c = 299792.458 #km/s

11 return (c/H0) \

12 / np.sqrt(Om0 * a + Or0 + Ol0 * a**4.)

13

14 def dc(z, h, Om0):

15 #Function used to calculate the comoving distance at

16 #redshift z for a Hubble parameter , h, and current normalized

17 #matter density , Om0. Calculations assume a flat universe , i.e.

18 #Ok0 = 1.0. Comoving distance returned in units of Mpc.

19 #Integration is done using scipy.integrate.quad.

20 Or0 = h**( -2.) *4.2e-5

21 Ol0 = 1. - Om0 - Or0

22

23 #Calculate scale factor , a.

24 a = 1./(1.+z)

25

26 #Do the integral.

27 dc = quad(intgnd , a, 1., args=(h, Om0 , Ol0 , Or0))[0]

28 return dc

C.4 Luminosity Functions, Source Counts, and Sky

Brightness

Let N(> S) be the number of sources per steradian stronger than flux density S ≡ Fν ,

n(S) ≡ −dN/dS be the differential source count, and η(S, z) dS dz be the number

of sources per steradian with flux densities S to S + dS in the redshift range z to

z+ dz. The spectral luminosity function ρ(Lν | z) dL is the comoving number density

of sources at a given redshift z having spectral luminosities Lν to Lν + dLν , and dVC
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is the comoving volume element covering ω = 1 sr of sky between z and z + dz. The

number of sources equals the comoving density times the comoving volume:

η(S, z) dS dz = ρ(Lν | z) dL dVC . (C.28)

For sources with spectral indices α,

Lν = 4πD2
L (1 + z)−1−α Fν = 4πD2

C (1 + z)1−α S (C.29)

(Equation B.56) and

dVC =
D2

CDH0

E(z)
dz (C.30)

(Equation B.41). Thus

η(S, z) dS dz = ρ(Lν | z) 4πD2
C (1 + z)1−α dS

D2
CDH0

E(z)
dz . (C.31)

Multiplying both sides by

S2 =

[
(1 + z)α−1 Lν

4πD2
C

]2

(C.32)

gives

S2η(S, z) = L2
ν ρ(Lν | z)

[
(1 + z)α−1DH0

4πE(z)

]
. (C.33)

Frequently the spectral luminosity function is specified as the density of sources per

decade of luminosity

ρdex(Lν | z) = ln(10)Lν ρ(Lν | z) . (C.34)

The luminosity-weighted spectral luminosity function

Udex(Lν | z) ≡ Lν ρdex(Lν | z) = ln(10)L2
νρ(Lν | z) (C.35)

(SI units W Hz−1 m−3 dex−1 = J m−3 dex−1, the same as energy density) emphasizes

the luminosity ranges contributing the most to the spectral luminosity density. In
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terms of these quantities,

S2η(S, z) = Udex(Lν | z)

[
(1 + z)α−1DH0

4π ln(10)E(z)

]
(C.36)

and the total brightness-weighted source count is obtained by integrating over all

redshifts:

S2n(S) =
DH0

4π ln(10)

∫ ∞
0

Udex(Lν | z)

[
(1 + z)α−1

E(z)

]
dz . (C.37)

Note that S2n(S) has dimensions of spectral brightness (SI units W m2 Hz−1 sr−1 or

astronomically practical units Jy sr−1).

C.5 The median IR/radio flux-density ratio of faint

SFGs

The median redshift of faint SFGs selected at either ν = 1.4 GHz (Section 4.7.4)

or λ = 160µm (Berta et al. 2011) is 〈z〉 ≈ 1, so the observed flux-density ratio

〈S160µm/S1.4 GHz〉 equals 〈S80µm/S2.8 GHz〉 in the source rest frame. We estimated the

latter ratio in terms of the locally measured quantities FIR (Equation 4.35) and q

(Equation 4.34).

Nearby SFGs have 〈q〉 ≈ 2.30 (Section 4.8.2) for flux densities measured at 1.4 GHz

and SFGs have radio spectral indices 〈α〉 ≈ −0.7 (Section 4.5), so 〈q〉 ≈ 2.51 for

flux densities measured at 2.8 GHz in the source rest frame. Local SFGs typically

have FIR flux-density ratios 〈S100µm/S60µm〉 ∼ 2 (Condon et al. 2019), so linear

interpolation in log(S), log(ν) between S60µm ≈ 0.68 Jy and S100µm = 2S60µm yields

S80µm = 1 Jy and FIR = 3.91×10−14 W m−2. This result is nearly independent of the

ratio S100µm/S60µm; even for relatively warm SFGs with S100µm/S60µm ∼ 1, the value

of FIR corresponding to S80µm = 1 Jy changes by < 10%. Solving Equation 4.34 for

S2.8 GHz when S80µm = 1 Jy gives

S160µm

S1.4 GHz

=
S80µm

S2.8 GHz

=
102.51 · 3.75× 1012 Hz

3.91× 10−14 W m−2 · 1026 Jy W−1 m2 Hz
≈ 310 . (C.38)
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This flux-density ratio was used to shift the Sν and νIν axes of Figure 4.10 and

demonstrate the excellent agreement between the observed λ = 160µm and ν =

1.4 GHz backgrounds produced by SFGs.

A small change in 〈z〉 has only a small effect on the calculated ratio S160µm/S1.4 GHz:∣∣∣∣∣d log

(
S160µm

S1.4 GHz

)∣∣∣∣∣ < ∣∣(αFIR − α)d log(1 + 〈z〉)
∣∣ . (C.39)

For any 1 < S100µm/S60µm < 2 and 0.8 < 〈z〉 < 1.2, log(S160µm/S1.4 GHz) varies by

less than ±0.03.
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Wang, L., Doré, O., Daddi, E., & Lapi, A. 2017, A&A, 607, A89

Birkhoff, G. D. & Langer, R. E. 1923, Relativity and modern physics

Blanton, M. R. & Roweis, S. 2007, AJ, 133, 734

Bondi, H. & Gold, T. 1948, MNRAS, 108, 252

Bondi, M., Ciliegi, P., Schinnerer, E., Smolčić, V., Jahnke, K., Carilli, C., & Zamorani,
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Kriel, H., Kusel, T. W., Lehmensiek, R., Loots, A., Lord, R. T., Lunsky, B. M.,

Madisa, K., Magnus, L. G., Main, J. P. L., Malan, J. A., Manley, J. R., Marais,

S. J., Martens, A., Merry, B., Millenaar, R., Mnyandu, N., Moeng, I. P. T., Mokone,

O. J., Monama, T. E., Mphego, M. C., New, W. S., Ngcebetsha, B., Ngoasheng,

K. J., Ockards, M. T. O., Oozeer, N., Otto, A. J., Patel, A. A., Peens-Hough,

A., Perkins, S. J., Ramaila, A. J. T., Ramudzuli, Z. R., Renil, R., Richter, L. L.,

Robyntjies, A., Salie, S., Schollar, C. T. G., Schwardt, L. C., Serylak, M., Siebrits,

R., Sirothia, S. K., Smirnov, O. M., Sofeya, L., Stone, G., Taljaard, B., Tasse, C.,

Theron, I. P., Tiplady, A. J., Toruvanda, O., Twum, S. N., van Balla, T. J., van

218



der Byl, A., van der Merwe, C., Van Tonder, V., Wallace, B. H., Welz, M. G.,

Williams, L. P., & Xaia, B. 2020, ApJ, 888, 61

Mauch, T. & Sadler, E. M. 2007, MNRAS, 375, 931

Mills, B. Y. & Slee, O. B. 1957, Australian Journal of Physics, 10, 162

Mitchell-Wynne, K., Santos, M. G., Afonso, J., & Jarvis, M. J. 2014, MNRAS, 437,

2270

Molnár, D. C., Sargent, M. T., Delhaize, J., Delvecchio, I., Smolčić, V., Novak,
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Smolčić, V., Novak, M., Bondi, M., Ciliegi, P., Mooley, K. P., Schinnerer, E.,

Zamorani, G., Navarrete, F., Bourke, S., Karim, A., Vardoulaki, E., Leslie, S.,

Delhaize, J., Carilli, C. L., Myers, S. T., Baran, N., Delvecchio, I., Miettinen, O.,
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