
EPIC: Formalizing a Parallel Lambda Calculus

CS4991 Capstone Report, 2025

Jamie Fulford

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ase6gh@virginia.edu

ABSTRACT

Large language models have become central to

modern scripting languages but require

complex manual parallelization to achieve

good performance. Finding ways to

automatically parallelize these calls while

preserving program semantics has proven

challenging and error prone. To solve this, my

team and I developed EPIC, a lambda calculus

with an opportunistic evaluation strategy that

is parallel by default. I formalized this calculus

in the Rocq proof assistant using mutual

induction principles and reduction relations to

handle external calls and streaming data

through Church encodings. Through this

formalization, I proved key properties like

confluence and preservation of well-

formedness. Future work includes extending

the formalization with primitive values adding

types to the language.

1. INTRODUCTION

Scripts that compose external calls,

particularly to large language models, have

become increasingly central to modern

software development. These scripts often

require complex orchestration of API calls to

remote LLM services, which can take several

seconds each, and a single script might make

dozens of such calls. While parallelizing these

calls can dramatically improve performance,

doing so manually is challenging and error-

prone.

The EPIC (Opportunistically Parallel

Lambda Calculus) project addresses this

challenge by providing a core calculus that

automatically exploits parallelism in programs

with external calls. However, automatically

parallelizing programs requires rigorous

guarantees that the parallel execution

preserves the program's meaning. To help

establish these guarantees, I worked with

researchers at the University of Pennsylvania

to formalize EPIC's semantics in the Rocq

(formerly known as Coq) proof assistant.

A programming language's formal

semantics provides precise mathematical rules

for how programs execute. For EPIC, these

rules must specify both how external calls

behave and when they can safely run in

parallel. The foundation is a precise model of

external function calls within the language's

operational semantics, along with proofs that

parallel execution always produces equivalent

results.

2. RELATED WORKS

Mell, et al. [1] develop EPIC, a lambda

calculus for automatic parallelization of

external calls in scripting languages. Their

calculus represents control flow constructs like

loops and conditionals through Church

encodings, allowing these constructs to be

treated uniformly as functions whose

evaluation can be parallelized. The language's

opportunistic evaluation strategy identifies

implicit parallelization opportunities that

would typically require explicit annotations.

The implementation demonstrates

performance improvements across several

LLM applications, achieving up to 6.2x

speedup compared to sequential execution.

The authors show how their evaluation

strategy naturally handles streaming data by

allowing computation to proceed on partial

results. My formalization work builds directly

on their calculus, providing machine-checked

proofs of the metatheoretical properties that

establish correctness, particularly confluence

and well-formedness.

Recent work has developed several

domain-specific languages to address various

aspects of LLM programming, though none

achieve automatic parallelization. LangChain

[2] enables users to construct pipelines of

LLM operations and arbitrary functions but

relies on explicit parallelization primitives.

SGLang [3] provides advanced prompting

capabilities and supports fork/join parallelism

through explicit annotations. While its

compiler mode can construct dataflow graphs,

it lacks support for control flow operations,

and its interpreter mode relies on Python's

sequential evaluation. While these DSLs focus

on different aspects of LLM programming

than EPIC, their limitations in handling

parallel execution help motivate the need for

formal foundations in automatically

parallelizing LLM-based scripts.

3. PROJECT DESIGN

The formalization of EPIC in the Rocq

proof assistant presented several interesting

challenges, from representing the language's

syntax and semantics to proving key properties

that establish the correctness of its

opportunistic evaluation strategy. In this

section, I describe the design of the

formalization, focusing on its structure, core

definitions, operational semantics and proof

techniques.

3.1 Formalization Structure

The formalization is structured as a single

Rocq development file that captures both the

static and dynamic aspects of the EPIC

language. Following a standard approach for

formalizing programming languages, I

organized the development into clearly

delineated sections: syntax definitions, well-

formedness conditions, operational semantics

and proofs of key properties.

My first design decision was to represent

the core language using mutually recursive

inductive types for terms and lets-bindings,

reflecting EPIC's distinction between function

definitions and bindings. This mutual

recursion required careful handling, especially

when defining induction principles for proofs.

For variable binding, my team and I used

de Bruijn indices, a numerical representation

of variable references that simplifies

substitution operations but adds complexity to

context management. This approach required

defining helper functions for shifting indices

when moving terms across binding

boundaries.

The development focuses on proving two

key properties: confluence (different

evaluation orders lead to equivalent results)

and well-formedness preservation (evaluation

maintains the language's scoping rules). These

properties establish the soundness of EPIC's

parallelization approach and guarantee that

automatic parallelization preserves program

semantics.

3.2 Language Definition

EPIC's syntax is represented using two

mutually recursive inductive types: term for

function definitions and lets for bindings and

function applications. This mutual recursion

captures the language's essential structure,

where functions contain binding sequences

and bindings can include function definitions.

The core constructs of EPIC include

function definitions, binding a function to a

name, function application, tuple construction

and projection, variable substitution and

returning a value.

External calls are represented as a special

case of function application with primitive

values. This representation allows the

formalization to treat external calls uniformly

with other function applications at the

syntactic level while distinguishing them

during evaluation.

Well-formedness is defined using a

context-based approach where a context

represents the set of variables in scope. The

judgment ensures variables are used only after

definition and that scope is properly

maintained across function boundaries. This

enables efficient checking of variable scope

and is essential for proving that evaluation

preserves well-formedness.

3.3 Operational Semantics

The operational semantics of EPIC is

defined through small-step reduction relations

that specify how programs evaluate one step at

a time. I structured these relations into three

layers: the core semantics, task semantics, and

opportunistic evaluation strategy.

The core semantics handles the

deterministic fragment of the language,

including function inlining, variable

substitution and tuple manipulations. Each

rule precisely defines how a specific language

construct steps to its reduced form. For

example, the rule for function application

replaces the call site with the function body

after appropriate variable substitution.

Task semantics extends the core semantics

to handle external calls, which introduce

nondeterminism since they interact with the

outside world. External calls are represented as

opaque "tasks" that can be resolved to arbitrary

values according to an external semantics

parameter. This approach allows the

formalization to reason about external effects

without modeling them explicitly.

The opportunistic evaluation strategy

defines how the language exploits parallelism.

Unlike traditional sequential evaluation

strategies, opportunistic evaluation steps all

statements in a program simultaneously,

maximizing parallelism while preserving

dependencies. This strategy is formalized as a

relation that applies the core and task

semantics to all reducible expressions in a

program in a single evaluation step.

3.4 Proof Techniques

Proving properties about EPIC required

specialized techniques due to its mutually

recursive definitions and parallel evaluation

strategy. A significant challenge was defining

appropriate induction principles that work

with mutual recursion between terms and

bindings. I developed a custom mutual

induction principle that allows for

simultaneous reasoning about both syntactic

categories.

For confluence proofs, I used a technique

based on local confluence, showing that if a

term can step to two different terms, these

terms can eventually reach a common result.

Since external calls introduce

nondeterminism, I extended this technique to

reason about sets of terms rather than

individual terms, defining confluence in terms

of possible outcomes from different evaluation

paths.

4. ANTICIPATED RESULTS

The formalization of EPIC in Rocq is

expected to provide a strong theoretical

foundation for the language's claims of safe

automatic parallelization. While time

constraints prevented a complete proof of full

confluence, the partial results achieved still

contribute valuable insights into the language's

properties.

The primary anticipated outcome is a

formal verification of core properties that

would guarantee the soundness of EPIC's

parallelization approach. Specifically, the

confluence property for the core deterministic

semantics demonstrates that different

evaluation orders of the same deterministic

program fragment lead to equivalent results.

This property is crucial as it establishes that

automatic parallelization of deterministic code

preserves program meaning. For the extension

to nondeterministic external calls, we

anticipated showing that any nondeterminism

in the final result would arise solely from the

inherent nondeterminism of external calls, not

from the parallelization strategy itself.

Another expected result is the formal

verification of well-formedness preservation.

This property ensures that if a program starts

in a well-formed state, it remains well-formed

throughout evaluation, regardless of which

evaluation path is taken. The formalization

proves that variable scoping is maintained

correctly even when execution order is

changed through parallelization. This result is

particularly important for establishing the

safety of the opportunistic evaluation strategy,

which aggressively reorders operations to

maximize parallelism. Based on similar

formalizations in the literature, we expect that

completing the remaining proof obligations

would confirm that EPIC's approach to

automatic parallelization is both correct and

comprehensive, providing developers with a

sound foundation for parallel scripting without

requiring explicit parallelization primitives.

5. CONCLUSION

The formalization of EPIC in the Rocq

proof assistant represents a significant step

toward rigorous guarantees for automatically

parallelized LLM-based scripts. By encoding

EPIC's semantics and proving key properties

like confluence and well-formedness

preservation, this work provides mathematical

assurance that EPIC's opportunistic evaluation

strategy safely parallelizes programs without

changing their meaning. The mutual induction

principles developed to handle EPIC's

recursive structure offer a robust framework

for reasoning about languages with complex

binding patterns and external effects.

This formalization addresses a critical

need in modern software development, where

LLM-based scripts face increasing

performance demands but lack formal

foundations for safe parallelization. By

establishing that EPIC's parallelization

approach preserves program semantics,

developers can confidently leverage automatic

parallelization without sacrificing correctness.

The benefits extend beyond LLM applications

to any domain where external calls create

performance bottlenecks, offering a principled

approach to exploiting implicit parallelism

while maintaining program behavior.

6. FUTURE WORK

Several extensions to this formalization

would enhance its applicability and theoretical

foundations. First, incorporating primitive

values like integers, strings, and booleans into

the calculus would bring the formalization

closer to practical implementations. This

extension would require defining appropriate

reduction rules for operations on these

primitives and proving that they maintain the

language's key properties. Adding a static type

system represents another important direction.

A properly designed type system could

provide additional guarantees about program

behavior and potentially enable more

aggressive parallelization optimizations.

Extending the formalization to handle

more complex control flow patterns, such as

exceptions and continuations, would broaden

its applicability to realistic programming

scenarios. This would require careful

consideration of how these features interact

with parallelization and may necessitate

refinements to the confluence property.

Integrating effects typing or capabilities could

provide additional fine-grained control over

which operations may execute in parallel,

allowing for more nuanced reasoning about

when parallelization is safe and beneficial.

7. ACKNOWLEDGMENTS

I would like to express my sincere gratitude to

the research team at the University of

Pennsylvania, particularly Steve Zdancewic,

Stephen Mell, and Joey Velez-Ginorio, for

their guidance and collaboration throughout

this project. This work was supported by the

REPL (Research Experiences for

Undergraduates in Programming Languages)

summer program run by Joey Velez-Ginorio,

which provided me with invaluable exposure

to programming languages research.

REFERENCES

[1] Stephen Mell, Konstantinos Kallas, Steve

Zdancewic, and Osbert Bastani. 2025.

Opportunistically Parallel Lambda Calculus.

Or, Lambda: The Ultimate LLM Scripting

Language. Retrieved from

https://arxiv.org/abs/2405.11361

[2] Harrison Chase. 2022. LangChain.

https://github.com/langchain-ai/langchain

[3] Lianmin Zheng, Liangsheng Yin, Zhiqiang

Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu,

Shiyi Cao, Christos Kozyrakis, Ion Stoica,

Joseph E. Gonzalez, Clark Barrett, and Ying

Sheng. 2024. SGLang: Efficient Execution of

Structured Language Model Programs.

Retrieved from

https://arxiv.org/abs/2312.07104

INSTRUCTOR NOTE: More detailed

instructions for each assignment and element

of the Capstone report can be found in the

CS4991 Writing Guide, posted in the Files

section of Canvas.

https://github.com/langchain-ai/langchain

