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ABSTRACT 

Large language models have become central to 

modern scripting languages but require 

complex manual parallelization to achieve 

good performance. Finding ways to 

automatically parallelize these calls while 

preserving program semantics has proven 

challenging and error prone. To solve this, my 

team and I developed EPIC, a lambda calculus 

with an opportunistic evaluation strategy that 

is parallel by default. I formalized this calculus 

in the Rocq proof assistant using mutual 

induction principles and reduction relations to 

handle external calls and streaming data 

through Church encodings. Through this 

formalization, I proved key properties like 

confluence and preservation of well-

formedness. Future work includes extending 

the formalization with primitive values adding 

types to the language. 

 

1. INTRODUCTION 

Scripts that compose external calls, 

particularly to large language models, have 

become increasingly central to modern 

software development. These scripts often 

require complex orchestration of API calls to 

remote LLM services, which can take several 

seconds each, and a single script might make 

dozens of such calls. While parallelizing these 

calls can dramatically improve performance, 

doing so manually is challenging and error-

prone. 

The EPIC (Opportunistically Parallel 

Lambda Calculus) project addresses this 

challenge by providing a core calculus that 

automatically exploits parallelism in programs 

with external calls. However, automatically 

parallelizing programs requires rigorous 

guarantees that the parallel execution 

preserves the program's meaning. To help 

establish these guarantees, I worked with 

researchers at the University of Pennsylvania 

to formalize EPIC's semantics in the Rocq 

(formerly known as Coq) proof assistant. 

A programming language's formal 

semantics provides precise mathematical rules 

for how programs execute. For EPIC, these 

rules must specify both how external calls 

behave and when they can safely run in 

parallel. The foundation is a precise model of 

external function calls within the language's 

operational semantics, along with proofs that 

parallel execution always produces equivalent 

results. 

 

2. RELATED WORKS 

Mell, et al. [1] develop EPIC, a lambda 

calculus for automatic parallelization of 

external calls in scripting languages. Their 

calculus represents control flow constructs like 

loops and conditionals through Church 

encodings, allowing these constructs to be 

treated uniformly as functions whose 

evaluation can be parallelized. The language's 

opportunistic evaluation strategy identifies 

implicit parallelization opportunities that 

would typically require explicit annotations. 

The implementation demonstrates 

performance improvements across several 



 

LLM applications, achieving up to 6.2x 

speedup compared to sequential execution. 

The authors show how their evaluation 

strategy naturally handles streaming data by 

allowing computation to proceed on partial 

results. My formalization work builds directly 

on their calculus, providing machine-checked 

proofs of the metatheoretical properties that 

establish correctness, particularly confluence 

and well-formedness. 

Recent work has developed several 

domain-specific languages to address various 

aspects of LLM programming, though none 

achieve automatic parallelization. LangChain 

[2] enables users to construct pipelines of 

LLM operations and arbitrary functions but 

relies on explicit parallelization primitives. 

SGLang [3] provides advanced prompting 

capabilities and supports fork/join parallelism 

through explicit annotations. While its 

compiler mode can construct dataflow graphs, 

it lacks support for control flow operations, 

and its interpreter mode relies on Python's 

sequential evaluation. While these DSLs focus 

on different aspects of LLM programming 

than EPIC, their limitations in handling 

parallel execution help motivate the need for 

formal foundations in automatically 

parallelizing LLM-based scripts. 

 

3. PROJECT DESIGN 

The formalization of EPIC in the Rocq 

proof assistant presented several interesting 

challenges, from representing the language's 

syntax and semantics to proving key properties 

that establish the correctness of its 

opportunistic evaluation strategy. In this 

section, I describe the design of the 

formalization, focusing on its structure, core 

definitions, operational semantics and proof 

techniques. 

 

3.1 Formalization Structure 

The formalization is structured as a single 

Rocq development file that captures both the 

static and dynamic aspects of the EPIC 

language. Following a standard approach for 

formalizing programming languages, I 

organized the development into clearly 

delineated sections: syntax definitions, well-

formedness conditions, operational semantics 

and proofs of key properties. 

My first design decision was to represent 

the core language using mutually recursive 

inductive types for terms and lets-bindings, 

reflecting EPIC's distinction between function 

definitions and bindings. This mutual 

recursion required careful handling, especially 

when defining induction principles for proofs. 

For variable binding, my team and I used 

de Bruijn indices, a numerical representation 

of variable references that simplifies 

substitution operations but adds complexity to 

context management. This approach required 

defining helper functions for shifting indices 

when moving terms across binding 

boundaries. 

The development focuses on proving two 

key properties: confluence (different 

evaluation orders lead to equivalent results) 

and well-formedness preservation (evaluation 

maintains the language's scoping rules). These 

properties establish the soundness of EPIC's 

parallelization approach and guarantee that 

automatic parallelization preserves program 

semantics. 

 

3.2 Language Definition 

EPIC's syntax is represented using two 

mutually recursive inductive types: term for 

function definitions and lets for bindings and 

function applications. This mutual recursion 

captures the language's essential structure, 

where functions contain binding sequences 

and bindings can include function definitions. 

The core constructs of EPIC include 

function definitions, binding a function to a 

name, function application, tuple construction 

and projection, variable substitution and 

returning a value. 

External calls are represented as a special 

case of function application with primitive 



 

values. This representation allows the 

formalization to treat external calls uniformly 

with other function applications at the 

syntactic level while distinguishing them 

during evaluation. 

Well-formedness is defined using a 

context-based approach where a context 

represents the set of variables in scope. The 

judgment ensures variables are used only after 

definition and that scope is properly 

maintained across function boundaries. This 

enables efficient checking of variable scope 

and is essential for proving that evaluation 

preserves well-formedness. 

 

3.3 Operational Semantics 

The operational semantics of EPIC is 

defined through small-step reduction relations 

that specify how programs evaluate one step at 

a time. I structured these relations into three 

layers: the core semantics, task semantics, and 

opportunistic evaluation strategy. 

The core semantics handles the 

deterministic fragment of the language, 

including function inlining, variable 

substitution and tuple manipulations. Each 

rule precisely defines how a specific language 

construct steps to its reduced form. For 

example, the rule for function application 

replaces the call site with the function body 

after appropriate variable substitution. 

Task semantics extends the core semantics 

to handle external calls, which introduce 

nondeterminism since they interact with the 

outside world. External calls are represented as 

opaque "tasks" that can be resolved to arbitrary 

values according to an external semantics 

parameter. This approach allows the 

formalization to reason about external effects 

without modeling them explicitly. 

The opportunistic evaluation strategy 

defines how the language exploits parallelism. 

Unlike traditional sequential evaluation 

strategies, opportunistic evaluation steps all 

statements in a program simultaneously, 

maximizing parallelism while preserving 

dependencies. This strategy is formalized as a 

relation that applies the core and task 

semantics to all reducible expressions in a 

program in a single evaluation step. 

 

3.4 Proof Techniques 

Proving properties about EPIC required 

specialized techniques due to its mutually 

recursive definitions and parallel evaluation 

strategy. A significant challenge was defining 

appropriate induction principles that work 

with mutual recursion between terms and 

bindings. I developed a custom mutual 

induction principle that allows for 

simultaneous reasoning about both syntactic 

categories. 

For confluence proofs, I used a technique 

based on local confluence, showing that if a 

term can step to two different terms, these 

terms can eventually reach a common result. 

Since external calls introduce 

nondeterminism, I extended this technique to 

reason about sets of terms rather than 

individual terms, defining confluence in terms 

of possible outcomes from different evaluation 

paths. 

 

4. ANTICIPATED RESULTS 

The formalization of EPIC in Rocq is 

expected to provide a strong theoretical 

foundation for the language's claims of safe 

automatic parallelization. While time 

constraints prevented a complete proof of full 

confluence, the partial results achieved still 

contribute valuable insights into the language's 

properties. 

The primary anticipated outcome is a 

formal verification of core properties that 

would guarantee the soundness of EPIC's 

parallelization approach. Specifically, the 

confluence property for the core deterministic 

semantics demonstrates that different 

evaluation orders of the same deterministic 

program fragment lead to equivalent results. 

This property is crucial as it establishes that 

automatic parallelization of deterministic code 



 

preserves program meaning. For the extension 

to nondeterministic external calls, we 

anticipated showing that any nondeterminism 

in the final result would arise solely from the 

inherent nondeterminism of external calls, not 

from the parallelization strategy itself. 

Another expected result is the formal 

verification of well-formedness preservation. 

This property ensures that if a program starts 

in a well-formed state, it remains well-formed 

throughout evaluation, regardless of which 

evaluation path is taken. The formalization 

proves that variable scoping is maintained 

correctly even when execution order is 

changed through parallelization. This result is 

particularly important for establishing the 

safety of the opportunistic evaluation strategy, 

which aggressively reorders operations to 

maximize parallelism. Based on similar 

formalizations in the literature, we expect that 

completing the remaining proof obligations 

would confirm that EPIC's approach to 

automatic parallelization is both correct and 

comprehensive, providing developers with a 

sound foundation for parallel scripting without 

requiring explicit parallelization primitives. 

 

5. CONCLUSION 

The formalization of EPIC in the Rocq 

proof assistant represents a significant step 

toward rigorous guarantees for automatically 

parallelized LLM-based scripts. By encoding 

EPIC's semantics and proving key properties 

like confluence and well-formedness 

preservation, this work provides mathematical 

assurance that EPIC's opportunistic evaluation 

strategy safely parallelizes programs without 

changing their meaning. The mutual induction 

principles developed to handle EPIC's 

recursive structure offer a robust framework 

for reasoning about languages with complex 

binding patterns and external effects. 

This formalization addresses a critical 

need in modern software development, where 

LLM-based scripts face increasing 

performance demands but lack formal 

foundations for safe parallelization. By 

establishing that EPIC's parallelization 

approach preserves program semantics, 

developers can confidently leverage automatic 

parallelization without sacrificing correctness. 

The benefits extend beyond LLM applications 

to any domain where external calls create 

performance bottlenecks, offering a principled 

approach to exploiting implicit parallelism 

while maintaining program behavior. 

 

6. FUTURE WORK 

Several extensions to this formalization 

would enhance its applicability and theoretical 

foundations. First, incorporating primitive 

values like integers, strings, and booleans into 

the calculus would bring the formalization 

closer to practical implementations. This 

extension would require defining appropriate 

reduction rules for operations on these 

primitives and proving that they maintain the 

language's key properties. Adding a static type 

system represents another important direction. 

A properly designed type system could 

provide additional guarantees about program 

behavior and potentially enable more 

aggressive parallelization optimizations. 

Extending the formalization to handle 

more complex control flow patterns, such as 

exceptions and continuations, would broaden 

its applicability to realistic programming 

scenarios. This would require careful 

consideration of how these features interact 

with parallelization and may necessitate 

refinements to the confluence property. 

Integrating effects typing or capabilities could 

provide additional fine-grained control over 

which operations may execute in parallel, 

allowing for more nuanced reasoning about 

when parallelization is safe and beneficial. 
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