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Abstract

Scientific computing applications, used in fields such as high-energy physics, climate science,

genomics, etc., generate large (tera- to peta-byte sized) data sets. To move these heavy-hitter

datasets fast, supercomputing sites invest in high-end clusters that can sustain high-speed

transfers. Such large-sized, high-speed transfers are called α flows. These flows can have

adverse effects on packet delays of real-time flows as α flows being bursty in nature can

cause router buffer buildups.

To enable the support of both α flows and real-time flows on the same network infrastruc-

ture while meeting quality-of-service (QoS) requirements of both types of flows, we propose

a Hybrid Network Traffic Engineering System (HNTES). HNTES performs two tasks, 1)

automatic identification of α flows at a core provider network’s ingress routers, with no

requirement of modifying end-user applications, 2) redirects these flows to traffic-engineered

QoS-controlled virtual circuits.

This dissertation describes two versions of the HNTES design. The first design explored

the possibility of implementing an online mechanism that identifies alpha flows from live

traffic. But the design proved to be cost prohibitive. Our second design uses an offline

approach by analyzing NetFlow reports of completed flows to determine the IP addresses

of source-destination pairs that move large datasets at high rates. These extracted IP

addresses are used to set firewall filters in ingress routers to capture future alpha flows for

redirection. This solution is based on a hypothesis that alpha flows are repeatedly created

by the same source-destination hosts. NetFlow data for a 7-month period was obtained from

an ESnet router to test the hypothesis, which proved to be true. It showed that had HNTES

been deployed at the start of this period, over 91% of data that appeared in bursts from
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α flows would have been redirected. The final contribution of this thesis resulted from an

experimental study of different scheduling and policing mechanisms implemented in routers.

The objective was to find a suitable combination of mechanisms that achieved dual goals:

reducing delay and jitter of real-time delay-sensitive flows, while at the same time allowing

alpha flows to achieve high throughput. The best combination was found to be a no-policing,

two-queue solution with priority and weighted fair queueing forms of packet scheduling. This

result influenced the configuration of routers of a US backbone network provider.
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Chapter 1

Introduction

1.1 Background and problem statement

Background The Internet carries traffic generated by a variety of applications. These

include small data transfers, large file transfers, and real-time interactive audio/video flows.

While large file transfers are throughput sensitive, interactive flows are latency sensitive. As

communication link rates increase, the difference between the minimum and maximum rates

of flows sharing a link increases. With compression technologies such as MPEG, high-quality

audio/video can be supported at low rates. At the other extreme, scientific researchers

invest in high-speed network interface cards for servers that are dedicated to file-transfer

applications. Transfers at 90 Gbps have been demonstrated across a 100 Gb/s Ethernet

network testbed supported by ESnet [2].

To avoid packet losses due to buffer overflows, routers increasingly use large-sized buffers.

This phenomenon is referred to as bufferbloat [3]. But large buffers can cause increased

latency for a delay-sensitive audio/video flow if a high-rate file transfer happens to occur

simultaneously. Therefore, the question of how to support multiple types of services on the

same network infrastructure, while meeting the disparate requirements of the services, has

been a research problem of interest.

In the nineties, Integrated Services (IntServ) [4] was proposed to support a virtual-circuit

service complementary to the connectionless service of the IP network. Virtual circuits were

considered for delay-sensitive multimedia flows. However, this solution was not scalable to

1



1.1 Background and problem statement 2

large numbers of flows because of the challenges in implementing Quality of Service (QoS)

mechanisms such as policing and scheduling on a per-flow basis.

In recent years, the Research-and-Education Network (REN) community that supports

scientific high-performance computing has identified a potential solution to this problem

of supporting multiple types of services on the same network. The concept is to identify

“heavy-hitter” flows, i.e., flows that require more resources, and isolate them from general-

purpose flows. Since the number of simultaneous heavy-hitter flows is typically small, QoS

mechanisms are more easily applied to these flows than to the thousands of simultaneous

multimedia flows on a shared link.

In trying to define thresholds for heavy-hitter flows, four dimensions: size (bytes),

duration, rate, and burstiness are considered. Lan and Heidemann [5] gave names such as

elephants and mice (size), tortoise and dragonfly (duration), cheetah and snail (rate), and

porcupine and stingray (bustiness).

Ideally, an end-user application that is about to generate a heavy-hitter flow should

signal control servers within the network with its resource requirements so that these control

servers can configure paths and rate/buffer resources for the flow before it starts. But this

mode of operation requires circuit or virtual-circuit (VC) services. Circuit/VC services have

a call admission phase prior to data transfer. However, the Internet is connectionless, in

that IP routers simply switch individual packets based on the destination IP address carried

in packet headers. There is no admission control in connectionless networks. No state is

maintained in IP routers for individual flows, which was key to scalability. However, as

mentioned above, if there was built-in support for circuit/VC service within networks, it

could be sparingly used just for heavy-hitter flows.

Today’s IP routers support VC service with a technology called MultiProtocol Label

Switching (MPLS) [6]. The REN community has exploited this complementary technology

to offer Dynamic Circuit Services (DCS) on their deployed base of IP routers. Thus, an

end-user application could signal control servers within networks to request a dynamically

setup virtual circuit before sending data.

However there are two problems with this approach. First, DCS has not been deployed in

all campus and regional REN networks. Backbone (core) RENs such as Department of Energy
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(DOE)’s Energy Sciences Network (ESnet) [7] and Internet2 [8] have deployed DCS. Through

an NSF-supported project called Dynamic Network System (DYNES) [9], 40 campuses and

universities have recently added DCS. However, DCS is still not ubiquitous. The second

problem is that end-user application software is implemented under an assumption that the

network service is connectionless (specifically, IP-routed service). These software programs

need to be modified to support VC service (i.e., to make requests for dynamic circuits prior

to data transfer) and then deployed on campuses. This solution was attempted in projects

such as Lambdastation [10], Terapaths [11], and CHEETAH [12], but practical difficulties of

application upgrades and adoption by users hindered its deployment. This led us to pursue

an intra-domain traffic-engineering solution because deployment of such a system would be

entirely within a provider’s control.

Problem statement Develop mechanisms for identifying heavy-hitter flows from the

packet traffic entering a provider’s network, and design solutions for traffic engineering and

controlling the resources assigned to these flows. In this context, traffic engineering is the

term used for path selection. This form of traffic engineering is referred to as tactical traffic

engineering [13] in contrast to strategic traffic engineering, in which overall traffic matrix is

considered while deciding paths between all source-destination pairs.

The research challenge of such an intra-domain traffic engineering system is to decide

whether an online solution (upon flow arrival) is required or an offline solution (analyze

completed-flow information and configure routers a priori for future flows) is sufficient. The

online solution poses system design and implementation challenges. The total execution time

of flow classification, circuit setup, and route configuration steps need to be significantly

shorter than the flow duration. This requires the duration of a flow to be at least several

minutes since the current circuit setup time itself is on the order of minutes. An offline

solution is possible if identifiers, e.g., source and destination IP addresses, of heavy-hitters

flows remain unchanged, and if the rate of arrival of new unexpected heavy-hitter flows is

small.

This dissertation presents a new solution for intra-domain traffic engineering by exploring

online and offline solutions, and considering different dimensions of heavy-hitter flows.
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Figure 1.1: Three tasks executed by HNTES

1.2 Solution approach

We designed a network management system called a Hybrid Network Traffic Engineering

System (HNTES) for deployment within a provider’s network to address the above stated

problem. The term “hybrid network” was used because the solution leverages both the

IP-routed connectionless network and MPLS virtual-circuit connection-oriented network.

Broadly speaking, HNTES needs to perform three tasks: heavy-hitter flow identification,

circuit provisioning, and policy-based route (PBR) configuration, as shown in Fig. 1.1. Two

approaches were identified for heavy-hitter flow identification: online flow analysis and offline

flow analysis. In online flow analysis, packet headers of newly arriving flows observed at an

IP router (i.e., ingress router of a provider’s network) are analyzed for live identification

of heavy-hitter flows. In offline flow analysis, NetFlow reports created by IP routers from

sampled packet-header data are analyzed to determine identifiers of completed heavy-hitter

flows for use in future-flow traffic engineering.

For the second task, circuit provisioning, HNTES can either request the setup of rate-

specified MPLS Label-Switched Paths (LSPs) online, or rate-unlimited MPLS LSPs online

or offline. Specifying a rate for an MPLS LSP could reduce flow throughput. The work

presented in Chapter 4 explores these different options for circuit provisioning.
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The purpose of the third task, PBR configuration, is to set a policy-based route to filter

out packets from a particular flow for handling with a separate set of procedures when

compared to other packets. Default packet handling procedures are simple in IP routers.

The destination IP address in an incoming packet is used to consult a forwarding table to

determine the next-hop router toward which the packet is sent. For heavy-hitter flows, QoS

mechanisms such as policing and scheduling would be applied and packets of these flows

directed to possibly a different port than the one dictated by the default IP forwarding table.

This task, PBR configuration, can be executed online (on flow arrival) or offline (a priori).

If performed online, then the PBR can use source and destination IP addresses as well as

source and destination TCP port numbers, while if it is performed offline, then only source

and destination IP addresses can be used because many applications use ephemeral (not

standardized static, referred to as “well-known”) port numbers.

If all three tasks can be performed online (on flow arrival), this would be an ideal HNTES

because only heavy-hitter flows would be subject to special treatment (sent to specific paths

and assigned a specific set of resources). In Chapter 2, we set out to design and prototype

such a system. At the end of Chapter 2, we discuss reasons why such an ideal HNTES is

difficult to realize. In Chapter 3, we describe our work on a more practical offline HNTES

solution, in which all three tasks are executed offline. There are costs to this solution, which

are quantified through NetFlow data analysis.

1.3 Hypothesis

The hypothesis of this work is as follows: It is feasible to identify heavy-hitter flows within

a provider’s network and redirect them to traffic-engineered paths with separate resource

allocations while meeting quality-of-service (QoS) requirements of both types of flows.

There are two research challenges in this hypothesis formulation. The first challenge

lies in the phrase “within a provider’s network.” Traffic engineering of heavy-hitter flows

would be easier to execute within provider networks if end-user applications offered an

explicit indication prior to initiating a heavy-hitter flow. Since applications do not provide

such indications, provider-deployed traffic engineering systems need to identify such flows
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by examining packets entering a provider’s network of IP routers at high speeds, which

is challenging. The second challenge lies in the phrase “meeting quality-of-service (QoS)

requirements” because certain types of flows do not have hard QoS requirements; instead

these flows just want the highest possible throughput. In trying to allow these flows to enjoy

highest possible throughput, other flows can be impacted adversely.

1.4 Dissertation organization

This dissertation is organized into five chapters. Background, motivation, and a summary of

the key contributions are provided in this chapter.

Chapter 2 presents a duration-based Hybrid Network Traffic Engineering System (HNTES)

1.0 solution for online identification and redirection of heavy-hitter flows. The system design

and prototype implementation are described. The feasibility of deploying this solution is

discussed at the end of the chapter.

Chapter 3 presents an algorithm for offline heavy-hitter flow identification. Unlike the

online duration-based HNTES 1.0 design, this offline design is based on flow rates computed

from NetFlow reports. The effectiveness of this algorithm is extensively evaluated through

an analysis of 7 months of NetFlow data obtained from an ESnet provider edge router.

Chapter 4 describes our experimental evaluation of Quality-of-Service (QoS) mechanisms

to achieve the dual goals of preventing heavy-hitter flows from adversely affecting delay-

sensitive multimedia flows, while simultaneously allowing these flows to enjoy high throughput.

The interaction between policing schemes on the ingress interfaces and scheduling schemes on

the egress interfaces is studied through a set of experiments on a high-speed routed-network

testbed.

Finally, conclusions and suggestions for future work are presented in Chapter 5.

1.5 Key contributions

A significant contribution is that our work led to a US-wide backbone network provider

ESnet to change the quality-of-service configuration used in its IP routers.

The key contributions of this work are summarized as follows:
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1. An understanding of practical considerations that limit feasible designs of traffic

engineering systems that can manage multimedia flows with disparate characteristics

while meeting the quality-of-service requirements of all flows.

2. A practical and effective Alpha-Flow Traffic Engineering System (AFTES) design,

which was prototyped and evaluated. The term α flow is used to denote high-rate,

large-sized flows.

3. Validation of a hypothesis that α flows are repeatedly sent by the same source-

destination pairs. NetFlow reports for 7-months were collected from an operational

large backbone (core) REN provider and analyzed. This work is published in a paper

in the IEEE 13th High Performance Switching and Routing (HPSR) 2012 [14].

4. The negatives of the offline AFTES solution were evaluated using 7-month NetFlow

data collected from one ESnet router. Since the offline-set PBRs only include source

and destination IP addresses, packets from general-purpose flows that share these

addresses with α flows will also get redirected to the traffic-engineered, QoS-controlled

paths established for α flows. Packets from these general-purpose flows could experience

adverse effects such as additional delays caused by buffer build-ups. Our analysis showed

that 90% of these general-purpose flow packets were from file-transfer applications,

which are not as affected by α flows as packets from real-time applications. This work

has been submitted in a paper to the Journal of Network and Systems Management.

While this finding was true for the analyzed NetFlow data, it may not always hold true.

It depends upon whether network administrators isolate α-flow generating clusters

into their own subnets distinct from subnets that connect hosts/servers that execute

general-purpose applications such as Web browsers/servers and Voice over IP. In most

scientific data centers, this assumption of isolated subnets was true, and furthermore

could be engineered if AFTES is deployed.

5. The interaction between policing schemes on ingress interfaces and scheduling schemes

on egress interfaces of IP routers was studied in-depth. A scheduling-only mechanism

with no policing was recommended to achieve the dual goals of preventing α flows
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from adversely affecting delay-sensitive flows, while simultaneously maximizing α-flow

throughput. This work was published in a paper in the Sixth International Conference

on Communication Theory, Reliability, and Quality of Service (CTRQ) 2013 [1]. An

extended version of this work has been submitted in a paper to the International

Journal On Advances in Internet Technology. An important result of this work is

that ESnet modified its QoS configuration to create an additional virtual queue for α

flows [15].

In addition, contributions were made to three other publications: 1) OWAMP (one-way

ping) [16] delay data analysis was published in a paper in the Proceedings of Optical Fiber

Communication (OFC) 2011 [17]. 2) GridFTP log analysis was published in a paper in

the International Conference for High Performance Computing, Networking, Storage and

Analysis 2012 (SC 2012) [18]. 3) A comparative analysis of NetFlow data abstained from

four ESnet routers was published in a paper in the IEEE 14th High Performance Switching

and Routing (HPSR) 2013 [19].



Chapter 2

A Hybrid Network Traffic

Engineering System (HNTES) 1.0

2.1 Introduction

The concept of using dynamic circuit service for heavy-hitter flows strongly influenced

our HNTES 1.0 design. The REN community had created standards, implemented circuit

schedulers, and deployed a dynamic circuit service. Measurements showed that the circuit

scheduler took on the order of 1 minute to create a circuit if one was requested for immediate

use. This is because the scheduler batched requests and executed the configuration actions

at the MPLS switches/IP routers only every minute. Knowledge of this circuit setup delay

led us to focus on the “duration” dimension of flows when choosing heavy-hitters, since most

flows are short-lived (last less than a few seconds).

Therefore the HNTES 1.0 design consisted of modules to perform three steps: (i)

online detection of long-lived flows, (ii) online virtual circuit setup, and (iii) online PBR

configuration.

Section 2.2 provides background and reviews related work. Section 2.3 describes HNTES

1.0 design, and the prototyping and evaluation efforts are described in Section 2.4. In

Section 2.5, we discuss the feasibility of deploying HNTES 1.0 in provider networks, and

conclude the chapter in Section 2.6.

9
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2.2 Background and related work

With virtual-circuit technologies, such as MultiProtocol Label Switching (MPLS) [6], ESnet

and other research and education network providers, such as Internet2 [20], GEANT2 [21],

and JGN-X [22], offer a dynamic circuit service. An On-Demand Secure Circuits and

Advance Reservation System (OSCARS) Inter-Domain Controller (IDC) [4] is used for

circuit scheduling and provisioning. The basic interface to IDC requires an application to

specify the circuit rate, duration, start time, and the endpoints in its advance-reservation

request. These parameters are used for path computation in the call-admission/circuit

scheduling phase, and for policing traffic in the data plane. In order to support inter-domain

virtual circuits, Lake et al. from Internet2 and Robertson et al. from ESnet standardized

the Inter-domain Controller (IDC) Protocol [23] in 2008.

Several traffic engineering solutions have been proposed based on this technology. For

example, Lambdastation [10] is a deployed and demonstrated technique to redirect certain

types of flows to virtual circuits. In this approach, applications signal a Lambdastation

server, which is deployed in site networks, before initiating a long flow. The Lambdastation

server issues a create-reservation request to the OSCARS IDC [24], which reserves a circuit,

and at the time of the scheduled request, provisions the circuit. The virtual circuit endpoint

is typically a customer or provider edge IP router within a site. Using policy-based route

(PBR) configuration, which is a feature of a router that allows administrators to configure

alternate routes other than the default IP route for packets belonging to specific flows,

packets corresponding to the long flow are directed to the newly established virtual circuit.

When the flow completes, the circuit is released.

The advantage of the HNTES approach over the application-triggered Lambdastation

approach is that users do not need to modify their applications or run shell scripts that

invoke circuit setup prior to application execution. The drawback however is that it is

difficult to predict which flows are good candidates for virtual circuits when making the

decision inside a transit provider network.
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Figure 2.1: An example deployment scenario of HNTES

2.3 Hybrid Network Traffic Engineering System (HNTES)

1.0 design

2.3.1 Role of HNTES

We start with a big picture illustration of what role HNTES would play if deployed by

providers who offer both IP-routed and virtual circuit (VC) services. In the example shown

in Fig. 2.1, the DOE Lab I site network and ESnet are shown as offering both IP-routed

and VC services, while DOE Lab II, other provider and the university network offer only

IP-routed services. This reflects current-day reality. An IDC, which offers circuit scheduling,

provisioning and release functionality, and a HNTES system are shown as being deployed in

DOE Lab I and ESnet.

If a large dataset transfer is initiated from the data transfer nodes at DOE Lab II to

the data transfer nodes at DOE Lab I, then the heavy-hitter flow will appear as IP-routed

packets at the ESnet router R3. Without HNTES, packets from this flow would be forwarded

with the IP-routed service via ESnet and DOE Lab I’s network. With VC service, if offline

flow analysis had identified this particular flow (e.g., if the source IP address and destination
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Figure 2.2: HNTES architecture

IP address had occurred often in prior NetFlow records), then the identifiers of this flow are

entered into a database to be monitored. When packets from a monitored flow are captured,

HNTES continues monitoring for a certain preconfigured duration. If packets continue to

arrive for this flow, then it decides that the flow is a long flow, and requests an MPLS

Label-Switched Path (LSP) between router R3 and router R2 passing through switches S3,

S2 and other intermediate switches of ESnet. Finally, HNTES configures a policy-based

route (PBR) in router R3 to forward packets from this flow to the newly established VC.

2.3.2 HNTES architecture

Fig. 2.2 shows the HNTES software architecture and its interfaces. It interfaces with the

Inter-Domain Controller (IDC) and IP routers. It consists of several modules as described

below:

Offline Flow Analysis Tool (OFAT): This tool collects NetFlow data from the routers,

analyzes the data to find long fat flows, and populates the Monitored-flow Data Base (MFDB)

with the identifiers of these flows through the user-interface module (UIM). The circuit

duration field is populated by OFAT.

User-Interface Module (UIM): The purpose of this module is to allow two types of users,

human administrators and software systems, such as OFAT, to enter information about

flows that should be redirected to virtual circuits whenever possible. We refer to these flows

as monitored flows. This module supports a graphical interface for human users as well
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Table 2.1: Monitored-Flow Data Base (MFDB) structure

Flow identifiers Status Layer-2 or Circuit Circuit
Source Destination Protocol Source Destination Layer-3 duration rate
IP IP address port port circuit
address endpoints

Of monitored flow (not all fields are required for each flow) Monitored IP
Redirected addresses
Disabled and VLAN

IDs

as a programmatic interface for software, such as OFAT. Information entered through this

module is saved in the MFDB. All users should be authenticated.

Monitored-Flow Data Base (MFDB): The structure of this database is as shown in

Table 2.1. Flow identifiers are subsets of the 5-tuple: source IP address, destination IP

address, protocol, source port, and destination port. The Status field shows whether the

flow is currently just being monitored or whether it has already been redirected to a virtual

circuit. It could be Disabled if the user who added this flow information decides to stop

monitoring this flow. It is useful to store information for a disabled flow if there is a

possibility that it will be monitored again in the future. The Layer-2 or Layer-3 circuit

endpoints corresponding to each flow are computed by the initialization module. Finally,

the circuit duration and rate desired for each flow should be precomputed and stored.

Router-Control Interface Module (RCIM): This module is triggered by the User-Interface

Module to configure the router (through its control port) to mirror monitored flows to a

data-plane interface leading to a server on which the Flow-Monitoring Module is executed.

In other words, as packets are forwarded by the IP router to the normal data-plane interface

as determined by the routing table, the packets from monitored flows are also mirrored to

the Flow-Monitoring Module.

Flow-Monitoring Modules (FMM): One instance of this module will likely need to run

per monitored router. When this module receives packets from a monitored flow, it continues

monitoring for a certain preconfigured duration, and if packets continue to arrive for this flow,

then it decides that the flow is a long flow. It then initiates the reservation and provisioning

of a virtual circuit between the Layer-2 or Layer-3 circuit endpoints identified for that flow in

the MFDB. It does this by sending a message to the IDC Interface Module. For heavy flow
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volumes, a multiple node cluster implementation may be required for this module. These

modules also update the MFDB entries based on observations of flow durations, and change

the Status field of the flow. They initiate path termination by sending a message to the IDC

Interface Module if the packets seen for a redirected flow start trickling down to a light level.

Inter-domain Controller (IDC) Interface Module (IDCIM): Upon receiving messages

from the FMM, the IDCIM formulates IDC Protocol (IDCP) [23] Simple Object Access

Protocol (SOAP) [25] messages and requests the reservation and provisioning of circuits and

release of circuits. In a circuit request, it passes the IDC the circuit endpoints (referred to

as Layer-2 information in IDCP) as well as the flow identifier (subset of 5-tuple, source IP

address, destination IP address, source port number, destination port number, IP protocol

type), referred to as Layer-3 information in IDCP. The IDC configures policy-based routes

in the routers at the ends of the circuits after a circuit is provisioned or released.

Initialization module (IM): This module computes the endpoints of Layer-2 or Layer-3

circuits corresponding to each monitored flow. This information can be obtained from the

IDC and/or routing information bases (RIBs) in routers. The initialization module also

computes an appropriate value for the circuit rate desired for each monitored flow and enters

this information in the MFDB.

2.4 HNTES1 prototyping and evaluation

2.4.1 Prototype implementation and testing

A prototype implementation of OFAT, UIM, MFDB, FMM, and IDCIM was completed.

Of these modules, the UIM, MFDB, and FMM were tested on a DOE-funded wide-area

state-of-the-art 100 Gbps hybrid network testbed called Advanced Networking Initiative

(ANI) [26] tabletop testbed, while OFAT and IDCIM were tested on UVA servers. UVA’s

computing research clusters [27] were used for OFAT testing, and the MFDB was run on

UVA’s MySQL server. IDCIM was tested on our networking laboratory computers. A test

IDC was made available to us by ESnet. This was used to test our IDCIM software.
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The FMM uses the pcap library [28]. Both FMM and UIM are implemented in C++,

MFDB in SQL, IDCIM in Java, and OFAT in the statistical programming R language. The

IDCIM is a modified version of the OSCARS Java Client [24].

2.4.2 NetFlow analysis

Part of the task of classifying packets into flows is done by NetFlow [6], which is a feature

available in most IP routers. NetFlow enables IP routers to collect a sample of packet

headers, which carry the 5-tuple flow identification information described above. Each IP

router’s NetFlow system maintains a running set of flow reports. For each such report,

it maintains the timestamp of the first and last packets as well as the total flow size. At

the end of each active timeout interval, which is a configurable parameter and typically

set to 60 seconds, the stored flow reports are exported from the IP router to a collector.

Processing and maintaining volumes of NetFlow data can be both computationally and

storage intensive, especially for routers with high-speed links. Therefore, packet sampling

is used, e.g., in 2011, NetFlow was configured to sample 1-in-100 and 1-in-1000 packets in

Internet2 routers and ESnet routers, respectively.

Through an analysis of NetFlow data obtained from Internet2 routers, a few scientific

applications have been identified as generating long flows. For example, the Unidata Local

Data Manager (LDM) [29] application is used by the Earth systems scientific community.

NetFlow was configured in Internet2 routers to report out on a flow every 60 sec. Each

Netflow file consists of flow information collected over a 5-minute interval. An examination

of five consecutive 5-minute files showed multiple flow-export reports on the same flow. The

source TCP port number was 388, which corresponds to the Unidata LDM application.

Flows from consecutive 5-minute files were concatenated to determine the actual length of

flows. Since a report was exported for a flow every 60 secs, to determine the true length

of long flows, several 5-minute NetFlow files need to be analyzed. A whole day’s NetFlow

(5-min) files were downloaded for one core router.

For this flow, an entry was created in the MFDB using the source and destination IP

addresses, protocol (6 for TCP) and source port 388. The status field was set to “Monitored,”

and the UIM invoked the RCIM to program the router to mirror packets of the flow to the
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Figure 2.3: HNTES experiments on ANI tabletop testbed

FMM. Upon observing packets from this flow, the FMM initiated circuit setup through the

IDCIM and changed the status of the flow in the MFDB to “Redirected.”

2.4.3 HNTES experimental evaluation

Two sets of experiments were executed to test several HNTES modules. The first set of

experiments were conducted on the ANI testbed. These experiments tested the functional

operation of the FMM and MFDB modules. The test configuration is shown in Fig. 2.3. The

BWdetail tool [30] was used to transfer files from host Diskpt-1 to host Diskpt-2. The

path passed through two IP routers (North-rt1 and South-rt1). There were two paths (A

and B) between the two routers. While both paths were single links in this experimental

setup, Path A was viewed as emulation of an IP-routed path that could traverse multiple IP

routers, and path B emulated a rate-guaranteed circuit for α flows. For testing purposes,

the FMM and MFDB were modules installed on the same host Diskpt-1 as the application

software BWdetail, though in actual deployments, HNTES modules should be installed

on servers that are directly connected to IP routers. There were two links that connected

Diskpt-1 with North-rt1, one of which was used for the BWdetail flows, the second (shown

in bold black) was used for port-mirroring packets of α flows to the FMM. A Generic Routing

Encapsulation (GRE) [31] tunnel is created to enable port mirroring.

The experiment consists of the following steps:
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Figure 2.4: IDCIM interaction with FMM and IDC

• Enter the BWdetail flow’s 5-tuple into the MFDB, and configure North-rt1 to port

mirror packets from this flow to the FMM on Diskpt-1 through the GRE tunnel.

• Initiate the BWdetail file transfer, and check whether the FMM receives the pack-

ets from that flow. The FMM reads the flow status in the MFDB for the 5-tuple

corresponding to the BWdetail flow. Both success and failure scenarios were tested.

• The PBR table of router North-rt1 was configured manually to enable redirection of

the BWdetail flow through path B. The tcpdump tool was used to verify that the flow

redirection occurred correctly.

The second set of experiments tests the interaction of IDCIM with the FMM and the

IDC as illustrated in Fig. 2.4. The IDCIM was executed on a host, zelda2, located in

our networking laboratory at UVA, and a test IDC deployed by ESnet strictly for testing

purposes was used for this set of experiments. The reason for using this test IDC is that the

ANI Tabletop testbed did not have a deployed IDC.

When the port mirrored packets arriving at the FMM match a flow configured in the

MFDB, the FMM sends a SetupCircuit message (type 1 in Fig. 2.4) with parameters

consisting of the 5-tuple flow identifier, circuit rate, circuit duration, circuit source, and desti-

nation, to the IDCIM. Upon receiving this message, the IDCIM sends a createReservation

message with the automatic signaling option (which indicates to the IDC that it should
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automatically initiate path provisioning at the scheduled start time). Since this circuit

reservation is for an already ongoing flow, the requested reservation is for an immediate start.

When circuit setup is successful, a PATH SETUP COMPLETED message is sent back to

the IDCIM. After receiving this message, the IDCIM generates a CircuitSetupSuccessful

message (type 3) with the 5-tuple flow identifier as a parameter for transmission to the FMM.

When the circuit setup fails, a PATH SETUP FAILED message is sent from the IDC

server to the IDCIM, which then triggers the IDCIM to generate a CircuitSetupFailed

(type 4) message to the FMM. The FMM continues its monitoring action for port-mirrored

flows. If no packets are received for a redirected flow for a certain duration, which im-

plies that the redirected flow terminated earlier than the predicted duration that was

stored in the MFDB, a ReleaseCircuit (type 2) message is generated by the FMM

and sent to the IDCIM. The latter sends a TeardownCircuit message to the IDC server.

Upon receiving a PATH TEARDOWN COMPLETED message, the IDCIM formulates

a CircuitReleased message of type 5 and sends this to the FMM. In summary, the IDCIM

operates as a “server” to the FMM client, while it is itself a “client” to the IDC server.

2.5 Discussion

Based on the results of our experiments and NetFlow data analysis, certain practical concerns

were identified. First, the Flow Monitoring Module (FMM) was deemed impractical because

it needs to process headers from all mirrored data packets in real time. As link speeds

increase, such a task would require a high-performance computing cluster. Requiring the

deployment of such clusters to serve one or more ESnet routers could be cost prohibitive.

To avoid the costs of analyzing all mirrored packets, we considered configuring the router

to port mirror just control-plane packets. Control-plane communications are used to set up

data-plane connections for actual user data transfer. For example, the GridFTP architecture

consists of a client Protocol Interpreter (PI), one server PI at each end, and one or more

Data Transfer Processes (DTPs). Transfers can occur in first-party mode or third-party

mode. In first-party mode, the host on which the client PI is being run will typically also

be running the DTP. If the server PI and server DTP are also run on the same host, the
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source and destination IP addresses for the data connection will be the same as those of the

control packets, which can be extracted from the mirrored control-plane packet headers. For

third-party transfers, the data-connection IP addresses need to be extracted from commands

such as PASV/SPAS and PORT/SPOR [32]. The port numbers of control-plane connections

are often well-known, such as 2811 for GridFTP, but those of the data-plane connections

are ephemeral. But through deep packet inspection of the PASV/SPAS and PORT/SPOR

control-plane packets, the TCP port numbers of data-plane connections could be extracted.

However, we learned that the Globus GridFTP implementation includes RFC 2228 [33],

FTP Security Extensions, which requires control-plane packets to be encrypted, making this

scheme infeasible. As a result, we decided to drop the FMM from the HNTES architecture.

Without port-mirrored packet analysis, only offline flow-data analysis mechanisms are feasible

to determine IP addresses of source-destination pairs that generate heavy-hitter flows.

The offline solution could work if a hypothesis that most heavy-hitter flows are repeat-

edly generated between the same source-destination pairs holds true. This allows for the

identification of source-destination IP addresses of completed heavy-hitter flows for use in

PBRs to redirect future heavy-hitter flows. Such a solution was explored, and is presented

in the next chapter.

If the first task shown in Fig. 1.1 of Chapter 1 is offline, then the second task, i.e., circuit

provisioning, necessarily becomes offline too. The implication of circuit provisioning being

offline is that the circuits are static (i.e., not dynamically set up after a heavy-hitter flow

is identified). Recall that HNTES operates within a provider’s network and executes only

intra-domain traffic engineering. Therefore the endpoints of a circuit are ingress and egress

IP routers of the provider’s network. Based on the source and destination IP addresses of

completed heavy-hitter flows, the corresponding ingress and egress IP routers are identified

from routing tables, and used for static circuit provisioning.

Given that the virtual circuits (MPLS LSPs) span between ingress and egress IP routers

of a provider’s network, it became unnecessary to assign single flows to circuits because

this requires fine-grained resource control. Instead, in our new design, all heavy-hitter flows

between the same ingress-egress ESnet routers would be redirected to the same virtual circuit.

This coarse-grained approach is more practical since the number of virtual queues that can
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be created within an egress interface’s buffer is on the order of tens to hundreds. While the

number of heavy-hitter flows is likely to be a small fraction of the total number of flows, it

is possible to exceed this limit on the number of virtual queues if queues are configured for

individual flows. Therefore this approach of sharing a single virtual queue among multiple

heavy-hitter flows was adopted. The implications of this approach are studied in-depth in

Chapter 4.

Finally, our focus on the duration dimension of flows in HNTES 1.0 could be changed

to other flow dimensions because dynamic VC setup was no longer required. Therefore,

we used a top-down approach to determine which of the four dimensions: duration, rate,

size, and burstiness, was most important for traffic engineering. For successful sharing of

a network infrastructure, one flow should not have adverse effects on another flow. Using

this top-down approach (in contrast to the bottom-up approach of HNTES 1.0 where the

need to use dynamic VCs drove our decision to consider the duration dimension), we ran

experiments to determine which dimension was the most significant. Our answer was rate in

combination with size, which are the dimensions used in the HNTES 2.0 design presented in

the next chapter.

2.6 Conclusions

HNTES 1.0 is an online system to automatically identify heavy-hitter flows, request a

dynamic virtual circuit (VC) from a circuit scheduler/provisioning system that sets up

the VC and configures a policy based route in the ingress router to redirect packets from

the identified heavy-hitter flow to the newly established VC. However, certain practical

concerns were identified through NetFlow analysis and testbed experiments: (i) it is cost

prohibitive to deploy Flow-Monitoring Modules (FMMs) that can keep pace with increasing

backbone link rates; (ii) without online heavy-hitter flow identification, circuits need to

be static; (iii) static circuits between ingress and egress router pairs can be shared among

multiple heavy-hitter flows, and (iv) dimensions other than duration can be considered when

determining heavy-hitter flows as VC setup delay is no longer an issue. These concerns led
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to change in focus from an online HNTES design to an offline design. Our offline design is

presented in the next chapter.



Chapter 3

Alpha Flow Traffic Engineering

System (HNTES 2.0)

3.1 Introduction

In this chapter, we describe our design for an offline HNTES, HNTES 2.0. All three tasks

described in Fig. 1.1 of Chapter 1 are performed in offline mode. As noted in Section 2.5, as

the identification of heavy-hitter flows is done offline, i.e., on completed flows, the first task

just yields source-destination IP address pairs. The second task is correspondingly offline, i.e.,

static virtual circuits are created between ingress-egress router pairs of the provider’s network.

The third task, Policy Based Route (PBR) configuration, is also executed offline. PBRs use

just source and destination IP addresses to identify packets from potential heavy-hitter flows

for redirection to traffic-engineered, QoS-controlled virtual circuits. Port numbers are not

included in PBRs because this is an offline approach and port numbers can be ephemeral.

We also noted in Section 2.5 that without the constraint of VC setup delay, which is

incurred if circuit provisioning is online, other dimensions of flows can be considered in

deciding if a flow is a heavy-hitter or not. To select the appropriate dimension, we used

a top-down approach to determine what types of heavy-hitter flows impact other flows.

Our conclusion was that long-duration flows, if they are low-rate, e.g., the LDM port 388

flows, do not have adverse effects on other flows. By “low-rate,” we mean the flow rate is a

22
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small fraction of link capacity. Experiments showed that file-transfer flows could reach high

rates, and given the nature of TCP, these flows generate packets in bursts. A large burst of

packets can cause router buffers to fill up, which can cause increased delays for real-time

flows. Section 3.2 describes one such experiment.

High-rate transfers that are of large-sized are particularly adverse to other flows as they

have a higher potential for overlapping with real-time flows. Such high-rate, large-sized

flows are referred to as α flows. Correspondingly, we changed the name of the system to

Alpha-Flow Traffic Engineering System (AFTES). It is effectively a HNTES 2.0 system.

After presenting our motivation for choosing rate and size as the dimensions of interest for

traffic engineering heavy-hitter flows in Section 3.2, related work is reviewed in Section 3.3.

The basis for the AFTES solution is discussed in Section 3.4. In addition to its role in traffic

engineering α flows, AFTES can be used to just obtain characteristics of α flows. Section 3.5

describes our methodology for characterizing α flows, and provides characteristics of α flows

observed in the 7-month ESnet NetFlow data. AFTES evaluation (hypothesis testing) is

presented in Section 3.6, and the chapter is concluded in Section 3.7.

3.2 Motivation

First, we conducted experiments on a high-speed network testbed to determine if a single

high-rate TCP file-transfer flow could impact packet delays for a real-time flow (Section 3.2.1).

Second, we obtained measurements on ESnet links to determine whether high rate spikes, such

as those created in our experiment, occur in practice (Section 3.2.2). Finally, we analyzed

file-transfer usage logs from GridFTP servers deployed in national scientific supercomputing

centers to determine where actual file-transfer rates reach a high fraction of link capacity

(Section 3.2.3).

3.2.1 An experiment conducted on a high-speed network testbed

We conducted an experiment on a high-speed DOE metropolitan-area IP-routed network

testbed. Its high-end computing hosts were capable of sourcing/sinking data at multiple

Gbps [1]. All links in this network were 10 Gbps Ethernet. Three flows were created
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Figure 3.1: The x-axis is time measured in seconds; the top graph shows that the UDP-flow
rate is 3 Gbps in both the 1-queue and 2-queues configurations; the middle graph shows
the TCP flow throughput; the bottom graph shows the delays experienced in the ping
application [1]

to compete for resources on a router’s outgoing interface: (i) an nuttcp UDP flow that

generated packets at 3 Gbps to emulate background traffic, (ii) an nuttcp TCP flow that was

initiated at time 53 seconds after the start of the experiment, and (iii) a ping flow that sent

requests every 1 sec to measure round-trip time, as shown in the three graphs of Fig. 3.1.

In the 1-queue configuration, all three flows were served with best-effort IP service, i.e.,

their packets were buffered in the same output queue. The TCP flow throughput enjoyed

more than 6 Gbps, but the ping flow delays increased from 2.3 ms (when the TCP flow was

absent) to 60.6 ms when the TCP flow was initiated, and stayed high at 60.6 ms while the

TCP flow was active. In the 2-queues configuration, the router directed the UDP-flow and

ping-flow packets to one virtual queue and the TCP-flow packets to a separate virtual queue

on the contending egress interface. Weighted-fair queueing (WFQ) was used with a 40-60

split between the first and second queues, but the transmitter was configured to operate
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Figure 3.2: Utilization (b/s) of a 10 Gbps ESnet router interface observed on Jan. 16, 2013;
the green line, showing bursts reaching over 9 Gbps, is the outgoing traffic from the ESnet
router to a peering REN, while the lower-load blue line is the incoming traffic on the same
interface

in a work-conserving mode, which means that if one of the virtual queues does not have

packets, the other queue will be served even in excess of its rate allocation. This mode of

operation allowed the TCP flow to still enjoy 6 Gbps, while the ping delay stayed low at 2.3

ms even in the presence of the TCP flow. This experiment illustrates that high-rate flows

can have adverse effects on delay-sensitive flows.

3.2.2 ESnet link usage measurements

While high-rate flows can be created on an experimental testbed to fill up a link as in our

experiment, we checked actual traffic levels on ESnet interfaces to determine if aggregate

rates ever approached link capacity. Fig. 3.2 plots Simple Network Management Protocol

(SNMP) link utilization of an ESnet router interface. This data was collected on Jan. 16,

2013. The traffic level reached above 9 Gbps (the link’s capacity was 10 Gbps). These

sudden increases in traffic levels are most commonly caused by a single or few heavy-hitter

flows. Research-and-Education Networks (RENs) such as ESnet are engineered to operate at

20-25% loads in order to absorb α-flow spikes [34]. Typically, traffic in both directions of the

link shown in Fig. 3.2 have loads similar to that of the blue line (incoming direction) [35].

However, in spite of the capacity headroom, heavy-hitter flows can lead to such surges
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in traffic that would result in buffer build-ups. The SNMP data are time-averaged over

30-sec intervals; on shorter timescales, buffers will fill up as the TCP flow rate will be 10

Gbps in short bursts because the sending host network interface card rate is 10 Gbps (this

phenomenon is illustrated in Chapter 4).

3.2.3 GridFTP file transfer log analysis

Since we found that network link utilization could sometimes reach close to 100%, we

were interested in analyzing usage logs from actual scientific data transfers to check if the

throughput of such transfers reached significant fractions of link capacity. Toward this

end, we obtained GridFTP usage logs from the National Center for Atmospheric Research

(NCAR). This set of logs showed metadata about file transfers from NCAR to the National

Institute for Computational Sciences (NICS) [36] for the period 2009-2011. The set consisted

of metadata, such as transfer size and transfer duration, for 52, 454 transfers. Often scientists

move lots of files because their simulation programs or experiments create many files. Scripts

were used to have GridFTP move all files in one or more directories. The GridFTP usage

logger logs information for each file. Each such file movement is referred to as a “transfer,”

and “sessions” consist of one-or-more transfers executed in batch mode by an automated

script. A configurable parameter, g, was used to set the maximum allowed gap between the

end of one transfer and the start of the next transfer within a session (logs do not show

whether transfers were part of session or not).

Table 3.1 shows the size and duration statistics about sessions, and throughput statistics

about transfers, assuming g is 1 min. The maximum transfer throughput observed was 4.23

Gbps, which means this single transfer utilized more than 40% of the link bandwidth. This

throughput value is determined by dividing transfer size by transfer duration; it therefore

represents an average rate, not the instantaneous rate. The actual packet transfer pattern

would have been bursty since the underlying transport protocol was TCP. This particular

transfer must have occurred from a host with a 10 Gbps network interface card (NIC) since

Ethernet NICs support one of four rates: 10 Mbps, 100 Mbps, 1 Gbps or 10 Gbps. Therefore,

we can surmise that within the lifetime of this transfer, there would have been bursts of

packets that were transmitted at 10 Gbps. Since most REN link capacities were 10 Gbps
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Table 3.1: NCAR-NICS sessions and transfers; g = 1 min

Characterization of session sizes, in MB

Min. 1st Qu. Median Mean 3rd Qu. Max.

8,793 (bytes) 5,808.7 70,708.4 263,771.4 320,600 2,873,868.5

Characterization of session durations, in s

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.05 210.5 1,445 4,039 5,261 48,420

Characterization of transfer throughput, in Mbps

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.1 (bps) 298 468.3 506.1 682.2 4,227

during the 2009-2011 period, such bursts could have caused buffer buildups in the presence

of background traffic that was typically in the 2-3 Gbps range.

Other interesting numbers shown in Table 3.1 are the maximum size (over 2.8 TB) and

maximum duration (over 13 hours). These numbers show that indeed large datasets are

moved by scientists using these computing sites.

3.3 Related Work

As mentioned in Section 2.2, Lan and Heidemann [5] identify four dimensions of flows:

size (bytes), rate, duration, and burstiness. Further, four methods are used to define the

thresholds between the two classes for each of these dimensions. In the first method, the

numbers corresponding to the mean + 3 standard deviations of the sampled data are used

as the thresholds, based on earlier work by Sarvotham et al. [37]. In the second method,

the top 1% of all flows is used to set the thresholds. In the third method, the thresholds

are cutoff points in a heavy-tailed distribution where the cutoff is determined using the

aest method [38]. In the fourth method, the thresholds are set so that 50% of all traffic is

carried by the heavy-hitters (elephants, cheetahs, etc.). The goals of the Lan and Heidemann

study were to characterize flows along the four dimensions and to study correlations between

different flow types, while the purpose of Sarvotham’s study was to create a framework for

modeling network traffic.
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Papagiannaki et al. [39] have the same stated goal as ours of identifying elephant flows

for traffic engineering. Their threshold for elephant flows is varied based on load. They

conclude that single-feature methods lead to the detection of short-lived elephant flows,

while a two-feature method that uses a latent-heat metric to take into account persistence

makes it feasible to identify only long-lived elephant flows that are better candidates for

traffic engineering. For their analysis purposes, Wallerich et. al [40] classified a flow as an

elephant if in any time bin (which was chosen to be 1 min) in its lifetime, the number of

bytes sent is in the top ranks of all flows. Other such papers are surveyed by Callado, et al.,

in a 2009 paper [41].

These prior definitions of heavy-hitter flows are based on relative values among all flows.

In contrast, our definition of α flows uses a fixed threshold for bytes observed within a fixed

duration. Only flows that exceed the threshold are likely to have adverse effects on real-time

flows. Using relative values may result in the classification of certain flows as elephant or α

flows, even if their rates/sizes are not large enough to have adverse effects on other flows.

Therefore our work uses absolute thresholds. These threshold values are based on an analysis

of actual scientific data transfers logged by GridFTP servers [18].

There are several papers proposing methods for identifying large flows or high-rate flows

with new router hardware. These include ElephantTrap [42], RATE [43], CATE [44], an

FPGA-based cache solution [45], and a Grid flow real-time detector for 1 Gbps links [46].

Also Hohn and Veitch [47] proposed a scheme for finding the spectral density, distribution of

the number of packets per flow, and showed why alternate sampling techniques were needed

to obtain this second-order statistic about flows. Given our focus on designing network

management systems and not new router hardware, our scheme relies on the built-in NetFlow

system supported in most deployed provider routers.

Kamiyama and Mori propose a short-timeout method to identify high-rate flows [48]

and elephant (large) flows [49] with low false-positive and false-negative rates, but not to

determine the flow rates or sizes. Zhang, Fang and Zhang [50] proposed a Bayesian single

sampling method to identify high-rate flows, but again not to characterize their sizes/rates.

Duffield, Lund and Thorup [51] had a goal of finding information about flows in unsampled

packets using information in sampled packets. In contrast, our goal is more specific to
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characterizing α flows. Given the higher rate of sampling of these flows, our method will

result in higher accuracy but is not as general in its scope [51].

Fioreze et al. [52] proposed redirecting elephant flows (which they defined as long in

duration and big in volume) to optical circuits in hybrid IP/optical networks. The focus of

this work was on evaluating the impact of sampling rates.

The automatic identification of flows have been proposed in the HELIOS low-power optical

circuit switches to complement electronic packet-switched networks within datacenters [53–55].

In these hybrid networks such as the Helios architecture [53], elephant flows could be identified

for automatic redirection to optical circuits. By strategically placing an online HNTES on

links to filesystem servers, such flows could be identified live and redirected.

Other papers of relevance are on flow classification algorithms [56,57]. Flow classification

methods are grouped in [57] into three categories: (i) port based, (ii) payload based, and (iii)

flow statistics based. Our solution falls in the last category. In addition, machine learning

techniques are used because port and payload based methods have drawbacks caused by port

masquerading and payload encryption, respectively. Scientific data transfer applications,

such as GridFTP, use ephemeral ports and control-plane packet encryption, which make

these methods unsuitable for our purposes. While machine learning methods can be explored

for our problem, they are likely to be more complex than our solution of using flow statistics,

which is sufficiently effective as shown in Section 3.6.

3.4 Basis for AFTES solution

This section provides the basis for the AFTES solution. First, an architectural overview

of AFTES is provided. Second, several hypotheses that underpin the AFTES solution

are presented. If these hypotheses are true, AFTES would be highly effective for α-flow

identification. Results of the hypothesis testing will be presented in a later section. Finally,

an experimental study was conducted on a ESnet path to test if NetFlow reports can be

used to identify α flows because ESnet configures its routers to sample 1-in-1000 packets for

NetFlow report creation.
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Figure 3.3: Illustration of the role of Alpha Flow Traffic Engineering System (AFTES)

3.4.1 Overview of AFTES architecture

Consider the example provider network shown in Fig. 3.3. Default IP-routed paths from

router A to router C in the example provider network are shown with red dashed lines.

AFTES is a network management software system that would be run on an external server

as shown in Fig. 3.3. AFTES interacts with two external systems, a NetFlow collector,

and an Inter-Domain Controller (IDC). The role of a NetFlow collector is explained in

Section 2.4.2, and the purpose of the IDC is described in Section 2.2. As mentioned earlier,

MultiProtocol Label Switching (MPLS) is used for dynamic virtual circuit service. AFTES

leverages this service for α flows. The setup phase in VC networking offers the opportunity

for traffic engineering α flows along paths distinct from the default IP-routed paths if needed

(e.g., for load balancing).

AFTES operations are grouped into two phases:

α-flow address prefix identification Periodically AFTES obtains NetFlow reports from

the NetFlow collector (as shown in Fig. 3.3), and analyzes these reports to identify the source
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and destination IP address prefixes of completed α flows. Details regarding the thresholds

used in determining which flows are α flows are provided in the next section. Assuming that

AFTES runs on a nightly basis, it creates a list of α prefix IDs, which are source-destination

address prefixes of α flows observed during the day, to store in a set Fi, where i is a time

(e.g., per-day) index. These identifiers are referred to as prefix IDs because address prefixes

rather than complete addresses may be used (a /24 subnet identifier is an address prefix

that represents a group of 255 /32 IPv4 addresses). To keep the set Fi from becoming too

large, address prefix pairs for which α flows have not been observed within an aging interval

(e.g., 30 days) will be deleted.

Configuring routers for future α-flow redirection The source-destination IP address

prefix pairs in Fi are used to set firewall filter rules (previously referred to as policy-based

routes) at each ingress router I to separate out packets of future α flows and redirect them to

traffic-engineered, QoS-controlled virtual circuits. Like HNTES 1.0, AFTES is designed for

intra-domain usage by any single provider. The technological solution of carrying IP packets

over MPLS label switched paths (LSPs) for segments of an end-to-end path is leveraged

by AFTES. On each day i, AFTES determines the egress router E corresponding to each

new α prefix ID stored in set Fi, and sends requests to the IDC for an LSP, if one does not

already exist between the ingress router I and egress router E. The IDC executes three

steps: (i) sets up the LSP between the ingress router I and egress router E, (ii) configures

QoS mechanisms, and (iii) configures a rule in the firewall filter at the ingress router to

identify packets corresponding to α prefix IDs, and direct them to the virtual queue served

by the MPLS LSP. If an LSP already exists between I and E corresponding to a new α

prefix ID in Fi, only steps (ii) and (iii) are required. Incoming flows on day i whose source

and destination addresses match one of the α prefix IDs in the firewall filter Fi will be

automatically classified as α flows by the router and directed to the virtual queue for the

corresponding MPLS LSP.

In summary, the AFTES design uses an offline approach, in which α prefix IDs are

determined through a posteriori analysis, and used to configure virtual circuits, QoS mech-

anisms, and firewall filters in routers so that future α flows can be identified and isolated
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from general-purpose traffic.

3.4.2 Hypotheses

Several hypotheses underpin this AFTES design:

1. NetFlow data can be used to estimate the size of α flows in spite of packet sampling

(e.g., 1-in-1000).

2. Most high-speed data transfer nodes have static well-known IP addresses, and α flows

are repeatedly created between the same source-destination subnets. Since scientists

typically execute simulations on the same supercomputing centers, it is likely that

their data transfers occur repeatedly between the same two clusters.

3. New α flows can appear on any given day, for example, when a new high-speed data

transfer node is added at a supercomputing data center, or when a new scientist joins

a project. The use of /24 subnet addresses instead of /32 complete IPv4 addresses (a

subnet is a grouping of IP addresses) in the firewall filters can reduce the number of

undirected first-time α flows. An α flow generated by host with a previously unseen

/32 address, but one that belongs to a /24 subnet address for which a firewall filter

rule has been configured, will be automatically redirected as it will match the rule.

4. The number of α prefix identifiers for which firewall filters are configured is not large,

making it manageable from an operational point of view.

5. The percentage of real-time flow packets that share α-flow prefix IDs is small as we do

not expect many audio/video interactive applications to be run on hosts located in the

same subnet as the clusters dedicated for handling file transfers from supercomputing

centers.

6. A majority of α flows are created by large file transfers from well-equipped servers that

are referred to as “data doors.” These are servers dedicated to execute file-transfer

applications, and are deployed in most scientific supercomputing centers and clusters

dedicated for scientific research at university laboratories.
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Figure 3.4: NetFlow data usability experiment

If these hypotheses prove to be true, the offline prefix identifier based AFTES solution

will be highly effective in identifying and directing future α flows to traffic-engineered,

QoS-controlled virtual circuits.

3.4.3 NetFlow data usability

To test the hypothesis that NetFlow data is sufficient to identify α flows in spite of the low

packet sampling rate, an experimental study was conducted on a path consisting of eight

(operational) ESnet IP routers.
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Table 3.2: Size-accuracy ratio for files for different sizes (sample size: 50)

NetFlow records obtained from NetFlow records obtained from
Chicago ESnet router Sunnyvale ESnet router

Mean Standard deviation Mean Standard deviation

100 MB 0.949 0.2780 1.0812 0.3073

1 GB 0.996 0.1708 1.032 0.1653

10 GB 0.990 0.0368 0.999 0.0252

As is shown in Fig. 3.4, two high-end hosts, anl-diskpt1 located at Argonne National

Laboratory, Chicago, and lbl-diskpt1 located at Lawrence Berkeley Laboratory, Berkeley,

were used to run a GridFTP server and GridFTP client, respectively. There were eight

ESnet IP routers on the path between these hosts, with 10 Gb/s links between the routers.

This experimental setup was such that high rates of data transfer could be sustained as

the disks in the end hosts had multi-Gbps access rates and the bottleneck link rate on the

end-to-end path was 10 Gbps.

GridFTP transfers of known sizes were executed between the server and client, and

NetFlow data was collected from two transit routers, chic-cr1 and sunn-cr1. From the

GridFTP logs stored at the server, the TCP ports of the data connections were obtained.

All flow records corresponding to the GridFTP transfers were filtered out using the five-tuple

identifier, and the size of each transfer was estimated using a 1000 factor multiplier on the

total size reported by the flow records for the data connection, since the ESnet NetFlow

sampling rate is 1-in-1000. A size-accuracy ratio is defined to be the ratio of the NetFlow

estimated size and actual file size. For each file size (100 MB, 1 GB, and 10 GB), multiple

runs were executed since the packet sampling at the router makes the size-accuracy ratio a

random variable. The results obtained are shown in Table 3.2. For all three file sizes, the

sample mean shows a size-accuracy ratio close to 1, and more interestingly, the standard

deviation is smaller for larger files (0.28 for 100 MB files to 0.04 for 10 GB files).

These findings show that NetFlow data can be used to detect large-sized high-rate flows.

Thus our first hypothesis proved to be true. Since NetFlow data is based on random packet

sampling, and large-sized flows across high-rate paths have more packets within NetFlow

active timeout intervals, the probability of packets from these flows being captured is higher
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than those from small-sized flows, or large-sized flows across low-rate paths.

3.5 Using AFTES to characterize α flows

While the main purpose of AFTES is to find source-destination IP addresses of completed α

flows and use these addresses to set firewall filters for future α-flow redirection to virtual

circuits, AFTES can also be used to simply characterize α flows.

This section first describes our methodology for characterizing α flows (Section 3.5.1).

This methodology was implemented using the R statistical programming language. Results

from running this software on NetFlow data collected over a 7-month period (May-Nov.

2011) from an ESnet router are presented next (Section 3.5.2).

The specific α-flow characteristics computed include the maximum per-day total number

of bytes sent in α intervals by any single source-destination host/subnet pair, a measure

of persistency of α-flow generation by the same source-destination pairs, the cumulative

per-day number of bytes sent between all source-destination pairs that generate α flows, the

total amount of time when there were one or more active α flows on a router interface, and

the percentage of the total traffic represented by α flows.

3.5.1 Methodology

Two terms, 5-tuple flow and prefix flow [40], are used in characterizing α flows. A 5-tuple flow

consists of all packets arriving with the same 5-tuple values {source IP address, destination

IP address, source port number, destination port number, protocol type} with no consecutive

inter-packet gaps greater than some fixed time threshold. The fixed time threshold phrase

is required because TCP and UDP port numbers for the same source-destination hosts

are reused at some point in time. A prefix flow consists of all packets arriving within an

aggregation interval (some fixed duration) that have the same source and destination address

prefixes (e.g., /24 prefixes).

Tables 3.3 and 3.4 define the terminology and notation used in this work. Table 3.3

first defines α NetFlow reports as reports whose total bytes exceeds a threshold H. Next,

Table 3.3 defines an α flow as a 5-tuple flow for which there is at least one α NetFlow report.
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Table 3.3: Terminology

Term Meaning

α NetFlow re-
port

a NetFlow report in which the byte threshold H is
exceeded

α flow a 5-tuple flow (see Section 3.5.1 for definition) for
which there is at least one α NetFlow report

α-interval of
an α flow

interval between first-packet and last-packet times-
tamps in each α NetFlow report of the α flow

α prefix iden-
tifiers (IDs)

prefix identifiers (source/destination address pre-
fixes) of α flows

α prefix flow a prefix flow (see Section 3.5.1 for definition) in which
all its packets belong to α flows that share its prefix
identifier

α-bytes of an
α prefix flow

sum of bytes reported in its constituent α NetFlow
reports

α-time of an
α prefix flow

the total time within each aggregation interval in
which at least one of the constituent α flows experi-
enced an α-interval.

Table 3.4: Sets created for the ith aggregation interval

Symbol Set No.
of
ele-
ments

Elements
of the
set

Attributes of an element

Identifier α-bytes Start
and end
time

α-time No. of
α Net-
Flow
re-
ports
aggre-
gated

Ri Set
of α
Net-
Flow
re-
ports

mi rij ωij βij (sij , eij) NA NA

Pi Set
of α
pre-
fix
flows

di pil ζil ηil NA µil gil
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Thus, an α flow may have some α NetFlow reports and some non-α NetFlow reports. An α

flow can have one or more α-intervals, each of which is a time period in which the α flow

sent packets whose aggregate size exceeded H bytes within a NetFlow active timeout period

(denoted τ). Finally the source and destination address prefixes of α flows are referred to as

α prefix identifiers.

The next three terms in Table 3.3 define α prefix flows and their characteristics, α-bytes

and α-time. A prefix flow is an α prefix flow if its source/destination address prefix is an α

prefix identifier. Two characteristics of an α prefix flow, α-bytes and α-time, are used to

represent the aggregate bytes and total time observed in α-intervals of α flows that shared

the prefix flow’s identifier.

Table 3.4 lists notation for parameters of α NetFlow reports and α prefix flows, which

are used to compute α-bytes and α-time for α prefix flows. In day i, the set of NetFlow

reports Ri has mi α NetFlow reports. Each report rij is itself a set consisting of several

parameters, such as the number of bytes βij , source/destination address prefixes denoted as

the identifier, ωij , and start time sij and end time eij , which represent the UTC timestamps

of the first and last packets in the NetFlow report, respectively. The number of bytes in all

NetFlow reports in set Ri are lower-bounded by H, i.e.,

βij ≥ H, 1 ≤ j ≤ mi (3.1)

The next row in Table 3.4 represents the parameters of α prefix flows. On each day i, a

set Pi of α prefix flows is created. Each element in this set is itself a set consisting of an

identifier ζil, which is the source/destination address prefix pair, and other parameters as

shown in Table 3.4.

Below, the α-bytes and α-time of each α prefix flow are characterized. For each α prefix

flow pil, the α-bytes, ηil (see Table 3.4), is determined as follows:

ηil =

gil∑
j=1

βij , s.t., j ε Jil, 1 ≤ l ≤ di (3.2)

where Jil = {j1, j2, · · · , jgil}, a set of indices selected from report set Ri such that the
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source/destination address prefixes in identifiers ωija are equal to ζil for 1 ≤ a ≤ gil and

1 ≤ ja ≤ mi (see Table 3.4).

To determine α-time of pil, the following procedure is used. If there are multiple α

flows that share the prefix ID of an α prefix flow pil, these flows could have overlapping

α-intervals. Such overlapping intervals should be counted only once. The α-intervals of

constituent α flows in an α prefix flow pil are divided into two sets: Oil consisting of xil

overlapping α-intervals, and Nil consisting of yil non-overlapping α-intervals. A new set of

non-overlapping intervals Mil of size uil is derived from Oil as follows: from a contiguous

set of overlapping α-intervals within set Oil, a new interval is created for set Mil with

the earliest start time, seiv, and the latest end time, eliv, v ε(1, uil). The α-time, µil (see

Table 3.4), is then computed as

µil ,
uil∑
v=1

(eliv − seiv) +

yil∑
u=1

(eiu − siu), 1 ≤ l ≤ di (3.3)

3.5.2 Characterizing α flows

ESnet NetFlow data was collected from an ESnet provider edge router for seven months:

May 1 - Nov. 30, 2011 (214 days). In ESnet routers, NetFlow was configured to sample

1-in-1000 packets, and the active timeout interval was set to 60 seconds. Flow information

was collected for the incoming side of all inter-domain interfaces. Flow tools [58], and custom

Perl and R [59] programs are used to analyze the data.

The following parameter values were used: τ , NetFlow active timeout interval, was 1

minute, aggregation interval for creating prefix flows was 1 day, and H, the α NetFlow

report threshold, was 1 GB. A new symbol I is used to represent the period of the analyzed

NetFlow data, which was 214 days. Two types of prefix identifiers were used: (i) /32 source

and destination IP addresses, and (ii) /24 source and destination subnet IDs. The aging

parameter used to delete entries from the firewall filter was varied to study its impact.

As explained in Section 3.5.1, sets Ri, 1 ≤ i ≤ I, were created from the daily set of

NetFlow reports using the α-flow criterion. From this filtered set of α NetFlow reports,

per-day α prefix flow sets Pi, 1 ≤ i ≤ I, were created. The following characteristics of these

sets are described:
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Table 3.5: Data for individual α prefix flows (the per-day sets for the whole 214-day period
are sorted by α-bytes or α-time)

Percentiles 100% 90% 80% 70% 60% 50%

Sorted on /24 2603.58 44.43 16.94 8.5 5.34 3.46
α-bytes (GB) /32 2060.29 12.54 5.48 3.5 2.44 1.95

Sorted on /24 544.64 21.27 8.16 4.54 2.66 1.88
α-time (min) /32 544.64 6.16 2.76 1.78 1 0.99

• Data for individual α prefix flows

• A measure of persistence

• Cumulative per-day data

• Relative values of α flows when compared to all traffic

Individual α prefix flows A total of 125 unique /24 α prefix IDs and 1548 unique /32

α prefix IDs were observed in the 214-day NetFlow reports. In other words, 125 source-

destination subnets and 1548 source-destination hosts generated α flows in the observed

214-day period. Not all α prefix IDs made an appearance every day. A matrix consisting

of α prefix IDs as rows and the 214 days as columns was sparse, where each matrix entry

consists of two tuples: {α-bytes, α-time}.

The data (α-bytes and α-time) corresponding to α prefix flows pil, 1 ≤ l ≤ di and

1 ≤ i ≤ I, for 6 different percentile values are presented in Table 3.5. For example,

max1≤i≤I(max1≤l≤di ηil) for the /24 α prefix IDs is 2.6 TB. In the other days, within that

214-day period, α flows corresponding to one α prefix ID transferred 2.6 TB within α-

intervals in one day. The longest α-time from among all prefix flows (/24 or /32) observed

in the 214-day period was 544.64 min (i.e., 9.08 hours of α intervals within one 24-hour

period). This is significant because during α intervals, packets from real-time audio-video

flows could have suffered increased delays. These 100 percentile values are not typical. As

seen in Table 3.5, 90% of α prefix flows have a much smaller α-time, i.e., 21.27 mins for /24

sets and 6.16 mins for /32 sets.
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Figure 3.5: Cumulative probability of the number of days, Nu, u ∈ U, in which a unique α
prefix ID u made an appearance

A measure of persistence The number of days in which an α prefix ID makes an

appearance is characterized as a measure of persistence. Let U represent the set of unique

α prefix identifiers that appeared in the 214-day observation period (determined from the

sets {ζil, 1 ≤ l ≤ di and 1 ≤ i ≤ I}). For each u ∈ U, Nu is defined as the number of days

in which {ηil > 0 for ζil = u, 1 ≤ l ≤ di and 1 ≤ i ≤ I}.

Cumulative probability plots of Nu for the /24 and /32 cases are shown in Fig. 3.5. The

maximum number of days (out of 214) in which a /24 α prefix ID appeared was 114. The

maximum number of this persistency measure for a /32 α prefix ID was 68. Of the /24 and

/32 unique α prefix IDs, 21.6% and 4.5% appeared more than 15 days, respectively, and

39.2% and 10.34% appeared more than 7 days, respectively. These numbers show that some

source-destination host/subnet pairs repeatedly generate α flows. This is consistent with
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Figure 3.6: Cumulative (across all α prefix IDs) per-day data

our second hypothesis.

Cumulative per-day data The total α-bytes (
l=di∑
l=0

ηil), total α-time (
l=di∑
l=0

µil), and total

number of unique 5-tuple IDs among the α flows, for each day i, for 1 ≤ i ≤ I, are plotted

in Fig. 3.6. Both the total α-bytes and total α-time peaked on Jul. 28, 2011 (day number

89). On this day, there were 2.65 TB transferred in α-intervals, and 9.28 hours of α-time. It

was noted earlier (Table 3.5) that most α prefix flows have small α-times, i.e., 90% of the

/24 sets and /32 sets have per-day numbers less than 21.27 mins and 6.16 mins, respectively.

However, the cumulative data analysis illustrates that in 10% of the days, the total amount

of α-time (i.e., the sum of all unique α-intervals) was more than 4.1 hours, which means

during these intervals, α flows could cause increases in the delays experienced by real-time

audio-video flow packets (this particular router has only one outgoing link to another ESnet
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router on which all these α flows are being carried). The total number of unique 5-tuple IDs

among all α flows peaked at 1662 on Nov. 22, 2011 (day number 206).

(a) df = 2 (b) df = 4

Figure 3.7: Binary quantized cumulative data plus a smoothing spline function

In the plots of Fig. 3.6, one can observe increasing trends in α-flow activity over the

7-month period. For example, it appears that there were more days with α flows in the later

months of the observed time period than in earlier months. In order to study this trend

for the three measures plotted in Fig. 3.6, a coarse binary quantization was applied before

fitting the points with a smoothing spline function. Specifically, the median value for each

of the three measures was chosen as the threshold for a 0/1 quantization of the observed

values, and two different values were used for the number of degrees of freedom (df), 2 and

4, in the smoothing spline function. Lower values of df creates greater smoothing at a cost

of accuracy of fit. The increasing trends seen in the smoothed spline plots of Fig. 3.7 are

likely due to increasing sizes of scientific data sets, and frequency of transfers.

Relative values of α flows when compared to all traffic Table 3.6 shows the portions

of the total traffic constituted by α-bytes on a monthly basis for the observed time period.

The total traffic was determined from SNMP link usage data collected by ESnet [35]. The

percentages for all seven months were less than 2%. Prior work cite the 50-20 rule [60], in

which 20% of the flows contribute 50% of the packets. As noted in Section 3.3, the criterion
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used for classifying a flow report as belonging to an α flow did not rely on a volume threshold

such as the 50% number used by Lan and Heidemann [5]. Instead the threshold was fixed

at 1 GB in a time period less than equal to 1 min. This threshold was high enough that

the byte ratio is small at 2%. An analysis of actual GridFTP usage transfer statistics for

two source-destination pairs [18] shows that the percentage of scientific transfers that would

create flows exceeding this threshold is small. This high threshold was selected because of

the light link loads observed with SNMP data, which indicates that unless a sizeable burst

occurs in a short duration the flow is not likely to cause adverse effects on real-time flows,

and hence should not be labeled an α flow. Even though the percentage of α bytes was small,

the high-rate/large size of α flows can have adverse effects as illustrated in Section 3.2.

Table 3.6: Percentage of α-bytes in total traffic for /24 case

Month (2011) May Jun Jul Aug Sep Oct Nov

α-bytes (TB) 4.2 7.8 7.9 10.9 5.2 6.9 10.3

Total (TB) 625.9 533.7 692.3 640.6 740.6 1101.8 869.9

Percentage 0.67% 1.46% 1.14% 1.7% 0.7% 0.63% 1.18%

3.6 AFTES evaluation

This section evaluates the AFTES design by testing the remaining hypotheses of Section 3.4.

First, we computed the percentage of α-bytes that would have been redirected to virtual

circuit had AFTES been deployed on ESnet during the May-Nov. 2011 period. While this

percentage, termed effectiveness, was higher when /24 subnet IDs were used in firewall

filters than when /32 complete host addresses were used (91% vs. 82%), there were a cost

to using /24 prefix IDs in that β-flow (non-α) packets that shared the same prefix IDs as

α flows would also get directed to the traffic-engineered paths/queues set up for α flows.

This analysis is presented in Section 3.6.1. In a second analysis, this cost was quantified,

using a measure of the percentage of β-flow packets that were attributable to file transfer

applications (the assumption being that α-flow bursts were less adverse to file-transfer

flows than to real-time delay-sensitive flows). Section 3.6.2 presents this analysis. Finally,
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the hypothesis that α flows primarily originate from “data doors,” well-equipped nodes

dedicated for large high-speed data transfers, was tested and found to be true, as presented

in Section 3.6.3.

3.6.1 Effectiveness of AFTES

This analysis measures the effectiveness of the offline approach proposed for AFTES. Ef-

fectiveness is defined as the percentage of α-bytes that would have been redirected to

traffic-engineered paths and isolated from the general traffic had AFTES been deployed.

Figure 3.8: Number of new α prefix IDs per day

But before presenting our effectiveness results, the number of new α prefix IDs that

appeared each day is plotted. Fig. 3.8 shows the number of new α-flow associated prefix

identifiers appearing each day in the 214-day observed period. The aging parameter A

was set to 214 days (i.e., firewall filter rules corresponding to α flows were never deleted).
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Figure 3.9: Number of new α prefix IDs per day with smoothing spline function (df=4)

The numbers would be greater if the aging parameter was set to a smaller time period to

prevent the firewall filter from growing too large. The dependence on the aging parameter is

presented later. Overall, the trend in the new α prefix IDs graph is downward as seen with

the smoothing spline function (degrees of freedom set to 4) in Fig. 3.9. For example, on day

1, there were nine /24 new α prefix IDs but after day 45, in 94.7% of the days, there were

only 0 or 1 new α prefix IDs. This confirms our third hypothesis that the number of new α

prefix IDs is small. The implication is that the size of the firewall filter needed to support

traffic engineering for α flows may not be significant, since modern routers allow for very

large numbers of firewall filter rules. However, there can be days, such as Nov. 10th, 2011,

when α flows were observed corresponding to 6 new /24 prefix IDs, and 141 new /32 prefix

IDs. This can happen when there are new installations of high-speed data transfer nodes or

when new scientists access existing data transfer nodes.
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Figure 3.10: Effectiveness of AFTES for different values of the aging parameter

Fig. 3.10 shows the effectiveness of AFTES; specifically it shows the percentage of α-bytes

that would have been redirected and isolated, on a per-month basis.

Table 3.7 shows the aggregate percentage of α-bytes that would have been directed

across the whole observed time period of 214 days corresponding to different values of the

aging parameter, A. Usage of /24 prefix IDs was more effective than the /32 prefix IDs (the

negative aspect of this finding is quantified in the next section). This is to be expected since

data transfer nodes are often cluster computers with IP addresses in the same subnet. With

new installations of high-speed data transfer nodes, previously unseen /32 prefix identifiers

would have been covered by /24 identifiers. If rules are never deleted from the firewall filter,

for the /24 case, 92% of α-bytes would have been isolated from β flows across the 7 months.

The negative of never deleting firewall filter rules is that the firewall filter keeps growing

as shown in Fig. 3.11, though the absolute size was small relative to what modern routers
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Figure 3.11: Growth of firewall filter for different values of the aging parameter

can support. But for sustainability, firewall filter rules corresponding to prefix IDs with no α

flow appearances should be deleted. The use of an aging parameter of 30 days appears to be

a good compromise. The firewall filter size levels off as seen in Fig. 3.11, while at the same

time, the effectiveness measure does not decrease significantly. The aggregate percentage

across 7 months decreases from 92% to 91% for the /24 case, when the aging parameter was

dropped from 214 to 30 days, as seen in Table 3.7. This confirms our fourth hypothesis that

the firewall rules is manageable from an operational point of view.

3.6.2 Quantifying the cost of AFTES on β flows

The cost of using /24 source and destination subnet identifiers rather than the more

constrained /32 host identifiers in firewall filters is that β flows that share the same

source/destination address prefixes as α flows will also get redirected to the traffic-engineered
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Table 3.7: Percentage of α-bytes that would have been redirected and isolated across whole
214-day period

Aging parameter (days) /24 /32

7 82% 67%

14 87% 73%

30 91% 82%

214 92% 86%

paths/queues meant to handle α flows. Packets from these β flows could suffer increased

delays as they would be queued in the same buffers as those used for α flows (see Section 3.2).

The purpose of this analysis was to characterize these unfortunate β flows. The term “hapless

β flows” is used for these flows that share α prefix identifiers, and get traffic engineered on

to the same paths and queues as α flows.

The method used was to start with the set of non-α NetFlow reports (flow reports in

which the size threshold H is not exceeded) for each aggregation interval i, and then apply

three filters in sequence. First, non-α NetFlow reports corresponding to α flows were

identified. As noted in Section 3.4 and per the definitions in Table 3.3, a 5-tuple flow is

classified as an α flow even if it has just one α NetFlow report. Other NetFlow reports

corresponding to this 5-tuple flow may have sizes that are below the H threshold. Therefore,

the first step was to identify the subset of non-α NetFlow reports that belong to α flows.

The remaining non-α NetFlow reports were from hapless β flows.

The second filter was used to identify NetFlow reports from file transfer applications

with the assumption that the delay impact on such flows caused by bursts from α flows is

not as critical as on real-time flows. The criteria used for a NetFlow report to qualify as

being from a file transfer application were that (a) the number of bytes/packet should be at

least 1000, (b) the total byte count should be greater than a threshold G, where G < H, and

(c) there is at least one other NetFlow report within the aggregation interval that shares

the same source and destination IP addresses, protocol type, and at least one of the two

port numbers as the candidate NetFlow report. Typically NetFlow reports from file transfer

applications will have multiple packets in spite of the low sampling rate (e.g., 1-in-1000), and

most of these packets will be maximum-sized packets (Ethernet’s Maximum Transmission
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Unit size is 1500 B). The second criterion ensures that the flow corresponding to the flow

report was generating a sizeable amount of data. The last criterion was applied because

parallel TCP streams are used by scientific data transfer applications such as GridFTP. For

example, 8-stream transfers were common [18]. Flows corresponding to these 8 streams

typically shared the source and destination IP addresses, protocol type (TCP), and either

the source port number or destination port number, with the other port number being

different for each of the 8 streams. Therefore, due to the low sampling rate, even if there

was just one NetFlow report from one stream, it is likely that there were NetFlow reports

from the other streams.

The third filter isolated NetFlow reports for flows with well-known port numbers;

specifically ssh, http, imap, smtp, ssmtp, http, https, nntp, imap, imaps, imap4ssl, unidata,

rtsp, rsync, sftp, bftp, ftps, pop3, and sslpop. Some file transfers used scp, which would

appear as ssh flows, but such flows would have been filtered out into the first or second

categories leaving behind only those ssh flows corresponding to interactive applications such

as SecureCRT because of the sequential application of these filters.

After the sequential application of the three filters on the set of non-α NetFlow reports

for each aggregation interval i, the remaining (unclassified) NetFlow reports were grouped

together as “Leftover.” The set of non-α NetFlow reports corresponding to hapless β flows

were thus divided into three groups: File Transfers (FT), Well-Known Ports (WNP), and

Leftover.

Our analysis focused on packets instead of bytes for these three groups of hapless β-flow

Netflow reports. This is because for smaller sized flows, the size accuracy ratio of multiplying

the byte count by 1000 (because of the 1-in-1000 packet sampling) will be lower than for

large-sized flows [14]. Specifically, for the sampled set of packets from the hapless β flows,

the percentages represented by packets from each of the three groups were computed. Across

the whole 214-day period, most of the hapless β flow packets belonged to the first group

(file transfers). For the /24 case, 89.37% of the hapless β-flow packets were classified as

being from file transfer flows, and for the /32 case, the percentage was 88.77% with the

G threshold set to 10 MB (recall the H threshold was 1GB). Only a small percentage of

the hapless β-flow packets belonged to the second group, i.e., from non-file transfer flows
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(a) /24 prefix ID case

(b) /32 prefix ID case

Figure 3.12: Percentages of four groups of hapless β flow packets with smoothing spline
function (df=2)
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(a) /24 prefix ID case

(b) /32 prefix ID case

Figure 3.13: Percentages of four groups of hapless β flow packets with smoothing spline
function (df=4)
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with well-known port numbers: for the /24 this number was 0.026% for both the /24 and

/32 cases. The third group (leftover) percentage was small (e.g., 10.6% for the /24 case).

These numbers confirm our fifth hypothesis that the number of β flows that share the same

source-destination subnets with α flows and are adversely affected is small.

The per-day percentages for these three groups of hapless β flow packets are plotted

using smoothing spline functions (degrees of freedom set to 2 and 4), in Figs. 3.12 and 3.13.

For both /24 and /32 cases, the WNP group percentages were almost 0.

In summary, the above analysis shows that most β flows that shared α prefix identifiers

were from file transfer applications, and not from interactive applications such as VoIP and

Web browsing. This is likely because in most supercomputing centers, high-end data transfer

nodes are set up as clusters in their own subnets. Therefore the cost of using prefix IDs

instead of 5-tuple flow IDs for traffic engineering α flows appears to be low.

Furthermore, we recommend the use of /24 address prefixes rather than /32 addresses

because the effectiveness measure was higher for the former, and the negative effect on β

flows was small. It is better to have a small percentage of β flows be impacted by α flows

(which will happen at a higher rate with /24 prefixes) than to miss α flows, which will

happen at a higher rate with /32 addresses, and have those α flows impact the much larger

proportion of β flows on the default IP-routed paths.

3.6.3 Data-door analysis

Our last hypothesis, presented in Section 3.4, was that α flows are created by large file

transfers from well-equipped nodes that are referred to as “data doors.” In order to test

this hypothesis, the domain names/IP addresses of data doors in major high performance

computing facilities (e.g., rftpexp.rhic.bnl.gov) were obtained from their corresponding Web

sites, and these IP addresses were matched against the α prefix identifiers found through

the above described NetFlow data analysis. Our findings support the hypothesis.

Absolute and relative measures of the daily number of α prefix IDs matched with data

door address prefixes are shown in Fig. 3.14. In 96 (44.9%) days out of 214, all α prefix

identifiers matched with those of data doors, and in 175 (81.8%) days out of the 214 days,

the matched rate was more than 80%.
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Figure 3.14: A measure of the ratio of α prefix IDs from/to data doors

Figure 3.15: A measure of the ratio of α-bytes from/to data doors

Absolute and relative measures of the per-day α-bytes from/to data doors are shown in

Fig. 3.15. In 148 (69.2%) days out of 214, more than 90% of the α-bytes were from/to data
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Figure 3.16: Histograms of the two data-door ratio measures

doors.

Histograms of the two ratios presented above are shown in Fig. 3.16. The high probability

mass at a ratio of 1 indicates that for most days, the α flows came from data doors. In

summary, it appears that indeed most α prefix flows were from/to high-end servers that are

designed specifically for handling data transfers.

3.7 Conclusions

In this chapter, an offline mechanism was presented for determining prefix identifiers of α

flows, which are caused by high-rate, large-sized data transfers that are typically created in

research-and-education networks by scientific researchers. Such an offline scheme is developed

for a network management system called Alpha Flow Traffic Engineering System (AFTES)

for intra-domain traffic engineering. Prefix identifiers (IDs) (source and destination address

prefixes) of persistent α flows are used to set firewall filters to redirect future α flows to

traffic-engineered paths, and to isolate their packets to separate queues. These actions

are performed to reduce adverse effects that α flows could have on packets from real-time



3.7 Conclusions 55

flows, such as increased packet delay and delay variance. The effectiveness of this offline

mechanism was evaluated through an analysis of 7 months of NetFlow data obtained from

an ESnet router. For this data set, 91% of bytes generated by α flows in bursts would have

been directed with /24 based prefix IDs and an aging interval of 30 days. An analysis of

β-flow packets that share α-flow prefix IDs showed that close to 90% of these packets were

from file-transfer applications, which are not as affected by α flows as packets from real-time

applications.



Chapter 4

Quality of Service (QoS)

provisioning for α flows

4.1 Introduction

In Chapter 3, we presented an overall architecture for an intra-domain traffic engineering

system called Alpha Flow Traffic Engineering System (AFTES) that performs two tasks: (i)

analyzes NetFlow reports offline to identify α flows, and (ii) configures the ingress routers

for future α-flow redirection to traffic-engineered Quality-of-Service (QoS)-controlled paths.

Chapter 3 focused on the first aspect, and this chapter focuses on the second aspect of

AFTES by addressing the question of how to achieve α-flow redirection and isolation to

traffic-engineered paths.

As introduced in Section 2.2, The Inter-Domain Controller (IDC) requires an application

to specify the circuit rate, duration, start time, and the endpoints in its advance-reservation

request. The specified rate is used both for (i) path computation in the call-admission/circuit-

scheduling phase and (ii) policing traffic in the data plane. If the application requests a

high rate for the circuit, the request could be rejected by the OSCARS IDC due to a lack of

resources. On the other hand, if the request is for a relatively low rate (such as 1 Gbps),

then the policing mechanism could become a limiting factor to the throughput of α flows,

preventing TCP from increasing its sending rate.

56
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The purpose of this chapter is to evaluate the effects of different scheduling and policing

mechanisms to achieve two goals: (i) reduce delay and jitter of real-time sensitive flows that

share the same interfaces as α flows, and (ii) achieve high throughput for α-flow transfers.

Our key findings are as follows:

1. With the current widely deployed best-effort IP-routed service, which uses first-come-

first-serve (FCFS) packet scheduling on egress interfaces of routers, the presence of an

α flow can increase the delay and jitter experienced by audio/video flows.

2. This influence can be eliminated by configuring two virtual queues at the contending

interface and redirecting identified α flows to one queue (α queue), while all other

flows are directed to a second queue (β queue).

3. The policer should not be configured to direct out-of-profile packets of an α TCP flow

to a different queue from its in-profile packets. When packets of the same TCP flow are

served from different queues, packets can arrive out of sequence at the receiver. Out-

of-sequence arrivals triggers TCP’s fast retransmit/fast recovery congestion algorithm,

which causes the TCP sender to lower its sending rate resulting in degraded throughput.

4. An alternative approach to dealing with out-of-profile packets is to probabilistically

drop a few packets using Weighted Random Early Detection (WRED), and to buffer

the remaining out-of-profile packets in the same queue as the in-profile packets. This

prevents the out-of-sequence problem and results in a smaller drop in α-flow throughput

when compared to the separate-queues approach.

5. The no-policing scheme is preferred to the policing/WRED scheme because AFTES

redirects α flows within a provider’s network, which means that these flows will typically

run TCP and are not rate-limited to the circuit rate. If an end application requested

a circuit explicitly, then it can be expected to use traffic control mechanisms, such

as Linux tc, to limit the sending rate. But with AFTES, the end application is not

involved in the circuit setup phase, and therefore the applications are likely to be

running unfettered TCP. Under these conditions, when buffer occupancy builds up,

packets will be deliberately dropped in the policing/WRED scheme, leading to poor
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performance. Furthermore, if there are two simultaneous α flows, the probability of

buffer buildups increases, which in turn increases the dropped-packet rate and lowers

throughput.

6. The negatives of partitioning rate/buffer space resources between two queues were

studied. Our conclusions are that close network monitoring is required to dynamically

adjust the rate/buffer space split between the two queues as traffic changes, and the

probability of unidentified α flows should be reduced whenever possible to avoid these

flows from becoming directed to the β queue.

Section 4.2 provides background and reviews related work. Section 4.3 describes the

experiments we conducted on a high-speed testbed to evaluate different combinations of

QoS mechanisms and parameter values to achieve our dual goals of reduced delay/jitter

for real-time flows and high throughput for α flows. Our conclusions are presented in

Section 4.4.

4.2 Background and Related Work

The first two topics, Transmission Control Protocol (TCP) and QoS support in state-of-

the-art routers, provide relevant background information. The last topic, QoS mechanisms

applied to TCP flows, covers related work.

Transmission Control Protocol (TCP) TCP was first proposed by Cerf and Kahn

in 1974 [61]. It is a reliable transport protocol that requires the receiver to send acknowl-

edgements (ACKs) back to the sender to confirm receipts of segments (term used at the

TCP layer for packets). The goal of a TCP sender is to maximize its own throughput while

being fair to other TCP flows. The TCP sender starts out slowly by sending only one

segment and awaiting an ACK. When the ACK arrives, it increases its sending window (also

called congestion window) size by a maximum segment size (MSS), which correspondingly

allows the TCP sender to send two segments. This congestion control scheme is described as

Additive-Increase/Multiplicative-Decrease (AIMD), because the TCP congestion window is

increased additively every round trip time (RTT), but decreased by a multiplicative factor if
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congestion is detected by a packet loss. Packet loss events are triggered by the retransmission

timer maintained at the sender (one at a time for each TCP connection while awaiting an

ACK for a segment) times out (called an RTO). When an RTO occurs, the TCP sender

drops the congestion window to 1 MSS, which means its sending rate drops to the minimum

level where it sends one segments and awaits an ACK.

In most current implementations of TCP, e.g., TCP Reno and H-TCP, a fast retrans-

mit/fast recovery algorithm is added in order to allow TCP to react faster to network

congestion. When the sender receives three duplicate ACKs, the sender assumes that a

packet was lost because the receiver triggers a duplicate ACK for every new packet received

out of sequence. The sender interprets the reception of triple-duplicate ACKs to mean

that congestion level is not that high because packets are getting through to the receiver,

while that one packet for which triple-duplicate ACKs are received must have been lost

(cumulative ACKs are used in TCP, which means that the requested ACK number is the

sequence number of the next expected segment). The TCP sender just halves the congestion

window (instead of dropping it to 1 MSS as happens with an RTO). This allows the TCP

sender to ramp back up the congestion window to the point at which it is no longer waiting

for ACKs, i.e., it is constantly sending segments as ACKs are streaming back in.

If TCP segments get delayed due to buffer buildups within routers, RTT increases,

which means ACKs arrive back at the sender at a slower rate, which effectively lowers the

TCP-segment sending rate. This should relieve buffer buildup causing RTT to drop and the

rate to pick back up. This process is referred to as self-clocking in the TCP context.

QoS support in state-of-the-art routers Multiple policing, scheduling and traffic

shaping mechanisms have been implemented in today’s routers. We review the particular

mechanisms used in ESnet, and hence in our experiments. For scheduling, two mechanisms

are used: Weighted Fair Queueing (WFQ) and Priority Queueing (PQ) [62]. With WFQ,

multiple traffic classes are defined, and corresponding virtual queues are created on egress

interfaces. Bandwidth can be strictly partitioned or shared among the virtual queues. WFQ

is combined with PQ as explained later. On the ingress-side, policing is used to ensure

that a flow does not exceed its assigned rate (set by the IDC during call admission). For
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example, in a single-rate two-color (token bucket) scheme, the average rate (which is the

rate specified to the IDC in the circuit request) is set to equal the generation rate of tokens,

and a maximum burst-size is used to limit the number of tokens in the bucket. The policer

marks packets as in-profile or out-of-profile. Three different actions can be configured: (i)

discard out-of-profile packets immediately, (ii) classify out-of-profile packets as belonging to

a Scavenger Service (SS) class, and direct these packets to an SS virtual queue, or (iii)

drop out-of-profile packets according to a WRED profile, but store remaining out-of-profile

packets in the same queue as in-profile packets. For example, the drop rate for out-of-profile

packets can be configured to increase linearly from 0 to 100 for corresponding levels of queue

occupancy.

QoS mechanisms applied to TCP flows Many QoS provisioning algorithms that

involve some form of active queue management (AQM) have been studied [63–67]. Some of

the simpler algorithms have been implemented in today’s routers, such as RED [63] and

WRED [65], while other algorithms, such as Approximate Fair Dropping (AFD) [67], have

been shown to provide better fairness. An analysis of the configuration scripts used in core

and edge routers of ESnet shows that these AQM related algorithms are not enabled. This is

likely due to the commonly adopted policy of overprovisioning (an Internet2 memorandum [34]

states a policy of operating links at 20% occupancy). Nevertheless, providers have recognized

that in spite of the headroom, an occasional α flow can spike to a significant fraction of link

capacity (e.g., our GridFTP log analysis showed average flow throughput of over 4 Gbps

across 10-Gbps paths [18]). When the flow throughput averaged across its lifetime is 4 Gbps,

there can be short intervals in which the flow rate spiked to values close to link capacity.

4.3 Experiments

A set of experiments were designed and executed to determine the best combination of QoS

mechanisms with corresponding parameter settings in order to achieve our dual goals of

reduced delay/jitter for real-time traffic and high throughput for α flows. For the first goal,

we formulated a hypothesis as follows: a scheduling-only no-policing scheme that isolates
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α-flow packets into a separate virtual queue is sufficient to keep non-α flow delay/jitter

low. For the second goal, we experimented with different QoS mechanisms and parameter

settings.

Experiment 1 was designed to understand the two modes for sharing link rate (strictly

partitioned and work conversing), and to determine the router buffer size. Experiment

2 tests the above-stated hypothesis for the first goal. Experiments 3 and 4 studied two

different mechanisms, using a separate scavenger-service (SS) queue vs. using WRED, for

handling the out-of-profile packets identified by ingress-side policing, and compared results

with a no-policing approach. We concluded that the WRED scheme was better, but it

was outperformed by the no-policing scheme. Experiment 5 was designed to check if the

policing/WRED scheme had a fairness advantage over the no-policing scheme. We found

that since neither of the two policed α flows honored their assigned rates (which should be

expected for HNTES-redirected flows), under the no-policing scheme the TCP flows adjusted

their sending rates and had no packet losses, while the deliberate packet losses introduced

in the policing/WRED scheme lowered throughput for both flows, and furthermore resulted

in lower fairness because of a difference in RTTs, even though this difference was small.

In Experiment 6, we characterized the impact of QoS provisioning under changing traffic

conditions, and compared two versions of TCP: Reno [68] and H-TCP [69]. In the presence

of an α flow that uses up its whole α-queue rate allocation, if the background traffic is more

than the rate allocated to the β queue, the latter will suffer from more losses than if there

had been no partitioning of resources between the two queues. This implies a need for closer

monitoring of traffic and dynamic reconfiguration of the rate/buffer allocations to the two

queues. However, since two rare events, an α flow and an increased background load, have

to occur simultaneously, the probability of this scenario is low. H-TCP is better than Reno

for high-speed transfers, but from the perspective of the impact on other flows, we did not

see a significant difference in our tested scenarios. Experiment 7 was designed to study the

effects of an unidentified α flow being directed to the β queue. Here again, if there was no

simultaneous α flow directed to the α queue when the unidentified α flow appeared, then

the impact will be the same as without partitioning. However, if this combination of rare

events occurs jointly, then given that the β queue has only a partition of the total interface
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Figure 4.1: Experiment setup

rate/buffer space, the impact on delay-sensitive flows will be greater than if there had been

no partitioning.

Section 4.3.1 describes the experimental setup, the experimental methodology, and certain

router configurations that are common to all the experiments. The remaining subsections

describe the seven experiments.

4.3.1 Experimental Setup

The experimental network setup is shown in Figure 4.1. It was called the Long Island MAN

(LIMAN) testbed, and was supported by ESnet as a DOE-funded testbed for networking

research. The high-performance hosts, W1 (West 1), E1 (East 1), and E2 (East 2), were Intel

Xeon Nehalem E5530 models (2.4GHz CPU, 24GB memory) and ran Linux version 2.6.33.

The application hosts, WA (West App-host) and EA (East App-host), were Intel Dual 2.5GHz

Xeon model and ran Linux 2.6.18. The routers, WR (West Router) and ER (East Router),

were Juniper MX80’s running Junos version 10.2. The link rates were 10 Gbps from the

high-performance hosts to the routers, 1 Gbps from the application hosts to the routers,

and 10 Gbps between the routers.

Host W1 and router WR were physically located in New York City, while the East-side hosts

and routers, and host E2, were physically located in the Brookhaven National Laboratory
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Figure 4.2: Illustration of QoS mechanisms in a router

(BNL) in Long Island, New York. Host E2 was connected to router WR via a circuit provisioned

across the Infinera systems of the underlying optical network as shown in Figure 4.1.

Each experiment consists of four steps: (i) plan the applications required to test a

particular QoS mechanism, (ii) configure routers to execute the selected QoS mechanisms

with corresponding parameter settings based on the planned application flows, (iii) execute

applications on end hosts to create different types of flows through the routers, and (iv)

obtain measurements for various characteristics, e.g., throughput, packet loss, and delay,

from the end-host applications as well as from packet counters in the routers.

A preliminary set of experiments were conducted to determine the specific manner in

which the egress-side link capacity was shared among multiple virtual queues. Theoretically

the transmitter can be strictly partitioned or shared in a work-conserving manner. If strictly

partitioned, then even if there are no packets waiting in one virtual queue, the transmitter

will not serve packets waiting in another queue. In this mode, each queue is served at the

exact fractional rate assigned to it. In contrast, in the work-conserving mode the transmitter

will serve additional packets from a virtual queue that is experiencing a higher arrival rate

than its assigned rate if there are no packets to serve from the other virtual queues. The

buffer is always strictly partitioned between the virtual queues in the routers used in our

experiments.

Figure 4.2 illustrates how a combination of QoS mechanisms was used in our experiments.

First, incoming packets are classified into multiple classes based on pre-configured firewall

filters, e.g., α-flow packets are identified by the source-destination IP address prefixes and
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classified into the α class. Second, packets in some of these classes are directly sent to

corresponding egress-side virtual queues, while flows corresponding to other classes are

subject to policing. A single-rate token bucket scheme is applied. If an arriving packet

finds a token in the bucket, it is marked as being in-profile; otherwise it is marked as being

out-of-profile. Third, for some policed flows, in-profile and out-of-profile packets are sent

to separate egress-side virtual queues, while packets from other policed flows are subject

to WRED before being buffered in a single virtual queue. On the egress-side, each virtual

queue is assigned a priority level, a fractional allocation (expressed as a percentage) of link

capacity, and a fractional allocation of the buffer. As noted in the previous paragraph the

buffer allocation is strictly partitioned while the transmitter is shared in work-conserving

mode. Fourth, the WFQ scheduler decides whether a virtual “queue is in-profile or not,” by

comparing the rate allocated to the queue and the rate at which packets have been served

out of the queue. Finally, the PQ scheduler selects the queue from which to serve packets

using their assigned priority levels, but to avoid starvation of low-priority queues, as soon as

a large enough number of packets are served from a high-priority queue to cause the status

of the queue to transition to out-of-profile, the PQ scheduler switches to the next queue in

the priority ordering. When all queues become out-of-profile, it starts serving packets again

in priority order. It is interesting that while the policer is flagging packets as in-profile or

out-of-profile on a per-flow basis, the WFQ scheduler is marking queues as being in-profile

or out-of-profile.

4.3.2 Experiment 1

Purpose and execution

The goals of this experiment were to (i) determine the router buffer size, (ii) determine

the default mode used in the routers for link capacity (rate) sharing (between the two

options of strict partitioning and work-conserving), and (iii) compare these two modes.

Correspondingly, three scenarios were tested with different router configurations. To control

rate and buffer allocations, the router software required the configuration of a virtual queue

on the egress interface, even if it was just a single queue to which all flows were directed. In
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scenario 1, by modifying the buffer allocation for the virtual queue, router buffer size was

determined. In scenario 2, by modifying the rate allocation, the default mode for capacity

sharing was determined. Finally, in scenario 3, the router was explicitly configured to operate

in the two different modes for comparison.

As per our execution methodology, the first step was to plan applications. For the first

two scenarios, we planned to use two UDP flows created by the nuttcp application, and

a “ping” flow to send repeated echo-request messages and receive responses. The purpose

of the ping flow was to measure round-trip delays, and the UDP flows were used to fill up

the router buffer. Only one UDP flow was required for the third scenario. Hosts W1 and E2

were used to generate the two UDP flows, both of which were destined to host E1. Different

hosts were used to achieve high transfer rates. The ping flow sent messages from host WA

to host EA. Therefore, contention for buffer and bandwidth resources occurrred on the link

from router WR to router ER.

Our next step was to configure the routers. A single virtual queue was configured on

the output interface from WR to ER, and all application flows were directed to this queue.

In scenario 1, the whole link capacity was assigned to the virtual queue, but the buffer

allocation was changed from 20% to 100%. In scenario 2, the assigned rate was varied from

1% to 100%, while the buffer allocation was set to 100%, and in scenario 3, the rate and

buffer allocations were set to 20%, and the capacity sharing mode was explicitly configured.

Next, we executed the experiments corresponding to the scenarios. For the first two

scenarios, each nuttcp application was initiated with the sending rate set to 7 Gbps, resulting

in a total incoming rate of 14 Gbps in order to fill up the buffer of the 10 Gbps WR-to-ER

interface. Due to the resulting packet losses, nuttcp at the receiving host E1 reported

rates of approximately 5 Gbps for each UDP flow. In scenario 3, the sending rate of the

single UDP flow was set to 3 Gbps. This was sufficient given the 20% rate allocation to the

configured virtual queue on the WR-to-ER link in this scenario. In all three scenarios, the

UDP flows and ping flow were run for 60 seconds.

Finally, for the first and third scenarios, round-trip time (delay) measurements were

obtained from the ping application on the WA host. For the second scenario, router counters

for outgoing packets on the WR-to-ER link were read in order to find the number of packets
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Figure 4.3: Experiment 1 scenario 1 results: Ping delay for different buffer allocations (rate
allocation was 100%)

transmitted within 60 seconds under different rate allocations.

Results and discussion

Router buffer size The ping packet delay measured in scenario 1 is plotted against the

ping packet number, which is effectively the same as time, in Figure 4.3. With increasing

time, the ping delay increases gradually because the nuttcp UDP packets start filling the

buffer partition allocated to the virtual queue on the WR-to-ER interface. The minimum ping

delay (2.1 ms) was observed when there were no UDP flows, i.e., there was no background

traffic. The maximum delay (102 ms) was observed when the buffer allocation for the virtual

queue was 100%.

In the various plots of Figure 4.3, the buffer allocations for the virtual queue are indicated.

When the buffer allocation was limited to 20%, the delay was only 22.2 ms, while when the

buffer allocation was set to 100%, the ping delay was higher because the whole buffer had
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Table 4.1: Experiment 1 scenario 2: packet counter values observed at router WR for its
WR-to-ER interface

Link rate allocation 1% 20% 40% 60% 80% 100%

Number of packets
transmitted on
the WR-to-ER link 51924370 51536097 52755553 52669911 52786301 52637553

filled up. Recall that the aggregate arrival rate of packets destined for the WR-to-ER link was

14 Gbps, while the outgoing link rate was only 10 Gbps.

Based on these observations, the buffer size for the WR-to-ER egress interface can be

computed as follows:

10 Gbps× (102− 2.1) ms = 125 MB (4.1)

Default mode for link capacity sharing From the experiments conducted in Scenario

2, the router counters for the WR-to-ER were recorded, and are shown in Table 4.1. The

reported packets were almost the same for all values of the link capacity allocation. Recall

that the buffer allocation was set to 100% for this scenario. In other words, even if only a

1% rate was assigned to the virtual queue in which packets from all three flows were held,

the virtual queue was served at 100% capacity. This result verifies that the default mode of

operation for the tested router is the work-conserving mode.

Comparison of the two rate sharing modes Two rate sharing strategies, strictly

partitioned and work conserving, were compared in Scenario 3. Figure 4.4 shows the ping

delay results under these two configurations. In the strictly partitioned configuration, ping

delays built up to 102 ms. Recall that for scenario 3, the virtual queue rate and buffer

allocations were set to 20%, which was confirmed as follows:

R =
125 MB × 0.2

(102− 2.1) ms
= 2 Gbps (4.2)

Under the work-conserving configuration, ping delay was only 2.1 ms (the round-trip

time with no background traffic). Recall that the UDP flow sending rate was 3 Gbps in this
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Figure 4.4: Experiment 1 scenario 3: Results comparing the two rate sharing modes (rate
and buffer allocation was 20%)

scenario, while the rate allocation was only 2 Gbps. Yet there was no queue buildup in the

buffer, which means the egress interface was served at a rate greater than 3 Gbps. Thus, in

the work-conserving mode, virtual queues that have packets are served with excess capacity,

if any.

4.3.3 Experiment 2

Purpose and execution

The goals of this experiment were to (i) determine whether α flows have adverse effects on

real-time flows, and (ii) determine whether a scheduling-only no-policing solution of α-flow

isolation to a separate virtual queue is sufficient to meet the first goal of keeping non-α flow

delay/jitter low.

The first step was to plan a set of applications. We decided to use four nuttcp TCP

flows and a ping flow. The TCP version used was H-TCP [69] because it is the recommended
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option to create high-speed (α) flows [70]. Two of the TCP flows carried data from host

E2 toward host W1, while the other two TCP flows were from E1 to W1. The ping flow was

from EA to W1. Therefore, in this experiment, contention for buffer and bandwidth resources

occurred on the link from router WR to host W1. Although the high-performance host W1 was

the common receiver for all flows, there was no contention for CPU resources at W1 because

the operating system automatically scheduled the five receiving processes to different cores.

The second step was to configure the routers. For comparison purposes, this experiment

required two configurations: (i) 1-queue: a single virtual queue was defined on the egress

interface from WR to W1, and all flows were directed to this queue, and (ii) 2-queues: two

virtual queues (α queue and β queue) were configured on the egress interface from WR to W1,

and WFQ scheduling was enabled with the following rate (and buffer) allocations: 95% for

α queue and 5% for β queue. The priority levels of the α and β virtual queues were set to

medium-high and medium-low, respectively. In the 2-queues configuration, two additional

steps were required. A firewall filter was created in router WR to identify packets from TCP

(α) flows using their source and destination IP addresses. A class-of-service configuration

command was used to classify these packets as belonging to the α class and to direct packets

from these flows to the α queue on the egress interface from WR to W1. By default, all other

packets were directed to the β queue, which means that packets from the ping flow were

sent to the β queue.

In the third step, the applications were executed as follows. The four TCP flow execution

intervals were: (0, 200), (20, 160), (40, 140), and (60, 120), respectively, while the ping flow

was executed from 0 to 200 seconds.

Finally, throughput measurements as reported by each nuttcp sender were collected, as

were the delays reported by the ping application.

Results and discussion

The top graph in Figure 4.5 illustrates that the scheduling-only no-policing solution of

configuring two virtual queues on the shared egress interface and separating out the α flows

into their own virtual queue leads to reduced packet delay/jitter for the β flow. In the

1-queue configuration, the mean ping delay was 60.4 ms, and the standard deviation was
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Figure 4.5: Experiment 2: Top graph shows the delays experienced in the ping flow under
1-queue and 2-queues configurations; bottom graph shows the aggregate TCP flow throughput

29.3 ms, while in the 2-queues configuration, the mean ping delay was only 2.3 ms, with a

standard deviation of 0.3 ms.

In the 2-queues case, since the rate of the ping flow was much lower than the 5% allocated

rate for the β queue, the β queue was in-profile, and hence the ping-application packets

were served immediately without incurring any queueing delays.

The bottom graph in Figure 4.5 shows the aggregate throughput of the four TCP flows.

A comparison of this throughput graph with the top ping-delay graph shows the following:

(i) when the aggregate TCP throughput increased from 9.4 Gbps to 10.7 Gbps at time

22, and the ping delay increased from 3 ms to 82 ms. The nuttcp application reports

average throughput on a per-sec basis. Therefore, while the total instantaneous throughput

cannot exceed 10 Gbps (link rate), the sum of the per-sec average throughput values for

the four TCP flows sometimes exceeds 10 Gbps, (ii) when the aggregate TCP throughput

dropped from 10.6 Gbps to 9.3 Gbps at time 49, the ping delay dropped from 92 ms to 22
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ms, correspondingly, and (ii) throughput drops at 85, 121, 141, and 161 sec coincided with

ping-delay drops.

4.3.4 Experiment 3

Purpose and execution

The goals of this experiment were to (i) compare a 2-queues configuration (scheduling-only,

no-policing) with a 3-queues configuration (scheduling and policing), and (ii) compare

multiple 3-queues configurations with different parameter settings.

As per our execution methodology, the first step was to plan applications. To study

the behavior of the QoS mechanisms, one nuttcp TCP flow and one nuttcp UDP flow

(background traffic) were planned. The UDP flow carried data from host E2 toward host

W1, while the TCP flow was from E1 to W1. Contention for buffer and bandwidth resources

occurred on the link from router WR to host W1.

In the second step, the router WR was configured with the following QoS mechanisms.

The 2-queues configuration was the same as in experiment 2 (no-policing), except that

both queues were given equal weight in sharing the rate and buffer (50% each). For the

3-queues configurations, the allocations for the three queues (α, β, and SS ) to which in-

profile TCP-flow packets, UDP and ping packets, and out-of-profile TCP-flow packets, were

directed, respectively, are shown in Table 4.2. The priority levels of these three virtual

queues were medium-high, medium-low, and low respectively. The policer was configured to

direct in-profile TCP-flow packets (≤ 1 Gbps and burst-size ≤ 31 KB) to the α queue, and

out-of-profile packets to the SS queue.

In the third step, experiment execution, the UDP flow rate was varied from 0 Gbps

to 3 Gbps in a particular on-off pattern as shown in the top graph of Figure 4.6, and the

TCP flow was executed for the whole 200 sec. Finally, the same performance metrics were

collected as in experiment 2.
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Figure 4.6: Experiment 3: The x-axis is time measured in seconds; the top graph shows
the on-off mode in which the UDP rate was varied; the lower graph shows the TCP flow
throughput under the four configurations.

Table 4.2: Experiment 3: α-flow throughput under different background loads (UDP rate)
and QoS configurations

UDP
rate

α-flow throughput (Gbps)

(Gbps) Percentages for 2-queues (α, β) and
3-queues (α, β, SS ) configurations

(50,50) (49,50,1) (30,50,20) (10,30,60)

0 9.12 9.09 9.07 9.12

0.5 8.92 6.62 6.06 6.83

1 8.43 5.22 5 2.12

1.5 7.94 3.78 3.67 2.82

2 7.44 2.7 1.93 0.92

2.5 6.95 0.33 1.38 0.69

3 6.46 0.34 0.38 0.61

Results and discussion

Figure 4.6 shows the TCP throughput under the four configurations (one 2-queues and

three 3-queues) for different rates of the background UDP flow. When the UDP flow rate
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was non-zero, since some of the plots overlap, we have summarized the mean TCP-flow

throughput in Table 4.2. When there was no background UDP traffic, the throughput of

the TCP flow was around 9.1 Gbps for all four configurations as seen in the first row of

Table 4.2. As the background traffic load was increased, the throughput of the TCP flow in

all the 3-queues configurations dropped more rapidly than in the 2-queues configuration, e.g.,

when the background UDP-flow rate was 3 Gbps, the TCP throughput was in the 300-610

Mbps range for the 3-queues configurations, while the TCP throughput was 6.5 Gbps for

the 2-queues scenario (see last row of Table 4.2).

In addition to explaining the first and last rows of Table 4.2, we provide an explanation

for the drop in TCP-flow throughput in the last column of the row corresponding to UDP

rate of 1 Gbps, which highlights the importance of choosing the WFQ allocations carefully.

Explanation for the first row of Table 4.2: The explanation for the TCP-flow throughput

when there was no background traffic is straightforward in the 2-queues configuration. As

there were no packets to be served from the β queue and the transmitter was operating in a

working-conserving manner, the β queue’s 50% allocation was used instead to serve the α

queue, and correspondingly the TCP flow enjoyed the full link capacity.

The explanation for the TCP-flow throughput values observed in the 3-queues configura-

tions requires an understanding of the packet arrival pattern to the policer (see Figure 4.2)

and the rate at which packets leave the policer. When TCP-flow throughput was almost

the line rate (over 9 Gbps), then the rate at which in-profile packets left the policer was

almost constant at 1 Gbps. This is because the token generation rate was 1 Gbps and

packet inter-arrival times were too short for a significant collection of tokens in the bucket.

Therefore, in an almost periodic manner, every tenth packet of the TCP flow was marked

as being in-profile and sent to the α queue and the remaining 9 packets were classified

as out-of-profile and sent to the SS queue. Given that in all the 3-queues configurations,

the α queue was assigned at least 10% of the link rate/buffer space, the WFQ scheduler

determined that the α queue was in-profile, and the PQ scheduler systematically served

1 packet from the α queue followed by 9 packets from the SS queue thus preserving the

sequence of the TCP-flow packets. In the (49,50,1) configuration, 9 packets were served

out of the SS queue in sequence even though the queue was out-of-profile after the first
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packet was served. This is because there were no packets in the β queue and none in the α

queue given the policer’s almost-periodic direction of 1-in-10 packets to this queue. Since no

packets were out-of-sequence or lost, the TCP-flow throughput remained high at above 9

Gbps in all the 3-queues configurations.

Explanation for the last row of Table 4.2: When there was background nuttcp UDP

traffic at 3 Gbps, in the 2-queues configuration, it is easy to understand that the nuttcp

TCP flow was able to use up most of the remaining bandwidth, which is the line rate minus

the rate of background nuttcp UDP flow, and hence the TCP-flow throughput was about

6.5 Gbps.

The explanation for the low nuttcp TCP throughput in the 3-queues configurations is

that the opposite of the systematic behavior explained above for the first row occurred here.

When the incoming packet rate to the policer was lower than the line rate, the token bucket

had an opportunity to collect a few tokens. Therefore, when TCP-flow packets arrived at

the policer, a burst of them was classified as in-profile (since for every token present in

the bucket, one packet is regarded as being in-profile), and sent to the α queue. These

were served in sequence, but because the transmitter had to serve the β queue (for the

UDP flow), the pattern in which the policer sent packets to the α queue and SS queue is

unpredictable and involved bursts. This resulted in TCP segments arriving out-of-sequence

at the receiver (as confirmed with tcpdump and tcptrace analyses presented in the next

section). Out-of-sequence arrivals trigger TCP’s Fast retransmit/Fast recovery algorithm,

which causes the sender’s congestion window to halve resulting in lower throughput.

Explanation for the last-column entry in the row corresponding to 1 Gbps in Table 4.2:

The TCP-flow throughput dropped much faster from 6+ Gbps to 2.12 Gbps when UDP

rate increased from 0.5 to 1 Gbps in the (10,30,60) 3-queues configuration than in the other

two 3-queues configurations. This is explained using the above-stated reasoning that when

the TCP-flow packets do not arrive at close to the line rate, the inter-packet arrival gaps

allow the token bucket to collect a few tokens, making the policer send bursts of packets to

the α queue. In this (10,30,60) configuration, after serving only one packet from each burst,

the WFQ scheduler found the α queue to be out-of-profile since its allocation was only 10%

or equivalently 1 Gbps. This led to a greater number of out-of-sequence arrivals at the TCP
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receiver than in the other two 3-queues configurations, and hence lower throughput.

In summary, the higher the background traffic load, the lower the nuttcp TCP-flow

packet arrival rate to the policer, the larger the inter-arrival gaps, the higher the number of

collected tokens in the bucket, and the larger the number of in-profile packets directed to

the α queue. If the WFQ allocation to the α queue is insufficient to serve in-profile bursts,

packets from the α queue and SS queue will be intermingled resulting in out-of-sequence

packets at the receiver. This fine point notwithstanding, the option of directing out-of-profile

packets from the policer to a separate queue appears to be detrimental to α-flow throughput.

We conclude that the second goal of high α-flow throughput cannot be met with this policing

approach. In the next experiment, a different mechanism for dealing with out-of-profile

packets was tested.

4.3.5 Experiment 4

Purpose and execution

The goal of this experiment was to compare the approach of applying WRED to out-of-profile

packets rather than redirecting these packets to a scavenger-service queue as in experiment

3. The planned applications were the same as in experiment 3, i.e., to generate one nuttcp

TCP flow and one nuttcp UDP flow.

The next step was router configuration. Four configurations are compared as shown in

Table 4.3. In the fourth option, Out-of-Profile (OOP) packets are dropped probabilistically

at the same rate as the fraction of α-queue occupancy. In other words, if the α queue has

50% occupancy, then 50% of the OOP packets are dropped on average. The policing rate

and burst size settings were the same as in Experiment 3.

Both the TCP and UDP flows were executed for 200 sec, but unlike in experiment 3, the

rate of the UDP flow was maintained unchanged at 3 Gbps for the whole time period. Finally,

in addition to the previously used methods of obtaining throughput reports from nuttcp,

two packet analysis tools, tcpdump and tcptrace, were used to determine the number of

out-of-sequence packets at the receiver. Additionally, to find the number of lost packets, a

counter was read at router WR for the WR-to-W1 link before and after each application run.



4.3 Experiments 76

Table 4.3: Experiment 4: QoS configurations; OOP: out-of-profile

WFQ allocation
Configuration Policing 2-queues:(α,β) WRED

3-queues:(α,β,SS)

2-queues None (60,40) NA

3-queues + OOP to
policing1 SS queue (59,40,1) NA

3-queues + OOP to
policing2 SS queue (20,40,40) NA

2-queues +

policing + Drop prob. =
WRED WRED (60,40) queue occ.

Figure 4.7: Experiment 4: The x-axis is time measured in seconds; the top graph shows
the on-off mode in which the UDP rate was varied; the lower graph shows the TCP flow
throughput under the four configurations.

Results and discussion

The lower graph in Figure 4.7 and Table 4.4 show that the TCP-flow throughput is highest in

the 2-queues (no-policing) scenario, with the WRED option close behind. The policing with
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WRED option performs much better than the options in which out-of-profile (OOP) packets

are directed to an SS queue. In the WRED-enabled configuration, the TCP flow experiences

a small rate of random packet loss, as shown in Table 4.4, while in 3-queues configurations,

there were much higher numbers of out-of-sequence packets. The out-of-sequence packets in

the WRED-enabled configuration result from the 15 lost packets, and are not independent

events.

Table 4.4: Experiment 4: number of out-of-sequence packets and lost packets for different
QoS settings

Measure 2-queues 3-queues+ 3-queues+ 2-queues+

policing1 policing2 policing+wred

Average throughput 6 Gbps 0.92 Gbps 0.47 Gbps 5.6 Gbps

Num. of out-of-sequence
packets at the receiver 4076 8812 7199 15

Num. of lost packets at
the WR-to-W1 router link 5050 0 0 15

Surprisingly, even though the number of out-of-sequence packets was larger for the

3-queues+policing1 configuration, the throughput was higher in that configuration. This

implies that fewer number of the out-of-sequence packets caused triple-duplicate ACKs in

the first case. But this pattern is likely to change for repeated executions of the experiment.

Finally, Figure 4.7 shows that in the 2-queues (no-policing) configuration, there was

degradation of throughput soon after the flow started. Also, Table 4.4 shows a loss of 5050

packets (the 4076 out-of-sequence packets were related to these losses). Using tcptrace,

we found that these losses occurred at the start of the transfer. This is explained by the

aggressive growth of the congestion window (cwnd) in H-TCP, which uses a short throughput

probing phase at the start. During the 1st second, the throughput of the TCP flow averaged

5.7 Gbps. The 5050 lost packets occurred in the 2nd second. These losses occurred in the

WR router buffer on its egress link from WR to W1. If H-TCP increased its cwnd to a large

enough value to send packets at an instantaneous rate higher than 7 Gbps, then given the

presence of the UDP flow at 3 Gbps, the α queue would fill up. From experiment 1, we

determined that the particular router used as WR has a 125 MB buffer. Since the buffer is
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shared between the α and β queues in a strictly partitioned mode with the 60-40 allocation,

the α queue has 75 MB, which means that if the H-TCP sender exceeds the 7 Gbps rate by

even 600 Mbps, the α queue will fill up within a second. Inspite of this initial packet loss, the

2-queues no-policing configuration achieves the highest throughput. In the next experiment,

we consider the question of whether the use of policing and WRED has a fairness advantage

when multiple α flows share a queue.

4.3.6 Experiment 5

Purpose and execution

The goal of this experiment was to understand how two α flows compete for bandwidth

under different 2-queues configurations: without policing (2-queues), and with policing and

WRED (2-queues+policing+WRED). In a first scenario, the α flows had similar round-trip

times (RTTs), while in a second scenario, the RTTs differed significantly. We expected

a fairness advantage for the policing/WRED scheme, but found the opposite. This is

because neither of the two policed α flows honored their assigned rates, and while under the

no-policing scheme the TCP flows adjusted their sending rates and had no packet losses, the

deliberate packet losses in the policing/WRED scheme lowered throughput and resulted in

a lower fairness. Thus, the no-policing configuration out-performs the configuration with

policing and WRED from both throughput and fairness considerations when neither flow

honors the policed rate.

The first step was to choose applications. Two nuttcp TCP flows were planned. The

first TCP flow (TCP1) was from host E2 to host W1, and the second TCP flow (TCP2) was

from host E1 to host W1. The RTTs were similar but not exactly the same. The RTT was

1.98 ms on the E2-to-W1 path and 2.23 ms on the E1-to-W1 path, because the latter path

passes through an additional router, ER.

The router configurations were as follows. In the 2-queues configuration, packets from

both TCP flows were directed to an α queue, with the rate and buffer allocations set to

(60,40) for the α and β queues, respectively. In the 2-queues+policing+WRED configuration,

the policing rate/burst size settings were the same as in Experiment 3, and Out-of-Profile
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Figure 4.8: Experiment 5: Throughput of two TCP flows under two QoS configurations
(similar RTTs)

(OOP) packets were dropped probabilistically with the same settings as in Experiment 4

([0,100] drop probability corresponding to [0,100] buffer occupancy.

TCP1 and TCP2 execution intervals were (0, 200) and (51, 151), respectively. In the

different-RTTs scenario, the RTT of TCP2 was increased by 50 ms using tc. Finally,

throughput and retransmission data were collected every second by nuttcp at the senders.

Results and discussion

Experimental results are presented for the similar-RTT and different-RTTs scenarios.

Similar-RTT scenario Figure 4.8 shows the throughput of the two TCP flows when

they compete for the bandwidth and buffer resources of the α queue. In the 2-queues

configuration, the throughput of TCP1 was approximately 9.4 Gbps for the first 50 seconds,

but dropped to 7.1 Gbps at t = 51, since TCP2 was initiated then. In the 52nd second, both

flows suffered packet losses, with TCP1 requiring 2418 retransmissions and TCP2 requiring 3818
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Figure 4.9: Experiment 5: Throughput of two TCP flows, and their total throughput in the
2-queues configuration (similar RTTs)

retransmissions. Since the sum of the rates of the flows exceeded 10 Gbps, it caused losses

and retransmissions in the 52nd sec. After the 52nd second, there were no retransmissions

on either flow. The per-second throughput recorded by nuttcp, from t = 51 to t = 151

during which both TCP flows were active, is shown in Figure 4.9. As the buffer filled up

and queueing delays increased, TCP acknowledgments (ACKs) would have been delayed

causing RTT for TCP1 to increase. This decreased the effective sending rate (cwnd/RTT).

No losses occurred in the rest of the experiment because as sending rates increased in one or

both flows, the buffer filled up delaying packets, and hence increasing RTT, which in turn

caused the sending rate to drop thus reducing buffer buildups. This oscillatory behavior can

be observed in the throughput sum plot of Figure 4.9. The higher rate of TCP1 could be

because of the slightly lower RTT for this flow when compared to that of TCP2.

Next, consider the throughput values of TCP1 and TCP2 in the 2-queues+policing+WRED

configuration shown in Figure 4.8. From t = 51, TCP1 suffered losses and its throughput
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Table 4.5: Experiment 5: retransmissions and throughput of 2 TCP flows for the polic-
ing/WRED configuration (similar RTTs)

Time (s) TCP Retrans- Throughput (Gbps)
missions Min Median Max

TCP1 227 2.56 4.84 6.31
51 - 53 TCP2 32 0.46 0.5 1.03

TCP1 14 4.35 7.37 8.98
54 - 69 TCP2 0 0.47 1.78 4.98

TCP1 65 4.26 6.91 8.47
70 - 151 TCP2 3 1.02 2.26 4.26

dropped steadily until it reached 4.35 Gbps, while TCP2 throughput kept increasing until it

reached 4.98 Gbps at t = 69. The reason why TCP1 throughput dropped is because of the

policing limit of 1 Gbps. Packets exceeding this rate were marked as out-of-profile. Since

TCP1 rate was 9.4 Gbps at t = 50 just before TCP2 was started, its sending rate was well

above the policing rate of 1 Gbps. Subsequent to reaching this almost balanced throughput

level at t = 69, losses, and hence retransmissions, were observed on both flows, but there

were more losses in TCP1 (see Table 4.5) because its rate was higher.

The key difference between the 2-queues and 2-queues+policing+WRED configurations

is that there were no losses in the former configuration after t = 53, while in the latter

configuration both flows kept experiencing packet losses. This is because in the second

configuration, as both flows exceeded the policing limit of 1 Gbps, a few packets were

marked as out-of-profile in both flows. Recall that under WRED packets are dropped

probabilistically at a rate equal to buffer occupancy, and since the buffer will sometimes

have packets, losses are inevitable in the 2-queues+policing+WRED configuration. When

losses occurred under the 2-queues+policing+WRED configuration, the slight edge in RTT

for TCP1 may account for its higher throughput when compared to TCP2. TCP1 maintained

an average rate of 6.86 Gbps from t = 70 to t = 151 when TCP2 was terminated, at which

point TCP1 recovered its rate to 9.4 Gbps. The TCP2 average throughput from t = 70 to

t = 151 was smaller at 2.35 Gbps. A loss detected with triple duplicate ACKs results in a

halving of cwnd, which is equivalent to halving the sending rate. TCP1 operated in a higher

range of cwnd values when compared to TCP2.
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Using Jain’s fairness index [71],

f(x) =
(
∑n

i=1 xi)
2

n·
∑n

i=1 x
2
i

xi ≥ 0 (4.3)

and average throughput values across the t = 51 to t = 151 time range, we computed

the fairness values to be 0.97 and 0.8 for the 2-queues and 2-queues+policing+WRED

configurations, respectively. This does not imply that the former is a more fair configuration;

it is just that in this experiment, given that both TCP flows did not honor the policing limit,

policing caused packet losses, and recovery from packet losses was slower for the longer-RTT

path even if the RTT difference was small. Without policing, there were no deliberate packet

drops in the 2-queues configuration; instead the TCP senders self-regulated their sending

rates. When the rates were high, buffer occupancy grew, but this caused RTT to increase,

which, in turn, caused a lower sending rate.

In summary, this experiment showed that policing will result in decreased throughput

for TCP based α flows when two or more such flows occur simultaneously. In Experiment 4,

policing with WRED did not impact throughput significantly but there was only one TCP

based α flow, unlike in this experiment.

Different RTTs Figure 4.10 shows the throughput of the two TCP flows with different

RTTs. During the 100-second period when both TCP flows were active, the throughput of

the two TCP flows and their total throughput are plotted in Figure 4.11. The throughput

of TCP1 dropped from 9.1 Gbps at t = 50 to 7.1 Gbps at t = 51, since TCP2 was initiated

at time 50. In the 57th second, when TCP2 built up its rate to 2.93 Gbps, which made the

sum of the rates exceed 10 Gbps, both flows suffered packet losses, with TCP1 requiring 3315

retransmissions and TCP2 requiring 4118 retransmissions. After the 57th second, there were

no retransmissions on either flow. Since the RTT of TCP2 was increased by 50 ms, it took

6 sec to reach the time instant when losses occurred unlike in the similar-RTT scenario in

which both flows experienced losses in 2 sec. In the second after the losses, TCP1 recovered

its throughput back to 9.38 Gbps, while TCP2 throughput decreased from 2.92 Gbps to 11

Mbps.
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Figure 4.10: Experiment 5: Throughput of two TCP flows under two QoS configurations
(different RTTs)

Table 4.6: Experiment 5: retransmissions and throughput of 2 TCP flows for the policing-
WRED configuration (different RTTs)

Time (s) TCP Retrans- Throughput (Gbps)
missions Min Median Max

TCP1 140 3.51 7.6 9.41
51 - 58 TCP2 1 0.003 0.086 0.54

TCP1 107 7.61 8.81 9.35
59 - 151 TCP2 4 0.056 0.42 0.98

Next, we repeated the experiments with the policing and WRED configuration. The

retransmissions and throughput of the two TCP flows are shown in Table 4.6. TCP1

experienced losses even after the initial set of losses unlike in the 2-queues configuration.

Consequently, TCP1’s average throughput was lower in the 2-queues+policing+WRED

configuration (8.98 Gbps) than in the 2-queues configuration (9.1 Gbps), while TCP2’s

average throughput was higher (0.43 Gbps vs 0.41 Gbps). Jain’s fairness index value for
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Figure 4.11: Experiment 5: Throughput of two TCP flows, and their total throughput in
the 2-queues configurations (different RTTs)

throughput of the two TCP flows was comparable under the two configurations (0.546 and

0.551 under the 2-queues and 2-queues+policing+WRED configurations, respectively). The

RTT difference was the dominant reason for the unfair treatment of TCP2, not the QoS

configuration.

4.3.7 Experiment 6

Purpose and execution

The goals of this experiment were to (i) identify the impact of QoS provisioning under

changing traffic conditions, and (ii) compare two versions of TCP: Reno and H-TCP. In

the first part, we studied the effect of enabling QoS control, specifically, the 2-queues

configuration, on changing traffic patterns. For example, what is the impact of background

traffic increasing to 3 Gbps when the β queue to which background traffic was directed

was allocated only 20% of the rate/buffer capacity on a 10 Gbps link (based on previous



4.3 Experiments 85

traffic measurements). As α flows occur infrequently, most of the time, service quality for

the background traffic would be unaffected, but if this surge in background traffic occurred

within the duration of an α flow, there could potentially be higher losses and delays in the

background traffic than if QoS mechanisms had not been enabled.

As mentioned in Section 4.3.3, the TCP version used in our experiments was H-TCP, the

recommended option for high-speed networks [70]. However, although computers dedicated

for high-speed transfers are likely to be configured to use H-TCP, as the most widely used

TCP version is still TCP Reno, we undertook a comparative experiment.

Three applications were planned for this experiment: one nuttcp TCP flow (from host

E1 to W1), one nuttcp UDP flow (from host E2 to W1) and one ping flow (from host EA to W1).

In the router configuration step, two queues were configured: a β queue for the background

UDP flow and the ping flow, and an α queue for the TCP flow. The rate/buffer allocation

(the same percentage was used for both resources) for the β queue was varied from 20% to

60% in 10% increments, and the allocations for the α queue were set correspondingly. The

applications were executed as follows: UDP flow and ping flow in the time interval (0, 200),

and the TCP flow in the interval (53, 153). Two rates were used for the UDP flow: 2 Gbps

and 3 Gbps.

Results and discussion

Goal 1 Table 4.7 shows the UDP-flow loss rate and ping delay under different rate/buffer

allocations for the β queue in the 2-queues configuration. Before the TCP flow was initiated

(the first 53 seconds) and after the TCP flow ends (the last 47 seconds), even if the rate

of the UDP flow exceeded the allocated rate for the β queue (i.e., 20% allocation when

the UDP-flow rate was 3 Gbps), the UDP flow experienced no losses, and the ping delay

remained at around 2.26 ms, which implies that there was no buffer buildup in the β queue.

This is because the transmitter was operating in work-conserving mode, which allowed it to

serve packets from the β queue as the α queue was empty.

During the time interval (53-153) when the TCP flow was active, with a 20% rate/buffer

allocation for the β queue, a 2 Gbps UDP flow suffered a 5% packet-loss rate, and the

ping delay was 103 ms, which means the β queue was full. When the UDP-flow rate was
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Table 4.7: Experiment 6: UDP-flow loss rate and ping delay

β queue UDP UDP flow average packet Average ping delay (ms)
rate and rate loss rate before, during, before, during,
buffer (Gbps) and after the TCP flow and after the TCP flow
allocation t ∈ t ∈ t ∈ t ∈ t ∈ t ∈

(0-52) (53-153) (154-200) (0-52) (53-153) (154-200)

20% 2 0 5.03% 0 2.25 103 2.26
30% 2 0 0 0 2.3 2.25 2.25

Reno 20% 3 0 39.33% 0 2.26 103 2.27
30% 3 0 4.57% 0 2.27 104 2.31
≥ 30% 2 or 3 0 0 0 2.26 2.26 2.26

20% 2 0 5.3% 0 2.27 103 2.27
30% 2 0 0 0 2.27 2.26 2.25

H-TCP 20% 3 0 39.3% 0 2.26 103 2.27
30% 3 0 4.67% 0 2.28 104 2.29
≥ 30% 2 or 3 0 0 0 2.26 2.27 2.27

increased to 3 Gbps, while the β-queue allocation was held at 20% (to model changing

traffic conditions), the UDP-flow packet loss rate increased to about 39%, and the ping delay

remained at 103 ms. Such a significant loss rate and increased packet delay would not have

occurred had separate QoS classes not been created and the buffer not been divided. When

the UDP-flow rate increased, the TCP-flow rate would have decreased as it would also have

suffered losses. In the 2-queues configuration, the TCP flow suffered no losses for both the

combinations described above: 20% β queue allocation with 2 Gbps UDP-flow rate, and the

20%-3 Gbps combination. This is because the TCP flow was directed to the α queue, which

had its own large (80%) buffer/rate allocation.

Goal 2 The numbers in Table 4.7 show that there was no difference between H-TCP and

Reno with regards to the impact of the TCP flow on the UDP and ping flows. Furthermore,

Table 4.8 shows that the TCP flow enjoyed the same rate for most of its duration. When

the background UDP-flow rate was 2 Gbps, the TCP-flow throughput was 7.45 Gbps, and

when the UDP-flow rate was 3 Gbps, the TCP-flow throughput was correspondingly lower

at 6.45 Gbps, irrespective of β-queue rate/buffer allocation. The only difference observed

between Reno and H-TCP was in the TCP-flow’s behavior in the first few seconds as shown

in Table 4.9. Recall the TCP flow was started at t = 53. With Reno, the number of
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retransmissions that occurred in the early seconds drops as the β-queue buffer allocation

was increased (and the α-queue size, to which the TCP flow was directed, correspondingly

decreased). With smaller α-queue sizes, it appears that the TCP sender starts reducing its

sending rate sooner, and hence there were fewer losses and retransmissions. We expected

H-TCP to suffer more losses in the initial few seconds as it is more aggressive in increasing

its sending window, but this was not observed. Both adjusted their sending rates and

experienced no losses after the initial set of losses shown in Table 4.9.

Table 4.8: Experiment 6: TCP-flow throughput for most of the duration

Background TCP throughput
(UDP) rate Reno H-TCP

2 Gbps 7.45 Gbps 6.45 Gbps

3 Gbps 7.45 Gbps 6.45 Gbps

Table 4.9: Experiment 6: TCP-flow retransmissions in its first few seconds (the flow was
started at t = 53)

UDP-flow β-queue rate/ Time Number of
rate buffer alloc. retx pkts

Reno

30% t = 54 6624
2 Gbps 40% t = 54 5811

50% t = 53 4327
60% t = 54 2645

30% t = 54 7673
3 Gbps 40% t = 54 6970

50% t = 53 5137
60% t = 54 3495

H-TCP

30% t = 54 6008
2 Gbps 40% t = 54&55 4322 & 298

50% t = 53 3825
60% t = 54 3966

30% NA 0
3 Gbps 40% t = 54 1423

50% NA 0
60% t = 54 3528
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4.3.8 Experiment 7

Purpose and execution

As described in Section 4.1, AFTES uses an offline approach by analyzing NetFlow reports

of completed flows to determine source-destination addresses of α flows, and then uses these

addresses to configure firewall filters in ingress routers of a provider’s network to redirect

packets of future α flows to traffic-engineered QoS-controlled paths. With this scheme,

an α flow between a new source-destination pair will not be identified as such until its

NetFlow reports are analyzed, which most likely will occur after the flow completes. Such

unidentified α flows will be directed to the β queue in a 2-queues configuration. Since in

such a configuration, buffer resources are partitioned between the β queue and α queue, the

purpose of this experiment was to study the impact of such unidentified α flows.

Three nuttcp flows were planned for this experiment: a UDP flow from E2 to W1, TCP

flow TCP1 from E2 to W1, and a second TCP flow TCP2 from E1 to W1. In addition, a ping flow

was executed from from EA to W1. Two router configurations were used in this experiment:

(i) 1-queue: a single virtual queue was defined on the egress interface from WR to W1, and

all flows were directed to this queue, and (ii) 2-queues: two virtual queues (α queue and

β queue) were configured on the egress interface from WR to W1, and WFQ scheduling was

enabled with the following rate (and buffer) allocations: 60% for α queue and 40% for β

queue.

The execution intervals of the flows, ping, UDP, TCP1, and TCP2 were (0,200), (0, 200),

(42, 101), and (22, 162), respectively. The rate of the UDP flow was set to 3 Gbps. We

assumed TCP1 to be the unidentified α flow, which was hence directed to the β queue, while

TCP2 was assumed to be an α flow from a previously seen source-destination pair, and

hence directed to the α queue. The ping and UDP flows were directed to the β queue.

Measurements were collected from the nuttcp and ping applications.

Results and discussion

The throughput of the two TCP flows and the ping delays are shown in Figure 4.12. In

the 1-queue configuration, during the 60 seconds when both TCP flows were active, TCP1
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Figure 4.12: Experiment 7: The impact of an unidentified α flow with and without HNTES

throughput kept increasing to 4.16 Gbps, while TCP2 throughput kept decreasing from 6.5

Gbps to 2.26 Gbps. This is because the RTT was slightly lower for TCP1 as discussed earlier.

In the 2-queues configuration, TCP1 throughput was only 1 Gbps. This is because

the β queue allocation was 40% of the link rate/buffer, of which 3 Gbps was used by the

UDP flow, and TCP2 was actively consuming the 60% allocation of the α queue. The mean

throughput of the new α flow (TCP1) in the 1-queue case was 3.2 Gbps, while it was only

0.8 Gbps under the 2-queues configuration. In other words, the presence of HNTES and

the corresponding 2-queues configuration had an adverse effect on the unidentified α flow,

though as shown in our prior work, most α-flow generating source-destination pairs send

repeated α flows [14].

Consider the impact of the unidentified α flow on the ping flow. In the 1-queue

configuration, the ping delay was around 2.3 ms until TCP2 was initiated at t = 22, at which

instant the ping delay surged up to 65.9 ms as seen in Figure 4.12 because of the buffer

build-up from TCP2 packets. Since H-TCP is aggressive in increasing its sending rate, in
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Table 4.10: Experiment 7: TCP-flow retransmissions and ping delays

(sec, no. of (sec, no. of) (sec, ping delay (ms))
TCP1 retx) TCP2 retx)

1-queue configuration

NA (23, 3267) (24, 2.25)

(50, 955) (50, 568) (50, 4.7)

2-queues configuration

NA (22, 8074) (22, 2.3)

(44, 1855) (44, 0) (44, 87.3)

(60, 7) (60, 0) (60, 30.2)

(82, 7) (82, 0) (83, 48.5)

its 2nd second (t = 23), there were 3267 packet drops as shown in Table 4.10. With all

these losses, ping delay correspondingly dropped down to 2.25 ms at t = 24. However the

delay quickly increased back to the 56 ms range peaking at 88.7 ms at t = 49. As shown

in Table 4.10, it took a few seconds after TCP1 was initiated for both TCP1 and TCP2 to

experience packet losses causing ping delay to drop back down to 4.7 ms at t = 50. Beyond

this time instant, neither TCP flow suffered losses with both adjusting their sending rates

based on received acknowledgments and ping delay peaked at 91.5 ms at t = 101 when TCP1

ended. The ping delay dropped to 34 ms and increased to 47.9 ms at which point it dropped

to 2.3 ms at t = 162 when TCP2 ended.

In the 2-queues configuration, the ping delay stayed around 2.3 ms even after TCP2 was

initiated as seen in Figure 4.12 (because TCP2 was directed to a different queue), but increased

to 87.3 ms when TCP1 was initiated at t = 43 (since TCP1 representing an unidentified α flow

was directed to the same queue as the ping flow). TCP2 suffered no losses after the initial

losses of 8074 packets in its first second. On the other hand, TCP1 suffered losses not only in

its first second (1855 losses), but again at t = 60 and t = 82. During these seconds, ping

delay dropped correspondingly from 103 ms at t = 59 to 30.2 ms at t = 60, and from 103 ms

at t = 82 to 48.5 ms at t = 83. These results illustrate that the smaller buffer allocation

for the β queue can have a negative effect on real-time flows when an unidentified α flow

appears.

In summary, QoS partitioning does have negative effects when mismatched with traffic
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as shown in Experiment 6, and when α flows are undetected and hence handled by the

partition set aside for β flows. Nevertheless, the benefits of QoS partitioning as illustrated

in the first five experiments outweigh these costs.

4.4 Conclusions

The contribution of this work is to determine the best QoS mechanisms for the virtual

circuits used in this application. Our findings are that a no-policing, two-queues (one for

α flows and one for β flows) solution with weighted fair queueing and priority queueing

is both sufficient and the best for this application. It allows for the dual goals of reduced

delay/jitter in real-time flows, and high-throughput for α flows, to be met.

We studied two types of policing schemes for handling out-of-profile packets: redirection

to a (third) scavenger-service (SS) queue and Weighted Random Early Detection (WRED)

in which out-of-profile packets are either dropped probabilistically according to some profile

or held in the same queue as in-profile packets. The WRED scheme was better than the

SS-queue scheme because the latter caused out-of-sequence arrivals at the receiver, which

triggered TCP congestion control mechanisms that led to lower throughput. However, the

no-policing solution was better than the policing/WRED solution because in this application

flows are not likely to honor the circuit rates and therefore deliberate packet drops are

inevitable in the policing/WRED solution causing lowered throughput. The negatives of

partitioning rate/buffer space resources between two queues were studied. Our conclusions

are that close network monitoring is required to dynamically adjust the rate/buffer space

split between the two queues as traffic changes, and the probability of unidentified α flows

should be reduced whenever possible to avoid these flows from becoming directed to the β

queue.



Chapter 5

Conclusions and Future Work

We first summarize the work presented in this dissertation and draw three key conclusions,

and then suggest future work items to extend this research.

5.1 Summary and conclusions

In this work, we developed a Hybrid Network Traffic Engineering System (HNTES) that

can automatically identify and redirect heavy-hitter flows within a core network in order to

mitigate the adverse effects heavy-hitter flows can have on delay-sensitive flows. The HNTES

system consists of modules to perform three steps: (i) heavy-hitter flow identification, (ii)

circuit provisioning, and (iii) policy-based route (PBR) configuration at the ingress and

egress routers. Each of these steps can be performed online (on flow arrival) or offline (a

priori).

Chapter 2 presented a HNTES 1.0 design in which these three steps are performed

online. With regards to the first step of heavy-hitter flow identification, first, we need

to define the dimension on which a flow is measured to determine whether or not it is a

heavy hitter. Flows have four dimensions: duration, size, rate, duration and burstiness.

The HNTES 1.0 design uses the duration dimension. Since the ESnet-deployed dynamic

circuit scheduler takes on the order of 1 minute to create a circuit, only long flows were

considered to be suitable for hybrid network traffic engineering. Based on the results of

our experiments and NetFlow data analysis, certain practical considerations were identified,

92
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1) it is cost prohibitive to deploy this online HNTES because it requires online analysis

of packet headers, which is difficult to implement in high-speed networks, 2) deep packet

inspection of only control-plane packets to extract data-connection source and destination

address and port numbers is infeasible because control-plane packets are often encrypted.

These concerns made us switch from the online solution to an offline solution for the first

step (heavy-hitter flow identification), which necessitated the execution of steps (ii) and

(iii), circuit provisioning and PBR configuration, to be offline as well. Therefore, instead

of dynamic circuits (set up after flow arrival) circuits are provisioned a priori between

ingress and egress routers. Such a full mesh of circuits is feasible because these are virtual

circuits, which means bandwidth and buffer resources can be shared among them, unlike

time- and frequency-division multiplexed circuits. Effectively, the fine-granularity approach

in HNTES 1.0 (one circuit per flow) was replaced by coarse-granularity virtual circuits

(shared by multiple flows between same ingress-egress router pairs). Therefore, our first

conclusion is that online HNTES designs may not be feasible in high-speed networks, and

that long-duration flows whose rates are low typically do not have adverse effects on other

flows, and hence do not need to be sent to special traffic-engineered paths.

In Chapter 3, new dimensions were used in determining whether or not a flow was a

heavy-hitter. Based on an experiment conducted on a high-speed network testbed, ESnet

link usage measurements, and science data-transfer log analysis, rate and size were selected

as the dimensions of interest for traffic engineering heavy-hitter flows (α flows). An offline

mechanism was designed for determining prefix identifiers of α flows that are typically

created in research-and-education networks by scientific researchers who move large datasets

between well-equipped data-transfer nodes. The offline scheme was implemented in a

network management system called Alpha Flow Traffic Engineering System (AFTES). Prefix

identifiers (IDs) of completed α flows are used to set firewall filters to redirect future α flows

to traffic-engineered paths, and to isolate their packets to separate queues. Through an

analysis of 7 months of NetFlow data obtained from an ESnet router, the offline mechanism

was found to be highly effective in that 91% of bytes generated by α flows in bursts would

have been directed had AFTES been deployed at the start of this period. Also, our analysis

showed that most of the general-purpose flows that were redirected to the same paths as α
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flows were from file-transfer applications, which are not as affected by α flows as packets

from real-time applications. Our second conclusion, drawn from this AFTES design and

evaluation work, is that α flows are created repeatedly between the same high-end data

transfer nodes, which makes the offline solution useful for deployment.

Chapter 4 studied (experimentally) different scheduling and policing mechanisms to

achieve two goals: (i) reduce delay and jitter of real-time delay sensitive flows that share the

same interfaces as α flows, and (ii) achieve high throughput for α-flow transfers. Two types

of policing mechanisms for handling out-of-profile packets were studied: redirection to a third

scavenger-service (SS) queue and Weighted Random Early Detection (WRED). The WRED

scheme was better than the SS-queue scheme because the latter caused out-of-sequence

arrivals at the receiver, which triggered TCP fast retransmit mechanism and led to lower

throughput. However, the no-policing solution was better than the policing/WRED solution

because TCP flows are bursty, which means router buffers can start filling up, and with

WRED, packets will be probabilistically dropped based on buffer occupancy. In TCP, packet

drops lead to reduced throughput because the congestion control algorithm halves the

sending rate when drops are detected. The WRED effects were observed experimentally;

they occur because the AFTES solution is intra-domain, which means end-user applications

are not part of the decision process to use a virtual circuit for a portion of the end-to-end

path. Without knowing that their flows are being policed, end applications cannot control

their sending rates, which are determined by the TCP congestion-control mechanisms. Our

third conclusion, drawn from this experimental study, is that a no-policing, two-queues (one

for α flows and one for β flows) solution with weighted fair queueing and priority queueing

is both sufficient and the best for this application. It allows for the dual goals to be met.

5.2 Future Work

This work can be extended in the following directions:

The alpha-flow identification algorithm was evaluated using 7 months of NetFlow data

obtained from an ESnet router. The evaluation could be applied to NetFlow data collected

from multiple ESnet routers, and routers from other core networks.
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While it is cost prohibitive to execute packet header analysis from port-mirrored packet

traces as the HNTES 1.0 experience showed, an online scheme may still be feasible with

real-time analysis of NetFlow data. Routers can be configured with interface cards that can

export NetFlow data every 10 sec, though these cards are expensive too.

The experiments we conducted to study the effects of scheduling and policing mechanisms

on TCP flows were useful but could be generalized. Theoretical and/or simulation models

can be created and analyzed to characterize the impact of QoS provisioning schemes on

TCP throughput.
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