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Abstract 

Nitrogen (N) is imperative for life on earth, but excess reactive nitrogen can have harmful 

effects on marine and terrestrial environments, the atmosphere, and human health. 

Anthropogenic creation of reactive N (Nr; all N species but N2) and subsequent inputs to the 

environment are largely associated with agricultural production and fossil fuel combustion. 

While many efforts have been made to decrease N losses to the environment at the production 

end in both the food and energy sectors, fewer efforts focus on the impacts of consumer choices. 

This study focuses on how a consumer can impact their community’s contributions to N 

pollution, and provides a tool to manage that pollution. The community nitrogen footprint tool 

(NFT) is a metric created to track the impact of a community on excess Nr released to the 

environment. Applying the community NFT to Charlottesville City for 2017, the total N 

footprint, local N footprint, and per capita N footprint, were estimated to be 1,400 metric tons 

(MT) N, 114 MT N, and 30.0 kg N, lower than the US average, respectively. Great geographical 

variability in the per capita N footprint within Charlottesville City was found, which correlated 

positively with median household income (p = 0.01) and the proportion of the population that is 

white (p = 0.01). This result adds evidence from a local context to support the theory that 

socioeconomically advantaged populations contribute more to local and global environmental 

change. Census block groups within Charlottesville City which have a higher N footprint have 

greater opportunities for reduction, and potential changes in consumer choices, influenced by 

government planning decisions, were examined. It was found that reductions in beef and overall 

protein consumption could lead to the greatest reduction in total N footprint, and changes in 

personal transportation could lead to the greatest reduction in the local N footprint. 
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Introduction 
Nitrogen and the Environment 

Nitrogen (N) is essential to life on earth, but anthropogenic sources can introduce large, 

harmful amounts of reactive N (Nr) to the environment. These Nr species, which are essential to 

both terrestrial and marine ecosystems, are in limited supply (Gruber & Galloway 2008). While 

N is the most abundant element on earth and in the atmosphere, 99% of this N is in the form of 

unreactive molecular nitrogen, N2, and is unavailable for use by most living organisms. Nr 

encompasses all other compounds of N in the biosphere and atmosphere, such as nitrous oxide 

(N2O), nitrate (NO3
-), ammonium (NH4

+) and ammonia (NH3). Prior to human influence, there 

were two main ways in which Nr was created: lightning and biological nitrogen fixation 

(Galloway et al. 2003). 

Human activities introduce large amounts of Nr into the environment. As the human 

population increases, so does the amount of Nr that is created and lost to the environment. Total 

anthropogenic Nr creation in 1860, prior to the industrial revolution, only amounted to about 15 

Tg N/year (Galloway et al. 2008). In 2010, annual anthropogenic inputs of Nr amounted to 210 

Tg N/year, roughly equal to the amount of Nr that is naturally fixed in the biosphere (Fowler et 

al. 2013). Most of this Nr is added via agricultural production, through fertilizers created using 

the Haber-Bosch process to convert N2 to reactive NH3 (Galloway et al. 2004). Additionally, the 

increasing production of crops which convert N2 to Nr through biological nitrogen fixation, such 

as rice and legumes, has contributed to the global increase in Nr (Galloway et al. 2003). The 

third largest contributor to global increases in Nr is the combustion of fossil fuels, which releases 

NOx (nitrogen oxides) into the atmosphere (Galloway et al. 2003).  
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Effects of Anthropogenic Increases in Nr 

Anthropogenic inputs of Nr have both beneficial as well as detrimental effects on the 

environment. In terms of its benefits, the current population of the earth could not be sustained 

without increases in agricultural production made possible by Nr created from the Haber-Bosch 

process (Erisman et al. 2013). However, the additional Nr lost to the environment can be 

detrimental to both human and environmental health. NOx can have adverse impacts on human 

and environmental health when released into the atmosphere from both fossil fuel combustion 

and agriculture. It can lead to the formation of tropospheric ozone (O3), smog, and aerosols. This 

decrease in air quality leads to a whole suite of direct and indirect effects on human health, such 

as increases in instances of asthma and lung cancer, as well as reductions in crop yields because 

of O3 damages to crops (Erisman et al. 2013). Atmospheric N2O (nitrous oxide) is another 

species of Nr released to the environment as a result of human activity (i.e. burning fossil fuels). 

This is a greenhouse gas and thus contributes to climate change (Galloway et al. 2003). Once in 

the stratosphere, N2O contributes to stratospheric ozone depletion, and is currently the leading 

factor in doing so (Erisman et al. 2013). 

In addition to contributing to air pollution and the acceleration of the greenhouse effect, 

Nr can also greatly enhance water pollution, particularly through eutrophication of estuaries. 

Excess nitrate from agricultural fertilizer runoff and wastewater can accumulate in waterways, 

making its way to estuaries where it leads to excessive algal growth. This can result in decreases 

in aquatic light availability as well as hypoxia as the algae die and decompose (Howarth & 

Marino 2006). This process, known as eutrophication, is a major issue in many estuaries, such as 

the Chesapeake Bay, and a main focus of water quality monitoring and conservation. All of these 

negative effects of anthropogenic contributions to Nr in the environment can be linked by the 
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nitrogen cascade. The N cascade is defined by the cascading nature of excess Nr in the 

environment, as one atom of N can have all of the above effects as it is converted to different 

species of Nr (Galloway et al. 2003).  

  

Management of Reactive Nitrogen 

Strategies for managing and reducing the amount of Nr lost to the environment have been 

established and used in many different aspects of food and energy production. Interventions in 

the energy sector include controlling NOx emissions from power plants and vehicles using fossil 

fuel combustion (Galloway et al. 2008), and increasing the use of renewable energy in place of 

fossil fuels (Leach et al. 2013). In the agricultural sector, management of excess fertilizer inputs 

to the soil is a way to reduce N inputs and subsequent Nr losses. Additionally, engineering crops 

to increase their N-uptake, as well as improving the management of livestock can greatly curb N 

lost to the environment (Galloway et al. 2008). 

In all of these interventions, the opportunity for reduction comes at the producer level. 

Often in the implementation of N reduction strategies, the role of the consumer is left out, 

downplayed, or underutilized. The consumer, however, can have a large impact in the role that 

they play in N reduction by way of their choices. The nitrogen footprint tool (NFT) is one way 

for consumers to begin to understand the negative and positive impacts of the choices that they 

make on N pollution. 

  

Nitrogen Footprint Tools 

An NFT is a way to measure the amount of reactive nitrogen released to the environment 

as a consequence of someone or something’s resource use. There are currently three existing 
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variations of the NFT: The personal NFT (Leach et al. 2012; 2020), the institutional NFT (Leach 

et al. 2013; Castner et al. 2017), and the community NFT (Dukes et al. 2020). The personal NFT 

calculates an individual’s nitrogen footprint based on their consumption choices, including food 

purchased, goods and services, transportation, sewage treatment, and housing and electricity use. 

Using the calculator, an individual can compare their nitrogen footprint to the US and other 

countries' average N footprints (Leach et al. 2012; 2020). The purpose of this tool is for a person 

to evaluate how their lifestyle and consumer choices are affecting their impact on Nr in the 

environment. 

            The institutional NFT has been used by universities and research organizations to track 

their cumulative impact on Nr in the environment, based on institutional energy use, 

transportation, sewage treatment, food purchased, and fertilizer use (Leach et al. 2013; Castner et 

al. 2017). This tool can be used to track and reduce an institution’s N footprint. For example, the 

University of Virginia (UVA) released its first Nitrogen Action Plan in May 2019, based on the 

findings of the institutional NFT, defining actions towards the reduction goal of 25% below 2010 

levels by 2025 (UVA Nitrogen Working Group 2019). 

            Most recently, the community NFT was developed for use for the City of Baltimore 

(Milo 2018). The goal of the study was to encapsulate the consumption choices of a community 

as a whole by calculating the total N footprint of census block groups within the city, determine 

correlation with income, and develop feasible reduction strategies. Areas incorporated are food 

purchased, pet food and waste, fertilizer use on home lawns, wastewater treatment, 

transportation, electricity, and natural gas. Following the initial use of the tool (Milo 2018), the 

community NFT was updated for the final version of the Baltimore City NFT (Dukes et al. 

2020). In the present study, the methods used in Dukes et al. (2020) were used with various 
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updates for the Charlottesville City N footprint. These changes include area-specific adjustments, 

such as emissions and wastewater treatment factors, adjustments in the methodology of the tool, 

such as food categorization and vehicle classification, and adjustments in the format of the tool 

itself. These changes are further explained under the methods section below. 

  

Charlottesville Context 

            Charlottesville City is concerned with reducing its greenhouse gas emissions and limiting 

its impact on the local environment (i.e., air and water pollution). Charlottesville City has 

established a greenhouse gas inventory, estimating that in 2016, community-wide greenhouse 

gas emissions totaled 362,192 MTCO2e. Charlottesville City has set goals for reducing its 

impact, such as switching to more renewable energy and increasing energy efficiency 

(Charlottesville Department of Public Works 2019). The addition of the N footprint to this 

context could improve public knowledge about the issues surrounding Nr in the environment, as 

well as catalyze and inform reduction efforts. Additionally, this research adds to the 

collaboration between Charlottesville City, Albemarle County, and UVA in the Climate Action 

Together program, to work cohesively on climate initiatives (Turner 2019). 

  

Environmental Justice Framework 

            Environmental injustice or environmental inequality refers to reality that certain groups 

of people may be disproportionately vulnerable to or impacted by environmental disasters and 

phenomena than other groups (Brulle & Pellow 2006). In past decades, studies have shown that 

certain groups of people, namely people of color, have been more vulnerable than the general 

population to negative environmental health impacts, due to proximity to waste sites, landfills, 
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and above average water and air pollution (Walker 2009). The understanding of environmental 

justice has been expanding to include a broader set of environmental concerns, as well as 

affected populations. Environmental justice more generally includes populations that are 

socioeconomically disadvantaged for a variety of reasons, and may be unequally vulnerable to 

food insecurity, access to transportation, exposure to flood risk, the effects of climate change, 

and more. For example, multiple studies have shown negative correlations between household 

income and the likelihood of living in a flood-prone area (Walker & Burningham 2011; Brouwer 

et al. 2007). Additionally, it has been shown that lower income and more racially diverse 

populations can be subject to greater levels of air pollution than the general population (Houston 

et al. 2016; Gwynn & Thurston 2001). One preliminary study conducted in Charlottesville City 

may provide local evidence to this, finding presumably greater NO2 concentrations in 

neighborhoods that were predominantly lower income and African American when compared to 

those of higher income white neighborhoods (Knowles 2019). 

            Additionally, it is known that it is wealthier segments of the population that are 

contributing more to worldwide climate change and pollution that are disproportionately 

affecting poorer and more vulnerable populations (Preston et al. 2014). Thus, while wealthier 

people are contributing more to global climate change, poorer communities and minorities are 

bearing more of the burden. 

 

Research Questions 

This research aimed to apply the community NFT to Charlottesville City, explore 

patterns in the N footprint within a framework of environmental justice, and look for 

opportunities for footprint reduction in this context. The research questions are: (1) how does the 
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Charlottesville N footprint compare to that of other locations? (2) What is the geospatial 

variability of the N footprint within Charlottesville City, and (3) how does it relate to socio-

economic patterns? Additionally, (4) where in Charlottesville City are the greatest opportunities 

for reduction in the N footprint, and (5) how might certain changes in consumer choices offer 

strategies for reduction? 

 

Methods 

System Bounds 

  The system bounds of this N footprint calculation are the city limits of Charlottesville 

City (Figure 1). UVA, which lies both within Charlottesville City and Albemarle County, was 

excluded from the bounds of this study. This was due to the difficulty of including a large 

research institution like UVA in a calculation that is meant for a community and the 

complications presented by the city/county overlap of UVA. In addition to these reasons, 

excluding UVA helped align the system bounds of this study to the boundaries of Charlottesville 

City’s 2016 greenhouse gas inventory, which also excluded the institution. 
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Figure 1: System bounds dictated by Charlottesville City limits.  
 

Community NFT Methodology 

The community NFT was used to calculate the N footprint of Charlottesville City which 

is the second city to use the community NFT methodology to assess its N footprint, following the 

Baltimore City case study (Milo 2018; Dukes et al. 2020). The community NFT estimates the 

total and per capita N footprint of census block groups within a community, based on the Nr 

released to the environment from food purchases, wastewater generation, fertilizer use on home 

lawns, electricity use, natural gas use, pet food and waste, and transportation. The community 
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NFT estimates the kg of N produced by a given sector from the dollars spent on that given 

commodity (e.g., food item), or from other collected data on that given commodity. For example, 

for energy use (e.g., electricity use), the total kilowatt hours (kWh) used by residents, as well as 

the dollars spent on electricity, are used to calculate the kg of N produced. For wastewater, the 

gallons of wastewater treated by the wastewater treatment plants are used to calculate the kg of N 

produced. Figure 2 below illustrates the steps taken to calculate the N footprint of one food 

product (Milo 2018). For further detail on the calculations involved in converting dollars spent 

on each commodity to kg of N, see Dukes et al. (2020). 

 

Figure 2: Pathway from dollars spent on a given food product to the N footprint from food 
production of that product (Milo 2018). 
 

Since the creation of the community NFT for use in Baltimore City (Milo 2018), the tool 

has been updated. First, dollars spent through the Supplemental Nutrition Assistance Program 

(SNAP) on food products were added, in order to more fully capture the impact of food 
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purchasing on a community’s N footprint (Dukes et al. 2020). Further, the methodology used to 

calculate many of the average prices of Consumer Expenditure Report (CEX) food items was 

updated from Milo (2018) to Dukes et al. (2020) to more accurately estimate the price of the 

items (Dukes et al. 2020). 

In the present Charlottesville City study, further adjustments were made. Specifically, the 

changes made are: 

● Adapting location-specific factors to the Charlottesville City context (eGRID emissions 

factor, wastewater treatment plant N removal factor, home lawn fertilizer use estimate), 

● Adjusting food categorizations to more accurately capture food products purchased (see 

below for details), 

● Adjusting food weight calculations for restaurant meals (see below for details), 

● Streamlining data entry, with entry for each sector separated from constants used and 

calculations. 

In addition, an instruction manual outlining the data required to calculate a complete community 

N footprint, how to enter the data, and the methodology behind the tool has been compiled. The 

version of the community NFT used in this study and the instruction manual are available by 

request. For access, please contact Julia Stanganelli (jas7ua@virginia.edu) or Elizabeth Dukes 

(esm9gq@virginia.edu). 

  

Data Collection and Community NFT Updates 

            The N-related data used in this calculation include food purchases, wastewater 

generation, transportation, electricity, natural gas, pets and pet waste, and home lawn fertilizer 

application. 
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For food purchased, the Consumer Expenditure Report (CEX) from the Bureau of Labor 

Statistics (BLS) was used for the dollars spent on each food item, broken down by census block 

group (Bureau of Labor Statistics 2017). These data were converted from dollars spent, to kg of 

food and then kg of N using the methodology outlined above (Figure 2). Following the 

methodology shown in Figure 2 above, once the average price of a food item is used to calculate 

its total weight, the N footprint of that food product is calculated using the Virtual N Factor 

(VNFs) associated with its food type or category (Leach et al 2012; 2020). For the 

Charlottesville City N footprint, some changes were made in the categorization of certain food 

products into food types in order to more accurately calculate the N footprint (Table 1). 

 
Table 1: Changes made in food categorization from Dukes et al. (2020) to the current study. 
 

CEX Food Item Previous Assigned Food Type(s) New Assigned Food Type(s) 

Other Meat Beef, Pork Beef, Pork, Chicken 

Other Lunchmeat Beef, Pork Beef, Pork, Chicken 

Dried Beans & Peas Beans Beans, Vegetables 

Nondairy Cream & Milk Oils Liquids, Nuts, Beans 

Frozen Meals Meal percentages based on Baltimore City total food 
purchased 

Average meal percentages (Table 2) 

Other Frozen Prep. Food Meal percentages based on Baltimore City total food 
purchased 

Average meal percentages (Table 2) 

Misc. Prepared Food Meal percentages based on Baltimore City total food 
purchased 

Average meal percentages (Table 2) 

 

Additionally, the methodology used to calculate the weight of meals purchased at 

restaurants or “away from home” was adjusted. Previously, the components of a meal were 

quantified based on the percentages of dollars spent in each food category for food at home in 

Baltimore. For the Charlottesville City N footprint calculations, an average meal was computed 

using the US average percentages of food groups consumed (Leach et al. 2020) (Table 2). 
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Categories included in food at home categorizations but excluded here are spices, sugars, and 

oils. This is because spices and sugars were not explicitly categorized in Leach et al. (2020), and 

oils seemed to distort the composition of a typical meal.  

 
Table 2: US yearly food consumption per capita (Leach et al. 2020) and associated meal 
component percentages. 
 

Food Category kg /person/year % of Total Food Weight (% of 
Average Meal) 

Coffee and Tea 5 0.75% 

Wheat 71 10.61% 

Rice 5 0.75% 

Fruit 66 9.87% 

Beans 4 0.60% 

Potatoes 35 5.23% 

Vegetables 72 10.76% 

Nuts 5 0.75% 

Liquids 68 10.16% 

Chicken 43 6.43% 

Pork 23 3.44% 

Beef 31 4.63% 

Milk 203 30.34% 

Cheese 13 1.94% 

Eggs 12 1.79% 

Fish 13 1.94% 

 
 

The percentage of households receiving SNAP by census block group was also needed, 

as it was not included in the CEX data on dollars spent on food products. The number of 

households receiving SNAP benefits in each census tract in Charlottesville was downloaded 

from Social Explorer, and used as an average for the number of households on SNAP in each 
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census block group within each tract (ACS 2017a). By multiplying the percent of households on 

SNAP by the average SNAP dollars given to households in a city, the total SNAP dollars spent 

per census block group was calculated. Then, the total dollars spent is multiplied by the 

percentage of total dollars that a given food product group is said to occupy, and divided by the 

average price of that food product. The percentage of total dollars for each food product group 

was calculated using a 2011 USDA study on foods typically purchased with SNAP (Food and 

Nutrition Office 2016). The SNAP food categories were then assigned to the food categories 

used in the NFT, and the total food weights in each were added to the total weights from food 

purchased through CEX data to get the total food weights for each census block group. These 

categories are shown in Table 6 of the Dukes et al. (2020) supplementary material. 

            For wastewater, the gallons of wastewater treated at the Moore’s Creek Treatment Plant 

and the treatment N removal factor (79%), at this plant, were used (Rivanna Water and Sewer 

Authority 2017). 

            For transportation, the daily vehicle miles traveled within the city in 2017, broken down 

by type of vehicle (e.g., car, truck, etc.), were obtained from the Virginia Department of 

Transportation (VDOT 2017). The majority of vehicle miles traveled in Charlottesville (86%) 

were by passenger cars. Emissions factors for NOx and N2O for each vehicle type from the 

National Emissions Inventory were used (EPA 2017) (Table 3).  
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Table 3: Emissions factors for NOx and N2O by vehicle type (National Emissions Inventory 
(EPA 2017)). 
 

 kg NOx/mile kg N2O/mile 

Motorcycles 0.000256 0.0000036 

Passenger Cars 0.000593 0.0000036 

Light Duty Trucks 0.000593 0.0000036 

Buses 0.00175 0.00000068 

Medium-Heavy Duty Trucks 0.00175 0.000001 

 

 

Data from the CEX were also used to separate vehicle miles traveled by census block groups 

based on dollars spent on gasoline, diesel, and bus fares.  

A few changes were made from the methodology used in Dukes et al. (2020) to calculate 

the N footprint from transportation. First, the vehicle types from the VDOT database were 

classified into motorcycles, passenger cars, buses, light duty trucks, and medium-heavy duty 

trucks according to FHWA (Federal Highway Administration) class groups (Federal Highway 

Administration 2014) (Appendix A). These classes were chosen to correspond to the available 

emissions factors for vehicle types. Additionally, the proportion of gas and diesel vehicles for 

each of these vehicle types was estimated based on percentages from the National Emissions 

Inventory (EPA 2017) (Table 4). 
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Table 4: Percent of gasoline and diesel vehicles (National Emissions Inventory (EPA 2017)). 
 

 % Gasoline % Diesel 

Motorcycles 100% 0% 

Passenger Cars 99% 1% 

Light Duty Trucks 97% 3% 

Medium-Heavy Duty Trucks 17% 83% 

 

            For electricity use, the kWh used for residences and businesses were obtained from 

Dominion Energy (Dominion Energy 2017). Since part of UVA lies within Charlottesville City, 

but is excluded by the bounds of this study, the substations supplying electricity to UVA within 

Charlottesville City were removed from the total kWh. EGRID emissions factors for NOx and 

N2O for the SRVC region were obtained from the EPA Emissions and Generation Resource 

Integrated Database. The SRVC emissions factor for NOx is 2.64*104 kg/kWh, and the emissions 

factor for N2O is 6.25*106 kg/kWh (EPA 2018). For natural gas use, the therms used for 

residents and businesses were obtained from the local utility (Charlottesville Gas 2017). For both 

electricity and natural gas, in order to divide the business energy use geographically, the number 

of businesses in each census block group was obtained using ArcGIS Business Analyst data 

(ESRI 2018). 

            For pets and pet waste, the number of cats and dogs owned per census block group was 

estimated using the average number per household within the US (Okin 2017). The option of 

using dog licenses in Charlottesville City as a measure of the number of dogs owned was 

explored. However, after communicating with the local SPCA and the City Treasurer, it was 

determined that the US average number of dogs and cats per household would likely be a more 

accurate estimation, due to the lack of certainty in what proportion of dogs are actually licensed. 
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            For fertilizer application, the total area of turfgrass per census block group in 

Charlottesville City was calculated using land cover data at a 1 meter resolution from the 

Chesapeake Bay Conservancy’s Land Cover Data Project in ArcGIS Pro (Chesapeake 

Conservancy 2014). The land cover classes “Turfgrass” and “Tree Canopy over Turf” were used. 

The classes of “Fractional Turf (Small)” and “Fractional Turf (Medium)” were excluded, as it 

appeared that these classes, which represented a relatively small area, encompassed small parks 

and a golf course, and this study aimed to include only home lawns as much as possible. The 

methodology from Dukes et al. (2020) was used to estimate fertilizer use from the total area of 

turfgrass, with the exception of a change in the factor used for average household fertilizer 

application rate. The present study used an estimate from Fraser et al. (2013) of median 

household fertilizer application rate of 28.5 kg N/hectare/year, for those households using 

fertilizer. This was estimated by Fraser et al. (2013) using household surveys of Baltimore, 

Maryland. Additionally, the percentage of households using fertilizer was estimated to be 54.5%, 

from Fraser et al. (2013), as there was no local data available. It is important to note that 

fertilizer application here refers only to home lawn fertilizer use and not fertilizer used for 

agricultural purposes. Nr losses due to fertilizer used in food production is captured in the “food” 

sector of the N footprint. 

           In addition to the N-related data, socioeconomic data were collected from the US Census 

Bureau via Social Explorer, using the 2017 American Community Survey 5-Year Estimates. 

Data included total population per census block group (ACS 2017b), number of households per 

census block group (ACS 2017c), median household income (ACS 2017d), and the percent of 

the population that is white (ACS 2017e). 
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ArcGIS Methods and Statistical Analyses 

ArcGIS Pro was used to map the N footprint of Charlottesville City by census block 

group, as well as contributions to the N footprint of each of the sectors. The geospatial variability 

of median household income and the proportion of each census block group that is white was 

also examined in ArcGIS Pro. In addition to visually comparing these distributions using 

choropleth maps, regression analyses were performed in Microsoft Excel to test for a significant 

geographical correlation between the N footprint and median household income, as well as with 

the proportion of the population that is white. 

  

N Footprint Reduction Strategies 

            Census block groups with the highest N footprints, and thus the highest reduction 

potential were identified. Particularly for these areas, reduction strategies were identified and 

quantified, as to how community members could theoretically alter their choices and cause a 

reduction in the overall N footprint of their census block group and their community. These 

strategies focused on sectors and choices that the individual consumer can play a large role in, 

such as choice of food consumption, choice of mode of transportation, choice of electricity and 

natural gas, and lawn fertilization rates. There are, however, some aspects of the community N 

footprint that the consumer does not have a direct role in influencing, such as the treatment of 

wastewater at the facility level, and the composition of their electricity grid. 

 The methods used to compute each reduction scenario are found in Table 5. 
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Table 5: Calculation methods for the reduction scenarios used for the Charlottesville City N 
footprint. 
 

Reduction Scenario Calculation Method 

Food: Replace 10% of Beef with 
Chicken 

Reduce the kg of beef purchased per census block group by 10%, increase 
the kg of chicken purchased per census block group by an equivalent 
weight 

Food: Replace 10% of Beef with 
Beans 

Reduce the kg of beef purchased per census block group by 10%, increase 
the kg of beans purchased per census block group by an equivalent weight 

Food: Residents consume closer to 
Recommended Daily Allowance 
(RDA) for protein 

Calculate the difference from the average kg protein per capita consumed 
per census block group to 75g/person/day, an estimate based on the 
Recommended Daily Allowance (RDA) for protein (Pendick 2015). For 
census block groups that are currently consuming over this amount, 
subtract protein by food category based on the percent that a given 
category is contributing to the overall protein consumption for that census 
block group 

Transportation: Replace 10% of 
Car Use with Bus Use 

Reduce the passenger car miles driven per census block group by 10%, 
increase the bus miles ridden per census block group by an equivalent 
number of miles divided by 40 (estimating 40 passengers/bus) 

Transportation: Replace 10% of 
Fossil Fuel-Powered Cars with 
Electric Cars 

Reduce the fossil fuel-powered passenger car miles driven per census 
block group by 10%, increase the kWh of electricity used per census block 
group by 1 kWh for every 3 miles that were reduced (using EPA fuel 
economy estimates that the best electric vehicles drive 3 miles/kWh (EPA 
2020)) 

Transportation: Replace 10% of 
Car Use with Biking 

Reduce the passenger car miles traveled per census block group by 10% 

Transportation: Decrease Car 
Use by 10% with Carpooling 

Reduce the passenger car miles traveled per census block group by 10% 

Energy: Replace 10% of 
Electricity Use with Renewables 

Reduce the kWh of electricity used per census block group by 10% 

Energy: Replace 10% of Natural 
Gas Use with Renewables 

Reduce the therms of natural gas used per census block group by 10% 

Fertilizer: Decrease lawn fertilizer 
application rate by 25% 

Reduce the estimated lawn fertilizer application rate by 25% 
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Results 

Total and Local N Footprints 

 The total N footprint of Charlottesville City in 2017 was estimated to be 1,400 MT N. 

The total N footprint encompasses all Nr lost to the environment as a result of the resource use 

and consumption of the residents and businesses within the city. This includes “upstream” losses, 

such as Nr lost to the environment due to the production of food consumed in the city, and 

electricity used in the city, but generated elsewhere. Food makes up the largest portion of the 

total N footprint, at 72%. Pet food and pet waste makes up the second largest portion, at 20%. 

Electricity and transportation each make up 3%, fertilizer and natural gas each make up 1%, and 

wastewater makes up less than 1% (Figure 3a).  

 The local N footprint of Charlottesville City in 2017 was estimated to be 114 MT N. The 

local N footprint includes only Nr losses that occur locally. This excludes Nr losses “upstream”, 

due to the production of human food and pet food and electricity generation. Food waste and pet 

waste are still included in the local N footprint. Transportation contributes the most to the local 

N footprint, at 39%. Pet waste makes up the second largest portion, at 24%. Fertilizer and natural 

gas each make up 11%, and food waste and wastewater make up 10% and 5%, respectively 

(Figure 3b). 

 The average per capita N footprint for Charlottesville City is 30.0 kg N per person 

(Figure 4). This can be compared to the average per capita N footprint for Baltimore, 33.6 kg N 

per person, and for the US, 40 kg N per person. Charlottesville City has a comparable food 

footprint to the US overall, but a lower wastewater, transportation, natural gas, and electricity 

footprint. 
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Figure 3a (left): The total N footprint of Charlottesville City by sector. Food constitutes the 
largest sector, contributing to 72% of the total nitrogen footprint. Pets (pet food and pet waste), 
follows, at 20%. Transportation and electricity each make up 3%, natural gas and fertilizer use 
each makeup 1%, and wastewater contributes to <1%. 
 
Figure 3b (right): The local N footprint of Charlottesville City by sector. Transportation 
constitutes 39% of the local NFT. Pet waste follows, making up 24%. Natural gas, fertilizer, food 
waste, and wastewater make up the remaining 11%, 11%, 10% and 5%, respectively. 
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Figure 4: Comparison of the average per capita N footprint of Charlottesville City, Baltimore 
City, and the US. The average per capita N footprints are 30.0 kg N, 33.6 kg N, and 40 kg N, 
respectively. 
 

Geographical Distribution of the N Footprint 

 Both the total per capita N footprint and local per capita N footprints have some of their 

highest values in the downtown area, and just north of downtown (Figure 5). Other relatively 

high values can also be seen in mostly the north/northeast areas of the city. The food N footprint 

per capita (Figure 6) and the transportation N footprint per capita (Figure 7), both follow this 

pattern as well, with the highest values being concentrated near downtown and in the north/north 

east areas of the city. It is important to note that when considering the transportation N footprint, 

Figure 7 represents the N footprint contributions made by the transportation of the residents 
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within each census block group, not necessarily by the vehicles that have traveled through a 

given block group. 

 Looking at the N footprint of energy use, electricity and natural gas can be broken down 

by the residential and business footprints. Residential electricity use per capita follows a similar 

geographical pattern to the overall N footprint, being the most heavily concentrated near 

downtown and in the north/northeast sections of the city. The business electricity use is heavily 

concentrated downtown (Figure 8). Note that the assumption was made that all businesses use 

the same amount of electricity regardless of size, due to the lack of publicly available data on 

individual business energy consumption. The N footprints for both residential and business 

natural gas use follow very similar geographical patterns to that for electricity (Figure 9). 

 The N footprint of home lawn fertilizer use is larger in the north/northeast areas of 

Charlottesville City, both overall and per capita (Figure 10). The N footprints of wastewater and 

pet food and waste are larger in the southern areas of Charlottesville City (Figure 11; Figure 12). 

Since the N footprint for these two sectors was estimated based on population data and did not 

vary per capita by census block group, their concentration reflects the population density of 

Charlottesville City. 
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Figure 5: The (A) total N footprint, (B) total per capita N footprint, (C) local N footprint, and 
(D) local per capita N footprint of Charlottesville City. The total per capita N footprint ranges 
from 14.3 - 65.5 kg N per person. The local per capita N footprint ranges from 1.38 - 5.36 kg N 
per person. 

 

Downtown 
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Figure 6: The (A) N footprint from food purchased by Charlottesville City residents, and (B) 
food N footprint per capita. 
 

 
 
Figure 7: The (A) N footprint due to transportation in Charlottesville City, and (B) 
transportation N footprint per capita. 

 

Downtown 

 
       Downtown 
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Figure 8: The N footprint due to electricity use in Charlottesville City: (A) residential, (B) 
residential per capita, and (C) business. 
 

Downtown 
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Figure 9: The N footprint due to natural gas use in Charlottesville City: (A) residential, (B) 
residential per capita, and (C) business. 
 
 
 
 

Downtown 
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Figure 10: The (A) N footprint from home lawn fertilizer use, and (B) fertilizer N footprint per 
capita in Charlottesville City. 
 

 
 
Figure 11: The N footprint from wastewater in Charlottesville City. 

Downtown 
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Figure 12: The N footprint from pet (dog and cat) food and waste in Charlottesville City. 
 

Socioeconomic Comparisons with the N Footprint 

 Median household income (MHHI) by census block group ranges widely in 

Charlottesville City (Figure 13). Using linear regression, MHHI correlates positively with the 

total N footprint per capita with p = 0.01, showing that there is a significant positive relationship 

between the two variables (Figure 14). 

The racial demographics of Charlottesville City also range widely by census block group. 

The proportion of the population in a given census block group that is white ranges from below 

30% to above 95% (Figure 15). The percent of the population that is white in a given census 

block group correlates positively with the total N footprint per capita with p = 0.01 (Figure 16). 
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Figure 13: Median household income (MHHI) in Charlottesville City by census block group. 
 
 

 

Figure 14: Median Household Income (MHHI) ($/year) vs. total N footprint per capita (kg N) in 
Charlottesville City. MHHI correlates positively with the total N footprint per capita with p = 
0.01. 
 
 

Downtown 



 

 30 

 

Figure 15: Proportion of the population that is white in Charlottesville City by census block 
group.  
 
 

 

Figure 16: The proportion of the population of the census block group that is white vs. total N 
footprint per capita (kg N) in Charlottesville City. Percent white correlates positively with the 
total N footprint per capita with p = 0.01. 

Downtown 
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Potential Reductions in the Charlottesville City N Footprint 

 Sectors that contribute the most to the total and local N footprints were targeted for 

reductions. Census block groups that have the greatest opportunities for reduction are located 

downtown, and in the north/northeast area of the city. In order to reduce the N footprint of the 

food sector, if residents of Charlottesville City were to switch 10% of their beef consumption to 

chicken and 10% to beans by weight, there would be 1.4% and 2.1% reductions in the total N 

footprint of the city respectively. If city residents were to consume closer to the Recommended 

Daily Allowance (RDA) for protein (Pendick 2015), reducing the protein consumption to 75g per 

person per day for those census blocks that are consuming on average over this level, the total N 

footprint would decrease by an additional 22.1%. The local N footprint would also decrease by 

3%. Most (70%) of census block groups in Charlottesville City, according to data from the CEX 

report, eat more than 75g per person per day of protein currently.  

In terms of transportation, if 10% of car use was replaced with bus use, 10% of fossil 

fuel-powered cars were replaced with electric cars, 10% of car use was replaced with biking, and 

10% was reduced via carpooling, there would be a 12.6% reduction in the local N footprint, and 

a 1.1% reduction in the total N footprint. If 10% each of electricity and natural gas use was 

replaced with renewable energy, there would be a 1.1% reduction in the local N footprint, and a 

0.4% reduction in the total N footprint. If the rate of fertilization on home lawns was decreased 

by 25%, the local N footprint would decrease by 2.8% and the total N footprint would decrease 

by 0.2% 

All together, these scenarios would reduce the local N footprint by 19.5%, and the total N 

footprint by 27.3%. 
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Table 6:  Percent reductions in the sector N footprint, local N footprint, and total N footprint for 
given scenarios for food, transportation, energy use, and fertilizer. 
  

Reduction Scenario % Sector 
Reduction 

% Local 
Reduction 

% Total 
Reduction 

Food: Replace 10% of Beef with Chicken 1.9% <0.1% 1.4% 

Food: Replace 10% of Beef with Beans 3.0% <0.1% 2.1% 

Food: Residents consume closer to 
Recommended Daily Allowance (RDA) 
for protein 

30.7% 3.0% 22.1% 

All Food Scenarios 35.6% 3.0% 25.6% 

Transportation: Replace 10% of Car Use 
with Bus Use 

7.7% 3.0% 0.3% 

Transportation: Replace 10% of Fossil 
Fuel-Powered Cars with Electric Cars 

6.8% 3.2% 0.2% 

Transportation: Replace 10% of Car Use 
with Biking 

8.3% 3.2% 0.3% 

Transportation: Decrease Car Use by 
10% with Carpooling 

8.3% 3.2% 0.3% 

All Transportation Scenarios 31.1% 12.6% 1.1% 

Energy: Replace 10% of Electricity Use 
with Renewables 

10.0% n/a 0.3% 

Energy: Replace 10% of Natural Gas Use 
with Renewables 

10.0% 1.1% 0.1% 

All Energy Scenarios n/a 1.1% 0.4% 

Fertilizer: Decrease lawn fertilizer 
application rate by 25% 

25% 2.8% 0.2% 

ALL SCENARIOS n/a 19.5% 27.3% 
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Discussion 

Comparison of Charlottesville City N Footprint with US and Baltimore 

Overall, the average per capita N footprint for Charlottesville City is lower than that of 

the US and of Baltimore (Figure 4). This may be due to a variety of reasons. First, all residents 

within the city limits of Charlottesville City are connected to a municipal wastewater treatment 

plant, where 79% of the N from human waste is removed before it enters the environment 

(Rivanna Water & Sewer Authority 2017), while the average US N footprint takes into account 

localities with wastewater treatment systems varying from septic systems to tertiary systems. The 

N footprint in Charlottesville City from wastewater is thus relatively low. This is in part due to 

the efforts of Chesapeake Bay Foundation, which protects the Chesapeake Bay watershed in 

which Charlottesville City lies. The foundation has made great strides in raising awareness of 

and funding for updating wastewater treatment (Chesapeake Bay Foundation 2020). The Virginia 

Department of Environmental Quality (DEQ) also determines and implements Total Maximum 

Daily Loads (TMDLs) for various bodies of water across the state, limiting the amount of 

pollution that is allowed (DEQ 2020). 

Additionally, the contributions to the N footprint due to electricity and natural gas use are 

lower per person in Charlottesville City than the US average. This could indicate that 

Charlottesville City residents have to use less energy to heat or cool their homes. One study 

offers evidence that Virginia overall does not have a relatively high heating or cooling burden 

when compared to the rest of the US (Petri & Caldeira 2015) which would decrease the amount 

of energy used for heating and cooling. Further research could be done on the energy use 

patterns in Charlottesville City in particular.  
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The N footprint from transportation also seems to be lower on average in Charlottesville 

City. This could mean that people in Charlottesville City rely less heavily on personal 

transportation than in the US on average. However, the data used in this study on vehicle miles 

traveled only capture miles traveled within the city, so they may underestimate the N footprint 

from transportation. Additionally, this analysis does not include air travel, which would increase 

an individual’s N footprint. 

The per capita N footprint due to home lawn fertilizer use, while relatively small, is about 

twice the size in Charlottesville City (Figure 4) than it is in Baltimore City. It is not included in 

the US average per capita N footprint. It is possible that Charlottesville City residents have larger 

lawn sizes, on average. Additionally, there is likely to be error in the estimate of the 

Charlottesville City fertilizer N footprint. The total area of turfgrass used is presumed to include 

some public areas, such as medians, that are not a part of home lawns, though most parks and a 

golf course were excluded. Further analyses could opt to include these areas, using unique 

estimates of fertilizer use for these areas specifically. The estimates used for fertilizer application 

rate and the percentage of households using fertilizer (Fraser et al. 2013), were also based on 

Baltimore survey data, and thus are another source of error when used in the Charlottesville City 

context. 

 

Geographical Variability in the Charlottesville City N Footprint 

 Great geographical variability was found in the Charlottesville City N footprint, ranging 

from 14.3 to 65.5 kg N/person between census block groups. The total and local N footprints per 

capita for Charlottesville City have the highest values in the downtown area and in the 
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north/northeast areas of the city (Figure 5). Many of the sectors contributing to the N footprint 

have higher values of kg N per capita in these areas (Figures 6-12).  

Food overwhelmingly has the largest impact on the total N footprint of Charlottesville 

City (Figure 3a). This closely parallels what was seen in Baltimore City (Dukes et al. 2020), as 

well as what can be seen when comparing the average per capita N footprint of Charlottesville 

City to the US overall (Leach et al. 2020). In Charlottesville City, it appears that people living 

close to downtown and in the north/northeast areas of the city contribute relatively more to the 

community’s N footprint through their food purchases (Figure 6). This has implications for 

consumer choices when it comes to food purchasing, as well as for a city when looking at 

reducing their total N footprint. 

 Locally, transportation has the largest impact on the N footprint, specifically in the form 

of NOx and N2O emissions from vehicles (Figure 3b). When looking at the transportation N 

footprint per capita, the data shows that people living in the downtown and north/northeast areas 

of Charlottesville City contribute the most, similar to the food N footprint (Figure 7). Emissions 

from transportation can directly impact local air quality and human health, as well contribute to 

the formation of tropospheric O3 (Erisman et al. 2013). In addition to transportation, pet waste 

also plays a large role in the local N footprint, as pet waste is not treated via wastewater 

treatment plants to remove Nr as human waste is (Figure 3b). This has implications for local 

water quality. 

  

Comparison of the N Footprint and Socioeconomic Patterns 

The positive correlation between median household income and total N footprint per 

capita provides evidence that census block groups with a higher average income contribute more 
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to the overall N footprint of Charlottesville City (Figure 14). This is a pattern that was seen in 

Baltimore City (Dukes et al. 2020). This means that wealthier census block groups in 

Charlottesville City engage more in consumption activities that have a higher N footprint, such 

as purchasing meat items, driving personal vehicles, and using more energy in homes, relative to 

poorer census block groups. 

In terms of food purchasing, the sector with the highest N footprint, there is likely to be 

error due to the fact that this study methodology estimates food weight from dollars spent on 

given food items. One could argue that wealthier census block groups could buy more expensive 

food items in general, artificially raising their N footprint. However, when looking at the kg of 

meat purchased (beef, pork, and chicken) by census block group, normalized by total kg of food 

purchased (excluding liquids, oils, spices, and sugars), there is a negative correlation with 

median household income (p = 0.04). This indicates that wealthier census block groups not only 

have a significantly higher N footprint, but also specifically consume more food with a higher N 

footprint relative to poorer census block groups. This supports, on a local scale, the growing 

evidence that wealthier populations have a relatively greater negative environmental impact than 

poorer populations, shown on a global scale by Preston et al. (2014). 

 Not only are wealthier census block groups contributing more to the N footprint of 

Charlottesville City, but there is evidence that it is also the census block groups where a higher 

proportion of the population is white (Figure 16). While this study focused on the contributions 

to the N footprint, rather than the effects of excess Nr such as water and air pollution, it is 

possible that the negative impacts of the N footprint are unequally distributed across the 

population as well. In addition to the fact that wealthier populations may have a greater negative 

environmental impact on a large scale (Preston et al. 2014), it has been shown that in local 
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contexts, certain groups, namely people of color, have been disproportionately impacted by 

environmental degradation, and associated public health issues (Walker 2009). In Charlottesville 

City, a preliminary study showed that NO2 pollution may be greater in majority low-income 

African American communities relative to higher-income white communities (Knowles 2019). 

More research should be done on how the negative impacts of Charlottesville City’s N 

consumption, such as associated air pollution, are distributed to the population. 

 

Possibilities for N Footprint Reduction 

 Census block groups with the highest overall and per capita N footprints, mostly 

downtown and in the north/northeast of the city, have the highest potential to reduce their N 

footprint. Much of the potential for reduction comes in consumer choices, but can be encouraged 

by city planning. For example, the largest possibility for reduction in their contributions to the 

community N footprint that a person has is in their food choices (Table 6). Reducing beef 

consumption and overall protein overconsumption has a high potential to reduce the upstream Nr 

losses to the environment caused by food. Changes in food purchasing habits are most likely to 

occur on an individual level, but could be impacted by the presence or absence of meat-heavy or 

vegetarian restaurants within Charlottesville City. Choices could also be influenced by greater 

consumer education on the environmental and also human health benefits of eating less red meat 

and more plant-based meals. 

 In terms of the local Charlottesville City N footprint, the largest possibilities for reduction 

come in switching modes of transportation (Table 6). City planning could impact this, in terms of 

making buses more accessible, affordable, and attractive to residents, or expanding the presence 

and accessibility of bike lanes within the city. Reductions in the N footprint could happen in the 
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energy sector with a more widespread use of renewable energy, for both residents and 

businesses, as well as improved weatherization of homes and buildings in order to reduce energy 

use itself. These reductions in the N footprint of Charlottesville City are possible through shifts 

in consumer choice, and could be encouraged by city planning decisions. 

 

Engaging Local Governments and City Planners 

 As stated above, reductions in the N footprint can occur by shifting consumer choices, 

and city planners and local governments can play a large role in this. This study engaged with the 

Charlottesville City local government to garner feedback on the study design, collect various 

data needed, present preliminary results, and solicit input on research gaps, opportunities for 

further analysis, and the usefulness and feasibility of various reduction scenarios. The goal in 

engaging local stakeholders, namely the local government, throughout the process was to make 

this study usable and helpful for potential future research, initiatives, and projects. 

 Susan Elliott, the Climate Protection Program Manager for Charlottesville City, was the 

primary contact, assisting with data collection and offering feedback in all stages of the project. 

Other members of the Charlottesville Public Works Department that offered feedback and 

suggestions were Kristel Riddervold, the Environmental Sustainability Manager, and Dan 

Frisbee, the Water Resources Specialist. David Tungate and Phillip McKalips from RWSA also 

assisted in providing wastewater data for the city. Jason Vandever, the City Treasurer, also 

assisted in communicating about dog license information and data. 

 The conclusions of this study could be used in the future by local stakeholders including 

those listed above in order to support sustainable initiatives, planning decisions, or further 

research on the impacts of Charlottesville City’s N footprint. For example, the results found here 
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could be used to support local government carbon footprint reduction strategies through 

synergies with the N footprint, as suggested by Riddervold. Additionally, non-governmental 

stakeholders such as non-profits and environmental groups could use the results from this study 

for educational or other purposes to support their missions. 

 

Conclusion 

 In summary, this study estimated the total and local N footprints of Charlottesville City 

for 2017. The total N footprint per capita for Charlottesville City was lower than that of the US 

and Baltimore City. Great geographical variability in the N footprint and its components was 

found, which correlated positively with median household income and the percent of the 

population in a given census block group that was white. There are large opportunities for N 

footprint reduction, particularly in the downtown and north/northeast areas of Charlottesville 

City. Decreases in the amount of beef and overall protein consumed could lead to the greatest 

reductions in the total N footprint, and changes in transportation could lead to the greatest 

reductions in the local N footprint. The results from this study could be used by local 

stakeholders to support future research, sustainable initiatives, consumer education, and planning 

decisions. Additionally, further research should be conducted on how the negative local impacts 

of Charlottesville City’s N footprint, such as air pollution, are being distributed to the population. 
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Appendix A: Vehicle classifications based on FWHA Class Groups for motorcycles, passenger 
cars, light trucks, buses, and medium-heavy duty trucks. 
 

FHWA 
Class 

Group 

FHWA Class 
Definition 

FHWA Class Includes Number of 
Axles 

NFT Designation 

1 Motorcycles Motorcycles 2 Motorcycles 

2 Passenger Cars All cars 
Cars with one-axle trailer 
Cars with two-axle trailers 

2, 3, or 4 Passenger Cars 

3 Other Two-Axle 
Four-Tire Single 
Unit Vehicles 

Pick-ups and vans 
Pick-ups and vans with 
one- and two- axle trailers 

2, 3, or 4 Light Trucks 

4 Buses Two- and three-axle buses 2 or 3 Buses 

5 Two-Axle, Six-
Tire, Single-Unit 
Trucks 

Two-axle trucks 2 Medium-Heavy 
Duty Trucks 

6 Three-Axle 
Single-Unit 
Trucks 

Three-axle trucks 
Three-Axle tractors without 
trailers 

3 Medium-Heavy 
Duty Trucks 

7 Four or More 
Axle-Single-Unit 
Trucks 

Four-, five-, six-, or seven-
axle single-unit trucks 

4 or more Medium-Heavy 
Duty Trucks 

8 Four or Fewer 
Axle Single-
Trailer Trucks 

Two-axle trucks pulling 
one- and two-axle trailers 
Two-axle tractors pulling 
one- and tow-axle trailers 
Three-axle tractors pulling 
one-axle trailers 

3 or 4 Medium-Heavy 
Duty Trucks 
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9 Five-Axle Single-
Trailer Trucks 

Two-axle tractors pulling 
three-axle trailers 
Three-axle tractors pulling 
two-axle trailers 
Three-axle trucks pulling 
tow-axle trailers 

5 Medium-Heavy 
Duty Trucks 

10 Six or More Axle 
Single-Trailer 
Trucks 

Multiple configurations 6 or more Medium-Heavy 
Duty Trucks 

11 Five or Fewer 
Axle Multi-Trailer 
Trucks 

Multiple configurations 4 or 5 Medium-Heavy 
Duty Trucks 

12 Six-Axle Multi-
Trailer Trucks 

Multiple configurations 6 Medium-Heavy 
Duty Trucks 

13 Seven or More 
Axle Multi-Trailer 
Trucks 

Multiple configurations 7 or more Medium-Heavy 
Duty Trucks 

14 Unused ---- ---- Not classified 

15 Unclassified 
Vehicle 

Multiple configurations 2 or more Not classified 

 

  


