
Chess Engines: How to Make Chess Accessible to the General Public

A Technical Report

presented to the faculty of the

School of Engineering and Applied Science

University of Virginia

by

Stephen Johnson

May 11, 2023

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Stephen Johnson

Technical advisor: Rosanne Vrugtman, Department of Computer Science

Technical advisor: Briana Morrison, Department of Computer Science

Chess Engines: How to Make Chess Accessible to the General Public

CS 4991 Capstone Report, 2022

Stephen Johnson

Computer Science

University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

Smj8jqu@virginia.edu

Abstract

In the past two years, the popularity of chess

has begun to rise as a result of pandemic

policies, but some of the main tools

available to players are locked away due to

technical or economic constraints. To

remedy this issue, I propose an application

which would run in Docker, a combination

of a chess engine and UI, which would

function either locally or deployed to the

web. The architecture would be a ReactJS

user interface and a Java Spring Boot

backend service connected using

WebSockets. It would also be easily

monetizable through Google AdSense in

order to pay for hosting and compute power

for the engine. Using a series of algorithms

for building efficient tree data structures, the

engine can be incrementally improved over

time. The two potential outcomes from this

project are the app itself and the skills that I

have and will gain along the way. Going

forward there are many ways to

continuously improve the product. Among

them are more algorithms to improve both

the engine, and the user interface as industry

trends change.

1. Introduction

The game of Chess is not merely an idle

amusement. Several very valuable qualities

of the mind, useful in the course of human

life, are to be acquired or strengthened by it,

so as to become habits, ready on all

occasions. For life is a kind of chess…

—Benjamin Franklin [2]

Chess has existed for centuries and has

always been considered intellectually

intensive. This being the case, historically it

was played by the wealthy elite. As the

striations in society gradually weakened,

more people had access and the desire to

engage with chess. Over the past five years

this has been especially true, and players

want to have the capacity to improve. A

main driver to this end is the availability of

chess engines, which allow players to

understand the dynamics at play in any

given chess position, and to see the different

ways they could improve it as the game

continues.

Chess is an extremely important game. It

provides the best analogue for strategy

throughout literature and media, while also

being an intellectually stimulating activity

on its own. The more accessible the tools

necessary to development as a player are,

the more this activity can be made available

to people of all ages and backgrounds.

2. Related Work

Turing (1953) used chess as an example to

show the capabilities of his “Turing

Machine” and used the game as a theme

throughout his life’s work. He explores a

set of ideas about the limitations of

computers, mainly writing about chess.

After playing out a game according to his

algorithm he concluded that his program

would not fare well against strong human

competitors [1]. He believed that the flaws

in his program were due to his own lack of

skill in the game [1].

With slow, incremental algorithmic

advancement over the course of the next 40

years, the next and most visible

advancement in computer chess as reported

by Campbell, et. al. (2002) was Deep Blue

[3]. IBM created this system, which played

against Kasparov in 1996 and 1997, the

then-reigning World Chess Champion [3].

This system is massively more complex than

Turing’s, specifically designed around

parallel processing for searching the tree of

legal moves. Deep Blue II, which beat

Kasparov 3.5-2.5 in 1997, used over 500

processors for tree searching [3].

Since Deep Blue, there has been much more

open-source development on chess engines.

The most recognizable of this class is called

Stockfish (2022) [4]. A 2008 fork of the

Glaurung engine, Stockfish is currently one

of the most popular chess engines in the

world. Unlike Deep Blue, it is purely

software-based, meaning it can run on any

hardware. Its main limitation is that it is an

engine with no user interface, which is a

massive barrier for entry to anyone who is

not familiar with a command line.

3. System Design

The system designed has a simple frontend-

backend architecture. The frontend consists

of two screens, a login/landing page and the

chessboard screen. The user is authenticated

with the Google authentication system,

which gives them access to the page with all

of the functionality. It is built in ReactJS

and uses libraries such as react-chessboard

in order to provide the visuals for the

functionality provided in the software.

Making the UI browser-based rather than a

custom desktop interface also allows for the

system to be usable on a wider variety of

devices and operating systems with minimal

platform-specific testing.

3.1 System Logic

The backend holds the logic of the system.

The system builds a tree of legal chess

moves and searches for the nodes which

give the given player the highest advantage

according to an evaluation function.

3.2 Evaluation

The evaluation function allows the system to

decide whether a move is “good” or “bad.”

The evaluation function currently used by

the system is solely dependent on the values

of the pieces. The value returned by the

function is what is stored in each node,

where a positive value favors white and a

negative value signifies an advantage for

black. The nodes are then searched for an

advantage for the player who moves next,

and does a depth-first search for the most

favorable position at a given depth. This

value then propagates up the tree in order to

find the best move for the moving player. It

does this by also calculating the best move

for the opposing player at each depth in

order to “steel man” the competition.

A limitation associated with this approach is

that for most beginner players, computed

“best moves” are indecipherable. This is

because a move is only as good as the

moves it allows you to make in the future.

If someone is a beginner to chess and the

engine tells them to play like a grandmaster,

they will be lost and confused.

3.3 Communication

The communication between the frontend

and the backend is currently done through

REST API endpoints between the ReactJS

frontend and the Java Spring backend. This

means that the tree must be reconstructed for

every call to the backend. This has the

effect that the tool is only effective at low

depths, a suboptimal approach that and will

be refactored to be based on WebSockets in

future iterations.

Figure 1: Architecture Diagram

3.3 Environment

The entire system is run in docker, and for

ease of use it was configured with docker

compose. This means that the entire thing

can run locally on any machine with docker

installed and use the host machine’s

resources to do the computation. This saves

the product from being run in one of the

major compute engine services where it

would undoubtedly rack up extreme fees for

the computationally expensive tree building.

The docker compose file is in the UI

repository and builds both simultaneously in

order to deliver both the frontend and

therefore the backend to the user via the

browser.

4. Results

The result of this project is a functional app

which runs a web-like format used locally

on a host machine. This project continues in

development and will likely continue to be

for some time. We have great ambitions for

the level of complexity of the engine itself

as well as accessibility for the general

public. Ideally, with proper funding

acquired, we could host it on one of the

major web service platforms and allow it to

be used by the general public for training

and learning purposes.

Generally, the project is still a work in

progress but the proof of concept provided

thus far is sufficient to argue that this tool

can be sufficient to train against for beginner

players.

5. Conclusion

Chess is an incredibly important game not

only for the higher-level players, but also as

a tool for people to improve their problem-

solving skills. The current state-of-the-art

fails to properly account for the technical

abilities of the general population. In order

to bring a product to market for the general

populace, it needs to have an intuitive user

interface and a lack of technical obstacles to

get it running. This product allows someone

of any technical background to train their

brain with chess in order to get better at the

game and become a better problem solver.

6. Future Work

This engine and interface are far from

perfect. It needs much more styling and

refinement before it could be a viable

product in the market. One way it could be

vastly improved is training machine learning

models for the evaluation function, which

would assist the system in building a tree

that would more accurately predict the value

of a given position. This is the way many of

the current state-of-the-art systems work,

and given enough compute being put into

training the model, it could actually make

the system itself somewhat computationally

lighter than it otherwise would be.

Tree pruning could also be used to remove

the obviously bad moves from the tree in

order to better predict which moves the

player will make. With beginner players

this is a very limited improvement, though,

because the deleted parts of the tree could

still need to be traversed by the players

making bad moves, which may actually

slow down the system. It is still a desirable

improvement because as a player progresses

it becomes more and more useful to improve

efficiency.

References

[1] Alan Turing. 1953. Digital Computers

applied to Games. Retrieved from

https://turingarchive.kings.cam.ac.uk/public

ations-lectures-and-talks-amtb/amt-b-7.

[2] Benjamin Franklin. before June 1779.

The Morals of Chess. Retrieved from

https://founders.archives.gov/documents/Fra

nklin/01-29-02-0608.

[3] Murray Campbell, A. Joseph Hoane Jr.,

and Feng-hsiung Hsu. 2002. Deep Blue.

Artificial Intelligence 134, 1-2, 57-83. DOI:

https://doi.org/10.1016/S0004-

3702(01)00129-1.

[4] Stockfish. 2022. About. Retrieved from

https://stockfishchess.org/about/.

https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-7
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-7
https://founders.archives.gov/documents/Franklin/01-29-02-0608
https://founders.archives.gov/documents/Franklin/01-29-02-0608
https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.1016/S0004-3702(01)00129-1
https://stockfishchess.org/about/

