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Abstract
Autonomous mobile robots are becoming increasingly popular and improving the quality of our

lives by revolutionizing industries such as transportation, healthcare, logistics, agriculture, emergency

response, and manufacturing. This rapid advancement is driven by simulation technologies that

enable comprehensive design and testing before deployment. However, the transition from simulation

to reality often reveals discrepancies in modeling robots and their environments, creating challenges

that can hinder smooth deployment. Additionally, even after successful deployment, robots face

numerous challenges and uncertainties, including environmental changes, system aging, unexpected

disturbances, and actuator faults. These challenges, which often occur at runtime without prior

knowledge, can cause deviations from the systems’ intended behavior, leading to unsafe conditions.

Considering all these challenges, to enhance the resilience of robotic deployments and operations, it

becomes critical to detect the occurrence of dynamic changes and predict the future states of the

robot under such changes. Further, quickly adapting the robots’ control and planning components to

align with the new dynamics is essential to recover the system and resume its intended behavior. Such

adaptations not only address changes happening to the system during deployment and operation

but can also be used to deal with the well-known transfer-learning problem across different robotic

systems for fast and safe deployment.

This dissertation contributes to the existing state of the art in robotics operations against changes

in system dynamics and failures. Through the proposed framework, future states of autonomous

mobile robots are monitored to proactively update their motion plan and enhance their safety when

dynamics may have changed. To this end, first, we introduce a Meta-Learning-based framework that

allows the system to predict its future states and state uncertainties after dynamic changes due to

unforeseen faults. This framework also monitors these predictions and the surrounding environment,

allowing for real-time adjustments of the reference path to ensure safety during operations. Because

this proactive path replanning focuses on safety, it may disrupt the continuation of the assigned task.

To ensure that a task can resume, further adaptation of the controller and path planner is preferred

for better management of the degraded system. To address this challenge, we present a conformal

mapping-based transfer learning method. This approach enables the adaptation of control and path

planning policies to match a reference system’s behavior, bypassing the need for accurate model

estimation and effectively compensating for dynamic discrepancies arising from model mismatches.

These techniques are validated through extensive simulations and proof-of-concept lab experiment

case studies on ground and aerial robotic systems in realistic scenarios.
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Chapter 1

Introduction

Figure 1.1: Examples of autonomous mobile robots serving diverse purposes, like: package delivery,
transportation, search and rescue, agriculture applications, warehouse logistics, and inspection

Autonomous mobile robots (AMRs), including unmanned ground vehicles (UGV) and unmanned

aerial vehicles (UAV), are rapidly gaining popularity and significantly enhancing our daily lives.

These robots are designed for various applications across different sectors. For instance, service

robots streamline package delivery and are integral in household tasks such as cleaning and

providing entertainment. In agriculture, specialized vehicles are deployed for tasks like aerial dusting,

harvesting, and crop monitoring, boosting efficiency and productivity. Additionally, field robots are

increasingly used in critical roles such as search and rescue, disaster response, and law enforcement

operations. The rapid development and deployment of these applications are greatly supported

by advances in simulation technologies, which allow researchers to comprehensively design, test,

and refine these robots in controlled environments before they are introduced to real-world tasks.

This simulation-driven approach accelerates development timelines and enhances the reliability and

functionality of robotic systems in practical settings.
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However, applications developed in simulators often encounter challenges when deployed in

the real world, primarily due to the so-called ”Sim-to-Real” gap — the discrepancies between

simulated environments and real-world conditions. This gap highlights the limitations of simulations

in capturing intricate details, necessitating significant additional effort during real-world deployment.

Although researchers strive to improve the robustness of their designs, it can be difficult to anticipate

all possibilities during the design phase. This is particularly true when dealing with dynamic changes

that cannot be easily modeled or simulated. For example, one of our previous works [26] investigated

how airflow dynamics change when a quadrotor is flown close to a surface. The interaction between

the propellers and surfaces can generate additional thrust within a range. These effects, known

as ground and ceiling effects, impact the vehicle’s dynamics and are typically not captured in

simulators. Similar changes in dynamics can only be analyzed and characterized by real experiments.

On the other hand, due to limited computational resources, developers must carefully decide

the level of realism in simulations, balancing the need for detailed simulation against practical

development constraints. Consequently, the design of these simulations is often subject to the

designers’ personal interpretations of the problem they aim to solve, which can significantly influence

the development of techniques for robotic applications This subjective element introduces variability

in how simulations are constructed and implemented, impacting the overall efficacy and applicability

of the resulting technologies. With all this considered, it is impossible to perfectly replicate the

real world within a simulation. Therefore, finding effective strategies to seamlessly transition from

simulated environments to real-world settings and addressing the “Sim-to-Real” gap are crucial

for the swift advancement of robotic applications. Developing robust methodologies to bridge this

gap not only accelerates the innovation cycle but also enhances the reliability and performance of

robotics in practical applications.

Moreover, once robots are operational in the real world, they continue to face numerous unpre-

dictable challenges that can compromise the effectiveness of previously well-developed techniques.

For example, field and service robots may need to drive over different terrains to reach a goal,

an agriculture drone may need to deal with wind disturbances during flight, and even worse they

may need to deal with failures and changes in dynamics for example due to component aging and

deterioration. These scenarios illustrate the broader challenge of model mismatch, which encom-

passes both dynamic changes and the “Sim-to-Real” gap. Addressing these challenges is crucial

for the successful deployment and operation of robotic systems. It necessitates the development of

innovative solutions capable of anticipating and mitigating model mismatches. By adapting and

2



Figure 1.2: Methodologies developed and optimized in simulation often encounter significant
challenges upon deployment in real-world settings. These challenges include environmental

variations, actuator faults, and dynamic model mismatches, among others.

transferring techniques to handle these discrepancies, we can ensure that robots perform reliably

in their intended environments. This continuous improvement cycle is essential to maintain the

efficacy and reliability of robotics in real-world applications.

Since the uncertainties that a robot faces at runtime usually occur without a priori knowledge

and often cause deviations from its desired behavior, it becomes critical to detect if any dynamical

changes happened and to predict where the robot will be when the changes are present. To predict

the future state of the vehicle, data-driven approaches have been shown to be powerful tools.

However, this problem is challenging for the following reasons: 1) system changes at runtime can be

unforeseen, making them impossible to be trained beforehand; 2) it is usually challenging to make a

faulty vehicle run long enough to collect sufficient data while simultaneously training a new model at

runtime. On the other hand, the dynamic change of a vehicle is often not an immediate alteration,

but rather a gradual transition process. Thus, an approach that can quickly adapt the prediction

model to fit with the new dynamics by using a few data can be useful for solving these challenges at

runtime. At the same time, besides the rapid model adaption, the system should be able to monitor

unsafe conditions, provide risk assessments, and replan to maintain safety and liveness constraints.

By predicting future states and adjusting the plan accordingly, the system can avoid dangerous

situations. However, changing the originally intended plan may result in a halt on the desired

3



task. A better approach is to help the system not only detect the system changes but also recover

from them and continue the desired task. Considering that dynamic changes due to uncertainties,

disturbances, or component faults are gradual transitions rather than dramatic changes, it is efficient

to learn the changes and recover the system by directly adapting the knowledge from the original

dynamics. Such an adaption problem can be cast as a transfer learning process that adapting the

behavior before and after the changes as a teacher vehicle and a learner vehicle, respectively. The

goal is that for the learner to achieve similar behaviors as the teacher by transferring the control

and planning policies. Furthermore, such a framework can also be used in any transferring learning

problem in which the target and the source systems are similar (e.g. Sim-to-Real problems, model

mismatch problems).

To this end, the objectives of this dissertation are to solve the following challenges:

• How to predict future states and state uncertainties of the system with unforeseen faults at

runtime.

• How to proactively monitor the system and replan the desired behaviors to prevent unsafe

situations at runtime.

• How to enable the system to learn the operational limits of the degraded system.

• How to recover the system from changes in the dynamics due to model mismatches by

transferring knowledge from a known teacher model to a learner system.

In order to accomplish these objectives, this dissertation proposes to leverage a few-shot learning

technique based on Meta-Learning for updating the future states predicting model at runtime to

account for the unforeseen dynamic changes. A conformal mapping-based transferring framework

that adapts the control and planning policies to the degraded system so that it matches the desired

behavior while keeping its safety and liveness.

1.1 Overview of Research

The research presented in this dissertation consists of two successive Parts that include: Part I

states predicting and safe replanning for systems with unforeseen faults, and Part II control and

path plan policies transferring to mitigate model mismatch problems. A final Part III summarizes

what we have gained and learned from the first two Parts. Figure 1.3 provides an overview of the

research presented in this dissertation.
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Figure 1.3: Overview of the presented research in this dissertation.

1.2 Dissertation Organization and Contributions

In this section, we detail the structure of this dissertation by summarizing each chapter and

highlighting the contributions made within them. Chapter 3 is dedicated to predicting the future

states and corresponding uncertainties of autonomous mobile systems when they are experiencing

unforeseen actuator faults, and replanning to avoid potential collisions in real-time. Chapter 4

focuses on learning the operational limits of a degraded system and adapting control and motion

plan policies from a well-developed system to a degraded one by directly transferring the control

input. Chapter 5 further expands on the proposed transferring framework to enable continuous

control input transfer. This chapter also enhances the transferring framework by introducing a

method for actively refining the learned operational limits of the reference system during the transfer

process, which eliminates the need for a separate calibration step prior to transfer. To conclude this

dissertation, Chapter 6 provides a summary of our results and discusses potential future works.

Chapter 3: Meta-Learning-based States Prediction and Proactive Planning under

System Degradations

In this chapter, we introduce a Meta-Learning-based framework designed for faulty vehicle state

prediction and recovery. This framework transfers the knowledge that is Meta-Learned offline from

various faulty behaviors to predict future states and state uncertainties at runtime, during which a

new fault may arise. Through our proposed framework, the reachable states of a faulty vehicle are

predicted and validated. Faulty behaviors are detected when the vehicle deviates from the predicted

regions at the designated times, triggering an online update to the Meta-Learning model using a
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minimal amount of data gathered during operation to ensure precise predictions with respect to the

new dynamics due to faults. Additionally, the framework incorporates a sampling-based proactive

replanning method, which generates new waypoints for replanning around the areas where the

risk of collisions appears. The path plan is then revised after passing the safety assessment based

on the new reachability analysis, ensuring the safe retrieval of the faulty vehicle. Our proposed

framework is validated through simulations and real-world experiments consisting of UAVs with

different actuator faults navigating through cluttered environments. This chapter is based on the

following publications:

• S. Gao, E. Yel, and N. Bezzo, “Meta-Learning-based Proactive Online Planning for UAVs

under Degraded Conditions.” in IEEE Robotics and Automation Letters 7, no. 4 (2022):

10320-10327..

Chapter 4: Conformal Mapping-Based Transfer Learning for Discrete Control Inputs

In this chapter, we aim to enhance our capability of handling the changed dynamics of AMRs,

going beyond fault detection and recovery planning for the faulty system. Our approach extends

to transferring the control and path plan policies to better accommodate and manage degraded

systems. We assume that the target system, though similar, has reduced capabilities compared to

the source system. Our transferring framework observes and contrasts the behaviors of the two

systems, establishing a bijection between their command domains through a dedicated calibration

stage. This allows us to understand the operational limitation of the reference system and match

the geometrical distribution of the control inputs within these domains accordingly. Leveraging

Schwarz-Christoffel Mapping, a conformal mapping method, our framework geometrically maps

areas on the command domains to derive control inputs that are adapted to the reference system.

The planning policy, informed by the operational limits learned for the target system, is further

constrained to yield the plan tailored for the source system. This framework can be generalized for

addressing model mismatch challenges broadly. Different from existing methods in the literature, our

framework is lightweight compared to machine learning methods and directly maps the control input

between systems without the need to precisely learn the dynamical model of the target systems.

We demonstrate our framework by integrating it with a motion-primitive-based planner, validating

its effectiveness through extensive simulations and laboratory experiments with different UGVs for

navigation tasks. This chapter is based on the following publication:
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• S. Gao, and N. Bezzo, “A Conformal Mapping-based Framework for Robot-to-Robot and

Sim-to-Real Transfer Learning.” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2021.

Chapter 5: Conformal Mapping-based Transfer Learning for Continuous Control Inputs

In this chapter, we complement our Schwarz-Christoffel Mapping-based transfer learning framework

by enabling the transfer of the control inputs across a continuous command space. We also enhance

the robustness of the framework by accommodating systems with nonnegligible motion noises.

Moving beyond the initial calibration period discussed in the previous chapter, we expand the

framework by incorporating an active learning component. This integration actively refines the

operational limits of the reference system concurrently with the transfer process, particularly for

the adaptation of the planner to consider. We integrate our transfer framework with an MPC in

a navigation task with UGVs to demonstrate the proposed approach. We validate our enhanced

framework through both simulations and laboratory experiments, during which we purposely alter

the dynamics of the target system to increase model discrepancies. The UGV seamlessly replicates

the desired system’s maneuvers, thereby proving the effectiveness of the proposed work. This chapter

is based on the following manuscript currently under review:

• S. Gao, and N. Bezzo, “A Conformal Mapping-based Framework for Sim-to-Real Transfer

in Autonomous Mobile Robot Operations.” Journal of Intelligent & Robotic Systems(under

review), 2024.

Chapter 6: Conclusions and Future Work

In this chapter, we conclude the dissertation by summarizing the key findings from the studies

presented and outlining potential future research directions that build upon these results.

1.3 Summary of Contributions

To summarize, the work presented in this dissertation will contribute to the existing state-of-the-

art in autonomous mobile robot operations against failures and changes in systems dynamics by

providing:
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• A Meta-Learning-based approach that transfers knowledge learned offline about system

reachability under various faults for online prediction and validation of future states and

uncertainties in systems with unforeseen faults.

• An online monitoring system that validates predicted state, coupled with a sampling-based

replanning method for ensuring the safety of degraded systems.

• A novel and generalizable conformal mapping framework based on Schwarz-Christoffel Mapping

for transferring control and path planning policies between a teacher and a learner vehicle,

with demonstrations on: motion-primitive-based path planning and MPC methods.
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Chapter 2

Related Work

In this chapter, we provide an overview of the existing literature on resilient control and safe

planning for autonomous mobile robots under uncertainties. Following this, we present an overview

of techniques used to transfer control and path planning policies between systems.

2.1 Resilient Control and Safe Planning

For consistent performance under faulty behaviors, control techniques have been widely utilized

to adapt the systems’ control inputs according to the changes in the system dynamics and to

alleviate the effects of faults. For example, for quadrotors with the complete loss of one or multiple

actuators, specific controllers can be designed according to the failure to maintain stability and

performance [42, 58, 59, 28]. However, these techniques require explicit knowledge of the specific

failures and how these changes affect the system’s dynamical model to design resilient controllers.

When such knowledge is not available, fault identification or adaptive control techniques can be

leveraged. In [65], an Extended Kalman Filter (EKF)-based fault identification is used to decide if

there are one or multiple rotor failures, and a control allocation is updated based on the failure

using a nonlinear Model Predictive Control (MPC). In [24], a self-reconfiguration technique allows

the system to decide on its configuration based on the actuator failure and its desired trajectory.

Another well-known adaptive control technique called Model Reference Adaptive Control (MRAC)

adapts the control variables of the system based on the difference between the observations and

reference model output to improve tracking for systems with uncertainties and it has been used to

compensate for failures [39, 38]. Recently, machine learning techniques such as Gaussian Processes

(GP) [12] and deep neural networks (DNNs) [31] have been leveraged for the adaptive elements in

MRAC frameworks. GP-based approaches have also been used to model the effects of changes in
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the system model (e.g., due to unknown payload mass) and to provide safe plans [69]. Robustness

against faulty systems has also been achieved by using resilient distributed consensus [53, 71], and

topology control [70] within the context of multi-agent navigation.

In addition to control approaches, machine learning techniques have also been widely used to

improve the performance of UAVs under actuator faults or disturbances. In [54], the authors use

MPC with active learning to learn the robot’s new model under failure and provide necessary inputs.

Reinforcement Learning (RL) techniques are also utilized to adjust the actuator control commands

to compensate for component faults [19, 2]. Meta-learning approaches enable systems to speed up

their learning process for new tasks with a small number of training samples from new tasks. This

property makes meta-learning suitable for learning the models of uncertain systems at runtime for

safe planning [36]. One of such techniques–Model-Agnostic Meta-Learning (MAML)–trains the

model parameters explicitly to make them easy and fast to fine-tune for a new task [20]. MAML

has been leveraged for fault-tolerant operations using MPC and RL in [43, 3]. An algorithm

called Fast Adaptation through Meta-Learning Embeddings (FAMLE) is proposed in [32] that

meta-learns multiple priors as opposed to a single prior in MAML, and picks the most likely prior

to improve online learning efficiency. [55] introduces a concept of meta-active learning in which a

Q-function is learned via meta-learning and used to find optimal actions to maximize the probability

of staying in the safe region and promote information gain for systems with altered dynamics. In

[51], meta-learning is utilized to model the system dynamics under external forces to be used with an

adaptive control scheme to improve the tracking performance. All of these approaches assume that

the user is given direct access to the controller or the actuator inputs. However, this assumption

may not hold, especially when off-the-shelf robotic systems are used.

2.2 Transfer Learning in Robotics

The sim-to-real gap, which arises when transferring from simulation to the real world, primarily

exists because the model may not be accurate, or the environmental factors are not represented

in the simulation. Although we can always improve the fidelity of the simulation based on real-

world observations [10], it is still not possible to perfectly replicate reality. Furthermore, robotic

applications developed in such simulators may lose generality when deployed, as pointed out in [63].

Therefore, apart from refining the simulator, it is necessary to develop a more robust controller and

planner or other transfer methods to close the sim-to-real gap.
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As machine learning techniques have become widely exploited, transfer learning has gained

significant attention in robotics toward addressing transferring problem. The core concept of transfer

learning is to migrate the knowledge gained from one task to address similar tasks in diverse

environments. It takes advantage of existing knowledge [14] and reduces the cost as well as the risk

associated with data collection and model training [23, 72, 30]. Researchers have been investigating

this topic through various strategies, including domain randomization, domain adaptation, imitation

learning, and large fundamental models etc.

Domain randomization approaches parameterize the dynamics and environmental conditions

within simulations, seeking to encapsulate real-world complexities through augmented simulation

scenarios [60, 47, 62, 61, 10]. Despite the intention to bridge the sim-to-real gap, they often incur

high computational costs and can lead to over-generalization, resulting in systems that are capable of

handling a broad range of unlikely scenarios but may underperform in typical real-world conditions.

Domain adaptation, a well-established technique in machine learning, trains models with samples

from a source domain to effectively generalize to a target domain. Proven in computer vision, this

method has been particularly useful for bridging the sim-to-real gap in vision-based robotic control

problems[6, 18]. Similarly, recent end-to-end approaches[64] and RL-CycleGAN [49] also focus on

minimizing the sim-to-real disparity primarily in visual-based control tasks by aligning the visual

inputs between reality and simulations. However, these approaches often overlook the underlying

model mismatches and are built on the assumption that robotic controls are well-established without

sim-to-real discrepancies. This assumption represents a significant oversight—a challenge that our

work aims to address.

Another strategy that has been broadly explored is imitation learning, also known as learning

from demonstration or behavior cloning, which enables robots to acquire new skills by mimicking

expert behaviors. This method shifts from the traditional approach of learning through prolonged

repetition of simple tasks by directly deriving policies [56, 33], plan [35, 44], or rewards [4, 21]

from an expert. While this technique offers some performance guarantees, it can be adversely

affected by suboptimal or inappropriate examples from the expert, and it lacks the ability to

handle complex tasks. Additionally, it is sensitive to environmental changes, which can hinder

its ability to generalize effectively [50]. Consequently, imitation learning is not ideally suited for

addressing sim2real transfer problems, where adaptability across varied real-world conditions is

crucial. Recently, large foundation models have been adapted for robotics applications, exemplified

by [8, 7]. These works have shown their effectiveness in high-level semantic reasoning using visual
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and language inputs. While they enhance human-robot interaction and enable the transfer of

high-level plans between different robots and environments, their application is limited to tasks

for which the robots have been explicitly trained. Although the potential for transferring control

through transformers remains largely unexplored, the extensive data requirements for training such

models pose a significant challenge for researchers. Despite the main approaches, researchers have

also investigated into other novel methods for closing the sim-to-real gap, including reducing the

costly errors by predicting the blind spots in real environments [48] and inflating safety critical

regions to reduce the chance of collision [27].

2.3 Conformal Mapping in Robotics

Conformal mapping is a mathematical technique used in complex analysis. A conformal mapping

function transfers a complex domain onto another one while preserving angles locally. Researchers

have exploited this approach for geometrical problems in robotics. [5] has introduced conformal

mapping to aid in correcting the distortion in robotic vision. [34, 57] treat the original path plan

as a geometrical pattern and use conformal mapping to adapt the plan to suit the task in specific

settings. However, the SCM method proposed in this dissertation is rarely utilized in the robotics

field. In [45], the SCM is employed to transform planar motion into continuous linear motion,

addressing a coverage control problem for wire-traversing robots. Our recent work [25] first brought

the idea of leveraging the SCM method to directly transfer control inputs between two systems.

It shows the efficiency and effectiveness of bridging the gap when transferring the path planner

and the controller between similar systems. However, [25] relies on motion primitives to achieve

motion plan transferring, whose transferring results are discrete and highly depend on the size of

the motion primitive library. In this dissertation, we demonstrate the transfer of discrete control

and path planning based on motion primitives, followed by a continuous transfer using a receding

horizon approach.
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Part I

Faulty Behavior Detection and Recovery

13



Chapter 3

Meta-Learning-based States Prediction and Proactive

Planning for Degraded Systems

In this chapter, we present our meta-learning-based approach to predict the future states and

associated uncertainties of an unmanned aerial vehicle (UAV)when faced with unforeseen actuator

faults. Our method utilizes meta-learning to train a model across various actuator faults. The

model makes predictions based on the observed history of the states and the reference path during

the corresponding timeframe. We leverage meta-learning for rapidly adapting the model to manage

raised new faults during operation. The relearning of the model is triggered whenever the UAV

exceeds the predicted states and uncertainties. A runtime monitoring technique is implemented

to detect potential collision risks based on the forecasts for safety enhancement. Additionally, a

waypoint-sampling-based replanning method is initiated whenever a safety risk is identified. The

proposed approach is validated through simulations and real-world experiments in a case study

on a faulty UAV path-tracking task, demonstrating the effectiveness of enhancing the safety of

autonomous UAV operation. The material covered in this chapter has been accepted for publication

in IEEE Robotics and Automation Letters and was presented at the 2022 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS).

• S. Gao, E. Yel, and N. Bezzo, “Meta-Learning-based Proactive Online Planning for UAVs

under Degraded Conditions,” in IEEE Robotics and Automation Letters 7, no. 4 (2022):

10320-10327..

3.1 Introduction

Autonomous mobile robots like aerial vehicles are rapidly becoming an integral part of our daily lives

thanks to their widespread use in different applications from delivery to inspection. When operating
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in the real-world, numerous unpredictable challenges (e.g., component faults, external disturbances)

can cause performance degradations, potentially leading to unsafe behaviors like collisions. For

example, unpredicted wind fluctuations around buildings or bridges or motor failures will put an

aerial vehicle at risk of collision while conducting inspection jobs. Since these uncertainties usually

occur at runtime without apriori knowledge, it becomes challenging to take them into account

during design time.

One way to cope with such unforeseen disturbances is to learn the system model and adapt

the controller of the robot at runtime. However, given a well-developed robotic system, it is often

the case that the controller is either hard to adapt or is not accessible by the user. Thus, one of

the best options is to act on the planner which is by design available to change. By correcting the

reference planned trajectory, it is often possible to make a robot with the original controller follow

the original desired behavior [68]. This type of approach is effective in improving the performance

of a robot dealing with an unforeseen component fault. However, we observe that depending on

the fault, the tuning of the adapted planner, and the robot’s physical limits, an undesired behavior

may still occur, such as a deviation from the desired path, which may lead to potentially unsafe

situations.

With these premises, in this chapter, we introduce a novel safety monitoring technique to predict

the future states of an autonomous robot under actuator noises and previously unforeseen actuator

failures. We employ meta-learning to solve a reachability analysis problem to deal with situations in

which even after replanning, the system may still deviate from the desired behavior. In particular,

with our proposed framework, future states and associated uncertainties for a faulty autonomous

system considering future corrections [68] are predicted at runtime without the need to retrain a

learning component. Our framework utilizes these predictions to monitor if the system will violate

safety constraints (e.g., a collision with an obstacle). When an unsafe situation is detected, a safe

trajectory is then replanned using a sampling-based approach for waypoint selection. Figure 3.1

pictorially shows the problem space of this chapter in which a UAV is tasked to inspect a power

plant. Due to unexpected failures, the UAV will deviate and collide with the cooling tower. Our

technique proactively monitors and predicts the regions the system may reach over a future horizon

and replans the trajectory when these regions intersect with obstacles.
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Figure 3.1: Pictorial representation of a UAV experiencing a failure at runtime leading to a
potential collision.

3.2 Preliminaries

In this chapter, we assume that once a robot is deployed to perform an operation, we do not have

access to its controller or control inputs and we only have access to the high-level planner and

reference trajectory generator. This consideration is made in order to increase realism since most

robotic systems do not allow manipulations of the controller once a robot is deployed but instead, it

is possible to change its goal locations and trajectory waypoints. We assume that the system is

already applying corrective counter-measures both at design time and at runtime to alleviate the

effects of faults and to follow a desired trajectory closely. However, under some disturbances/failures,

its behavior may still become erratic as the corrective actions may not be able to compensate and

bring the system back on its desired path.

3.2.1 Notations

In this chapter, we use x(k) to represent the state of the system at time k. p(k) and v(k) represent

the position and velocity of the system respectively. The symbol x̃ is used to represent the predicted

state, and the symbol x̄ is used to represent the mean of sampled states. The notation x(k : kN )

represents an array of values from time k to kN : x(k : kN ) = [x(k), x(k + 1), . . . , x(kN )]
T where

kN > k. The notation x(k : δN : kN ) represents an array of values from time k to kN with δN ∈ Z+

increments: x(k : δN : kN ) = [x(k), x(k + δN ), x(k + 2δN ), . . . , x(kN )]
T where kN > k and δN > 1.
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3.3 Problem Formulation

The goal is to design a technique that predicts the future states of a system under an unseen fault

at runtime, uses these predictions to detect unsafe situations, and proactively replans to improve

safety. The system might already be applying corrective actions to compensate for the experienced

faults, however, these corrective measures may not be enough to prevent collisions. Formally, we

define these problems as follows:

Problem 1: Future State Prediction under Failure: An autonomous system with a

nominal dynamical model f(x,u) as a function of its states x and controller inputs u has the

objective of following a predefined desired trajectory xτ . Under actuator faults and noises, the

Figure 3.2: Meta-learning-based future state prediction and replanning framework for systems
under unknown faults.
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system’s model changes to x(k + 1) = f ′(x(k), ũ(k)), where f ′ is unknown. The system has noisy

inputs ũ(k)) = u(k) + η(k) which create state uncertainties, making the exact state prediction of

the system challenging. With these premises, our goal is to design a predictor to map the future

state predictions (x̃) and state uncertainty predictions (ζ̃) as a function (h̃) of the history of states

and reference trajectory: [x̃(k : k + H), ζ̃(k : k + H)] = h̃(x(k − T : k − 1),xτ ). H is the state

prediction horizon and T is the size of the data history used to make predictions.

Problem 2: Safe Replanning : Design an online policy to monitor the safety of the future

states of the system and to replan the trajectory when an unsafe situation is detected to ensure

that the following safety conditions will be satisfied by the future predicted states:

Rp|k+Hk ∩O = ∅ (3.1)

where O is the set of obstacle positions and Rp|k+Hk is the union of future position sets that the

system is predicted to reach over a time horizon H with time increments of δH :

Rp|k+Hk = Rp(k) ∪Rp(k + δH) · · · ∪Rp(k +H) (3.2)

The set of positions that the system is predicted to reach at time k is computed as follows:

Rp(k) = ∪{p s.t. ∥p− p̃(k)∥ ≤ ζ̃p(k)} (3.3)

where p̃ is the predicted position and ζ̃p is the predicted position uncertainty.

3.4 Meta-Learning-based Predictions and Proactive Replanning

Our framework consists of offline and online stages as depicted in Figure 3.2. During offline and

online stages, the system applies corrective measures to compensate for the faults. During the offline

stage, the robot under various faults follows a set of trajectories. A meta-network is trained offline

to predict future states and their uncertainties based on the collected training data. At runtime, the

robot experiences a new, unforeseen fault. With a few data collected at runtime, the meta-network

is fine-tuned to make predictions over a finite horizon about the future states and state uncertainties

of the new faulty system considering corrective countermeasures. These predictions are used within

a runtime replanning approach to find a safe trajectory if the original desired trajectory is deemed
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unsafe with the fault that the system is experiencing.

3.4.1 Offline Training for State and Uncertainty Predictions

To train a model offline for state and uncertainty predictions, we first collect training data using a

UAV with various faults following a rich set of trajectories. Then, we use meta-learning to train a

network which is easy to fine-tune at runtime using a small number of data [20].

Data Collection

During the offline stage, a dataset is created using the data collected from a UAV with actuator

fault from a discrete fault set F while it is following different trajectories applying fault-tolerant

corrective measures. Specifically, we consider a system with faulty dynamics and actuator noise

modeled as follows:

x(k + 1) = f ′(x(k),u(k) + η(k)) (3.4)

The actuator noise η(k) ∼ N (µη,ση) is sampled from a normal distribution with mean µη and

standard deviation ση. Each trajectory is run N times and for each sampled run, the mean of the

actuator noise is sampled from a normal distribution to capture the behavior of the system under

various uncertainties: µη ∼ N (µ̄,σµ).

For each trajectory τ ⊂ T , we compute the mean and standard deviation of the N sampled

paths for each fault Fi ⊂ F and for each discrete sample times k ∈ [0, Tτ ].

x̄i(k) =

∑N
j=1 x

j
i (k)

N
,σi(k) =

√∑N
j=1 |x

j
i (k)− x̄i(k)|2

N − 1

∀k ∈ [0, Tτ ], ∀i ∈ {1, . . . , |F|} (3.5)

In Figure 3.3 we show two different sample desired trajectories (τ1 and τ2) that are followed by

a UAV under two different faults applying the reference update procedure described in [68] to reduce

their tracking error. The first faulty UAV has reduced thrust in one actuator: F1 → T ′
1 = T1−0.25N

and the second faulty system has more degradation on the same actuator: F2 → T ′
1 = T1−0.5N. Roll

and pitch angles of both systems are limited to |ϕ| ≤ π
18 , |θ| ≤

π
18 respectively. Each trajectory is run

N = 10 times with different actuator noise sampled as explained above. Blue curves in Figure 3.3(a)

show these N sampled paths for the first fault and the magenta curve in the middle shows the
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(a) Desired trajectory 1 followed by two different faulty systems.

(b) Desired trajectory 2 followed by two different faulty systems.

Figure 3.3: Sample desired trajectories with two different faulty systems.

mean of these samples (x̄1). Dashed magenta curves show the uncertainty around the mean of

the samples with ±3σi. Figure 3.3(b) shows the paths of the same faulty UAVs following another

training trajectory (τ2). During training, we create 100 training trajectories using minimum-jerk

trajectory generation [41] with different final positions, initial and final velocities. Determining the

training data size for training an accurate meta-model is an open problem and is beyond the scope

of the problem we are focused on. This framework leaves the choice of training data size to the user.

However, as for most learning components, it benefits from training data that covers a wide variety

of faults.

Meta-network Training

The purpose of meta-learning is to train an easily adaptable model to predict the future positions

and position uncertainties of a faulty system. We denote this learning model as h which takes the

history of the system’s observed states, history of the desired states and future desired states as
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inputs and returns the future states and state uncertainties as an output. A training input χih and

a training output γih are constructed as follows:

χih(k) =


ξix(k)

ξiτ (k)

ξih(k)

 γih(k) =

 ξiγ(k)

ζiγ(k)

 (3.6)

where ξix(k), ξ
i
τ (k) and ξih(k) represents the vectors related to the history of the system’s states,

history of the desired states and future desired states respectively and ξiγ(k) and ζiγ(k) are the

vectors related to the future state and state uncertainty predictions respectively. For the UAV

application considered in this chapter , the input vectors for a quadrotor with the fault Fi ⊂ F are

constructed as follows:

ξix(k) =


x̄i(k − T + 1 : k)− x̄i(k − T )1⃗

ȳi(k − T + 1 : k)− ȳi(k − T )1⃗

v̄xi (k − T + 1 : k)

v̄yi (k − T + 1 : k)



ξiτ (k) =


xτ (k − T + 1 : k)− x̄i(k − T )1⃗

yτ (k − T + 1 : k)− ȳi(k − T )1⃗

vx,τ (k − T + 1 : k)

vy,τ (k − T + 1 : k)



ξih(k) =


xτ (k + δH : δH : k +H)− x̄i(k − T )1⃗

yτ (k + δH : δH : k +H)− ȳi(k − T )1⃗

vx,τ (k + δH : δH : k +H)

vy,τ (k + δH : δH : k +H)

 (3.7)

∀τ ⊂ T , ∀k ∈ {1, . . . , T (τ)}

where p̄i(k) = [x̄i(k), ȳi(k)] and v̄i(k) = [v̄xi (k), v̄
y
i (k)] are the position and velocity components of

the mean state x̄i(k) respectively. For this application, we use the positions and velocities in x− y

plane as part of the observed and desired states, however, it should be noted that, depending on
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the application, higher-order states such as acceleration or jerk values could also be added into the

network input. Similarly, the output vectors are constructed as follows:

ξiγ(k) =

 x̄i(k + δH : δH : k +H)− x̄i(k − T )1⃗

ȳi(k + δH : δH : k +H)− ȳi(k − T )1⃗


ζiγ(k) =

 3 ·max(σxi (k : k +H))

3 ·max(σyi (k : k +H))

 (3.8)

where σxi (k) and σyi (k) are the x and y position components of the standard deviation σi(k)

respectively.

The dataset for meta-learning training DHi for fault Fi contains the training input matrix Xi
h and

output matrix Y i
h , with the columns χih and γih respectively. The training dataset for meta-learning

contains the dataset for each fault: DHi ⊂ DH .

The purpose of meta-learning is to learn a model represented by a parameterized function hϕ

that maps the model input to the output. We use MAML [20] as a meta-learning algorithm to

train the network. During the offline training, the model parameters vector ϕ are meta-optimized

according to Equation 1 in [20]:

ϕ←− ϕ− β∇ϕ
∑
Fi⊂F

LFi(hϕ−α∇ϕLFi
(hϕ)) (3.9)

where α is the learning step size, β is the meta step size, and Fi ⊂ F indicates the sample batch of

faults among the training data. For more details, we refer readers to [20].

This meta-optimization allows the parameters to be quickly fine-tuned with a few data at

runtime. The loss function used during this training is given as follows:

LFi(hψ) =
∑

χi
h,γ

i
h∈D

H
i

∥hψ(χih)− γih∥22 (3.10)

where χih and γih are given in (3.6).

3.4.2 Online Meta-Network Update

At runtime, the UAV may experience a new fault which is not included in the training set and

may apply the same corrective measures as during the training stage. While the system moves
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under this new fault, we collect Kp consecutive data from its state sensors to update the offline

meta-trained model for future state predictions. The inputs and outputs of the online learning data

set are constructed in the same way as in (3.6) and (3.7):

χ∗
h(k) =


ξ∗x(k)

ξ∗τ (k)

ξ∗h(k)

 γ∗
h(k) =

 ξ∗γ(k)

ζ∗γ(k)

 (3.11)

where:

ξ∗x(k) =


x∗(k − T + 1 : k)− x∗(k − T )1⃗

y∗(k − T + 1 : k)− y∗(k − T )1⃗

v∗x(k − T + 1 : k)

v∗y(k − T + 1 : k)



ξiτ (k) =


x∗τ (k − T + 1 : k)− x∗(k − T )1⃗

y∗τ (k − T + 1 : k)− y∗(k − T )1⃗

v∗x,τ (k − T + 1 : k)

v∗y,τ (k − T + 1 : k)



ξih(k) =


x∗τ (k + δH : δH : k +H)− x∗(k − T )1⃗

y∗τ (k + δH : δH : k +H)− y∗(k − T )1⃗

v∗x,τ (k + δH : δH : k +H)

v∗y,τ (k + δH : δH : k +H)

 (3.12)

for k ∈ {T + 1, . . . , T +Kp} with p∗ = [x∗, y∗] and v∗ = [v∗x, v
∗
x] the position and velocity of the

UAV with an unknown fault at runtime. p∗
τ = [x∗τ , y

∗
τ ] and v∗

τ = [v∗x,τ , v
∗
y,τ ] are desired trajectory

positions and velocities respectively. The output of the online learning dataset consists of the

following vectors:

ξiγ(k) =

 x∗(k + δH : δH : k +H)− x∗(k − T )1⃗

y∗(k + δH : δH : k +H)− y∗(k − T )1⃗


ζiγ(k) =

[
σx σy

]T
(3.13)
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where σx and σy are assigned uncertainties in x and y directions respectively and they are initially

set to a value larger than the mean of the observed uncertainties during training. By using the data

collected at runtime, the meta-learned model parameters ϕ are updated to ϕ∗ using only a few

stochastic gradient descent updates. The updated model hϕ∗ is then used to make predictions for

the future states of the system for the same horizon considered in training. These predictions are

used to replan trajectories if unsafe situations are detected, as explained in the next section.

Runtime Validation

After the initial meta-network update at runtime, the runtime inputs are compared to the training

inputs to assess if a further meta-network update is necessary or not. The distance between the

runtime input and training inputs with training faults is calculated as:

diF (k) = min
χi

h∈col(X
i
h)
∥χ∗

h(k)− χih∥ ∀i ∈ {1, · · · , |F|}

∀k ∈ {T +Kp, . . . , T (τ)} (3.14)

If the minimum distance between the observed test input and the training inputs is larger than

a given threshold, the system re-tunes its meta-trained network:

sH(k) = 1 if min
i∈{1,...,|F|}

(diF (k)) > λH (3.15)

where sH is a binary variable that enables re-updating the meta-trained network at runtime using

the last Kp runtime training inputs and λH is a user-defined threshold.

We also constantly monitor the observed state to check if it is outside of the predicted reachable

region. If so, the network is re-tuned:

sH(k) = 1 if p(k) ̸⊂ R̃p(k) (3.16)

where R̃p(k) is a region where the system is predicted to reach at time k:

R̃p(k) = ∪{p s.t. ∥p− p̃(k)∥ ≤ ζ̃(k)} (3.17)
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3.4.3 Runtime Replanning for Safety

After updating the meta-trained network, the future states and state uncertainties of the system

are predicted using the fine-tuned network:


x̃(k + δH : δH : k +H)

ỹ(k + δH : δH : k +H)

σ̃x(k + δH : δH : k +H)

σ̃y(k + δH : δH : k +H)

= h∗
ϕ(χ

∗
h(k)) +


x∗(k − T )1⃗

y∗(k − T )1⃗

0

0


∀k ≥ T +Kp (3.18)

At runtime, the predicted set based on the updated meta-trained model are used to proactively

detect unsafe situations. Given an environment with a set of static obstacles O, the regions that

the system is predicted to reach, which are computed as in (3.17), are checked for collision:

s∗(k + t) =


0 if R̃p(k + t) ∩O ̸= ∅

1 otherwise

∀t ∈ {δH , 2δH , . . . ,H} (3.19)

At time k, if it is detected that s∗(k + t) = 0 (i.e., reachable regions intersect with obstacles for

t ∈ {δH , 2δH , . . . ,H}), the trajectory is replanned. To this end, here we use a sampling-based

replanning method in which a waypoint around the original unsafe desired trajectory point is

generated and tested for safety until a safe waypoint is found as outlined in Algorithm 1.

Algorithm 1 Trajectory Replanning

1: τ ← Initialize the desired trajectory
2: s∗(k + t)← Assess safety based on (3.19)
3: while s∗(k + t) = 0 do
4: ds ∼ U[0,d̄s] ← Sample update distance
5: ψs ∼ U[−π,π] ← Sample update direction
6: pw = pτ (k + t) + ds[cos(ψ); sin(ψ)]← Sample a waypoint
7: τ ← Replan trajectory with pw
8: R̃p(k)← Predict the reachable region with τ
9: s∗(k + t)← Assess the safety of τ based on (3.19)

10: end while
11: return τ
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The replanning algorithm is applied until the desired trajectory reaches the goal location. It

should be noted that as the main objective of this work is not the replanning algorithm itself, a

user can consider a different replanning approach based on the application.

3.5 Simulations and Experiments

The proposed meta-learning-based predictive and proactive replanning framework was validated

on a faulty UAV infrastructure inspection task. For the following simulations and experiments,

we consider a quadrotor UAV that is undergoing a faulty behavior and is equipped with a fault-

tolerant corrective method which may or may not be well-tuned to recover the system against all

possible failures/disturbances that can occur at runtime. Thus, the vehicle can deviate from its

desired trajectory when facing a new fault beyond the corrective method’s capabilities. In our

simulations and experiments, we chose to use our meta-learning-based trajectory update method

presented in [68] as a fault-tolerant corrective method. This technique has shown trajectory tracking

improvements under degraded conditions. The corrective method is purposely poorly tuned to show

not only the issue more clearly but also the effectiveness of the proposed approach. It is worth

noting that we choose to use this method because it does not require access to the controller or

controller inputs, however, our predictive and proactive planning framework can be used with other

corrective/adaptive techniques as well (e.g., robust and adaptive controllers).

3.5.1 Simulations

In these simulations, the quadrotor is modeled with a 12-dimensional state vector [41] and the fault

is modeled as a thrust change on randomly selected motors. Specifically, the fault is simulated by

both reducing the thrust on one of the motors and increasing the thrust on the opposite motor of

the quadrotor. The details of the faults used during training and testing are shown in Table 3.1.

Note that the faults caused by motors 1 and 3 are amplified effects of the fault on the single motor.

Considering the quadrotors are symmetric by nature, faults presented on 2 or 4 can be treated

similarly. In addition to the faults, we also consider a system with limited roll and pitch angles:

|ϕ| ≤ τϕ, |θ| ≤ τθ in order to accentuate the issue and for ease of demonstration. For training, we

used two different angle limits: τϕ = τθ ∈ { π18 ,
π
12} and for testing we considered a different angle

limit: τϕ = τθ =
π
16 .
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During the offline stage of collecting training data, the UAV is tasked to follow different minimum-

jerk trajectories [41] under different faults. Specifically, the training trajectories are shaped as

trapezoidal paths of different lengths and angles. The collected data are used for meta-training the

reference trajectory neural network and the state and uncertainty prediction neural network.

Table 3.1: Fault types used during simulations

Training fault Fault type

F1 66% thrust on motor 1 and 136% on motor 3

F2 43% thrust on motor 1 and 160% on motor 3

F3 21% thrust on motor 1 and 184% on motor 3

Test fault Fault type

F1
∗ 32% thrust on motor 1 and 173% on motor 3

During training, the control loop runs at 40Hz. We use T = 10 past data to predict the future

states, and we set the future horizon for the predictions H = 50 steps which is equivalent to 1.25 s

ahead. The state and the uncertainty predictions are given at five future times spaced δh = 10 time

steps apart. The prediction network contains five hidden layers with 100 nodes and is meta-trained

by using a Tensorflow Keras implementation of MAML [20].

During the online testing stage, the UAV is tasked to follow a desired path to inspect a structure

while undergoing an unexpected failure. In Figure 3.4 we show a baseline case that is used to

compare our framework. Without correction, the UAV collides with the black obstacle (cyan-colored

baseline path) while following the desired trajectory (red-colored line). In the same figure, we

show also the case in which the UAV only applies corrective reference updates according to [68]

(blue line) while trying to follow the desired path without the proposed predictive and proactive

replanning technique. The UAV adapts the trained model to deal with the new fault by using prior

data obtained during the flight and then uses the adapted model to update the reference trajectory

(magenta line in the figure). It should be noted that, as a proof of concept, we used a poorly tuned

correction which leads to collisions, to demonstrate the prediction and compensation capabilities of

our approach next.

Given the same simulation setup, we validate our prediction and replanning technique while

the UAV is applying the same reference trajectory update in [68]. Figure 3.5 shows that the UAV

predicts a potential collision within the predicting horizon (1.25 s) and replans its desired path to

avoid the obstacle. In the zoomed-in window, we show the instance in which the UAV predicts

and detects the collision and keeps predicting and checking the safety of the replanned paths. The
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Figure 3.4: UAV path under a test fault without the meta-learning prediction and replanning
approach.

proposed replanned desired paths and the predictions for checking the safety are color coded. Given

the first proposed replan trajectory which is shown as the dashed brown line, the framework predicts

the future positions as well as the uncertainties of the vehicle which are indicated as a series of

brown rectangles in the zoomed-in window. The first proposed replan is considered as unsafe since

the predicted positions collide with the obstacle and thus it is abandoned. Another replanned

trajectory orange-colored is considered but yet deemed unsafe. Finally, a safe replanned desired

trajectory (green dashed line) is validated by the predictions of the framework (green rectangles)

and the vehicle can overcome the unsafe situation. As the goal of our proposed framework is to

recover the faulty vehicle from the unsafe operations, the path replanning prioritize getting the

UAV safely to the desired destination over staying close to the initial desired path.

3.5.2 Experiments

The proposed meta-learning-based prediction and proactive re-planning approach was also validated

with experiments by using an Asctec Hummingbird quadrotor UAV inside a controlled laboratory

space. Similar to the simulations, the UAV uses a baseline PID controller which is designed for

the nominal quadrotor (without a fault) to control its position and attitude. To create the faulty

behavior on motors 1 and 3, a fault is injected into the system by adding a bias to the commanded

pitch angle before it is fed to the attitude controller. A poorly tuned meta-learning-based reference

trajectory update approach [68] is used to compensate for the deviation caused by the fault during

tracking. The experiments are implemented in ROS and a Vicon motion capture system is used to
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Figure 3.5: UAV path under a test fault with the proposed meta-learning-based prediction and
replanning approach.

monitor and track the state of the UAV.

To train a model for future state prediction, we collected training data for the UAV following

different trajectories considering various speeds and angled paths. We ran each of the training tra-

jectories with 5 different faults by directly adding biases b ∈ {−0.06,−0.09,−0.12,−0.15,−0.18}rad

to the pitch command and three runs for each case. As the magnitude of the faults increases, the

quadrotor deviates more toward the positive y-direction. A meta-learning model was trained with

the collected data to predict the states as well as the uncertainty of the vehicle at different time

frames {+0.4,+0.8,+1.2,+1.6,+2}s in the future. The same architecture of the neural networks in

the simulation was used for the experiments.

During the online stage, the vehicle was tasked to follow a desired trajectory at a maximum

velocity of 3m/s while a bias b = 0.13rad – which is different from the ones in the training set – was

applied to the vehicle. While the UAV was tracking the desired path, it used the offline meta-trained

model to predict the positions and uncertainties at 5 different time frames in the future with the

maximum predicting horizon of 2 s. Figure 3.6 ∼ Figure 3.8 show the results of the UAV taking

a desired straight path from the start point to the destination. The predictions are shown as the

orange bounding boxes in the figures. Any overlapping area between the predicted boxes and the

obstacles is considered a potential collision and thus triggers the re-planning procedure.

Figure 3.6(a) and 3.6(b) show the results from the first experiment in which the re-planning

procedure was disabled. To demonstrate the correctness of the prediction and show where the UAV
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(a) UAV path and examples of predictions. (b) Overlapped screenshots.

Figure 3.6: The UAV with an unknown fault detects a potential collision while replanning is
disabled during a flying task from the start point to a destination.

would have reached without re-planning, avoiding damaging the vehicle, we set its height above the

obstacle. As a result, the UAV detected a collision at time 7.39 s when it was 0.98m away from the

obstacle and flew through the obstacle because replanning was disabled in this test.

(a) UAV path and examples of predictions. (b) Overlapped screenshots.

Figure 3.7: The UAV with an unknown fault detects a potential collision and avoids the obstacle by
replanning during a flying task from the start point to a destination.

In the second set of experiments shown in Figure 3.7(a) and 3.7(b), we enabled the replanning

module. While the UAV is flying, at time 7.84 s, the predictions by the meta-learned model

indicated a collision risk, which resulted in triggering the replanning behavior. The UAV randomly

sampled a waypoint at (−0.41, 0.8)m and generated a new desired trajectory to drive around the

obstacle. Given the new desired trajectory, the UAV confirmed that the new path is safe within the

prediction horizon based on the meta-trained model predictions. We note that as Experiment 1 and

Experiment 2 are two separate experiment instances, the UAV detects the collision at different times.

In Experiment 2, it took less than 0.05 s to find a safe solution after detecting the collision, which

demonstrates that our approach was fast enough to be performed at runtime. It is also noteworthy
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that how to pick the waypoints for re-planning is not the contribution of this work; we rather focus

on predicting the states of the vehicle with an unknown fault.

(a) UAV path and examples of predictions. (b) Overlapped screenshots.

Figure 3.8: Using the proposed approach, the UAV with an unknown fault continuously monitors
potential collision risks during flight tasks. No replanning is triggered as the obstacle poses no

threat to the UAV’s safety.

In the third experiment, the obstacle was set at a different position than the previous two

experiments. As shown in Figure 3.8(a) and 3.8(b), the UAV constantly monitored the predictions

and did not need to perform re-planning since no potential collision was detected.

We also tested our approach in scenarios with more obstacles. As shown in Figure 3.9, we sampled

some examples of the predictions while the UAV navigates through the cluttered environment.

At times 7.20 s and 13.51 s the UAV predicted and detected potential collisions. We also showed

two other predictions of future states and uncertainties at times 9.18 s and 14.73 s to further

demonstrate the output of the proposed framework. Due to the space constraints of our lab, we did

not perform tests with more obstacles and failures; however, we believe that the presented results

are representative enough to demonstrate the effectiveness of the proposed approach.

(a) UAV path and examples of predictions. (b) Overlapped screenshots.

Figure 3.9: The UAV detects the collisions and avoids the obstacles multiple times. The legend for
this figure is the same of Figure 3.6(a)
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3.6 Discussion

In this chapter, we utilized meta-learning to train a highly adaptable network capable of making

predictions about the state and state uncertainty of a faulty system. These predictions are used to

identify potential collisions within a fixed future horizon. We employed a sampling-based method to

proactively replan the system’s original desired trajectory. To ensure safety, the replanned path is

validated by checking predictions based on this new trajectory to prevent unsafe situations.

Limitations and Future Directions:

In this work, predictions for future states are generated by a meta-trained and fine-tuned network,

with the accuracy of these predictions directly dependent on the quality of training. If the training

data are insufficient or the network is poorly trained, the predictions may become inaccurate. Our

framework includes runtime validation, which involves comparing runtime inputs with training

inputs and monitoring prediction accuracy as the system operates. This technique allows for network

retuning to enhance prediction accuracy, although it does not offer formal assurance guarantees.

The replanning scheme in our framework relies on sampling waypoints and evaluating their

safety, a process that can be time-consuming if a safe waypoint is not identified within a limited

number of iterations. To address this challenge, future developments could focus on a learning

technique that directly generates safe waypoints. Additionally, while we currently use a fixed horizon

for predicting future states, a recursive approach could be developed to enable variable horizon

predictions.
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Part II

Control and Path Plan Transfer for Degraded

Systems
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Chapter 4

Conformal Mapping-Based Transfer Learning for

Discrete Control Inputs

In this chapter, we introduce a Schwarz-Christoffel Mapping-based transfer framework, designed

to migrate control and motion planning policies between two systems. Our framework enables a

learner system to adopt the teacher’s policies in accordance with its own capabilities, despite not

explicitly knowing the closed form of its dynamic model. The proposed framework directly maps

the teacher’s control inputs to those of the learner, effectively mitigating system differences and

enabling the learner to replicate the teacher’s desired maneuvers. The primary challenges in this

transfer that we aim to address are: 1) determining the inherent relationship between the control

inputs of both systems that produce identical maneuvers, and 2) configuring the operational limits

of the learner to ensure that the teacher’s controller and path planner deliver compatible results.

Our framework discovers the geometrical transformations between the command domains of the two

systems by establishing a bijective conformal mapping. Given the teacher’s commands, the desired

learner control input is obtained via a conformal mapping function. The learner’s capabilities are

assessed through a dedicated calibration stage, which evaluates its responses to a range of test

commands within its command limits. We selected a widely adopted path planning method, motion

primitive-based path planning, to demonstrate the transfer of path planning policies. The motion

plan transfer is achieved by filtering out the primitives that exceed the learner’s capabilities. The

proposed approach is implemented using the Robot Operating System (ROS), MATLAB ROS

Toolbox, and MATLAB Schwarz-Christoffel Mapping Toolbox. The effectiveness of the framework

is validated by extensive simulation and real experiments with Clearpath Robotics Jackal and

Turtlebot2 UGVs. The material covered in this chapter has been accepted for the 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).
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• S. Gao, and N. Bezzo, “A Conformal Mapping-based Framework for Robot-to-Robot and

Sim-to-Real Transfer Learning.” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2021.

4.1 Introduction

Robotic applications are typically built considering specific systems in mind. For example, popular

motion planning methods (e.g., artificial potential field [11], A* [17], probabilistic techniques [40])

and control methods (e.g., MPC, PID [46]) require fine-tuning and knowledge about system model

dynamics in order to be fully leveraged and obtain a desired performance on a selected platform.

We also note that most technologies are developed through simulations which offer a practical and

inexpensive means to create and test the limits and performance of designed algorithms. Researchers

usually spend considerable time and resources to create techniques for specific robotic systems

and to adapt them to new systems, as well as to compensate for the simulation-reality gap during

deployments on actual vehicles. Finally, even when a new technique is developed and deployed

on a specific robot, it can still need to be adjusted or adapted over time due to mechanical aging,

disturbances, and even failures that deprecate and modify the system’s original model. In this

chapter, we seek a general framework to transfer and adapt the system’s performance. As mentioned

above the goal of the proposed work is to:

• Reduce the sim-to-real gap allowing a developer to quickly transfer motion planning and

control methods onto a real platform.

• Transfer knowledge designed for a specific robot onto a different robot.

• Compensate for system deterioration/failures by learning quickly the limits and the proper

input mapping to continue an operation.

All of the aforementioned problems can be simplified and cast as a teacher transferring knowledge

to a learner.

Specifically, to address these problems, in this chapter, we propose a novel method that leverages

a variant of Schwarz–Christoffel mapping (SCM) [16] – a conformal transformation of a simple poly

area onto the interior of a rectangle – to transfer a teacher vehicle’s control input sequence to a

learner vehicle, as depicted in Figure. 4.1. Our proposed method allows the teacher to understand

the learner’s limitations so that the transferred control input is compatible with the learner’s
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Figure 4.1: Pictorial representation of the proposed work in which motion planning and control
policies are transferred from a teacher-simulated vehicle to two vehicles to create the same behavior

designed in simulation.

capabilities. Finally, once these limitations are extracted, we propose a mechanism to adapt also the

teacher motion planning scheme to create paths compatible with the learner constraints. To deal

with this problem, our scheme leverages an optimized finite horizon primitive motion generation.

The main contributions of the work covered in this chapter are twofold: 1) a light-weight transfer

framework that leverages SCM theory to directly transfer the control input from teacher to learner

so that the learner can leverage the teacher’s control policy while its own dynamics remain unknown;

and 2) a method for adapting the source system’s control and path planning policy to the learner.

The method constrains the output of the source system’s controller and of the path planner so that

the transferred motion plan and control input are guaranteed to be compatible with the target

system’s dynamics.

The rest of this chapter is organized as follows: in Section 4.2 we formally define the problem

we addressed within this chapter. The details of our SCM-based transfer learning framework

are presented in Section 4.3. The proposed framework is validated with extensive simulations in

Section 4.4 and experiments on real robots in Section 4.5. At last, we conclude this chapter and

discuss the limitations as well as the potential future directions in Section 4.6.
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4.2 Problem Formulation

The problem addressed in this work can be considered as a transfer learning problem from the

teacher system to the learner. The goal is to find a mapping function that allows for a seamless

translation of commands from the teacher to the learner, ensuring they result in identical movements

(i.e., reaching the same pose and speed). The user possesses comprehensive knowledge of the teacher

including its dynamics, finely-tuned controller, and planner. In contrast, the learner is treated as a

black box to which we can send control inputs and observe the full states.

4.2.1 Notations

In this work, we use xT (t) and xL(t) to represent the state of the teacher and learner systems while

uT (t) and uL(t) represent the control inputs of the two systems at time t. The symbols u and u

denote the upper and lower bounds of the control inputs, respectively. Formally, we define two

problems in this context:

Problem 4.1 Teacher-Learner Control Transfer: Given a teacher robot with dynamics

xT (t+ 1)=fT (xT (t),uT (t)) and control law uT=g(x), find a policy to map uT to a learner input

uL such that xL(t+ 1)=fL(xL(t),uL(t)) ≈ fT (xL(t),uT (t)), without knowing the closed-form of

the fL.

Problem 4.2 Teacher-Learner Motion Planning Adaptation:

Consider a task to navigate from an initial location to a final goal xG. Assume that the learner’s

input space uL ∈ [uL,uL] ⊂ [uT ,uT ]; design a motion planning policy πLT for the teacher that

considers the limitations of the learner and such that the desired trajectory calculated τ can be

tracked by the learner, i.e., such that ∥xL − xτ∥ ≤ ϵ where ϵ is a maximum allowable deviation

threshold.

We assume that the learner has similar kinematics as the teacher but is less capable. By “similar”,

we mean that they share the same configuration space CL = CT and task space TL = TT , and their

kinematic models exhibit a fundamental similarity in structure and governing equations. Although

differences in parameters or external influences underline their distinctions, a shared mathematical

foundation emphasizes their conceptual similarity. This similarity provides a basis for applying

methodologies across both systems. For example, both systems might be based on the same dynamic
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models but with distinct parameter sets, or they share identical parameters that fail to precisely

reflect the actual behavior of the learner system. Regarding “less capability”, this implies that the

learner’s command space is a subset of the teacher’s UL ⊂ UT . For instance, the learner may not

be able to drive as fast or turn as sharply as the teacher. This allows the teacher to perform all

the learner’s maneuvers but not vice versa. The assumption aligns with our focus on transferring

knowledge from the simulated system into a real-world vehicle, as a virtual system can often be

designed to surpass the capabilities of its real counterpart in sim-to-real problems As conformal

mapping is well-established in two-dimensional spaces but becomes significantly more complex and

restricted in higher dimensions, consequently, we focus on the systems whose input spaces are

either inherently two-dimensional or can be bijectively represented in two dimensions, denoted as

u ⊂ R2. Despite this, there is potential for extending our conformal mapping-based approach to

higher-dimensional spaces to accommodate the requirements of more complex input spaces.

4.3 Methodology

To address the formalized problem, we propose a conformal-mapping-based transfer learning

framework. The block diagram in Figure. 4.2 presents the architectural overview of the proposed

framework. The highlighted blocks are the main components for transferring the control inputs.

Problem 4.1 is solved by leveraging SCM to conformally map the teacher vehicle’s control input

to obtain the learner’s command. To tackle the Problem 4.2, the equivalent teacher commands,

which produce identical motions as those observed from the learner, are used for constraining both

the control and planning policies of the teacher. This ensures that the teacher’s inputs used for

mapping are tailored to accommodate the learner’s capability. This section presents the details of

the proposed framework, explaining how the two problems are solved.

4.3.1 SCM-based Command Transferring

For the challenges we aim to address, we assume the learner has similar dynamics as the teacher

but is less capable. For instance, consider the impact of system aging, where the original, unaged

system serves as the teacher and the aged system acts as the learner, unable to achieve the same

level of performance. Since the teacher and learner represent the same system at different stages,

their dynamics are fundamentally similar. However, a velocity command that once propelled

the teacher vehicle effectively may result in diminished speed when applied to the aged learner
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Figure 4.2: The block diagram of the proposed mapping-based transfer learning framework

system. This principle, when applied across all commands within the learner’s command spectrum,

suggests that the more limited, slower maneuvers now achievable by the learner form a subset of its

capabilities prior to aging. By linking the learner’s commands back to the teacher’s that are capable

of mirroring the learner’s altered behavior, we can observe that the distribution of the teacher’s

equivalents is effectively “compressed” compared to the broader range of commands the learner used

to execute before experiencing system aging. Inspired by this example case, it is critical to preserve

the geometric information of the command domain to grasp the difference between the teacher

and the learner. Thus, in this work, we leverage a conformal mapping method, renowned for its

ability to preserve local geometries, including angles and shapes, to map the two command domains.

The interconnected commands of the teacher and the learner, as highlighted in this example, are

instrumental in determining the mapping function that accommodates the geometric alterations

within the command domain. We define the two linked commands as command pairs. Formally, a

command pair, up, denotes a pair of a teacher’s and a learner’s control inputs that result in both

systems executing the same maneuver:

up = ⟨uT ,uL⟩

s.t. fT (xL(t),uT (t)) = fL(xL(t),uL(t))

where uT = f−1
T (xL(t),xT (t+ 1))

(4.1)

An illustrative example of a set of command pairs is color-coded and presented in Figure 4.3.

These command pairs are also used for characterizing the learner’s dynamics. For example, in

Figure 4.3, the learner component of the color-coded command pairs is located on the boundary of
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the learner’s command space, while the corresponding teacher component forms a convex hull within

the teacher’s command domain. The interior of the convex hull created by these command pairs

effectively captures the dynamics of the learner within the teacher’s command domain. Since it is

impractical to learn all the command pairs all over the command domain. The proposed transferring

framework relies on conformal mapping to find the rest of the command pairs by leveraging a limited

number of command pairs.

Figure 4.3: Examples of command pairs which are color-coded.

As we showcased at the beginning of this section, when transferring the input between systems,

the process can be viewed as a geometric distribution transformation within two systems’ command

domains. Understanding this geometric alteration in the command space becomes instrumental in

facilitating the transfer of control inputs that elicit similar or even identical maneuvers from both

systems. Thus, the command pairs offer valuable insights into the result of such transformation.

Inspired by this idea, the proposed transferring framework takes three steps to derive the desired

learner command from the teacher command. First, the learner uses the teacher’s control policy to

generate a control input which is the teacher’s desired command as if the learner were the teacher.

Then, depending on user preference, the learner has the flexibility to choose multiple command pairs

from the teacher’s side, forming a poly-region that encompasses the teacher’s desired command.

The corresponding region on the learner’s command domain is automatically determined by the

learner’s commands associated with the same command pairs as the teacher’s vertices. At last, the

Schwarz-Christoffel Mapping (SCM) is employed to conformally map the region in the teacher’s

command domain onto the region in the learner’s domain. This strategic mapping allows us to

pinpoint the precise learner command capable of producing maneuvers akin to those executed by

the teacher in response to the desired command. The process is depicted in Figure. 4.4.

For ease of comprehension, we use a toy example to demonstrate the mapping process in this
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Figure 4.4: SCM maps the two polygon regions which are constructed by the command pairs
around the desired command (red cross on the left).

section. In the example, the command domains are put onto the complex domain with the real

axis representing the linear velocity and the image axis for the steering angle. In complex analysis,

SCM is a technique on the complex domain for conformally mapping the upper-half plane onto

the interior of a simple polygon, with the real axis mapped onto the polygon’s edges as illustrated

in Figure. 4.5. Specifically, let P be the region in the complex plane with w be a vertex on the

boundary of the mapped region and αkπ as the interior angle. SCM theory allows us to map H+ to

the interior of the P while the real axis is mapped to the boundary of the polygon region.

Figure 4.5: An example of SCM mapping the upper half plane to a polygon region.

Let f be a SCM function of the upper half-plane H+ onto P, and let zk = f−1(wk) be the

prevertices. The key of the conformal mapping is that the local angle is preserved, thus the

fundamental of the Schwarz-Christoffel transformation is that

f ′ =
∏

fk s.t. arg f ′ =
∑

arg fk (4.2)

where f is analytically continued across the segment (zk, zk+1) and each arg fk is designed to be a

step function so that the resulting arg f ′ is a piece-wise constant which reflects the angle jumps
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along the perimeter of the polygon

[arg f ′(z)]z
+

z− = απ (4.3)

To satisfy these requirements, the SCM function has a form of

f ′(z) = A

n−1∏
k=1

fk(z) (4.4)

fk = (z − zk)αk (4.5)

In the context of this work, we employ a variant of the SCM theory which follows the same

form and achieves a mapping from the interior of a polygon to a rectangle. Specifically, within

our transfer learning framework, the polygons that are constructed on both sides undergo initial

individual mappings to two separate rectangles with unique aspect ratios determined by the shape

of the mapping areas. The rationale behind mapping the two regions onto distinct rectangles

becomes evident as we delve into the mapping procedure. Subsequently, to connect the two mapped

rectangles on both sides, we introduce a unit square as a bridging element. The overall mapping

process is outlined in Figure. 4.6. To enhance understanding, we use an example to guide the reader

through the application of SCM in the direct transfer of the teacher’s control input to the learner.

Figure 4.6: The mapping flow of transferring the desired teacher command to the learner. A unit
square is used as an intermediate plane to bridge between the rectangles mapped from the polygons

on each side.

With the basic conformal mapping concept in mind, in order to map a polygon to the rectangle,
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SCM borrows an intermediate bi-infinite strip as a pivotal intermediary as shown in Figure. 4.7. We

can treat the polygon as a generalized quadrilateral and select any 4 vertices in counterclockwise

order as its four corners. These four vertices will eventually be mapped to the corners of the

rectangle. The mapping function from a generalized quadrilateral to a strip is simply the inverse of

it.

Figure 4.7: The flow of conformal mapping that maps the polygon to the rectangle while using the
bi-infinite strip as the intermediate plane.

Consider an irregular polygon τ with vertices denoted as w1, ..., wN (where N≥4), arranged

in a counterclockwise manner as illustrated in Figure. 4.7. The interior angles at each vertex,

α1π, ..., αnπ, represent the angles formed by the edges originating from and terminating at that

particular vertex. Initially, the vertices w1, ..., wN are mapped to the prevertices z1, ..., zN on the

bi-infinite strip S, and subsequently, they are mapped to the vertices q1, ..., qN on the rectangle Q.

To compute the mapping function from a strip to a generalized quadrilateral, we introduce the

Theorem 4.1.

Theorem 4.1 Let P be the interior of a polygon with vertices w1, ..., wN arranged in counterclockwise

order (N≥4). α1π, ..., αnπ represent the interior angles at each vertex. Let f be any conformal map

from a bi-infinite strip S to the polygon with f(zN ) = wN . Then the Schwarz-Christoffel mapping

from the bi-infinite strip S to P is:

w = fΓS (z) = A

ˆ z

0

N∏
j=0

fj(z)dz + C (4.6)
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where A and C are complex constants that rotate, translate, and scale the polygon and are

determined by the shape and location of P. Each factor fj sends a point on the boundary of the

strip to a corner of the polygon while preserving its interior angles. The factor fj is a piece-wise

function which is defined by:

fj(z)=


e

1
2
(θ+−θ−)z j=0,

{−i · sinh[π2 (z − zj)]}
αj 1 ≤ j ≤M , (4.7)

{−i · sinh[−π
2 (z − zj)]}

αj M + 1 ≤ j ≤ N ,

where M is the number of points on the bottom side of the strip. θ+ and θ− denote the desired

divergence angles at +∞ and −∞, which are θ+=θ−=π in our case. Please refer to [29] for proof.

By leveraging the Jacobi elliptic of the first kind [9, 66], the SCM mapping fSQ from the rectangle

Q to the bi-infinite strip S can be defined by:

z = fSQ(q) =
1

π
· ln(sin(q|m)) (4.8)

where q is the point on a regular rectangle and m is the modulus of the Jacobi elliptic that is decided

by q. The details of this conformal mapping can be found in [16]. With Eqs. (4.6) and (4.8), a

mapping function from the generalized quadrilateral can be obtained. In order to explicitly solve

(4.6), there are three parameters zk that must be specified. For ease of computation, for example,

we can fix z1 = 0, z2 = L, zN−1 = i, and zN−2 = L + i. The parameter L here is linked to the

conformal modulus m.

While the angles of the polygon are computed with (4.6) and (4.7), we need to find where the

pre-vertices lie on the boundary of the strip to keep the length for each edge of the polygon. This

problem is known as the parameter problem in SCM [16]. Since we already fix z1 = 0, in (4.6) the

translation parameter is set to be C = 0. Hence, solving (4.6) is equal to solving:

wk = A

ˆ zk N∏
j=0

fj(z)dz, k = 1, 2, 3, . . . , N (4.9)

In (4.9), the scalar A can be eliminated by the ratio of the adjacent sides length of the polygon:

wk+1 − wk
w2 − w1

=

´ zk+1

zk

∏N
j=0 fj(z)dz´ z2

z1

∏N
j=0 fj(z)dz

, k=2, 3, . . . , N − 2 (4.10)
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Let

Ik =
∣∣∣ ˆ zk+1

zk

N∏
j=0

fj(z)dz
∣∣∣, k = 1, 2, . . . , N − 2 (4.11)

Then (4.10) can be rewritten as:

Ik = I1 ·
wk+1 − wk
w2 − w1

, k = 2, 3, . . . , N − 1 (4.12)

To this end, (4.12) leaves us N − 3 conditions and the unknown parameters of (4.9) are

zk (k = 1, 2, . . . , N − 3) which is exactly the number of the side length conditions given by (4.12) .

We can get the complex constant A by:

A =
w2 − w1´ z2

z1

∏N
j=0 fj(z)dz

. (4.13)

As we get the conformal mapping function fΓS from the strip to the generalized quadrilateral, we

can compute L = z2 − z1 = fΓS
−1

(w2)− 0. Considering (4.8) which maps the rectangle to the strip,

the SCM function that maps the interior and the boundary of the generalized quadrilateral to the

rectangle with a unique aspect ratio can be obtained by:

q = fSCM (w) = fSQ
−1

(fΓS
−1

(w)). (4.14)

As the shape of the rectangle Q depends on the parameter L, the aspect ratio of the rectangle

is determined after L is computed. This explains why we map the two polygons from the teacher

and the learner command domains to two different rectangles. Since the dynamics of the teacher

and learner are different, the shape of the polygons from the teacher and the learner cannot be

identical and neither are the mapped rectangles. A unit square is borrowed to bridge between the

two mapped rectangles resulting in a complete mapping process from teacher to the learner, such

that any teacher command that falls in the teacher’s mapping area is connected to an image on the

learner side.

4.3.2 Primitive Path Planning

As the vehicle learns the mapping function, it is also important to know the limitations of the learner

so that the teacher’s policy can generate the command to plan the motions that are compatible with

the learner. This means that we want to find where the command boundary of the learner lies within
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the teacher command domain. This can be achieved by getting the command pair up=⟨uT ,uL⟩

when uL ∈ {uL ∪ uL}. As shown in Figure. 4.4, the teacher’s control inputs from these command

pairs can build a multi-dimensional convex hull that separates the interior of the convex hull from

the rest of the command area. From the teacher’s perspective, the boundary of the convex hull

indicates the limitations of the learner. Any of the teacher’s commands from the interior of the

convex hull can be matched with the learner’s command, enabling the two vehicles to produce a

similar motion with their own commands. However, to obtain better mapping performance, it is

recommended to consider additional command pairs inside of the polygon.

We use a trajectory-tracking case study to validate our approach. The teacher uses a search-based

path planning method to compose a sequence of motion primitives that allows it to drive along the

desired path P within certain bounds. The teacher’s input sequence associated with these primitives

will be the desired commands for mapping.

A motion primitive results from feeding a known sequence of control inputs to the vehicle. To

build one primitive p=[xT 1,xT 2, . . . ,xT t], we feed the teacher a sequence of the same control input

for a certain amount of time and record its state sequence. Following the same procedure, a library

of primitives can be built with different teacher’s commands. In Figure 4.8, we show 5 different

motion primitives that resulted from 5 different teacher’s commands. The one-to-one primitives and

the corresponding commands are color-coded. The command pairs are shown as the gray points

and the white region indicates the capability of the learner.

Figure 4.8: The teacher commands and the corresponding motion primitives are shown on the left
while a path planning scenario is shown on the right.
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We want to point out that: 1) To better adapt to the capability of the learner, only the command

that falls inside of the convex hull should be considered. 2) The learner can leverage the teacher’s

motion planner as soon as the convex hull is built. 3) The convex hull does not need to capture the

entire command domain of the learner, it just provides a boundary that makes sure the learner is

operating within the known capability.

As the path planner searches primitives from the library to use, it evaluates the difference

between each of the primitives and the corresponding segment on the desired path. As shown in

(4.15) and in Figure. 4.8, the difference is measured by considering both the dynamic time warping

(DTW) distance ed and the heading difference eθ at the end of the primitive:

δi = kd · ed + kθ · eθ

= kd ·DTW (P, pi) + kθ · |(θP − θpi)|,

p∗i = min
p1,...,pi

δi.

(4.15)

The two types of differences are weighted by two user-defined gains (kd≥0, kθ≥0). A large kd

will force the vehicle to remain close to the trajectory while a large kt will give the primitives that

are parallel to the trajectory a better chance to be chosen. Using these metrics, the planner searches

through all the primitives in the library and selects the one with the least difference as the optimal

local path plan p∗i . The teacher’s control input u∗
T , which is associated to p∗i , is the command that

will be mapped to the learner.

After a command sequence is executed, the learner will evaluate the situation and use the planner

to generate a new local path and corresponding command sequence. The learner will continue to

repeat this planning procedure until it arrives to the destination.

Since the learner has differing dynamics from the teacher, as the learner executes the command

sequence to follow the composed path, it may deviate from it. When the learner is in an open area,

such deviation is not critical because the command sequence only lasts a short period of time and it

can always be corrected by the planner at the next planning step. However, such deviation can

compromise the safety of the learner when it maneuvers in a cluttered environment. To provide

safety guarantees to the system, we introduce an event-triggered mechanism to monitor the learner

at runtime. The runtime monitor measures the distance between the learner and the planned path

dê. The re-planning procedure is triggered when dê>ϵ. The smaller that the threshold ϵ is, the more

conservative the learner behaves. As we discussed, the learner does not need to constantly re-plan if
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the deviation happens in an open area. Thus, the threshold ϵ should be dynamically changed to

reflect how crowded the surroundings are. In our work, the threshold is defined as:

ϵ =


η ∗min(||p− oi||) i = 1, 2, . . . , No,

∞ i = ∅,
(4.16)

where No is the number of obstacles in the learner’s field of view, oi is the position of obstacle i,

and η is a constant.

4.4 Simulations

For the simulations, we validate our transferring framework through a case where the vehicle suffers

from compromised dynamics. The kinematics for the vehicle is given by the following bicycle model:


xk+1

yk+1

θk+1

 =


xk

yk

θk

+∆t


vk cos θk

vk sin θk

γk

 , uk =

vk
γk

 (4.17)

where v and ω denote the linear and angular velocities respectively. The teacher, represents the

original vehicle with full capabilities, while the learner refers to the vehicle after being compromised.

The command ranges for both the teacher and the learner in this study case are detailed in Table 4.1.

For ease of implementation, we consider the system to have small inertia thus the acceleration

periods are ignored (e.g., an electric vehicle). A Gaussian noise of G ∼ N (0, 0.1) is added to the

learner’s position to simulate measurement errors. The learner is asked to follow a “S”-shaped

trajectory through a cluttered environment.

Table 4.1: Parameters for Motion Primitive Transferring Simulations and Experiments

v (m/s) v (m/s) ω (rad/s) ω (rad/s)

Simulation
Teacher 0 3 −π/3 π/3
Learner 0 1 −π/8 π/8

Experiment
Teacher 0 1.6 −1.2 1.2
Learner 0 1 −1 1

We use the normalized command domain for better visualization, and the domain is normalized

based on the corresponding ranges in Table 4.1. As shown in Figure 4.9, a 5× 5 grid of command
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pairs is collected beforehand. The boundary of the command pairs on the teacher’s command

domain marks the limitation of the learner. Figure 4.10 shows all of the teacher’s motion primitives

alongside their corresponding commands, each generated by driving the teacher with a specific

control input for 1s. Out of the 121 motion primitives, 35 are retained for path planning after

excluding those that exceed the learner’s capabilities. For the path planner, we set the planning

horizon to s=2 and the threshold to trigger re-planning as η=0.5.

Figure 4.9: Command pairs for the simulation. The command pairs are one-to-one color-coded
across the two command domains.

Figure 4.10: Example of learner’s capability assessment and transfer of path planner. The
preimitives within the learner’s limit are preserved for path planning.

Figure 4.11 shows two snapshots from the simulation, illustrating that the learner closely follows

the desired trajectory. For the teacher’s path planner, we set the planning horizon at 2, meaning the

local path consists of two primitives. The learner adopts a more conservative plan when obstacles

are present within its field of view (FOV) as η is lower than the open space.
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Figure 4.11: (a)The simulation result of learner following a “S”-shaped path. The local path
planning and the SCM mapping results for the robot at position ‘A’ are shown in (b), (c), (d), and

the results at position ‘B’ are shown in (e), (f), and (g).
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In Figure 4.12, we show the result of the baseline learner for the same task. The baseline learner

directly applies the teacher’s commands, unaware of any necessary adjustments for its dynamics.

As expected, the learner failed because it used commands not adapted to its new dynamics.

Figure 4.12: Simulation results for baseline learner. (b),(c), and (d) show the primitive path plan,
the normalized teacher command domain, and the normalized learner command domain at the

moment in (a).

4.5 Experiments

Our proposed transfer learning approach was validated by a set of experiments in which we transferred

the planning and control knowledge of a simulated teacher into two real learner vehicles. The real

experiment setup is similar to the simulated experiments and we used the same simulated teacher

vehicle as the previous section. The commend ranges for the vehicles are listed in Table 4.1. The

method is implemented using the MATLAB Schwarz-Christoffel toolbox [15] and vehicle control is

managed via the MATLAB ROS Toolbox in conjunction with the Robot Operating System (ROS).
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The experiments are conducted indoors, with the vehicles’ states tracked by a VICON motion

capture system. The architecture of the experiment setup is depicted in Figure 4.13.

Figure 4.13: Architecture of the experimental setup.

As shown in Figure 4.14, Clearpath Jackal UGV is the learner vehicle for tracking an “S”-shaped

path through a gate in the first experiment. The vehicle’s capabilities are characterized by collecting

command pairs through specific commands executed throughout 1s. The command pairs and the

teacher’s primitives used for planning the learner’s path are displayed in Figure 4.15. The Jackal’s

capability is indicated within the white area. The gray points on the dashed boundary are the

commands that were tested on the Jackal for extracting the limitations. The blue-colored commands

on the left create the primitives on the right and are used for mapping to the real UGV. To assess

the robustness of our proposed approach, the learner’s initial heading is set with a π
4 offset from

the desired orientation. During the tracking task, the maximum distance recorded between the

desired path and the actual trajectory was 0.1905m, while the maximum deviation between the

actual trajectory and the local motion plan was 0.0293m. Given the vehicle’s initial misalignment

with the desired path and its dimensions of approximately 0.5m×0.43m×0.25m, this deviation is

considered negligible. For comparison, the baseline experiment was conducted without the SCM

component and the results are shown in Figure 4.16.

Figure 4.14: Jackal experiment with SCM.
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Figure 4.15: The Jackal operational limit calibrated on the simulated teacher command domain and
the motion primitives used for planning the path.

Figure 4.16: Jackal experiment results for directly applying the teacher’s commands.

To demonstrate the generalizability of our proposed framework, we conducted an additional

experiment using Turtlebot2 as the learner with the same learner configuration listed in Table 4.1.

The results indicate that, with our proposed approach, Turtlebot2 successfully adapted the teacher’s

controller and path planner to follow the desired path with a maximum deviation of 0.1381 m.

The tracking error between the learner’s trajectory and the planned primitive remained within

0.0978 m, demonstrating close alignment as illustrated by the nearly overlapping path plans and

final trajectory in Figure 4.17. The command pairs, Turtlebot2’s capability, and primitives used for

planning the path that is compatible with the limit of Turtlebot2 are depicted in Figure 4.18. We

observed that the Turtlebot2 demonstrates a smoother trajectory compared to the Jackal experiment,
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albeit with larger deviations. This smoother trajectory can be attributed to the Turtlebot2’s lower

maximum speed relative to the Jackal, as the comparison shown in Figure 4.18. Consequently, the

Turtlebot2 tends to overshoot less from the desired “S”-shaped path. The relatively larger deviation

arises because the selection of motion primitives aligned with the desired path is prioritized over

minimizing deviations from that path. A closer tracking can be achieved by tuning kd and kθ. We

use the same weight parameters for both UGV experiments to remain consistent.

Figure 4.17: Turtlebot2 experiment with SCM.

Figure 4.18: The Turtlebot2 operational limit calibrated on the simulated teacher command
domain and the motion primitives used for planning the path.
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4.6 Discussion

In this chapter, we proposed a novel lightweight transfer learning framework based on conformal

mapping. We illustrated in detail how to explicitly solve the SCM problem and utilize the SCM

theory in our application. The SCM is used to directly map the control input from the teacher

to the learner without explicitly knowing the dynamical model of the learner. The framework

transfers not only the control policy but also adapts the teacher’s motion planning policy to make

it compatible with the learner. We integrated a motion primitive-based planning method in the

proposed framework to show that the learner can safely adapt the control and motion planning

policy to suit its own dynamics.

Limitations:

One of the primary limitations of transferring path plans based on motion primitives is that

the desired teacher commands are tied to these primitives. Given that the motion primitive library

contains only a limited selection of primitives, and it is impractical to construct a comprehensive

set of all possible motion primitives, the range of available teacher commands is restricted to a

discrete set. This limitation presents an opportunity for enhancement by enabling the generation

and transfer of commands within a continuous command space. Furthermore, during each control

loop, the vehicle receives a sequence of commands associated with the optimal motion primitive.

The vehicle maps each command in the sequence and only begins to generate the next sequence

after the current one has been fully mapped and executed, or when a replan is triggered. The length

of the command sequence, which depends on the motion primitives built beforehand, can hinder the

system’s ability to respond promptly to dynamic conditions.

Future Directions:

The transfer framework presented in this chapter has demonstrated its effectiveness in transferring

control and path planning policies between two similar systems. Despite its success, we have identified

several limitations. Next, we aim to enhance the framework by enabling the transfer of control

inputs across a continuous command space. Additionally, the current framework requires a dedicated

calibration stage to configure the learner’s operational limits within the teacher’s command domain

prior to the transfer stage. To improve this, we plan to develop a learning approach that allows for

the active refinement of the learner’s capabilities without the need for a dedicated calibration stage,

thereby enabling spontaneous configuration and transfer of knowledge.
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Chapter 5

Conformal Mapping-based Transfer Learning for

Continuous Control Inputs

In this chapter, we enhance our Schwarz-Christoffel Mapping-based transfer framework to address

the limitations identified in the previous chapter. We demonstrate how to transfer control inputs

over a continuous command domain and actively refine the learner’s capabilities by integrating an

MPC with our framework. In this dissertation, we refer to the variations in system responses due

to process noise and environmental disturbances as “motion noise” when a command is applied

to a system. One advantage of the motion primitive-based control and motion planning method

introduced earlier is that it allows for the averaging out of motion noise. This is achieved through

the repetitive execution of the same control input via a selected motion primitive, facilitating the

retrieval of equivalent teacher commands for this learner command when constructing command

pairs. However, with the MPC, as each control step could yield a different control input across

the entire continuous command space, motion noise presents significant challenges in retrieving the

equivalent teacher command for forming the command pairs. To enhance the robustness of our

proposed framework, we refine the definition of command pairs to mitigate inconsistencies caused

by motion noise, where the same learner command may correspond to different equivalent teacher

commands. Furthermore, we design a method to strategically shrink the command domain to

actively approximate the learner’s capabilities within the teacher command domain. This allows us

to eliminate the dedicated calibration stage before the transferring stage, enabling us to commence

transferring without prior knowledge of the learner’s capabilities. The material covered in this

chapter has been submitted for review in the Journal of Intelligent & Robotic Systems (JINT).

• S. Gao, and N. Bezzo, “A Conformal Mapping-based Framework for Sim-to-Real Transfer

in Autonomous Mobile Robot Operations.” Journal of Intelligent & Robotic Systems(under

review), 2024.
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5.1 Introduction

In recent years, the advancements in simulation technologies have led to a significant surge in

robotic research and applications [67, 13]. Simulations provide a low-cost, virtual proving ground

for designing and controlling robots, allowing for rapid prototyping and testing without associated

risks [1]. However, despite the flawless performance of behaviors and algorithms in simulated

settings, the “reality gap” between simulated and real environments and inherent discrepancies in

robotic models often lead to performance discounts or even failures when directly applying them

in the real world. Despite considerable time and resources devoted to creating techniques within

simulations, researchers usually still face formidable challenges when applying these methods to

specific platforms in the real world. Thus, closing this gap is essential for advancing the practical

deployment of robotic systems in diverse fields such as soft robots [37], agriculture [52], and service

industries.

Figure 5.1: Pictorial representation of a robot suffering from a flat tire and actuator fault after
being deployed into a real-world environment. By quickly understanding the dynamic differences
between the current situation and the ideal model, the robot is able to find a proper mapping

function that maps the desired command to adapt to the new dynamics of the vehicle.

Moreover, understanding how to effectively bridge this gap contributes to solving broader

domain-transfer problems. For instance, consider the impact of system aging. Although systems

before and after aging are different stages of the same system with fundamentally similar dynamics,

a velocity command that once effectively propelled the vehicle might result in diminished speed

due to wear and tear. This type of gap, while distinct from the sim-to-real discrepancy, belongs to

the broader category of model mismatches. Similar problems are not limited to mechanical aging,

but can also be found in deployment environment changes, undergoing external disturbances, and
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even failures that deprecate and modify the system’s original model. In this chapter, we seek a

general framework to transfer and adapt the system’s performance from one vehicle to another on a

continuous command domain.

All of the aforementioned problems can be simplified and cast as a teacher transferring the

control and motion planning policies to a learner similar to the previous chapter. In this chapter,

we focus on achieving the control transferring on the continuous command domain and eliminating

the dedicated calibration stage. To address this transferring problem we refine our lightweight,

conformal mapping-based transfer learning framework. The proposed framework maps directly

the control inputs of teachers to learner systems, avoiding learning their dynamic models. The

framework also learns and considers the learner’s ability, so that the transferred motion plan is

achievable by mapped control inputs. We aim to provide a robust solution to the pervasive problem

of model mismatch in robotics, enhancing both the efficacy and efficiency of deploying robotic

applications. Overall, the contribution of the work captured in this chapter is twofold:

1. Control Inputs Transferring: We present a lightweight transfer framework, utilizing

SCM theory for the direct transfer of control inputs from the teacher to the learner. This

innovative approach allows the learner to adopt the teacher’s control policies without the need

to understand its dynamics.

2. Model Predictive Control Transfer: We incorporate a Model Predictive Controller (MPC)

as a unified teacher controller and path planner within the proposed transfer framework. The

framework imposes constraints on the MPC to ensure that the optimized control input remains

within the learner’s operational limits. These inputs are then mapped to the learner, allowing

it to mirror the teacher’s movements in a continuous control space.

In addition to the contributions mentioned above, we validate the proposed sim-to-real migration

framework with extensive simulations and real-world experiments. To our knowledge, the work

covered in this chapter is pioneering in leveraging the conformal mapping method for transferring

control and motion planning policies between robotic systems. Distinct from existing literature, our

work bridges the sim-to-real gap by focusing exclusively on the domain of control inputs, rather

than attempting to learn specific model discrepancies. By directly translating control inputs, we

can achieve a lighter-weight seamless transfer that avoids the need for extensive data collection and

training to learn the precise model mismatch or to customize the controller and the planner.
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5.2 Continuous Space Transferring

One of the primary limitations of motion primitive-based path planning transfer is that the commands

available for mapping are constrained by the number of motion primitives in the library. Once

the motion primitive is selected through an exhaustive search, the learner must map and execute

the associated command sequence, either until completion of the current sequence or until an

event-triggered re-planning intervenes. This results in the learner having only a limited number

of discrete commands to choose from. Additionally, the fixed length of the command sequence

may hinder the learner’s ability to quickly adjust to deviations. Furthermore, significant effort

is required to obtain the motion primitives and calibrate the learner’s capability in advance. To

address these limitations, we introduce a case study that incorporates a receding horizon controller

within our proposed transfer framework. Specifically, we utilize Model Predictive Control (MPC) as

a unified method for both control and planning for the teacher. Additionally, we demonstrate how

to dynamically learn and adjust the learner’s capabilities from scratch without separating it from

the transfer process.

5.2.1 Model Predictive Controller

The simulated teacher uses the same model as introduced in (4.17). The teacher exploits an MPC

that tracks the desired path while avoiding the obstacles. The cost function and the optimal control

problem are formalized as (5.1) and (5.2).

ℓ(x,u) = ∥x− xref∥2Q + ∥u− uref∥2R (5.1)

min
u

JN (x0,u) =
N−1∑
k=0

ℓ(xk,uk)

s.t. xk+1 = fT (xk,uk)

∥xk − xOi∥ > ri,∀i ∈ [0,M ]

xk ∈ X,∀k ∈ [0, N ]

uk ∈ U,∀k ∈ [0, N − 1]

u′ ≤ ϵ

(5.2)
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where N and M denote the predicting horizon and the number of obstacles respectively. xO and r

denote the position and the radius of the obstacle. We constrain the changing rate of the input as

we ignore the acceleration period out of simplicity. The reference states xref are sampled along

the desired path, beginning at the point closest to the teacher. Each subsequent point is spaced at

the maximum distance the teacher can traverse along the path within one timestep, optimizing the

time needed for completing the task. During the early stages of the transfer process, users have the

flexibility to adjust the spacing between these reference states. This allows the teacher to perform a

variety of maneuvers, which aids in populating the command pairs across the teacher’s command

domain. Whenever the command pairs are updated, leading to a refinement in the configured

learner’s capability on the teacher’s command domain, the constraints on U are revised to align

with the updated operational boundaries of the learner. This adjustment ensures that the optimized

control inputs consistently remain within the defined capabilities of the learner.

5.2.2 Refinement of Command Pairs

When constructing command pairs, the process of identifying equivalent teacher commands is

relatively straightforward in scenarios with subtle motion noise, as the same learner commands

typically result in almost identical motions and, consequently, nearly identical equivalent teacher

commands. However, when motion noises are non-negligible, variations in motions occur even with

identical commands. Such discrepancies lead to inconsistent equivalent teacher commands for the

same learner command, posing challenges in retrieving the correct equivalent teacher command.

To address this issue, we refine the definition of command pairs by first partitioning the

normalized learner command domain into grid cells. Subsequently, the previously defined command

pairs are grouped into clusters based on whether their learner components are within the same

cell. Each refined command pair is then derived by averaging those within the same cluster. To

mitigate motion noise, a user-defined minimum cluster size kmin is introduced for constructing a

command pair. While increasing kmin enhances the precision of the command pairs, it extends the

time required for construction. Figure 5.2 demonstrate the refined command pairs.

5.2.3 Control Transfer

If the learner’s capabilities have already been characterized, transferring the teacher’s command

to the learner resembles the previous case, except the available teacher commands are within the

continuous space constrained by the learner’s boundaries. In scenarios with few or no pre-learned
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Figure 5.2: An example of the refined command pairs and the corresponding clusters. Command
pairs are color-coded and shown in circles with black edges.

Figure 5.3: An example of perturbing the desired learner command to one of the adjacent empty
command cells.

command pairs, to facilitate accurate control transfer, it is desirable to construct as many command

pairs as possible in a timely manner. For learners with non-negligible motion noise, this process

can be time-consuming because it involves collecting more linked learner-teacher commands to

create each pair. To address this, without losing generality, we offer strategies to accelerate the

construction of command pairs to compensate for the increased effort required in collecting more

commands.

Our comprehensive framework with these enhancements is shown in Figure 5.4. We emphasize

the components that help in scenarios where existing command pairs are insufficient. When existing

command pairs cannot form a polygon area that includes the desired command, the cell containing

the desired command may or may not already have a configured command pair. If no command pair

is configured in the cell, the learner directly uses the teacher’s command, as it has not yet learned

the local geometric differences across the command domains between the systems. Conversely, if

a command pair is already configured in the cell, learners are encouraged to explore neighboring
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cells by slightly perturbing the desired command into adjacent, unconfigured cells. Figure 5.3

demonstrates this technique, where the desired command is perturbed to expedite the collection

of command pairs. In the example, existing command pairs are represented as gray dots. From

the 8 adjacent unconfigured cells (yellow), one is selected (green) for random sampling of a new

learner command. Note that the extent to which the desired command is perturbed is a trade-off

between learning more command pairs and deviating more from the desired behavior. The degree

of perturbation is ultimately determined by user preference.

Figure 5.4: The block diagram of the proposed SCM-based learning framework without pre-learned
learner’s capabilities.

5.2.4 Path Planning Transfer

The motion limit of the learner is associated with the commands residing on the boundary of the

learner’s command domain. To characterize the learner’s capability within the teacher’s command

domain, we leverage command pairs with the learner component on its boundaries. The equivalent

teacher commands from these pairs form a convex hull that effectively indicates the learner’s

capabilities. Commands within the interior of the convex hull correspond to feasible motions for the

learner. Figure 5.2 demonstrates this method. Establishing such a convex hull provides evidence for
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imposing constraints on the teacher’s controller and the path planner, ensuring that the commands

generated remain within the hull, thus making the path achievable and able to be accurately followed

by the learner. If the command pairs employed for constructing the convex hull are not confined to

the learner’s boundary, it suggests the transfer is not fully exploiting the learner’s potential, as the

corresponding area of the convex hull does not encompass the entire learner’s command domain.

Conservatively, a straightforward but conservative approach is to assess the learner’s capability

before transferring, isolating it from the transfer process through a dedicated calibration stage.

During this calibration phase, a series of extreme learner commands are imparted to the learner to

assess its motion limits. Upon the conclusion of the calibration stage, the characterized learner’s

capability is finalized and is used for imposing the constraints on the teacher’s controller and planner.

Alternatively, another approach is to dynamically adapt the boundary of the learner’s capability

whenever it is needed along with the transferring process. When a new command pair, which behaves

as an outlier in comparison to all existing command pairs, is introduced, it triggers a recalculation of

the boundary in the teacher’s command domain. On the one hand, if the newly established command

pair resides on the boundary of the learner’s command domain, the equivalent teacher command

marks the maximum or minimum boundary of allowable teacher commands. Subsequently, all other

existing normalized learner command pairs are also re-scaled to account for the adjustments in the

command range. Figure 5.5(a) presents an example for this case, where the yellow dots indicate the

newly added command pair. On the other hand, if the new command pair outlier does not align

with the boundary of the learner’s command domain, the range of permissible teacher commands

undergoes proportional reduction. This proportional adjustment can be computed using (5.3) and

is visually demonstrated in Figure 5.5(b).

uTnorm|max =
uTnorm

uLnorm

(5.3)

5.3 Simulation Results

The initial command ranges for the teacher and the learner are outlined in Table 5.1. During the

transferring process, the teacher’s command range corresponds to the range of the refined learner’s

capability. We intentionally unbalanced the turning abilities towards both sides to increase the

discrepancies between the two systems.
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(a) (b)

Figure 5.5: Examples of characterizing learner’s capabilities on the teacher command domain. (a)
the new command pair directly marks the boundary of allowable teacher command; (b)

proportionally shrinks the teacher’s command space to approximate the learner’s capability as the
learner portion of the command pair is an outlier but not on the boundary.

Table 5.1: Parameters for MPC Transferring Simulations and Experiments

v (m/s) v (m/s) ω (rad/s) ω (rad/s)

Simulation
Teacher 0.05 0.6 −π/4 π/4
Learner 0.05 0.3 −π/16 π/12

Experiment
Teacher 0.05 0.6 −π/4 π/4
Learner 0.05 0.2 −π/8 π/8

The kinematic model of the simulated learner is similar to that of the teacher. However, to further

demonstrate the effectiveness of the proposed approach, we introduced a nonlinear transformation

within the learner’s model. This nonlinearity, which leads to progressively more aggressive vehicle

behavior as input values increase, modifies the learner command by three steps: 1) min-max

normalizing with respect to the current command ranges; 2) applying a nonlinear function; 3)

rescaling them to their original range. The specific formulation of the learner’s model is described

in (5.4).The learner’s command domain is divided into an 11× 11 grid for grouping and constructing

command pairs, with a minimum cluster size of (kmin = 5) set for the simulation.xk+1

yk+1

θk+1

 =

xkyk
θk

+∆t

d(hv(n(vk))) cos(θk)d(hv(n(vk))) sin(θk)
d(hω(n(ωk)))

 ,uk = [
vk
ωk

]
(5.4)

where, hv(v) = v3

hω(ω) = 4 · (ω − 0.5)3 + 0.5

n(×) = (×−×L)/(×L −×L)
d(×) = × · (×L −×L) +×L
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Figure 5.6 illustrates the results of following a desired path without any pre-existing command

pairs. In this setup, we compare the performance of a learner using our proposed transfer framework

against an ideal teacher and another learner that directly applies the teacher’s commands as the

baseline, serving as the baseline. All three simulations start from the same initial pose, intentionally

misaligned with the desired path. (a) shows that using our approach, the learner’s trajectory closely

follows that of the ideal teacher, except during an initial adjustment period while the framework

adapts to the learner’s capabilities. The command pairs built during the tracking task are depicted

in figures (b) through (e). The learned learner’s capabilities are marked by a red rectangle on

the teacher’s command domain which closely approximates the properties set in Table 5.1. The

significant nonlinearity between the two systems is evident when comparing the distribution of

command pairs across the command domains of both systems ((b) and (c)).

Figure 5.6: Simulation results of SCM-based transfer with MPC. (a) trajectories comparison; (b)
teacher command domain; (c) normalized teacher command domain; (d) learner command domain;

(e) normalized learner command domain.

Figure 5.7 presents snapshots at different stages of the simulation. The first column compares the

trajectories and tracking progress at specified times. Row (b) highlights how the learner perturbed

the original desired command to expedite the construction of command pairs in an unconfigured cell.

This perturbation resulted in introducing a new command pair, leading to proportionally shrink the

learner’s minimum angular velocity capability, as indicated by the red rectangle on the teacher’s

command domain. Row (c) displays an example of using SCM to derive the learner’s command,

where the equivalent teacher command overlaps with the desired teacher command, demonstrating
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the effectiveness of our transfer framework between the teacher and the learner. Finally, row (d)

shows the final frame of the learner that uses the proposed framework.
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Figure 5.7: Examples from simulations demonstrating the use of SCM to transfer an MPC policy
from a teacher to a learner at various time frames. Each column: 1) compares the trajectories

between the simulated teacher, baseline learner, and our learner with SCM; 2) teacher command
domain and configured learner’s capability; 3) normalized teacher command domain within the

learner’s boundary; 4) normalized learner’s command domain.
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Note that when the learner using our proposed approach completes the task, the learner directly

applying the teacher’s commands is still in the early stages. Figure 5.8(b) shows a comparison of

the time taken to complete the same path-tracking task; the learner with our transfer framework

finishes shortly after the ideal teacher. Figure 5.8(c) compares the deviation from the desired path

throughout the tracking progress. For ease of comparison, we present Figure 5.8(a) as a reference

for task progress. The errors from the learner with our approach closely align with those of the

ideal teacher. Larger deviations occur only when the path requires commands from an unconfigured

area of the command domain. Once the learner constructs new command pairs in that area, the

deviation significantly decreases, effectively aligning with the teacher’s performance. In construct,

the baseline learner shows dramatic differences compared with the ideal teacher.

Figure 5.8: (a) shows a comparison of the progression over time among the proposed approach, the
baseline, and the ideal teacher; (b) compares the deviation from the desired path in relation to the

task’s progression.

To demonstrate the effectiveness of our transfer framework, based on the command pairs

and characterized learner limits from the simulation result, we did an exhaustive test for teacher

commands within the learner’s capability. The results are compared between the ideal simulated

teacher, the baseline learner, and the learner with SCM. Given the same teacher command, all

three systems start at the same initial pose and drive for 0.1s. We measure the position errors as

well as the orientation errors between the teacher and the two learners. The results are depicted in

Figure 5.9. (a) categorizes the normalized teacher command space based on the method that the

learner with SCM employed: SCM mapping, direct application of teacher commands, or perturbation

for exploring unconfigured spaces. (b) and (d) present the position errors, while (c) and (e) show

the orientation errors. The results reveal minimal heading and position errors in areas using SCM

mapping (corresponding to the yellow area in (a)), suggesting maneuvers nearly identical to the

teacher’s. In areas with sparser command pairs, leveraging distant command pairs for SCM resulted
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Figure 5.9: Results from extensive testing of SCM-based command transfer: (a) Normalized teacher
command domain (min-max normalization within the learner’s limits); (b) Position errors between
the teacher and the baseline learner; (c) Orientation errors between the teacher and the baseline
learner; (d) Position errors between the teacher and the SCM-enhanced learner; (e) Orientation
errors between the teacher and the SCM-enhanced learner, all given the teacher commands and

drive the systems for 0.1s.

in slightly higher errors as expected due to a lack of local geometrical information. Conversely, the

baseline learner struggled to match the teacher’s behaviors.

5.4 Experiment Results

The SCM-based transfer framework with MPC is also validated with real vehicles. The hardware

setup is similar to the previous study case in 4.5. The parameters used for the simulated teacher

and the learner vehicle, Clearpath Jackal, are listed in Table 5.1. The learner’s command domain

is divided into 11× 11 grid cells with kmin = 20. The nonlinear transformation functions used to

further alter the Jackal’s kinematics are,

hv(v) = v3

hω(ω) = 31.42ω7 − 109.91ω6 − 144.65ω5 − 86.98ω4

+ 24.77ω3 − 5.08ω2 + 2.12ω

(5.5)
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Due to limited indoor space, a set of command pairs characterizing the Jackal’s capabilities

was pre-constructed. Figure 5.10 shows the results of a path-tracking experiment with the Jackal,

with snapshots provided in Figure 5.11. The Jackal starts positioned away from the desired path.

In Figure 5.10(d), the pre-constructed command pairs are circled, with those updated during the

experiment highlighted in blue. Most commands sent to the learner are derived through conformal

mapping, while a few low-velocity commands are directly applied or perturbed from the teacher’s

commands due to the absence of a suitable polygon for SCM application.

Figure 5.10: (a) snapshots of the experiment; (b) compares the trajectory between the ideal teacher
in simulation and the learner with the proposed approach; (c) and (d) present the color-coded

command pairs on the teacher’s and the learner’s command domain respectively after following the
desired path;(e) summarizes the method used for obtaining the final learner’s command.
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Figure 5.11: Examples from experiment demonstrating the use of SCM to transfer MPC from a
simulated teacher to a Clearpath Jackal UGV at different time frames.
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The effectiveness of the proposed transferring framework is further validated by comparison

with a baseline Jackal for the same task, where teacher commands are directly applied, as shown

in Figure 5.12. The baseline Jackal moved much slower, failed to follow the path and ultimately

collided with an obstacle. In a separate test, the transfer framework was deactivated at various

points during the task, turning the Jackal into a baseline learner. Figure 5.13 shows the Jackal’s

trajectory after the framework is turned off, and in all five cases, the Jackal collides with obstacles.

Figure 5.12: The result of directly applying the simulated teacher’s commands to the Jackal
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Figure 5.13: (a) presents the result of deactivating the proposed approach and directly applying the
teacher’s command at different points during the task; (b)-(f) show the learner’s trajectory, the
reference states, and the predicted states from the teacher’s MPC controller at the moment the

learner crashes into obstacles.
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5.5 Discussion

In this chapter, we delved deeper into our lightweight transfer learning framework designed to

effectively mitigate the sim-to-real gap and tackle model mismatches. Our focus has particularly

been on enhancing continuous control input transfer, handling motion noise, and actively learning

operational limits. We detailed the improved transfer process through the integration of MPC

with our framework. We addressed the issue of inconsistent equivalent teacher commands caused

by motion noise by refining the definition of command pairs through clustering and filtering the

effects of motion noise. Additionally, the framework closely approximates the learner’s capability by

strategically reducing the limits of the original teacher command domain. Our framework facilitates

seamless behavior transfer between a known teacher system and an a-priori unknown learner system,

eliminating the need for prior calibration.

Limitations: The proposed transfer learning approach, based on conformal mapping, effectively

mitigates discrepancies between systems by analyzing the geometrical transformation of their com-

mand domains. Given that Schwarz-Christoffel Mapping (SCM) operates within the 2-dimensional

complex domain, our current framework is best suited for systems whose input spaces are inherently

2-dimensional or can be condensed into 2 dimensions. The success of our approach hinges on the

availability of a precise equivalent teacher command. The absence of a rich set of accurate command

pairs could potentially undermine the effectiveness of our proposed method.

Future Directions: We have demonstrated the effectiveness of our conformal mapping-based

transfer framework in narrowing the gap between simulation and real-world applications. Moving

forward, we aim to apply our proposed framework to facilitate transfers between heterogeneous

robotic systems and to tackle scenarios where the learner robots possess capabilities surpassing those

of the teacher systems. Additionally, we are interested in utilizing Schwarz-Christoffel Mapping

(SCM) to transition control and planning policies from low-dimensional representations to high-

fidelity tasks. Another promising direction that can be explored is the use of multidimensional

conformal mapping to enable transfers within higher-order command domains between systems,

such as in aerial vehicles.
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Part III

Epilogue
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude the dissertation by summarizing our achievements and insights, followed

by an in-depth discussion of the frameworks we have developed. We also explore potential future

directions that could extend and build upon the progress we have made thus far.

6.1 Conclusions

Our research presented in this dissertation focuses on enhancing the resilience of autonomous mobile

robots by strengthening various components within their operational frameworks. We have first

introduced a Meta-Learning method that is trained offline and fine-tuned online, which adaptively

predicts the state and uncertainty of a faulty system. This technique improves system resilience

by monitoring predictions to assess collision risks and identifying safe, sampling-based replanned

paths. Although enhancing safety, these interventions can disrupt ongoing tasks. To maintain

operations in degraded systems, we have proposed a novel, lightweight transfer learning framework

based on conformal mapping. This framework efficiently transfers control and planning policies,

helping autonomous mobile robots adjust to issues like system aging, model discrepancies, and

environmental changes. It achieves the direct transfer of control inputs without requiring an accurate

dynamic model of the system. Initially, we applied this framework using a widely adopted motion

primitive-based control and path planning method for discrete command space transfer as a proof

of concept. Subsequently, we extended it to transfer Model Predictive Control over a continuous

command space, without needing prior detailed system knowledge, thus enhancing the framework’s

utility. This approach demonstrates that even degraded systems can remain operational and continue

their tasks with reduced capabilities.
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Throughout this dissertation, we have conducted extensive simulations and employed state-of-the-

art experiments with ground and aerial robots. These implementations underscore the practicality

of our frameworks in addressing real-world robotic challenges.

6.2 Discussion and Possible Future Work

In this dissertation, the Meta-Learning-based prediction technique we propose capitalizes on the

rapid adaptability of meta-learning. This approach efficiently leverages knowledge from offline

samples of system faults, enabling quick adaptation to new dynamics with minimal runtime data.

However, the accuracy of these predictions is significantly dependent on the quality of training.

Insufficient or poor-quality training data can result in inaccurate predictions.

Regarding the conformal mapping-based transfer learning framework the conformal mapping-

based transfer learning framework, despite the limitations and issues outlined in Section 5.5, we

aim to delve deeper into the design aspects of the SCM-based transfer framework. As SCM has

a rich mathematical theory behind it, there are choices of the designs of the approach that have

mathematical reasons behind it to optimize the performance of calculating the mapping function.

We pick out a few points that are worth discussing here while more details can be found in the

original SCM papers [16, 29]:

1. Using bi-infinite strip in rectangle SCM. “Crowding” is one of the greatest challenges

for numerically computing conformal mapping functions. The high ratio of an elongated

shape can lead to a situation where the prevertices are spaced exponentially close on the real

axis becoming indistinguishable. A bi-infinite strip can significantly ease the effort of solving

numerical SCM solutions over the elongated shape. Even for a less elongated shape, this

can speed up the computing process. As mathematically solving the SCM is not the main

contribution of this work, we direct readers to [16, 29] for a qualitative analysis of how using

bi-infinite strip eases rectangle SCM computation.

2. The reason for choosing rectangle SCM. Although this section focuses on using a

rectangle SCM with polygons having at least four vertices (N ≥ 4), our framework is also

compatible with triangle SCM (N = 3). With triangle SCM, triangles from both command

domains can be mapped directly to the same set of prevertices on a disk or an upper half-plane,

simplifying the process by eliminating the need to connect both ends with a unit disk. However,
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rectangle SCM is preferred in practice because it can incorporate more command pairs without

as much concern for SCM crowding issues.

3. The distribution density of the command pairs. The proposed novel approach directly

transfers the control input by geometrically mapping across the command domains. The

nature of this approach depends on accurate command pairs and benefits from selecting pairs

that are geometrically close to the desired command. As the closer command pairs can better

capture the local geometry information and further reflect more similar motions of the learner

system. Thus, having the mapping area well covered by the command pairs is advantageous.

This dissertation has demonstrated the importance of effectively monitoring and adapting

techniques for autonomous mobile robots, which significantly enhances robotic operations. Recently,

the emergence of multimodal robotic applications has begun to revolutionize robotic applications,

greatly benefiting long-duration tasks and advancing robotic reasoning capabilities. However, the

challenges of system faults and model discrepancies cannot be overlooked for providing the backbone

of these advanced robotic technologies. As robot designs are getting increasingly complex and robots

with more capabilities are constantly evolving, ensuring resilient operation becomes even more crucial

for complex robotic systems. In our future work, we are looking into leveraging multi-dimensional

conformal mapping to transfer from a higher-order system to a lower-order system, such as from

an aerial vehicle to a ground vehicle. We plan also to extend our framework to deal with learners

that have more capabilities than the teacher, through which we want to continue contributing to

enhancing the resiliency of robotic applications. Leveraging foundation models for robotic transfer

learning presents another promising direction. These models, which learn general representations

from large data sets before being fine-tuned for specific tasks, offer substantial potential to enhance

robotics by streamlining the transfer of knowledge across different systems. This capability could

lead to the development of more adaptable and intelligent robots that can generalize across various

tasks, accelerating advancements in the field as discussed in [22].
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