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Abstract 

        Flapping motion is widely utilized in many biological propulsion systems, including 

insect/bird wings and fish pectoral fins. To survive through millions of years of evolution, these 

natural flyers/swimmers have developed superior and complex propulsive mechanisms to avoid 

predators and hunt for prey. However, achieving biological levels of aero/hydro-performance in 

bio-inspired robots design has proven elusive. This is due to our lack of understanding of the 

fundamental physics of deformable wings/fins and the technical difficulties in studying their 

complex locomotion.  

        The current dissertation focuses on two aspects of flapping wings. Firstly, we investigate 

the dominant flow control parameters that govern vortex development and aerodynamic 

performance using simplified canonical models. A Cartesian grid based immersed boundary 

incompressible Navier-Stokes solver is used to simulate the corresponding unsteady flows. The 

parametric study of 2-D flapping plates reveals that the rotational phase difference between the 

leading-edge and trailing-edge is the dominant parameter to achieve force enhancement. A 

moderate phase difference is able to feed extra circulation into the trailing-edge vortex which 

induces a stronger counterpart leading-edge vortex. As a result of local flow modulation, the 

vortex on the suction side is pulled down closer to the plate, which leads to the improvement of 

force production up to 26%. Our 3-D flapping plates demonstrate that the phase difference 

between pitching and rolling motion is a critical parameter to achieve the optimal aerodynamic 

performance. This is because the phase difference directly alters the interaction between leading-

edge vortices and trailing-edge vortices, and thus minimizes the wake deflection in the 

downstream direction. The simulation results show that an optimal phase difference can improve 



ii 

 

the cycle-averaged force and efficiency of up to 23% and 15%, respectively. In addition, a 

unique vortex structure (named “double-C”-shaped vortex rings) produced by low-aspect-ratio 

flapping plates is first reported here. This vortex structure is found to be quite robust over a range 

of Strouhal numbers and Reynolds numbers.  

        Secondly, the wake topology and propulsive performance of real insect wings are examined 

via a combined experimental and computational approach. High-speed photogrammetry and 

accurate 3-D reconstruction are used to measure the deformable wing kinematics of freely flying 

dragonflies with precise detail. Then, flow simulations are conducted to evaluate the unsteady 

flow characteristics and the associated aerodynamic performance. The quantitative 

measurements of wing kinematics and surface deformation show that the phase difference 

between leading-edge and trailing-edge rotation observed in nature is in line with the optimal 

value we found in the aforementioned canonical model studies. Our flow simulations further 

reveal that the enhancement of aerodynamic functions can be achieved in two ways: 1) 

improving the power economy by preventing the tip vortex from bursting, and 2) improving the 

leading-edge vortex attachment by suppressing the generation of the secondary vortex. These 

findings have the potential to help us connect specific features in complex flapping locomotion 

with observed vortex dynamics and aerodynamic force production, so as to bring new insights 

into the design of high-efficient bio-inspired robotic systems.  
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1 Introduction 

1.1 Motivation 

        Observing insect and bird flight inspired the idea of designing man-made flying vehicles 

using the flapping-wing mechanism. Millions of years of natural selection have equipped these 

flyers with superior and complex propulsive mechanisms optimized for avoiding predators and 

capturing prey. It has been a long-standing effort to transform the flight strategies applied by 

natural flyers into our engineering applications for designing the next generation of micro air 

vehicles (MAVs). Compared to the conventional fixed- and rotary-wing configurations, the 

flapping-wing mechanism can offer more aerodynamic benefits, especially when flying in a 

relatively low Reynolds number regime ( 2 410 10 Re ).  

        To illustrate flapping-wing mechanism advantages, Figure 1-1 provides an overview of the 

maximum lift that can be achieved by different flight methods across a range of Reynolds 

numbers. The grey-shaded area represents data reported in the steady flow. The remaining area 

represents unsteady experimental measurements. At high Reynolds numbers ( 510Re ), 

separated flow quickly becomes turbulent and generates sufficient lift in the steady flow 

condition. This flow feature allows fixed- and rotary-wing mechanisms to produce a high level 

of force at high Reynolds numbers. However, as the Reynolds number gradually decrease below

410 , the maximum lift produced in the steady flow becomes limited. Performance deteriorates 

chiefly because at low Reynolds numbers, the boundary layer remains laminar on the airfoil, 

making it susceptible to flow separation as the angle of attack increase [1]. In addition, due to the 

low aspect ratio wings, the tip vortex covers a major part of the wing, and the tip vortices shed 

affecting the aerodynamic performance [2]. Therefore, understanding the unsteady aerodynamics 
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of flapping wings is critical to overcoming steady flow limitations and improving future MAVs 

designs.  

 

Figure 1-1. Maximum lift coefficient can be achieved by different type propulsive mechanisms 

across a range of Reynolds numbers [3].  

 

1.2 Unsteady Aerodynamics 

        To achieve highly efficient flight in a low Reynolds number regime, insects and birds 

operate their wings with a combination of translation and rotation in the stroke plane. The 

dominant unsteady flow feature assumed to be responsible for aerodynamic lift is a leading edge 

vortex (LEV) produced by a laminar flow separation near the leading edge of the wing (Figure 

1-2 (a)). This vortical structure produces a region of low pressure near the wing surface and 

influences the strength of the bound circulation about the wing. Ellington et al. [4] first 

illustrated the direct evidence of the existence of LEV by visualizing the flow around a three-

dimensional (3-D) robotic wing at Reynolds number around 310 . This LEV was observed similar 

to the vortical structure produced during dynamic stall observed for conventional configurations 
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undergoing rapid pitch or plunge maneuvers. However, unlike the vortex produced during a 

dynamic stall, the leading edge vortex was not shed even after traveling many chord length of 

distance. As the flapping wing translate in its stroke plane, a spanwise velocity gradient 

interacted with the leading-edge vortex. This caused the axial flow to spiral toward the wing tip 

direction. The axial flow transported momentum out of the vortex, keeping the leading-edge 

vortex attached and stable. The LEV began to detach at the section close to the wing tip and shed 

into the wake. The vortex system generated by the flapping wing in its surrounding fluid induces 

downwash, forming a coherent momentum jet to maintain sustained flight (Figure 1-2 (b)). 

 

Figure 1-2. (a) Leading-edge vortex (LEV) on top of a fruit fly wing [5]. (b) Wake pattern 

during the downstroke of a hovering insect [6]. 

 

1.3 Vortical Structures of Oscillating Foils 

        According to fluid dynamics, studying vortex structures generated by flapping wings can 

help us reveal the flow physics behind their complex flapping kinematics. It is because that the 

flapping flight usually operates in a low Reynolds number regime, where vortices are dominant 

flow features [7]. In addition, the unsteady force generation can be related to the vortex 

formation directly or indirectly.  
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        For these reasons, the associated wake structures of simplified flapping kinematics have 

been studied experimentally [8,9,10] and computationally [11,12,13,14,15]. In previous studies, 

this flapping motion was simplified as a two-dimensional (2-D) pitching and/or heaving problem 

by assuming that the wing’s aspect ratio was sufficiently large. An increase in Strouhal numbers 

(St) has been found to induce a transition of the wake pattern from a von Kármán vortex street 

(Figure 1-3 (a)) to an inverse von Kármán vortex street that characterizes propulsive wakes 

(Figure 1-3 (b)). At higher Strouhal numbers, the shed vortex pairs propagate at an angle to the 

streamwise axis, and the inverse von Kármán vortex pattern gives rise to an asymmetric wake 

[16,17,18,19,20], as shown in Figure 1-3 (c).  However, for finite-aspect-ratio plates undergoing 

identical motions, the asymmetric wakes are absent due to the suppression of vortex coupling by 

the three dimensionality and the symmetric circulation distribution along the interconnected 

vortex loops [21].  

 

Figure 1-3. Wake transitions of flapping foils by increasing Strouhal number for Re = 255 [16]. 

(a) von Kármán wake at 0.15St . (b) Inverse von Kármán wake at 0.25St . (c) Asymmetric 

inverse von Kármán wake at 0.4St . 

 

    Numerous studies have been conducted to understand the wake structures and the 

propulsive performance of finite-aspect-ratio plates undergoing pitching and/or heaving motions. 

In particular, flow visualization was used by von Ellenrieder et al. [22] to investigate the wake 
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structure produced by low-aspect-ratio plates (AR=3) under pitching-heaving motion at Re=164 

and Strouhal numbers from 0.2 to 0.4. The wake model in their work indicated that a pair of 

merged vortex rings shed each half cycle, forming a zig-zag chain (Figure 1-4 (a)). This 

observation was then numerically verified by Blondeaux et al. [23] using a low Strouhal number 

(St=0.175) flapping plate. However, at a higher Strouhal number (St=0.35), they found that the 

flow wakes consisted of two sets of vortical structures (Figure 1-4 (b)). A similar wake pattern 

transition was reported by Buchholz and Smits [24] in a study on low-aspect-ratio pitching 

panels (AR=0.54). Using dye visualization and digital particle image velocimetry (DPIV), a 

chain of vortical structures was observed at St=0.23 and 640Re . As the Strouhal number 

increased, the wake began to bifurcate and form two branches of horseshoe-like vortices. Further 

study [25] revealed that although distinct wake structures were observed at varying Strouhal 

numbers, the key features of the wake pattern are highly robust, even for Reynolds numbers on 

the order of 410 . In the meantime, Dong and his colleagues [26,27] numerically studied the wake 

topologies of pitching-heaving ellipsoidal foils using a broader range of parameters including 

aspect ratios between 0.64 and 5.09, Strouhal numbers between 0.4 and 1.2, and Reynolds 

numbers in the range of 100 400 Re . Similar bifurcated wake structures have been observed 

and found to be robust for all low aspect ratios.  

        The aforementioned 2-D and 3-D pitching-heaving studies have provided insights into the 

unsteady aero- and hydro-dynamic mechanisms applied in insect flight and fish swimming. 

When a rigid foil undergoes a pitching-heaving motion, it creates a symmetric leading-edge 

vortex due to the unchanged instantaneous effective angles of attack along the foil span. 

However, when a foil performs a combined pitching and rolling motion about a fixed hinge, the 

effective angle of attack with respect to the incoming flow varies along the foil span. As a result, 
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an asymmetric leading-edge vortex with an increase in strength from the foil root to its tip forms 

and sheds during the pitching-rolling motion. However, the fundamental flow physics and wake 

structures of low-aspect-ratio pitching-rolling foils have not been fully investigated. Only a few 

studies can be found on bio-inspired pitching-rolling propulsors, and most of them have focused 

on the propulsive performance.  

 

Figure 1-4. Vortical pattern in a rectangular foil with aspect ratio 3, oscillating at Strouhal 

number 0.18 (a) and 0.35 (b), respectively. The Reynolds number in both cases is about 200 [28]. 

 

        For instance, Techet [29] experimentally studied a robotic pitching-rolling foil with an 

NACA 0012 cross section and found that the high thrust and high propulsive efficiency of the 

foil could only be achieved when the foil flapped with a smaller maximum angle of attack 

( max 30  ) and high Strouhal number (St=0.6). The high rolling amplitude did not appear to 

improve the thrust but could reduce the power losses. In another experimental study, 

Bandyopadhyay et al.[30] explored low-aspect-ratio flapping fins (AR=3) at chord Reynolds 

numbers between 33.6 10  and 51.5 10  in a tow tank. The authors demonstrated that low-

aspect-ratio pitching-rolling fins can only produce thrust within a bounded Strouhal number 
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(0.2<St<1.5) and that optimal efficiency can be achieved by tailoring the Strouhal number and 

pitch amplitude.  

        In addition to these experimental studies, the wake structures of bio-inspired propulsion 

have been discussed only in relation to a flow simulation of fish pectoral fins (Dong et al.[31] 

and Liu et al.[32]) and rigid foil with an aspect ratio of 2.55 (Bozkuttas[33]). These works 

indicated the existence of distinct flow features differing from those of the aforementioned 

pitching and/or heaving plates. In particular, the strong spanwise flow caused by the rolling 

motion resulted in the formation of stronger leading-edge and tip vortices, and the interactions 

among those vortices formed substantially more complicated vortex structures that convected 

into the wake.  

 

1.4 Effect of Surface Morphing on Unsteady Aerodynamics  

        Along with the aforementioned unsteady aerodynamic phenomenon, surface morphing is 

another key feature of natural flapping wings. Natural flyers typically have flexible wings to 

adapt to the flow environment. Birds have different layers of feathers that are often connected to 

each other. Hence, they can adjust wing plane-form to fit specific flight modes. Bats have more 

than two dozen independently controlled joints in their wings and deformable bones that enable 

them to fly at positive and negative angle of attack to dynamically change wing camber. Insect 

wings differ from those of vertebrates in that they lack internal musculature extending into the 

aerodynamic surface of the wing. Thus, insects have little active control over wing properties, 

and most deformations are a product of the passive mechanical properties of the wing interacting 

with the inertial and aerodynamic forces it generates while flapping. Both active and passive 
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deformable wings are believed to have the potential to increase aerodynamic performance 

comparing with completely rigid wings in flying.   

        Recently, increasing attention has been paid to the aerodynamics of deformable wings. 

Several studies have demonstrated that the unsteady aerodynamic phenomena of the flapping 

mechanism are not only sensitive to variations in the wing kinematics but also to the wing 

morphing [34,35]. Results also revealed that a dynamically adjustable wing surface may 

potentially provide new aerodynamic mechanisms [36,37] of force production over fully rigid 

wings [38,39] in flapping flight. Further research [40,41] has illustrated that the performance of a 

rigid flapping wing can be improved significantly by adding some level of flexibility to the wing 

surface. For achieving the performance enhancement, both passive and active flow control 

mechanisms have been studied, and some examples are reviewed here.  

        In order to understand the effects of chord-wise flexibility on aerodynamics of flapping 

motion, a hinge connected two rigid components model is commonly used because of its 

simplicity and well preservation of the flexibility characteristics in chord-wise [42]. Through this 

passive deformable model, Eldredge et al. [43] revealed that wings with moderate flexibility 

have better power efficiency compared to the rigid wing in hovering flight, nevertheless very 

flexible wings will degrade its aerodynamic performance. Using a similar model, Vanella et al. 

[44] showed that if parameters are chosen appropriately, the chord-wise flexibility can result in 

an enhancement of up to 28% in the lift-to-drag ratio and a 39% increase in the lift-to-power 

ratio over a rigid plate. Wan et al. [45] studied the effect of chord-wise flexibility over a range of 

hovering kinematic parameters using a hinged-plate model. Their results indicated that the 

maximum lift-to-drag ratio can be achieved by placing the hinge at the three-quarter chord 

position from the leading edge.   
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        In addition to above passive mechanisms explorations, active flow control via wing surface 

morphing has been widely adopted in both fixed-wing and rotary-wing aircraft design. These 

include  articulated flaps and/or slats [46], surface flow control devices [47] and continuously 

deforming surfaces [48]. Among them, the flow control via trailing-edge flap (TEF) is presumed 

to be more applicable to novel flapping-wing MAVs designs, in terms of simplicity of moving 

surface control, weight of MAVs and so on. Liu et al. [49] experimentally studied the effect of 

actively controlled trailing-edge flaps on the flow control of translational plates. Their results 

have shown that force and flow characteristics strongly depend on the timing of trailing-edge 

flap deflection rather than translational speed. Li et al. [15] and Xu et al. [14] further studied the 

effect of the trailing-edge flap on the aerodynamic performance of a 2-D flapping wing via a 

computational approach. It is found that the aerodynamic forces can be significantly affected by 

controlling the timing of the flap deflection in a flapping cycle.  

 

1.5 Force Enhancement Mechanism in Tandem Flapping Wings  

        The above-mentioned unsteady force-generation mechanisms occur in a single flapping 

wing. When tandem wings flap together, one wing will interact with the wake generated by the 

other. This flow phenomenon can be observed in quad-winged natural fliers. Unlike most other 

insects such as flies, wasps, and cicadas, which have either reduced their hindwings or 

mechanically coupled their forewings and hindwings, dragonflies have maintained two 

independently controlled pairs of wings throughout their evolution [50]. Their neuromuscular 

system allows them to change many aspects of motion in a single wing actively, including the 

angle of attack, stroke amplitude, and stroke plane. This gives them the unique capability of 

controlling flight. In addition, their forewings and hindwings have different shapes and 
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mechanical properties. The hindwing is wider, especially the portion close to the wing root. The 

value of the elastic modulus and hardness of the forewing are greater than that of the hindwing 

[51]. These distinct features have attracted researchers’ attention for a long period to study the 

aerodynamics of this special quad-winged insect through a variety of numerical and experimental 

methods. 

        Lan and Sun [52] conducted 2-D computational studies of two tandem airfoils in flapping 

motions at a Reynolds number of 1000. As the two airfoils moved parallel, large force 

enhancement can be achieved by placing two foils with smaller spacing and locating the hind-

airfoil in a lower vertical position than the fore-airfoil. As an extension work [53], they further 

explored the effect of phase difference and showed that in-phase flapping could produce the 

largest vertical force while a 90 phase difference would result in resultant force reduction. 

Wang and Russell [54] filmed the wing kinematics of a tethered dragonfly and then numerically 

studies the 2-D projection of a 3-D wing kinematics at two-thirds the span. Their simulations 

revealed that the forewing-hindwing phase variation can significantly affect the force generation 

and power consumption up to 60% and 40%, respectively. To achieve steady hovering with 

minimum power, the phase difference should vary between 100and 220 . This phase relation 

results in a typical hindwing leads motion, which agrees well with previous experimental 

measurements of dragonfly free flight [55]. Hsieh et al. [56] used 2-D force decomposition to 

examine the tandem flapping wings configuration at the low Reynolds number 625. Their results 

indicated that the surface vorticity contribution to the total force is not negligible under such a 

low Reynolds number, and the volume-vorticity elements play exclusively important roles in 

revealing mechanisms of aerodynamic forces. Broering et al. [57] carried out 2-D numerical 

simulations on a tandem-wing flapping configuration at a Reynolds number of 410  and Strouhal 
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number of 0.3. The tandem wings were found to produce high thrust at 0 phase lag, and to 

achieve high power efficiency at 90 and180  due to the hindwing extracting energy from the 

wake of the forewing. Along with these 2-D studies, 3-D numerical simulations have also been 

conducted. Sun and Lan [58] utilized the wing kinematics model presented by Norberg [59,60] to 

simulate the 3-D hovering flight of dragonfly at the Reynolds number of 1350. Their simulation 

results showed that the large stroke plane angle made drag force become the major source for 

supporting the body weight. The drag and lift contributed to the total vertical force about 65% 

and 35%, respectively. Also, the forewing-hindwing interaction effect was small and leaded to 

the vertical force reduction about 14-16% compared to two wings flapping in isolation. Their 

further investigation of the aerodynamics of a model dragonfly in forward flight showed that this 

force reduction gradually decrease as the increasement of the advance ratio [61]. 

        In addition to these computational studies, there are also many experimental investigations 

on the aerodynamics of tandem flapping wings configuration. Maybury and Lehmann [62] used a 

3-D robotic dragonfly model to study the effects on the wing lift force due to modulation of 

forewing and hindwing phase lag at intermediate Reynolds number (Re=1000~2000). By varying 

the phase relationship between forewing and hindwing, the authors found that the performance of 

the forewing remained approximately constant while the lift production of hindwing was 

modulated in an order of two. Their further flow visualization results indicated that this lift 

modulation can be related to the leading-edge vortex destruction and the orientation of the local 

flow vector. Usherwood and Lehmann [63] then investigated the aerodynamic efficiency by 

varying the phasing of robotic dragonfly wings. Their results showed that two-pair wings 

configuration can improve aerodynamic efficiency, and this is achieved by recovering the wasted 

energy in the wake. The further measurement of power consumption showed that the forewing-
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hindwing interaction can save 22% of aerodynamic power expenditure [64]. Rival et al. [65] 

experimentally measured the force evolution and associated vortex dynamics of a tandem 

pitching-plunging configuration at Re=3000. They found that the force and vortex development 

on the fore-plate was unaffected by the tandem configuration while the vortex interaction on the 

hind-plate was responsible for the variations in performance. Zheng et al. [66] investigated the 

aerodynamic forces, power consumption and efficiencies of flexible tandem wings in a water 

tunnel at a Reynolds number of 3873. Three wing models with different effective stiffness are 

tested and compared with the performance of rigid wings in both hovering and forward flight 

conditions. The force measurements showed that wing model with highest effective stiffness can 

achieve largest total horizontal force coefficient and efficiency. Their particle image velocimetry 

(PIV) and wing deformation measurements revealed that the spanwise bending deformation of 

the wing model can improve the LEV attachment in both hovering and forward flights. 

 

1.6 Current Objectives 

        Despite significant progress have been achieved in the field of computational modeling of 

flapping wings, there are several aspects remain unclear. While some of these are related to the 

effects of dynamic surface morphing on the flow modulation, others are more fundamental in 

terms of flow development of low-aspect-ratio flapping wings. Specifically, the current study 

will set out to answer the following questions:  

1. What are the dominant parameters needed to control the dynamic deformation of flapping 

wings to achieve high aerodynamic performance? 
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2. What are the general features of wake pattern generated by low-aspect-ratio flapping 

wings, and how are they different from previously observed 2-D and quasi-3D wake 

topologies? 

3. How does the surface morphology and its relative aerodynamic functions in real insect 

flight be quantified? 

4. How do flow interactions between tandem flapping wings enhance aerodynamic 

performance? 

 

        These above questions will be explored using both simplified canonical models (the first 

two objectives) and high-fidelity modeling of real insects (the second two objectives). The 

aerodynamic performance and vortex formation of the flapping wing models will be explored via 

computational fluid dynamics simulations. Numerical simulations are carried out using an in-

house immersed-boundary-method-based direct numerical simulation (DNS) solver. To better 

understand flow data, leading-edge vortex strength, wing surface pressure distribution, and wake 

structures will be visualized and analyzed in detail. The primary goals of the current analyses are 

to (1) offer an improved understanding of the flow physics of bio-inspired propulsion, and (2) 

offer insights for the design of the next generation of micro air vehicles.  

 

Objective 1: Study the effects of dynamic surface deformation in flapping motion 

        To examine the effects of wing morphing on unsteady aerodynamics, deformable flapping 

plates are numerically studied at low-Reynolds-numbers. The chord-wise camber is modeled by 

a hinge connecting two rigid components. The leading portion is driven by a biological hovering 

motion along a horizontal stroke plane. The hinged trailing-edge flap (TEF) is controlled by a 
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prescribed harmonic deflection motion. A systematic parametric study investigates the effects of 

TEF deflection amplitude, deflection phase difference, hinge location, and Reynolds numbers on 

the near-field and far-field flow structures and their associated aerodynamic performance. Both 

instantaneous and cycle-averaged forces productions are examined to provide quantitative 

descriptions of the TEF effects. Furthermore, 3-D effects are also evaluated using a low aspect-

ratio (AR=2) deformable plate.  

 

Objective 2: Investigate the wake topology of low-aspect-ratio flapping wings 

        The wake topology and propulsive performance of low-aspect-ratio plates undergoing a 

pitching-rolling motion in a uniform stream are numerically investigated. The pitching-rolling 

plate can be treated as a simplified model for mimicking the flapping motion of insect wings and 

fish pectoral fins. This study investigates the effects of variation of dominant parameters that 

govern wake structure and thrust performance, including Strouhal numbers, Reynolds numbers, 

aspect ratios, and phase difference between pitching and rolling motion. The flow features 

observed in the current study will be compared with previous reported 2-D and quasi-3D wake 

topologies of flapping foils. In addition, the proper orthogonal decomposition (POD) based force 

survey method (FSM) is used to reveal the connection between POD modes and their 

contributions to force generation.  

 

Objective 3: Examine aerodynamics functions of surface morphing in forward flight 

        In this study, a high-speed photogrammetry system, 3-D surface reconstruction technology 

and numerical simulations are used to reveal the effects of morphing wings of a cruising 

dragonfly. Specifically, the flapping morphing wing kinematics of a free-flight dragonfly are 
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measured and quantified first. We then use the reconstructed model to explore the effects of 

morphing wings, first by removing camber while keeping the same time-varying twist 

distribution, and second by removing both the camber and the spanwise twist. Numerical 

simulations are carried out using an in-house immersed-boundary-method-based direct numerical 

simulation (DNS) solver. To get a better understanding of the aerodynamic roles of morphing 

wings, the leading-edge vortex, the wing surface pressure distribution, and wake structures are 

analyzed and compared in detail for the model wings. 

 

Objective 4: Explore the aerodynamic functions of quad-winged flyer in turning maneuver 

        Dragonflies are known for their impressive flight agility and maneuverability. Distinct from 

other insects, dragonflies can move their two pairs of wings independently to achieve their flight 

control. Most previous studies have mainly focused on the steady flight of dragonflies, and there 

is a lack of sufficient information regarding wing kinematics and its associated aerodynamics on 

unsteady motions. To fill this gap, an integrated study combining high-speed photogrammetry, 3-

D surface reconstruction and direct numerical simulation are conducted to study dragonflies in 

turning maneuvers. Results of the present work aim to provide insights into future agile quad-

winged micro air vehicle (MAV) designs and applications.  

 

1.7 Outline of Thesis 

        To investigate the wake topology and propulsive performance of flapping wings, results 

will be presented using a combination of simplified canonical model problems and high-fidelity 

models of real insects. The remainder of the thesis is organized as follows:  
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        Chapter 2 describes details of numerical method and high-fidelity surface reconstruction 

technique applied in the current study. In addition, the proper orthogonal decomposition (POD) 

and force survey method (FSM) are also introduced. 

        Chapter 3 discusses the computational results of deformable flapping wings hinged with a 

trailing-edge flap. Section 3.1 and 3.2 describe the problem formulation and computational setup, 

respectively. Section 3.3 presents the simulations results and analysis on aerodynamic 

performance and vortical structures. Finally, a brief chapter summary is given in Section 3.4. The 

results of Chapter 3 form the basis of the following publications: 

 Chengyu Li, Haibo Dong, and Geng Liu, “Effects of a dynamic trailing-edge flap on the 

aerodynamic performance and flow structures in hovering flight,” Journal of Fluids and 

Structures 58, 49-65 (2015). 

 Min Xu, Mingjun Wei, Chengyu Li, and Haibo Dong, “Adjoint-based optimization of 

flapping plates hinged with a trailing-edge flap,” Theoretical & Applied Mechanics Letters 5, 

1-4 (2015). 

 Chengyu Li, Haibo Dong, and Yan Ren, “A Numerical Study of Flapping Plates Hinged with 

a Trailing-Edge Flap,” 32nd AIAA Applied Aerodynamics Conference, Atlanta, Georgia, 

June 2014. 

        Chapter 4 presents the computational results of wake topology and propulsive performance 

of low-aspect-ratio pitching-rolling plates over a range of Strouhal numbers, Reynolds numbers, 

aspect-ratios, and phase difference angles. The Chapter is begins by describing problem 

definition and computational setup in Section 4.1 and Section 4.2, respectively. This is followed 

with a detailed discussion of wake topology and propulsive performance in Section 4.3. In 
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Section 4.4, a POD-based flow analysis is conducted to reveal the relationship between POD 

modes and force generation. Finally, the conclusions are given in Section 4.5. The results of 

Chapter 4 form the basis of the following publications: 

 Chengyu Li and Haibo Dong, “Three-dimensional wake topology and propulsive 

performance of low-aspect-ratio pitching-rolling plates,” Physics of Fluids (2016), under 

revision.   

 Chengyu Li and Haibo Dong, “Quantification and Analysis of Propulsive Wake Topologies 

in Finite Aspect-Ratio Pitching-Rolling Plates,” 46th AIAA Fluid Dynamics Conference and 

Exhibit, Washington D.C., June 2016, accepted.  

 Chengyu Li, Haibo Dong, and Zongxian Liang, “Proper Orthogonal Decomposition Analysis 

of 3-D Wake Structures in a Pitching-rolling Plate,” 54nd AIAA Aerospace Sciences 

Meeting,San Diego, California, January 2016.  

Chapter 5 presents and discusses the computational results of the flapping morphing wing 

of a cruising dragonfly. Section 5.1 and 5.2 demonstrate the dragonfly surface reconstruction and 

computational setup, respectively. It follows with the quantification of wing kinematics and 

surface deformation of morphing wings (Section 5.3). Section 5.4 presents the aerodynamic 

performance of flapping wings. Section 5.5 describes the vortex formation in detail. Finally, the 

conclusions are given in Section 5.6. The results of Chapter 5 form the basis of the following 

journal publication: 

 Chengyu Li and Haibo Dong, “Improvement of Aerodynamic Performance by Surface 

Deformation of a Dragonfly in Forward Flight,” Journal of Royal Society Interface, under 

preparation.  
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Chapter 6 discusses the computational results of a dragonfly’s turning maneuver. The 

dragonfly surface reconstruction and computational setup is shown in Section 6.1 and Section 

6.2, respectively. It follows by the quantification of body and wing kinematics in Section 6.3. 

The aerodynamic performance of flapping wings are presented in Section 6.4. The detail 

description of vortex formation is given in Section 0. Furthermore, the effect of wing-wing 

interaction is discussed in Section 6.6. Finally, the conclusions are given in Section 6.7. The 

results of Chapter 6 form the basis of the following journal publication:  

 Chengyu Li and Haibo Dong, “Computational investigation of dragonfly aerodynamics in 

turning maneuver,” Bioinspiration & Biomimetic, under preparation.  

Chapter 7 summarizes the conclusions of the current computational studies and points 

toward future work.  
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2 Numerical Methodology 

2.1 Numerical Method 

        In the current study, flow fields are generated by a direct numerical simulation of the three-

dimensional unsteady, viscous incompressible Navier-Stokes equations, as written in the 

following: 

0
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
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j

j

u

x
 (2-1) 
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 (2-2) 

where iu  ( 1,2,3i ) are the velocity components in the x-, y- and z-directions, respectively; p  

is the static pressure;   and  are the fluid density and kinematic viscosity, respectively.  

        The equations (Eq. ((2-1) and ((2-2)) are discretized using a second-order central difference 

scheme on a non-uniform Cartesian mesh, where the velocity ( iu ) and pressure ( p ) are 

collocated at the cell centers. The unsteady equations are solved using a fractional step method 

[67], which provides second-order accuracy in time. An Adams-Bashforth scheme and an 

implicit Crank-Nicolson scheme are employed for the discretization of the convective terms and 

diffusion terms, respectively. Briefly, the governing equations (Eq. ((2-1) and ((2-2)) are solved 

by three sub-steps. In the first step, the solution is advanced by solving the advection-diffusion 

equation, as shown in Eq. (2-3), to obtain an intermediate velocity filed ( *

iu ). Subsequently, a 

Modified Strongly Implicit Procedure (MSIP) method [68] is employed to solve the pressure 

Poisson equation (Eq. (2-4)) to obtain the pressure correction ( 'p ). Finally, the cell-centered 

velocity ( iu ) and face-centered velocity ( iU ) are updated using the corrected pressure, 

respectively, as presented in Eq. (2-5) and (2-6).  
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Where,  is the central difference operator; CC and FS represent the update of velocity filed 

based on cell-centered and face-centered, respectively. 

        The flow solver employs a sharp-interface immersed boundary method (IBM) based on the 

multi-dimensional ghost-cell methodology as described in Ref. [26,69]. The IBM is an 

innovative approach in simulating fluid flow over bodies which are imbedded within a Cartesian 

grid. The general process begins by generating the immersed boundary comprised of a number of 

densely spaced marker points connected by linear segments. A non-conformal Cartesian grid is 

then generated followed by a procedure that identifies the fluid-cells and solid-cells. Fluid-cells 

are cells whose cell centers line outside of the body, and solid-cells are made up of the remaining 

cells with cell centers inside the body that are not adjacent to the immersed boundary.  

        The key concept of the immersed boundary method is to compute the flow variables for the 

ghost-cells, such that boundary conditions on the immersed boundary in the vicinity of the ghost-

cells are satisfied while preserving second-order accuracy. Ghost-cells are those cells whose 



21 

 

centers lie inside the immersed body and have at least one neighboring cell which lies outside the 

immersed body. As shown in Figure 2-1, the boundary condition on the body-intercept point is 

satisfied by imposing the value on the ghost cell. The value at the ghost cell is obtained from the 

image point which is computed by the interpolation of the values on the surrounding fluid cells. 

Thus, flow simulations with complex boundaries are conducted on stationary non-body-

conformal Cartesian grids. This arrangement eliminates the need for the complicated re-meshing 

algorithms that are usually employed by conventional Lagrangian body-conformal methods. 

Additional details for this code can be found in Ref. [69]. The current flow solver has been used 

to model translational/rotational plates [70,71], pitching-rolling plates [72], and the flapping 

wing of a cicada [73]. The validations of the current solver are provided in Appendix A. 

 

Figure 2-1. Schematic of the ghost cell method for the immersed boundary treatment.  

 

2.2 High-Speed Photogrammetry and Surface Reconstruction 

        Image sequences of free flying insects are collected using three synchronized Photron 

Fastcam SA3 60K high-speed cameras capable of up to 1000 frames per second at a resolution of 

1024×1024 pixels resolution with a global shutter speed of 2 us. Three cameras are fixed on an 

aluminum framework, as shown in Figure 2-2. The framework and foundation can ensure that 
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cameras are aligned orthogonal to each other on an optical breadboard. The slotted channels in 

framework allow us to adjust the distance between cameras and the insects. For providing 

excellent temporal and spatial resolution, the cameras are positioned 1.5 meters away from the 

dragonfly based on the body size and flapping frequency of the specimen. The optical 

breadboard not only allows us to mount our hardware to a sturdy anchor, but also minimizes 

vibrations will occur within the system. For the lighting system, two halogen photo optic lamps 

(OSRAM, 54428) are chose for our experiment.   

 

Figure 2-2. (a) High-speed camera system set-up in the lab. (b) Conceptual model of the 

photogrammetry system used to capture insects in free flight based on Autodesk Maya.  

 

        For reconstructing the wing kinematics and deformation, each insect wing is marked with a 

fine tipped permanent marker before shot videos. Since the added weight from the ink on the 

surface of the wing is pretty small, we assume it is approximated as zero and does not affect the 

flight performance. For an arbitrary point on a dragonfly’s wing in each frame, we use the 
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perspective projections method to decide its location in multiple projection planes. The 

photogrammetry system is used to capture dragonfly in flight.  

 

Figure 2-3. Initial configuration of a dragonfly template mesh. (a) Top-down image is showing 

the marker points on the wings. (b) Wing and body template models with the surface points 

corresponding to the top level of the subdivision hierarchy marked in red.  

 

        The initial 3-D wing template models are generated with Catmull-Clark subdivision 

surfaces by using a computer graphics software Autodesk Maya (as shown in Figure 2-3).  Based 

on the high speed films, we align first level vertices of the subdivision surface hierarchy 

corresponding to the marker points on dragonfly’s fore-wings and hind-wings. After the initial 

template surfaces of wings are generated, they are recorded as a key frame animation. By 

repeatedly adjusting the anchor point based alignment process along with each axis for each time 

step, the first level vertices of wings are completed. Even the whole process of wing 

reconstruction is a little bit labor intensive, but it is currently the only efficient way to reconstruct 

a deformable, quad-winged insect in free-flight (as shown in Figure 2-4). Thus, the 

approximation of the 3-D wing shapes such as span-wise bend, chord-wise bend, and twist can 

be captured with smooth subdivision surface representation. Comparing with tethered insects, 

free-flying insects present many challenges to the surface reconstruction work due to those non-
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linear translation and rotation motion, especially for dealing with maneuver cases. Analysis of 

the projection errors for filming geometry shows that the reconstructed angles is less than 0.5 

degree in error over the entire filming area and that the assumed horizontal plane deviates by less 

than 1 degree from the true horizontal. Perspective errors can thus be ignored during the 

kinematic analysis. 

 

Figure 2-4. Reconstructed wings at a time step where a large amount of twist and camber is 

present in multiple wings. 

 

2.3 Proper Orthogonal Decomposition (POD) 

        Proper Orthogonal Decomposition (POD) is a method used to represent large data fields 

with a relatively small number of elements. POD creates a set of basis function which spans the 

original data set by capturing the characteristic components. The system can be represented by 

the first few dominant modes. In the POD analysis of flow field, velocity vectors are written as 

an ensemble of spatial and temporal components:  
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where u is mean velocity, i are POD modes, i are temporal coefficients of the modesi , and 

mN is total number of modes.  

        To form a set of the modesi  in the context of proper orthogonal decomposition, it is 

required to solve an optimization problem that maximizes the quantity ' 2(u , )  subjected to a 

constraint 1   for each mode i  in the set. The POD method in this scenario produces the 

POD modes i  that maximize the resolution of fluctuating kinetic energy. The optimization 

problem can be transformed into an eigenvalue problem by using the snapshot method [74], 

written as AV V  , in which the size of the correlation matrix A is S SN N , and the entries of 

matrix A  are ' '(u ,u )ij i ja . SN is the number of snapshots. Solving the eigenvalue problem yield 

eigenvalues and eigenvectors for constructing the modesi . Given the POD modesi , the n th 

snapshot un  can be recovered from a linear combination of the POD modes: 
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where the temporal coefficients '( ,u ) n

i i n . 
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2.4 Virtual Force of POD Modes 

        Based on POD mode force survey method (POD-FSM), the force acting on an immersed 

body can be written in terms of a linear combination of non-interaction and interaction force 

terms: 

0 0 0

F F F
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  
m m mN N N

i ij

i j i

 
(2-9) 

where Fi are the virtual forces caused by the i th POD mode and Fij
are the virtual forces caused 

by the interaction between the i th and j th POD modes. The forces related to POD modes are 

termed ‘virtual forces’ in the current paper. 

    The non-interaction term, Fi , are consisting of one volume integral term related to the first 

moment of POD vorticity and three surface integral terms related to the viscous stress tensor. 

The interaction terms Fij
computer the interaction of the i th and j th POD mode at the external 

surface S . The volume and surface integrals in Fi and Fij
are functions of POD modes and are 

independent of time. However, Fi and Fij
are scalar functions of temporal coefficients. Therefore, 

it can be concluded that the force direction and magnitude are determined by POD modes and 

temporal coefficients, respectively. More detail information and validations of the POD-FSM 

can be found in Ref. [75].  
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3 Effects of a Dynamic Trailing-Edge Flap in Flapping Motion 

        Vein-reinforced membrane structure can be widely observed in insect wings. During 

flapping, the wing will deform around certain pivot points and form camber deformation along 

its chordwise direction (Figure 3-1). Inspired by the previous morphing wing studies, we 

designed a simplified 2-D model to investigate the time-varying camber effects. The current 

study aims to find out the dominant parameters of the camber formation to achieve the flow 

control and improve the aerodynamic performances.  

 

Figure 3-1. Schematics of a vein-stiffened wing and the idolized model for presenting the 

chordwise deflection ( ) around a possible pivot point. 

 

3.1 Problem Definition 

    In the present work, a thin rigid plate attached with a TEF is considered as the model of 

deformable flapping wing, as shown in Figure 3-2 (a). The methodology of handling this thin 

(0.04 chord-length thickness) plate is demonstrated in Ref.[69]. As shown in Figure 3-2 (b), the 

harmonic kinematics is used to prescribe the flapping motion in a Cartesian coordinates system. 

Specifically, the main plate is constrained to move in a horizontal stroke plane according to the 

function defined by Eq. (3-1) and (3-2):  
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( ) sin(2 )L Lt ft    (3-2) 

where, ( )x t and ( )y t denote the position of the leading edge of the chord, ( )L t is the orientation 

of the main plate relative to the vertical direction, f  is the flapping frequency, 0A  and L  are 

the amplitudes of translation and rotation, respectively. 

    The deflection angle ( T ) of TEF is defined by Eq. (3-3). In the current study, the deflection 

phase difference ( ) controls the TEF deflection timing, and thus forms a different camber 

pattern. The choices of these design parameters are in line with other TEF studies on fixed/rotary 

wing aerodynamics [76,77,78]. By changing the deflection phase difference, the plate will either 

form a positive camber with ( 90 ,90 )    , or form a negative camber with (90 ,270 )  

which is presented as the sum of (90 ,180 )  and ( 180 , 90 )    in the following discussions. 

Figure 3-2 (c-d) present the typical samples of a positive camber configuration at

60 , 60   T   and, a negative camber configuration at 60 , 120    T  , respectively.  

( ) sin( 2 )  T Tt ft     (3-3) 

where, T  is the amplitude of deflection, and   is the phase difference between the main plate 

rotation and trailing-edge deflection.  
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Figure 3-2. (a) A schematic illustration of the specified kinematics parameters. The main plate 

and TEF are colored in black and red, respectively; (b) Definition of flap deflection amplitude 

( T ) and deflection phase difference (  ); (c) Sample of positive camber configuration at

60 , 60   T  ; (d) Sample of negative camber configuration at 60 , 120    T  .  

 

        The Reynolds number is defined as max 0 Re U c fA c   , based on the maximum 

translational velocity ( maxU ). The lift and drag coefficients are defined as 2

max(0.5 )LC L U c

and 2

max(0.5 )DC D U c , with the lift and drag denoted by L and D, respectively. The cycle-

averaged lift and drag coefficients are denoted by LC and DC , respectively. The instantaneous 
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aerodynamic power is calculated as
1

 
n

i i

i

P F v , where n  is the total number of elements, 
iF is 

the aerodynamic force acting on each element and 
iv is the corresponding velocity of the element. 

The power coefficient can be expressed as 3 2

max(0.5 )PWC P U c . For the calculation of cycle-

averaged aerodynamic power ( PWC ), only the positive power is considered. Further, the lift-to-

power ratio ( /L PWC C ) is used to evaluate the aerodynamic efficiency. We also noticed that the 

projected chord length of the flapping plate is time-dependent, and the time-averaged chord 

length,
T

c , might be another choice for calculating the force coefficients [79]. It has been found 

that this may cause slight changes in the force magnitude, however, the overall conclusions of 

this Chapter remain unaffected. 

 

3.2 Computational Setup  

        Figure 3-3 (a) shows the flapping plate configuration immersed in the 2-D non-uniform 

Cartesian grid. The coordinate directions, which are also shown in Figure 3-3 (b), are as follows: 

x is the horizontal direction with +x pointing towards right side boundary; and y is the vertical 

direction with +y pointing upward. Figure 3-3 (b) shows the boundary conditions applied on the 

computational domain boundaries. On all of the boundaries, a far-field boundary condition which 

amounts to specifying the stream-wise (vertical) velocity component to zero and setting the 

normal gradients of the other velocity components to zero is applied.  

        The computational domain size of 2-D simulation is 30 c 40 c  with a refined zone of 8 c 

11 c . The grid (321465) is chosen with the smallest resolution of 0.02 x c  for the case of 

Re=100, and a finer mesh ( 449 673 ) is used for simulations at higher Reynolds number. The 3-
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D simulations are performed in a 30 30 30 c c c domain. The grid adopted has 221 265 117 

cells with minimum grid size 0.03 x c . The time-step ( / 960T dt ) is chosen for the current 

study corresponds to a Courant-Friedrichs-Lewy (CFL) number around 0.5. We have conducted 

extensive tests to ensure that the domain is large enough to achieve accurate results, and grid 

refinement has been performed to make sure that the simulation results are grid-independent in 

both the 2-D and 3-D cases.  

 
Figure 3-3: (a) Flapping plate configuration immersed in the 2-D non-uniform Cartesian grid. 

(b) Boundary conditions for the simulation.  

        In order to identify a suitable number of grid points and time step, spatial grid and time-step 

sensitivity analyses are performed for the rigid plate with 0 / 3.0A c . Simulation within fine grid 

was carried out on a grid which had 52% more grid points than the medium grid, and simulation 

within coarse grid was carried out on a mesh with 48% less grid points than the medium grid. 

Both of these simulations produced a maximum 1% difference from the medium grid in mean lift 

and root-mean-square (r.m.s.) values of lift and drag. The temporal sensitivity study also 

conducted within the medium grid to guarantee the convergence of current simulation. Each 

simulation was integrated over 10 flapping cycles. Estimates of cycle mean and r.m.s. lift as well 
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as r.m.s. drag indicate that there is a less than a 3% difference in these quantities from the ninth 

to the tenth cycle. Thus, the flow quantities reach a near-stationary state by the ninth and tenth 

cycles and all of the flow statistics in the following discussion are estimated based on averaging 

over the ninth and tenth cycles. From the results shown in Figure 3-4, the medium grid 

( 60.29 10 ) and / 960T dt  are chosen. The time-step chosen for the current study corresponds 

to a Courant-Friedrichs-Lewy (CFL) number of 0.51. 

 

Figure 3-4: Spatial and Temporal sensitivity analyses for a rigid flapping plate at 0 / 3.0A c . 

Lift coefficient (a, c) and drag coefficient (b, d) time history for the 10th flapping stroke.   
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Figure 3-5. Time traces of lift (a), drag (b), and power (c) coefficients for fully rigid plate and 

plate with a TEF at 60 , 60   T  (positive camber) and 60 , 120    T  (negative 

camber). The half-cycles representing down-stroke are shaded.  

 

3.3 Aerodynamic Performance and Vortical Structure  

        In this section, we first present the effects of TEF deflection phase difference and deflection 

amplitude for a hinge location at 0.75LH c , in Section 3.3.1 and 3.3.2, respectively. The effects 
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of the hinge location change will then be investigated in Section 3.3.3. In these simulations, the 

following values are selected for the stroke amplitude, the main plate rotational amplitude, and 

the Reynolds number: 0 / 3.0A c , / 4L  , and 100Re , respectively. The parameters 

describing the plate kinematics are chosen based on previous work on insect flight [44,80,81,82]. 

The trailing-edge deflection amplitude T ranges from 15 to 90 , and the deflection phase 

difference  ranges from 180  to 180  . The effects of the Reynolds number will be examined 

in Section 3.3.4. Furthermore, low-aspect-ratio 3-D cases will be analyzed by comparing the 

aerodynamic performance to the 2-D cases in Section 3.3.5. The emphasis of the current study is 

on the effects of the abovementioned factors on the aerodynamic performance and flow 

structures.  

 

Figure 3-6. Time variation of relative force increments compared to the fully rigid plate. (a) 

60 , 60   T  . (b) 60 , 120    T  .  
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3.3.1 Effect of TEF Deflection Phase Difference 

        To provide a comprehensive picture of how the TEF deflection phase difference affects 

overall unsteady phenomena, we compare the aerodynamic performance of two typical deformed 

plate configurations. The two selected cases correspond to positive (Figure 3-2 (c)) and negative 

(Figure 3-2 (d)) camber formations, respectively, with the same deflection amplitude ( 60 T ). 

As a reference, data for the corresponding fully rigid plate are also plotted in Figure 3-5. Their 

associated plate configurations are shown in Figure 3-2 (c-d) for an established cycle.   

    In general, the instantaneous force history (Figure 3-5 (a-b)) of all three cases shows two 

local maxima for each half-cycle. The first peak is associated with the wake capture at the 

beginning of the stroke, and the second peak is mainly caused by the delayed stall and rotational 

circulation mechanisms [38]. Between the two peaks is a local minimum referred to as a wake 

valley, which is caused by a combination of decreasing angle-of-attack and interaction with a 

pocket of downward momentum created during previous flapping cycles [83]. The asymmetrical 

force production between the down- and up-stroke is caused by irregularities in the vortex 

shedding and wing-vortex interaction [43].   

    Significant differences can be observed between the case with and without TEF and also 

between the positive and negative camber formations. By adding TEF deflection motion with 

different deflection phase difference value, the entire camber formation will be changed. This 

change will either delay or advance the dynamic stall. As a consequence, the location of the peak 

values of both forces and power coefficients will be shifted relative to that of the fully rigid case, 

as can be easily observed in Figure 3-5.   
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Figure 3-7. A series of instantaneous vortex field in a flapping cycle for a fully rigid plate (first 

and fourth columns), TEF deflection at 60 , 60   T   (second and fifth columns) and TEF 

deflection at 60 , 60   T   (third and sixth columns). The blue and red colors indicate 

clockwise and counterclockwise vortices, respectively.  

 

    Figure 3-5 (a) shows that, for the positive camber case, a significant lift enhancement occurs 

during the up-stroke relative to the fully rigid plate, whereas, the negative camber case shows a 

significant lift decrease. There are two possible reasons for this difference.  First, the negative 

camber formation reduces the frontal area of the deformed plate, as shown in Figure 3-2 (d). 

Second, the reverse camber formation prevents the development of leading-edge vortex (LEV). 
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For the latter, the comparison of vortical structure features would alleviate the problem and will 

be discussed in the following sections. Figure 3-5 (b) shows that greater drag is produced when 

the plate experiences higher lift. This result is common for unsteady mechanisms in hovering 

flight along a horizontal stroke plane. According to the previous literature, an increase in 

aerodynamic lift due to unsteady effects is typically accompanied by an increase in drag [38,80]. 

The power coefficient displays a similar trend as the drag coefficient varies, as shown in Figure 

3-5 (c). This is because most of the energy has been consumed through drag producing rather 

than lift producing. For the negative camber case, the power consumption is much lower as a 

consequence of a lower frontal area.   

        To better understand the effect of the phase difference of TEF deflection on the force 

generation, Figure 3-6 shows the time course of relative force increments of the plates with two 

different TEF deflections compared to the fully rigid plate. In which, the relative force 

increments were obtained by subtracting the forces generated by the fully rigid plate. For the 

positive camber case ( 60 , 60   T  ), the maximum force increments happened in the middle 

of the downstroke and the upstroke. However, the negative camber case ( 60 , 120    T  ) 

barely had force increments except during the one-eighth period after the plate reversal, but 

experienced significant force reduction at the mid-downstroke and the mid-upstroke.  
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Figure 3-8. Comparison of LEV (a) and TEV (b) circulation. The vortex circulation is 

nondimensionalized by maxU c . The positive and negative values correspond to the strength of the 

vortex during down-stroke and up-stroke, respectively. (c-d) Vortex contour at an instant labeled 

by the dashed-dot line in (a) for the fully rigid plate (black color), the TEF deflection at 

60 , 60   T   (red color), and the TEF deflection at 60 , 120    T   (blue color). The 

fully rigid and deformed plates are shown as gray and green color, respectively. The solid and 

dashed line indicates the LEV and TEV, respectively.   

 

    To understand the force enhancement mechanism caused by adding a dynamic TEF, we 

further investigate the near wake structures of all three cases as shown in Figure 3-7. The general 
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trend of the vortex formation is similar among all cases. A leading edge vortex (LEV) is 

generated during each half-stroke and is then recaptured by the plate during its return trip after 

the stroke reversal. Then the LEV generated by the previous half flapping stroke moves 

downward along the plate and merges with the current trailing edge vortex (TEV). The merged 

vortex is strengthened and stretched by the trailing-edge. The wake below the hovering plate is 

marked by a pair of TEVs with opposite signs that are generated by the two half-strokes in a 

complete cycle.  

    The differences of these cases in the flow field are also evident. First, the positive camber 

case creates a larger size of LEV and TEV than others and its downwash presents a faster 

downward translational speed. In addition, the dynamic stall can be either advanced or delayed 

for different camber formations. During the translation phase (as shown in t/T=19.375 and 

t/T=19.875), the LEV of the negative camber case presents a clear detachment from the plate 

suction side. On the contrary, the positive camber case shows a better LEV attachment 

comparing to the fully rigid plate. Furthermore, during the stroke reversal, the positive camber 

case create a relative stronger wake region over the other cases, which implies the enhancement 

of the wake capture mechanism (i.e., the negative vortex blob at t/T=19.5 and the positive blob at 

t/T=20.0). 

    To quantify the strength of the LEV, we further visualize the vorticity field using contour 

lines. After each vortex is manually identified, a closed contour line is generated around this 

vortex with a specified level, and the circulation ( ) is then calculated by integrating along this 

line. Although the magnitude of the circulation depends on the chosen contour level, the 

characteristic behavior of the vortex is not affected by this choice. The negative and positive 

signs represent the vortex rotation direction, which can be either clockwise or counterclockwise.  
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Figure 3-9. Comparison of pressure distribution and velocity vector at t/T=19.75. (a) Fully rigid 

plate, (b) Positive cambered plate at 60 , 60   T  , and (c) Negative cambered plate at

60 , 120    T  . The pressure is normalized by 2

maxU . 

 

        Figure 3-8 (a-b) shows a comparison of LEV and TEV circulation corresponding to the 

vortices shown in Figure 3-7. In general, the strength and timing of the vortices have significant 

effects on force production. The peak timing of the TEV circulation appears slightly earlier than 

that of the LEV circulation. It can be observed that the LEV and TEV for the positive camber 

case are much stronger than the corresponding vortices for the fully rigid case over a 

significantly long period. In terms of the flow physics, the wake capture mechanism is enhanced 

partially due to a stronger flow around the plate at stroke reversal. Note that both enhancement 

periods appear during the second half of each stroke, when the camber deformation is formed. 

Unlike that in the positive camber case, the vortex circulation in the negative camber case is 

much weaker, and the magnitude of LEV circulation is comparable between the down- and up-

strokes. 
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        Figure 3-8 (c-d) compares the contour lines of LEV and TEV for an instant that is labeled as 

a dashed-dot line in Figure 3-8 (a). Because the magnitude of the circulation is proportional to 

the area of the contour lines, the difference in circulation can be visualized by comparing the 

areas of the contour lines. It is observed that the TEF dynamic motion directly stretches its local 

vortex structure and feeds extra circulation to the TEV (dashed blue line), which results in 

forming a relatively larger LEV pair. This local flow change also pulls down the LEV structure 

closer to the plate compared with that observed in the fully rigid case. It is worth noting that the 

enhancement of LEV and TEV through positive cambering observed in the current work is in 

line with previous studies on wing flexibilities. These include numerical simulations of insect-

like cambering effects of a 2-D wing [84], experimental measurements of robotic rotating wings 

with varying flexural stiffness [85], and flow-structure interaction of vein-stiffened flapping 

wings [41]. On the other hand, for the negative camber case, the TEF stretches its TEV upward. 

As a consequence, the LEV is pulled up and detached from the suction side of the plate.   

    The abovementioned local flow modulation will directly alter the pressure distribution. 

From the normalized pressure contours (Figure 3-9), we can see that the positive cambered plate 

creates a larger low-pressure area on the suction side and the pressure difference between the 

upper and lower plate surface is clearly increased. The velocity vectors indicate that the positive 

cambered plate generates a stronger downwash in the flow field comparing to the other two 

cases. The distribution of the pressure and velocity vector entail the lift generation. Hence, the 

positive cambered case at this instant experiences a relative larger vertical force, as shown in 

Figure 3-5 at t/T=19.75. On the opposite, the negative camber case generates a stronger backflow 

on the suction side and this will pull up the LEV. As a result, the detachment of LEV (dynamic 

stall) makes the overall force production of the negative camber case drops significantly.   



42 

 

 

Figure 3-10. Far wake vortical structure comparison of fully rigid plate (a), TEF deflection at 

60 , 60   T   (b) and TEF deflection at 60 , 120    T   (c) at t/T=20.0. The dashed 

square corresponds to the region shown in Figure 3-7. 

 

        To demonstrate the global impact of the dynamic TEF deflection, Figure 3-10 presents the 

far wake vortical structure. After long-term development, the far-field flow presents a reverse 

Karman vortex street for all three cases. The positive camber formation results in a more 

vigorous vortex street (Figure 3-10 (b)) throughout the entire evolution period. The 

corresponding overall vortex shedding trajectory presents a slight deflection. It can also be 

observed that the shedding vortex pair translates faster in the vertical direction. On the other 

hand, the negative camber case shows an enervated vortex pattern (Figure 3-10 (c)) with slower 

translational speed. The shedding vortex gradually vanishes because of the viscosity. In its 

downwash devolution, the vortex street stays on the same side of the symmetry line of the wake. 
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3.3.2 Effect of TEF Deflection Amplitude 

    Unlike deflection phase difference effect, adjusting the deflection amplitude will result in a 

change of camber magnitude. In this section, the effect of deflection amplitude on aerodynamic 

performance is investigated at 15 ,30 ,60 ,90    T for positive camber (at 60  ) and 

negative camber (at 120   ) configurations, respectively. The instantaneous forces and power 

coefficients are plotted in Figure 3-11. The performance of a fully rigid plate is also re-plotted as 

a reference. The corresponding vorticity fields are shown in Figure 3-12. 

        In Figure 3-11, the first peak of each stroke resulting from the wake capture presents a clear 

enhancement for the higher deflection amplitude ( 60 ,90  T ) but not for the lower deflection 

amplitude. The second peak of each stroke, which is caused by the delayed stall and rotational 

circulation mechanisms, shows a gradually increasing trend with deflection amplitude, but it 

drops when the TEF is over-deflected at 90 T . For negative camber formation, the first peak 

increases along with the deflection amplitude, but the second peak presents a decreasing trend at 

the same time. Although the deflection amplitude change will alter the peak value and 

appearance timing at certain levels, the overall trend of the instantaneous force and power 

coefficients for both the positive and negative camber formations are essentially the same. Figure 

3-12 presents the vortical structures for both the positive and negative camber formations at 

various deflection amplitudes. The plots show that although the change in deflection amplitude 

will slightly deflect the vortex street, it will not alter the overall flow pattern dominated by the 

deflection phase difference. 
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Figure 3-11. Time traces of lift (a-b), drag (c-d), and power (e-f) coefficients for positive and 

negative camber formations at different deflection amplitudes.  

     



45 

 

 

Figure 3-12. Far wake vortical structure comparison of TEF deflection at 30 , 60   T   (a),  

30 , 120    T   (b), 90 , 60   T   (c), and 90 , 120    T   (d). 

 

        To systematically explore the effects of TEF on aerodynamic performance, Figure 3-13 (a-

b) shows the lift and drag coefficients averaged over 20 flapping cycles. The results are shown 

for the TEF deflection amplitudes 15 ,30 ,60 ,90    T and deflection phase difference   

values ranging from 180  to180 . The performance of a fully rigid plate is indicated by the 

dash-dot line. It can be observed that for all deflection amplitudes, the TEF deflection phase 

difference has a significant effect on the force production. Specifically, the optimal lift appears 

over the range of (0 ,90 )   , and the peak value is up to 26% higher than that of a fully rigid 

plate. The deflection phase difference range (0 ,90 )    also leads to an increase of at least 40% 

in the drag coefficient compared with that of the fully rigid plate. Although drag production is 

not desirable for the steady motion, it has the potential to enhance maneuverability if an 

asymmetric deflection phase difference value is selected between the inner and outer flapping-
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wings because the torque generation for inset flight is mainly drag-based [86]. For variations in 

the deflection phase difference over the ranges ( 180 , 90 )    and (90 ,180 )  , both the lift and 

drag decrease, especially for the larger deflection amplitude cases. This decrease is observed due 

to the decrease in the frontal area when a reverse camber is formed for  over these ranges.   

 

Figure 3-13. Aerodynamic performance of plate at 0.75LH c . Cycle-averaged lift (a), drag (b), 

and power (c) coefficients, and lift-to-power ratio (d). 
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    In Figure 3-13 (c), the power calculation is based on the input from the leading edge of the 

plate, and negative power is not taken into account. Overall, the power coefficient displays a 

trend similar to that of the drag coefficient. This is again because most of the energy is consumed 

through drag rather than through lift. Unlike the force and power coefficient maps, in which 

higher values always appear at higher deflection amplitudes, the lift-to-power ratio shown in 

Figure 3-13 (d) presents a higher value at lower deflection amplitudes, especially for a negative 

camber formation. The optimal lift-to-power ratio can reach up to 0.85, which is 21% higher than 

that for the fully rigid plate. The possible reason is that although the negative camber cases own 

lower lift production, the symmetric flow pattern (i.e., Figure 3-10 (c)) reduces the power 

consumption in the horizontal direction. This leads to a higher aerodynamic efficiency in terms 

of the lift-to-power ratio. 

    Comparing the four deflection amplitudes, we find that there is an optimal value for the 

magnitude of camber formation. For lift production, a moderate deflection amplitude ( 60 T ) 

with positive camber formation generates the optimal lift along with the decrease of the lift-to-

power ratio. However, the low deflection amplitude ( 15 T ) with a positive camber is able to 

improve both the lift and lift-to-power ratio, but at much smaller level than that of 60 T . It 

should be noted that the camber formation at 15 T corresponds to a maximum 8% camber-to-

chord ratio, where the camber height is defined as the distance between the hinge locations to the 

straight line connecting leading to trailing edge. This value is close to that observed in real insect 

wings [87].  

    Moreover, as shown in Figure 3-13, the phase difference of the TEF deflection is another 

important parameter for controlling the plate's aerodynamic performance. The change of this 
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parameter during flapping is equivalent to the time variation of the camber formation, as shown 

in Figure 3-2 (b). Results have shown that the optimal lift production always occurs when the 

deflection phase difference is within 0 90     (Figure 3-13 (a)). Meanwhile, the maximum 

camber is formed when the wing is about to reversal. This is consistent with previous findings in 

real insect flights. Table 3-1 shows the comparison of camber formation including camber-to-

chord ratio ( max /h c ) and formation timing ( maxh ) of the maximum camber between the optimal 

lift case from the current work and previous studies on real insects. Here, maxh and c  represent 

the maximum camber height and wing chord length, respectively, and maxh is the formation 

timing of the maximum camber which is normalized by the downstroke duration ( downT ). Results 

have shown that for various real insects, the maximum camber-to-chord ratios are between 5% ~ 

16%, and they are all formed at the end of the downstroke, 0.7 ~ 0.9down downT T . Similar trends can 

also be found from the results of the optimal lift case in the current work despite that the TEF 

motion is prescribed. 

    It is worth noting that the insect wings are made of complicated biomaterials coupled with 

ingenious wing structural designs that are able to extract maximum advantage from elastic 

tailoring and other mechanisms during the flapping motion. Current work has indicated that by 

carefully choosing the control parameters, active control of wing surface morphing may be able 

to achieve biological levels of aerodynamic performance as insect flapping wings. This 

observation can be treated as a promising inspiration for the wing design of flapping-winged 

MAVs. 
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Table 3-1: The maximum camber-to-chord ratio ( max /h c ) and the timing of maximum camber 

max( )h  during downstroke for real insects along with the optimal lift case from the current study. 

 Flight conditions 
max /h c  maxh  

Dragonfly hindwing 

[87] 

Free flight 5%-9% 0.73 

Desert locust forewing 

[88] 

Tethered flight 2%-9% 0.68 

Desert locust hindwing 

[88] 

Tethered flight 5%-10% 0.72 

Hoverfly 

[89] 

Free flight 6%-11% 0.71 

Butterfly 

[90] 

Forward flight 7%-15% 0.78 

Beetle hindwing 

[91] 

Free flight 11%-16% 0.90 

Honeybee 

[92] 

Free flight 5%-12% --- 

Current work 

( 60 , 60   T  ) 

Hovering 15% 0.82 

 

3.3.3 Effect of Hinge Location 

    In previous sections, the discussion is focused on a flapping plate with a hinge located at 

three-quarter chord length ( 0.75LH ) from the leading edge. In this section, the effects of 

varying hinge location on aerodynamic performance are investigated. For making a fair 
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comparison, we keep the same effective pitching angle for different hinge location cases. The 

effective pitching angle (as shown in Figure 3-14) is defined in the same way as that used in [40]. 

For different hinge location cases, the total length of the whole plate is still maintained as unit 

one. 

 

Figure 3-14. Definition of effective pitching angle (
eff ). 

 

    Figure 3-15 shows the mean aerodynamic performance for different hinge locations. By 

keeping the same effective pitching angle, the deflection amplitude for varying hinge location is 

different. For instances, the deflection amplitude ( T ) of hinge location at 0.25, and 0.5 chord 

length from the leading edge is around 18.5  and 27.8 , respectively, for achieving the same 

effective pitching angle as hinge placed at three-quarter chord length cases at 60 T . In 

general, the aerodynamic performance follows the same trend for varying hinge locations. 

However, there still exists slight difference especially for the lift generation. It is demonstrated 

that changing hinge locations have a different impact on the aerodynamics of positive and 

negative camber formations.  
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Figure 3-15. Aerodynamic performance of plate has different hinge locations. Cycle-averaged 

lift (a), drag (b), and power (c) coefficients, and lift-to-power ratio (d).  

 

        Figure 3-15 (a) shows that for positive camber, 0.75LH  yields the highest lift, whereas 

for negative camber cases, 0.25LH  leads to the greatest lift. More specifically, the averaged 

lift enhancement of positive camber cases at 0.75LH  is 7.2% higher than the same case at
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0.25LH . In contrast, the averaged lift for the negative camber formation at 0.25LH is 9% 

higher than the same case at 0.75LH .  In addition, the drag and power coefficients in Figure 

3-15 (b-c) only show slight differences between various hinge locations because the effective 

angle of attack for all simulations is kept the same. Moreover, the difference in the lift-to-power 

ratio (as shown in Figure 3-15 (d)) is directly determined by the change in lift production. 

 

3.3.4 Effect of Reynolds Number 

    In order to study the Reynolds number ( Re ) effects, we have changed Re  from 50 to 

Numerical Investigation of Energy Extraction in a Tandem Flapping Wing Configurationand run 

the higher Reynolds number cases on finer meshes. At each Reynolds number, simulations are 

performed at 0.75LH cand 60 T for different deflection phase difference. 

    Figure 3-16 (a-c) show comparisons of the cycle-averaged forces and power coefficients at 

various Re . In general, the lift coefficient increases with Reynolds number, especially for 

positive camber formation. However, the drag and power coefficients present different trends for 

positive and negative camber cases respectively when Reynolds number increases. For positive 

camber cases, both the drag and power coefficients increase with Reynolds number, whereas 

both the drag and power coefficients decrease as Re  increases for negative camber formation. In 

Figure 3-16 (d), the lift-to-power ratio always shows an increasing trend with the Reynolds 

number for different deflection phase difference values. This trend reveals that with the increase 

in Reynolds number, the dynamic TEF gains more benefit from the unsteadiness of the sounding 

flow. Although there is a difference in magnitude for the cases with different Reynolds numbers, 

the overall performance trend for varying deflection phase difference remains the same.  
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Figure 3-16. Aerodynamic performance of plates with various deflection phase difference at 

60 T for different Reynolds numbers. Cycle-averaged lift (a), drag (b), and power (c) 

coefficients, and lift-to-power ratio (d). 
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Figure 3-17. Comparison of aerodynamic performance between 2-D plate and 3-D plate 

( 2AR ) at 60 T for different TEF deflection phase difference. Cycle-averaged lift (a), drag 

(b), and power (c) coefficients, and lift-to-power ratio (d). 

 

3.3.5 Effect of Three-dimensionality 

    At last, the effects of TEF three-dimensionality on the aerodynamic performance and flow 

modulation are investigated. Computations are performed using an 2AR plate at 100Re with
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0.75LH c , 60 T and various for total four flapping cycles. A notable difference between 

the 3-D simulation and 2-D simulation is that the 3-D flow quickly reaches a nearly periodic 

state after approximately two cycles. In the following discussion, the mean forces and power 

coefficients for 3-D cases are calculated based on the averages of the last two cycles. 

 

Figure 3-18. Comparison of instantaneous lift (a-b) and drag (c-d) coefficients between the 2-D 

and 3-D cases for positive and negative camber formations.  

 

        Figure 3-17 shows the mean force, power coefficients and lift-to-power ratio for 3-D cases 

at various deflection phase difference. The corresponding 2-D cases are re-plotted for 
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comparison. In general, the overall trend demonstrated by the 3-D cases follows that of the 2-D 

cases but with smaller amplitude. Based on previous studies, the force fluctuation per unit span is 

suppressed in 3-D cases due to the existence of tip vortices [93], which results in a smaller mean 

force and smaller power coefficients. 

 
Figure 3-19. Comparison of vortical structures between positive ( 60 , 60   T  ) and 

negative ( 60 , 120    T  ) camber formations at selected instants during the down-stroke of 

the 4th flapping cycle.   

 

        The time histories of force coefficients at 60 T and 60 , 120    are plotted in Figure 

3-18 to help us better illustrate the difference between 3-D and 2-D cases. First, the double peaks 

of each half-stroke for the 2-D cases merge into a single peak in the 3-D cases. In addition, the 

force production for each down- and up- stroke is comparable in 3-D cases. A possible reason is 

that due to the absence of the span-wise flow and tip vortices, the 2-D case is much more 
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sensitive to the surrounding flow field and vortex interactions than its 3-D case. Moreover, in 3-

D, the tip vortex and span-wise flow stabilizes the LEV and prevents it from shedding [4]. 

    Figure 3-19 shows 3-D wake structures obtained using the iso-surface of Q-criteria [94] at 

selected instants for both positive and negative camber cases. Two iso-surfaces are plotted to 

highlight the inner core (Q=3.0) and outer shell (Q=1.0) of the vortex structure. The 

corresponding instantaneous force histories are presented in Figure 3-18. Because both the force 

history and vortex formation are symmetric during the down- and up-strokes, only the down-

stroke vortex formation is presented here. In general, the flow structures is similar as reported in 

previous literature [95]. At the beginning of the down-stroke, the flow separates from the leading 

edge and tips, which act as strong sources of vorticity. Vorticity is gradually fed into the 

surrounding flow field, and forms the leading-edge, trailing-edge and tip vortices as vortex 

sheets rolling up from each edge. As the leading-edge vortex (LEV) grows, the trailing-edge 

vortex (TEV) and symmetric tip vortices (TVs) together form a vortex ring at the bottom of the 

plate. With the growth of the vortex structure, the plate gradually reaches the peak lift. During 

the second half of the down-stroke, the LEV vortex starts to detach from the suction side of the 

plate due to the continuous increase of the plate pitching angle. As a consequence, the force 

starts to drop and gradually reaches its minimum value. The comparison of the vortex structure 

between positive and negative cases reveals that the positive camber case ( 60 , 60   T  ) 

forms a larger LEV with relatively stronger TVs than the negative camber case 

( 60 , 120    T  ). The same phenomenon can be observed from the slice cuts of the 

vorticity field. 

    In Figure 3-20, the slice cuts are taken at the tip, a distance of 0.5c from the tip, and at mid-
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span during the down-stroke. As in the 2-D cases, the LEV of the positive camber case shows 

better LEV attachment than that in the negative camber case, as indicated by the snapshots 

captured at t/T=0.25. During the translation process, the positive camber formation enhances the 

tip vortex and creates a stronger LEV. Furthermore, a double core vortex (at t/T=0.325) is 

formed at the tip when a positive camber is formed, which might be because of the enhancement 

of the tip vortex. It is also observed that the shed vortices are more dissipative in the 3-D case 

than in the 2-D case by comparing the vorticity plots in the far wake (Figure 3-10).  

 
Figure 3-20. Comparison of Z-vorticity contours between positive ( 60 , 60   T  ) and 

negative ( 60 , 120    T  ) camber formation at selected time instants during the down-

stroke of the 4th flapping cycle. The slices cuts are taken at plate tip, at a distance of 0.5 c  from 

the tip, and at the mid-span. 
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3.4 Chapter Summaries  

        The effects of the dynamic trailing-edge flap (TEF) on the aerodynamic performance and 

flow structures of both 2-D and 3-D flapping plates has been numerically studied for Reynolds 

number range of 50 to 400. Various parameters for controlling TEF kinematics, such as 

deflection phase difference, deflection amplitude, and hinge location are considered. Our results 

suggest that the TEF deflection phase difference play a more dominant role than other 

parameters. The lift enhancement always happens for positive camber formation cases (i.e., 

deflection phase difference ( 90 ,90 )    ). By tailoring the deflection phase difference and 

deflection amplitude, the lift production can be increased up to 26% comparing to a fully rigid 

plate. The analysis of the associated unsteady flow structures has shown that the dynamic motion 

of TEF is able to feed extra circulation into the trailing-edge vortex which induces a stronger 

counterpart leading-edge vortex. As a result of local flow modulation by TEF, the vortex on the 

suction side is pulled down closer to the plate (stall delay), which leads to the improvement of 

lift production.  Our results also suggest that the plate performance is insensitive to the hinge 

location when the effective pitching angle kept the same. Changing Reynolds numbers only 

affects the magnitude of mean force coefficients whereas the overall trend of TEF effect 

maintains the same. Results from the low-aspect-ratio plates indicate that the general conclusion 

drawn from 2-D cases is applicable to 3-D cases even though the flow features are different at 

certain levels. 
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4 Wake Topology and Propulsive Performance of Bio-inspired 

Pitching-Rolling Plates  

        Flapping motion is widely utilized by many kinds of biological propulsors, including fish 

pectoral fins [96,97,98] and insect/bird wings [61,99]. Such motion generally consists of an 

oscillatory rolling motion about a fixed joint with a simultaneous change in the geometric pitch 

angle with respect to the spanwise axis. As pointed out in previous studies [26,33], pitching-

rolling plates could serve as an ideal canonical model for investigating the aero-/hydro-dynamics 

of bio-inspired flapping propulsion. To achieve a better understanding of pitching-rolling 

propulsors, we extend our previous studies on pitching-heaving plates [26,27] to investigate the 

wake topology and propulsive performance of low-aspect-ratio plates over a range of Strouhal 

numbers, Reynolds numbers, aspect ratios, and phase difference angles between pitching and 

rolling motion. To advance our knowledge of vortex dynamics, the proper orthogonal 

decomposition analysis is also used to investigate the wake topology of pitching-rolling plates.  

 

4.1 Problem Definition 

        The current study employs elliptic plates with a finite aspect ratio (AR) and a plate thickness 

of 3% of the chord length (a similar plate geometry was also used in Ref.[27]). The elliptic plate 

is defined by two major diameters: the chord length c  and the span length S . The AR of the plate 

is defined as the square of the span ( S ) divided by the planform area of the plate ( planA ) and 

equals 4 /S c . The surface of the plate is represented by a fine unstructured mesh with triangular 

elements.  
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Figure 4-1. Schematic of the plate kinematics during the upstroke (a) and the downstroke (b), 

respectively.  

 

    The 3-D plate undergoes combined rolling and pitching motions in the yz-plane, as shown 

in Figure 4-1.  In Figure 4-1 (a), the plate is rolling upward from the lowest position (A) to the 

highest position (C) with instantaneous pitching angle change. The maximum pitching angle is 

reached at the mid-stroke position (B). To better illustrate the pitching-rolling motion, the 

schematic of corresponding mid-chord and mid-span line kinematics are also provided at the 

bottom of Figure 4-1 (a). Similar as the upstroke motion, Figure 4-1 (b) presents the downward 

rolling motion of the plate and the minimum pitching angle is reached at another mid-stroke 

position (D) during the downstroke.  
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Figure 4-2. The time histories of plate rotation during an entire cycle. The black dash-dot line 

denotes six moments at t/T=3.875, 3.9375, 4.0, 4.125, 4.1875, 4.25, 4.3125, 4.375, and 4.4375, 

respectively, for the illustration of the “double C” loop formation during a half cycle in Figure 

4-6. 

 

        The rolling motion of the plate with respect to the x-axis is given by:  

( ) cos(2 ) t A f t   (4-1) 

where ( )t  is the instantaneous rolling position at time t , A  is the rolling amplitude, and f  is 

the flapping frequency. The negative sign of the equation indicates that the rolling motion of the 

plate begins at the lowest position of a stroke. 

        The pitching motion with respect to spanwise axis is defined as:   
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( ) cos(2 )    biast A f t     (4-2) 

where ( )t  is the instantaneous pitching position, A  is the pitching amplitude,  is the phase 

difference angle between pitching and rolling motion ( 90  for the baseline case),  and bias is 

the static pitching bias angle, which is set as 0 in the current study for generating zero mean lift. 

    The kinematic parameters adopted in this work are a reasonable representation of the 

rotation of a low-aspect-ratio insect wings and fish pectoral fins. Table 4-1 provides a concise 

summary of all the parameters involved and their ranges. The time history of the plate rotational 

angle is shown in Figure 4-2. 

 

Table 4-1. Parameters involved in the current study and their ranges. 

AR Re  St  A  A    
bias  

1.27, 1.91, 

2.55 

100, 200, 

400 

0.4, 0.6, 0.8, 

1.0, 1.2 

45  45  60 , 70 ,80 , 

90 ,100 ,110 ,120  

0  

 

4.2 Computational Setup 

        In the current study, the Reynolds number is defined as Re U c  , based on the incoming 

flow velocity ( U ) and the chord length ( c ).The Strouhal number is defined as

2  avgSt A R f U , where A  is the rolling amplitude and avgR  is the average rotational radius 

( / 2avgR S ) in spanwise direction. This definition is consistent with previous experimental 

studies [30,100]. 
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Figure 4-3. Typical grid employed in the current simulations for the circular plate with AR=1.27 

( / 1.0S c ). The grid is 235 233 113  , and the domain size is30 25 25 c c c . 

 

    The grids employed in the current study are designed to provide high resolution in the 

region around the flapping plates as well as in the wake region, as shown in Figure 4-3. At the 

left-hand boundary, we provide a constant inflow velocity boundary condition. The right-hand 

boundary is the outflow boundary, which is provided with a zero streamwise gradient boundary 

condition for the velocity, allowing the vortices to convect out of this boundary without 

significant reflections. The zero-stress boundary condition is provided at all lateral boundaries. A 

homogeneous Neumann boundary condition is used for the pressure at all boundaries.   

    To quantify the hydrodynamic performance, the forces and power coefficients are defined 

as: 
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where T , L , Z  and P  are the thrust, lift, spanwise force and hydrodynamic power, respectively, 

and 
planA , the planform area of the plate, is equal to / 4cS . The instantaneous hydrodynamic 

power ( P ) is defined as the surface integration of the inner product between the pressure and the 

velocity in each discretized element. 

    Moreover, the propulsive efficiency is defined as 


T U

P
  

(4-4) 

where T  is the cycle-averaged thrust and P  is the cycle-averaged hydrodynamic power, in 

which only the positive power is considered. 

    The computational domain size of all simulations was chosen as 30 25 25 c c c . This 

choice was based on our experience with the simulation of such flows and test simulations on a 

number of different domain sizes. To maintain consistent grid resolutions in both the y- and z-

directions, the nominal grid size employed in the current simulations ranged from 

235 233 113   for the smaller aspect-ratio plate (AR=1.27) to 235 273 145  for the larger 

aspect-ratio plate (AR=2.55). Figure 4-3 shows a typical grid used in the current study for the 

small-aspect-ratio case. As observed in this figure, non-uniform grids with two layers of refined 

meshes were used in the current study. Very dense meshes were used in a cuboidal region around 

the plate in all three directions, with the smallest resolution being 0.03 x c . Outside of this 

region, a layer with slightly coarser meshes ( 0.05 x c ) was arranged in all three directions to 

resolve the complex wake structures behind the plates. Beyond this layer, the grid is rapidly 
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stretched in the y- and z-directions. In the x-direction, the stretching is rapid upstream of the 

plate, where we do not expect any streamwise gradients. In the wake region, however, the 

stretching factor was maintained at 3% to ensure a relatively high streamwise resolution. This 

arrangement can limit the numerical dispersion that is associated with the use of central 

difference schemes on highly stretched meshes [101].  

    Comprehensive studies have been conducted to assess the effect of the spatial and temporal 

grid resolution on the salient features of the computed flow and to demonstrate that the chosen 

grids produce accurate results. Spatial grid refinement studies were conducted by simultaneously 

doubling the grid in all three dimensions in the refined zones. The overall grid size for this 

refined grid was 283 273 169   (approximately 13.1 million grid points). Temporal 

independence studies were conducted by halving the t  of the original case while using the 

same nominal grids. All these simulations were conducted on a Xeon E5-2609 CPU with 128 GB 

of core memory, and each nominal grid simulation required anywhere from 96 to 120 CPU hours.  

 

Table 4-2. Results of spatial and temporal grid independence study for AR=1.27, St=0.6 and 

Re=200 case. 

Case TC  . . .( )L r m sC  . . .( )Z r m sC    

Nominal grid 1.462 3.417 1.912 0.1927 

Finer spatial grid 1.459 3.375 1.897 0.1921 

Finer temporal step 1.461 3.409 1.905 0.1925 
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    Table 4-2 compares the key hydrodynamic quantities for the spatial and temporal grid 

independence studies conducted for the AR=1.27, St=0.6 and Re=200 case. The table shows that 

the spatial and temporal grid refinement leads to a difference in the mean thrust and efficiency of 

less than 1% and a variation in the root mean square (r.m.s.) lift and spanwise force of 

approximately 2% at most. This clearly demonstrates that the hydrodynamic forces computed in 

the current study were grid independent. In addition to the above comparison of the 

hydrodynamic forces and efficiency, it is useful to assess the effect of the grid on the flow 

development in the wake. In Figure 4-4, we compare the wake profiles for these three different 

grids. Figure 4-4 (a) and (b) show the mean streamwise ( 1 u U ) and transverse ( 2u ) velocity 

profiles at the mid-span, and Figure 4-4 (c) shows the spanwise mean velocity profiles at the 

center of the XZ-plane. In all of these plots, we note that the differences between the profiles 

computed using the three different grids are negligible. Also plotted in Figure 4-4 (d) are profiles 

of the fluctuation kinetic energy, defined as 
' 2 ' 2 ' 2

1 2 3( ) / 2 u u u , in the mid-span plane. A 

comparison of these profiles is an even more aggressive test of grid dependence because the 

fluctuations inherently contain more information from the smaller spatial and temporal scales in 

the flow. The difference between the three sets of profiles is small, which clearly establishes the 

fidelity and accuracy of the current simulations. 
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Figure 4-4. Comparison of computed profiles in the wake demonstrating the grid independence 

of the computed results for the AR=1.27, St=0.6 and Re=200 case. Five profiles at x/c=1, 2, 3, 4 

and 5 are shown. (a) Streamwise ( 1 u U ) velocity profiles. (b) Transverse ( 2u ) velocity 

profiles. (c) Spanwise ( 3u ) velocity profiles. (d) Fluctuation kinetic energy 
' 2 ' 2 ' 2

1 2 3( ) / 2 u u u  at 

the center of the XY-plane. 

 

    To better evaluate the effects of different grids on the instantaneous vortical structure, we 

also quantified the size of vortex loop by measuring the slides of 3-D wake topology in both near 
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and far wake at t/T=4.25, as shown in Figure 4-5. Specifically, the distances between each pair of 

vortices were measured. These distances represent the diameters of the vortex loops formed in 

the downstream of the plate. Detailed the discussion of the 3-D vortex loop structures can be 

found in FIG. 8.  

 

Figure 4-5. Slides of 2-D contours of streamwise vorticity at t/T=4.25 in the near wake (a) and 

far wake (b), respectively, for measuring the relative changes of vortical structure at different 

spatial and temporal grid. The corresponding section-cutting locations can be found in Figure 4-8 

(c) and (f). 

 

        As shown in Figure 4-5 (a), the  distances between the inner vortex pair and the outer vortex 

pair are denoted as 1d and 2d , respectively, in which the center of each vortex is chosen as the 

point with highest value of streamwise vorticity ( x ). Similarly, in Figure 4-5 (b), the distances 

between another two vortex pairs  shed during the previous half stroke are denoted as 3d and 4d , 

respectively.  Table 4-3 compares these distance quantities for the spatial and temporal grid 
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independence studies conducted for the AR=1.27, St=0.6 and Re=200 case. The table shows that 

the spatial and temporal grid refinement leads to a difference in the near wake vortices distances 

less than 2% and a variation in the far wake vortices distances of approximately 4% at most. This 

clearly indicates that the vortical structures computed using current set up were also grid 

independent. 

 

Table 4-3. Comparison of computed distances of vortex paired in the near wake and far wake 

between different grid resolutions. 

Case 
1d  2d  3d  4d  

Nominal grid 0.438 0.875 0.219 0.981 

Finer spatial grid 0.430 0.867 0.211 0.969 

Finer temporal step 0.433 0.871 0.214 0.977 

 

4.3 Wake Topology and Propulsive Performance 

    In this section, we first present a detailed discussion of the wake topology as well as the 

force production of a circular plate undergoing a pitching-rolling motion. Following this 

discussion, the effect of the Strouhal number, Reynolds number, aspect ratio, and phase 

difference angle on the vortex dynamics and associated propulsive performance are discussed for 

the range of parameters listed in Table 4-1.  
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4.3.1 Baseline Case  

    The wake topology and force production for the flapping circular plate is examined at 

St=0.6 and Re=200 with 90  in this section. Figure 4-6 shows the vortex shedding process 

near the plate trailing edge at nine phases. The corresponding plate kinematics can be found in 

Figure 4-2. The shell and core of the vortex structures are visualized by the Q-criterion [94] with 

two iso-surface values, Q=1 (in grey) and 6 (in color), respectively. The vortex cores are colored 

according to x  to indicate the vorticity convection direction. The senses of the vorticity in each 

section are indicated by arrows according to the right-hand rule.  

    As the plate rolling downward from the middle point to the lowest point (Figure 4-6 (a-c)), a 

“C”-shaped vortex loop is found formed by the root vortex ( 1V ), the tip vortex ( 2V ) and the 

trailing-edge vortex (TEV). Note that the rolling motion creates different shear rates between the 

plate root and tip and affects the development of the vortex loop. The strength asymmetry 

between 1V  and 2V  can be easily observed in Figure 4-6  (c) when the plate reaches to the lowest 

point. When the tip of plate starts rolling upward from the lowest point to the middle point of the 

cycle, the leading-edge of the plate is also pitching up (as shown in Figure 4-6  (d-f)). During this 

period, newly developed vortices, resulting from the trailing-edge shear layer ( 3V ) and the 

leading-edge vortex ( 4V ), come together and form a new inner “C”-shaped vortex loop with an 

opposite sense to the outer loop ( 1V  and 2V ). It is worth noting that the newly formed inner “C”-

shaped vortex loop is a completely different structure from the contrails generated by the 

previous vortex loop.  
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Figure 4-6. The wake topology of a flapping circular plate (AR=1.27) with St=0.6 and Re=200 at 

t/T=3.875, 3.9375, 4.0, 4.125, 4.1875, 4.25, 4.3125, 4.375, and 4.4375, respectively. In (a-c), the 

plate is rolling downward and reaches to the lowest point at t/T=4.0; in (d-f), the plate is rolling 

upward and reaches to the middle point at t/T=4.25; in (g-i), as the plate continuous rolling 

upward, the newly formed double-C shaped ring gradually shed our from the plate. The time 

history of the corresponding rolling and pitching angles are shown in Figure 4-2. The iso-surface 
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contours are colored based on the streamwise vorticity ( x ).  

 

    Note that the “double-C”-shaped vortex structures generated around the plate trailing edge 

are distinct from the observations in previous studies on purely pitching [24,25,102,103], purely 

heaving[21], and pitching-heaving[23,26,27] panels/foils. In those previous studies, only single 

interconnected vortex loops were observed around the trailing edge during each half cycle, and 

the loops exhibited symmetry about the spanwise central plane [21,27]. In the current study, 

however, the rolling motion results in a faster development of the leading-edge vortex ( 3V ). By 

comparing Figure 4-6 (c) and (f), it can be observed that a strong leading-edge vortex is formed 

within only one quarter cycle and is then stretched and tilted along the tip connecting to the 

trailing-edge shear layer ( 4V ). This flow feature distinguishes the current wake structures from 

those in the previous pitching and/or heaving studies.   

        Along with the plate continually moving upward, both “C”-shaped vortex loops started to 

shed outward from the plate trailing edge and connected with each other, as shown in Figure 4-6 

(g-i). As a result, a “double-C”-shaped vortex ring was formed and convected downstream. At 

the same time, a new outer “C”-shaped vortex loop starts to form. During the second half cycle, 

another “double-C”-shaped vortex ring (as shown in Figure 4-6 (a), which was formed a cycle 

earlier) with the opposite sense formed in the same manner. A pair of “double-C”-shaped vortex 

rings were then produced from each flapping cycle and resulted in a bifurcated wake pattern in 

the downstream (Figure 4-7 (a)). The side view (Figure 4-7 (b)) of the bifurcating wake pattern is 

similar to that observed in previous studies on pitching and/or heaving plates [21,25,26]. 

However, according to the top view (Figure 4-7 (c)), two key features differentiate the current 
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wake structures from those of previous studies. First, in previous pitching and/or heaving studies 

[21,25,26], the vorticity generated by the streamwise edges dominates the evolution of the wake. 

The stronger tip vortices induce a compression on the associated spanwise vortices. As the 

vortex rings convect downstream, a spanwise narrowing of the wake can be observed from the 

top view (i.e., Fig. 16 in Ref.[25] and Fig. 9 in Ref.[26]). However, a similar narrowing process 

was not found in the downstream wake of the present work. Instead, the size of the vortex rings 

gradually increased as they convected downstream, as can be observed in Figure 4-7 (c) by 

comparing the size of the shed vortex rings 1R , 3R , 5R , and 7R  in the formation sequence. This 

difference can be explained by the increased spanwise flow caused by the rolling motion. For the 

pitching-rolling plate, the intensification of the leading-edge vortex and the diminishment of the 

root vortex attenuate the compression conditions found in the pitching-heaving plates[26] and 

result in the elongation of the vortex rings. Second, as the vortex rings convect downstream, a 

slight wake deflection in the spanwise direction can be observed from the top view of the wake 

topology (Figure 4-7 (c)). Furthermore, note that there are two sets of vortex ‘contrails’ (see, for 

instance, rings in Figure 4-7 (b)) at its upstream and downstream ends that extend toward its two 

adjacent rings. As the vortices convect downstream, these vortex contrails become weaker and 

gradually annihilate. Simultaneously, the “double-C”-shaped vortex rings gradually evolve into 

single-loop vortex rings (see, for instance, ring 3R  in Figure 4-7).   

    To better understand the structure of the “double-C”-shaped vortex ring and the interaction 

between two adjacent vortex rings, several YZ-plane slices were cut into the wake when the plate 

was at the middle of its upstroke (t/T=4.25), and the streamwise vorticity contours ( x ) are 

plotted in Figure 4-8. Red and blue indicate the counter-clockwise and clockwise rotation 

directions, respectively.  
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Figure 4-7. Wake topology of a pitching-rolling circular plate (AR=1.27) after four flapping 

cycles. The plate is at the phase where it is in the center position of its rolling motion and about 

to move upward (t/T=4.25). (a) Perspective view, (b) side view, and (c) top view. The vortex 

loops are labeled based on their shedding sequence, and the propagation directions of the rings 

are indicated by red arrows in (b). 

 

        In the 2-D contours of Figure 4-8, the contained vortices of the “double-C”-shaped rings 8R  

and 7R  are labeled as 1 4V V  and 5 8V V , respectively. Figure 4-8 (a-d) show the detailed 

structures of the inner and outer “C” loops of 8R , in which Figure 4-8 (a-c) are at the upstream of 

the trailing edge and Figure 4-8 (d) is slightly behind the plate trailing edge. Figure 4-8 (e-h) 

illustrate the vortical structure of the “double-C”-shaped ring 7R , which was shed from the 

previous half cycle with the opposite sense of 8R . Figure 4-8 (e-f) show the interaction between 

7R  and 8R . It can be observed that the outer “C” loop ( 1V  and 2V ) of 8R  is connected with the 
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inner “C” loop ( 7V  and 8V ) of 7R  by a pair of contrails in the upstream. The interaction between 

7R  and 6R  can also be observed in Figure 4-8 (g-h), where another pair of contrails with 

alternating signs is in the downstream between the outer “C” loop of 7R  and the inner “C” loop 

of 6R . The wake pattern begins to repeat in the far wake (Figure 4-8 (i)). Furthermore, as shown 

in Figure 4-8 (j-l), due to the viscous dissipation effect at such a low Reynolds number, the 

“double-C” vortical structures gradually evolved into single-loop rings. 

    Another distinct feature that can be observed in Figure 4-8 is that the strengths of the vortex 

cores for both the inner and outer “C” loops are inequivalent. This is because the rolling motion 

of the plate created a difference in the shear rate between the plate root and tip. As the plate 

rolled either upward or downward, the formed vortex loops were strengthened near the plate tip 

and weakened about the root and thus led to an asymmetric ring shape. As a consequence, the 

downstream wake pattern is found slight defected from the midline in the span towards the plate 

tip, as shown in Figure 4-7 (c).   
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Figure 4-8. Slides of the contours of streamwise vorticity ( x ) at t/T=4.25. (a-d) the vortical 
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structure of 8R , which consists of vortex 1 4V V . (e-f) the vortical structure of 7R , which 

consists of vortex 5 8V V . The vortex interactions occurring between 7R  and 6R  are shown in 

(g-h), and the interactions between 5R  and 6R  are presented in (i). In the far wake, the double-C-

shaped ring gradually evolves into a single-loop vortex (j-l). 

 

    Figure 4-9 shows the temporal variation in the force coefficients over two cycles when the 

forces reached a periodic stage. To provide a better understanding of vortex forming/shedding 

process, the superimposed pitching and rolling motion curves are also included in Figure 4-9. 

The cycle-averaged value of each force component is indicated by the dash-dotted line. In Figure 

4-9 (a), the thrust peaks occurred twice during each cycle at the instant when the plate was near 

the center of its trajectory. A slight drag was produced when the plate started to reverse its 

rolling direction. The maximum and mean thrust coefficients for this case were found to be 3.98 

and 1.46, respectively. Figure 4-9 (b) and (c) show the other two force components produced by 

the plate. Both forces have equivalent positive and negative variations over a cycle. The 

calculated mean lift and spanwise forces are 0.0 and 0.1, respectively. Note that the peak values 

of the lift (
max

5.35LC ) and spanwise force (
max

3.19ZC ) components are in a similar range 

to the maximum peak thrust. This is different from the findings of previous pitching-heaving 

studies [26,27,28], in which the peak thrust is significantly smaller than the peak lift. In addition, 

two peaks of the thrust and lift production can be observed during each half stroke. The first peak 

has a smaller magnitude than the second one. This phenomenon could be related to the double-

loop vortex shedding process close to the plate trailing edge. It is worth noting that the double 

peak in force production observed in the pitching-rolling plates is in line with previous studies on 
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bio-inspired flapping wings/fins, which include experimental measurements of insect 

wings[104,105] and numerical simulations of insect model wings[106,107] and fish pectoral 

fins[108,109].  

 

Figure 4-9. Computed time-varying force coefficients for the circular plate (AR=1.27) at Re=200 

and St=0.6. (a) Thrust coefficient, (b) lift coefficient, and (c) spanwise force coefficient. The 

black dash-dotted lines indicate the corresponding cycle-averaged value. The pitching and rolling 

motion curves of the plate are also superimposed with the force history.  

 

4.3.2 Effects of Strouhal Number  

    In this section, we examined the effect of the Strouhal number on the wake topology and 

propulsive performance of the circular plate (AR=1.27) at Re=200 and 90  . Figure 4-10 

presents both side and top views of the wake topology for St=0.4 and 0.8, respectively. This plot 

can be examined in conjunction with the same plots for the St=0.6 case in Figure 4-7.   
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Figure 4-10. Wake topology for the AR=1.27 circular plate during the phase where the plate is at 

the middle point in its up stroke. The left and right columns show the side view and top view, 

respectively. (a-b) The side view and top view of the case of St=0.4. (c-d) The side view and top 

view of the case for St=0.8. The Reynolds number is 200 for all these cases.  

 

    As shown in Figure 4-10 (a-b), the lower Strouhal number case (St=0.4) shows a decreased 

vorticity strength. In this case, the “double-C”-shaped vortex rings rapidly evolved to single 

vortex rings. In contrast, the higher Strouhal number case (St=0.8) presents a delay process for 

this wake evolution, as shown in Figure 4-10 (c-d). In addition, the concomitant increase in 

vorticity strength led to the enhancement of the mutual induction between two adjacent vortex 

rings. As a consequence, the oblique angle ( ) between two sets of vortex rings increased with 

increasing Strouhal number, which can be observed by comparing Figure 4-10 (a, c) with Figure 
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4-7 (b). This change in oblique angle can affect the efficiency of momentum transport in the 

downstream, implying the existence of an optimal Strouhal number in terms of propulsive 

efficiency. To further quantify the inclination angle of the vortex formation, both the wake 

oblique angle ( ) and the vortex ring orientation angle (  ) with respect to the wake centerline 

were measured in the near wake. As tabulated in Table 4-4, the oblique angle of the bifurcated 

wake increases monotonically with the Strouhal number. On the other hand, the angle of the 

vortex ring orientation initially follows an increasing trend, reaches a maximum value at St=1.0, 

and then decreases abruptly. As the shed vortex ring convecting downstream, the strength of the 

vortex ring is gradually decreasing due to the viscous dissipation effect. As a result, both the 

oblique angle and vortex ring orientation angle are reduced along the downstream direction. This 

phenomenon is especially clear for the high Strouhal number cases, i.e. at St=0.8 (Figure 4-10 (c-

d)).  

    Another salient feature that must be noted here is the wake deflection along the mid-span, 

which can be easily observed in Figure 4-10 (b, d) and Figure 4-7 (c). For lower Strouhal number 

cases (i.e., St=0.4 and 0.6), the wake always deflect towards to the plate tip direction. For the 

higher Strouhal number case (St=0.8), however, the wake initially defects to the tip direction in 

the near wake, and then gradually deflects back in the far wake. A higher self-induced vortex 

ring velocity for the higher Strouhal number cases might be responsible for this wake deflection 

phenomenon. In addition, the viscous effects in the far wake could also play a role for the wake 

evolution. Furthermore, as the vortex rings convecting downstream, the elongation of the vortex 

rings is proportional to the increment of the Strouhal number. 
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Figure 4-11. Variation in cycle-averaged hydrodynamic performance for the baseline case with 

changing Strouhal number. The red and blue curves indicate the mean thrust coefficient and 

propulsive efficiency, respectively.  

 

Table 4-4. Comparison of the wake oblique angle ( ) and vortex ring orientation angle (  ). 

St ( )  ( )  

0.4 16 20 

0.6 21 24 

0.8 27 35 

1.0 30 40 

1.2 31 28 

 

    Figure 4-11 shows the variation in the mean thrust coefficient and efficiency as a function 

of Strouhal number for the baseline case. First, it can be observed from this figure that for all 

cases, the thrust monotonically increases with the Strouhal number ( 0.4 1.2 St ). Such 
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behavior has been well documented for both two-dimensional [8,9] and low-aspect-ratio [25,26] 

pitching and/or heaving foils. In addition, the efficiency exhibits an initial rapid increase and 

then gradually decreases with increasing Strouhal number. The maximum value of the efficiency 

is reached at St=0.6, which is higher than the range usually considered optimal for swimming 

and flying animals [110,111]. This is probably due to the particular choice of parameters, such as 

the maximum pitching angle and Reynolds number, in the current study. The relatively low 

Reynolds number in the current study leads to a proportionately large shear drag that has to be 

overcome for the plate to produce a net thrust. This tends to push the optimal Strouhal numbers 

to higher values. As shown in Ref.[112], even at high Reynolds number, depending on the 

maximum angle of attack, the optimal Strouhal numbers can vary from 0.3 to 0.6 for a rigid 

flapping foil. 

 

4.3.3 Effects of Reynolds Number 

    In this section, two additional simulations, one at Re=100 and the other at 400, have been 

conducted for the baseline case to assess the effect of the Reynolds number on the wake topology 

and instantaneous force generation. Note that the higher Reynolds number case was conducted 

on the finer spatial meshes. 

    Figure 4-12 shows a perspective view of the vortex topology for these cases, and this can be 

compared with the corresponding plot in Figure 4-6 (f). For the lower Reynolds number of 100, 

the formation of the double-loop vortex around the plate trailing edge remained evident, although 

the loops rapidly dissipated after they were shed into the wake. This behavior is consistent with 

the increased viscous effect in this case. The higher Reynolds number case, on the other hand, 
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shows many of the features observed for the case at Re=200 in both the near and the far flow 

field. In particular, the wake was also found to exhibit “double-C”-shaped rings propagating 

downstream. This indicates the basic vortex dynamics of these low-aspect-ratio flapping foils are 

insensitive to changes in the Reynolds number between 100 and 400.  

 

Figure 4-12. Vortex topology of a circular plate (AR=1.27) for different Reynolds numbers. (a) 

Re=100. (b) Re=400. The Strouhal number is 0.6 in both cases. 

 

    Figure 4-13 shows the time-varying force coefficients of the plate flapping at an aspect ratio 

of 1.27 for Reynolds numbers ranging between 100 and 400 with St=0.6. The corresponding 

Re=200 case is re-plotted for comparison. As shown in Figure 4-13 (a), the thrust coefficient 

increases with the Reynolds number. Specially, the peak thrust coefficient for the Re=100 case is 

approximately 3.45, whereas that for the Re=400 case is approximately 4.35, which amounts to 

an increase in magnitude of over 26%. The mean thrust coefficients for the Re=100 and Re=400 

case are 1.17 and 1.65, respectively. For the lift coefficient (Figure 4-13 (b)), the double peaks 
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appear for all Reynolds numbers but with slight differences in magnitude. In Figure 4-13 (c), the 

spanwise force exhibits a smaller negative peak with increasing Reynolds number. The mean 

values of both the lift and spanwise force coefficients are approximately zero. 

 

Figure 4-13. Computed time-varying force coefficients for the circular plate (AR=1.27) at 

various Reynolds numbers. (a) Thrust coefficient, (b) lift coefficient, and (c) spanwise force 

coefficient. The Strouhal number is 0.6 for all of these cases.  

 

4.3.4 Effects of Aspect Ratio 

    In this section, we examined the effect of the plate aspect ratio (AR) on the wake topology 

and instantaneous force production. Figure 4-14 shows the vortical structures for the elliptical 

plate with AR=1.91 and 2.55 at St=0.6, Re=200, and 90  . This plot can be compared with the 

corresponding plot in Figure 4-6 (f). To illustrate the effect of plate aspect-ratio on the inn-loop 

development in Figure 4-14, the 2-D streamwise vorticity contours ( x ) and spanwise vorticity 

contours ( z ) are shown in Figure 4-15 (a-c) and Figure 4-15 (d-f), respectively. It shows that 

the size of the inner-loop in streamwise direction (which consists of 3V  and 4V ) increases along 
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with the increment of plate aspect-ratios (Figure 4-15 (a-c)), however, the spanwise vorticity 

magnitude of the inner loop decreases (Figure 4-15 (d-f)).  

 

Figure 4-14. Vortex topology for an elliptical plate with AR=1.91 (a) and AR=2.55 (b). For each 

case, the Strouhal number and Reynolds number are 0.6 and 200, respectively. 

 

        Figure 4-16 shows the time history of the force coefficients for the case of different aspect 

ratios at Re=200 and St=0.6, and a number of interesting observations can be made. First, as the 

aspect ratio increases, the thrust peak increases and the magnitudes of the other two transverse 

forces decrease. The mean thrust coefficients for the AR=1.91 and AR=2.55 case are 1.62 and 

1.77, respectively. This is a clear indication of what we expect to be a relatively high propulsive 

efficiency for a larger aspect-ratio plate. Second, the magnitude of the first force peak gradually 

decreases with increasing aspect ratio. This can be explained by the vortex formation exhibited 

by higher aspect-ratio plates. The outer “C” loop becomes weaker with increasing aspect ratio, 
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and the inner “C” loop begins to dominate the vortical structure. Thus, the magnitude of the first 

force peak gradually decreases. 

 

Figure 4-15. Comparison of 2-D vorticity contours for AR=1.27 (a, d), AR=1.91 (b, e) and 

AR=2.55 (c, f). Figures (a-c) are the streamwise vorticity ( x ) contours at the location near the 

plate trailing edge and (d-f) are the spanwise vorticity ( z ) contours at the mid-span of the 

plates. The spatial locations of the slice cuts are shown as red planes in (a) and (d), respectively.  
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Figure 4-16. Computed time-varying force coefficients for the plate with various aspect ratios 

(AR). (a) Thrust coefficient, (b) lift coefficient, and (c) spanwise force coefficient. The Strouhal 

number and Reynolds number are fixed at 0.6 and 200, respectively, for all these cases.  

 

4.3.5 Effects of Phase Difference between Pitching and Rolling  

        In previous sections, we discussed the wake topology and force generation of pitching-

rolling plates with phase difference angle ( ) 90 between pitching and rolling motion at 

various Strouhal numbers, Reynolds numbers, and aspect-ratios.  In the current section, we 

examine the effect of the phase difference angle on the vortical structures and hydrodynamic 

performance for an AR=1.27 circular plate at St=0.6 and Re=200.  

    Figure 4-17 shows both side and top views of wake topology for 100  ,110and120 , 

respectively. This plot can be examined in conjunction with the same view for the 90  cases 

in Figure 4-7 and Figure 4-10. Due to the self-induced vortex ring velocity, the wake topology of 

90  cases shown in previous sections (i.e. Figure 4-10 (b, d) and Figure 4-7 (c)) present 

slight wake deflection in the spanwise direction towards the plate tip. However, as the phase 

difference angle ( ) increases from 90  to 120 , the wake gradually deflects from the tip 
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direction to the root direction as illustrated in the right column of Figure 4-17. This wake 

deflection angle ( ) can reach to 7  in 120  case. Here, the positive and negative sign of 

represents the wake deflection towards plate tip and plate root, respectively. Another salient 

feature of the wake topology is the wake oblique angle ( ) incrementing along with the 

increasing of phase difference angle.  The iso-surface of vorticity shows that slight changing on 

the phase difference between pitching and rolling motion can enhance the vorticity strength of 

shed vortex ring and thus led to the increasing of mutual induction between two adjacent vortex 

rings. The obtained wake oblique angles and wake deflection angles with respect to the phase 

difference angles are listed in Table 4-5.   

 

Table 4-5. Effects of phase difference on the wake oblique angle ( ) and wake deflection angle 

( ) at St=0.6 and Re=200. 

  ( )  ( )  

90 21 5 

100 22 -2 

110 25 -5 

120 27 -7 

 

        The enhancement of vorticity strength due to the increment of phase difference is also 

evident on the force generation.  Figure 4-18 shows the instantaneous force coefficients for 

ranging between 100and 120 together with the baseline case ( 90  ). This plot shows that 

the peak values of all three force components are significantly increased when the phase 
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difference angle is varied. It should be noted that the production of large force peaks can be 

extremely useful for performing rapid manoeuvers. Thus, the phase difference angle can be 

treated as a potential control parameter for bio-robotic design. In addition to the instantaneous 

force history, the cycle-averaged performance of different phase angles are evaluated and shown 

in Figure 4-19. The figure shows that a slight change in the phase difference angle can increase 

both the cycle-averaged thrust and efficiency compared to the baseline case ( 90  ). In 

particular, the interpolation of these data indicates that the optimal propulsion efficiency can be 

obtained for a phase difference angle of approximately105  (pitching leads the rolling motion), 

which can lead to the enhancement of the cycle-averaged thrust and efficiency of up to 23% and 

15%, respectively. It is worth noting that current optimal phase difference angle ( around105 ) is 

different from that found in the pitching-heaving foils [113]. The previous numerical 

investigation of pitching-heaving foils found that the foils perform most efficiently when the 

phase shift angle was set up between 70 and 90 . This different phase angle preference is 

because of the unique wake structures produced by pitching-rolling plates comparing to that 

formed by the pitching-heaving plate. As shown in Figure 4-17, the wake deflection angles ( ) 

are affected by the change of the phase difference angle. When the phase difference angle is 

above 90 , the wake convects to the downstream with the minimum deflection. Figure 4-19 also 

shows that the plate reaches to the maximum efficiency between 100  and110 .  
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Figure 4-17. Effects of phase difference between pitching and rolling motions on the wake 

structure for the AR=1.27 circular plate. (a) 100  . (b) 110  . (c) 120  . The left and 

right columns show the side view and top view, respectively. The Strouhal number, Reynolds 

number and aspect-ratio are fixed at 0.6, 200 and 1.27, respectively, for all these cases. 
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Figure 4-18. Computed time-varying force coefficients for the plate with various phase 

difference between pitching and rolling motion ( ). (a) Thrust coefficient, (b) lift coefficient, 

and (c) spanwise force coefficient. The Strouhal number and Reynolds number are fixed at 0.6 

and 200, respectively, for all these cases. 

 

 

Figure 4-19. Variation in the cycle-averaged hydrodynamic performance for the baseline case 

( 90  ) as a function of phase difference between pitching and rolling motion. The red and 

blue curves indicate the mean thrust coefficient and propulsive efficiency, respectively. The 

Reynolds number and Strouhal number for all these cases are set to 200 and 0.6, respectively.  
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4.4 POD Analysis of Wake Topology  

        The wake topology of the baseline case is examined in this section using proper orthogonal 

decomposition (POD). The vortex structures are visualized by the Q-criterion [94], and colored 

by the streamwise vorticity ( x ) for indicating the direction of vortices. Figure 4-20 shows a 

bifurcating wake pattern at two different phase t/T=4.0 and 4.5. At the instant t/T=4.0, the plate 

is at the lowest position and starting to move upward. As the plate moving upward, the new 

formed vortices connect and form vortex loop. A complete vortex ring will form after the leading 

vortex is shed at t/T=4.5. Note that the rolling motion creates different shear rates between plate 

root and tip on the evolution of the vortex loop. This breaks the XY-plane time-invariant 

symmetry topology in pitching-heaving motion as mentioned in Ref. [27]. Only the spatio-

temporal symmetry of the flow exist in the current study, which can be written as: 

(u,v,w)(x, y,z, t) (u, v,w)(x, y,z, t 0.5T)    xzR  (4-5) 

where, xzR is an action representing the spatio-temporal reflection about the XZ-plane, and 0.5T

is the half of a period. 

        Because the vorticity is a pseudo-vector, the signs of the velocity and vorticity components 

are opposite for the reflective symmetry. Meanwhile, the corresponding vorticity symmetry can 

be derived from Eq. (4-6): 

' ( , , )(x, y,z, t) ( , , )(x, y,z, t 0.5T)     xz x y z x y zR        (4-6) 

where, xzR is an action representing the spatio-temporal reflection about the XZ-plane, and 0.5T

is the half of a period.  



94 

 

 

Figure 4-20. Wake topology of circular plate (AR=1.27) with St=0.6 and Re=200 at two 

different phase. (a) The plate is at the lowest point in its rolling motion and starting to move 

upward (t/T=4.0). (b) The plate is at the highest point in its rolling motion and starting to move 

downward (t/T=4.5). To easily identify the vorticity transpose direction along x-axis, the vortex 

ring (Q=0.2) is colored by the streamwise vorticity ( x ). 

 

    To ensure the spatio-temporal symmetry of the wake structure, the flow in the 5th pitching-

rolling cycle is chosen for conducting symmetry and POD analysis in this study. The 

computation of the POD modes performed in the same domain as the original flow.  

    Figure 4-21 shows the mean flow wake by averaging the data ensemble. Its vortex structure 

contains four major tubes and two small tubes. These structures are spatially antisymmetric about 
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the XZ-plane, as indicated by the averaged X-direction vorticity ( x ). This is different from the 

mean flow of pitching-heaving plate, in which the wake are spatial antisymmetric about both 

XY- and XZ-plane.    

 

Figure 4-21. Iso-surfaces of Q-criterion of mean vorticity colored by the X-direction vorticity (

x ). 

 

    Contribution of individual eigenvalues to the total fluctuating kinetic energy with respect 

the mean flow wake can be expressed as normalized eigenvalues in a form of
1


mN

i k

k

  . Captured 

energy by the first i  modes can be represented by
1 1 

 
mNi

k k

k k

  . The values of the first eight 

modes are listed in Table 4-6. Curves of normalized eigenvalues and captured energy with 

respect to the number of POD modes are shown in Figure 4-22. It is worth noting that every two 

eigenvalues form a pair with approximate values for the first several modes. The first two modes 

contain about 38% and 35.9% of the total fluctuating kinetic energy, respectively. The third and 

fourth modes account for lower energy at about 7%. The cumulative energy up to the 8th mode is 

over 95%. This means that the first eight modes capture a majority of large flow features 



96 

 

including the vortices near the flapping wing and the vortices in the far wake zone. This is in 

consistent with previous studies on flapping wings [27,114].  

 

Figure 4-22. Normalized eigenvalues (red circle) and captured energy by the first i  modes (blue 

square) versus mode number 1,2,...,24i . 

 

    The wake topology of POD modes 1 to 8 are shown in Figure 4-23. The first two modes 

contain a chain vortices switch rotational direction between clockwise and counterclockwise 

when viewed from the top. The topology pattern of the mode 2 is one quarter wavelength shit of 

each vortex rings along the vortex chains. The topology structure of the modes 3 and 4 contain 

vortex tubes between the two sets of vortex chains. There is 2 phase difference between the 

modes 3 and 4 as indicated by the color switching of X-direction vorticity. The rest of modes 

pair have the similar topology structures as that of the modes 3 and 4. Here the phase shifting is 
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indicated by the color change of vorticity. It is also shown that the fluctuating kinetic energy 

dissipates rapidly in the downstream for the higher modes. 

 

Table 4-6. Contribution of the first eight eigenvalues to the total fluctuating kinetic energy. 

Mode Contribution (%) Accumulation (%) 

1 38.0 38.0 

2 35.9 73.9 

3 6.7 80.6 

4 6.5 87.1 

5 3.0 90.1 

6 2.8 92.9 

7 1.4 94.3 

8 1.4 95.7 

 

 

        Similar as previous two-dimensional [115,116] three-dimensional [27,114] studies, the 

streamwise velocity of the POD modes 1 and 2 is antisymmetric about the horizontal line/plane. 

By contrast, the modes 3 and 4 are symmetric. The same behavior is also found in the current 

wake topology because of the existence of the spatio-temporal symmetry. The every-two-mode 

pattern is caused by the periodicity of the flow. This symmetry pattern are distinguishable in the 

topology of the POD modes, as listed in Table 4-7. The terms “S” and “A” denote symmetric and 

antisymmetric respect to the XZ-plane, respectively. According to symmetry, the POD modes 

can be categorized into two groups, 1 { : mean,modes3,4,7,8,...19,20,23,24}G x and
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1 { : modes1,2,5,6,...17,18,21,22} G x . This classification holds for the pitching-heaving plate 

cases [27], as well. It is worth to point out that the symmetry property of the POD modes is 

independent of the selection of domain size for computing the POD modes.  

 

Table 4-7. Vorticity symmetry of the mean flow and POD modes. 

 Mean flow Mode 1, 2 Mode 3, 4 Mode 5, 6 Mode 7, 8 

Vorticity 
x  y  

z  x  y  
z  x  y  

z  x  y  
z  x  y  

z  

XZ-plane A S A S A S A S A S A S A S A 

 

 

    The XZ-plane symmetry of the velocity components of the POD modes of 1G and 1G can be 

written as Eq. (4-7) and (4-8), respectively.  

( , , )(x, y,z) ( , , )(x, y,z)        xz x y z x y zr  (4-7) 

( , , )(x, y,z) ( , , )(x, y,z)         xz x y z x y zr  (4-8) 

Where, xzr is the spatial reflection about the XZ-plane, and the velocity components , x y and 

 z are independent on t .  
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Figure 4-23. Iso-surface of Q-criterion of POD modes from 1 to 8. The iso-surface of the modes 

are colored by the X-direction vorticity.  

 

        Thus, the relative vorticity symmetry can be calculated based on Eq. (4-9) and (4-10): 

' ( , , )(x, y,z) ( , , )(x, y,z)    xz x y z x y zr        (4-9) 

' ( , , )(x, y,z) ( , , )(x, y,z)    xz x y z x y zr        (4-10) 
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        The history of the temporal coefficients and the phase portraits respect to 1 are shown in 

Figure 4-24. The pairs 1 2( , )  , 3 4( , )  , 5 6( , )   and 7 8( , )   have a frequency of f , 2 f ,3 f

and 4 f , respectively. For each pair, the phase difference is 2 . The pattern sets 1G and 1G

have different temporal symmetries. By defining  as the symmetry for the temporal coefficient, 

the temporal reflection of 1G and 1G can be written as Eq. (4-11) and (4-12), respectively.  

( ) ( 0.5 )  i it t T    (4-11) 

( ) ( ) ( 0.5 )    i it t T    (4-12) 

 

        Figure 4-25 shows the temporal variation in the force coefficients over two cycles when the 

forces reached a periodic stage and their power spectrum. In Figure 4-25 (a), the thrust peaks 

occurred twice during each cycle at the instant when the plate was near the center of its trajectory. 

A slight drag was produced when the plate started to reverse its rolling direction. The maximum 

and mean thrust coefficients for this case were found to be 3.98 and 1.46, respectively. Figure 

4-25 (b) and (c) show the other two force components produced by the plate. Both forces have 

equivalent positive and negative variations over a cycle. The calculated mean lift and spanwise 

forces are 0.0 and 0.1, respectively. From Figure 4-25(d-f), it is evident that the horizontal force 

components ( TC and ZC ) are attributed to the even harmonics of the POD modes, whereas the 

vortical force component ( LC ) is attributed to the odd harmonic. 
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Figure 4-24. The history of the temporal coefficient and phase portraits of the coefficients 

respect to 1 .   
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Figure 4-25. Thrust, lift, and spanwise force coefficients (a-c) from simulation results and its 

corresponding power spectrum (d-f). 

 

    Figure 4-26 shows comparison between the direct numerical simulation (DNS) results and 

the virtual force production calculated by using POD-FSM. The results have shown that the POD 

modes in 1G  only generate the horizontal force components and 1G only generate vertical force 

component. This is due to the same harmonics between the mode coefficients (Figure 4-24) and 

force coefficients (Figure 4-25). Once we group the POD modes by the odd and even harmonics, 

respectively, the virtual force production will only contribute to either vertical or horizontal 

forces. To illustrate the wake pattern of each group, Figure 4-27 shows the flow reconstructions 
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by adding together the members of 1G and 1G , respectively. The reconstructions of both groups 

are in a form of chained vortex rings but with different vorticity directions.  

 

Figure 4-26. Thrust, lift, and spanwise force coefficients of 1G (a-c) and 1G (d-f) comparing 

with the DNS results (black line).  
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Figure 4-27. Reconstructed flow fields of 1G (a) and 1G (b) at t/T=7.0, Q=0.2. 

 

4.5 Chapter Summaries  

    Simulations of flow past thin pitching-rolling plates have been conducted using an 

immersed boundary solver. Despite the simplified kinematics adopted to represent natural 

flapping propulsors, the current study is expected to provide some general insights into the aero-

/hydro-dynamics of low-aspect-ratio propulsors.  

    The simulations have shown that, in the near wake close to the plate trailing edge, a distinct 

double-loop vortical structure with opposite vortex sense can be observed. As the vortex loops 

shed into the wake, these two loops become connected with each other and form an 

interconnected “double-C”-shaped ring during each half flapping cycle. The periodically shed 

vortex rings eventually formed a bifurcating wake structure with a slight deflection in the 
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spanwise direction to the plate tip. In addition, the contained vortex ring size gradually increases 

as it convects downstream. Persistence of the aforementioned wake formation is shown for a 

range of Strouhal numbers ( 0.4 1.2), Reynolds numbers (100 400 ), and plate aspect ratios (

1.27 2.55 ). Further analysis has shown that the formation and shedding process of this unique 

vortical structure resulted in double peaks in the force history. In addition, the cycle-averaged 

thrust was also found to increase monotonically with the Strouhal number, and the maximum 

propulsive efficiency can be achieved at a Strouhal number of approximately 0.6. Changing both 

the Reynolds number and plate aspect ratio affected the peak values of the force production but 

had little influence on the mean force magnitude. Our further investigation on the effects of 

phase difference angle between pitching and rolling motion indicated that the propulsive 

performance can be further improved if an appropriate phase difference angle is selected. 

    By conducting a POD analysis of the wake topology produced by a low-aspect-ratio 

pitching-rolling plate, we found that the first eight modes contain more than 95% fluctuating 

kinetic energy of the flow. All the POD modes show the spatio-temporal patterns about the 

central horizontal plane, however, the time-invariant symmetry topology observed in pitching-

heaving motion [27] breaks down. Our results also indicated that the temporal coefficient of 

POD modes consist of odd and even harmonics, respectively, and repeat every two POD modes. 

By using a POD-FSM, it is found that the group of odd harmonic POD modes are only contribute 

to the vertical force generation, whereas the even harmonic POD modes are only contribute to 

the horizontal forces generation. This observation imply that the inherent connection between the 

POD modes and virtual force generations is independent of the time-invariant spatial symmetry 

property.  
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5 Aerodynamic Effects of Morphing Wings in Dragonfly Forward 

Flight 

    Although some encouraging progress have been made in advance our knowledge on 

flapping morphing wings [90,117,118], most of the previous studies are more focused on the 

aerodynamic performance rather than the vortical structures. So far, there is still a lack of 

qualitative and quantitative descriptions on the vortex formation of deformable wings, which can 

lead to improved models for the design of biomimetic propulsors, and also provide a better 

understand of vorticity transport mechanisms of morphing wings in nature. The present effort is 

meant to fill some of the knowledge gaps in this regard. The high-speed photogrammetry system, 

3-D surface reconstruction technology and numerical simulations are used to reveal the effects of 

morphing wings of a forward flight dragonfly. Specifically, the flapping morphing wing 

kinematics of a free-flight dragonfly are measured and quantified first. We then use the 

reconstructed model to explore the effects of morphing wings, first by removing camber while 

keeping the same time-varying twist distribution, and second by removing both the camber and 

the spanwise twist. Numerical simulations are carried out using an in-house immersed-boundary-

method-based direct numerical simulation solver. To get a better understand of the aerodynamic 

roles of morphing wings, the leading-edge vortex, the wing surface pressure distribution, and 

wake structures were analyzed and compared in detail for the model wings. Due to the similarity 

of morphing wings effects on the aerodynamics for both forewings and hindwings, only 

hindwings’ results are presented in the current Chapter.  
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5.1 Data Acquisitions 

        Dragonflies (Erythemis Simplicicollis) are selected for this study. The flight and wing 

kinematics of dragonflies were quantified using a high-speed photogrammetry setup composed 

of three synchronized Photron Fastcam SA3 60K high-speed cameras paired with Nikon Nikkor 

50mmf/1.4D AF lenses. The cameras were calibrated for 3-D reconstruction using the direct 

linear transformation (DLT) method [119]. Given the wing flapping frequency of approximately 

20-40 Hz, the cameras were operated at 1000Hz record rate with a shutter speed of 2 us and 

10241024 pixel resolution.  

    We collected approximately 90 separated recording of dragonflies’ free flying using the 

images from the calibrated high-speed video apparatus. These videos were then examined 

carefully, and one particular recording was selected for that the dragonfly was performing 

forward flight in a almost constant forward speed and for which the image acquisition from all 

three cameras was of high quality. Taking advantage of marker points we put on the wings 

before the video shooting and other easily identifiable natural markings, we reconstructed the 3-

D deforming wing kinematics at 108 instants during three flapping cycles by measuring the 3-D 

location of 16 total points on each wing surface from this recording. A 3-D model of each wing 

is then iteratively mapped onto the marker data, thereby providing a smooth parametric surface 

representation of the wing in its deformable shape. After that, the wing surfaces were smoothed 

via linear interpolation by holding the coordinates of the measured points. Once the smoothed 

mesh was obtained for complete flapping cycle, we used Furious interpolation by taking the first 

20 terms to interpolate the surface mesh in time to produce a high temporal frequency (1000 

time-steps per flapping cycle) input for our CFD solver. The measurement of dragonfly 
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morphology is shown in Table 5-1. Further details regarding the current reconstruction method 

as well as the evaluation of reconstruction accuracy can be found in Ref.[87].  

 

Table 5-1. Morphological data for the dragonfly in the current study. 

Variable Value 

body mass (mg) 2560.5 

body length (mm) 40.70.05 

flapping frequency (Hz) 28 1 

fore-/hind-wing span length (mm) 33.1/32.90.05 

fore-/hind-wing mean chord length (mm) 7.5/8.60.05 

fore-/hind-wing area ( 2mm ) 213.9/257.00.05 

fore-/hind-wing aspect-ratio 5.1/4.2 0.02 

wing load ( 2/N m ) 5.330.02 

 

 

5.2 Computational Setup 

    As shown in Figure 5-1, the simulations have been carried out on a non-uniform Cartesian 

grid of size 231 175 201   (about 8.1 million). The overall computation domain has a size of 

30 30 30 c c c in terms of the averaged wing chord length, and a cuboidal area around the 

dragonfly of size 5.0 3.2 4.0 c c c has a high-resolution uniform grid ( 0.019 ) which is 

designed to resolve the near-wake vortex structures. The stretching grids are applied in all three 

directions from the fine region to the outside boundaries. At the left-hand boundary, we provide 

a constant inflow velocity boundary condition. The right-hand boundary is the outflow boundary, 



110 

 

which is provided with a zero streamwise gradient boundary condition for the velocity, allowing 

the vortices to convect out of this boundary without significant reflections. The zero-stress 

boundary condition is provided at all lateral boundaries. A homogeneous Neumann boundary 

condition is used for the pressure at all boundaries. The time step in this study is 0.001 to ensure 

stable solutions obtained throughout the simulation.  

    Grid independence is assessed by simulating the same case on two other grids: one with 50% 

more and the other with 50% fewer grid points than the baseline grid. Both of these simulations 

produce a maximum 1% difference from the baseline in vertical force. The corresponding 

differences for the root-mean-square value of horizontal force are 1.3% and 0.88% respectively. 

These results indicate a high level of accuracy in the aerodynamic forces computed on the 

baseline grid, as well as the flow features that produce these forces.  

    The Reynolds number is defined by Re U c  , where the kinematic viscosity  is around 

5 2 11.56 10  m s for air at room temperature ( 27C ) and c is the mean chord length (7.5mm) of 

the forewing. The forward velocity ( U ) was measured as 12.07 m s . Based on the measured 

data in this study, the Reynolds number is about 995. The reduced frequency is defined as

/ k fl U , where f (28.6Hz) is the flapping frequency, and l (32.1mm) is the length of the 

forewing from the wing root to the wing tip. Based on the measured data in this study, the 

reduced frequency is 0.44. The advance ratio, defined as / (2 ) J U fl , is 0.78, where is the 

stroke amplitude of the forewing, with the value about83 . The above parameters are all within 

the range of previous records for free-flight dragonflies [120,121].  

    For evaluating the aerodynamic performance, the instantaneous aerodynamic forces acting 

on the wing surface can be calculated from the pressure and stresses along its surface based on 
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the solutions to the N-S equations [26,122]. The instantaneous aerodynamic power is the power 

needed to overcome air resistance and is defined as the surface integration of the inner product 

between the pressure and the velocity in each discretized element. 

   caerop pn u ds  (5-1) 

Where, n and ds  are the unit normal direction and the area of each surface element, respectively.  

 

 

Figure 5-1. Flexible wing kinematics and computational setup. (a) Chord-lines of dragonfly 

forewing (dashed line) and hindwing (solid line) at a few instances. (b) Grid and domain 

employed for the cruising dragonfly simulations.  

 

5.3 Wing Kinematics and Surface Deformation 

        To describe the motion of the wing about the body, we determine the stroke plane and wing 

kinematics in the same way as that of Ref.[99]. The stroke plane is determined by taking the 

averaged wing tip trajectory in the body frame, and its position about the body does not vary 

with time. The stroke plan angle is 73 for the forewings and 77  for the hindwings with respect 
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to the horizontal plane. We then quantify wing kinematics based on the stroke plane by using 

three Euler angles: wing stroke ( ) , wing deviation ( ) , and wing pitch ( ) . The definitions of 

wing kinematics parameters are shown in Figure 5-2, which describe the orientation of the wings 

relative to the wing root. Due to the wing flexibility, the wing pitching angle ( ) and the 

chordwise camber (h/ c) are different along the wing span at each instant. For these two 

parameters, four sections at r/ R  0.3, 0.5, 0.7 and 0.9 are measured, respectively.  

    The wing kinematics were obtained from the phase average of the reconstruction of the 

three stroke cycles. Using the right hindwing as an example, Figure 5-3 (a) shows the time 

course of wing stroke ( )  and wing deviation ( )  angles of the hindwing. The wing stroke angle 

approaches to 76at the end of the downstroke. The deviation angle varies around zero with an 

amplitude of 7 . The wing pitch angles ( ) at different chord sections are shown in Figure 5-3 

(b). The variation of the wing pitch angle showed that the hindwing twisted dramatically during 

the translational phase in downstroke ( 0.1 t/ T 0.4  ) and in upstroke ( 0.7 t/ T 0.9  ), 

respectively. In the translational phase, the wing pitch varied largely towards the wing tip. For 

instance, it changed from 58  to 123  and from 46  to 147  at r/ R  0.3 and 0.9, respectively. 

In addition, the camber deformation was evident at each section and shown in Figure 5-3 (c). The 

maximum positive camber happened at the mid-chord with the magnitude around 12% during 

the downstroke, while the negative camber was -7% during the upstroke. It is worth noticing that 

the maximum camber does not happen in the middle of the downstroke but formed when the 

wing is about to reversal.  
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Figure 5-2. Definition of wing orientation angles, wing stroke angle ( ) , wing deviation angle

( ) , wing pitch angle ( ) , and camber deformation (h/ c) . r is the distance from wing root to 

reference point, meanwhile R  is the length from wing root to wing tip.  

 

        To investigate the effects of morphing wings, we created two progressively simplified sets 

of wing kinematics based on the original reconstructed model. In the first simplified model, 

termed “twist-only”, we removed the camber of the wings while retaining the same local 

instantaneous twist along the wing span. This is achieved by replacing the cambered chord with a 

straight line connecting the leading and trailing edge. In this simplified model, the chord lengths 

along the span maintain the same. In the second simplified model, termed “rigid”, we further 

removed the spanwise twist, by replacing the wing with a flat plate of the same instantaneous 

projected area and same instantaneous wing pitch angle at the mid-wing position.  
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Figure 5-3. Time course of wing kinematics of dragonfly hindwing. (a) Wing stroke angle ( )  

and wing deviation angle ( ) . (b) and (c) are the wing pitch angles ( ) and camber deromation 

(h/ c)of different sections along the wing span, respectively. The downstroke period is shaded as 

a gray color.  

 

5.4 Aerodynamic Performance 

    Using the above-reconstructed wing kinematics, the aerodynamic forces and power required 

for the flapping motion of three hindwing models were computed using the CFD solver, as 

shown in Figure 5-4. The stroke plane angle of hindwings were 77with respect to the horizontal 

plane, which indicates that the hindwings flapped with nearly a vertical stroke. Therefore, the 

positive vertical force was typically created during the downstroke, and slight negative force was 

formed during the upstroke. The magnitude of the instantaneous vertical of the twist-only wing 

was smaller than that of the rigid wing, as clearly shown in the middle position of the stroke 

when the twist angle of the hindwing was largest. The instantaneous vertical force of the original 

wing with camber variation was similar to that of the twist–only wing during the downstroke. 

Due to the cruising motion, the force component in the horizontal direction is close to zero, and 
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only slight thrust was produced for compensating the body fraction drag during the upstroke. The 

aerodynamic power consumption in the plot shows that the rigid wing requires more energy for 

flapping in comparison with the other models. The cycle-averaged values of these parameters are 

summarized in Table 5-2. From the table, the advantage of wing twist and camber variation was 

clear in terms of power economy, which is defined as the ratio of the total force to the required 

power consumption. The results indicate that the power economies for twist-only and rigid wing 

models are 0.61 and 0.51 1N W , respectively. These values are 3% and 19% lower compared 

with that of the original wing (0.63 1N W ).  

 

Figure 5-4. Time course of lift (a), thrust (b) and power (c) of the hindwing.  

 

Table 5-2. Comparison of mean lift (L), thrust (T), total force (F), power (P), L/P and F/P of the 

hindwing during one flapping cycle. 

Model L (mN) T (mN) F (mN) P (mW) L/P (N/W) F/P (N/W) 

original 0.71  0.01 1.31 2.07 0.34 0.63 

twist-only 0.66 (-7%) -0.03 1.23 (-6%) 2.02 (-2%) 0.33 (-3%) 0.61 (-3%) 

rigid 0.67 (-6%) -0.01 1.25 (-5%) 2.45 (+18%) 0.27 (-21%) 0.51 (-19%) 
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5.5 Vortex Formation 

    To gain in-depth insight into the performance of all wing models, the vortex formations for 

three wing model are shown in Figure 5-5 at the mid-downstroke, at which the wings experience 

the maximum lift. The leading-edge vortex (LEV) and trailing-edge vortex (TEV) structures at 

four slides cut at 30%, 50%, 70%, and 90% along the spanwise direction from the wing root to 

the wing tip. The secondary vortex (SV) induced by the interaction between the LEV and wing 

surface is also evident at each slide cut. 

 

Figure 5-5. Comparison of vortex formation along the wing span at the mid-downstroke 

(t/T=0.31). (a) Original wing. (b) Twist-only wing (c) Rigid wing. The vortical structure 

including leading-edge vortex (LEV), trailing-edge vortex (TEV), and secondary vortex (SV) are 

labeled.  

 

    In the comparison of the vortex formation, LEV of the rigid wing was larger than that of the 

other two model. The LEV of the twist-only wing was similar to the original wing. This 
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observation can be further quantified by calculating the LEV circulation along the span. As 

shown in Figure 5-6, the circulation of the rigid wing sharply increased from the root to the 70% 

wing span, and then slightly decreased in the section close to the wing tip. On the contrary, the 

circulation of the twist-only and original wing models gradually increased from the wing root, 

and reach to its maximum value at the 70% wing span. Then, the circulation sharply decreased 

from the 70% wing span to the wing tip.  

 

Figure 5-6. Comparison of LEV circulation along the wing span at the mid-downstroke 

(t/T=0.31). The vortex circulation is nondimensionalized by U c . 

 

    Another salient feature that must be noted here is the strength of the secondary vortex 

variation for different wing models. When the camber and twist deformations were progressively 

removed, the strength of the secondary vortex was gradually increased and resulted in the 

detachment of the LEV (Figure 5-5). This phenomenon is in line with the previous observation 

for a plunging airfoil [123]. As pointed out by Panah et al.[123], the production and entrainment 

of secondary vorticity is an important mechanism regulating LEV strength because it can provide 

a dominant sink of LEV circulation. In our cases, the rigid wing model produce a larger sink 

(secondary vortex) due to the interaction between the wing surface and LEV, and thus form a 
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relative stronger LEV compared to the other cases. As a trade-off, the secondary vortex makes 

the LEV roll-up and detach from the wing surface, and thus reduced the power economy of the 

rigid wing.  

 

Figure 5-7. Comparison of 3-D vortical structure and wing surface aerodynamic power 

consumption contour of the hindwing at the mid-down stroke (t/T=0.31). (a) Original wing 

model. (b) Twist-only wing model. (c) Rigid wing model. 

 

        Figure 5-7 shows the iso-surface of the Q-criterion [94] and aerodynamic power 

consumption distribution on the hindwing at the mid-downstroke. At this instant, the downward 

translational velocity of the hindwing reached its maximum value and the LEV occurred on the 

top surface of the wing, and the LEV near the wing tip was inflected to form the tip vortex (TV). 

Comparing to the original and twist-only wing model, the rigid wing created a much stronger 
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TV. In a comparison of the power consumption contours, the rigid wing model need to consume 

more aerodynamic power on the wing tip region. This finding can be used to explain our 

previous observation that the morphing wing can improve the power economy.  

 

Figure 5-8. Comparison of top surface pressure contours (top row) and the corresponding 2-D 

flow fields at the 70% wing span (bottom row) when the hindwing experienced the maximum 

camber formation (t/T=0.42). (a) Original wing model. (b) Twist-only wing model. (c) Rigid 

wing model.  

 

        To illustrate the camber effects, the surface pressure contours and 2-D flow fields at the 

70% wing span are shown in Figure 5-8, when the hindwing experienced the maximum camber 
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formation. For the original wing model, the low-pressure area is along the leading-edge from the 

wing base to the wing root, and shows no evidence of the leading-edge separation. Due to the 

locally varying camber, the leading edge is well aligned with the oncoming flow at all the times 

(Figure 5-8 (a)). In contrast, the rigid wing model present a low-pressure area at the mid-chord 

section (Figure 5-8 (c)). It implies massive separation on the hindwing. The twist-only wing also 

shows evidence of separation (Figure 5-8 (b)), but with the low-pressure region extend from the 

wing root to the wing tip. The 2-D flow fields plotted in the bottom row of Figure 5-8 confirm 

that the LEV detachment in the two simplified models. Flow reversal is clearly visible over the 

hindwing for both the twist-only (Figure 5-8 (b)) and rigid (Figure 5-8 (c)) wing models. 

 

5.6 Chapter Summaries  

        In this study, a high-speed photogrammetry system, 3-D surface reconstruction technology 

and numerical simulations are used to reveal the effects of morphing wings of a cruising 

dragonfly. Specifically, the flapping morphing wing kinematics of a free-flight dragonfly are 

measured and quantified first. We then used the reconstructed model to explore the effects of 

morphing wings, first by removing camber while keeping the same time-varying twist 

distribution, and second by removing both the camber and the spanwise twist. Our simulation 

results revealed that the surface deformation can improve the aerodynamic functions in two ways: 

1) improving the power economy by preventing the tip vortex bursting; and 2) improving the 

leading-edge vortex attachment by suppressing the generation of the secondary vortex. As a 

result, the spanwise twist can boost the aerodynamic efficiency up to 20%, especially during the 

wing translational phase. 
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6 Aerodynamic Functions of Tandem Flapping Wings in Dragonfly 

Turning Maneuver  

        Clever maneuvers can be commonly observed in insect flight for capturing food and/or 

avoiding predators. Unlike most other insects such as flies, wasps and cicadas either reduced 

their hind-wings or mechanically coupled fore and hind wings, dragonflies have maintained two 

independent-controlled pairs of wings throughout their evolution [50]. Their neuromuscular 

system allows them to actively change many aspects of wing motion in a single wing, such as the 

angle of attack, stroke amplitude, and stroke plane. Most previous studies of are focused on the 

aerodynamics of dragonfly-like tandem wings in steady flight motion. Although the unsteady 

free flights of dragonflies have also been studies [121,124,125], their works were limited on 

reporting the wing kinematics and associated flight dynamics. The present effort is meant to fill 

some of the knowledge gaps in this regard. Specially, a high-speed photogrammetry system and 

3-D surface reconstruction technology [87] are used to reveal dragonfly wing kinematics during 

a turning maneuver flight. The aerodynamic performance is then studied using an in-house 

immersed-boundary-method-based computational fluid dynamics (CFD) solver. This work aims 

to investigate the aerodynamic characteristics of forewings and hindwings and its associated 

forewing-hindwing interaction effects in a turning maneuvering motion.  

 

6.1 Data Acquisitions 

        Dragonflies (Erythemis Simplicicollis) are selected for this study. We collected 

approximately 110 separated recording of dragonflies’ free flying using the images from the 

calibrated high-speed video apparatus. These videos were then examined carefully and one 
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particular recording was selected for that the dragonfly was performing turning maneuver with 

largest heading rotational angle with three wing beats and for which the image acquisition from 

all three cameras was of high quality. The morphology of the dragonfly wings is measured when 

they spread out as in mid-downstroke, using techniques similar to the measurement of 

hummingbirds. The obtained morphological data are listed in Table 6-1.  

 

Table 6-1. Morphological data for the dragonfly in the current study. 

Variable Value 

Body mass (g) 0.1150.005 

Body length (mm) 34.5280.135 

Forewing/hindwing length (mm) 32.3990.113/31.1980.125 

Forewing/hindwing chord at mid-wing (mm) 8.5490.185/9.7760.160 

Flapping frequency (Hz) 27 0.5 

 

 

    The dragonfly free flight is reconstructed using a template-based hierarchical subdivision 

surface method. The details about this method and its accuracy can be found in Ref.[87,99]. Only 

brief descriptions are provided here. Taking advantage of marker points we put on the wings 

before the video shooting and other easily identifiable natural markings, we reconstructed the 3-

D deforming wing kinematics at 110 instants during three flapping cycles by measuring the 3-D 

location of 16 total points on each wing surface from this recording. A 3-D model of each wing 

is then iteratively mapped onto the marker data, thereby providing a smooth parametric surface 

representation of the wing in its deformable shape. After that, the wing surfaces were smoothed 
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via linear interpolation by holding the coordinates of the measured points. Once the smoothed 

mesh was obtained, we used Furious interpolation by taking the first 20 terms to interpolate the 

surface mesh in time to produce a high temporal frequency (1000 time-steps per flapping cycle) 

input for our CFD solver. Figure 6-1 visualizes the reconstructed motion of dragonfly during 

turning maneuver at selected instants.  

 

Figure 6-1. Motion reconstruction of dragonfly taking-off maneuver. The side panels show 4 of 

110 frames recorded by high-speed videography.  

 

6.2 Computational Setup 

    In the current study, the simulation has been carried out on a non-uniform 233 225 177 

point Cartesian grid. The overall computation domain has a size of 30 30 30 c c c in terms of 

the averaged wing chord length and a cuboidal area around the dragonfly of size 

7.0 6.8 5.2 c c c has a high-resolution uniform grid ( 0.031 ) which is designed to resolve the 

near-wake vortex structures, as shown in Figure 6-2. The stretching grids are applied in all three 
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directions from the fine region to the outside boundaries. The time step in this study is 0.001 to 

ensure stable solutions obtained throughout the simulation. The outside boundary conditions of 

both velocity and pressure are homogeneous Neumann conditions.  

 

Figure 6-2. (a) Grid and domain employed for the dragonfly maneuver simulations. (b) High-

density surface mesh with about 3000 triangular elements used to define each wing.  

 

        Grid independence is assessed by simulating the same case on two other grids: one with 50% 

more and the other with 50% fewer grid points than the baseline grid. Both of these simulations 

produce a maximum 1% difference from the baseline in vertical force. The corresponding 

differences for the root-mean-square value of horizontal force are 1.79% and 2.17% respectively. 

These results indicate a high level of accuracy in the aerodynamic forces computed on the 

baseline grid, as well as the flow features that produce these forces. 
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    The Reynolds number is defined by Re  refU c  , where the kinematic viscosity  is around 

5 2 11.56 10  m s for air at room temperature ( 27C ) and c is the mean chord length (7.7mm) of 

the forewings. The averaged tip velocity (
refU ) of forewings was measured as 2.23 1m s . Based 

on the measured data in this study, the Reynolds number is about 1100. The above parameters 

are all within the range of previous records for free-flight dragonflies [120,121].  

 

6.3 Body and Wing Kinematics 

    Two Cartesian coordinate systems are introduced to described the body kinematics, a global 

frame ( , ,x y z ) and a body frame ( , ,b b bx y z ). The plane consisting of x and y axes is a horizontal 

plane, and the z-axis is parallel to the gravity force. The body frame is fixed to the body of the 

insect, and the origin of the body frame is located at the center of mass of the dragonfly. Body 

location is directly obtained from the mass center trajectory in the global frame. The time 

derivatives of the vertical and horizontal components (translational velocity) can be easily 

calculated. Through the rotation matrix from the global frame to the body frame, the orientation 

of the insect’s body is given by three Euler angles: pitch ( b ),  roll ( b ),  and yaw ( b ), as 

shown in Figure 6-3 (a). For more details of the body flight dynamics convention, the readers are 

referred to dynamics texts written by Etkin et al. [126]. The time course of body kinematics 

parameters are shown in Figure 6-4(a) and visualized in Figure 6-1.  

    To describe the motion of the wing kinematics, we select the body-fixed b bx y plane as the 

reference plane to measure the wing orientation as shown in Figure 6-4(b). We then quantify 

wing kinematics based on the b bx y plane by plotting the time course of three Euler angles: 
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wing stroke ( ) , wing deviation ( ) , and wing pitch ( ) in Figure 6-4(b), which describe the 

orientation of the wings relative to the wing root.  

 

Figure 6-3. Dragonfly body and wing coordinate systems. (a) The body frame ( , ,b b bx y z ) has its 

origin at the center of mass. (b) Defination of wing kinematics parametters.  

 

    During the flight, the computed body Euler angles show that the body yaw angle magnitude 

reaches a maximum of 130  while the magnitude of pitch and roll angles reach a value close to 

40and 25 , respectively. The negative yaw angle indicates that it is a left-side turn. As the 

dragonfly’s body lift up, the body is gradually pitching down, and associated with rolling in one 

direction and then rolling back. It is typical a banked turn as defined in previous studies 

[124,127]. Another distinct feature we observed from our recorded videos is that dragonflies 

always bend their tail towards to the body turning direction. Based on our rough estimation, this 

will advance the yawing torque generation by change the instantaneous body moment of inertial. 

The current body orientation angles are calculated based on the vector from the center of mass to 

the head without considering the tail bending.  
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    During the maneuver motion, the path velocity in the horizontal direction is around 0.3 

1(m s ) when the curve slope closes to zero. In the vertical direction, the path velocity shows an 

almost linear changing tendency, and the curve slope is approximate 2.1 2(m s ) . These values 

are in a reasonable range comparing with a previous study on dragonfly flight [120].  

    For performing this 130 turn and maintaining sufficient vertical acceleration, asymmetrical 

wing motions are generated between its left and right side. As shown in Figure 6-4(b), there exist 

significant asymmetries for both forewings and hindwings between the left and right side. The 

hindwing leads the forewing by about 55 in the temporal phase, based on the primary Fourier 

components. Specifically, the wing stroke angle curve of left-side wings shift upward about 

11 23  comparing to the right-side wings, which leads to the inner (left-side) wings have 

relative large wing stroke angle during the maneuver. The amplitude of wing stroke angle for 

forewings and hindwings are around 65 and 80 , respectively. Here the wing stroke angle 

asymmetry observation is similar to those reported in free turning flight [124,125] although the 

definition of the wing stroke angle is slight different. The wing deviation angle, on the contrary, 

did not appear significant difference between the left and right side wings and the amplitude of 

both forewings and hindwings are about 43 . The wing pitch angles are measured at each 70% 

spanwise distance from the wing root. Both forewings and hindwings clearly show asymmetrical 

pattern between the left and right side. The right-side wings apparently have larger pitch 

amplitude than the left-side. The magnitude of the former reaches up to140 , whereas the latter 

is about95 . Such asymmetrical wing pitch angle will result in a rather large geometrical angle 

of attack of the inner (left-side) wings during the downstroke and a small one in the upstroke. In 
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which the geometrical angle of attack is the same as wing pitch ( )  in downstroke and equal 

(180 )  in upstroke.   

 

Figure 6-4. Time course of body and wing kinematics of a maneuvering dragonfly. (a) 

Dragonfly body orientation and path velocity. (b) Wing stroke, deviation, and pitch angles.  

 

        Figure 6-5 shows the absolute value of wing tip velocity for both forewings and hindwings. 

The downstroke of each cycle is shaded by gray color. During the maneuver, the outer wings flap 
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faster during each downstroke while the inner wings faster during each upstroke. In addition, the 

outer (right-side) wings always reverse its flapping direction slight slower during supinating 

rotation and faster during pronating comparing to the inner (left-side) wings. Combing Figure 

6-5 and the wing pitch angle shown in Figure 6-4(b), the inner wings sweep with higher wing 

pitch angle and experience lower tip velocity during the downstroke. On the other hand, the outer 

wings flap slower with higher wing pitch during the upstroke. This is analogous to the 

observation in the study of fruit flies undergoing sideways maneuvers [128]. However, the 

current study showed that the timing difference appeared in the wing stroke angle rather than 

wing pitch angle. In addition, the wing stroke angle timing lagging is associated with the 

asymmetry of wing pitch amplitude.  

 

Figure 6-5. Time course of the absolute value of wing tip velocity for forewings (a) and 

hindwings (b). The downstroke of each cycle is shaded.  

 

6.4 Aerodynamic Performance 

    Using the above reconstructed wing kinematics, the unsteady flow over a maneuvering 

dragonfly was computed using the CFD solver. The instantaneous aerodynamic forces are 

obtained through the surface integration of the pressure and shear stress over the wings. These 
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forces were resolved in the vertical direction to yield the lift force and the resultant of the force 

in the horizontal plane along the dragonfly heading direction to yield the forward horizontal 

force.   

 

Figure 6-6. Time course of aerodynamic forces of forewings (a, c) and hindwings (b, d), 

respectively. The downstroke of each cycle is shaded.  

 

    The instantaneous vertical forces generated by forewings and hindwings are shown in 

Figure 6-6 (a) and (b), respectively. It can be easily seen that the vertical force always has a 

positive value for both upstrokes and downstrokes. The mean vertical force generated by two-

pair wings is calculated to be 31.36 10 N. The forewings contribute about 54% of the total lift, 

whereas the hindwings accounted for 46%. Considering the weight of the dragonfly was 
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31.13 10 N, the calculated vertical force from our simulation can generate averaged acceleration 

in the vertical direction about 2.03 2(m s ) . This agrees well with our experimental measurement 

with 96.7% accuracy. The integration of the total instantaneous vertical force in Figure 6-6(a-b) 

showed that for inner wings (left forewing and left hindwing), lift generated during the 

downstroke and upstroke are 52% and 48%, respectively. For outer wings (right forewing and 

right hindwing), however, 78% of total lift was generated during the downstroke, whereas the 

remaining 22% was generated in the upstroke. In general, the outer wings generated higher lift 

during the downstroke, whereas the inner wings generated higher lift during the upstroke. This 

asymmetry vertical force indicates that there are significant unbalance forces to make the 

dragonfly easy to rolling its body back and forth. This observation is consistent with the body 

kinematics measurement in the above section.  

    To manipulate a turn within three wingbeats, the dragonfly also needs to generate 

sufficiently unbalanced force on the horizontal plane. Figure 6-6(c-d) are the force experienced 

by the dragonfly along its heading direction, with negative and positive values indicating drag 

and thrust, respectively. It showed that the dragonfly experience drag in the downstroke and 

produced thrust in the upstroke. For the forewings, the drag and thrust force magnitudes are 

about 31.53 10 N and 30.98 10 N, respectively, resulting in a ratio of 1.56. By contrast, the 

drag and thrust force magnitudes of hindwings are comparable, in which they are 31.03 10 N 

and 30.97 10 N, respectively. It is also worth noting that the drag peaks of inner wings appear 

earlier than the outer wings, especially for the forewings. This timing difference between drag 

force generated by the left and right wings can be related to the wing pitch angle change during 

reversal. 
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    The torques experienced by the dragonfly during the maneuver is computed about the body 

mass center. The time courses of the aerodynamic torques of the wings are plotted in Figure 6-7 

for roll, pitch and yaw torques individually. To get a better understand of the torques generated 

during the turn, Figure 6-8 shows the mean value of torques for each half cycle.   

 

Figure 6-7. Time course of aerodynamic torques of forewings (a, c, e) and hindwings (b, d, f), 

respectively.  
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    In Figure 6-7 (a-b), the roll torques generated by left- and rigid- side wings showed opposite 

signs during each entire stroke and canceled with each other. The roll torque peaks of the outer 

(right-side) wings, in general, higher than the inner (left-side) wings during the downstroke, and 

lower than the inner wings during the upstroke. This leads to the half-cycle-averaged resultant 

roll torques (Figure 6-8) present negative and positive values during the downstroke and 

upstroke, respectively. The comparable roll torque magnitudes of two-pair wings indicate that 

both forewings and hindwings contribute to the roll torque generation. Unlike roll torque, the 

pith torque generation is dominated by forewings. As shown in Figure 6-7 (c-d), the pith torque 

generation of forewings is approximately one order of magnitude larger than that of hindwings. 

For the yaw torque generation, the left- and right-side wings also produce torques in the opposite 

direction and alter signs for each half-stroke (Figure 6-7 (e-f)). The resultant yaw torques 

averaged by each half cycle (Figure 6-8) show that the majority of yaw torque is also produced 

by the forewings other than hindwings.   

 

Figure 6-8. Mean values of torques varying with each half cycle of forewings (a) and hindwings 

(b), respectively. 
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        Based on computed instantaneous aerodynamic forces and wing velocities, the aerodynamic 

power consumption of two-pair wings is calculated and normalized by the flight muscle mass. 

Figure 6-9 provides instantaneous specific aerodynamic powers of forewings and hindwings. 

During the maneuver, the aerodynamic power of each wing is always positive, although its value 

is quite small near stroke reversal. For forewings, the averaged power consumption of left- and 

right-side wings are 34.0 and 45.0 1W kg , respectively, during the downstroke. By contrast, 

during the upstroke, the left-side wing consumes higher power than right-side wing, in which 

specific aerodynamic power are 32.3 and 19.1 1W kg , respectively. The hindwings also present 

the similar pattern as forewings. During the downstroke, the power consumption of left and right 

hindwings are 26.2 and 42.5 1W kg . During the upstroke, however, the specific aerodynamic 

power of left hindwing is 38.2 1W kg , which is approximately twice of the right hindwing. 

 

Figure 6-9. Time course of specific aerodynamic power consumption of forewings (a) and 

hindwings (b), respectively.  

        The wing surface pressure contours are used to understand the force distribution on the 

wing surface. The aerodynamic pressure difference between top and bottom surface is projected 

in vertical and horizontal directions to indicate the horizontal and vertical force distributions over 
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the wing surface. Figure 6-10 shows the time-averaged pressure distribution that is normalized 

by the wing load (the ratio of the dragonfly weight to the total wing surface area). From Figure 

6-10, it can be seen that most of the forces are generated in the region from 70% spanwise 

distance to the wingtip, especially for the portion close to the leading-edge. For both forewings 

and hindwings, the maximum vertical and horizontal forces are all generated at the tip region. By 

comparing the pressure between the left and right side wings, forewings present more 

asymmetric distribution than hindwings. This implies that the forewings play a more significant 

role than the hindwings in manipulating maneuver flights. 

 

Figure 6-10. Time-averaged surface pressure distribution projected on the vertical direction (a) 

and horizontal direction (b).  

 

6.5 Vortex Formation 

    Figure 6-11 shows the time sequence of the 3-D flow field in the early stage of the turning 

motion, which is identified by plotting the iso-surface of the Q-criterion [94]. The key feature 

observed here is the presence of vortex rings and wing-wing interactions.  
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Figure 6-11. 3-D vortex structures in the flow during the early turning motion, where the time 

stamp from (a) to (d) is 23, 29, 35 and 40 ms.  The vortex loop from the downstroke is marked 

by dashed lines.  

    For each wing, a leading-edge vortex (LEV) is developed and grows stronger remaining 

stably attached to the wing during the downstroke. As the wing translation, the LEV, the tip 

vortex (TV) and the shed trailing-edge vortex (TEV) are connected and form a vortex loop, as 

shown in Figure 6-11 (a). The vortex loops formed by forewings and hindwings are marked by 

dashed lines in red and blue color, respectively. As the hindwings flapping upward, distinct fully 

developed vortex rings are gradually shed into the flow field from the trailing-edge of wings, and 
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which are identified as 1R and 2R  (as shown in Figure 6-11 (b)).  Because of the phase relationship 

between fore- and hindwing, when the forewings reach the end of its downstroke, the hindwing 

already start to move upward. The upward moving hindwings interact with the wake formed by 

the forewings. This flow feature is termed as wing-wing interaction in previous 2-D and 3-D 

tandem wings studies [54,129]. In addition to the wing-wing interaction, during the upstroke, the 

wings will catch its own wakes produced by the preceding downstroke and disrupts this loop 

through the wing-wake interaction, and form stronger TV and TEV, as shown in Figure 6-11 (c). 

During the maneuver motion, the asymmetrical vortex formation between left and right side is 

also distinct. By comparing the iso-surface plot of 1R and 2R , the inner (left) side vortex ring is 

stronger than the outer (right) side one. This asymmetrical phenomenon also makes the shed 

vortex rings tilted and distorted. By interacting with the vortex loop formed by other wings and 

their previous shed vortex rings, the wake becomes to more complicated, as shown in Figure 

6-11 (d).   

 

6.6 Forewing-Hindwing Interaction 

    Wing-wing interaction is a unique feature applied by two-pair wings flyers. During the 

flapping motion, the forewing and hindwing in each side perform as a tandem wings. In order to 

examine the effects of forewing-hindwing interaction in dragonfly maneuver flight, two 

additional simulations, one with forewings only (FO) and the other with hindwings only (HO), 

are carried out and used to compare with two-pair wings (TPW) simulation results. Figure 6-12 -

Figure 6-14 compare the time courses of forces and power between two-pair wings simulation 

(solid red line) and the isolated single-pair wings simulation (dashed blue line). The differences 
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between the two lines in each plot show the interaction effects. In order to obtain a quantitative 

comparison, Table 6-2 lists the mean force generation and power consumption of above cases.  

 

Figure 6-12. Comparison of instantaneous vertical force between the two-pair wings simulation 

and single-pair wings simulation. (a) left-forewing. (b) left-hindwing. (c) right-forewing. (d) 

right-hindwing.  

 

    As shown in Figure 6-12, the case with two-pair wings present vertical force increasement 

at certain periods and force reduction at some other period. For the forewings, the interaction 

effect reduces the mean vertical force by about 6% of that of the isolated forewings; for the 

hindwings, the reduction is about 11% of that of the isolated hindwings. The wing-wing 

interaction also reduces the force component in the horizontal direction (as shown in Figure 

6-13). Comparing to the isolated single-pair wing simulation, the interaction effects reduce 

approximate 3% of mean horizontal force for both downstroke and upstroke. In general, the case 
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with isolated single pair wings could generate slight higher forces than two-pair wings. This 

observation is consistent with previous studies. For instance, Wang and Sun [58,61] studied the 

forewing-hindwing interaction using computational models at Reynolds number in an order of

310 . At hovering, the resultant forces generated by wings reduce by 8-15% due to the existence 

of wing-wing interaction. For forward flight condition, the force reductions gradually decrease as 

the increasement of the advance ratio. As proposed by Lehmann  [64], this force reduction of the 

interaction effect is due to the decrement of the angle of attack between each wing and the local 

fluid.   

 

Figure 6-13. Comparison of instantaneous horizontal force between the two-pair wings 

simulation and single-pair wings simulation. (a) left-forewing. (b) left-hindwing. (c) right-

forewing. (d) right-hindwing. 
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    Despite the force reduction, the interaction effect can save the aerodynamic power 

consumption. Figure 6-14 provides a comparison of the specific aerodynamic power between the 

two-pair wings simulation and the single-pair wings simulations. For forewings, interaction 

effect reduces the power about 3% of that of the isolated forewings; for hindwings, aerodynamic 

power expenditure saves up to 11% of that of the isolated hindwings. This observation is in line 

with previous experimental studies of tandem robotic wings [63,64]. The power economy of the 

interaction effect is achieved by recovering energy from the wake wasted.  

 

Figure 6-14. Comparison of instantaneous specific power between the two-pair wings simulation 

and single-pair wings simulation. (a) left-forewing. (b) left-hindwing. (c) right-forewing. (d) 

right-hindwing.  

 



141 

 

Table 6-2. The effects of forewing-hindwing interaction on the mean aerodynamic forces and 

power. 

 Left forewing Right forewing Left hindwing Right hindwing 

FO TPW FO TPW HO TPW HO TPW 

Vertical force ( 310 N) 0.34 0.32 0.45 0.42 0.34 0.31 0.36 0.32 

Horizontal force  

during downstroke ( 310 N) 

-0.51 -0.51 -0.63 -0.62 -0.38 -0.38 -0.46 -0.45 

Horizontal force  

during the upstroke ( 310 N) 

0.54 0.54 0.48 0.47 0.69 0.69 0.47 0.46 

Specific power ( 1W kg ) 34.1 33.2 33.1 32.1 35.7 32.2 34.2 31.0 

 

 

6.7 Chapter Summaries 

    In this study, realistic body and wing kinematics are reconstructed from high-speed video 

recordings of a dragonfly during turning maneuver. Numerical simulations are then used to 

investigate the aerodynamic functions and associated vortex formation of its two-pair wings. The 

wing kinematics analysis indicate that during the turn there are large asymmetries between the 

wing pitch angle and wing stroke angles especially for forewings, while asymmetries in wing 

deviation angle are generally small.   

    The asymmetrical wing kinematics generate unbalanced forces in both vertical and 

horizontal directions. During the downstroke, the force generated by the outer wings are higher 

than inner wings. By contrast, the inner wings generate higher forces during the upstroke. The 

surface pressure distribution shows that the majority of the force is generated around the leading-
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edge. The unbalanced forces lead to the torques along its body axis in three directions. 

Specifically, both forewings and hindwing contribute to the roll torque generation, whereas 

forewings are dominant in generating pitch and yaw torques. To examine the effect of forewing-

hindwing interaction on the aerodynamic performance, two additional cases, one with forewings 

only and the other with hindwings only, are carried out. Our results indicate that the interaction 

can lead to a slight forces reduction, but can save the aerodynamic power up to 11%.  
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7 Concluding Remarks 

        The works presented in the current dissertation have investigated vortex structures and 

aerodynamic performance of both simplified canonical models and realistic insect models by 

using computational fluid dynamics simulations. Results from the current studies aim to provide 

new physical insights into 3-D vortex development and wake topologies of low-aspect-ratio 

flapping wings with application to next generation MAVs.  

 

7.1 Summary of Contributions 

        In Chapter 3, the effects of deformable flapping plates on unsteady aerodynamics were 

numerically studied at low Reynolds numbers. The chord-wise camber was modeled by a hinge 

connecting two rigid components. The leading portion was driven by a biological hovering 

motion along a horizontal stroke plane. The hinged trailing-edge flap (TEF) was controlled by a 

prescribed harmonic deflection motion. The effects of TEF deflection amplitude, deflection 

phase difference, hinge location, and Reynolds number on the aerodynamic performance and 

flow structures were investigated. The results demonstrated that the unsteady aerodynamic 

performance of deformable flapping plates was dominated by the TEF deflection phase 

difference, which directly affected the strength of the leading-edge vortex (LEV) and thus 

influenced the entire vortex shedding process. The overall lift enhancement reached 26% by 

tailoring the deflection amplitude and deflection phase difference. It was also found that the role 

of the dynamic TEF played in the flapping flight was consistent over a range of hinge locations 

and Reynolds numbers. Results from a low aspect-ratio (AR=2) deformable plate showed the 

same trend as those of 2-D cases despite the effect of the three-dimensionality. The findings of 
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this work have indicated an alternative solution to design the future dynamic deformed wings 

applied by MAVs.  

        In Chapter 4, the wake topology and propulsive performance of low-aspect-ratio plates 

undergoing a pitching-rolling motion in a uniform stream were numerically investigated. A 

detailed analysis of the vortical structures indicated that the pitching-rolling plate produced 

double-loop vortices with alternating signs from its trailing edge every half period. These 

vortices then shed and further evolved into interconnected “double-C”-shaped vortex rings, 

which eventually formed a bifurcating wake pattern in the downstream. As the wake convected 

downstream, there was a slight deflection in the spanwise direction to the plate tip, and the 

contained vortex ring size gradually increased. In addition, the analysis of the propulsive 

performance indicated that the shedding process of the double-loop vortices led to two peaks in 

the lift and thrust force production per half cycle. The observation of the double peaks in force 

production was in line with previous flapping wing studies. Simulations were also used to 

examine the variation of wake structures and propulsive performance of the plates over a range 

of major parameters. The aforementioned vortex structures were found to be quite robust over a 

range of Strouhal numbers, Reynolds numbers, and plate aspect ratios. This is the first report of 

unique vortical structures (“double-C” shaped vortex rings) generated by low-aspect-ratio 

pitching-rolling plates.  

        Chapter 6 used an integrated study combining high-speed photogrammetry with 3-D 

subdivision surface reconstruction and direct numerical simulation to study a dragonfly in 

forward flight. The flapping-wing kinematics and surface deformation, including both chordwise 

camber and spanwise twist, were obtained through the subdivision surface reconstruction method. 

We then explored the effects of deformable wings used the reconstructed wing model, first by 
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removing camber while keeping the same time-varying twist distribution, and second by 

removing both the camber and the spanwise twist. The aerodynamic performance and vortex 

formation of these different wing models were explored via 3-D computational fluid dynamics 

simulations. To better understand the aerodynamic roles of deformable wings, the leading-edge 

vortex strength, the wing surface pressure distribution, and wake structures were analyzed and 

compared in detail. Our simulation results revealed that the spanwise twist can improve the 

aerodynamic functions in two ways: 1) improved the power economy by preventing the tip 

vortex bursting; and 2) improved the leading-edge vortex attachment by suppressing the 

generation of the secondary vortex. As a result, the spanwise twist could boost the aerodynamic 

efficiency by 20%, especially during the wing translational phase. This is the first investigation 

of morphing wing effects on aerodynamic functions for a free flying dragonfly.  

        Chapter 7 studied dragonfly turning maneuver by combining high-speed photogrammetry, 

3-D surface reconstruction, and direct numerical simulation. Quantitative measurements of wing 

kinematics demonstrated that during the turn, large asymmetries of wing stroke angle and wing 

pitch angle occurred between the left and right wings. During the downstroke flapping motion, 

the inner wings flap slower than the outer wings with a large angle of attack, and during the 

upstroke, they flap faster with a smaller angle of attack. The asymmetrical wing kinematics 

produce torques along the body axis in three directions. Unsteady aerodynamic calculations 

illustrated that both forewings and hindwing contribute to the roll torque generation, whereas 

forewings play a dominant role in generating pitch and yaw torques. 3-D vortex structures at 

selected instants were presented at the early stage of turning motion. Distinct vortex loops 

consist of the leading-edge vortex, tip vortex, and trailing-edge vortex were formed for each 

wing. The forewing-hindwing interaction effect was also studied. By comparing the aerodynamic 
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performance of two-pair wings and isolated single-pair wings simulations, the wing-wing 

interaction effect could save up to 11% aerodynamic power along with slight force reduction. 

Results of the present work aim to provide insights into future agile quad-winged MAVs designs 

and applications.  

 

7.2 Future Work 

        One possible extension of the current research includes exploring the effect of morphing 

wings using a flow-structure-interaction-based approach. This method could improve our 

understating of the passive mechanisms applied by natural creatures. To achieve this, a robust 

algorithm must be addressed for handling the solid and fluid continua coupling, since the 

solution should be convergent at every iterative step in both the solid and fluid domains. In 

addition, an accurate structure model for mimicking the material properties of real insect wings 

would be required to achieve a realistic surface morphing.  

        Another possible extensive study is to develop a robust reduced order modeling (ROM) 

based on the current proper orthogonal decomposition (POD) and force survey method (FSM). 

For a flapping wing, there are infinite degrees of freedom in high-fidelity numerical simulations. 

Evaluating the optimal kinematics and surface morphing using the direct numerical simulations 

is time consuming. Reduced-order models, on the other hand, abandon some detail flow 

information and add another level of approximation to the problem. This approach has the 

potential to achieve a quick evaluation of the complex unsteady flow. 
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Appendix A: CFD Solver Validations 

        In order to demonstrate the validity of the numerical code, simulations of both 2-D and 3-D 

flapping wings were conducted compared with previous published results and experimental 

measurements. Overall, our simulation results showed a pretty well agreement with all published 

computational/experimental works. 

 

Two-dimensional flapping wing: 

    The simulation results obtained for unsteady flow around a thin and rigid wing are 

compared with previously reported results [80,81]. In this test, the wing rotates around its center, 

whose orientation is measured counterclockwise relative to the positive x-axis and the amplitude 

is denoted by  . To match the simulation setup, 0 / 2.8A c and / 4  are chosen for the 

wing kinematics, and the Reynolds number, based on maxU and c , is 75. For the simulation setup, 

the computational domain size is 30 c 40 c  with a refined zone of 8 c 11 c . The special grid 

(321465) is chosen with the smallest resolution of 0.025 x c in the dense uniform zone. The 

flow is initially quiescent. The lift and drag coefficients for the first four cycles are shown in 

Figure A-1. It can be observed that the present simulation shows good agreement with both 

experimental measurements [80] and numerical results [81] obtained using a viscous vortex 

particle method (VVPM). 
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Figure A-1. Lift and drag coefficients from the current simulation, from experimental (EXP) 

measurement [80] and from a viscous vortex particle method (VVPM) simulation [81]. 

 

    In Figure A-2, the wake development by showing the vorticity field at different instants are 

presented. The corresponding flow field from Ref. [81] is shown for comparison. It can be 

observed that the instantaneous vortex structures obtained from the two simulations agree with 

each other very well.  
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Figure A-2. Vorticity field at the labeled instants with 40 contour levels distributed uniformly 

between -20 and 20. The top row is from Ref. [81], and the bottom row is from the current 

simulation. 

 

Three-dimensional flapping wing: 

        To demonstrate the validity of the current numerical solver in 3-D simulations, a simulation 

of flow around a robotic fruit fly wing was conducted. The robotic wing replicates Drosophila 

melanogaster wing with wing area 0.0167 2m , span 0.25m and averaged chord ( c ) 8.79cm. The 

wing in experiments [130] sweeps in the horizontal plane and rotates at the end of each stroke. 

The stroke amplitude is180 , the angle of attack at mid-stroke is 50 , and flapping frequency is 

0.168Hz. The Reynolds number is 136, with the average translational velocity at the wing tip

10.53m s . A non-uniform Cartesian grid of size of 256 144 192  is used in a computational 

domain of 30 30 30 c c c to get domain independence results. The simulation is conducted for 
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five flapping cycles. The drag and lift forces during each stroke is virtually identical after the 

third cycle. Figure A-3 shows the lift and drag force from the fifth cycle together with the 

previous experimental measurements [130] and numerical results [58]. The magnitude and trends 

with variation over time of the computed lift and drag forces are in reasonable good agreement 

with the previous results. 

 

Figure A-3. Benchmarking of three-dimensional flapping simulation. The experimental and 

numerical data are reproduced from fig.3 C, D of Sane and Dickinson [130] and fig.4 C, D of 

Sun and Lan [58], respectively. 
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