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Abstract

This dissertation examines the geometric Steiner tree problem: given a set of terminals

in the plane, �nd a minimum-length interconnection of those terminals according to some

geometric distance metric. In the process, however, it addresses a much more general and

widely applicable problem, that of �nding a minimum-weight spanning tree in a hypergraph.

The geometric Steiner tree problem is known to be NP-complete for the rectilinear

metric, and NP-hard for the Euclidean metric. The fastest exact algorithms (in practice)

for these problems use two phases: First a small but su�cient set of full Steiner trees (FSTs)

is generated and then a Steiner minimal tree is constructed from this set. These phases

are called FST generation and FST concatenation, respectively, and an overview of each

phase is presented. FST concatenation is almost always the most expensive phase, and has

traditionally been accomplished via simple backtrack search or dynamic programming.

The spanning tree in hypergraph problem is de�ned, and is proven to be strongly

NP-complete. The minimum-weight spanning tree (MST) in hypergraph problem is then

motivated by showing that FST concatenation reduces to MST in hypergraph in a simple

way. The MST in hypergraph problem is then formulated as an integer program using

subtour elimination constraints.

The spanning tree in hypergraph polytope, STHGP(n), is introduced and a number

of its properties are proven. In particular, every constraint used in the integer program is

shown to de�ne a facet of STHGP(n). An alternate integer programming formulation based

on cutset constraints is presented, but is shown to have an LP relaxation that is weaker

xiv



Abstract xv

than that of the subtour formulation. A simple formula for the number of extreme points in

STHGP(n) is shown, thereby generalizing the classical tree enumeration problem of Cayley

to hypergraphs.

A branch-and-cut algorithm for the MST in hypergraph problem is presented. This

algorithm is applied to the FST concatenation problem. Experimental results are presented

for a large set of problem instances of various sizes up to 1000 terminals. Optimal recti-

linear and Euclidean Steiner trees are obtained for every instance. A single 2000 terminal

Euclidean instance is also solved to optimality. These results show that the new algorithm

is by far the fastest in existence, since the best previously published Steiner tree results are

70 terminals for rectilinear and 150 terminals for Euclidean, respectively.

A number of directions for future work are outlined, and in conclusion it is noted that

this two-phase approach works for any distance metric in any �nite dimension | even the

Steiner problem in graphs | provided a suitable FST generation algorithm is available.
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Introduction

The Steiner tree problem is one of the oldest optimization problems in all of mathematics.

Although the ancient Greeks knew that the shortest path connecting two points was a

straight line, it was apparently Fermat who �rst asked what the shortest path was connecting

three points. Torricelli provided a geometric construction for this by 1640 | 56 years

before Johann Bernoulli posed his famous brachistochrone problem. In 1934 Jarn��k and

K�ossler [31] posed the general Euclidean problem in the plane, which was popularized by

Courant and Robbins in their famous 1941 book \What Is Mathematics?" [13] | although

they incorrectly attributed the problem to Steiner! In 1966 Hanan [26] �rst considered the

rectilinear variant, which is currently very important due to its connection with routing of

circuit nodes in VLSI and printed circuit boards.

Given a �nite set V of points in the plane (called terminals), the Steiner tree problem is

to �nd a minimum-length interconnection of those terminals according to some geometric

distance metric. The resulting interconnection is a tree, called a Steiner minimal tree.

Nodes s =2 V of degree 3 or greater are known as Steiner points, and are introduced as

necessary to achieve the shortest possible interconnection.

Let u = (ux; uy) and v = (vx; vy) be two points in R2 . Then the distance in the Lp-

metric, 1 � p � 1, between u and v (or simply the Lp distance) is (jux�vxj
p+juy�vyj

p)1=p.

1
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For the Steiner tree problem the most common special cases are p = 1 and p = 2: the L1

(rectilinear or Manhattan) distance jux � vxj + juy � vyj, and the L2 (Euclidean) distanceq
(ux � vx)2 + (uy � vy)2, respectively. The corresponding Steiner tree problem variants

are known as the rectilinear Steiner minimal tree (RSMT) and Euclidean Steiner minimal

tree (ESMT) problems. The decision form of RSMT is known to be NP-complete [21]. The

decision form of ESMTwould be NP-complete, except that the problem is not known to be in

NP. This follows from the fact that the lengths of Steiner trees can be complicated algebraic

numbers, and it is not yet clear whether trustworthy computation with such numbers can

be done in polynomial time. A suitably discretized version of the ESMT problem has been

shown to be NP-complete, however [20].

The rectilinear problem is equivalent to requiring that all interconnecting line segments

be horizontal or vertical. See Figure 1.1 for an illustration of an RSMT for 70 terminals.

The Euclidean problem is characterized by line segments forming angles that are always

120 degree or more. In particular, all Steiner points have degree 3 and form angles of

precisely 120 degrees. See Figure 1.2 for an illustration of an ESMT for 100 terminals.

The RSMT problem has numerous applications in the area of VLSI design automation as

well as printed circuit board layout. For example, an RSMT for a set of electron devices can

be used as a lower bound estimate on the wire length of a route connecting all of the devices

together. An RSMT of the points represents only a lower bound since a real interconnect

satis�es additional constraints requiring it to avoid other obstacles that are also present

on the chip. Recent work by Ganley [17] treated such obstacle-avoiding RSMTs directly.

In addition to global wire length estimation, RSMTs have also been used to evaluate the

merit of functional block placements in 
oor-planners such as the MONDRIAN system [17].

Wagner [57] reduces certain cases of parallel expression evaluation to the RSMT problem.

The ESMT problem has applications in the design of electrical power distribution

networks, oil and natural gas pipelines and other network design problems.
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Figure 1.1: A rectilinear Steiner

minimal tree for 70 terminals.

Figure 1.2: A Euclidean Steiner min-

imal tree for 100 terminals. (Problem

1 from OR-library estein100.txt

�le.)

Some of these applications require the solution of problem instances containing many

hundreds or even thousands of terminals. Provably optimal solutions to such instances

were well beyond the capabilities of previous methods, but are becoming feasible with the

algorithm presented here.

The research described here focused initially on the rectilinear problem, adapting Win-

ter's groundbreaking Euclidean work [60] to the rectilinear problem. Although the initial

results of these e�orts represented a signi�cant advance for the rectilinear problem, they

fell disappointingly short of the 100 terminal solutions obtained for the Euclidean problem.

During the e�orts to close this gap, however, it was discovered that a much more general

and widely applicable problem | the minimum spanning tree in hypergraph problem |

was lurking inside. The solution presented here for the MST in hypergraph problem rep-
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resents a quantum breakthrough for computing Steiner trees. Nevertheless, the MST in

hypergraph results are likely to be more important and generally applicable in the long run.

1.1 De�nitions

In order to further discuss the Steiner tree problem, a number of key terms must be formally

de�ned, the most important one being full Steiner tree (abbreviated FST).

Let V be a set of n points in the plane called terminals. A Steiner minimal tree T for V

is said to have a full topology if every vertex in V is a leaf in T . A terminal set V is said to

be a full set if every Steiner minimal tree for V has a full topology. A terminal set that is a

full set and also has size k is said to be a full set of size k. With respect to a point set V , a

set S � V is said to be a full set with respect to V if S is a full set, and there is some Steiner

minimal tree for V that contains a full topology of S as a subgraph. A Steiner minimal tree

T for a full set S � V is said to be a full Steiner tree (FST) of V . For any FST F we de�ne

jF j to be the total length of F according to the appropriate distance metric. If F is a set

of FSTs we de�ne [F = [F2FF , the union of these FSTs in the plane.

The key concept to be grasped here is that if a subset S � V is a full set, then it is

possible to achieve a minimal interconnection of the terminals S (in the context of an SMT

for V ) only by routing to them, not through them (nor through any other terminals in V ).

A full Steiner tree (FST) is simply a particular such minimal tree interconnecting S.

In an intuitive sense this means that the terminals S reside at the periphery of some

region, and all interconnections between the terminals of S lie inside this region, which is

empty of terminals. Although this is literally true for rectilinear FSTs, it is only �guratively

true of Euclidean FSTs, where this routing region can have a complicated branching tree

structure | even forming arbitrary spirals.
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1.2 Previous Work

The �rst �nite algorithm for the Euclidean Steiner tree problem was given by Melzak [40]. It

works by explicitly enumerating all possible tree topologies, computing a relatively minimal

con�guration for each. The shortest is retained and is the ESMT. Cockayne [9] improved

the method, which was later coded by Cockayne and Schiller [12] and handled problems

with up to 7 terminals. Boyce and Seery [7] improved the method so that 10 and later 12

terminal problems could be solved. Hwang provided an O(n) solution to the Melzak FST

algorithm, a crucial subroutine in the method [28].

Winter [60] devised a totally di�erent approach that �rst generates all possible FSTs,

and then constructs a Steiner minimal tree by choosing a subset of the FSTs that span

the terminals with minimal length. Problems up to 15 terminals were solved quite rapidly.

Further improvements were made by Cockayne and Hewgill [10, 11], who reported solutions

of problems up to 100 terminals.

Recently Winter and Zachariasen [62] re�ned these methods even further, solving prob-

lems up to 150 terminals.

Other exact ESMT algorithms include the negative edge algorithm of Trietsch and

Hwang [56], and the luminary algorithm of Hwang and Weng [30]. Neither of these algo-

rithms have been implemented.

The rectilinear problem was introduced in 1966 by Hanan [26], who characterized op-

timal solutions for n � 5 terminals. Hanan also showed that an RSMT always exists as

a subgraph of a grid graph, obtained by constructing horizontal and vertical lines through

each terminal. The �rst exact algorithm in the literature appeared in 1972 by Yang and

Wing [63], who report solving problems with up to 9 terminals. No further computational

advances appear in the literature until 1989.

In 1976, Hwang completely characterized the rectilinear FSTs [27]. This important

result forms the basis of all known rectilinear FST generators, including the rectilinear

results reported in this dissertation.
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Further computational progress resumed in 1989 when Sidorenko [50] reported an algo-

rithm applicable up to 11 terminals. Similar results were reported by Lewis, Pong and Van

Cleave [36] in 1992. Thomborson, Alpern and Carter [54] report solving problems with up

to about 16 terminals in 1992. The algorithms of Ganley and Cohoon [18, 19] handle about

18 and 28 terminals, respectively in 1994.

In 1993, Salowe and Warme [48] made a signi�cant advance by adapting the Euclidean

results of Winter [60] and Cockayne and Hewgill [10, 11] to the rectilinear problem| solving

most 30 terminal instances in an average of 30 minutes. Further re�nements [49] increased

this to about 35 points. In 1997, F�o�meier and Kaufmann further re�ned the approach so

that most 70 terminal problems are solved, which are the best results currently appearing

in the literature.

Virtually all other exact algorithms for the rectilinear problem use the seductively simple

Hanan grid graph reduction to the Steiner problem in graphs. This reduction has been by far

the most popular approach to computing RSMTs. Various exact algorithms for the Steiner

problem in graphs have been tried on grid graphs, including the dynamic programming

method of Dreyfus and Wagner [15, 54], Hakimi's method [25] as well as sophisticated

branch-and-cut methods [38, 34]. However, even the most sophisticated branch-and-cut

codes fail to solve instances much larger than 40 terminals due to the extreme degeneracy

of the Hanan grid graph.

In 1996 the author in collaboration with Abilio Lucena solved several of the 100 terminal

instances from the OR-library. Lucena's branch-and-cut code was used to solve the Steiner

problem in a graph obtained by taking the union of all the rectilinear FSTs. The resulting

graphs are extremely sparse compared to Hanan grid graphs (see Figures 1.3 and 1.4), and

are much easier to solve. Although further improvement in these graphs seem possible

using the graph reductions devised by Winter [61], this approach seems unlikely to meet or

overtake the methods presented here.
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Figure 1.3: Hanan grid graph for

problem in Figure 1.1.

Figure 1.4: Union of FSTs graph for

problem in Figure 1.1.

The research described in this dissertation builds upon the author's previous break-

through [48, 49] achieved during his M.S. studies. The new method results in provably

optimal solutions to random problem instances having up to 1000 terminals. Winter and

Zachariasen generously provided source code for their new Euclidean FST generator [62],

permitting these results to be re-applied to the Euclidean problem | resulting in optimal

solutions to problems having up to 2000 terminals. See Figure 1.5 for a timeline showing

progress on the Euclidean and rectilinear Steiner tree problems.
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Figure 1.5: Progress on Euclidean and rectilinear Steiner tree problems.



2
The Steiner Tree Problem

This chapter discusses the Steiner tree problem in depth, and its solution using FST gen-

eration followed by FST concatenation. An overview of the key ideas behind Euclidean

and rectilinear FST generation are presented | primarily so that the dissertation may be

more self-contained. For the entire story, consult [60, 62] for Euclidean FST generation

and [49, 64] for rectilinear FST generation.

See [29] for a more comprehensive treatment of Steiner tree results and methods.

2.1 Overview of the FST Concatenation Method

In this section we give a brief overview of the FST concatenation method for computing

Steiner minimal trees.

The following is a well-known folk theorem of Steiner tree lore:

Theorem 2.1 Let V be a set of terminals, with jV j � 2. Then V has a Steiner minimal

tree that consists of one or more full topologies over full sets with respect to V . These full

topologies intersect only at terminals of degree two or greater.

This theorem validates a two-phase scheme originally suggested by Winter [60] for the

Euclidean problem. The idea is as follows: In the �rst (FST generation) phase we generate

9
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a (usually small) set F of FSTs containing at least one SMT identi�ed as a subset. In the

second (FST concatenation) phase we �nd a subset F� � F with minimum total length

that fully connects V .

This scheme was �rst applied to the rectilinear problem by Salowe and Warme [48, 49].

To illustrate the method on a rectilinear problem, Figures 2.1 and 2.2 present all 216

members of F (rectilinear FSTs) obtained by the Salowe-Warme FST generation algo-

rithm [48, 49] for the 70 point problem shown in Figure 1.1. The reader may verify that

the RSMT shown in Figure 1.1 is the union of 35 FSTs, each of which can be found in

Figures 2.1 and 2.2.

In general, members of F are identi�ed by e�ciently eliminating those subsets of V that

cannot be full sets with respect to V . Those subsets that remain might not all be true full

sets with respect to V , so we refer to them as candidate full sets, and their corresponding full

topologies as candidate FST s. Note that it is neither practical nor necessary to establish

that the members of F are true SMTs over full sets with respect to V | we need only

guarantee that at least one SMT be present as a subset of F . In the sequel we will neglect

the distinction between true FSTs and candidate FSTs.

We would like jFj to be as small as possible. Although there are point sets that give

rise to an exponential number of FSTs [16], empirical data shows the expected number

to be linear for uniformly distributed V . This is often considered a weakness of the FST

approach, since it yields a doubly-exponential algorithm in the worst case. In practice it is

by far the fastest exact algorithm known.

It is often possible for an FST generation algorithm to compute an incompatibility

relation C � F � F such that (F;G) 2 C implies that F and G cannot appear together in

an optimal SMT for V . The validity of (F;G) 2 C ultimately appeals to showing that any

solution containing both F and G is necessarily suboptimal. Having a signi�cant number of

incompatible FST pairs greatly reduces the search space during FST concatenation. There

are also FST pruning methods that can rule out additional members of F once the entire
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Figure 2.1: All rectilinear FSTs for problem in Figure 1.1.
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Figure 2.2: All rectilinear FSTs for problem in Figure 1.1 (cont).
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set is available. The cost of current pruning methods is greater than their bene�t to the

FST concatenation algorithm presented here.

2.2 General Properties of FSTs

There are several tests used to eliminate FSTs from consideration that work for any metric.

The most important of these are the lune test, the bottleneck Steiner test and upper bounds.

2.2.1 Lune Property

Consider two vertices u and v in a Steiner minimal tree that are connected by a segment

containing no intervening terminals or Steiner points. (The two vertices may be any mix of

terminals or Steiner points.) Suppose there is a terminal w 2 V such that jw� uj < ju� vj

and jw � vj < ju � vj, where ja � bj is the distance between a and b under the metric

being used. Now delete segment uv from the tree, splitting the tree into two connected

components. If terminal w is in the same component as u, reconnect the tree by adding

segment wv, otherwise reconnect the tree by adding segment wu. The resulting tree is

shorter in either case, contradicting the assumption that the original tree was a Steiner

minimal tree. No such terminal w can therefore exist.

This is a simple but powerful concept. Figure 2.3 illustrates the Euclidean case. The

shaded region is called a lune and its interior must be devoid of terminals or the line segment

must be removed from consideration. Figures 2.4 and 2.5 show the analogous regions in

the rectilinear metric. For consistency, such regions are also called lunes regardless of what

shape they have in a particular metric.

2.2.2 Bottleneck Steiner Distances

Construct a minimum spanning tree (MST) for the set V of terminals. For every u; v 2 V

let buv denote the length of the longest edge on the unique path from terminal u to terminal
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Figure 2.3: Euclidean

lune.

Figure 2.4: Rectilinear

corner lune.

Figure 2.5: Rectilinear

diamond.

v in the MST. We refer to buv as the bottleneck Steiner distance. Consider a Steiner minimal

tree T for V . Suppose the longest edge between u and v in T has length l > buv. Delete

this segment from T thereby splitting T into two connected components | one containing

u, the other v. Let S � V be the terminals in the component containing u. The terminals

in the other component are therefore V � S. Consider the unique path from u to v in the

MST. At least one of these edges will span the cut from S to V � S; any such edge can

be used to reconnect T . Furthermore all such edges have length at most buv making the

resulting tree shorter. This contradicts the assumption that T is a Steiner minimal tree.

This is another powerful tool for eliminating FSTs from consideration. Bottleneck

Steiner distances for all pairs of terminals can be computed as a preprocessing step. The

MST can be computed in O(n log n) time. The bottleneck Steiner distance from one ter-

minal to all others can be computed in O(n) time via depth-�rst traversal, implying O(n2)

total preprocessing time. Thereafter a potential FST F can be eliminated if any edge on

the unique path in F between two terminals u; v 2 F is longer than buv.

Consider an FST F spanning terminals S � V . It is easy to show that if the length

of F exceeds that of a minimum spanning tree for S computed using bottleneck Steiner

distances, then F cannot be part of a Steiner minimal tree.
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2.2.3 Upper Bounds

Any heuristic that generates valid Steiner trees (not necessarily minimal) for a given set of

terminals can be used as an upper bound test. Suppose an FST F spanning terminals S

has length that exceeds that of a heuristic Steiner tree for S. Then F cannot be part of a

Steiner minimal tree.

2.3 Euclidean FST Generation

We now give a brief overview of the FST generation process for the Euclidean distance

metric. These results are not original, and are presented for completeness only. The full

details are in Winter and Zachariasen [62].

All line segments within a Euclidean SMTmust meet at angles of 120� or more, otherwise

the tree can be easily shortened. We refer to this property as the angle condition. Steiner

points therefore always have degree three, forming angles of exactly 120�.

Let p and q be two points in the plane. The equilateral point epq is the point obtained

by rotating point q counter-clockwise by an angle of 60� around point p. Points p, q and

epq are then the vertices (in counter-clockwise order) of an equilateral triangle. Note that

eqp is di�erent from epq. Points p and q are called the base points of epq.

The circle circumscribing4p epq q is called the equilateral circle of p and q and is denoted

Cpq. Its center is denoted opq. The Steiner arc from p to q is the counter-clockwise arc from

p to q on Cpq, and is denoted cpq. The same notation is used to denote subarcs of the Steiner

arc: if p0; q0 2 cpq, then the subarc from p0 to q0 is denoted dp0q0. Such arcs and subarcs are

always considered to be counter-clockwise, so that if p0 2 cq0q n fq0g, then dp0q0 is empty.

Consider the equilateral triangle and circle for p and q shown in Figure 2.6. The point

r is such that line segment repq intersects the interior of arc cpq at point s. It is easy to

see that 6 q s epq = 6 p s epq = 60�: Let x be the intersection of segments pq and sepq. Then

4q s x � 4p x epq, because 6 q x s = 6 p x epq and 6 s q p = 6 s epq p since they both subtend
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arc cps. This implies that 6 q s x = 6 x p epq = 60�. The same argument applies to 4q x epq

and4s x p with arc csq. Therefore s satis�es the 120� angle property required by the Steiner
point for terminals p, q and r. It can also be shown that the total length of segments ps,

qs and rs is equal to the length of segment repq, which is also known as the Simpson line

for the FST over terminals p, q and r.

pq

r

e
pq

opq

s

Figure 2.6: Simpson line construction of Steiner point.

Any FST can be constructed via recursive application of this principle. If terminals p

and q are both adjacent to Steiner point s, then points p, q, s and their adjoining segments

ps, qs and rs can be replaced with point epq and segment repq. The procedure is iterated

until only a single Simpson line (from an equilateral point to a terminal) remains. Figure 2.7

presents an example in which the entire FST is represented by the Simpson line from z6 to

e4. The resulting FST of terminals z1 through z6 is illustrated with bold lines. Figure 2.8
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shows the tree structure by which the equilateral points e1 through e4 are derived. For

example, e3 is constructed from base points e2 and e1 so that e3 = ee2 e1 .

z1

z2 z3

z4

z5
z6

e1 e2

e3

e4

Figure 2.7: Construction of FST from recursive

equilateral points.

e4

e3 z5

e2 e1

z4 z3 z2 z1

Figure 2.8: Tree structure of

equilateral points.

In general, the base points of equilateral points can be either terminals or other equilat-

eral points. For any equilateral point or terminal x we de�ne the order of x, ORD(x), to be

the maximum depth of the derivation tree by which point x is constructed. Consequently

ORD(p) = 0 for all terminals p, and ORD(e) � 1 for all equilateral points e. For a given

point x (equilateral or terminal) the set of all terminals in x's derivation tree is denoted

Z(x). Consequently, Z(p) = fpg for all terminals p.

The key idea of Winter's Euclidean FST generation method is to generate all possible

equilateral points by combining pairs of existing equilateral points whose derivation trees

are disjoint. When no new equilateral points are possible, the process terminates.

A list E initially contains the terminals (i.e., equilateral points of zero order). For each

p; q 2 E an attempt is made to construct epq. Equilateral point epq is appended to E if
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and only if Z(p) \ Z(q) = ;, jZ(p)j + jZ(q)j < n, and epq passes a series of pruning tests

(described below). Each member p of E is given a distinct index variable ip that indicates

the next member q 2 E to try combining with p. Whenever a new equilateral point p is

added to E , ip is initialized to point to the beginning of the list E . The process terminates

when all of the ip have advanced to the end of the list E . This guarantees that each pair

(p; q) is tested exactly once.

This process would create a combinatorial explosion of equilateral points, except that

the pruning tests are e�cient and highly e�ective at identifying equilateral points that

cannot give rise to valid FSTs. Such equilateral points are not retained. Note that when

an equilateral point e is pruned it eliminates the need to ever consider any other equilateral

point having e's derivation tree as a subtree.

Let exy be an equilateral point of non-zero order with base points x and y. In most

cases it is possible to deduce that any Steiner point on cxy would be invalid unless con�ned

to a subarc dx0y0 of cxy. Consequently each such exy 2 E has an associated feasible Steiner

subarc dx0y0 that is a subarc of cxy. Most of the pruning tests work by further restricting the

feasible Steiner subarc. If this subarc becomes empty, exy can be pruned.

Once all equilateral points have been generated, it is easy to contruct all of the FSTs.

Let exy 2 E . For every terminal v 62 Z(exy), the corresponding FST exists if and only if line

segment vexy intersects the feasible Steiner subarc dx0y0 of exy. To obtain the FST, process

Simpson line vexy recursively as follows: a Simpson line ze (where z is a known point and

e an equilateral point) results in line segment ze if e is of zero order. Otherwise e = epq, so

let s = ze \ cpq, add line segment zs to the FST, and process sp and sq recursively. Note

that by symmetry, it is necessary to consider only v 62 Z(epq) whose index exceeds that of

all terminals in Z(epq), according to an arbitrary ordering of the terminals.

We now very brie
y present several of the pruning tests that equilateral points must

pass in order to be retained in E . For the complete discussion including additional tests,

see [62].
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2.3.1 Projections

Let p and q be two equilateral points and suppose that p is of nonzero order. Let a and c

be the base points of p so that p = eac. Furthermore, let da0c0 be the feasible Steiner subarc
of eac. The relative locations of a

0 and c0 with respect to p and q can be used to rule out

portions of Steiner arc cpq, thus reducing the feasible Steiner subarc. In most cases it can be

shown that any Steiner point on cpq would violate an angle condition, indicating that epq can
be pruned. In fact, only four speci�c subcases are retained. These cases are (Figure 2.9):

1. 0� < 6 c0 p q � 6 a0 p q � 120�, q is not in the interior of Cac, a
0 is not in the interior of

Cpq, and c0 is in the interior of Cpq. Only the portion cxq0 of cpq that is outside of Cac

and visible from p through da0c0 is feasible.
2. 6 c0 p q � 0� < 6 a0 p q � 60�, q is not in the interior of Cac, and a

0 is not in the interior

of Cpq. Only the portion cxq of cpq that is outside of Cac is feasible.

3. 0� < 6 c0 p q � 6 a0 p q � 60�, q is not in the interior of Cac, and a0 is in the interior of

Cpq. Only the portion dp0q0 of cpq that is visible from p through da0c0 is feasible.
4. 6 c0 p q � 0� < 6 a0 p q � 60�, q is not in the interior of Cac, and a0 is in the interior of

Cpq. Only the portion cp0q of cpq that is visible from p through da0c0 is feasible.
A point x 2 cpq is visible from p through a point y if and only if x is the projection of y

onto cpq from p. This is why these tests are called the projection tests. The arguments are

completely symmetric if q is an equilateral point of nonzero order.

2.3.2 Lune Property

Every line segment in an FST must satisfy the lune property (i.e., no terminal may re-

side in the lune of an FST line segment). Let L(u; v) be the lune for segment uv (i.e.,

L(u; v) = fx : juxj < juvj ^ jxvj < juvjg). Let p and q be equilateral points of any order.

Let the feasible Steiner subarc of cpq be ctu. Let s 2 ctu be a potential Steiner point on this
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pq

e
pq

aa’

c
c’

q’ x

1

pq

e
pq

a

a’

c

c’

x

2

pq

e
pq

a
a’

c

c’

p’

q’

3

pq

e
pq

a
a’

c

c’

p’

4

Figure 2.9: Projections: four cases retained.
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arc. Then two of the segments incident to s will be known, one directed toward p, the other

toward q. Let Ep(s) and Eq(s) be the other end point of the line segment directed toward

p and q, respectively. If p (or q) happens to be a terminal then Ep(s) = p (or Eq(s) = q).

Otherwise p = ebd (or q = eac) is an equilateral point of non-zero order and Ep(s) = sp\cbd
(or Eq(s) = sq \ cac). If L(s;Ep(s)) or L(s;Eq(s)) contain one or more terminals then we

can conclude that s is not a feasible Steiner point.

In particular, if s = t causes non-empty lunes then we can further restrict the feasible

Steiner subarcctu by moving t toward q to the �rst position t0 at which both lunes L(t0; Ep(t
0))

and L(t0; Eq(t
0)) are empty. Similary, if L(u;Ep(u)) or L(u;Eq(u)) are non-empty, we can

move u toward p to the �rst position u0 at which both L(u0; Ep(u
0)) and L(u0; Eq(u

0)) are

empty. This can actually done in four sequential steps: move t until L(t; Eq(t)) is empty,

move u until L(u;Eq(u)) is empty, move t until L(t; Ep(t)) is empty, move u until L(u;Ep(u))

is empty.

Figure 2.10 illustrates the �rst two of these steps. In this �gure, x = Eq(t), y = Eq(u),

and z is a terminal that makes the corresponding lune non-empty. Figure 2.10a moves t to

t0 such that L(t0; Eq(t
0)) is empty, and Figure 2.10b moves u to u0 such that L(u0; Eq(u

0)) is

empty. Note that emptying one lune in this way can cause another to become non-empty,

so these tests can be iterated until all four lunes are empty. Of course the equilateral point

epq can be pruned immediately if the feasible arc cut becomes empty during this process.

2.3.3 Bottleneck Property

Let p and q be equilateral points of any order. Let ctu be the feasible Steiner subarc of

cpq. Let x = Eq(t) as in Subsection 2.3.2. Let zp 2 Z(p) and zq 2 Z(q) such that bzpzq is

minimized. If

bzpzq < jxtj;

then t is not a feasible location for a Steiner point, since the bottleneck property is violated

by segment xt along the path between zp and zq. Point t can be moved toward q until
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pq
a

c

y

x

u t’
t

z

(a)

pq
a

c

y

x

u
u’

t

z

(b)

Figure 2.10: The lune property.

equality is achieved (or t moves beyond u). The test is symmetric for segment yu, where

y = Ep(u).

2.3.4 Wedge Property

Let p and q be equilateral points of any order. Let ctu be the feasible subarc of Steiner arc

cpq. Construct the four rays r1 = ~pu, r2 = ~epqu, r3 = ~epqt and r4 = ~qt (see Figure 2.11). Let

R1 be the region bounded by r2, r3, and ctu. Let R2 be the region bounded by r1 and r2.

Let R3 be the region bounded by r3 and r4.

If R1 contains no terminals then any Steiner point s 2 cut must connect to some other

Steiner point s0 in R1. Since R1 contains no terminals, Steiner point s0 resides on the

Steiner arc of some equilateral point eac 2 R1. It can be shown that such an eac cannot be

constructed unless there is at least one terminal in R2 and at least one terminal in R3. If

either R2 or R3 is empty then equilateral point epq can be pruned.

Suppose on the other hand that region R1 contains at least one terminal. If R2 is empty,

let z be a terminal in R1 that minimizes 6 z epq u, and let u0 = zepq \ctu. Then the feasible
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pq

e

u
t

pq

r1

r2

r3

r4

R2
R1

R3

Figure 2.11: The wedge property.

subarc can be narrowed to ctu0. In similar fashion if R3 is empty, let z be a terminal in R1

that minimizes 6 t epq z, and let t0 = zepq \ctu. Then the feasible subarc can be narrowed toct0u.

2.3.5 Euclidean Compatibility Tests

Two FSTs Fi and Fj are incompatible if they intersect anywhere other than at a single

terminal. If Fi and Fj meet at a single terminal v, they can be declared incompatible if

their line segments form an angle of less than 120� at v.
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There are other pruning and compatibility tests that can be used. For complete details,

refer to [62].

2.4 Rectilinear FST Generation

We now give a brief overview of the FST generation process for the rectilinear distance

metric. These results were previously given in Salowe and Warme [49], and are presented

here for completeness only. The more recent methods of Zachariasen [64] are superior, and

represent the current state of the art.

2.4.1 Hwang Topologies

Hwang [27] provided a complete description of the rectilinear FSTs, a result known as

Hwang's theorem:

Theorem 2.2 (Hwang's theorem) Every rectilinear full set has a rectilinear Steiner

minimal tree having one of four topologies. A type I topology consists of a backbone

formed by two segments (a long leg and a short leg) meeting at a corner and adjacent to

two of the terminals1. The long leg is incident to segments connecting the other terminals

to the backbone. (Assume without loss of generality that the long leg is horizontal.) From

left to right, these terminals (and the terminal on the short leg) must appear on alternating

sides of the long leg. A type II topology is similar to a type I topology, but with a single

terminal | the leftmost (or rightmost) | connected to the short leg. A degenerate type I

(or straight) topology is similar to a type I topology, but having a short leg of zero length and

therefore no corner. A cross topology has exactly 4 terminals connected by one horizontal

and one vertical segment that meet at a single Steiner point of degree 4.

1The term long leg does not imply greater length geometrically, but rather having a potentially greater

number of incident segments.
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See Figure 2.12 for examples of all four types of topologies. The straight and cross

topologies are degenerate cases that appear only when V contains terminals with duplicate

x or y coordinates. Note that in general, type I and type II topolgies can have four di�erent

orientations times two re
ections each, while straight topologies can be either horizontal or

vertical.

Type I topology Type II topology

Straight topology Cross

Figure 2.12: The Hwang topologies.

There is some ambiguity in this classi�cation scheme. For example, a non-degenerate

FST with 3 terminals could be classi�ed as either a type I or type II topology, depending

on which segment is called the long leg. Similarly, in a type II topology with 4 terminals

either of two segments can be called the long leg. The classi�cation is unique, however, for

5 terminals or more.
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2.4.2 Corner-Flipped Topologies

There are two transforms that can be applied to a Hwang type I or type II topology that

do not change its length | the corner 
ip and the slide. By iteratively applying these

two transformations, the Hwang topology can be converted �nally into yet another Hwang

topology, having an orientation di�erent from the original. This process is illustrated in

Figure 2.13, in which a Hwang type II topology is transformed into a Hwang type I topology

of the same length.

1

=)

2

=)

3

=)

4

=)

5

=)

6

Figure 2.13: The corner-
ip and slide transforms.

In general, any Hwang type I or type II topology X can be transformed to another

Hwang topology X̂ in this way. We say that X̂ is the corner-
ipped topology of X. Of

course these transformations work just as well in reverse, so it is also true that X is the

corner-
ipped topology of X̂. Let a Hwang topology be even (or odd) if it has an even (or

odd) number of alternating terminals attached to the long leg. Then we can characterize all

such transformations as shown in Figure 2.14. If X is a straight topology or a cross then

we let X̂ = X since there is no corner at which to begin the 
ip and slide transform.
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Type I Even

()

Type I Even

Type I Odd

()

Type II Even

Type II Odd

()

Type II Odd

Figure 2.14: The corner-
ipped topologies.

Suppose X is a Hwang topology and X̂ is its corner-
ipped topology. If it can be shown

that X̂ cannot be an FST, then we can also conclude that X cannot be an FST. Therefore

when generating FST X we can usually make our screening tests more e�ective by applying

them to both X and X̂.

2.4.3 Empty Regions

Let X be a Hwang topology. The lune property of Section 2.2.1 implies that X cannot

be an FST if any of the lunes (i.e., corner lunes or diamonds) de�ned by its segments are

non-empty. Neither can X be an FST if the corner-
ipped topology X̂ has non-empty

diamonds.

It is known (e.g., [5, 49, 64]) and easy to show that certain rectangular regions must

also be empty. Let X be a Hwang topology containing segments ab and bc that form a 90�
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angle at point b. Points a and c can be either terminals or Steiner points, but there must

not be any terminals or Steiner points in the relative interior of segments ab or bc. Point b

can be a terminal, Steiner point or backbone corner. Let d be the point obtained by adding

the vector a � b to point c, so that abcd forms a rectangle. If there are terminals in the

interior of rectangle abcd then FST X cannot be part of an SMT for V . See Figure 2.15.

t

b

a

c

d

Figure 2.15: Empty rectangles.

Proof : Suppose X is part of an SMT for V , and that a terminal t lies inside rectangle

abcd and above the diagonal extending from b into the rectangle as shown in Figure 2.15.

Delete segment ab from the tree. If t is in the same connected component as a, then

reconnect by adding a vertical segment from t down to segment bc. Otherwise, reconnect

by connecting a and t. The tree is shortened in either case, a contradiction. A similar

argument applies if t lies below the diagonal line. Now suppose t lies precisely on the

diagonal. Since t must be connected to the rest of the tree using only horizontal and

vertical segments, there must be some other point u in the tree that lies above or below the

diagonal line that we can use to shorten the tree in the same manner. 2

As a result, Hwang topologies (and their corner-
ipped topologies) must have both

empty diamonds, and empty rectangles in order to be an FST. This is illustrated in

Figure 2.16. Some additional empty regions are described by Salowe and Warme [49].
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Empty Diamonds Empty Rectangles

Combined

Figure 2.16: Hwang topology empty regions.

2.4.4 Generating Rectilinear FSTs

Hwang's theorem tells us that every valid full set will have at least one FST having one of the

four Hwang topologies. We can guarantee, therefore, that by �nding all topologies having

one of these con�gurations we will have found all full sets (plus perhaps other subsets that

are not full sets, which is why they are candidate full sets). Perhaps even more importantly,

this approach automatically gives us a full Steiner tree for each such candidate full set.

The Salowe-Warme algorithm [49] generates FSTs by considering all pairs (a; b) of ter-

minals as backbones for Hwang topologies. The backbone for (a; b) consists of a vertical

line segment incident to a and a horizontal line segment incident to b. These segments meet

at a common corner point c = (ax; by). Note that backbone (b; a) represents the corner-
ip

of backbone (a; b). Because of the symmetry provided by the corner-
ip transform, we need
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consider only pairs (a; b) whose horizontal segment lies to the right of the vertical segment.

Each backbone (a; b) is considered twice: once considering the vertical segement to be the

long leg, and once considering the horizontal segment to be the long leg.

Consider a backbone (a; b) with corner c (as shown in Figure 2.17) such that segment cb

is the long leg. Consider the set A of all terminals in the shaded region that de�ne an empty

diamond when connected to the long leg cb with a vertical line segment. The terminals in

A are the candidates for attaching to the long leg of the backbone. Consider also the set B

of all terminals in the shaded region of Figure 2.18 that similarly de�ne empty rectangles

when connected to short leg ac with a horizontal segment. The terminals in B are the

candidates for optionally attaching to the short leg. Each properly alternating combination

of attached terminals from A is tried in turn, resulting in a Type I topology. If it survives

all of the screening tests it is retained as an FST. Each t 2 B is then attached to the short

leg in turn, resulting in a Type II topology. Any of these that survive all of the screening

tests are then retained as an FST. Recursive enumeration starts at the corner and proceeds

down the long leg away from the corner. This makes it easy to guarantee that the candidate

nearest the corner is on the proper side of the long leg.

a

bc

Figure 2.17: Long leg candidate

region.

b

a

c

Figure 2.18: Short leg candidate region.
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Generating the straight and cross topologies can be done as an easy special case. Sort

the terminal set lexically by x/y and by y/x coordinates (major/minor keys). Then O(n)

more time is su�cient to �nd the set of all horizontal and vertical segments (if any) bounded

by pairs of terminals with no terminals in the interior. Crosses can be discovered in O(n2)

time by considering each pair of such horizontal and vertical segments. Those that form

crosses and pass the screening tests are retained as FSTs.

Each horizontal or vertical segment uv is then considered as the backbone of a straight

topology. Recursive enumeration of topologies is then very similar to the type I/type II

case, with two exceptions: no short leg candidates are tried since there is no short leg;

secondly both alternating directions are valid starting points, since there is no corner.

2.4.5 Screening Tests

Let X be a generated Hwang topology over terminals U � V , and let X̂ be its corner-
ipped

topology. We check that X̂ is a proper Hwang topology (for example, terminals might not

properly alternate down the long leg). No terminal may lie in the interior of any segments of

X or X̂ . No terminal may lie in any of the \empty regions" of X or X̂ . The BSD property

must hold for each segment of X and X̂. The MST of U computed with bottleneck Steiner

distances must not be shorter than X. An SMT for U computed via a heuristic (such as

the 1-Steiner heuristic of Kahng and Robins [32]) must not be shorter than X. If any of

these conditions are violated, X may be discarded. Otherwise, X is retained as an FST.

Note that some of these checks can be made while recursively enumerating combinations

of long leg candidates. For example if two consecutive alternating terminals delimit a

segment on the backbone that de�nes a non-empty diamond or is longer than bab then the

recursive enumeration can be cut o�.
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2.4.6 Rectilinear Compatibility Tests

Two FSTs Fi and Fj are incompatible if they intersect anywhere other than at a single

terminal. This check is repeated for F̂i and Fj , Fi and F̂j , and for F̂i and F̂j . Suppose Fi

and Fj meet at a single terminal and S = (Fi [ Fj) \ V is the union of their terminals.

If a heuristic �nds an RSMT for S that is shorter than jFij + jFj j, then Fi and Fj are

incompatible.

Refer to Zachariasen [64] for the state of the art in rectilinear FST generation. His

method considers only O(n) backbone roots instead of O(n2) backbones, uses good bounds

to constrain candidate choices for the long and short legs, and uses good sweep-line al-

gorithms (instead of brute force) for checking empty regions. Using these techniques, the

rectilinear FSTs for a random 1000 terminal instance are generated in less than a minute

on average (compared to 3.5 hours using the Salowe-Warme algorithm).

The rest of the dissertation focuses on FST concatenation, which we solve in the next

chapter by reducing it to �nding a minimum-weight spanning tree in a hypergraph. For

further details on FST generation, incompatibility testing and pruning, refer to [11, 16, 48,

49, 60, 62, 64].



3

The Spanning Tree in Hypergraph Problem

This chapter de�nes hypergraphs, their notation, and the spanning tree in hypergraph

problem. It is shown that the problem of deciding even the existence of a spanning tree

in an arbitrary hypergraph is NP-complete. The spanning tree in hypergraph problem is

then motivated by showing that FST concatenation can be reduced to that of �nding a

minimum-weight spanning tree (MST) in a hypergraph. The MST in hypergraph prob-

lem is then formulated as an integer program using subtour elimination constraints. The

spanning tree in hypergraph polytope STHGP(n) is introduced and a number of its more

important properties are proven. In particular it is shown that all of the constraints used

in the integer programming formulation de�ne facets of STHGP(n). An alternate integer

programming formulation using cutset constraints is also presented. It is shown that this

formulation is \inferior" to the subtour formulation in the sense that its LP relaxation is

weaker. Furthermore, it is shown that cutset constraints do not de�ne facets of STHGP(n),

except in the special case of the one-terminal cutsets. Finally, a simple formula that extends

a classic result from graphs to hypergraphs is presented.

33
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3.1 De�nitions

The following de�nitions are adapted from Berge [4]. Let V be a �nite set and E � 2V .

Then H = (V;E) is a hypergraph if

jej � 2 for all e 2 E (3.1)

Normally we require only e 6= ; for all e 2 E [4] but, since our present concern is spanning

trees, we assume the tighter restriction of (3:1). In keeping with graph theory we will use

lower case letters to denote hyperedges | even though they are sets, which would normally

be denoted with capital letters. We say that e is a k-edge of H if e 2 E and jej = k. In

a hypergraph H = (V;E), a chain of length q from v0 to vq is de�ned to be a sequence

v0; e1; v1; e2; v2; : : : ; eq; vq such that

1. v0; v1; : : : ; vq 2 V ,

2. v0; v1; : : : ; vq�1 are distinct,

3. v1; v2; : : : ; vq are distinct,

4. e1; e2; : : : ; eq 2 E and are distinct, and

5. vi�1 2 ei ^ vi 2 ei for i = 1; 2; : : : ; q.

If q > 1 and v0 = vq, then this chain is called a cycle of length q. We may omit either or

both of the phrases \length q" and \from v0 to vq" when they are apparent or arbitrary.

Hypergraph H 0 = (V 0; E0) is a subhypergraph of hypergraph H = (V;E) if V 0 � V , and

for every e0 2 E0 there is an e 2 E such that e0 = e \ V 0 and je0j � 2. A hypergraph

H = (V;E) is connected if for every s; t 2 V there is a chain from s to t in H. A hypergraph

H = (V;E) is a tree if for every s; t 2 V there is a unique chain from s to t inH. Hypergraph

H 0 = (V;E0) is a spanning tree of H = (V;E) if E0 � E and H 0 is a tree.
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If w is a function de�ned on E then for any subset F � E we de�ne w(F ) =
P

e2F we.

For any S;A;B � V , de�ne

E(S) � fe 2 E : e � Sg;

E(S)k � fe 2 E : e � S ^ jej = kg;

�(S) � fe 2 E : 1 � je \ Sj < jejg;

�(S)k � fe 2 E : 1 � je \ Sj < jej = kg;

(A : B) � fe 2 E : (e \A 6= ;) ^ (e \B 6= ;)g;

(A : B)k � fe 2 (A : B) : jej = kg:

We call (S : V � S) a cut with shores S and V � S.

The following is an example of a hypergraph:

H = (V;E),

V = fa; b; c; d; e; f; g; h; i; j; k; lg,

E = fe1; e2; e3; e4; e5; e6; e7; e8; e9g,

e1 = fa; b; dg, e4 = fb; hg, e7 = ff; h; jg,

e2 = fa; c; dg, e5 = fe; f; gg, e8 = fj; k; lg,

e3 = fd; eg, e6 = fc; ig, e9 = fg; i; jg.

This hypergraph is illustrated in Figure 3.1, where hyperedges are denoted by encircling the

member vertices. Note that H is connected, but contains cycles (e.g., f; e5; g; e9; j; e7; f).

Figure 3.2 is a subhypergraph of H and also a tree | making it a spanning tree of H.

Figure 3.3 is another subhypergraph of H that is not connected, and contains a cycle

a; e1; d; e2; a. Note that if for some hypergraph H 0 = (V 0; E0), there are e; f 2 E0 such that

je \ f j > 1, then H 0 has at least one cycle and cannot be a tree.
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Figure 3.1: Example hypergraph H.
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Figure 3.2: Example spanning tree of H.
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Figure 3.3: Example non-tree subhypergraph of H.
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3.2 Spanning Tree in Hypergraph is NP-Complete

This section de�nes the spanning tree in hypergraph problem and shows that it is strongly

NP-complete.

Problem Spanning Tree in Hypergraph (STHG):

Given: A hypergraph H = (V;E).

Question: Is there an E0 � E such that H 0 = (V;E0) is a tree?

Tomescu and Zimand [55] have shown that for every h � 3, the problem of deciding the

existence of a spanning tree in an h-uniform hypergraph (where jej = h for all e 2 E) is

NP-complete. Their proof uses a rather complicated reduction from 3SAT. Here is a very

simple and elegant proof for the h = 4 case that was devised by Thomas McCormick [39].

It reduces from exact 3 cover which is well-known to be NP-complete [33]:

Problem Exact 3 Cover:

Given: A �nite set S with jSj = 3k, a family F of 3-element subsets of S.

Question: Is there a subfamily C � F that partitions S?

Theorem 3.1 The spanning tree in hypergraph problem is NP-complete.

Proof : Given an instance (S; F ) of exact 3 cover, construct an instance H = (S0; F 0) of

spanning tree in hypergraph as follows. Let v be an item such that v =2 S, let S0 = S [ fvg,

and let F 0 = fe [ fvg : e 2 Fg.

If C is a partition of S then the corresponding C 0 de�nes a spanning tree (S0; C 0) of H.

Conversely, let H 0 = (S0; C 0) be a spanning tree of H. Since every a0; b0 2 C 0 both contain

v, the corresponding a; b 2 F must be disjoint. Therefore, the C that corresponds to C 0

must partition S, since H 0 spans S0. 2

It follows that the corresponding optimization problem is NP-hard:
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Problem Minimum Spanning Tree in Hypergraph (MSTHG):

Given: A hypergraph H = (V;E), edge weights ce 2 Z
+ for all e 2 E.

Find: E0 � E that minimizes c(E0) such that H 0 = (V;E0) is a tree.

3.3 Reduction From FST Concatenation to MST in Hyper-

graph

In this section we motivate the study of the MST in hypergraph problem by showing that

we can use it to solve the Steiner tree problem. A simple reduction from FST concatenation

to MST in hypergraph is presented and shown to be correct.

We are given a �nite set V of terminals and a corresponding set F of FSTs. A sub-

set F 0 � F is non-overlapping if (F \ G) � V for every F;G 2 F 0 such that F 6= G.

Otherwise we say that F 0 is overlapping. We assume that F contains at least one non-

overlapping subset F 0 such that T 0 = [F 0 is a Steiner minimal tree for V . For any F 2 F

we de�ne g(F ) = F \ V : the set of terminals spanned by F . For any F 0 � F we de�ne

g(F 0) = fg(F ) : F 2 F 0g. Let E = g(F). We assume without loss of generality that

g(F ) 6= g(G) for all F;G 2 F such that F 6= G; if more than one FST exists for a given

S � V , then any shortest FST spanning S can be chosen arbitrarily. Therefore g : F 7! E

is an isomorphism. Let g�1 : E 7! F be the inverse mapping of g. For any E0 � E we

de�ne g�1(E0) = fg�1(e) : e 2 E0g.

Theorem 3.2 Let V be a �nite set of terminals, and F be a corresponding set of FSTs for V

having at least one non-overlapping subset F 0 � F such that T 0 = [F 0 is a Steiner minimal

tree for V . Let E = g(F), hypergraph H = (V;E) and c 2 RjEj such that cg(F ) = jF j for

all F 2 F . Let H� = (V;E�) be a spanning tree of H that minimizes c(E�), F� = g�1(E�)

and T � = [F�. Then T � is a Steiner minimal tree for V .

Proof : Let E0 = g(F 0). The Steiner minimal tree T 0 corresponds in a clear way

to a spanning tree H 0 = (V;E0) of H. We have jT 0j = c(E0) since the members of F 0
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intersect only at terminals, which are segments of length zero. Any MST forH will therefore

have weight at most jT 0j. Let H� = (V;E�) be any MST for H, F� = g�1(E�) and

T � = [E�. If F� is overlapping then either jT �j <
P

F2F� jF j = c(E�) � c(E0) = jT 0j (due

to overlaps of non-zero length), or T � must have a cycle, implying that jT 0j < jT �j � c(E�)

| a contradiction in either case. Therefore, F� is non-overlapping, and spanning tree H�

corresponds in a clear way to T �, which must be a tree connecting V such that jT �j � jT 0j.

Since T 0 is a shortest such tree, we have jT �j = jT 0j. 2

If an FST incompatibility relation C � F�F is available, we reduce it to the correspond-

ing relation Ĉ � E �E over the hyperedges in the obvious way: Let

Ĉ = f(g(Fi); g(Fj)) : (Fi; Fj) 2 Cg: (3.2)

3.4 Integer Programming Formulation

This section presents an integer programming formulation of the minimum spanning tree

in hypergraph problem. Let H = (V;E) be a hypergraph, and c 2 R
jEj be a vector such

that ce is the weight of edge e for all e 2 E. Let n = jV j, m = jEj and polytope P be the

set of all x 2 Rm that satisfy the following constraints:

X
e2E

(jej � 1)xe = jV j � 1; (3.3)

X
e2E

max(je \ Sj � 1; 0)xe � jSj � 1 for all S � V with 2 � jSj < jV j; (3.4)

xe � 0 for all e 2 E: (3.5)

Theorem 3.3 Let x be a solution to the following integer program:

min fc x : x 2 P \ Zmg (3.6)
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and let E0 = fe 2 E : xe = 1g. Then hypergraph H 0 = (V;E0) is a minimum spanning tree

of H.

Proof : Let e 2 E. We �rst show that (3.4) and (3.5) imply xe � 1. Choose any S � e

such that jSj = 2. Then (3.4) becomes xe + z � 1, where z are the remaining terms which

are all non-negative because of (3.5).

The integrality constraint of (3.6) together with 0 � xe � 1 assure that each e 2 E is

either included in E0 or not. We prove in Section 3.5 that equation (3.3) is satis�ed by every

spanning tree. It requires exactly the right number and size of hyperedges to guarantee that

H 0 either has a cycle and is disconnected, or is acyclic and connected (i.e., a tree). As we

also show in Section 3.5, constraints (3.4) prohibit cycles by forcing the subhypergraph

induced by each subset of 2 or more vertices to be acyclic. 2

3.5 The Spanning Tree in Hypergraph Polytope: STHGP(n)

This section de�nes the spanning tree in hypergraph polytope, STHGP(n), and proves a

number of its properties. The principal goal here is to show that (3.3) is the a�ne hull of

STHGP(n), and that (3.4) and (3.5) de�ne facets of STHGP(n). This is important because

it shows that these constraints are as tight as possible | they cannot be made any more

restrictive without eliminating one or more valid spanning trees from consideration.

3.5.1 De�nitions

Let d > 0 be an integer and P = fp1; p2; : : : ; pkg be a �nite set of points in Rd . A point x

is a linear combination of P if

x =
kX
i=1

�i pi;

where �i 2 R for 1 � i � k. If
Pk

i=1 �i = 1, then x is also called an a�ne combination of

P . If we also have �i � 0 for 1 � i � k, then x is a convex combination of P . The set P
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is said to be linearly (or a�nely) dependent if there is a pi 2 P that is a linear (or a�ne)

combination of P n fpig. Otherwise, P is linearly (or a�nely) independent. The set of all x

such that x is an a�ne, or convex combination of P is called the a�ne hull a�(P ), or convex

hull conv(P ), respectively. A point p 2 P is said to be extreme if conv(P ) 6= conv(P n fpg).

For 0 � k � d, a k-
at in Rd is de�ned as the a�ne hull of k + 1 a�nely independent

points. A (d � 1)-
at in Rd is called a hyperplane. A set P is said to be of dimension k

dim(P ) = k if there is a k-
at that contains P , but no (k � 1)-
at. A k-
at therefore has

dimension k. A hyperplane h may be speci�ed as h = fx 2 Rd : ax = bg, where a 2 Rd is a

non-zero vector normal to h, and b 2 R. If jjajj = 1 then b is the distance (in the direction

of a) from the origin to h. The set X formed by the intersection of k hyperplanes in Rd ,

whose normal vectors are a�nely independent is a (d � k)-
at. For all p 2 Rd and � > 0,

de�ne B(p; �) = fx 2 Rd : jx� pj < �g, that is, the open ball of radius � centered at point p.

A polyhedron is the intersection of a �nite number of linear half-spaces. A polytope is

a polyhedron that is bounded. Alternatively, a polytope can be de�ned as the convex hull

of a �nite set of points. Let P be a polytope of dimension d. A point p 2 P is an interior

point of P if there is an � > 0 such that B(p; �) � P . If no such � exists, p is said to be a

boundary point of P . The set of all such interior (or boundary) points is called the interior

(or boundary) of P . There is one d-face of P , namely P itself. Let h be a hyperplane and f

be the intersection of h with the boundary of P . If dim(f) = d� 1, we call f a d� 1-face of

P . In general, if f1 and f2 are k-faces of P and g = f1 \ f2 is of dimension k � 1, then g is

a k� 1-face of P . A k-face of P is itself a polytope of dimension k. We call the d� 1-faces

of P facets, the d � 2-faces ridges, the 1-faces edges, and the 0-faces vertices, or extreme

points.

We de�ne hypergraph Kn = (V;E) such that jV j = n and E = fe � V : jej � 2g.

Let m = jEj = 2n � n � 1. To every subhypergraph H 0 = (V;E0) of Kn = (V;E), we

associate an incidence vector x 2 f0; 1gm de�ned by xe = 1 if e 2 E0 and 0 otherwise. Let

STn � f0; 1g
m denote the set of incidence vectors of spanning trees of Kn.
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De�ne STHGP(n) = conv(STn).

3.5.2 Dimensionality of STHGP(n)

Theorem 3.4 Let n � 2, (V;E) = Kn and x 2 STn, then

X
e2E

(jej � 1)xe = jV j � 1: (3.7)

Proof : Let T = (V;E0) be the hypergraph corresponding to x. Then

X
e2E

(jej � 1)xe =
X
e2E0

(jej � 1):

From [4] we know that a hypergraph (V;E0) is acyclic if, and only if,

X
e2E0

(jej � 1) = jV j � p; (3.8)

where p is the number of connected components. Since spanning trees are both connected

and acyclic, we have p = 1. 2

Remark: Equation (3.8) can be shown directly by simple induction on the hyperedges.

The induction step is analogous to a single iterative step of Kruskal's algorithm for the

minimum spanning tree [35].

Theorem 3.4 gives a linear equation satis�ed by all x 2 STn. We now show there are no

other such linear equations. To do this, we will need two lemmas.

Lemma 3.1 Let T 1 = (V;E1 [ E2) and T 2 = (V;E1 [ E3) be two spanning trees with

corresponding incidence vectors x1 and x2, such that E1 is disjoint from E2 [E3. If x
1 and

x2 both satisfy a linear equation c x = b, then

X
e2E2

ce =
X
e2E3

ce: (3.9)
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Proof :

c x1 = b and c x2 = b

=) c x1 = c x2

=)
X

e2E1[E2

ce =
X

e2E1[E3

ce

=)
X
e2E2

ce =
X
e2E3

ce;

since E1 is disjoint from both E2 and E3. 2

Lemma 3.2 Let n � 3 and (V;E) = Kn. If c x = b is any linear equation satis�ed by every

x 2 STn then there is an � such that ce = �(jej � 1) for every e 2 E, and b = �(n� 1).

Proof : Let c and b be as stated. Let e1; e2 2 E(V )2. We �rst show that ce1 = ce2 .

Let S � V be a cut of V crossed by both e1 and e2 (i.e., e1; e2 2 (S : V � S)). A

suitable cut S always exists when n � 3. Construct spanning trees S1 = (S;E1) and

S2 = (V � S;E2) for each side of the cut using only 2-edges. We can now construct

spanning trees T 1 = (V;E1[fe1g[E2) and T
2 = (V;E1[fe2g[E2) for V having incidence

vectors x1 and x2, respectively. By Lemma 3.1 we must have ce1 = ce2 . Let � = ce1 .

Certainly ce = �(jej � 1) holds for every 2-edge e 2 E. We deduce that b = �(n � 1) by

noting that we can construct spanning trees for V entirely out of (n� 1) 2-edges.

Let T 3 = (V;E3) be a spanning tree, e 2 E3 and let k = jej. Let x3 be the incidence

vector of T 3. We can construct a new spanning tree T 4 by replacing e with any spanning

tree constructed using only (k � 1) 2-edges from E(e)2. Let x
4 be the incidence vector of

T 4, then by Lemma 3.1 we have ce = (k � 1)� = (jej � 1)�, which completes the proof. 2

Theorem 3.5

dim(STHGP(n)) = 2n � n� 2 for n � 2. (3.10)

Proof : For n = 2, jST2j = 1 so that STHGP(2) is a single point with dimension 0 and

the theorem holds. Now suppose n � 3. Theorem 3.4 gives one linear equation satis�ed by
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every x 2 STn and lemma 3.2 shows that there are no other such linear equations. Therefore

dim(STHGP(n)) = m� 1 = 2n � n� 2. 2

Corollary 3.5.1 Let h be the hyperplane satisfying (3.7). Then h = a�(STHGP(n)).

Theorem 3.6 Every x 2 STn is an extreme point of STHGP(n).

This is clearly true of any x 2 X and polytope P = conv(X), where X is any subset of

vertices of the hypercube.

Corollary 3.6.1 If x 2 STn then x cannot be expressed as a convex combination of the

elements of STn n fxg.

3.5.3 Non-Negativity Constraints are Facet-De�ning

To prove that the non-negativity constraints (3.5) are facet-de�ning, we will need two

lemmas:

Lemma 3.3 Let n � 4, (V;E) = Kn and let e; e1; e2 2 E be distinct edges such that

je1j = je2j = 2. Then there is an S � V such that 1 � jSj < n with the following properties:

1. e1; e2 2 (S : V � S),

2. There exist spanning trees S1 = (S;E1) and S2 = (V � S;E2) such that E1 � E(S)2

and E2 � E(V � S)2,

3. e =2 E1 and e =2 E2.

We omit the details of the proof, except to note that if jej � 3 then property (iii) is

automatically satis�ed and we can assume without loss of generality that jej = 2. The rest

of the proof follows by case analysis for n = 4 and by induction for n � 5.
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Lemma 3.4 Let n � 4, (V;E) = Kn, e 2 E and let F = fx 2 STn : xe = 0g. If c x = b is

any linear equation satis�ed by every x 2 F then there exists an � such that b = �(n � 1)

and ce0 = �(je0j � 1) for all e0 2 E, e0 6= e.

Proof : Let e1 and e2 be 2-edges distinct from e. By Lemma 3.3 there is a cut (S : V �S),

1 � jSj < jV j crossed by both e1 and e2. Also by Lemma 3.3 there exist spanning trees

S1 = (S;E1) and S2 = (V � S;E2) for S and V � S respectively, such that e =2 E1 and

e =2 E2. Then T 1 = (V;E1 [ fe1g [ E2) and T 2 = (V;E1 [ fe2g [ E2) are spanning trees

for V that do not contain edge e. Let x1 and x2 be the incidence vectors corresponding to

T 1 and T 2, respectively. We have x1; x2 2 F since x1e = x2e = 0 by construction, and so

c x1 = b and c x2 = b. By Lemma 3.1 we have ce1 = ce2 , so every 2-edge e0 6= e therefore

has the same coe�cient ce0 = �.

Let x3 2 F and T 3 = (V;E3) be its corresponding spanning tree. Let e0 2 E3 and

k = je0j. Since x3 2 F we know e0 6= e. Construct a new spanning tree T 4 by replacing edge

e0 with a spanning tree constructed using only 2-edges (k � 1 of them) from E(e0)2 n feg.

Let x4 be the incidence vector of T 4. We have x3 2 F and x4 2 F by construction. By

Lemma 3.1 we have ce0 = �(k � 1). Therefore ce0 = �(je0j � 1) for all e0 2 E, e0 6= e. We

must have b = (n � 1)�, since a spanning tree for V can be always be constructed using

exactly n� 1 2-edges from E(V )2 n feg. 2

Theorem 3.7 Let n � 4, (V;E) = Kn and let e 2 E. Then the inequality xe � 0 de�nes a

facet of STHGP(n).

Proof : First note that xe � 0 is satis�ed by every x 2 STn and is therefore a valid

inequality. Let F = fx 2 STn : xe = 0g and let c x = b be any linear equation that

is satis�ed by every x 2 F . By Lemma 3.4 we know that equation c x = b is such that

b = �(n � 1) and ce0 = �(je0j � 1) for all e0 2 E, e0 6= e. Equation c x = b can therefore

be obtained by taking � times Equation (3.7) plus ce � �(jej � 1) times equation xe = 0.
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The set F therefore has dimension m � 2 = dim(STHGP(n)) � 1, proving that xe � 0 is

facet-de�ning. 2

3.5.4 Subtour Constraints are Facet-De�ning

In order to prove that the subtour elimination constraints (3.4) are facet-de�ning, we need

two lemmas.

Lemma 3.5 Let n � 3, (V;E) = Kn and let S � V such that jSj � 2. Also, let

F = fx 2 STn :
P

e2Emax(je \ Sj � 1; 0)xe = jSj � 1g and c x = b be any linear equation

satis�ed by every x 2 F . Then there exist � and � such that:

1. ce = � for all e 2 E(S)2,

2. ce = � for all e 2 E(V )2 n E(S)2.

Proof : We note that E(V )2nE(S)2 = �(S)2[E(V �S)2. For part 2 it therefore su�ces

to show: (a) e1; e2 2 �(S)2 =) ce1 = ce2 ; (b) e1; e2 2 E(V �S)2 =) ce1 = ce2 ; and (c) that

there is a e1 2 �(S)2 and a e2 2 E(V � S)2 such that ce1 = ce2 . Part 2 then follows by

transitivity of equality. We prove each of the 4 resulting cases by obtaining trees T 1 and T 2

with corresponding incidence vectors x1 and x2 such that x1; x2 2 F and that di�er only

by substituting edge e1 for e2 or vice versa. Then by Lemma 3.1 we have ce1 = ce2 .

Case 1: Let e1; e2 2 E(S)2. The jSj = 2 case is trivial since there is only one such

edge. Otherwise jSj � 3 and there is a cut U � S such that e1; e2 2 (U : S � U)2.

Let S1 = (U;E1), S
2 = (S � U;E2) and S3 = (V � S;E3) be spanning trees such that

E1 � E(U)2, E2 � E(S � U)2 and E3 � E(V � S)2. Let e3 2 (U : V � S)2. Then

T 1 = (V;E1 [ fe1g [E2 [ fe3g [E3) and T
2 = (V;E1 [ fe2g [E2 [fe3g [E3) are spanning

trees with the necessary properties. See Figure 3.4.

Case 2a: Let e1; e2 2 �(S)2 and let S1 = (S;E1) and S2 = (V � S;E2) be spanning

trees such that E1 � E(S)2 and E2 � E(V � S)2. Then T 1 = (V;E1 [ fe1g [ E2) and

T 2 = (V;E1 [ fe2g [E2) are spanning trees with the necessary properties. See Figure 3.5.
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Figure 3.4: Case 1 for proof of Lemma 3.5
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Figure 3.5: Case 2 for proof of Lemma 3.5
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Case 2b: Let e1; e2 2 E(V � S)2. The jV � Sj � 2 case is trivial since there is at

most one such edge. Otherwise jV � Sj � 3 and there is a cut U � (V � S) such that

e1; e2 2 (U : V � S � U)2. Let S1 = (S;E1), S
2 = (U;E2) and S3 = (V � S � U;E3)

be spanning trees such that E1 � E(S)2, E2 � E(U)2 and E3 � E(V � S � U)2. Let

e3 2 (S : U)2. Then T
1 = (V;E1[fe3g[E2[fe1g[E3) and T

2 = (V;E1[fe3g[E2[fe2g[E3)

are spanning trees with the necessary properties. See Figure 3.6.
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U
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E1

e3

V-S-U

T 2

Figure 3.6: Case 3 for proof of Lemma 3.5

Case 2c: If jV �Sj � 1 then E(V �S)2 is empty and the theorem is proved. Otherwise

let v1 2 S and let v2; v3 2 V � S be distinct vertices. Let e1 = fv1; v2g, e2 = fv2; v3g and

e3 = fv1; v3g. Let U � V � S by any cut such that e2 2 (U : V � S � U)2 and v2 2 U .

Let S1 = (S;E1), S
2 = (U;E2) and S3 = (V � S � U;E3) be spanning trees such that

E1 � E(S)2, E2 � E(U)2 and E3 � E(V �S�U)2. Then T
1 = (V;E1[E2[E3[fe3g[fe1g)

and T 2 = (V;E1 [E2 [E3 [ fe3g [ fe2g) are spanning trees with the necessary properties.

See Figure 3.7. 2
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Figure 3.7: Case 4 for proof of Lemma 3.5

Lemma 3.6 Let n � 3, (V;E) = Kn and let S � V such that jSj � 2. Let

F = fx 2 STn :
X
e2E

max(je \ Sj � 1; 0)xe = jSj � 1g

and let c x = b be any linear equation satis�ed by every x 2 F . Then there exist � and �

such that

b = �(jSj � 1) + �(jV j � jSj)

and

ce = �max(je \ Sj � 1; 0) + �(jej � 1�max(je \ Sj � 1; 0))

for all e 2 E.

Proof : By Lemma 3.5, ce = � for every 2-edge e 2 E(S)2 and ce = � for every

2-edge e 2 E(V )2 n E(S)2. Let x1 2 F so that c x1 = b, let T 1 = (V;E1) be the hy-

pergraph corresponding to x1 and let e 2 E1 be any edge of this tree. Let k = jej and

j = max(je \ Sj � 1; 0).
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Now e can be replaced with a spanning tree constructed of 2-edges from E(e)2, taking

j of these 2-edges from E(e \ S)2 and the other k � 1� j 2-edges from E(e)2 nE(S)2. The

result will be a spanning tree T 2 with incidence vector x2. We have x2 2 F by construction

so that c x2 = b. Edge e was replaced by j 2-edges of weight � and k�1� j edges of weight

� and so by Lemma 3.1 we have ce = j�+ (k� 1� j)�. Substituting j and k back in gives

ce = �max(je \ Sj � 1; 0) + �(jej � 1�max(jej \ Sj � 1; 0)).

If we reduce all edges to 2-edges in this fashion, we will have exactly jSj � 1 2-edges in

E(S)2 and exactly jV j � jSj 2-edges in E(V )2 n E(S)2. We must therefore have

b = �(jSj � 1) + �(jV j � jSj):

2

Theorem 3.8 Let n � 3, (V;E) = Kn and let S � V such that 2 � jSj < n. Then the

inequality X
e2E

max(je \ Sj � 1; 0)xe � jSj � 1 (3.11)

de�nes a facet of STHGP(n).

Proof : First note that (3.11) is a valid inequality, since if

X
e2E

max(je \ Sj � 1; 0)xe > jSj � 1

we have a cycle residing entirely within S, a contradiction since every spanning tree x 2 STn

is acyclic. Let F be the set of all x 2 STn that satisfy the linear equation

X
e2E

max(je \ Sj � 1; 0)xe = jSj � 1: (3.12)

Let c x = b be any linear equation that is satis�ed by every x 2 F . By Lemma 3.6 we

know that equation c x = b can be written in the form: b = �(jSj � 1) + �(jV j � jSj) and

ce = �max(je \ Sj � 1; 0) + �(jej � 1�max(je \ Sj � 1; 0)) for all e 2 E. We can therefore

obtain this equation by taking � times equation (3.7) plus (���) times equation (3.12). The
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set F therefore has dimension m� 2 = dim(STHGP(n))� 1, proving that inequality (3.11)

is facet-de�ning. 2

Remark: All of the preceding proofs remain valid for any hypergraph H = (V;E)

containing all 2-edges. In this case m = jEj and the resulting polytope has dimension

m� 1.

3.5.5 Cutsets are Weaker than Subtours

This section presents an alternate integer programming formulation based on cutset con-

straints and shows that its LP relaxation is weaker than the formulation based on subtour

elimination. It also shows that cutset constraints do not de�ne facets of STHGP(n) except

in the special case of single-terminal cutsets | in which case they are equivalent to the

n� 1-terminal subtour constraints.

Let n � 2 and hypergraph H = (V;E) = Kn. We assume for the sake of concreteness

that V = f0; 1; : : : ; n � 1g. If for example e = f1; 3; 5g we shall denote xe concisely as

x135. We de�ne STP(n), the subtour polytope, to be those points satisfying (3.3), (3.4) and

(3.5). We de�ne CSP(n), the cutset polytope, to be those points satis�ed by (3.3), (3.5)

and X
e2(S:V�S)

xi � 1 for all S � V such that jSj � 1: (3.13)

Theorem 3.9 Let x 2 CSP(n) \ Zm and E0 = fe 2 E : xe = 1g. Then H 0 = (V;E0) is a

spanning tree of H.

Proof : Let e 2 E. We �rst show that xe � 1 is implied by the other constraints. Let

�E = fe 2 E : xe � 2g. We can subtract (jej�1)(xe�1) from both sides of (3.3) for all e 2 �E.

Comparing the right hand side with (3.8) to conclude that p � 2 and so there must be at

least 2 connected components in H 0. This implies that at least one of the constraints (3.13)

is violated, a contradiction. So we infer that xe 2 f0; 1g and each edge e is either selected in
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E0 or not. The cutset constraints (3.13) imply that H 0 is connected. Equation (3.3) implies

that H 0 is also acyclic, since it represents (3.8) with p = 1. Since H 0 is both connected and

acyclic, it is a tree. 2

For any S � V , de�ne h(S) =
P

e2E max(je \ Sj � 1; 0)xe. We now show that every

cutset constraint is a sum of two subtour constraints.

Theorem 3.10 For all S � V such that 0 < jSj < jV j,

x(S : V � S)� 1 = [jSj � 1� h(S)] + [jV � Sj � 1� h(V � S)] : (3.14)

Proof : From (3.3) we have

jV j � 1 =
X
e2E

(jej � 1)xe = h(S) + x(S : V � S) + h(V � S)

=) x(S : V � S) = jSj+ jV � Sj � 1� h(S) � h(V � S)

=) x(S : V � S) = [jSj � 1� h(S)] + [jV � Sj � 1� h(V � S)] :

2

We are now ready to prove the main result | that the LP relaxation of the cutset

formulation is weaker than the LP relaxation of the subtour formulation.

Theorem 3.11 For n � 4,

STHGP(n) � STP(n) � CSP(n) (3.15)

Proof : Every constraint of STP(n) is a facet of STHGP(n), implying that

STHGP(n) � STP(n):

Let n = 4, (V;E) = Kn, and consider that point �x 2 RjEj whose only non-zero components

are

�x012 = �x013 = �x023 = �x0123 =
1

3
:
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Then �x 2 STP(4) but �x 62 STHGP(4) since x012 + x013 + x023 + x123 + x0123 � 1 is a valid

inequality for STHGP(4) that is violated by �x. (This inequality actually de�nes a facet of

STHGP(4).) By adding additional 2-edges of weight 1, we can embed this example for any

n � 4. Therefore STHGP(n) � STP(n) for n � 4.

Suppose that ; � S � V such that x(S : V � S) < 1. Then the left hand side of

equation (3.14) is negative, implying at least one of h(S) > jSj�1 or h(V �S) > jV �Sj�1

is true. Therefore, any violation of (3.13) implies at least one violation of (3.4). This

implies that STP(n) � CSP(n). Let n = 4 and consider the solution �y whose only non-

zero components are �y01 = 1 and �y012 = �y13 = �y23 = 1=2. We have �y 2 CSP(4) but

�y 62 STP(4) since subtour S = f0; 1g is violated by �y. This implies STP(4) � CSP(4). By

adding additional 2-edges of weight 1, we can embed this example for any n � 4. Therefore

STP(n) � CSP(n) for n � 4. 2

Finally, we show that the cutset constraints do not de�ne facets of STHGP(n), except

in one special case.

Theorem 3.12 Let n � 3, and S � V such that 0 < jSj < n. Then the cutset constraint

X
e2(S:V�S)

xe � 1 (3.16)

de�nes a facet of STHGP(n) if and only if jSj = 1 or jV � Sj = 1.

Proof : From (3.14) we deduce that

x(S : V � S)� 1

is non-negative if and only if

[jSj � 1� h(S)] + [jV � Sj � 1� h(V � S)]

is non-negative. If jSj = 1 then jSj � 1 � h(S) = 0 and (3.16) is equivalent to subtour

V �S. Similarly, if jV �Sj = 1, then jV �Sj� 1�h(V �S) = 0 and (3.16) is equivalent to
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subtour S. In all other cases, however, constraint (3.16) is the sum of two inequalities that

de�ne distinct facets. Consider the hyperplanes HS and HV�S consisting of those points

that satisfy h(S) = jSj� 1 and h(V �S) = jV �Sj� 1, respectively. A convex combination

of HS and HV�S is equivalent to a rotation of HS about its intersection with HV�S . This

intersection is a ridge of STHGP(n), not a facet | its dimensionality is too small by 1 to

be a facet. 2

3.6 Counting the Spanning Trees of Kn

We now turn to the question of how many distinct labeled spanning trees there are in

Kn, the complete hypergraph on n vertices. This is equivalent to the number of extreme

points of STHGP(n). The results of this section are part of work done in collaboration

with W. D. Smith. A forthcoming paper by Smith and Warme will present these and other

enumeration results for hypertrees, including simple combinatorial proofs of Theorem 3.15

and Corollary 3.15.1 based on a generalization of the Pr�ufer code [37, 44].

For the analogous problem in conventional graphs the classical result is nn�2, and is

usually attributed to Cayley in 1889 [8]. Cayley's own paper, however, references an earlier

proof of this formula by Borchardt [6] in 1860. We now present the analogous result for

spanning trees in the complete hypergraph (i.e., hypertrees).

For n � 1, let hn be the number of rooted hypertrees spanning n labeled vertices. A

rooted hypertree is a hypertree in which one particular vertex is identi�ed as being the root.

The desired result for unrooted hypertrees is then hn=n. Considering rooted hypertrees

breaks up the symmetry of the problem and avoids various automorphisms that would

otherwise result.

Let
�n
k

	
denote the Stirling numbers of the second kind (i.e., the number of ways of

partitioning n items into k non-empty subsets). They can be de�ned by the following
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recurrence: (
0

0

)
= 1(

n

0

)
= 0 for n � 1(

n

k

)
= 0 for n < k(

n

k

)
= k

(
n� 1

k

)
+

(
n� 1

k � 1

)
for 1 � k � n

For k > 0, let Bell(k) be the kth Bell number (Bell(k) is the number of ways of partitioning

k items into non-empty subsets). The Bell numbers can be expressed in terms of the Stirling

numbers:

Bell(n) =
nX

k=1

(
n

k

)
:

Recently, W. D. Smith [51] obtained the following recurrence and generating function

for hn:

Theorem 3.13 (W. D. Smith [51]) Let hn be the number of rooted hypertrees spanning

n labeled vertices. Then h1 = 1, and for n > 1

hn = n
X
k>0

Bell(k)

k!

X
aj>0Pk

j=1
aj=n�1

 
n� 1

a1; a2; : : : ; ak

!
kY

j=1

haj : (3.17)

Proof : The base case is obvious, so assume n > 1. Select a unique root vertex (there

are n possible choices). Now delete the root vertex and every hyperedge incident to the

root. All that remains are the individual subhypertrees of the root node, containing a total

of n � 1 vertices. Each of these subhypertrees is itself a rooted hypertree, the root vertex

being the one that was incident to a deleted hyperedge. Suppose there are k of these rooted

subhypertrees. The vector a1; a2; : : : ; ak indicates how many vertices are in each of the k

subhypertrees. We divide by k! since the particular ordering of the subhypertrees does not
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matter. For each such vector there are 
n� 1

a1; a2; : : : ; ak

!

ways of partitioning the n� 1 vertices into k non-empty subsets of sizes a1; a2; : : : ; ak. For

each subset j of aj vertices, there are haj distinct rooted subhypertrees. Each of the Bell(k)

partitions of the k subhypertrees represents a distinct way of hooking the subhypertrees to

the root using hyperedges. Let S1; S2; : : : ; Sj be such a partition. Then the k subhypertrees

are connected to the root using j hyperedges. The hyperedge for Si consists of the root

together with the root vertices of each subhypertree in Si. 2

Remark: Replacing Bell(k) with 1 in (3.17) gives a recurrence for conventional rooted

trees.

Let f(z) be a series in powers of z. Then [zn] f(z) denotes the coe�cient of zn in the

series f(z). If � is any non-zero real number, then [zn=�] f(z) denotes � [zn] f(z). Let

H(z) =
X
n�1

hn
zn

n!
(3.18)

be the exponential generating function for hn.

Theorem 3.14 (W. D. Smith [51])

H(z) = z ee
H(z)�1: (3.19)

Proof : It just so happens that

X
aj>0Pk

j=1
aj=n�1

 
n� 1

a1; a2; : : : ; ak

!
kY

j=1

haj =

"
zn�1

(n� 1)!

#
H(z)k: (3.20)

Therefore, if n > 1 we have

hn =

"
zn�1

(n� 1)!

#
n
X
k>0

Bell(k)
H(z)k

k!
(3.21)
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Note that

1 +
X
k�1

Bell(k)
zk

k!
= ee

z�1 (3.22)

is known (e.g., equation 24f, page 34 of [53]). Substituting into (3.21) yields:

hn
n!

= [zn�1] (1 +
X
k�1

Bell(k)
H(z)k

k!
) = [zn�1] ee

H(z)�1 = [zn] z ee
H(z)�1 (3.23)

which happens to hold at n = 1 as well as for n > 1. Therefore

H(z) =
X
n>0

hn
zn

n!
= z ee

H(z)�1: (3.24)

2

To obtain a closed form for hn, we employ the Lagrange inversion formula [59], a weak

form of which (su�cient for our purposes) is

Lemma 3.7 (Lagrange inversion formula) Let �(u) be a formal power series in u, such

that �(0) = 1. Then there is a unique formal power series u(z) (about z = 0) satisfying

u(z) = z �(u(z)): (3.25)

This formal power series satis�es

[zn] u(z) =
1

n
[un�1] f�(u)ng: (3.26)

A proof can be found in [59].

Theorem 3.15 (Warme) Let hn be the number of rooted hypertrees spanning n labeled

vertices. Then for every n � 1

hn =
n�1X
i=0

(
n� 1

i

)
ni: (3.27)
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Proof : Apply the Lagrange inversion formula (Lemma 3.7) to (3.19) with �(u) = ee
u�1:

hn
n!

= [zn] H(z)

=
1

n
[un�1] �(u)n

=
1

n
[un�1] en(e

u�1)

=
1

n
[un�1]

X
i�0

ni (eu � 1)i

i!

=
1

n
[un�1]

X
i�0

ni

i!

iX
j=0

 
i

j

!
eju (�1)i�j

=
1

n
[un�1]

X
i�0

ni

i!

iX
j=0

 
i

j

!
(�1)i�j

X
k�0

jk uk

k!

=
1

n
[un�1]

X
k�0

24X
i�0

ni

i!

iX
j=0

 
i

j

!
(�1)i�j

jk

k!

35 uk
=

1

n

X
i�0

ni

i!

iX
j=0

 
i

j

!
(�1)i�j

jn�1

(n� 1)!

=
1

n!

X
i�0

ni

i!

iX
j=0

 
i

j

!
jn�1(�1)i�j

It is known that

i!

(
n

i

)
=
X
j

 
i

j

!
jn (�1)i�j

(See, for example equation (6.19) from [22]). Performing this substitution yields

hn
n!

=
1

n!

X
i�0

(
n� 1

i

)
ni:

Since
�n�1

i

	
= 0 for all i > n� 1, we can stop summing at i = n� 1 which yields:

hn =
n�1X
i=0

(
n� 1

i

)
ni:

2
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Corollary 3.15.1 (Warme) The number of distinct (unrooted) hypertrees spanning n la-

beled vertices is

n�1X
i=0

(
n� 1

i

)
ni�1:



4
The Algorithm

This chapter presents a branch-and-cut algorithm for solving the MST in hypergraph prob-

lem | and by reduction the FST concatenation problem. First the algorithm is presented

and its more important pieces are shown to be correct. A number of important implemen-

tation details are highlighted. Finally, empirical results are presented from a computational

study containing a large number of problem instances, both randomly generated and from

well known problem libraries. Each instance is solved as both a Euclidean and a rectilinear

problem. The results indicate that these methods yield by far the fastest exact Steiner tree

algorithm in existence.

4.1 Branch-and-Cut Procedure

This section presents a branch-and-cut algorithm that solves integer program (3.6). Lower

bounds for the branch-and-cut are provided by the linear program relaxation of (3.6):

min fc x : x 2 Pg (4.1)

This lower bound has been extremely tight in practice. For most problems in the computa-

tional study (Section 4.2 below), the optimal solution to (4.1) is integral.

60
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Unfortunately, there are an exponential number of constraints (3.4), making it imprac-

tical to solve (4.1) directly. Instead an iterative method is used that avoids dealing with so

many constraints.

Let C be any �nite collection of linear equations and inequalities. Let P be the polyhe-

dron de�ned as those x satisfying every constraint in C. Let C0 be some small subset of C.

For all i � 0 let Pi be the polyhedron de�ned as those x satisfying every constraint in Ci.

The iteration begins with i = 0. At step i, let ~xi be an optimal solution to the following

linear program:

minfc x : x 2 Pig: (4.2)

Let Vi � C be any non-empty subset of constraints that are violated by ~xi. If no such subset

Vi exists, then the iteration terminates and ~xi is an optimal solution to linear program

minfc x : x 2 Pg (4.3)

If such a Vi exists, however, de�ne Ci+1 = Ci [ Vi, increment i, and repeat.

In a landmark result, Gr�otschel, Lov�asz and Schrijver [23, 24] showed that this process

always terminates, and that the number of iterations required is at most a polynomial

function of the number of variables. In particular, the number of constraints is irrelevant

| but must be �nite.

Given an ~xi, we must either �nd a non-empty set Vi � C of constraints that are violated

by ~xi or show that every constraint in C is satis�ed. This sub-problem is known as the

separation problem for constraints C, since violated inequalities represent hyperplanes that

separate ~xi from polytope P. The constraints are sometimes called cutting-planes, and the

iterative process is often called constraint generation, or cutting-plane generation. This is

the cut portion of a branch-and-cut algorithm.

If C contains an exponential (or even larger) number of constraints, it is not at all clear

that the separation problem can be solved in polynomial time. But if it can, then the entire

iteration can be solved in polynomial time.
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For the particular case at hand, let P0 be the polyhedron de�ned by (3.3), (3.5), all

(3.4) for which jSj = 2, plus the following constraints:

x(ftg : V � ftg) � 1 for all t 2 V , (4.4)

xe + xf � 1 for all (e; f) 2 Ĉ, (4.5)

where Ĉ � E � E is an incompatibility relation, which may be empty. Constraints (4.4)

are the 1-terminal cutset constraints. In Section 3.5.5 we showed these are equivalent to

the n � 1-terminal subtours. The cutset form normally yields constraint rows that are

much more sparse than the equivalent subtour constraints. Constraints (4.5) introduce the

optional incompatibility information to improve the initial LP. We use all (4.5) that are

not dominated by 2-terminal subtours (i.e., the subtour constraint x1 + x2 + x3 + x4 � 1

dominates the incompatibility constraint x2 + x4 � 1). We then solve (4.1) by iterations of

optimization (i.e., LP solving) followed by separation of constraints (3.4).

Figure 4.1 presents pseudo-code for the overall branch and cut algorithm. Each node

� is a tuple containing three members: �z is the node's objective value; �x is the node's

LP solution vector; and �b is the set of all constraints that the node imposes due to branch

variables. Figure 4.2 presents pseudo-code for the process node subroutine. It iterates op-

timization and separation until either the node is infeasible, cut o�, integral, or preempted.

Node preemption is discussed in Section 4.1.3.5.

4.1.1 Branch-and-Cut Example

We now consider an example of how the branch-and-cut algorithm might behave when

solving a rectilinear FST concatenation problem. Note that problem instances requiring

several branch-and-cut nodes are invariably too large to serve usefully as detailed examples.

The following computational example, therefore, is entirely hypothetical | we illustrate

computational behavior and results without specifying the precise input data that produce

them.
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branch and cut (F)

f
lp = initial LP (F); � = new node (); �b = ;
node set = ;; UB = 1; preempt z = 1

loop

status = process node (lp, �, UB, preempt z)

case status in

INFEASIBLE, CUTOFF:

destroy node (�)

INTEGRAL:

BEST = �x; UB = �z
destroy node (�)
node set = f�0 2 node set : �0z < UBg

FRACTIONAL:

(e; z0; z1) = choose branching variable (�x)

�0 = new node (); �0z = z0; �0
b
= �b [ fxe = 0g

�1 = new node (); �1z = z1; �1
b
= �b [ fxe = 1g

node set = node set [ f�0; �1g
destroy node (�)

PREEMPTED:

node set = node set [ f�g
endcase

if node set = ; then return (BEST)

� = select next node (node set)

node set = node set n f�g

preempt z = 1
for every �0 2 node set do

preempt z = min (preempt z, �0z)
end

endloop

g

Figure 4.1: Algorithm 1 | branch and cut.
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process node (lp, �, UB, preempt z)

f
loop

(status, �z, �x) = solve LP (lp [ �b)

if status = INFEASIBLE then return (INFEASIBLE)

/* status = OPTIMAL */

if �z � UB then return (CUTOFF)

if integer feasible solution (�x) then return (INTEGRAL)

if �z > preempt z then return (PREEMPTED)

C = perform separations (�x)

if C = ; then return (FRACTIONAL)

add constraints (lp, C)

endloop

g

Figure 4.2: Algorithm 2 | process node.

The algorithm is given the set F of FSTs, and it constructs the initial LP tableaux

as described above. For this example the LP solver yields an optimal solution �x having

objective value of Z = 1:2. The separation algorithm �nds a number of subtour constraints

that �x violates. These constraints are added to the LP tableaux which is re-optimized

yielding a new optimal solution �x having objective value Z = 1:41. After 58 more sepa-

rate/optimize iterations, the separation procedure declares that x = �x violates none of the

subtour constraints (3.4), and has objective value Z = 1:6.

It may happen that xe 2 f0; 1g for all e 2 E, in which case x is the incidence vector of

the Steiner minimal tree. Unfortunately in this example there are a number of xe that have

fractional values. Although we do not yet have a Steiner minimal tree, we do have a lower

bound | no SMT for the given point set can be shorter than 1:6. One of the fractional

variables is x14 = 1=2. We must have either x14 = 0 or x14 = 1 in any valid Steiner



4.1. Branch-and-Cut Procedure 65

tree incidence vector, so we break the initial problem into two subproblems as shown in

Figure 4.3. Node 0 represents the initial problem with objective value Z = 1:6. Node 1

represents the subproblem obtained by appending the constraint x14 = 0 to those of node 0.

Similarly, node 2 represents the subproblem obtained by appending the constraint x14 = 1

to those of node 0. We say that node 0 branches into nodes 1 and 2, and variable x14 is

called the branch variable.

Node 0

Z = 1.6

x14

Node 1

Z = 1.7

Node 2

Z = 1.63

10

Figure 4.3: Example branch-and-cut tree 1.

Note that adding these constraints cannot cause the objective value Z to decrease | Z

can only stay the same or increase. Since we want the lower bound to be as high as possible,

it pays to choose a fractional variable (x14 in this case) for which the objective increases

signi�cantly in both subproblems. In this case, the objective has risen to 1:7 and 1:63 for

nodes 1 and 2, respectively. Node 0 is now retired, since nodes 1 and 2 now collectively

represent node 0's problem.

Node 2 is selected for processing (it has the lowest objective value). After 3 constraint

generation cycles, the objective value for node 2 has risen to Z = 1:65. Although no subtour

constraints are violated, the solution x is again fractional and variable x9 = 1=2 is chosen

as the branch variable. Node 2 therefore retires, being replaced by nodes 3 and 4 having

objective values 1:8 and 1:75, respectively. Figure 4.4 illustrates the current state of the

branch-and-cut tree.
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Node 0

Z = 1.6

Z = 1.65

x14

Node 1

Z = 1.7

Node 2

Node 3 Node 4

1x9

Z = 1.8

10

0

Z = 1.75

Figure 4.4: Example branch-and-cut tree 2.

Node 1 is now selected, and after 2 constraint generation cycles, its objective value has

risen to Z = 1:73. The LP solution vector x, however, is fractional and x23 = 3=8 is chosen

as the branch variable. Node 1 therefore retires, being replaced by nodes 5 and 6, having

objective values 1:81 and 1:92, respectively. See Figure 4.5.

Node 4 is now selected, and after 87 iterations of constraint generation, its objective

value has risen to Z = 1:9. The solution is fractional, however, and x23 is the chosen branch

variable. Node 4 retires and is replaced by nodes 7 and 8 having objective values 1:91 and

1:92, respectively. See Figure 4.6.

Node 3 is selected next, and after 5 iterations of constraint generation, a solution is

obtained that is integral and has objective value 1:84. This is the incidence vector of a valid

Steiner tree (which may or may not be optimal). But we do know that nodes 6, 7 and 8 are

now suboptimal, so we can retire them. Such nodes are said to be cut o�. See Figure 4.7.

Node 5 is now selected, since it is the only remaining node to process. Its objective value

rises to 1:82 after constraint generation, and fractional variable x12 is chosen for branching.

Node 5 retires and is replaced by nodes 9 and 10, having objective values 1:87 and 1:83,
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Node 0

Z = 1.6

Z = 1.65

x14

Node 1 Node 2

10

Z = 1.73

Node 3 Node 4

1x9

Z = 1.8

0

Node 6

x23
0 1

Node 5

Z = 1.81 Z = 1.92 Z = 1.75

Figure 4.5: Example branch-and-cut tree 3.

Node 0

Z = 1.6

Z = 1.65

x14

Node 1 Node 2

10

Z = 1.73

Node 6

x23
0 1

Node 5

Z = 1.81 Z = 1.92

Node 3 Node 4

1x9

Z = 1.8

0

Z = 1.9

1

Z = 1.92

0
x23

Node 7 Node 8

Z = 1.91

Figure 4.6: Example branch-and-cut tree 4.
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Node 0

Z = 1.6

Z = 1.65

x14

Node 1 Node 2

10

Z = 1.73

Node 6

x23
0 1

Node 5

Z = 1.81 Z = 1.92

Node 3 Node 4

1x9
0

Z = 1.9

1

Z = 1.92

0
x23

Node 7 Node 8

Z = 1.91

Z = 1.84

Figure 4.7: Example branch-and-cut tree 5.

respectively. Node 9 is immediately cut o�, since its objective value already exceeds the

upper bound of 1:84 established by node 3.

Node 10 now remains, and its solution is integral with objective Z = 1:83. This causes

node 3 to be cut o�, leaving node 10 as the optimal solution to the integer program as

shown in Figure 4.8.

A number of design parameters must be speci�ed for any branch-and-cut algorithm.

Some procedure must be speci�ed for selecting the next pending node to process. Separation

procedures must be provided for constraint classes large enough to require them. Finally,

some method of choosing branch variables must be speci�ed. The most complex of these

components are normally the separation procedures.
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1

Z = 1.92

0
x23

Node 7 Node 8

Z = 1.91

Node 0

Z = 1.6

Z = 1.65

x14

Node 1 Node 2

10

Z = 1.73

Node 6

x23
0 1

Node 5

Z = 1.92

Node 3 Node 4

1x9
0

Z = 1.9

10

Node 9

x12

Node 10

Z = 1.87

Z = 1.84

Z = 1.83

Z = 1.82

Figure 4.8: Final example branch-and-cut tree.

4.1.2 Separation of Subtour Elimination Constraints

We are given an LP solution x and we need to �nd an S � V with S 6= ; that violates (3.4),

or show that no such S exists. This section presents a 
ow formulation that solves this

separation problem in polynomial time. We de�ne the following function

f(S) = jSj �
X
e2E

max(je \ Sj � 1; 0)xe: (4.6)

Then separating constraints (3.4) is equivalent to �nding an S � V such that S 6= ; and

f(S) < 1.

We note that f(S) is submodular. A function f : 2V 7! R is submodular if and only if

f(A) + f(B) � f(A [B) + f(A \B) for all A;B � V .
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4.1.2.1 Deterministic Flow Formulation

The �rst polynomial time deterministic algorithm for separating inequalities (3.4) was to

�nd a minimum of the submodular function (4.6) using the \ellipsoid" method of Gr�otschel,

Lov�asz, and Schrijver [23, 24]. Although a major improvement over heuristics alone, this

method was exceedingly slow on separation subproblems larger than about 80 terminals.

Queyranne [45] noticed that minimizing f(S) can be reduced to an instance of the

\selection problem," as de�ned by Rhys [47] and Balinski [1]. These are equivalent to

�nding a \maximal closure of a graph," as de�ned by Picard [42]. These problems reduce

to �nding a minimum cut on a simple bipartite directed graph.

The 
ow network G = (N;A) for this separation problem is constructed as follows: Let

the set of distinct vertices be N = fsg[Y [Z[ftg and the set of arcs be A = A1[A2[A3,

where

Y = ffe : e 2 Eg;

Z = fgj : j 2 V g;

A1 = f(s; fe) : e 2 Eg;

A2 = f(fe; gj) : e 2 E ^ j 2 eg;

A3 = f(gj ; t) : j 2 V g:

For all j 2 V , de�ne

bj = x(�(fjg)) =
X

e2E:j2e

xe:

We call bj the \congestion level" of terminal j. Let arc (s; fe) 2 A1 have capacity xe, arc

(gj ; t) 2 A3 have capacity bj�1, and let all arcs in A2 have in�nite capacity. See Figure 4.9

for an illustration of this 
ow network.

We de�ne an s � t cut of G to be a subset W � N such that s 2 W and t 62 W . The

weight c(W ) of s� t cut W is the total capacity of all arcs (u; v) 2 A such that u 2W and

v 62W .
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ts

x1 x2

x3

x4

x5

x6

x7

b1 - 1

b2 - 1

b3 - 1

b4 - 1

b5 - 1

f1

f2

f3

f4

f5

f6

f7

g1

g2

g3

g4

g5

Figure 4.9: Flow network for subtour separation problem.

Theorem 4.1 Let W � N be an s� t cut of G that minimizes c(W ). Let

SW = fj 2 V : gj =2Wg:

Then SW is a minimum of f(S).

Proof : Let W be such a minimum cut. We can write W = fsg [ F [G, where F � Y

and G � Z. We note as follows that F is completely determined by G. Let fe 2 Y . Suppose
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there is an arc (fe; gj) 2 A2 such that gj 62 W . Then we must have fe 62 W or else arc

(fe; gj) of in�nite capacity would span the cut, contradicting c(W ) being a minimum. The

remaining case is where gj 2 W for every gj such that (fe; gj) 2 A2. We claim in this case

that fe 2 W , since a search for an augmenting path from s to t would always label node

fe: if arc (s; fe) has zero 
ow, then node fe would be labeled directly from s; if arc (s; fe)

has positive 
ow, then there is at least one arc (fe; gj) 2 A2 with 
ow that can be returned

to fe. Node fe would be labeled from such a gj since all of them are in W .

Let wj = 1 if gj 2 W and wj = 0 otherwise. Then c(W ) can be written in terms of the

wj as

c(W ) =
X
e2E

241�Y
j2e

wj

35xe +X
j2V

(bj � 1)wj

=
X
e2E

�xe
Y
j2e

wj +
X
j2V

(bj � 1)wj +
X
e2E

xe (4.7)

The last summation is a constant that does not depend on the wj .

Now consider the function f(S). Let sj = 1 if j 2 S and sj = 0 otherwise. Let �sj = 1�sj

be the complementary 0� 1 variables. We write f(S) in terms of the �sj as follows:

f(S) = jSj �
X
e2E

max(je \ Sj � 1; 0)xe

=
X
j2V

sj �
X
e2E

240@X
j2e

sj

1A� 1 +
Y
j2e

(1� sj)

35 xe

=
X
j2V

(1� �sj)�
X
e2E

240@X
j2e

(1� �sj)

1A� 1 +
Y
j2e

�sj

35 xe

= jV j �
X
j2V

�sj �
X
e2E

24jej �X
j2e

�sj � 1 +
Y
j2e

�sj

35 xe

= jV j �
X
j2V

�sj �
X
e2E

(jej � 1)xe +
X
e2E

0@xeX
j2e

�sj

1A�X
e2E

0@xeY
j2e

�sj

1A
= jV j �

X
j2V

�sj �
X
e2E

(jej � 1)xe +
X
j2V

0@�sj X
e:j2e

xe

1A�X
e2E

0@xeY
j2e

�sj

1A
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= jV j �
X
j2V

�sj �
X
e2E

(jej � 1)xe +
X
j2V

bj�sj �
X
e2E

0@xeY
j2e

�sj

1A
=

X
e2E

0@�xeY
j2e

�sj

1A+
X
j2V

(bj � 1)�sj �
X
e2E

(jej � 1)xe + jV j (4.8)

The last two terms do not depend upon the �sj and are therefore constants that can be

ignored. If we set �sj = wj we see that the cut capacity (4.7) di�ers by a constant from the

function (4.8) being minimized.

Suppose on the other hand that S is a minimum of f(S). Then the corresponding W is

seen to be a minimum of c(W ) because (4.7) and (4.8) di�er by a constant, and because of

the correspondence between S, G and F . 2

Remark: Minimizing f(S) is equivalent to �nding the minimum of the following non-linear

polynomial over 0� 1 variables

X
e2E

0@�xeY
j2e

�sj

1A+
X
j2V

(bj � 1)�sj (4.9)

where all non-linear coe�cients are negative1. Note that if the linear term coe�cient of

�sj isn't positive, then �sj = 1 in any optimal solution. This is a problem reduction criteria

bj � 1 =) sj = 0 =) j 62 S that will be discussed further in Section 4.1.2.2.

To satisfy the S 6= ; constraint, let t 2 V . De�ne a new function ft : (V � ftg) 7! R

as: ft(S) = f(S [ ftg). Let S�t be a minimum of ft(S). Then S = S�t [ ftg is a minimum

of f(S) satisfying t 2 S. Repeating this for every t 2 V guarantees �nding the minimum of

f(S) subject to the side constraint that S 6= ;.

Finding a minimum of ft(S) corresponds to forcing �st = 0 in equation (4.9). When

setting up the 
ow network for this problem, simply eliminate vertex gt, vertices fe such

that t 2 e and the associated arcs when setting up the 
ow network. When the minimum

1Picard and Queyranne [43] showed that such problems are equivalent to the selection problem.
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of ft(S) is obtained, delete terminal t from the separation problem, choose another t and

iterate. Our implementation chooses a t that minimizes bt on each iteration.

The deterministic 
ow formulation can be costly. To speed up the separation process,

a suite of problem reductions and heuristics are used.

4.1.2.2 Reductions and Decompositions

Following Padberg and Wolsey [41], we can eliminate many terminals from considera-

tion using the following idea, which is adapted from their proposition 2 (i). Recall from

Section 4.1.2.1 that for all t 2 V , we de�ne

bt = x(�(ftg)) =
X

e2E:t2e

xe: (4.10)

We call bt the \congestion level" of terminal t.

Lemma 4.1 If bt � 1 and f(S [ ftg) < 1 then f(S) � f(S [ ftg) < 1.

Proof : If t 2 S then there is nothing to prove, so assume t =2 S. Let

A = fe 2 E : je \ Sj � 1 and t 2 eg

and

B = fe 2 E : je \ Sj � 1 and t =2 eg:

Then

f(S [ ftg)� f(S) = jS [ ftgj �
X
e2A

je \ Sjxe �
X
e2B

(je \ Sj � 1)xe

�jSj+
X
e2A

(je \ Sj � 1)xe +
X
e2B

(je \ Sj � 1)xe

= jSj+ 1�
X
e2A

je \ Sjxe � jSj+
X
e2A

je \ Sjxe �
X
e2A

xe

= 1�
X
e2A

xe � 1� bt � 0
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2

We say that a terminal t such that bt � 1 is uncongested, or is congestion-free. By

iteratively eliminating all uncongested terminals, we are left with a core set V̂ of congested

terminals. We need only consider the congested subhypergraph Ĥ = (V̂ ; Ê) (i.e., the subhy-

pergraph induced by vertices V̂ ). Appendix A presents a simple stack-based algorithm for

computing Ĥ in linear time.

For every hypergraph H = (V;E) having edge weights xe for all e 2 E, we de�ne

�H = (V; �E) such that �E = fe 2 E : xe > 0g. We call �H the support hypergraph of H.

Lemma 4.2 Let H = (V;E) be a hypergraph with weights xe for all e 2 E to separate.

Let �H = (V; �E) be the support hypergraph of H. Let the connected components of �H be

H1 = (V1; E1); H2 = (V2; E2); : : : ; Hk = (Vk; Ek). Let S � V and Sj = S \ Vj for all

1 � j � k. If f(S) < 1 then there is some j such that f(Sj) < 1.

Proof : We assume that k � 2, since if k = 1 we have S1 = S and the theorem holds.

Now assume to the contrary that f(Sj) � 1 for all 1 � j � k. Then

f(S) = jSj �
X
e2E

max(je \ Sj � 1; 0)xe

=
kX

j=1

24jSj j � X
e2Ej

max(je \ Sjj � 1; 0)xe

35
=

kX
j=1

f(Sj) � k � 2;

a contradiction. 2

Thus we may further con�ne our search to within single connected components. This is

just a generalization of proposition 1 of [41] to hypergraphs.

Lemma 4.3 Let H = (V;E) be a hypergraph with weights xe for all e 2 E to separate.

Let �H = (V; �E) be the support hypergraph of H. Let A;B;C be a partition of V and

EA; EB be a partition of �E such that jCj = 1, EA = fe 2 �E : e � (A [ C)g and
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EB = fe 2 �E : e � (B [ C)g. If S � V such that f(S) < 1 then f(S \ (A [ C)) < 1

or f(S \ (B [ C)) < 1.

Proof : Assume f(S \ (A [ C)) � 1 and f(S \ (B [ C)) � 1. Then

f(S) = jSj �
X
e2E

max(je \ Sj � 1; 0)xe

= jS \ (A [ C)j+ jS \ (B [ C)j � jS \ Cj

�
X
e2EA

max(je \ Sj � 1; 0)xe �
X
e2EB

max(je \ S)� 1; 0)xe

= f(S \ (A [ C)) + f(S \ (B [ C))� jS \ Cj

� f(S \ (A [ C)) + f(S \ (B [ C))� 1 � 1

a contradiction. 2

One may therefore separately consider the subhypergraphs (A[C;EA) and (B[C;EB).

By simple induction it may be shown that the search for violations may be con�ned to the

biconnected components of �H. Suppose t 2 C (i.e., t is an articulation point). Then t

can be congested initially, but uncongested within (A [ C;EA) and/or (B [ C;EB). If so,

the reduction steps can be applied recursively. The subhypergraphs that remain after all

reductions have been performed are called congested components. Without loss of generality,

we will assume in the sequel that we are solving the separation problem on a single congested

component Hj = (Vj ; Ej). Appendix A presents an algorithm that �nds the biconnected

components of a hypergraph in linear time.

These reductions are repeated every time the deterministic 
ow formulation deletes a

terminal t. Deleting one or more terminals can produce opportunities for further reduction

of the component.

4.1.2.3 Heuristics

We use two very quick heuristics that locate cycles that are integral as well as cycles that

are nearly integral (i.e., integral except for a single fractional edge). The �rst procedure
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uses depth-�rst traversal over all edges e 2 E for which xe = 1. Any terminal that is visited

more than once implies a cycle that can be read o� the stack. During this walk, the integral

edges traversed are recorded, yielding the \integrally connected components". Although

enumerating all cycles in this way could take exponential time, this seldom happens in

practice due to the combined e�ects of constraints (3.3), (4.4) and fractional edges. This

problem is avoided by terminating the traversal after some limited number of cycles have

been discovered. Nearly integral cycles are discovered by checking each fractional edge e 2 E

(i.e., 0 < xe < 1) against each integrally connected component. Any fractional edge having

two or more terminals in common with a single integrally connected component represents

a violated subtour that is \nearly integral."

The reductions are then applied, yielding a set of congested components Hj = (Vj ; Ej).

If a congested component is small (e.g. jVj j � 10), then it is reasonable to completely

enumerate all subsets of Vj. On larger components we enumerate small-cardinality subsets.

The maximum cardinality checked is a decreasing function of jVj j.

If no violations have yet been discovered within Hj = (Vj ; Ej), we apply a method that

heuristically reduces the hypergraph Hj to an undirected graph �Hj and then apply Padberg

and Wolsey's method [41] directly. The reduction is as follows: let e 2 Ej . Let ke = jej � 1.

Let �Te be any set of ke edges from f(s; t) 2 e� eg that forms a spanning tree for e. Assign

each of these edges weight xe. Taking the union of the �Te for all e 2 Ej we obtain a weighted

multigraph. By merging equivalent edges and summing their weights we obtain a weighted

graph to which we can apply the method [41]. This method is heuristic in that violations

will be detected or not based upon the particular choices of spanning tree for each full set.

Lacking a better way to proceed, we arbitrarily choose minimum spanning trees.

Finally, the deterministic 
ow formulation is applied to each congested component for

which no violations have been found.



4.1. Branch-and-Cut Procedure 78

4.1.2.4 Constraint Strengthening

To obtain stronger constraints we clean up every subtour violation S by performing all of the

reduction steps of Section 4.1.2.2 (removal of uncongested terminals, connected components,

biconnected components, etc.) on the subhypergraph induced by S. Occasionally this will

split a single \maximally violated" subtour into 2 or more subtours that are lesser violations

but stronger constraints. This is done only for constraints discovered by the deterministic


ow formulation | constraints discovered by the various heuristics seldom change during

this process.

4.1.3 Implementation Details

This section presents some implementation details of the branch-and-cut procedure.

4.1.3.1 Constraint Pool

Constraints for the problem are kept in a constraint pool. Conceptually, every LP problem

is solved over all of the constraints in the pool. For e�ciency, however, the LP solver works

with only a subset of these constraints at one time. Whenever a new LP solution x is

obtained, the pool is scanned for constraints that x violates. All such constraints are added

to the LP and the process iterates until all constraints in the pool are satis�ed. Nothing is

deleted from the LP tableaux until this happens. We count this as one LP in the empirical

data | even though the LP solver may be invoked several times. There are two reasons for

this: What we really want to count is optimize/separate iterations. Also the LP tableaux

itself could serve as the pool, although less e�ciently.

When a suitable fraction of the constraints in the LP tableaux have become slack, they

are deleted from the LP but remain in the constraint pool for some time. Subsequent LP

solutions may cause such constraints to be reused if violated again. Keeping only binding

constraints in the LP tableaux decreases total LP solution time (including pool overhead)

by about ten fold on most medium to large problems.
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Constraints are deleted from the pool based on a measure of their e�ectiveness, which

is inversely proportional to the product of a constraint's size and the number of iterations

over which it has remained slack. The least e�ective constraints are deleted until su�cient

space has been reclaimed for newly generated constraints. New constraints are given several

iterations of grace time before they become elligible for deletion. The total size of the pool

is maintained at a level that is proportional to the largest LP tableaux seen so far. This

level is only a target, and may be exceeded if necessary.

A hash table permits duplicate constraints to be discovered quickly as new constraints

are added. Each constraint in the pool also has a reference count indicating the number

of inactive nodes for which the constraint is binding. Constraints with non-zero counts

are never deleted. Without this protection, processing for the current node could undo

previous progress made on inactive nodes and termination of the algorithm would no longer

be guaranteed.

4.1.3.2 Node Processing

Processing of a node j involves iterating the LP solver and the separation algorithms. This

iteration terminates when any of the following conditions is achieved:

1. The LP is infeasible.

2. The LP objective meets or exceeds the upper bound.

3. The LP objective exceeds that of some other node k.

4. The separation algorithms �nd no violated constraints.

In the �rst two cases the node is discarded. In the third case the node is set aside and

processing is begun (or resumed) on node k instead. Section 4.1.3.5 below explains this in

more detail. In the �nal case the LP solution x is either integral or fractional. If x is integral

we record x as the best integer feasible solution seen so far, and discard node j. If x is
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fractional, we must choose a fractional variable xe to branch on and replace node j with the

two new nodes that result from further restricting node j's problem with constraints xe = 0

and xe = 1, respectively. Note that either (or both) of these new nodes might actually be

discarded immediately if they are already known to be infeasible or suboptimal.

4.1.3.3 Selection of Branch Variables

When node processing terminates with a fractional solution, one of the variables xe having

a fractional value must be chosen for branching. The node is then replaced with two new

nodes: one restricting xe = 0, the other restricting xe = 1. Since the number of nodes and

number of fractional variables are typically both small, brute force is used to choose the

best fractional variable to branch on.

Let e 2 E such that xe is fractional. Let Z
0
e and Z1

e be the LP objectives obtained by

adding the constraints xe = 0 and xe = 1 correspondingly, to the current problem. The

variable xe that maximizes Ze = min(Z0
e ; Z

1
e ) is used as the branch variable.

Let Zmax be the best Ze seen so far. If Z0
e � Zmax then there is no need to compute

Z1
e . Similarly, if Z1

e � Zmax then there is no need to compute Z0
e . Since small changes in xe

tend to correlate well with small increases in the objective, some advantage can be gained

by computing Z0
e �rst if 0 < xe � 1=2, and otherwise computing Z1

e �rst.

Suppose Z0
e is infeasible or exceeds the curent upper bound. Then it is possible to �x

xe = 1 in the current node and continue checking the remaining fractional variables. In

similar fashion we can �x xe = 0 if Z1
e is infeasible or exceeds the upper bound. If for

some fractional xe both Z0
e and Z1

e are either infeasible or exceed the upper bound, then

no further variables need be tested | the node can be discarded.

It costs virtually nothing to check if any of these LP solutions is an integer feasible

solution that improves upon the current upper bound. If so, the solution is recorded and

the upper bound updated.
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4.1.3.4 Node Selection

When a new node must be selected for processing, the best node �rst strategy is used. That

is, the pending node having the lowest objective value is chosen. Although this strategy

can require an exponential amount of memory in the worst case, this has not happened in

practice due to the quality of the lower bound.

We do not record an LP basis for each node, only two bit vectors indicating which

variables are �xed, and if so the value to which they are �xed | 0 or 1. Saving an entire

LP basis for each node consumes substantially more memory. The loss of speed caused by

beginning (or resuming) the processing of each node with a suboptimal basis appears to be

a negligible percentage of the run time.

4.1.3.5 Node Preemption

Problems requiring several nodes sometimes trigger a severe ine�ciency in naive branch-and-

cut algorithms. Consider what happened to node 4 in the example problem of Section 4.1.1.

A large number of expensive separate/optimize iterations (87 in this small example) were

executed on node 4, raising its objective from 1:75 to 1:9. Unfortunately, most of this e�ort

was for naught since node 4 was eventually cut o� by node 3 at an objective value of 1:84.

In fact, all iterations beyond those needed to achieve a node 4 objective value of 1:83 (the

optimal solution) are wasted e�ort.

This happens quite often unless steps are taken to prevent it. When constraint gen-

eration for the current node j has increased its objective value Zj to the point where it

is no longer the best node, then we preempt the processing of node j. That is, whenever

some other node k has Zk < Zj, we preempt processing of node j and begin (or resume)

processing of node k. This keeps the computational e�ort focused on improving the global

lower bound.

After generating some good constraints it is not unusual to process several nodes in

turn (each preempted by the next) before encountering a node that resumes constraint
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generation. The e�ect is to re-solve the LP for each of these nodes using the recently

discovered constraints.

4.2 Empirical Results

A large number of problem instances were attempted (1501). Optimal Euclidean and rec-

tilinear Steiner minimal trees were obtained for every instance. All computations reported

here were performed on a 125 MHz Sparc 20 with 256 megabytes of memory. All CPU times

are reported in seconds. All LPs were solved using CPLEX version 4.0. All rectilinear FSTs

were generated using the Salowe-Warme algorithm [49]. All Euclidean FSTs were generated

using the Winter-Zachariasen algorithm [62].

We solved problem sets from the literature, including those of Soukup and Chow [52],

and all of the problems from Beasley's OR-library [3, 2] having 1000 or fewer terminals.

Because the OR-library problems jump directly from 100 points to 250 we included 15

random problem instances each of 110; 120; : : : ; 240 points to �ll in the gaps in our plots.

We also included a more thorough study of random instances including both medium sized

problems (50 instances each at 100; 200; 300; 400 and 500 terminals), and smaller problems

(100 problems each of sizes 15; 20; 25; 30; 35; 40; 45 and 50 points. In all the study contains

1501 problems ranging in size from 3 to 1000 terminals | all of which were solved to proven

optimality as both Euclidean and rectilinear instances. Solving all 3002 problems required

almost 63 CPU days of computation.

Figures 4.10 through 4.13 plot various execution statistics for FST generation: Fig-

ure 4.10 gives a scatter plot of Euclidean and rectilinear FST generation time versus number

of terminals. Figure 4.11 plots average EFST and RFST generation time versus number of

terminals, with minimum and maximum ranges shown. Note that the Winter-Zachariasen

EFST generator is signi�cantly more costly than the Salowe-Warme RFST generator, at

least for problem sizes up to 1000 terminals. The plots suggest that these roles might

reverse beyond about 1500 terminals. Figure 4.12 gives a scatter plot of both EFST and
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RFST generation times versus the number of FSTs generated. Figure 4.13 plots the number

of FSTs generated versus the number of terminals. For the uniformly distributed random

data in this computational study, these appear to be essentially linear functions, with rec-

tilinear averaging about 4n FSTs, and Euclidean averaging about 2:7n FSTs. For both

the Euclidean and rectilinear problems, point sets are known that give rise to much larger

numbers of FSTs.

Figures 4.14 through 4.19 plot various execution statistics for FST concatenation: Fig-

ures 4.14 and 4.15 give scatter plots of the FST concatenation times versus number of

terminals for the Euclidean and rectilinear cases, respectively. Figures 4.16 and 4.17 scatter

plot the same data, but instead as a function of the number of FSTs. Figure 4.18 over-

lays both plots. There appears to be very little di�erence in the way that Euclidean and

rectilinear concatenation times are distributed when viewed this way. This suggests that

the sole explanation for EFST concatenation being easier might be that fewer FSTs are

normally obtained in Euclidean problems. Figure 4.19 plots the average EFST and RFST

concatenation times as a function of the number of terminals.

Figures 4.20 through 4.25 plot various execution statistics for total SMT computation

time: Figures 4.20 and 4.21 give scatter plots of total SMT computation time versus num-

ber of terminals for the Euclidean and rectilinear cases, respectively. Figures 4.22 and 4.23

scatter plot the same data, but instead as a function of the number of FSTs. Figure 4.24

overlays both plots. Finally, Figure 4.25 plots average SMT computation time with min-

imum and maximum ranges for both the Euclidean and rectilinear problems. Although

Euclidean SMTs are more expensive for small numbers of points, they appear to become

less costly above about 900 terminals.

See Appendix B for a tabulation of the speci�c computational details of each OR-library

problem instance solved.



4.2. Empirical Results 84

0.01

0.1

1

10

100

1000

10000

100000

1e+06

0 100 200 300 400 500 600 700 800 900 1000

C
P

U
 S

ec
on

ds

Terminals

EFST Gen Time
RFST Gen Time

Figure 4.10: Scatter plot of FST generation time vs. number of terminals.
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Figure 4.11: Plot of min/avg/max FST generation time vs. number of terminals.
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Figure 4.12: Scatter plot of FST generation time vs. number of FSTs generated.
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Figure 4.13: Plot of number of FSTs vs. number of terminals.
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Figure 4.14: Scatter plot of Euclidean FST concatenation time vs. number of

terminals.
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Figure 4.15: Scatter plot of rectilinear FST concatenation time vs. number of

terminals.
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Figure 4.16: Scatter plot of Euclidean FST concatenation time vs. number of

FSTs.
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Figure 4.17: Scatter plot of rectilinear FST concatenation time vs. number of

FSTs.
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Figure 4.18: Scatter plot of EFST and RFST concatenation time vs. number of

FSTs.
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Figure 4.19: Plot of FST min/avg/max concatenation time vs. number of

terminals.
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Figure 4.20: Scatter plot of Euclidean SMT total CPU time vs. number of

terminals.
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Figure 4.21: Scatter plot of rectilinear SMT total CPU time vs. number of

terminals.
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Figure 4.22: Scatter plot of Euclidean SMT total CPU time vs. number of FSTs.
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Figure 4.23: Scatter plot of rectilinear SMT total CPU time vs. number of FSTs.
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Figure 4.24: Scatter plot of ESMT and RSMT total CPU time vs. number of

FSTs.
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Figure 4.25: Plot of min/avg/max total CPU time vs. number of terminals.
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Two problems required 19 branch-and-cut nodes, eight problems needed 9 to 15 nodes.

All other problems required less than 8 branch-and-cut nodes. Over 92% of the problems

obtained the optimal solution at the root node, with no branching.

The lower bound computed at the root node is extremely tight. Only 35 of the problems

exceeded a gap of 0.1% | of these 35 problems only three had 100 terminals or more. The

worst was a 25 terminal problem with a gap of 1.12257%. The gap was zero for almost 88%

of the problems.

The problems that consume the most CPU time for a given number of terminals generally

spend that time doing large numbers of constraint generation iterations that improve the

objective value only minutely | improvements of less than one part in 109 per iteration are

common in such circumstances. In Section 5.2 we propose a method that should greatly

speed solution when convergence becomes this slow.

Warme, Winter and Zachariasen [58] present additional computational experience that

combines the new FST concatenation algorithm presented here with state-of-the-art Eu-

clidean [62] and rectilinear [64] FST generators. The computational study presented there

includes instances from the TSPLIB problem set [46], as well as some pathological Euclidean

and rectilinear instances. In that study, optimal Euclidean and rectilinear solutions were

obtained for instances as large as 2392 points (TSPLIB instance pr2392).

Figure 4.26 presents the solution for a 1000 point problem (instance 1 from the OR-

library estein1000.txt �le).

Finally, to show that the method can handle even larger problems, we also solved a

single 2000 terminal Euclidean instance obtained by combining problems 1 and 2 from the

1000 point OR-library problem set. See Figure 4.27 for a plot of the optimal solution.
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Figure 4.26: A rectilinear Steiner minimal tree for 1000 terminals. (Problem 1

from OR-library estein1000.txt �le.)
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Figure 4.27: A Euclidean Steiner minimal tree for 2000 terminals. (Problems 1

and 2 combined from OR-library estein1000.txt �le.)



5
Future Work

This chapter presents some ideas for future research that may improve upon the results

presented here.

5.1 New Facet Classes

One of the best ways of improving a branch-and-cut method such as this is to identify major

new classes of facet-de�ning inequalities. There are a number of ways to achieve this.

� Analyze numerous fractional solutions until a pattern is discovered.

� Obtain all facets of the polytope for small n. Analyze those that are unrecognized

until a pattern is discovered.

Signi�cant work has already been directed at the second method, resulting in complete

lists of all facets of STHGP(n) for 2 � n � 5. Enumeration of STn was done using a simple

recursive C program. All facet enumeration computations were done using Christof and

Loebel's porta code, which uses Fourier-Motzkin elimination [14] to obtain the convex hull

as a set of linear equations and inequalities. We assume for the sake of concreteness that

V = f0; 1; : : : ; n� 1g. Suppose edge e = f1; 3; 5g. For conciseness we write xe as x135.

95
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There are a large number of facet-de�ning inequalities. To conserve space we partition

them into equivalence classes. For each class we present only the member count and one

representative member inequality. Two inequalities are members of the same class if and

only if they are identical under some permutation of the vertices.

STHGP(2) consists of the single point x01 = 1. There are no facets.

STHGP(3) has 4 hyperedges, 4 extreme points, and 4 facets. The facet classes are:

� (3) two-terminal subtours,

� (1) x012 � 0.

STHGP(4) has 11 hyperedges, 29 extreme points, and 22 facets. The facet classes are:

� (6) two-terminal subtours,

� (4) three-terminal subtours,

� (6) x01 � 0,

� (4) x012 � 0,

� (1) x0123 � 0,

� (1) x012 + x013 + x023 + x123 + x0123 � 1.

The �rst two classes are subtours, the next three classes are non-negativity constraints, and

the �nal class is a single clique constraint.

STHGP(5) has 26 hyperedges and 311 extreme points and 172 facets. The facet classes

are:

� (10) two-terminal subtours,

� (10) three-terminal subtours,

� (5) four-terminal subtours,
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� (10) x01 � 0,

� (10) x012 � 0,

� (5) x0123 � 0,

� (1) x01234 � 0,

� (30) x01 + x04 + x14 + x012 + x013 + 2x014 + x023 + x024 + x034 + x123

+2x124 + 2x134 + x234 + 2x0123 + 3x0124 + 3x0134 + 2x0234 + 2x1234

+3x01234 � 3,

� (20) x01 + x04 + x14 + x012 + 2x013 + 2x014 + x023 + x024 + 2x034 + x123

+x124 + 2x134 + x234 + 2x0123 + 3x0124 + 3x0134 + 2x0234 + 2x1234

+3x01234 � 3,

� (10) x01 + x02 + x03 + x04 + x12 + x13 + x14 � x0234 + x1234,

� (5) x01 + x02 + x03 + x04 � x1234,

� (5) x012 + x013 + x023 + x123 + x0123 + x0124 + x0134 + x0234 + x1234 + x01234 � 1,

� (10) x012 + x013 + x014 + x0123 + x0124 + x0134 + x0234 + x1234 + x01234 � 1,

� (1) x012 + x013 + x014 + x023 + x024 + x034 + x123 + x124 + x134 + x234

+2x0123 + 2x0124 + 2x0134 + 2x0234 + 2x1234 + 2x01234 � 2,

� (30) x01 + x012 + x013 + 2x014 + x024 + x034 + x124 + x134

+2x0123 + 2x0124 + 2x0134 + x0234 + x1234 + 2x01234 � 2,

� (10) x01 + x012 + x013 + x014 + x023 + x024 + x034 + x123 + x124 + x134

+x234 + 2x0123 + 2x0124 + 2x0134 + x0234 + x1234 + 2x01234 � 2.

The n = 6 case poses an enormous computational e�ort, which is underway. As of this

writing, 415 classes representing 311738 facets have been identi�ed.

In Table 5.1 we summarize the basic properties of STHGP(n) for small n.
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n m Extreme Points Facets

2 1 1 0

3 4 4 4

4 11 29 22

5 26 311 172

6 57 4447 � 311738

7 120 79745

8 247 1722681

9 502 43578820

10 1013 1264185051

Table 5.1: Properties of STHGP(n).

5.2 Early Branching

Problems that take excessive time to solve do not usually need an extraordinary number

of branch-and-bound nodes. Normally it is the constraint generation process that takes so

long to converge. When this happens it is possible to terminate constraint generation for

the node and branch instead. This usually achieves a dramatic decrease in total solution

time. The danger, however, is that the number of nodes can explode if branching is begun

too soon. Good heuristics are needed for monitoring the convergence rate and deciding

when to branch.

During periods of slow convergence it is also possible to begin testing the branching

behaviour of each of the variables. One variable per iteration could be tested, in some most-

promising-�rst heuristic order until a good variable is found or the convergence becomes

extremely slow.

This is an obvious candidate for parallel execution. While one processor is optimizing

the main LP, several others can be optimizing various slightly di�erent subproblems. In each

case the LP tableaux is identical | only the variable bounds are changed. Synchronization

would be needed only once per iteration when the variable branching results would be



5.3. Steiner Problem in Graphs 99

gathered from the other processors, and newly generated constraints distributed to the

other processors.

5.3 Steiner Problem in Graphs

A number of researchers have expressed interest in the problem of generating FSTs for the

Steiner problem in graphs. It is not yet known whether this great advance in the geometric

problems will transfer to the graph problem. There is also interest in the Steiner problem

in directed graphs, since this problem is of considerable importance to the design of large

communication networks.

5.4 New Formulations

For the Steiner problem in graphs it is known that a tighter formulation is obtained by

using directed edges and identifying a unique terminal as the root vertex, although this

doubles the number of problem variables. It is likely that a directed formulation of MST

in hypergraph would also be tighter, although in the FST concatenation application this

would more than triple the number of solution variables on average.



6

Conclusions

The method of computing Steiner minimal trees via FST generation and concatenation

is currently the most e�cient approach in practice. The FST generation processes for

both the Euclidean and rectilinear metric were reviewed in substantial detail. The FST

concatenation phase, however, has been the major bottleneck with this approach.

A new algorithm for FST concatenation was presented that signi�cantly reduces this

bottleneck. The new algorithm reduces FST concatenation to the problem of �nding a

minimum weight spanning tree in a hypergraph | which was shown to be strongly NP-

complete. The MST in hypergraph problem was formulated as an integer program and

the polyhedral theory of this problem was developed su�ciently to prove that all of the

constraints in this integer programming formulation are facet-de�ning. The integer program

is solved using a new branch-and-cut algorithm whose signi�cant details were presented.

Empirical results show that on both rectilinear and Euclidean Steiner minimal tree

problems the new FST concatenation algorithm vastly out-performs all other algorithms

in existence. Its nearest rectlinear competitors seem to be Martin and Koch [34] (up to

40 terminals), and F�o�meier and Kaufmann [16] (70 terminals, but at least one instance

of 100 terminals). For the Euclidean problem, Winter and Zachariasen [62] is the closest

competitor at 150 terminals.
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Provided a suitable FST generator is available, this method is applicable to other dis-

tance metrics and arbitrary dimensions | even the Steiner problem in graphs. In light of

its great success on the rectilinear and Euclidean problems, it will be interesting to see how

well the method works on the graph problem.

Despite the advance achieved in the computation of Steiner trees, it is likely that the

MST in hypergraph results presented here will be the more important and lasting contri-

bution. This is due to the inherent generality of hypergraphs and hypertrees as compared

to Steiner trees.
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Reduction Algorithms

This appendix presents two algorithms used by the problem reductions of Section 4.1.2.2.

Both algorithms operate on a hypergraph H = (V;E), and assume that for every t 2 V ,

the set Et = fe 2 E : t 2 eg has been precomputed. Note that this is easily done in

O(jV j+ jEj+ k) time, where k =
P

e2E jej.

Given a hypergraph H = (V;E) with edge weights xe for all e 2 E, Algorithm A.1

computes the congested subhypergraph Ĥ = (V̂ ; Ê). See Figure A.1. The �rst loop requires

O(jEj) time, and the second requires O(jV j + k) time. The �nal loop runs at most jV j

times since each terminal is pushed onto the stack once at most. The loop for every e 2 E

runs at most k times. The variable ke is one less than the number of undeleted vertices

in e, and ke decrements to zero when only one vertex of e remains. This happens at most

once per edge. When this happens, edge e is removed by the statement DE = DE [ feg,

which runs at most jEj times. The innermost loop runs at most k times total: it decreases

the congestion level of the sole remaining undeleted vertex v 2 e. Therefore this algorithm

runs in O(jV j + jEj + k) time and space. Correctness follows from two facts: that t 2 V

is deleted at most once (and only after bt � 1); and that edges are only deleted when they

have one vertex left.
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DV = DE = ;; S = emptystack
/* DV = vertices to discard, DE = edges to discard. */

for every e 2 E do

if xe > 0 then

ke = jej � 1
else

ke = 0
endif

end

for every t 2 V do

bt =
P

e2Et

xe

if bt � 1 then

push t onto stack S; DV = DV [ ftg
endif

end

while stack S is not empty do

pop t from stack S; bt = 0
for every e 2 Et do

if ke > 0 then

ke = ke � 1
if ke � 0 then

DE = DE [ feg
for every v 2 e such that bv > 0 do /* only one such v. */

bv = bv � xe
if bv � 1 and v =2 DV then

push v onto stack S; DV = DV [ fvg
endif

end

endif

endif

end

end

V̂ = V nDV ; Ê = fe \ V̂ : e 2 E nDE and je \ V̂ j � 2g; Ĥ = (V̂ ; Ê)

Figure A.1: Algorithm A.1 | compute congested subgraph.

Cockayne and Hewgill [10] propose to solve a problem equivalent to �nding the bicon-

nected components of a hypergraph by constructing a conventional graph G containing edge

(i; j) if there is some hyperedge containing both vertices i and j. Finding the biconnected

components of G then yields the biconnected components of the original hypergraph in a

direct way.
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Algorithm A.2 in Figures A.2 and A.3 is a slight modi�cation of the standard bicon-

nected components algorithm for conventional graphs. The modi�cation permits it to

operate directly on a hypergraph, however, which is superior in that it does not require

the construction of a separate graph data structure. Algorithm A.2 is easily shown to run

in O(jV j + jEj + k) time and space. Its correctness is shown using the same argument as

for the standard algorithm for conventional graphs, by simply considering chains instead of

paths.

bcc(V,E)

for every t 2 V do

DFSt = 0; BACKt = 0

end

S = emptystack; DE = ;; j = 0

/* DE = edges traversed */

for every t 2 V do

if DFSt � 0 then

traverse (t)

endif

end

end bcc

Figure A.2: Algorithm A.2 | biconnected components of hypergraph.
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traverse (v)

j = j + 1; DFSv = j; BACKv = j

for every e 2 Ev do

if e 62 DE then

push e onto stack S; DE = DE [ feg

endif

for every w 2 e do

if DFSw � 0 then

traverse (w)

if BACKw � DFSv then

BE = ;; BV = ;

repeat

pop e2 from stack S; BE = BE [ fe2g; BV = BV [ e2

until e2 = e

output component (BV;BE)

else if BACKw < BACKv then

BACKv = BACKw

endif

else if BACKw < BACKv then

BACKv = BACKw

endif

end

end

end traverse

Figure A.3: Subroutine traverse of Algorithm A.2.



B
Tabulated OR-Library Results

This appendix presents a complete tabulation of the computational details for each OR-

library problem instance solved.

In tables B.1 through B.9, N is the number of terminals (and problem instance),M is the

number of FSTs. Z is the length of the optimal RSMT. The \Z Root" column is the �nal LP

objective value of the root node. The \% Gap" column is: 100(Z�Z Root)=Z. \Nds" is the

number of branch-and-bound nodes required | 1 node indicates that optimality was proven

at the root node (without branching). \LPs" is the total number of optimize/separate

iterations that were required. The \IRow" column is the initial number of constraints. The

\RTight" column is the number of binding constraints in the �nal LP tableaux for the root

node.
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N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

5 (1) 8 1.6643993 1.664399 0.00000 1 1 12 9 0.14 0.03 0.17
6 (2) 11 1.5004998 1.500500 0.00000 1 1 17 9 0.44 0.02 0.46
7 (3) 6 2.0776711 2.077671 0.00000 1 1 8 8 0.53 0.02 0.55
8 (4) 7 2.1387890 2.138789 0.00000 1 1 9 9 0.47 0.02 0.49
6 (5) 10 2.0440525 2.044052 0.00000 1 1 14 11 0.39 0.02 0.41
12 (6) 20 2.1842047 2.184205 0.00000 1 5 27 26 2.36 0.06 2.42
12 (7) 23 2.2052928 2.205293 0.00000 1 1 29 15 1.96 0.02 1.98
12 (8) 19 2.1777945 2.177795 0.00000 1 2 27 25 2.18 0.05 2.23
7 (9) 30 1.5594229 1.559423 0.00000 1 1 29 8 0.90 0.03 0.93
6 (10) 24 1.5987517 1.598752 0.00000 1 1 22 10 0.54 0.03 0.57
6 (11) 7 1.2741137 1.274114 0.00000 1 1 11 9 0.11 0.02 0.13
9 (12) 14 1.6483376 1.648338 0.00000 1 1 19 12 1.63 0.02 1.65
9 (13) 12 1.2733761 1.273376 0.00000 1 1 15 14 0.80 0.03 0.83
12 (14) 16 2.2049159 2.204916 0.00000 1 1 19 13 0.58 0.02 0.60
14 (15) 15 1.2304077 1.230408 0.00000 1 1 18 17 0.54 0.02 0.56
3 (16) 2 1.1667809 1.166781 0.00000 1 1 4 4 0.04 0.02 0.06
10 (17) 9 1.6427922 1.642792 0.00000 1 1 11 11 0.54 0.02 0.56
62 (18) 237 3.8176188 3.817619 0.00000 1 5 242 147 498.95 0.42 499.37
14 (19) 37 1.7064572 1.706457 0.00000 1 4 41 35 3.54 0.09 3.63
3 (20) 3 1.0396152 1.039615 0.00000 1 1 6 4 0.06 0.02 0.08
5 (21) 17 1.8181793 1.818179 0.00000 1 1 16 6 0.24 0.02 0.26
4 (22) 4 0.5032862 0.503286 0.00000 1 1 7 5 0.10 0.02 0.12
4 (23) 5 0.5130289 0.513029 0.00000 1 1 8 5 0.10 0.01 0.11
4 (24) 5 0.2528201 0.252820 0.00000 1 1 8 5 0.07 0.02 0.09
3 (25) 3 0.1989685 0.198968 0.00000 1 1 6 4 0.07 0.01 0.08
3 (26) 3 0.1243470 0.124347 0.00000 1 1 6 4 0.08 0.01 0.09
4 (27) 4 1.1781697 1.178170 0.00000 1 1 7 6 0.08 0.02 0.10
4 (28) 5 0.2044153 0.204415 0.00000 1 1 8 5 0.06 0.02 0.08
3 (29) 3 1.4659774 1.465977 0.00000 1 1 6 4 0.05 0.02 0.07
12 (30) 140 1.0198307 1.018917 0.08958 1 1 79 14 41.03 0.15 41.18
14 (31) 21 2.3321736 2.332174 0.00000 1 1 28 21 0.85 0.03 0.88
19 (32) 84 2.8142361 2.814236 0.00000 1 3 87 50 13.67 0.11 13.78
18 (33) 39 2.2258049 2.225805 0.00000 1 3 49 33 10.84 0.07 10.91
19 (34) 38 2.1381261 2.138126 0.00000 1 2 46 37 10.97 0.08 11.05
18 (35) 39 1.3554457 1.355446 0.00000 1 1 51 35 8.34 0.05 8.39
4 (36) 6 0.8789125 0.878912 0.00000 1 1 10 7 0.06 0.01 0.07

8 (37) 11 0.7660261 0.766026 0.00000 1 2 14 12 0.68 0.04 0.72
14 (38) 18 1.4248159 1.424816 0.00000 1 1 21 17 0.79 0.03 0.82
14 (39) 13 1.4312456 1.431246 0.00000 1 1 15 15 0.67 0.02 0.69
10 (40) 29 1.4179883 1.417988 0.00000 1 3 34 37 3.03 0.08 3.11
20 (41) 28 1.9767196 1.976720 0.00000 1 1 37 34 3.78 0.05 3.83
15 (42) 35 1.3152909 1.315291 0.00000 1 1 47 26 0.49 0.05 0.54
16 (43) 62 2.3307646 2.330765 0.00000 1 3 65 44 13.41 0.09 13.50
17 (44) 25 2.1869241 2.186924 0.00000 1 2 29 63 5.52 0.08 5.60
19 (45) 48 1.9309954 1.930995 0.00000 1 3 56 66 12.57 0.16 12.73
16 (46) 165 1.3660254 1.366025 0.00000 1 1 127 17 48.90 0.10 49.00

Table B.1: Euclidean results for Soukup and Chow problems.
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N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

5 (1) 8 1.87 1.870000 0.00000 1 1 19 8 0.06 0.02 0.08
6 (2) 10 1.64 1.640000 0.00000 1 1 18 7 0.06 0.02 0.08
7 (3) 9 2.36 2.360000 0.00000 1 1 15 8 0.07 0.02 0.09
8 (4) 12 2.54 2.540000 0.00000 1 1 21 13 0.06 0.03 0.09
6 (5) 10 2.26 2.260000 0.00000 1 1 18 7 0.06 0.02 0.08
12 (6) 22 2.42 2.420000 0.00000 1 2 35 15 0.09 0.04 0.13
12 (7) 22 2.48 2.480000 0.00000 1 1 35 13 0.10 0.03 0.13
12 (8) 21 2.36 2.360000 0.00000 1 3 35 17 0.09 0.04 0.13
7 (9) 24 1.64 1.640000 0.00000 1 1 84 8 0.09 0.02 0.11
6 (10) 16 1.77 1.770000 0.00000 1 1 45 10 0.07 0.03 0.10
6 (11) 8 1.44 1.440000 0.00000 1 1 16 9 0.06 0.02 0.08

9 (12) 19 1.80 1.800000 0.00000 1 1 42 10 0.07 0.03 0.10
9 (13) 14 1.50 1.500000 0.00000 1 1 28 10 0.08 0.03 0.11
12 (14) 12 2.60 2.600000 0.00000 1 1 13 13 0.07 0.02 0.09
14 (15) 22 1.48 1.480000 0.00000 1 2 40 31 0.10 0.06 0.16
3 (16) 2 1.60 1.600000 0.00000 1 1 4 4 0.05 0.01 0.06
10 (17) 11 2.00 2.000000 0.00000 1 1 15 13 0.07 0.02 0.09
62 (18) 126 4.04 4.040000 0.00000 1 4 223 149 1.31 0.24 1.55
14 (19) 35 1.88 1.880000 0.00000 1 2 120 43 0.12 0.07 0.19
3 (20) 4 1.12 1.120000 0.00000 1 1 10 4 0.06 0.01 0.07
5 (21) 11 1.92 1.920000 0.00000 1 1 26 6 0.08 0.02 0.10
4 (22) 5 .63 0.630000 0.00000 1 1 10 5 0.06 0.02 0.08
4 (23) 5 .65 0.650000 0.00000 1 1 10 5 0.05 0.01 0.06
4 (24) 6 .30 0.300000 0.00000 1 1 14 5 0.06 0.02 0.08
3 (25) 4 .23 0.230000 0.00000 1 1 10 4 0.05 0.01 0.06
3 (26) 3 .15 0.150000 0.00000 1 1 7 4 0.05 0.02 0.07
4 (27) 4 1.33 1.330000 0.00000 1 1 8 6 0.05 0.02 0.07
4 (28) 6 .24 0.240000 0.00000 1 1 12 5 0.06 0.02 0.08
3 (29) 4 2.00 2.000000 0.00000 1 1 10 4 0.05 0.01 0.06
12 (30) 52 1.10 1.100000 0.00000 1 4 219 25 0.14 0.07 0.21
14 (31) 25 2.59 2.590000 0.00000 1 1 49 15 0.10 0.02 0.12
19 (32) 64 3.13 3.130000 0.00000 1 2 215 78 0.26 0.09 0.35
18 (33) 51 2.68 2.680000 0.00000 1 3 141 37 0.17 0.09 0.26
19 (34) 75 2.41 2.410000 0.00000 1 2 241 39 0.42 0.08 0.50
18 (35) 72 1.51 1.510000 0.00000 1 2 244 61 0.38 0.09 0.47
4 (36) 3 .90 0.900000 0.00000 1 1 5 5 0.05 0.01 0.06
8 (37) 9 .90 0.900000 0.00000 1 1 15 13 0.07 0.02 0.09
14 (38) 14 1.66 1.660000 0.00000 1 1 18 18 0.08 0.03 0.11
14 (39) 14 1.66 1.660000 0.00000 1 1 18 18 0.07 0.03 0.10
10 (40) 18 1.55 1.550000 0.00000 1 2 37 22 0.09 0.05 0.14
20 (41) 30 2.24 2.240000 0.00000 1 2 51 37 0.11 0.06 0.17
15 (42) 39 1.53 1.530000 0.00000 1 1 215 31 0.15 0.05 0.20
16 (43) 68 2.55 2.550000 0.00000 1 3 302 41 0.30 0.11 0.41
17 (44) 31 2.52 2.520000 0.00000 1 2 57 58 0.14 0.07 0.21
19 (45) 80 2.20 2.200000 0.00000 1 4 380 59 0.32 0.33 0.65
16 (46) 24 1.50 1.500000 0.00000 1 1 17 17 0.08 0.03 0.11

Table B.2: Rectilinear results for Soukup and Chow problems.
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N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

10 (1) 23 2.0206738 2.020674 0.00000 1 1 26 16 0.81 0.03 0.84
10 (2) 12 1.6068682 1.606868 0.00000 1 1 16 15 0.34 0.03 0.37
10 (3) 20 2.2280743 2.228074 0.00000 1 2 27 17 0.55 0.05 0.60
10 (4) 14 1.7985963 1.798596 0.00000 1 2 19 17 0.76 0.04 0.80
10 (5) 13 1.6944333 1.694433 0.00000 1 1 18 17 0.40 0.03 0.43
10 (6) 23 2.3096026 2.309603 0.00000 1 1 29 17 3.22 0.04 3.26
10 (7) 23 2.2338586 2.233859 0.00000 1 2 29 19 0.80 0.04 0.84
10 (8) 15 2.1776829 2.177683 0.00000 1 2 21 19 2.37 0.04 2.41
10 (9) 34 1.9684782 1.968478 0.00000 1 9 34 26 1.42 0.11 1.53
10 (10) 17 2.0593317 2.059332 0.00000 1 1 23 18 0.74 0.04 0.78
10 (11) 32 1.9473221 1.947322 0.00000 1 2 33 22 0.96 0.05 1.01

10 (12) 12 1.7531237 1.753124 0.00000 1 1 16 14 0.36 0.02 0.38
10 (13) 17 1.7138867 1.713887 0.00000 1 1 24 17 0.35 0.03 0.38
10 (14) 27 1.9496522 1.949652 0.00000 1 4 34 26 1.16 0.07 1.23
10 (15) 26 1.6716456 1.671646 0.00000 1 1 29 20 1.09 0.05 1.14

20 (1) 51 3.0716427 3.071643 0.00000 1 2 57 38 13.88 0.07 13.95
20 (2) 40 2.8546314 2.854631 0.00000 1 2 49 46 4.90 0.08 4.98
20 (3) 53 2.4530918 2.453092 0.00000 1 2 54 54 9.37 0.08 9.45
20 (4) 46 2.4661165 2.466117 0.00000 1 4 56 46 12.18 0.10 12.28
20 (5) 51 2.9535470 2.953547 0.00000 1 5 55 51 12.41 0.11 12.52
20 (6) 33 3.1315695 3.131570 0.00000 1 2 41 40 3.50 0.07 3.57
20 (7) 39 3.0593002 3.059300 0.00000 1 2 47 41 9.14 0.07 9.21
20 (8) 51 3.3169861 3.316986 0.00000 1 4 58 43 10.58 0.09 10.67
20 (9) 31 3.1336342 3.133634 0.00000 1 2 40 37 2.20 0.06 2.26
20 (10) 55 3.0118726 3.011873 0.00000 1 4 67 80 6.24 0.15 6.39
20 (11) 59 2.3180526 2.318053 0.00000 1 3 64 47 4.72 0.08 4.80
20 (12) 47 2.6537453 2.653745 0.00000 1 2 58 44 11.31 0.09 11.40
20 (13) 38 3.0228482 3.022848 0.00000 1 2 49 41 2.40 0.08 2.48
20 (14) 39 2.9330086 2.933009 0.00000 1 1 49 37 7.43 0.06 7.49
20 (15) 34 2.7914795 2.791479 0.00000 1 2 42 34 4.73 0.07 4.80

Euclidean

N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

10 (1) 27 2.2920745 2.292075 0.00000 1 4 67 22 0.10 0.06 0.16
10 (2) 17 1.9134104 1.913410 0.00000 1 1 33 17 0.08 0.03 0.11
10 (3) 16 2.6003678 2.600368 0.00000 1 2 32 20 0.08 0.05 0.13
10 (4) 19 2.0461116 2.046112 0.00000 1 2 42 30 0.08 0.06 0.14
10 (5) 13 1.8818916 1.881892 0.00000 1 1 22 13 0.07 0.03 0.10
10 (6) 38 2.6540768 2.654077 0.00000 1 1 149 19 0.20 0.04 0.24
10 (7) 25 2.6025072 2.602507 0.00000 1 2 63 23 0.10 0.06 0.16
10 (8) 24 2.5056214 2.505621 0.00000 1 2 65 24 0.09 0.06 0.15
10 (9) 22 2.2062355 2.206236 0.00000 1 2 54 23 0.09 0.06 0.15
10 (10) 15 2.3936095 2.393610 0.00000 1 1 28 18 0.07 0.03 0.10
10 (11) 31 2.2239535 2.223953 0.00000 1 3 102 23 0.13 0.06 0.19
10 (12) 15 1.9626318 1.962632 0.00000 1 1 26 14 0.06 0.02 0.08
10 (13) 22 1.9483914 1.948391 0.00000 1 1 61 17 0.08 0.04 0.12
10 (14) 30 2.1856128 2.185613 0.00000 1 2 88 26 0.12 0.07 0.19
10 (15) 21 1.8641924 1.864192 0.00000 1 2 54 21 0.10 0.06 0.16

20 (1) 64 3.3703886 3.370389 0.00000 1 1 212 33 0.31 0.07 0.38
20 (2) 58 3.2639486 3.263949 0.00000 1 2 162 61 0.25 0.12 0.37
20 (3) 45 2.7847417 2.784742 0.00000 1 2 123 57 0.15 0.09 0.24
20 (4) 88 2.7624394 2.750218 0.44241 1 2 469 93 0.65 0.29 0.94
20 (5) 81 3.4033163 3.392034 0.33152 1 14 368 63 0.45 0.40 0.85
20 (6) 55 3.6014241 3.601424 0.00000 1 2 169 42 0.19 0.08 0.27
20 (7) 68 3.4934874 3.493487 0.00000 1 2 209 106 0.49 0.15 0.64
20 (8) 63 3.8016346 3.788557 0.34401 1 5 178 50 0.24 0.15 0.39
20 (9) 35 3.6739939 3.673994 0.00000 1 2 63 43 0.11 0.08 0.19
20 (10) 56 3.4024740 3.402474 0.00000 1 4 179 88 0.22 0.21 0.43
20 (11) 50 2.7123908 2.712391 0.00000 1 2 129 40 0.20 0.08 0.28
20 (12) 89 3.0451397 3.045140 0.00000 1 2 415 48 0.52 0.13 0.65
20 (13) 50 3.4438673 3.443867 0.00000 1 2 139 47 0.16 0.08 0.24
20 (14) 55 3.4062374 3.406237 0.00000 1 2 150 43 0.19 0.09 0.28
20 (15) 55 3.2303746 3.230375 0.00000 1 2 150 48 0.19 0.09 0.28

Rectilinear

Table B.3: Results for OR-library problems 10{20 points.
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N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

30 (1) 65 3.5787601 3.578760 0.00000 1 5 75 106 21.66 0.18 21.84
30 (2) 62 3.5766544 3.576654 0.00000 1 8 73 92 26.33 0.21 26.54
30 (3) 62 3.6568972 3.656897 0.00000 1 10 72 104 26.29 0.24 26.53
30 (4) 79 3.7114129 3.711413 0.00000 1 8 90 69 27.84 0.16 28.00
30 (5) 73 3.6138448 3.613845 0.00000 1 4 80 67 27.42 0.13 27.55
30 (6) 80 3.4974427 3.497443 0.00000 1 3 83 66 48.18 0.12 48.30
30 (7) 67 3.8136810 3.813681 0.00000 1 4 78 97 17.80 0.18 17.98
30 (8) 76 3.6858000 3.685800 0.00000 1 9 87 88 30.10 0.29 30.39
30 (9) 63 3.1809772 3.180977 0.00000 1 4 77 67 12.62 0.12 12.74
30 (10) 53 3.7189924 3.718992 0.00000 1 2 64 71 10.48 0.09 10.57
30 (11) 57 3.5901878 3.590188 0.00000 1 3 64 87 14.08 0.11 14.19

30 (12) 76 3.4239470 3.423947 0.00000 1 3 88 66 20.99 0.12 21.11
30 (13) 48 3.2224452 3.222445 0.00000 1 3 63 67 9.79 0.10 9.89
30 (14) 87 3.8532497 3.853250 0.00000 1 2 92 87 36.25 0.15 36.40
30 (15) 87 3.7718083 3.771808 0.00000 1 8 96 84 41.04 0.32 41.36

40 (1) 113 3.9283544 3.928354 0.00000 1 7 124 99 47.67 0.24 47.91
40 (2) 89 4.0668744 4.066874 0.00000 1 9 107 103 36.69 0.43 37.12
40 (3) 88 4.3845457 4.384546 0.00000 1 4 100 90 51.78 0.17 51.95
40 (4) 74 3.8531666 3.853167 0.00000 1 4 91 79 13.56 0.14 13.70
40 (5) 97 4.5432520 4.543252 0.00000 1 5 107 101 50.30 0.18 50.48
40 (6) 87 4.4151983 4.415198 0.00000 1 4 98 88 35.34 0.14 35.48
40 (7) 81 4.0319228 4.031923 0.00000 1 3 93 109 31.25 0.16 31.41
40 (8) 103 4.2734870 4.273487 0.00000 1 2 112 87 60.37 0.14 60.51
40 (9) 139 4.6224129 4.622413 0.00000 1 5 155 126 91.18 0.27 91.45
40 (10) 119 5.0832060 5.083206 0.00000 1 5 130 100 103.35 0.23 103.58
40 (11) 85 4.1399269 4.139927 0.00000 1 8 104 107 39.39 0.24 39.63
40 (12) 96 3.9078624 3.907862 0.00000 1 31 110 127 48.79 0.55 49.34
40 (13) 102 4.5604964 4.560496 0.00000 1 3 113 139 49.04 0.26 49.30
40 (14) 122 4.3578080 4.357808 0.00000 1 2 131 184 44.70 0.27 44.97
40 (15) 137 4.5075847 4.507585 0.00000 1 6 139 101 94.93 0.28 95.21

Euclidean

N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

30 (1) 106 4.0692993 4.069299 0.00000 1 3 402 80 0.53 0.20 0.73
30 (2) 112 4.0900061 4.089173 0.02037 1 21 470 85 0.66 1.25 1.91
30 (3) 98 4.3120444 4.312044 0.00000 1 3 363 75 0.68 0.18 0.86
30 (4) 94 4.2150958 4.215096 0.00000 1 7 350 93 0.46 0.23 0.69
30 (5) 76 4.1739748 4.173975 0.00000 1 4 213 95 0.37 0.22 0.59
30 (6) 128 3.9955139 3.995514 0.00000 1 4 615 93 0.76 0.26 1.02
30 (7) 94 4.3761391 4.376139 0.00000 1 3 442 96 0.60 0.18 0.78
30 (8) 100 4.1691217 4.169122 0.00000 1 4 441 122 0.83 0.29 1.12
30 (9) 70 3.7133658 3.713366 0.00000 1 3 174 132 0.24 0.20 0.44
30 (10) 68 4.2686610 4.268661 0.00000 1 2 171 95 0.32 0.12 0.44
30 (11) 107 4.1647993 4.164799 0.00000 1 5 502 127 0.79 0.39 1.18
30 (12) 79 3.8416720 3.841672 0.00000 1 2 224 87 0.32 0.13 0.45
30 (13) 92 3.7406646 3.740665 0.00000 1 6 337 74 0.41 0.24 0.65
30 (14) 140 4.2897025 4.289702 0.00000 1 2 703 251 1.36 0.54 1.90
30 (15) 128 4.3035576 4.303558 0.00000 1 12 864 83 0.75 0.77 1.52

40 (1) 122 4.4841522 4.484152 0.00000 1 3 384 120 0.75 0.22 0.97
40 (2) 128 4.6811310 4.681131 0.00000 1 6 510 118 0.76 0.35 1.11
40 (3) 117 4.9974157 4.997416 0.00000 1 3 354 139 0.80 0.25 1.05
40 (4) 90 4.5289864 4.528986 0.00000 1 3 220 113 0.47 0.20 0.67
40 (5) 160 5.1940413 5.181185 0.24752 4 26 860 109 1.51 2.51 4.02
40 (6) 123 4.9753385 4.975339 0.00000 1 3 467 143 0.70 0.32 1.02
40 (7) 126 4.5639009 4.563901 0.00000 1 5 494 112 0.76 0.28 1.04
40 (8) 122 4.8745996 4.874600 0.00000 1 7 412 100 0.83 0.36 1.19
40 (9) 166 5.1761789 5.176179 0.00000 1 4 716 201 1.70 0.81 2.51
40 (10) 163 5.7136852 5.713685 0.00000 1 4 850 114 1.33 0.30 1.63
40 (11) 126 4.6734214 4.673421 0.00000 1 11 358 242 0.69 0.67 1.36
40 (12) 115 4.3843378 4.384338 0.00000 1 9 383 106 0.69 0.54 1.23
40 (13) 125 5.1884545 5.188454 0.00000 1 3 424 113 0.68 0.26 0.94
40 (14) 141 4.9166952 4.916695 0.00000 1 2 456 237 0.87 0.38 1.25
40 (15) 158 5.0828067 5.082807 0.00000 1 3 635 185 1.01 0.41 1.42

Rectilinear

Table B.4: Results for OR-library problems 30{40 points.



111

N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

50 (1) 104 4.8366014 4.836601 0.00000 1 3 122 105 32.66 0.19 32.85
50 (2) 154 4.9484046 4.948405 0.00000 1 5 168 138 83.40 0.36 83.76
50 (3) 113 4.7471702 4.747170 0.00000 1 5 134 145 49.47 0.28 49.75
50 (4) 115 4.4690747 4.469075 0.00000 1 3 131 123 31.49 0.23 31.72
50 (5) 121 4.8648257 4.864826 0.00000 1 14 138 133 59.74 0.37 60.11
50 (6) 112 4.9234586 4.923459 0.00000 1 5 125 120 115.26 0.34 115.60
50 (7) 126 4.3613187 4.361319 0.00000 1 21 145 167 64.76 0.57 65.33
50 (8) 116 4.7027470 4.702747 0.00000 1 3 136 105 50.45 0.22 50.67
50 (9) 142 4.6760739 4.676074 0.00000 1 11 154 162 107.40 0.46 107.86
50 (10) 126 4.6277910 4.627791 0.00000 1 3 141 133 92.54 0.33 92.87
50 (11) 119 4.6693857 4.669386 0.00000 1 5 139 116 67.03 0.25 67.28

50 (12) 126 4.6732215 4.673222 0.00000 1 7 140 127 75.53 0.45 75.98
50 (13) 112 4.6564710 4.656471 0.00000 1 3 128 99 37.98 0.18 38.16
50 (14) 109 4.7098685 4.709869 0.00000 1 2 127 106 61.15 0.15 61.30
50 (15) 128 4.6079909 4.607991 0.00000 1 15 139 137 59.23 0.46 59.69

60 (1) 143 4.7740453 4.774045 0.00000 1 19 163 191 91.46 1.11 92.57
60 (2) 140 4.8129870 4.812987 0.00000 1 5 159 176 110.97 0.68 111.65
60 (3) 148 4.9458783 4.945878 0.00000 1 9 161 163 100.00 0.44 100.44
60 (4) 131 4.8461805 4.846181 0.00000 1 11 151 168 106.14 0.36 106.50
60 (5) 127 4.8355513 4.835551 0.00000 1 15 153 177 77.98 0.54 78.52
60 (6) 147 5.2504575 5.250458 0.00000 1 9 163 252 131.36 0.64 132.00
60 (7) 173 5.2142524 5.214252 0.00000 1 9 195 152 196.85 0.42 197.27
60 (8) 111 5.1173207 5.117321 0.00000 1 4 132 141 65.34 0.21 65.55
60 (9) 161 4.9086808 4.908681 0.00000 1 12 172 161 109.27 0.55 109.82
60 (10) 151 5.0587019 5.058702 0.00000 1 4 170 130 89.49 0.30 89.79
60 (11) 130 4.9327588 4.932759 0.00000 1 3 155 127 53.68 0.21 53.89
60 (12) 180 5.2924352 5.292435 0.00000 1 4 191 229 150.42 0.43 150.85
60 (13) 151 5.2663823 5.266382 0.00000 1 27 163 183 91.91 3.15 95.06
60 (14) 176 5.0235502 5.023550 0.00000 1 15 190 161 130.06 1.15 131.21
60 (15) 136 4.9670958 4.967096 0.00000 1 3 156 156 67.68 0.26 67.94

Euclidean

N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

50 (1) 172 5.4948660 5.494866 0.00000 1 10 728 164 1.69 0.99 2.68
50 (2) 186 5.5484245 5.548425 0.00000 1 16 797 151 1.48 0.89 2.37
50 (3) 190 5.4691035 5.469104 0.00000 1 4 926 165 1.75 0.86 2.61
50 (4) 141 5.1535766 5.153577 0.00000 1 7 403 147 0.93 0.35 1.28
50 (5) 158 5.5186015 5.518601 0.00000 1 9 591 136 1.33 0.46 1.79
50 (6) 183 5.5804287 5.580429 0.00000 1 16 874 154 1.54 1.59 3.13
50 (7) 190 4.9961178 4.996118 0.00000 1 19 832 139 1.72 1.47 3.19
50 (8) 121 5.3754708 5.375471 0.00000 1 4 338 123 0.86 0.30 1.16
50 (9) 167 5.3456773 5.343995 0.03146 1 6 689 304 1.28 1.23 2.51
50 (10) 181 5.4037963 5.403796 0.00000 1 10 828 151 1.39 0.89 2.28
50 (11) 155 5.2532923 5.253292 0.00000 1 6 482 143 0.99 0.42 1.41
50 (12) 146 5.3409291 5.325255 0.29347 5 15 503 157 1.10 0.77 1.87
50 (13) 129 5.3891019 5.389102 0.00000 1 4 449 132 0.85 0.30 1.15
50 (14) 160 5.3551419 5.355142 0.00000 1 3 718 185 1.19 0.63 1.82
50 (15) 171 5.2180862 5.218086 0.00000 1 6 623 130 1.19 0.44 1.63

60 (1) 219 5.3761423 5.376142 0.00000 1 23 900 176 2.25 2.10 4.35
60 (2) 282 5.5367804 5.530190 0.11902 2 18 1690 174 6.04 1.59 7.63
60 (3) 206 5.6566797 5.656680 0.00000 1 5 821 248 1.96 0.82 2.78
60 (4) 234 5.5371042 5.537104 0.00000 1 19 1306 217 2.22 2.67 4.89
60 (5) 195 5.4704991 5.462873 0.13941 1 7 650 178 1.81 0.68 2.49
60 (6) 201 6.0421961 6.042196 0.00000 1 14 779 194 1.88 1.03 2.91
60 (7) 259 5.8978041 5.897804 0.00000 1 7 1411 215 3.04 0.88 3.92
60 (8) 233 5.8138178 5.813818 0.00000 1 9 1210 225 2.51 0.96 3.47
60 (9) 210 5.5877112 5.587711 0.00000 1 4 824 217 1.79 1.07 2.86
60 (10) 208 5.7624488 5.762449 0.00000 1 8 881 182 2.03 0.85 2.88
60 (11) 169 5.6141666 5.614167 0.00000 1 3 522 156 1.66 0.30 1.96
60 (12) 243 5.9791362 5.979136 0.00000 1 13 1152 163 2.40 0.89 3.29
60 (13) 214 6.1213533 6.121353 0.00000 1 12 841 197 2.12 1.52 3.64
60 (14) 215 5.6035528 5.603553 0.00000 1 3 880 148 1.95 0.53 2.48
60 (15) 179 5.6622581 5.662258 0.00000 1 4 510 175 1.55 0.33 1.88

Rectilinear

Table B.5: Results for OR-library problems 50{60 points.
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N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

70 (1) 158 5.4303745 5.430375 0.00000 1 5 184 178 99.67 0.34 100.01
70 (2) 176 5.3275902 5.327590 0.00000 1 11 194 219 125.75 0.76 126.51
70 (3) 197 5.3911607 5.391161 0.00000 1 5 212 158 231.29 0.50 231.79
70 (4) 164 5.4989330 5.498933 0.00000 1 5 185 193 155.13 0.84 155.97
70 (5) 165 5.4766967 5.476697 0.00000 1 11 187 166 134.25 0.50 134.75
70 (6) 187 5.5335963 5.533596 0.00000 1 4 217 278 157.10 0.50 157.60
70 (7) 209 5.5028315 5.502831 0.00000 1 12 224 221 215.82 1.26 217.08
70 (8) 174 5.4806493 5.480649 0.00000 1 17 196 203 195.90 1.34 197.24
70 (9) 154 5.4721643 5.472164 0.00000 1 7 173 204 116.34 0.46 116.80
70 (10) 155 5.5203690 5.520369 0.00000 1 5 180 170 161.96 0.37 162.33
70 (11) 161 5.7173389 5.717339 0.00000 1 14 190 198 126.10 0.77 126.87

70 (12) 149 5.5228303 5.522830 0.00000 1 8 173 207 104.58 0.45 105.03
70 (13) 151 5.4444504 5.444450 0.00000 1 7 176 238 116.42 0.46 116.88
70 (14) 151 5.3521113 5.352111 0.00000 1 5 169 152 81.15 0.27 81.42
70 (15) 197 5.5198241 5.519824 0.00000 1 4 219 198 218.90 0.44 219.34

80 (1) 224 6.2574180 6.257418 0.00000 1 21 248 239 246.09 2.17 248.26
80 (2) 189 5.6953971 5.695397 0.00000 1 21 220 222 148.93 1.02 149.95
80 (3) 214 5.8724801 5.872201 0.00476 1 6 243 206 250.08 1.23 251.31
80 (4) 208 5.6241641 5.624164 0.00000 1 6 233 209 185.26 0.97 186.23
80 (5) 163 5.7545116 5.754512 0.00000 1 3 190 208 90.21 0.52 90.73
80 (6) 163 6.1632528 6.163253 0.00000 1 3 190 165 108.56 0.32 108.88
80 (7) 209 6.0308500 6.030850 0.00000 1 8 231 228 227.23 0.71 227.94
80 (8) 219 5.9528555 5.952855 0.00000 1 10 239 206 316.42 1.04 317.46
80 (9) 242 6.1076729 6.107673 0.00000 1 18 263 264 339.62 1.35 340.97
80 (10) 186 5.7147350 5.714735 0.00000 1 5 213 213 179.76 0.50 180.26
80 (11) 220 5.7648361 5.764836 0.00000 1 16 243 214 207.76 1.32 209.08
80 (12) 171 5.6731388 5.673139 0.00000 1 13 201 192 149.09 0.51 149.60
80 (13) 184 5.9683681 5.968368 0.00000 1 57 204 242 166.99 3.73 170.72
80 (14) 217 6.1178198 6.117820 0.00000 1 6 235 188 338.83 0.53 339.36
80 (15) 183 6.1433837 6.143384 0.00000 1 10 208 259 179.01 0.73 179.74

Euclidean

N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

70 (1) 257 6.2058863 6.205886 0.00000 1 3 1047 208 3.02 0.61 3.63
70 (2) 213 6.0928488 6.092849 0.00000 1 12 673 262 2.58 1.44 4.02
70 (3) 256 6.1934664 6.193466 0.00000 1 13 1190 198 2.48 1.45 3.93
70 (4) 215 6.2938583 6.293858 0.00000 1 16 705 312 2.60 1.69 4.29
70 (5) 251 6.2256993 6.225699 0.00000 1 30 1024 219 2.88 2.97 5.85
70 (6) 284 6.2124528 6.212453 0.00000 1 8 1504 263 3.60 1.00 4.60
70 (7) 265 6.2223666 6.222367 0.00000 1 5 1263 189 3.21 0.76 3.97
70 (8) 263 6.1872849 6.187285 0.00000 1 39 1124 223 3.32 4.84 8.16
70 (9) 237 6.2986133 6.297066 0.02457 1 4 900 319 2.82 0.90 3.72
70 (10) 214 6.2511830 6.249459 0.02757 1 7 711 203 2.25 0.61 2.86
70 (11) 277 6.6455760 6.643072 0.03768 1 14 1140 262 3.83 1.72 5.55
70 (12) 232 6.3047132 6.304713 0.00000 1 17 945 259 2.36 1.35 3.71
70 (13) 212 6.2912258 6.291226 0.00000 1 5 822 177 2.31 0.57 2.88
70 (14) 219 6.0411124 6.041112 0.00000 1 3 751 202 2.48 0.43 2.91
70 (15) 303 6.2318458 6.231846 0.00000 1 3 1420 182 4.11 0.66 4.77

80 (1) 278 7.0927442 7.092744 0.00000 1 12 1130 222 4.03 1.57 5.60
80 (2) 272 6.5273810 6.527381 0.00000 1 6 952 242 3.91 0.85 4.76
80 (3) 286 6.5332546 6.533255 0.00000 1 14 1266 394 3.66 2.67 6.33
80 (4) 305 6.4193446 6.419345 0.00000 1 15 1337 247 3.65 1.48 5.13
80 (5) 260 6.6350529 6.634241 0.01224 1 7 980 231 3.42 1.05 4.47
80 (6) 247 7.1007444 7.100744 0.00000 1 5 817 255 3.51 0.72 4.23
80 (7) 335 6.8228475 6.822847 0.00000 1 3 1717 237 4.90 0.93 5.83
80 (8) 324 6.7452377 6.745238 0.00000 1 6 1529 197 7.23 1.04 8.27
80 (9) 328 6.9825651 6.977550 0.07183 1 21 1712 242 4.25 2.28 6.53
80 (10) 242 6.5497988 6.549799 0.00000 1 9 841 272 3.47 1.48 4.95
80 (11) 269 6.6283099 6.628310 0.00000 1 10 1073 277 3.66 1.51 5.17
80 (12) 242 6.5070089 6.507009 0.00000 1 46 940 251 3.43 4.80 8.23
80 (13) 315 6.8022647 6.802265 0.00000 1 23 1500 220 5.24 2.75 7.99
80 (14) 293 7.0077902 7.007790 0.00000 1 8 1300 223 4.67 1.18 5.85
80 (15) 280 6.9939071 6.984967 0.12783 2 7 1244 364 4.16 2.02 6.18

Rectilinear

Table B.6: Results for OR-library problems 70{80 points.
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N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

90 (1) 215 6.0561870 6.056187 0.00000 1 5 238 232 229.27 0.56 229.83
90 (2) 218 6.2213509 6.221351 0.00000 1 50 255 250 231.13 1.95 233.08
90 (3) 233 6.4605693 6.460569 0.00000 1 7 259 272 291.68 1.30 292.98
90 (4) 241 6.2576814 6.257681 0.00000 1 7 263 254 261.48 0.75 262.23
90 (5) 223 6.3891591 6.389159 0.00000 1 5 250 200 204.19 0.51 204.70
90 (6) 208 6.0465321 6.046532 0.00000 1 9 247 216 223.02 0.62 223.64
90 (7) 203 6.2494171 6.249417 0.00000 1 7 231 274 218.59 0.68 219.27
90 (8) 225 6.3064565 6.306456 0.00000 1 9 248 237 283.29 0.61 283.90
90 (9) 207 5.9415312 5.941531 0.00000 1 20 241 288 183.17 1.65 184.82
90 (10) 221 6.3200640 6.320064 0.00000 1 7 245 259 266.79 1.24 268.03
90 (11) 224 6.2808067 6.280807 0.00000 1 67 249 257 317.91 3.91 321.82

90 (12) 231 6.0821854 6.082185 0.00000 1 8 257 430 205.88 1.53 207.41
90 (13) 217 6.3056722 6.305672 0.00000 1 19 241 280 239.27 2.03 241.30
90 (14) 204 6.0941398 6.094140 0.00000 1 17 233 269 191.60 0.95 192.55
90 (15) 223 6.2496530 6.249653 0.00000 1 21 252 227 291.25 1.70 292.95

100 (1) 273 6.3942560 6.394256 0.00000 1 43 303 302 443.33 2.47 445.80
100 (2) 274 6.5948121 6.594812 0.00000 1 21 301 326 564.79 1.55 566.34
100 (3) 257 6.5313471 6.531347 0.00000 1 96 289 333 450.29 10.76 461.05
100 (4) 262 6.5769774 6.576977 0.00000 1 6 297 280 417.27 0.74 418.01
100 (5) 242 6.6746878 6.674688 0.00000 1 3 265 212 351.03 0.47 351.50
100 (6) 259 6.4663684 6.466368 0.00000 1 26 291 308 483.24 1.90 485.14
100 (7) 281 6.9878635 6.987863 0.00000 1 27 310 453 721.15 2.69 723.84
100 (8) 242 6.3949711 6.394971 0.00000 1 12 271 288 363.95 0.99 364.94
100 (9) 270 6.9143211 6.914321 0.00000 1 34 297 330 425.46 2.52 427.98
100 (10) 251 6.7195108 6.719511 0.00000 1 15 281 301 386.24 1.94 388.18
100 (11) 253 6.8329509 6.832951 0.00000 1 10 279 266 316.65 1.37 318.02
100 (12) 234 6.6706226 6.670623 0.00000 1 4 260 231 227.46 0.50 227.96
100 (13) 237 6.5052527 6.505253 0.00000 1 16 275 262 268.11 0.90 269.01
100 (14) 262 6.8825985 6.882599 0.00000 1 54 291 327 372.09 4.81 376.90
100 (15) 262 6.2051489 6.205149 0.00000 1 8 290 250 506.10 1.04 507.14

Euclidean

N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

90 (1) 277 6.8350357 6.835036 0.00000 1 4 1017 238 4.59 0.73 5.32
90 (2) 279 7.1294845 7.129485 0.00000 1 28 923 284 5.16 3.19 8.35
90 (3) 375 7.4817473 7.481114 0.00847 1 28 1778 309 7.06 4.65 11.71
90 (4) 304 7.0910063 7.091006 0.00000 1 10 1125 303 5.07 1.56 6.63
90 (5) 290 7.1831224 7.183122 0.00000 1 4 931 288 5.12 1.03 6.15
90 (6) 324 6.8640346 6.864035 0.00000 1 5 1222 374 5.80 2.16 7.96
90 (7) 280 7.2036885 7.201542 0.02980 1 9 886 278 5.14 1.18 6.32
90 (8) 325 7.2341668 7.234167 0.00000 1 21 1402 386 5.82 2.38 8.20
90 (9) 323 6.7856007 6.782613 0.04402 3 17 1314 303 5.50 3.32 8.82
90 (10) 345 7.2310409 7.231041 0.00000 1 10 1476 349 5.85 2.15 8.00
90 (11) 387 7.2310039 7.227386 0.05003 2 93 2438 303 6.39 18.32 24.71
90 (12) 318 6.9367257 6.936726 0.00000 1 16 1131 300 5.03 2.58 7.61
90 (13) 320 7.2810663 7.278959 0.02894 2 5 1412 259 5.97 1.37 7.34
90 (14) 242 6.9188992 6.918899 0.00000 1 3 719 243 3.85 0.50 4.35
90 (15) 331 7.1778294 7.177251 0.00806 3 16 1820 229 5.77 2.88 8.65

100 (1) 384 7.2522165 7.252217 0.00000 1 25 1514 426 9.72 5.38 15.10
100 (2) 484 7.5176630 7.517663 0.00000 1 28 2901 316 10.36 4.24 14.60
100 (3) 315 7.2746006 7.274601 0.00000 1 21 1285 305 6.35 3.10 9.45
100 (4) 336 7.4342392 7.434239 0.00000 1 12 1418 354 7.50 2.13 9.63
100 (5) 319 7.5670198 7.567020 0.00000 1 6 1158 278 6.66 1.31 7.97
100 (6) 475 7.4414990 7.441499 0.00000 1 8 2864 280 9.80 3.23 13.03
100 (7) 471 7.7740576 7.774058 0.00000 1 43 2896 330 8.92 7.42 16.34
100 (8) 348 7.3033178 7.303253 0.00088 1 19 1482 333 7.40 3.77 11.17
100 (9) 385 7.7952027 7.795203 0.00000 1 7 1676 384 8.02 3.19 11.21
100 (10) 356 7.5952202 7.595220 0.00000 1 17 1518 298 7.31 3.38 10.69
100 (11) 339 7.8674859 7.858919 0.10890 3 30 1324 278 7.01 3.21 10.22
100 (12) 353 7.6131099 7.613110 0.00000 1 20 1276 326 6.60 2.21 8.81
100 (13) 383 7.4604990 7.460499 0.00000 1 11 1862 429 8.69 3.84 12.53
100 (14) 318 7.8632795 7.859664 0.04598 2 63 1098 387 6.92 8.09 15.01
100 (15) 346 7.0446493 7.044649 0.00000 1 17 1357 475 6.84 3.07 9.91

Rectilinear

Table B.7: Results for OR-library problems 90{100 points.
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N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

250 (1) 631 10.2787493 10.278749 0.00000 1 83 698 804 2688.63 15.50 2704.13
250 (2) 587 10.1096283 10.109628 0.00000 1 50 669 695 1953.25 10.25 1963.50
250 (3) 647 10.0509392 10.050939 0.00000 1 143 717 750 2655.05 21.28 2676.33
250 (4) 618 10.3914471 10.391447 0.00000 1 66 685 770 2460.38 11.28 2471.66
250 (5) 598 10.2411179 10.241118 0.00000 1 157 672 667 2195.97 47.80 2243.77
250 (6) 584 10.2291717 10.228884 0.00281 1 88 655 730 2120.24 18.74 2138.98
250 (7) 609 10.1349385 10.134938 0.00000 1 17 681 802 2252.24 5.50 2257.74
250 (8) 727 10.2988195 10.298820 0.00000 1 34 782 810 4559.43 10.11 4569.54
250 (9) 608 10.3120414 10.312041 0.00000 1 74 679 722 2663.48 12.32 2675.80
250 (10) 663 10.2468534 10.246820 0.00033 1 99 728 758 3482.97 23.79 3506.76
250 (11) 664 9.8837981 9.883798 0.00000 1 11 727 695 2801.24 5.52 2806.76

250 (12) 614 10.4839791 10.483979 0.00000 1 97 683 713 2362.36 17.62 2379.98
250 (13) 707 10.1528736 10.152874 0.00000 1 104 775 730 3452.65 21.22 3473.87
250 (14) 652 10.2689834 10.268926 0.00056 2 112 720 792 2455.02 20.86 2475.88
250 (15) 656 10.1536571 10.153657 0.00000 1 290 719 723 2838.96 42.96 2881.92

500 (1) 1415 14.3223762 14.322376 0.00000 1 237 1557 1590 12273.70 126.22 12399.92
500 (2) 1363 14.1981990 14.197574 0.00440 1 109 1490 1461 15082.95 94.16 15177.11
500 (3) 1426 14.3055601 14.305560 0.00000 1 715 1541 1600 14704.57 1909.63 16614.20
500 (4) 1312 14.4213326 14.421299 0.00023 2 191 1444 1621 12813.63 149.95 12963.58
500 (5) 1223 14.0810105 14.081010 0.00000 1 312 1364 1513 9226.70 432.37 9659.07
500 (6) 1361 14.5338846 14.533885 0.00000 1 269 1499 1576 14600.33 290.12 14890.45
500 (7) 1278 14.0592955 14.059295 0.00000 1 114 1411 1616 10677.15 43.52 10720.67
500 (8) 1258 14.1537270 14.153727 0.00000 1 159 1389 1492 10828.92 137.83 10966.75
500 (9) 1350 14.1968520 14.196852 0.00000 1 83 1465 1575 12253.89 61.63 12315.52
500 (10) 1359 13.6601144 13.660114 0.00000 1 10 709 713 14128.39 3.64 14132.03
500 (11) 1347 14.1774204 14.176406 0.00716 1 414 1481 1432 14275.90 1415.12 15691.02
500 (12) 1265 14.3975974 14.397597 0.00000 1 302 1402 1545 11687.33 847.36 12534.69
500 (13) 1211 14.1404526 14.140453 0.00000 1 176 1354 1596 8833.20 128.71 8961.91
500 (14) 1487 14.6511697 14.651170 0.00000 1 135 1610 1508 16745.81 148.53 16894.34
500 (15) 1325 14.1109532 14.110953 0.00000 1 812 1448 1504 11792.11 1107.19 12899.30

Euclidean

N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

250 (1) 912 11.6609813 11.660981 0.00000 1 22 4021 796 123.99 11.55 135.54
250 (2) 877 11.5150079 11.514005 0.00871 3 62 3706 1003 108.04 32.26 140.30
250 (3) 838 11.4650399 11.465040 0.00000 1 127 3187 874 130.94 33.38 164.32
250 (4) 899 11.7819530 11.780478 0.01252 1 38 3925 788 128.76 23.87 152.63
250 (5) 902 11.6927089 11.692709 0.00000 1 313 3664 665 115.34 67.22 182.56
250 (6) 868 11.6256250 11.625306 0.00275 2 117 3529 853 103.40 60.98 164.38
250 (7) 880 11.5277351 11.527735 0.00000 1 38 3556 861 106.07 25.01 131.08
250 (8) 1085 11.6833323 11.677163 0.05280 5 33 6126 846 125.20 25.89 151.09
250 (9) 891 11.6821988 11.682199 0.00000 1 437 3490 800 100.07 220.25 320.32
250 (10) 1115 11.6857628 11.678762 0.05991 3 78 6876 816 127.41 69.76 197.17
250 (11) 980 11.2889613 11.287079 0.01668 5 46 4940 758 110.62 30.11 140.73
250 (12) 919 11.9035256 11.902872 0.00549 2 71 3961 963 116.81 49.24 166.05
250 (13) 979 11.6049496 11.601749 0.02758 8 238 4181 786 125.85 387.51 513.36
250 (14) 940 11.6188791 11.618879 0.00000 1 12 4438 918 109.36 10.53 119.89
250 (15) 972 11.5558198 11.555820 0.00000 1 96 4661 767 120.22 27.48 147.70

500 (1) 1877 16.2978810 16.297268 0.00376 1 37 8972 1780 1137.31 88.74 1226.05
500 (2) 2175 16.0756854 16.074292 0.00866 2 45 12005 1754 1194.68 82.94 1277.62
500 (3) 2103 16.2664661 16.266466 0.00000 1 200 11408 1635 1093.94 1648.71 2742.65
500 (4) 1839 16.4110997 16.411100 0.00000 1 165 8570 1729 1123.53 479.20 1602.73
500 (5) 1825 16.0586161 16.053088 0.03443 9 458 7821 1560 1044.50 3149.40 4193.90
500 (6) 2023 16.4685074 16.468507 0.00000 1 32 10252 1753 1148.43 96.79 1245.22
500 (7) 1900 16.0124233 16.011407 0.00635 1 31 8313 1837 1096.92 51.36 1148.28
500 (8) 1979 16.1248138 16.124644 0.00105 1 181 9278 1694 1139.57 1327.37 2466.94
500 (9) 1925 16.2100435 16.207268 0.01712 5 40 9153 1577 1123.47 94.28 1217.75
500 (10) 1880 15.5581203 15.558120 0.00000 1 76 8143 1638 1331.92 203.79 1535.71
500 (11) 2018 16.1674316 16.167418 0.00008 1 390 9309 1767 1207.85 2702.49 3910.34
500 (12) 1841 16.4009591 16.400625 0.00204 3 74 8547 1570 1079.17 267.36 1346.53
500 (13) 1813 16.1324201 16.131619 0.00497 3 54 7190 1739 1053.40 171.74 1225.14
500 (14) 2041 16.5984329 16.592090 0.03821 3 122 9497 1579 1159.58 601.91 1761.49
500 (15) 1894 16.0758467 16.074649 0.00745 3 53 9045 1632 1099.43 72.32 1171.75

Rectilinear

Table B.8: Results for OR-library problems 250{500 points.
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N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

1000 (1) 2519 20.2375147 20.237515 0.00000 1 207 2817 3070 54378.15 290.64 54668.79
1000 (2) 2628 20.0770115 20.077011 0.00000 1 403 2906 3480 55014.51 829.35 55843.86
1000 (3) 2545 19.9644390 19.964439 0.00000 1 128 2788 3318 55826.65 248.59 56075.24
1000 (4) 2787 20.2341007 20.234101 0.00000 1 285 3027 3316 62346.85 410.28 62757.13
1000 (5) 2548 20.0592614 20.059261 0.00000 1 221 2809 3230 57033.21 376.83 57410.04
1000 (6) 2639 20.2982354 20.298235 0.00000 1 736 2895 2875 58181.42 26271.00 84452.42
1000 (7) 2538 20.2735687 20.273429 0.00069 2 259 2812 2973 50935.55 2013.17 52948.72
1000 (8) 2618 20.2179823 20.217400 0.00288 3 2995 2863 2997 59912.45 212605.95 272518.40
1000 (9) 2735 20.0901054 20.090105 0.00000 1 169 2981 3137 66569.00 679.66 67248.66
1000 (10) 2582 20.1299493 20.129949 0.00000 1 84 2839 3169 50642.13 194.93 50837.06
1000 (11) 2626 20.3131596 20.313160 0.00000 1 417 2886 3363 56819.50 850.54 57670.04

1000 (12) 2751 20.3558789 20.355879 0.00000 1 434 3003 3207 70516.06 1643.22 72159.28
1000 (13) 2575 19.9929902 19.992990 0.00000 1 473 2823 3370 47915.31 2586.08 50501.39
1000 (14) 2633 20.5686689 20.568669 0.00000 1 1188 2939 3091 64688.76 8444.38 73133.14
1000 (15) 2650 20.1739736 20.173974 0.00000 1 641 2909 3212 59522.88 4237.71 63760.59

Euclidean

N M Z Z % Nds LPs Constraints CPU seconds
Root Gap IRow RTight FST Gen FST Cat Total

1000 (1) 4047 23.0535806 23.042695 0.04722 15 190 20966 3418 13091.26 2442.62 15533.88
1000 (2) 3883 22.7886471 22.788544 0.00045 1 123 17112 3455 11378.59 1089.12 12467.71
1000 (3) 3978 22.7807756 22.780639 0.00060 2 1077 19670 3332 12026.53 40275.44 52301.97
1000 (4) 3983 23.0200846 23.017442 0.01148 6 552 18309 3556 12076.06 2410.22 14486.28
1000 (5) 3916 22.8330602 22.832172 0.00389 2 904 18869 3156 12023.65 35497.08 47520.73
1000 (6) 4138 23.1028456 23.095362 0.03239 19 3287 21908 3160 12413.24 374356.59 386769.83
1000 (7) 3916 23.0945623 23.093270 0.00560 2 1050 19344 3416 11289.35 42697.75 53987.10
1000 (8) 4173 23.0639115 23.062650 0.00547 5 782 23043 3198 11390.31 46974.55 58364.86
1000 (9) 4355 22.7745838 22.773655 0.00408 6 112 25468 3209 16288.00 1074.69 17362.69
1000 (10) 3886 22.9267101 22.923663 0.01329 5 852 17704 3311 11648.66 45708.86 57357.52
1000 (11) 3884 23.1605619 23.157667 0.01250 6 593 18739 3631 11685.70 2143.10 13828.80
1000 (12) 4564 23.0904712 23.088224 0.00973 5 1597 27747 3389 14804.49 258108.23 272912.72
1000 (13) 3782 22.8031092 22.803109 0.00000 1 1837 18229 3280 11603.79 165687.02 177290.81

1000 (14) 4173 23.4318491 23.426697 0.02199 15 2298 21471 3322 12112.12 364853.03 376965.15
1000 (15) 4011 22.9965775 22.994263 0.01006 2 280 19768 3263 12641.83 2446.81 15088.64

Rectilinear

Table B.9: Results for OR-library problems 1000 points.
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