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1
Introduction

1.1 Electro-mechanical physiology of the heart

Thehumanheart functions as awell-coordinated systemofpumps that delivers blood through-

out the body. An organized electrical network of specialized cells throughout the heart controls

the timing of mechanical contraction of the four muscle chambers. The electrical signaling is ini-

tiated by a periodic action potential transmitted by a series of ions crossing channels in the cell

membrane. In a healthy heart, the electrical pacing originates from cells of the sinoatrial node

in the right atrium, which periodically depolarize due to leaky ion channels. The electrical signal

then rapidly travels across the heart through a network of cells connected by gap junctions, which

allow for ions to rapidly pass between cells.

The electrical signaling triggers muscle contraction through the influx of calcium ions into

the cell as part of the action potential. This process, known as excitation-contraction coupling,

causes additional release of sequestered calcium in the cell, which then binds to troponin, a pro-

tein that regulates the contraction. Contraction in cardiac muscle cells occurs by the sliding of

different muscle fiber filaments towards each other, described as the sliding filament theory, to
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generate a force and effectively shorten the cell along the muscle fiber direction 1,2 Rapid, coor-

dinated activation of the cardiac muscle contracts the chambers to effectively eject blood. Im-

portantly, the normal pattern of electrical signaling coordinates contraction of the atria slightly

before the ventricles. This precise timing allows for the atria to pump blood into the ventricles

before the ventricles pump that blood throughout the body.

The heart’s function can break down when either electrical or mechanical properties are al-

tered. For example, in atrial fibrillation and premature ventricular contraction, cells not located

in the sinoatrial node can trigger contraction by spontaneously misfiring an action potential. In

the case of myocardial infarction (heart attack), blockage of blood flow to the heart muscle can

lead to tissue death reducing the heart’s ability to pump. Electrical andmechanical abnormalities

in the heart can further trigger remodeling processes such as fibrosis and hypertrophy. The goal

of many cardiac therapies is to halt and even reverse these remodeling processes.

1.2 Computational modeling of the heart

Advances in computational modeling now allow simulation of complex electro-mechanical func-

tionof the heart andhave advanced the development of cardiac therapies. These simulations span

0-D lumped parameter models to 3-D finite-element models, each providing increasing physio-

logic resolution that inevitably increases computational costs. The lumped parameter models

have been used to simulate mechanical dysfunction with disease as well as predict organ-level

long-term remodeling.3–5 More complex finite-element models have been used to simulate the

electrical and mechanical consequences of myocardial infarction and understand the effect of

cardiac therapies at the cell and tissue level.6–8 Despite the many advances of in silico methods,

the application of computational mechanical modeling to the clinic has stalled as the needs of

researchers and physicians diverge.

As computational resources become more readily accessible to researchers, the complexity

of computational models has scaled allowing for higher spatial and temporal resolution simula-

tions.9 While these biophysicalmodels can serve as tools to understandmulti-scale function, they

provide a level of detail that may not be relevant for the clinic. When designing computational

models for clinical translation, simplicity is valuable. Models should provide relevant spatial reso-
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lution for a specific use case and low computational cost. As researchers continue to employmore

powerful computationalmodels, there remains tremendous potential in using lower dimensional

models, which require orders of magnitude less computation time. 10

1.3 Computational modeling to guide cardiac electrophysiologic ther-

apies

In this dissertation, we developed computational models of the heart to guide different cardiac

electrophysiological therapies. Each chapter leverages computational modeling techniques with

different spatial resolutions and computational costs. Chapter 2 presents a finite-element me-

chanical model used to simulate the effect of catheter ablation for atrial fibrillation in the left

atrium. The model is used as a test-bed for head-to-head comparisons between different, com-

monly used ablation patterns. Chapter 3 presents a data fusion method for registering multi-

modal imaging data to guide cardiac resynchronization therapy. This data fusion routine is cur-

rently employed in a randomized clinical trial* and serves as a crucial model building step for

further biophysical simulations presented in later chapters. In Chapters 4 and 5, we present the

development of an electro-mechanical modeling pipeline,Virtual CRT, for predicting long-term

outcomes of cardiac resynchronization therapy. The electrical model in Chapter 4 was developed

to be computationally efficient and compatible for couplingwith practically anymechanicalmod-

eling methods. The finite-element mechanical model in Chapter 5 was designed to assess the im-

portance of various model parameters in simulating accurate regional LV mechanics. Together,

Chapters 4 and 5 represent important initial steps towards creating a clinically translatable com-

putational modeling framework for CRT.

*clinicaltrials.gov/ct2/show/NCT03398369
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2
Simulating the effect of ablation on

mechanical function in the left atrium

2.1 Introduction

2.1.1 Left atrial f unction

The left atrium (LA) is a muscular chamber that pumps oxygenated blood received from

the lungs into the left ventricle. Throughout the cardiac cycle, the LA undergoes three distinct

functional phases consisting of filling, passive emptying, and active emptying. While filling and

passive emptying occurwhen themusclewalls are relaxed, the active emptying phase occurswhen

the atrial muscle contracts. Active emptying contributes to about 30% of the total emptying

volume of the LA in healthy patients. 1
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2.1.2 Atrial fibrillation

Atrial fibrillation (AF) is a condition featuring disorganized electrical signaling within the atria

leading to irregular pump function. AF typically starts as intermittent episodes separated by pe-

riods of normal sinus rhythm; however, left untreated, the episodes of irregular pumping can

become more frequent and lead to progressive atrial and ventricular remodeling and mechanical

dysfunction.2 The stages of AF are categorized based on increasing severity as paroxysmal, per-

sistent, and permanent. In a study that measured LA emptying volumes in patients with parox-

ysmal AF, active emptying contributed to about 60% of the total emptying volume, a drastic

increase compared to healthy patients.3

2.1.3 Catheter ablation

Treatment forAFoften involves catheter ablation, which induces scar formation to electrically iso-

latemisfiring electrical signals in the atrium. Successful ablation frequently restores sinus rhythm;

however, it does so at the cost of replacing contractilemusclewith non-contractile scar tissue. The

success and development of ablation in treating AF has led to increased utilization, withmany ar-

guing for it as a first-line therapy.4–6 A range of ablation patterns have emerged to target different

atrial regions, as well as new ablation catheters that increase both scar volume and transmural-

ity.7–10 While eliminating electrical abnormalities in the atrium is amain goal of ablation, the scar

introduced by ablation has also been shown to impair mechanical function including both atrial

contractility and compliance. 11

2.1.4 Preserving left atrial mechanical f unction

Imaging of the LAhas shown regionalmotion of the differentwalls to be highly heterogeneous in

both healthy and AF patients imaged in sinus rhythm. 12,13 The differences in contribution from

the different regions to active and passive atrial emptying ledKuklik et al. to suggest that ablation

in regions with greater mechanical function should be minimized to preserve global atrial func-

tion. 14 Given the availability ofmultiplewidely accepted ablation procedures that target different

regions of the LA, it may be possible to choose procedures that achieve both goals of restoring

normal electrical function and preserving mechanical function. However, the impact of various
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ablation procedures on regional and global mechanical function has received only limited atten-

tion. In this chapter, we used a computational model shown previously to reproduce mechanics

measured in paroxysmal AF patients to simulate various ablation patterns and determine their

effect on atrial global and regional function.3

2.2 Methods

2.2.1 Modeling left atrial f unction

Our group previously developed a coupled finite-element (FE) and hemodynamic circuit model

of the left atrium to provide insight into the mechanics of paroxysmal AF.3 The AF model fea-

tured a dilated, more spherical geometry, diffuse fibrosis, increased pressure load, reduced con-

duction velocity, and impaired left ventricular relaxation. The coupling to a circuit model ac-

counted for upstream (pulmonary veins) and downstream (left ventricle and systemic arteries)

hemodynamic interactions that determine atrial pressures and volumes as atrial properties and

function change. The model also introduced a set of force boundary conditions to represent

the impact of contact with adjacent structures and downward force exerted by the left ventricle

on the mitral annulus on atrial shape and mechanics. This model reproduced not only global

differences in atrial function between healthy subjects and paroxysmal AF patients, but also the

regional variations in function observed in both groups.3

This baseline AF model was used as a platform to simulate changes in atrial function follow-

ing the introductionof various ablation scar patterns. Global functionof the atriumwas analyzed

by comparing pressure-volume loops generated from the FE models. To compare effects of ab-

lation on passive versus active emptying, the amounts of emptying occurring during each phase

were computed and compared. Wall motion analysis was used to evaluate the regional effects of

different ablation patterns. Anatomic regions of the atrium were defined using pulmonary vein

and mitral valve landmarks, and wall motion was calculated as a change in radius using a fixed

centroid as described by Moyer et al. 12
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1
2
3

A

B

C

Figure 2.1: Simulated ablation patterns (gray) shown on the FE model (left, single variant shown) and schemati-
cally (right, all variants shown) with respect the locations of the mitral valve (MV), left superior (LSPV), left inferior
(LIPV), right superior (RSPV), and right inferior pulmonary veins (RIPV). PVI (A) was simulated step-wise using PVI
alone, PVI plus a roof line, or PVI plus roof line and isthmus line. WACA (B) was simulated at three different
distances from the pulmonary veins. All PVI and WACA variants were simulated using two ablation widths to
replicate RF and cryoablation. The nContact (C) ablation pattern was simulated in a single variant consisting of
PVI plus ablation of a substantial portion of the posterior wall.
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2.2.2 Simulating ablation scar

Ablation scar patternswere introducedby transmurallymodifying localmaterial properties in the

finite-element model to increase passive stiffness and eliminate active contraction. 13 ablation

patterns were tested in our model, including variations of two widely used ablation patterns –

step-wise pulmonary vein isolation (PVI) and wide area circumferential ablation (WACA) – as

well as a posterior ablation developed by nContact, Inc. that is currently in clinical trials (Fig.

2.1).

The first step-wise PVI model included four scar rings circling each pulmonary vein at 150%

of its diameter (Fig. 2.1A). A roof line linking the shortest path between the superior pulmonary

veins and an isthmus line connecting the left inferior pulmonary vein to the mitral valve were

added sequentially to create the other two PVI models, reflecting common variants of the PVI

procedure. 15–17 The three WACA patterns were created by encircling the left and right pairs of

pulmonary veins at a distance of 0.5, 1, or 2 cm to represent the range of publishedWACAmeth-

ods (Fig. 2.1B). 18–20 The PVI and WACA patterns were simulated using two widths of scar (4

and 8 mm) to represent radiofrequency and cryoablation lines based on typical widths of the

catheters used. The nContact pattern was created by combining the PVI plus roof line scar at a

width of 5 mm with ablation of the posterior wall bounded by the pulmonary veins (Fig. 2.1C).

Myocardium was represented in the model using a transversely-isotropic Mooney-Rivlin mate-

rial with active contraction. Moyer et al. originally simulated diffuse fibrosis of the atrial my-

ocardium in a typical AF patient by increasing one of the isotropic material coefficients (C2 = 4.0

kPa).3 In this study, we simulated ablation scar by stiffening the material further (C2 = 8.0 kPa)

and eliminating anisotropy (C3 and C4 = 0) and active contraction to yield properties consistent

with post-infarction myocardial scar tissue in animal models.21 Scar volumes from each ablation

pattern were calculated as percentages of atrial wall volume. Because we assumed a constant wall

thickness and fully transmural ablation scar, these scar volume fractions also represent the frac-

tion of the endocardial area occupied by scar.
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2.3 Results

2.3.1 Global f unction

The simulated ablation patterns spanned a range of 5% to 31% scar volume. PVI varied from 5%

to 20% scar while WACA varied from 13% to 31%. The nContact pattern created 25% scar. In

the presence of ablation, the atriumwas stiffer during passive filling, as indicated by a lower peak

volume and increased slope of the passive “tail” of the simulated pressure-volume loops (Fig. 2.2).

Ablation also decreased the active work performed by the atrium with each cycle, as indicated by

a decreased loop area.

Total emptying volumes decreased by up to 11 mL following simulated ablation in compar-

ison to baseline (Fig. 2.3A). When comparing the passive and active portions of the emptying

volume, changes in active emptying accounted for most of the changes in total emptying volume.

While passive emptying varied by less than 1 mL across all the ablation patterns simulated, active

emptying decreased with increasing scar volume, up to 44% (11 mL) in the most aggressive lesion

simulated (Fig. 2.3B). For ablation patterns with nearly matched scar volumes, WACA patterns

decreased active emptying more than PVI (Fig. 2.3B, open and closed circles at 17-19% scar) or

the nContact pattern (Fig. 2.3B, square vs. open circle at 25-26% scar).

2.3.2 Regional motion

Tobetter understand the differences between ablationpatternswithmatched scar volumes, we ex-

amined predictedwall motion of the different atrial regions. Thewalls of the atrial finite-element

model were mapped to a two-dimensional hammer projection (Fig. 2.4A), and the total change

in radius calculated from the time of maximal atrial volume to the time of minimum atrial vol-

ume. In the baseline AF model, radial motion increased from the pulmonary veins towards the

mitral valve, with the highest average motion in the inferior and lateral walls (Fig. 2.4B).

To compare the effects of different ablation patterns, the radial motion for the baseline (non-

ablated) model was subtracted from the radial motion of the ablation models to calculate the

change in regional wall motion (Fig. 2.4C-E) due to ablation. The cryoablation PVI without

roof or isthmus line (17% scar) and cryoablation WACA with radius of 0.5 cm (26% scar) were

used as representative models for the PVI and WACA groups. All ablation patterns depressed
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of bar) and active (closed portion) emptying of the atrium. Active emptying accounted for most of the decrease
in total emptying volume with ablation across the procedures simulated. (B) Active emptying decreased with
increasing ablation scar volume. At matched scar volumes, PVI and nContact ablation decreased active emptying
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radial motion throughout large regions of the atrium; however, the extent and distribution of

this depression varied. For example, the 0.5 cm-radius cryoablationWACA (Fig. 2.4D, 26% scar)

produced substantial depression in wall motion, particularly in the lateral wall. By contrast, the

nContact ablation pattern produced a much smaller and more evenly distributed reduction in

wall motion (Fig. 2.4E), even though the total scar volume was nearly identical (25%). The aver-

age radial wall motion calculated for each region is summarized in Figure 2.4F. Consistent with

the location of the lesions, WACA reduced lateral wall motion more than the other patterns.

2.4 Discussion

In this chapter, we used a computational model that accurately reproduces regional and global

mechanics measured in paroxysmal AF patients to simulate a number of variants of commonly

employed ablation patterns and determine their effect on atrial global and regional function. The

simulated ablations covered a range of scar volumes (5-31% of left atrial wall volume) and by de-

sign involved different regions of the atrium. Passive stiffness increased and active atrial emptying

decreased as scar volume increased in our simulations, consistent with recent clinical reports . 11

In addition, our simulations suggested that the location of ablation scar is an important determi-

nant of its functional impact: at matched scar volume, WACA lesions impaired active function

more than other ablation patterns because WACA involves regions of the lateral wall that nor-

mally have the highest regional function in AF patients. By contrast, a novel ablation pattern

that focuses on the posterior wall produced less functional depression than expected from its size,

because baseline wall motion is already low in the posterior wall.

2.4.1 Effect of ablation scar volume

The simulated ablation patterns in our finite-element model spanned a range of scar volumes

similar to those reported from MRI. 10,11,22 For example, Badger et al. showed that AF patients

with successful AF termination received 16.4 ± 9.8% scar from ablation,22 while Cochet et al.

quantified ablation scar volume of 29± 6% in patients treated for persistentAF.Across this range,

we found that ablation scar reduced active emptying volume by 2.7 mL per 10% scar (Fig. 2.3B).

Computing active emptying fraction (AEF) using the formula employed by Cochet et. al., this
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corresponds to a 3% change in AEF per 10% scar versus their reported 10% per 10% scar. 11

In comparison to the baseline AF model, simulated ablation scar increased stiffness during

passive filling as expected. However, the effect of this increased stiffness on passive atrial filling

and emptying was largely offset by the fact that the model atrium was connected to a simulated

circulation: at steady-state, slightly elevatedpulmonary venouspressures helpedpreserve filling in

the face of increased atrial stiffness, and higher peak pressures promoted passive emptying. Thus,

passive filling and emptying of the atriumwasminimally affected across the range of scar volumes

and ablation patterns considered here.

By contrast to passive function, replacing contractile muscle with non-contractile scar sub-

stantially impaired active function, with pressure-volume loops for the ablationmodels revealing

a decrease in loop area reflecting a decrease in active work (Fig. 2.2) and active emptying volume

dropping by nearly half in some simulations (Fig. 2.3). Our model may actually under-estimate

the impact of ablation on active pumping, because reduced filling would be expected to yield

less forceful atrial contraction through the Frank-Starling mechanism, which has been reported

to play a role in normal atrial function but was omitted from our model. 1,23 The loss of active

emptying following ablation in our simulations could be particularly significant given that active

emptying appears to play a more important role in AF patients than in healthy subjects: Moyer

et al. found that patients with paroxysmal AF who were imaged in sinus rhythm relied on active

emptying for 61% of their total emptying volume.3 While active emptying plays a lesser role for

young healthy patients, its fraction of total emptying increases with age, which is also associated

with increased incidence of AF.24–31

2.4.2 Effect of ablation scar location

Atrial wall motion has been shown to be an effective metric for assessing left atrial active func-

tion. 12,32 Throughout the cardiac cycle, the walls of the atrium move heterogeneously, each con-

tributing differently to atrial function. Therefore, it was not surprising that creating ablation

scar in different locations of our model atrium impaired active atrial function to different de-

grees, even at matched scar volume (Fig. 2.3B). Specifically, PVI variations and the nContact ab-

lationpatterndecreased active function less thanWACAvariationswhen the ablationpatterns fea-

tured similar scar volumes. Consistent with our prior measurements in paroxysmal AF patients,
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at baseline the lateral and inferior walls displayed the greatest motion (Fig. 2.4A), suggesting a

greater contribution from these regions to overall atrial function. 12 Motion in these two regions

decreased with the presence of ablation scar, but the lateral wall was impacted muchmore by the

WACA pattern (Fig. 2.4C, F) than the other ablations, because the lesions affected regions of the

lateral wall with high baseline motion. Providing some support to these model results, Nori et

al. reported that both total emptying volume and lateral wall radial motion decreased following

WACA ablation in paroxysmal AF patients.33

Simulated ablations involving the posterior wall had little effect on function in large part be-

cause the posterior wall contributed very little to function at baseline. In the model, this was due

primarily to the fact that the pulmonary veinsweremodeled as rigid bodies fixed in space, thereby

tethering themotion of surrounding regions. However, it is important to note that this feature of

themodel was designed tomatchmeasurements by our group usingMRI and reported inMoyer

et al. 12 We tracked the pulmonary vein ostia over the entire cardiac cycle in both normal volun-

teers and AF patients imaged in sinus rhythm, and found that the average peak displacement of

the centroid of the ostia was less than 2 mm. Thus, we believe that the boundary conditions im-

posed at the pulmonary veins in our simulations reasonably represent the actual in vivomechanics

of the human left atrium.

Although we focus in this chapter primarily on the difference among the three principal ab-

lation patterns (PVI,WACA, nContact), the differences among the variants of PVI we simulated

also suggest that the location of individual ablation lines helps determine the degree towhich they

reduce active function. For example, the three green circles plotted on the left side of Figure 2.3B

show the impact of PVI alone, PVI plus a roof line, and PVI plus a roof line and isthmus line

on active emptying. Relative to baseline (black triangle), PVI alone had very little effect on active

emptying, and adding a roof line also had little impact; however, adding an isthmus line reduced

emptying volume noticeably. These results reinforce the concept that creating ablation scar in

locations with high baseline motion (such as the lateral wall) reduces active atrial function more

than creating in ablation scar in locations with little baseline motion (such as the posterior wall).

This principlemay be useful in thinking about functional effects of CAFE and rotor ablation and

other procedures not explicitly simulated here.
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2.4.3 Study limitations

AF is characterized by abnormalities in electrical signaling through the atrium. Our models as-

sumed a transmural ablation scar with no impact on electrical activity except the loss of active

contraction in scar regions. For simplicity, we assumed that ablation scar was transmural and

that ablation always restored sinus rhythm. While our models allowed for direct comparison of

mechanical function among ablation patterns, there is a need for models that can simulate not

only the mechanical but also electrical effects of specific ablation patterns.

In modeling post-ablation scar tissue, we were forced to approximate passive mechanical

properties based on published infarct scar mechanics, given a lack of information on how ma-

terial properties change post-ablation;34 however, since the loss of active function turned out

to be much more important in our simulations than the change in passive function, we expect

any error in the assumed scar material properties to have minimal impact on the conclusions of

the study. Our model geometry intentionally omitted the left atrial appendage due to its het-

erogeneity among patients.35 This omission imposes several limitations on our simulations and

their interpretation. First, we cannot simulate AF procedures that target the appendage. Second,

because we do not represent the contributions of the LAA to atrial pump function, we cannot

predict how any of the ablation sets modeled here will alter those contributions. Finally, in prac-

tice the presence of the LAA restricts the anterior extent of WACA lesions surrounding the left

pulmonary veins, but in our model these lesions were represented as complete circles; thus, the

model may over-estimate the impact ofWACA lesions on function in the anterior portion of the

lateral wall (Fig. 2.4D, far right portion of map).

Our baseline (pre-ablation)model is described here and in a priormethods paper as represent-

ing the mechanics of the atrium in paroxysmal AF patients. However, nothing about the model

actually incorporates clinical history. Rather, this description reflects the fact that the geometry,

wallmotion, and hemodynamic data used to construct themodel were all obtained frompatients

with AF who met clinical criteria for ablation but were in normal sinus rhythm when data were

collected prior to ablation. When considering this model relative to the very broad range of struc-

tural remodeling present across the AF patient population, it may be more useful to think of it

as a model of a moderately dilated (maximum volume 100 ml) and diffusely fibrotic (25% aver-
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age collagen content) atriumwithmoderately elevated pressures (minimumpressure 10mmHg);

more details about the choice of these parameters are available in Moyer et al.3

2.5 Conclusion- Guiding therapy development for AF

Our simulations support emerging evidence that increasing ablation scar volume depresses atrial

function, primarily by reducing active emptying. Furthermore, our model suggests that both

amount and location of scar are important determinants of its functional impact. Simulated

WACA created ablation scar in regions with high baseline motion (portions of the lateral and in-

ferior walls closer to the mitral valve), which resulted in greater depression of active function in

comparison to PVI and the recently introduced nContact ablation pattern. Our results suggest

that whenmultiple options with similar efficacy in preventing AF recurrence are available, choos-

ing patterns that avoiding regions of the atriumwith high baselinemotionmay limit detrimental

effects of ablation on atrial mechanical function.
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3
Data fusion and visualization routine to

integrate patient-specific anatomic and

functional cardiac information

3.1 Introduction

3.1.1 Dyssynchrony and cardiac resynchronization therapy

The left ventricle (LV) is a muscular chamber approximately the shape of a truncated ellip-

soid, which forcefully pumps oxygenated blood received from the left atrium to the rest of the

body. The pumping is coordinated through fast electrical signaling along a specialized network

of cells known as the Purkinje network. Disruption of the network, such as in left bundle branch

block (LBBB), leads to slowing of the signaling and dyssynchrony of contraction in the LV. The

pump function deteriorates from a nearly instantaneous contraction of the entire LV to an inef-

ficient, gradual sequence of contraction around the muscle chamber. 1
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Cardiac resynchronization therapy (CRT) employs a pacemaker with electrical leads to re-

store coordinatedmuscular contraction. A lead is placed on the LV freewall to deliver an external

electrical stimulus to the muscle.2 The choice of lead placement has been shown to be critical for

predicting patient response to CRT.3 Therefore, there is a need for developing patient-specific

methods for customizing CRT lead placement.

3.1.2 Non-invasive imaging of cardiac anatomy and f unction

A range of cardiac imaging modalities now enable non-invasive collection of data on geometry,

motion, perfusion, electrical activation, and even tissue properties such as fibrosis. Each of these

pieces of information could help define spatially heterogeneous tissue properties relevant to cus-

tomizing CRT lead placement. Specific magnetic resonance imaging (MRI) techniques, such as

late gadolinium enhancement (LGE) MRI and displacement encoding with stimulated echoes

(DENSE)MRI, can provide information about LV scar location and regional mechanics, respec-

tively. Patient-specific metrics related to scar and mechanics have been associated with improved

CRT outcomes.3–5

3.1.3 Creating patient-specific visuals for guiding CRT

Wehypothesized that creating a standardized patient-specific visualization containing relevant in-

formation could help streamline physician decision-making when choosing a CRT lead position.

However, integrating data across multiple modalities or scans to construct a coherent patient-

specific visual is a non-trivial task. Different modalities typically employ different coordinate

systems, produce images with different spatial and temporal resolution, and store and display

that information in different formats (e.g., a series of 2D slices vs. a 3D surface map). Thus, stan-

dardization and sharing of methods for integrating multimodal imaging data has the potential

to enhance reproducibility within and across research groups for creating patient-specific visuals

and models.6

In this chapter, weuse non-invasive imagingdata of a dyssynchronousLV todemonstrate our

method for creating a three-dimensional patient-specific model. We use short- and long-axis cine

MRI to construct the LV geometry by fitting the endocardial and epicardial surfaces in prolate

spheroidal coordinates. We then interpolate and map data from other MRI sequences onto the

24



personalized geometry. We focus first on the mapping of scar determined by myocardial LGE

MRI and mechanical activation from DENSE MRI a canine subject. We also show an example

of the data fusion routine incorporatingMRI andCRTusing a humandata set for pre-procedure

planning of CRT. The MATLAB code employed here and a Python version are both available

for download from SimTK*. The data fusion routine uses the freely available, MATLAB-based

software Segment forMRI segmentation† 7 and generates geometries that port easily to FEBio for

finite-element (FE) simulations.8

3.2 Methods

3.2.1 Overview of approach

The goal of our method is to combine personalized information from different MRI protocols

and/or different imagingmodalities to build amodel representation of a patient’s LV.Combining

different MRI imaging sequences acquired during the same exam has the advantage that all data

are recorded in the same coordinate system. However, even in this case challenges arise due to

differences in image resolution and physiologic state of the patient. For example, while cineMRI

provides high spatial and temporal resolution of the heart geometry during the cardiac cycle, LGE

MRI provides the geometry of the LV and scar at a lower resolution at end diastole. We resolve

these differences by mapping the patient information at a matched cardiac phase (end diastole)

to the epicardial surfaces fit from each imagingmodality. The epicardial surface was chosen as the

platform for information exchange because it is smoother than the endocardial surface and, in our

experience, simpler to register across protocols, exams, and imaging modalities. The geometries

fit from the different imaging modalities are rotated into a common cardiac coordinate system

based on landmark locations on theLV.The data are then projected onto a common visualization

created from the high-resolution cine MRI geometry, which is used to create a FE model of the

LV.
*simtk.org/projects/lvdatamap
†http://segment.heiberg.se
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3.2.2 Constructing the LV finite-element geometry

The patient-specific FE geometry of the LV was generated from multiple short-axis cine MRI

slices taken at end diastole. Fitting of the segmented MRI contours to create a finite-element

mesh was previously described by our group.9 Briefly, the epicardial and endocardial surfaces

were segmented using software Segment v2.0 R5430‡.7 Landmark pinpoints were placed at the

right ventricle (RV) insertions in the most basal short-axis slice and at the base (midpoint in the

mitral valve plane) and apex in the two-chamber long-axis view to define the cardiac coordinate

system (Fig. 3.1A). The segmentations were registered in three dimensions in cardiac coordinates

with the x-axis oriented from LV base to apex, y-axis oriented from lateral to septal wall, and

z-axis oriented from anterior to posterior wall. The endocardial and epicardial surfaces were in-

dependently fit using bicubicHermite elements (8 circumferential by 4 longitudinal) in a prolate

spheroidal coordinate system (Fig. 3.1).9–11 In this coordinate system, µ describes an angle span-

ning from apex to base of the LV, θ describes an angle measured circumferentially around the LV

from mid septum (Fig. 3.3A), and λ describes a term similar to a radius extending from the ori-

gin. The wall mass between the two surface fits was filled with 3,600 linear, hexahedral elements

with a resolution of 24 longitudinal by 30 circumferential by 5 radial elements. Interior nodes

between the endocardial and epicardial surfaces were created at equally spaced intervals in λ along

lines of constant angular (µ, θ) coordinates. The nodes on the epicardial surface were used as the

points onto which patient-specific data were projected and exchanged.

3.2.3 Extracting and registering scar location data

Epicardial, endocardial, and scar boundaries were segmented from short-axis and long-axis LGE

MRI using semi-automated methods in Segment. 12 Segmentations were registered to map data

onto the epicardial surface through the process shown in Figure 3.2. Scar extent was quantified

using twometrics: transmurality and starting depth from the epicardium, both expressed as frac-

tions ofwall thickness. Scarmetricswere computed in individual image slices for 50 evenly spaced

bins ranging from 0° to 360° in θ in short-axis slices and 100 evenly spaced bins ranging from 0°

to 120° in µ in long-axis slices. These twometrics allowed us to effectively project all information
‡segment.heiberg.se
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Figure 3.1: Creation of a patient-specific model geometry. (A) Long and short axis cine MRI were segmented and
landmarked at the right ventricular insertions, base, and apex points. (B) The segmentations were registered in
three dimensions. (C) The endocardial and epicardial surfaces were fit independently using 2D bicubic Hermite
elements.
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needed to recreate the scar geometry onto the epicardial surface of the ventricle. Landmark points

described in the previous section 3.2.2 were selected and used to express segmented scar, endocar-

dial, and epicardial data from the LGE MRI in the same cardiac coordinate system employed to

generate the FE geometry. The registered coordinates were converted to a prolate spheroidal co-

ordinate system as detailed above. The (µ, θ) location of each resulting scar data point on the

epicardial surface is displayed as circles in Figure 3.3B and 3.3C.

3.2.4 Mapping scar data onto the model geometry

Once scar data were projected onto the epicardial surface from the LGE image slices, the next

step was to interpolate and transfer the scar information to the FE model. Defining the prolate

spheroidal coordinate system for the geometric fits and the LGE analysis using the same anatomic

landmarks allowed us to simply overlay the scar data onto a (µ, θ) grid representing the epicar-

dial surface in the geometric model (Fig. 3.3). The scar transmurality and depth measures were

transferred using a scattered, linear interpolation function with nearest neighbor extrapolation

inMATLAB. The epicardial nodal points from the FE geometry were used as sample points and

the epicardial points containing scar data from LGE as the data points (Fig. 3.3). In order to

decide which elements in the finite-element mesh would be considered to be scar, the data at the

four nodes of each epicardial element face were averaged to get a single transmurality and depth

per transmural stack of elements. The depth value defined the starting scar element from the

epicardium in each transmural stack of elements, and the transmurality metric determined the

number of elements through each transmural stack that were assigned as scar. Each metric was

multiplied by the number of radial elements and rounded to the nearest whole number to de-

termine which elements in a transmural column are scar. For example, given a resolution of 5

elements from epicardium to endocardium through the wall, a scar starting at depth of 9% with

transmurality of 57%would be represented as scar starting at the first epicardial element and span-

ning 3 elements (Fig. 3.4).

3.2.5 Mapping mechanical activation data onto the model geometry

In principle, these same methods can be used to fuse any information that can be expressed as

one or more numerical values associated with epicardial surface points. As a second illustration,
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Figure 3.2: Mapping scar onto patient-specific geometry. Long- and short-axis LGE MRI were segmented (A) and
registered (B) into their common imaging coordinate system. Transmurality of the segmented scarwas calculated
and projected onto the epicardial surface of the heart in each image (C). The scar transmurality data from all
images were projected onto the epicardial surface (wireframe) fitted to the segmented epicardial contours (D).
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Figure 3.3: Fusion of geometric data from cine MRI and scar location data from LGE MRI. (A) Diagram of the
prolate spheroid coordinate system with arrows showing the two angular coordinates that describe the location
of any point on the epicardial surface. (B) After expressing both the fitted epicardial nodes and the scar data
on the same coordinate system and registering them, information about scar transmurality calculated from the
different LGE MRI imaging planes (closed circles) was transferred to the epicardial nodes (squares) of the finite-
element mesh by interpolation. (C) The same interpolation procedure was also used to transfer information on
scar starting depth.
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Figure 3.4: Visualizing scar in a patient-specific model. (A) Scar transmurality is represented as a heat map on
the epicardial surface of the finite-element mesh and shown in an anterior view (anterior wall of left ventricle
in front). (B) The reconstructed scar location is visualized in a lateral view to display the variable depth and
transmural extent (lateral wall of left ventricle in front). The blue and orange meshes show the epicardial and
endocardial surfaces of the finite-element mesh, and the gray boxes indicate elements designated as scar. (C)
A single transmural column of elements is shown with the interpolated scar transmurality and depth at the
corresponding µ and θ values.
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we mapped mechanical activation time calculated from DENSE MRI short-axis slices onto the

finite-element mesh (Fig. 3.5).4 Since these data already consisted of a single number (activation

time) associated with each of 18 segments per short-axis DENSE slice, we were able to transfer

this information using interpolation of a single metric. We used linear interpolation between the

short-axis slices and nearest neighbor extrapolation above and below the most basal and apical

short-axis slices.

3.2.6 Combining multi-modal imaging onto a patient-specific model

We created a map of the scar transmurality, mechanical activation, and coronary vein anatomy

onto a single patient-specific epicardial geometry for guiding CRT. 13,14 This map featured data

fusion between LGEMRI, DENSEMRI, and CT. On the scar transmurality epicardial map cre-

ated from LGE MRI, we overlaid mechanical activation time for any regions that had no scar.

Coronary vein anatomy was segmented fromCT and registered toMRI-derived surface by align-

ingRV insertion points and the base-apex axis. The coronary veins are displayed as a binarymask

on a slightly larger epicardial surface which hovered above the true epicardial surface (Fig. 3.6).

3.3 Results

3.3.1 Validation of scar mapping

In order to assess the ability of the entire pipeline to accurately map LGE scar data onto a ge-

ometric model, we created plane cuts through the final FE model that approximated the MRI

planes used for LGE MRI acquisition and compared the resulting images side-by-side (Fig. 3.7).

Although the FE model geometry was created from a separate cine MRI sequence rather than

the LGE images shown in the comparison, the dimensions and shape of the LV appeared similar,

with some loss of detail around the papillary muscles due to smoothing apparent in short-axis

cuts of themodel. Long and short axis views showed comparable scar location and transmurality

to the segmented LGE MRI.
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Figure 3.5: Mapping mechanical activation onto patient-specific geometry. (A) Mechanical activation was calcu-
lated from DENSE MRI for each of 18 segments in 5 short-axis slices and registered with the fitted finite-element
geometry (closed circles). The epicardial nodes of the finite-element mesh were used as sample points (squares),
and mechanical activation times estimated at each using a combination of interpolation and extrapolation. (B)
Mechanical activation is shown as a heat map on the epicardial surface of the geometry.
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Figure 3.6: Human patient-specific map of coronary vein anatomy from CT, mechanical activation times from
DENSE MRI, and scar transmurality from LGE MRI. This data fusion map was generated as a tool for guiding CRT
lead placement.
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Figure 3.7: Validation of patient-specific scar model. Segmented long (A-C) and short (D) axis LGE MRI planes
are shown with corresponding sections through the finite-element model. All voxels enclosed by the yellow
segmentation outline are marked as scar. The scar location and volumes in each frame show good agreement
with the corresponding MRI images. Note that in general the spatial resolution of the LGE images is lower than
of the cine MRI images used to generate the finite-element geometry.
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3.3.2 Validation of map guidance in the clinic

The combined coronary vein, mechanical activation times, and scar transmurality map (Fig. 3.6)

is currently being used in a randomized clinical trial for pre-procedureCRTplanning§. Creating a

patient-specificmap takes about 3 hours, which ismainly limited by the time required formanual

geometry segmentation. 14 Currently, 31 patients have been enrolled with favorable results for the

map-guided patients. 13 The map-guided patients have LV leads placed in later activated regions

compared to control (Fig. 3.8). Post-CRT implantation for each patient was evaluated based on

metrics of electrical activation timing. The timing at the LV lead (QLV) is compared to the pre-

CRT QRS duration. The change in QRS duration post-CRT is also quantified. Optimal CRT

has a QLV to QRS ratio approaching 1 and a decrease in QRS duration post-CRT.

3.4 Discussion

3.4.1 Data f usion

We have presented a method for mapping MRI-derived data on scar location or mechanical acti-

vation onto a patient-specific finite-element geometry using prolate spheroidal coordinates. The

data fusion routine relies on identifying landmark locations in the LV anatomy in each image

set to register the information. The use of prolate spheroidal coordinates allowed us to simplify

the mapping of LGE or DENSE data into a two-dimensional interpolation problem along the

epicardial surface of the heart (Fig. 3.3). The projection onto the epicardium requires parame-

terizing the quantities of interest using metrics than can represent an entire transmural column;

thus, mapping non-transmural scar presented an interesting challenge. Tomaintain information

on both transmural extent and transmural location, we created separate variables that quantified

these two features. The transmurality metric tracked what percentage of the wall was scar, and

the depth metric tracked the distance below the epicardium at which the scar began (Fig. 3.4C).

These two parameters allowed for reconstruction of the scar in the finite-element model (Fig.

3.4B).

We also demonstrated themethods presented here on datasets frommultiple imagingmodal-
§clinicaltrials.gov/ct2/show/NCT03398369
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Figure 3.8: Patients (n = 31) randomized to MRI guidance (map-guided) for the CRT procedure had superior
implant results with respect to LV lead placement and electrical remodeling post-CRT. (A) The time at the LV lead
implant site (QLV) approached the latest activation time (QRS) inmap-guided patients. QLV:QRS ratio approached
1. (B) QRS duration decreased on map-guided patients versus control patients (p = 0.02).
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ities including CT and differentMRI sequences (Fig. 3.6). Each set of images had different voxel

resolutions andgapdistances between imagingplanes, whichwe addressedby separatelymapping

each dataset to the epicardial surface before fusing with the geometry. The sequences provided

information at differing numbers of time points during the cardiac cycle, requiring selection of

data from similar time points (in this case end diastole) prior to fusion. Furthermore, given the

potential for subject motion between sequences and the fact that the anatomy is not identical

in the different datasets (due to the differing resolution and slice locations), we also performed

a rigid registration step using anatomical landmarks. Registered scar transmurality, mechanical

activation, and coronary veinmapping is currently being used in a clinical trial to guide CRT lead

placement.

3.4.2 Limitations of data f usion

Because of the relatively low resolution of finite elements through the wall (5 elements from epi-

cardium to endocardium) used here, the representation of scar was discretized to 20% of wall

depth bins. Therefore, locations with less than 10% scar transmurality were marked as having

no scar due to rounding. This likely accounted for some differences in the observed scar map

in comparison to the raw MRI images (Fig. 3.6). However, greater resolution in representing

the scar geometry could be achieved either by increasing the number of elements in the finite-

element mesh or by employing a mixture formulation for the material properties so that individ-

ual elements could be partially composed of scar. Employing a mixture formulation or adding

transitional borderzone elements withmaterial properties that are intermediate between scar and

muscle could also smooth any stress concentrations that might arise at the infarct border.

The fact that MRI data on scar location are typically available only at discrete slice locations

rather than continuously in 3Dspace alsopresents a challengewhenmapping to a three-dimensional

finite-element mesh. Here, we used interpolation to integrate all available data from both long

and short axis slices in the LGE MRI dataset, but the accuracy of this approach depends heavily

on thenumber of image slices. We also demonstrated that themapping techniques presentedhere

can be used for sparser data sets, such as mechanical activation times determined from DENSE

MRI (Fig. 3.5).3 However, in this case estimating mechanical activation values for the entire LV

required extrapolation, so the results should be interpreted cautiously in locations beyond the
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image slices used to generate the original data.

3.4.3 Open-source code on SimTK

While many previous papers have employed imaging data to generate patient-specific heart mod-

els, few have utilized methods that extend easily to fusion of data from multiple MRI sequences

or imaging modalities. The most common approach for mapping the location and extent of an

infarct onto a model is to identify the infarct using information (such as local wall thickness)

segmented from the same images used to construct the model geometry. 15–21 This approach en-

sures that all information is both represented in the same coordinate system and correctly aligned,

avoiding the need for landmark-based registration. In situations where registration is required in

order to combine information from different imaging modalities, most groups have placed phys-

ical markers such as beads or wire sutures that are visible in multiple imagingmodalities.22–27 For

example, Mazhari and coworkers quantified regional strain using radiopaque markers imaged by

high-speed x-ray, then used the marker locations to register the mechanics to LV geometry and

perfusion boundaries mapped by a 3D manual digitizing probe.24,25 Another related approach

is to register information from different images by identifying physical landmarks that can be

aligned using rigid body rotation or probabilistic atlases.28–30 A small number of papers in this

area have used commercial or open-source software packages such as Continuity, CardioViz3D,

and ITK-SNAP,making theirmethods easier for other interested groups to reproduce.31–34 How-

ever, to our knowledge the routines presented here represent the simplest available open-source

method for fusing information from multiple imaging sequences or techniques onto a cardiac

model geometry.¶

3.5 Conclusion- Building patient-specific visuals for guiding CRT

Starting with raw images, the fusion and mapping process outlined here can be completed in

less than half an hour by a single, trained operator. The main limitation is the time required to

segment the cine and LGE MRI. While the full FE mesh is important for simulating mechanical

models, a simpler visualization can be created from the epicardial surface alone (Fig. 3.5B). The
¶simtk.org/projects/lvdatamap
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simple visualization extends the use of this registration routine from building patient-specific

computational models to creating a clinical tool that can superimpose LV data from multiple

imaging modalities (Fig. 3.6), which we are currently testing in a randomized, clinical trial‖.

‖clinicaltrials.gov/ct2/show/NCT03398369
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4
A fast, tunable electrical model for predicting

cardiac resynchronization therapy

4.1 Introduction

4.1.1 Virtual CRT

In Chapter 3, we presented a data fusion routine to map, integrate, and visualize data on multi-

ple factors associated with cardiac resynchronization therapy (CRT) outcomes in order to assist

pre-procedure planning. 1 Anticipating CRT efficacy is particularly difficult in patients with scar

in the left ventricle (LV) due to complex interactions between the muscle, scar and pacemaker

lead. 1,2 While integrating this information into a visual display can help physicians plan CRT

lead placement, accurately predicting long-term outcome from specific CRT lead positions in

specific patients would be an even more valuable tool for clinical planning. Successful CRT is in-

tended to reduce dilation in the LV volume through remodeling; thus, themost useful predictive

model would be one that accurately predicts LV remodeling for various possible choices of lead

position.
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Computational modeling has emerged as a powerful tool for cardiovascular research. Creat-

ing computational representations of the heart’s electrical, mechanical, and hemodynamic func-

tion has allowed for improved understanding of cardiac physiology.3–6 Current state-of-the-art

computational models typically employ high-resolution 3-D finite-elementmodels with detailed

representations of anatomy and electrophysiology; however, the computational cost of these sim-

ulations render them intractable for routine clinical use. Additionally, mechanical simulations at

this resolution provide excess spatial information that may not be relevant for the clinic. There

remains tremendous potential in using lower dimensional models, which require orders of mag-

nitude less computation time.7,8 With the vast library of computationalmethods available, strate-

gically matching model complexity to specific problems can help integrate these techniques into

the clinic.

In the next two chapters, we present two components of a modeling pipeline, Virtual CRT,

for predicting long-term outcomes of CRT. In this chapter, we developed a fast, tunable electri-

cal model to simulate patient-specific electrical activation. Themodel strategically leverages older

electrical modeling methods which can be implemented efficiently with current computing re-

sources.

4.1.2 Electrical modeling

Models of electrical activation in the heart have spanned simpler phenomenologic to more com-

plex physiologic representations.9,10 Based on early work by Hodgkin and Huxley simulating

nerve action potentials, the physiologic models simulate a cell’s transmembrane potential over

time by accounting for specific ion currents (such as sodium and potassium) across the cell mem-

brane. 11 The different models often vary in the number of specific ions represented. 12,13 These

models can be simplified usingmore generic reaction-diffusionmodels that lump all ion currents

together, such as in the Fitzhugh-Nagumo andMitchell-Schaeffermodels. 14–16 Thesemodels con-

tain fewer equations, allowing them to be more easily implemented in numerical solvers or ana-

lytically solved. Because all of these models compute transmembrane potential, they can also be

extended to model spatial propagation of action potentials using cable theory.

By contrast, phenomenologicmodels of electrical activation simulate the spatial spread of the

activation wavefront through the heart without explicitly computing transmembrane potential.
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They capture the timing at which electrical signals reach each part of the heart. These models are

often implemented using Huygens principle and the eikonal equation describing wave propaga-

tion. 17,18 Early phenomenologic models used discrete solving methods such as cellular automata

to capture physiologic patterns of electrical activation. 10,19 Although these models were deemed

computationally expensive when they were developed in the 70s and 80s, current implementa-

tions of thesemethods can generate electrical predictions in near real time, such as in the software

ECGSIM.20,21

In clinical settings, electrical information about the heart is recorded using electrocardiogram

(ECG) imaging systems. These methods rely on electrical leads to record changes in the electrical

activity of the heart. They vary from non-invasive techniques such as standard 12 lead ECG to

invasive contact mapping in the heart.22 While 12 lead ECG relies on 9 electrical leads to generate

12 signals, the number of leads can be significantly increased to achieve higher spatial resolution.

In this work, we validated our model using higher resolution ECG data, but we prioritized devel-

oping our work using 12 lead ECG because it is most widely used in the clinic.

The goal of the electrical model is to rapidly tune a model to match patient-specific ECG

data. We adapted a phenomenologic model of electrical activation and paired it with a simplified,

transmembrane potential function to simulate ECG signals. Our implementation was solved us-

ing efficient, graph-based pathfinding algorithms to minimize computation time. The resulting

electrical activation patterns serves as the input for a mechanical model of the LV.

4.2 Methods

We first present the electrical modeling pipeline for predicting CRT. The pipeline was validated

using a human patient-specific data set. We also generated a set of canine subject-specific models

to demonstrate clinical use of the pipeline.

4.2.1 Electrical modeling pipeline

The goal of the electrical modeling pipeline is to simulate electrical activation times to inform

when the myocardium contracts in a mechanical model described in the next chapter. The elec-

trical model is built using cardiac MRI data. The model is solved in two steps. First, a cellular
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automata framework is used to simulate the electrical activation times across the ventricles. Sec-

ond, the electrical activation times are used to simulate ECG signals. The model is tuned using

both steps to generate model ECG signals for comparison to patient-specific ECG data. After

tuning the model, only the first step is used to predict new electrical activation times from CRT

pacing. A flowchart of the pipeline is laid out in Figure 4.1.

Building a patient-specific model

The electrical model build consists of a biventricular finite-element mesh andmaterial properties

describing the conduction in the elements. In this chapter, we have generatedmodels for both hu-

man and canine (Fig. 4.2A). The geometry of the finite-element mesh is generated from patient-

specific cardiac MRI. The biventricular finite-element mesh is also spatially registered with the

location of ECG leads. For patients with scar, elements were labeled as scar using the method

described in the previous chapter. Scar elements are excluded from the electrical simulation to

represent complete electrical block (examples of mapped scar geometry in Fig. 4.2C).

Thematerial properties in the elements include themyocardial fiber orientation and conduc-

tion velocities. The material properties were determined from prior literature. To describe the

muscle fiber architecture, we used a rule-based method to assign fibers with orientations vary-

ing linearly from 60° on the endocardium to -60° at the epicardium in the plane of the wall as

described by Streeter and Hanna (Fig. 4.2B).23 For each element, the conduction velocities are

assigned along the fiber orientation, transmurally through the wall, and in the cross-fiber orienta-

tion in the plane of the wall. The heart was divided into a fast, endocardial layer in the right and

left ventricles and the remaining bulk myocardium (Fig. 4.2B). Conduction speed was assumed

to be transversely anisotropic with faster conduction along the fiber direction and 40% of that

velocity in the cross-fiber directions. We specified endocardial fiber velocity to be 600% of the

bulk myocardium fiber to model the Purkinje network as a fast conducting layer.24–28 Absolute

conduction velocities are only scaled by changing the bulkmyocardium fiber velocity whilemain-

taining the same scaling for the cross-fiber and endocardial fiber velocities as described by Lee et

al.27
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Figure 4.1: Patient-specific electrical modeling pipeline. After building a patient-specific finite-element mesh
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conduction velocity is scaled to match the patient’s QRS duration. (D) CRT pacing can be incorporated into the
model by adding initiation elements. (E) The tuned electrical activation times can be coupled to a mechanical
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Model solving algorithm

We implemented a cellular automatamodel developedbyHunter and Smaill to simulate electrical

wavefront propagation. 17 The electrical propagation is simulated by specifying two parameters:

an initiation element and amyocardial fiber velocity. The cellular automatamodeling framework

relies on each element having discrete states, whichwe specify to be resting or depolarized. The ac-

tivation starts from a depolarized initiation element and spreads to resting neighboring elements

at a time dependent on the conduction velocities and distances between the elements’ centroids.

Because we have discretized the geometry into finite elements with defined neighbors (touching

elements), we can represent the model as a weighted, undirected graph. The nodes of the graph

are the centroids of all elements. The edges are the connections between each element and its

neighbors. The weights of the edges are calculated as the time required for the wave front to

pass from the centroid of an element to its neighbor. After specifying an initiation element, we

can solve the propagation efficiently in MATLAB using a shortest-path tree algorithm emanat-

ing from the initiation site. The algorithm connects the initiation node to every other node by

traversing the shortest combination of edges. The result of the cellular automata simulation is

the electrical activation time for each element in the biventricular mesh. A two-dimensional toy

model of the electrical activation algorithm is shown in Figure 4.2D.

To compare the model to recorded ECG data, we generated a unipolar pseudo-ECG (pECG)

for each specified ECG lead location using equation 4.1.29 The intracellular conductivity tensor

(Dn) was set using the model conduction velocities.30 The transmembrane potential (Vm,n) was

generated for each element using a Heaviside step function which steps from -90 mV to 0 mV

at the cellular automata model electrical activation time. Because we modeled the heart as dis-

crete elements, we can approximate the gradient of the transmembrane potential at each element

(∇Vm,n) using the difference in potential with its neighbors.31 The lead location is represented as

a vector between an element and the ECG lead location (rn), and each element’s contribution to

the pseudo-ECG is weighted by its volume (vn). Because the transmembrane potential step func-

tion only simulates depolarization, the pseudo-ECG simulates the lead voltage for an equivalent

duration to theQRS complex. When comparing pseudo-ECG to recorded ECG, we normalized

both signals’ ranges to focus on the direction and timing of the deflections rather than the mag-
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nitudes.

pECG(t) = −
Elements∑

n
Dn(∇Vm,n(t) ·

1
∇rn

)vn (4.1)

Tuning a baseline model

Thebaselinepatient-specific electricalmodel is tuned to simulate depolarization andmatch recorded

ECG data for a QRS complex. The two model parameters (initiation element and myocardial

fiber velocity) are tuned using a two-step approach similar to Giffard-Roisin et al.32 We first op-

timized the initiation element by brute force. We simulated electrical propagation (and the re-

sulting pseudo-ECG signals) from every endocardial element. For each simulation, correlation

coefficient (CC) was calculated between the pseudo-ECG and recorded ECG leads. The average

CC across all ECG leads was used as the fitness score for each endocardial initiation element.

Using the best fit initiation element, we then scaled themyocardial fiber velocity tomatch the

latest electrical activation time with the recordedQRS duration. The velocity scaling only affects

the absolute timing (andnot thedeflectionor shape) of thepseudo-ECGsignals; therefore, scaling

the myocardial fiber velocity does not change the result of the initiation element optimization.

Predicting the effect of CRT

The tuned, baseline model simulated a patient’s current electrical activation times. To predict

the effect of CRT, we introduce additional initiation elements in the model to represent CRT

pacing leads. The pacing initiation elements can be coordinated to depolarize at any time with

respect to the tuned, baseline initiation element. TheCRTelectricalmodel predicts new electrical

activation times across the ventricles.

4.2.2 Model validation (EDGAR patient-specific model)

We validated our electrical model pipeline using a benchmark study available on the open-source

repositoryEDGAR* organizedby theConsortiumforECGImaging and theUniversity ofUtah.33

*edgar.sci.utah.edu
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The EDGAR dataset† featured a nonischemic patient recorded during a premature ventricular

contraction (PVC) ablation procedure. ECG signals from 63 leads were recorded for an intrinsic

beat (originating from the PVC site) and 7 paced beats (originating fromdifferent LVpacing loca-

tions). The data included the patient biventricular geometry and locations of the 63 ECG leads,

which were used to build the electrical model (Fig. 4.2A, left), and the PVC and 7 LV pacing

locations recorded from an intracardiac CARTO system.

This patient-specific data set included the initiation point of electrical propagation and the

resulting ECG signals, which are the input and output of our electrical modeling simulation. We

used the data to test the electrical model forwards (without optimization, set the initiation ele-

ment and simulate the resulting pseudo-ECG) and backwards (with optimization, use ECG data

to predict the initiation element). For the electrical modeling pipeline, the backwards simulation

will be used for tuning a baseline model, and the forwards simulation will be used for predicting

the effect of CRT pacing.

Comparing cellular automata to Mitchell-Schaeffer electrical model

Using a forward simulation of the intrinsic beat, we evaluated the performance of our model

against another published model which used the same EDGAR data. We simulated the intrinsic

beat by mapping the PVC location as the initiation element in the finite-element mesh and simu-

lating the electrical activation times and pseudo-ECG signals. The initiation elementwasmapped

as the closest element in the finite-element mesh to the recorded PVC location. Our simulated

electrical activation times were compared to results from amore complexMitchell-Schaeffer elec-

trical model implemented by Giffard-Roisin et al. 15,32 The pseudo-ECG signals were compared

to the recorded ECG signals.

Reducing data needed for tuning

Tuning a baseline model involves using recorded ECG to optimize the initiation element (the

backwards simulation). Any number of ECG signals (torso leads) can be used to tune the model.

Wevalidated the tuningmethodusinghigh resolutionECGfromtheEDGARdata. Wepredicted
†This study was performed in a joint research project between the First Department of Medicine (Cardiology),

University Medical Centre Mannheim and the Karlsruhe Institute of Technology (KIT).
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initiation elements for 8 cases (intrinsic PVC and 7 pacing beats) using ECG signals from 63 torso

leads. Then we reduced the ECG resolution by selecting 9 of the 63 ECG signals to represent 12

lead ECG, which is more common in the clinic (Fig. 4.2A, left). We repeated the tuning with the

reduced data set. The optimized initiation elements were compared to the recorded initiation

points from the intracardiac CARTO system. We calculated the distance between each recorded

site and the centroid of its best fit initiation element. We also calculated the distance between the

sites and the closest elements in the finite-element mesh to note minimum possible distance (Fig.

4.4a).

Predicting the effect of pacing

We used the modeling pipeline to test pacing simulations. We performed forward simulations

of the 7 paced beats by mapping the recorded pacing locations as the initiation elements. The

models were not simulated from a tuned baseline, so each simulation only included one initia-

tion element (the pacing location). The 9 ECG leads selected to represent the 12 lead ECG were

compared to the simulated pseudo-ECG signals.

4.2.3 Simulating CRT (canine subject-specific models)

We tested the ability of the electrical modeling pipeline to match subject-specific data relevant to

CRT. The preoperative CRT state includes LBBB and can include scar for patients with prior

myocardial infarction. We simulated 6 preoperative CRT cases collected from a canine study by

our group. The canine dataset featured two ischemic and four nonischemic canines recorded

during LBBB ablation surgery. 12 lead ECG was recorded before and immediately after ablation

of the left bundle branch. Cine and LGE MRI from one week after LBBB surgery were acquired

to provide the biventricular and scar geometries, respectively. Exact locations of the ECG leads

were not recorded during LBBB surgery; therefore, the 9 electrode locations from 12 lead ECG

were approximated on the torso geometry obtained from Cine MRI (Fig. 4.2A, right). We used

the electricalmodeling pipeline to simulate the healthy andLBBB states for each subject. We then

used the tuned LBBB models (the baseline state pre-CRT) to simulate CRT pacing.
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Simulating pre-CRT subjects

To test themodel representationof scar, weused thebackwards simulations to tune the 2 ischemic

subject-specific models (Fig. 4.2C) in their healthy state (normal conduction with myocardial

infarction scar). We also tuned the 4 non-ischemic subjects in their healthy state. All 6 subject-

specific models were additionally tuned in their LBBB states. The pseudo-ECG signals from the

healthy and LBBB states were compared to the recorded 12 lead ECG. The CC of each lead was

compared across all simulations.

Simulating CRT

As a proof-of-concept for simulating CRT, one ischemic subject and one non-ischemic subject

were used to simulate CRT. Two pacing initiation elements were added at the RV apex and LV

lateral wall to their tuned pre-CRT (LBBB state) models to represent CRT biventricular pacing

leads. The two pacing initiation elements and the tuned intrinsic initiation element were simul-

taneously initiated in a forward simulation to predict the resulting electrical activation times.

4.3 Results

4.3.1 Model validation

Wevalidated the electricalmodelingpipeline (Fig. 4.1) using theEDGARhumandata set. We first

used a forward (without optimization) simulation of the intrinsic (originating from the PVC site)

heart beat to compare the cellular automata electrical model to the Mitchell-Schaeffer electrical

model implemented by Giffard-Roisin et al.32 The pattern of electrical activation times matched

the trends in the more complex Mitchell-Schaeffer model (Fig. 4.3A). In particular, the earliest

and latest activation regions agreed between the models. We compared the simulated pseudo-

ECG signals for 9 lead locations to the recorded ECG (Fig. 4.3B). The deflections in signals

matched in most leads.

We then tested the model tuning (backwards simulation) using the intrinsic (PVC) and 7 LV

paced cases. Each case was tuned using the entire set of 63 ECG leads as well as a reduced set of

9 leads. The model tuning optimizes the initiation element and scales the myocardial fiber con-
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Figure 4.3: Simulating an intrinsic patient heart beat initiation from a recorded PVC site. (A) Comparison of
cellular automata electrical model to Mitchell-Schaeffer model implemented by Giffard-Roisin et al.32 (B) 9 leads
were compared to the recorded ECG signals. The simulated pseudo-ECG signals matched the deflections in most
leads.
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duction velocity. We compared the optimized initiation element for each case by calculating its

distance to the recorded initiation site (Fig. 4.4A). The average minimum possible distance was

10±5 mm. For all cases except P3, reducing data from 63 to 9 leads maintained or improved the

selection of the optimized initiation element (Fig. 4.4B). Improvement in optimized initiation

element is marked by a decrease in distance to the recorded initiation site. While the optimized

conduction velocity among the intrinsic and pacing cases varied, the 63 lead and 9 lead optimiza-

tions resulted in similar velocities for each case (Fig. 4.4C).

Lastly, we used the forward simulation to test the electrical modeling pipeline predictions

for LV pacing. For each case, the pacing location was registered to the finite-element mesh (Fig.

4.5A). We compared the deflections in simulated pseudo-ECG at 9 ECG leads to recorded ECG

signals (Fig. 4.5B). The majority of pseudo-ECG deflections matched the trends in the data.

4.3.2 Simulating CRT

Todemonstrate the clinical usageof the electricalmodelingpipeline,we simulated6 canine subject-

specific models. We tuned the models using their subject-specific ECG data from a healthy state

and LBBB state. Two models included myocardial infarction scar, cases C1 and C2 (Fig. 4.2C).

For each case, the optimized initiation elements were different between healthy and LBBB. Ad-

ditionally, the optimized bulk myocardium fiber velocity was lower in LBBB (1.6±0.2 m/s in

healthy and 0.7±0.1 m/s in LBBB). The resulting pseudo-ECG from all optimizations are shown

in Figure 4.6A. We calculated CC between the recorded ECG signal and simulated pseudo-ECG

to evaluate the fit (Fig. 4.6B). The healthy state optimizations had overall higher CC compared

to LBBB. Importantly, there was no major differences in the CC between the subjects with and

without scar.

The electrical activation time maps for each subject-specific model are shown in Figure 4.7.

Most LBBB models featured delayed activation times towards the posterior and lateral walls of

the LV. As a proof-of-concept for simulating CRT pacing, we added biventricular pacing to two

cases, C1 and C6 (Fig. 4.8). The pacing simulations decreased the QRS durations compared to

the LBBB simulations. A difference map of electrical activation times revealed the lateral wall in

both cases became activated earlier, demonstrating the benefit of pacing (Fig. 4.8B).
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Figure 4.6: Results from 6 subject-specific optimizations. (A) Simulated pseudo-ECG signals for healthy and left
bundle branch block optimizations compared to recorded 12 lead ECG data. (B) Correlation coefficient between
model and data for each lead in each simulation.
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4.4 Discussion

Developing a coupled electro-mechanical model of the LV is an essential step for predicting long-

term outcomes of CRT. The electrical model is used to predict changes in electrical activation

from different CRT pacing lead configurations. In this chapter, we adapted a simple but compu-

tationally efficient electrical model to simulate CRT.We validated the model against a more com-

putationally and physiologically complex electrical model by simulating a human patient-specific

data set from an open-source repository. We then simulated 6 canine subject-specificmodels with

conditions more similar to preoperative CRT patients.

4.4.1 Model validation

To validate our implementation of a cellular automata electrical modeling framework, we com-

pared our model to a more physiologic simulation implemented by Giffard-Roisin et al (Fig.

4.3A).32 Their model used benchmark data from EDGAR that included an estimate of the elec-

trical initiation point in the heart (fromPVCor pacing leads) and the subsequent electrical signals

recorded from multiple ECG leads.33 Giffard-Roisin et al used the data set to tune and validate

their implementation of a Mitchell-Schaeffer electrical model.32 The major difference between

ourmethodswas the calculation of the transmembrane potential. TheGiffard-Roisin simulation

accounted for the evolution of transmembrane potential at all nodes in their finite-elementmesh

basedon a lumpedparameter, reaction-diffusion equationdevelopedbyMitchell and Schaeffer. 15

Their model was solved using finite-element methods.32 The cellular automata framework sim-

ulated electrical activation propagation across the finite-element mesh and assigned a transmem-

brane potential based on a simple step function. Ourmodel was solved using a shortest-path tree

algorithm.

We simulated the intrinsic PVCbeat in the cellular automatamodel bymapping the recorded

initiation point onto the finite-element mesh and propagating electrical activation. The result-

ing electrical activation times matched trends from the equivalent simulation in the Mitchell-

Schaeffer model (Fig. 4.3A). Importantly, the earliest and latest activation regions matched. The

electrical activation timing directly influences the mechanics of the heart; therefore, matching

these regions is essential for accurately coupling the electrical modeling results to a mechanical
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model. Also, identifying regional differences in electrical (and mechanical) activation timing is

critical for planning CRT. 1 Additionally, our transmembrane potential and pseudo-ECG for-

mulations captured the deflections present in the recorded ECG (Fig. 4.3B). Compared to the

Mitchell-Schaeffer model which used a finite-element solver, our cellular automata model solved

in near real-time making it more tractable for clinical use. Also, our simplification of the trans-

membrane potential (represented by a step function compared to theMitchell-Schaeffer reaction-

diffusion equation) still captured the necessary dynamics to simulate deflections in the pseudo-

ECG. Overall, our electrical modeling pipeline is a suitable, faster alternative to the Mitchell-

Schaeffer electrical model for simulating electrical activation times and ECG signals.

After validating the ability of the electrical modeling pipeline to simulate a patient-specific

heart beat, we reversed the simulation to test if we could use ECG data with the model to predict

the initiation site. We optimized 8 cases (PVC and 7 LV pacing) to predict their initiation site

and myocardial fiber velocity (Fig. 4.4). We optimized each case twice using the entire data set

of 63 ECG leads and a reduced set of 9 leads to reflect 12 lead ECG more commonly used in the

clinic. Surprisingly, 6 of the 8 cases maintained or improved their distance error metric when the

ECGdata was reduced (Fig. 4.4B). Thismay be due to the concentration of the ECG leads on the

front of the human torso geometry (Fig. 4.2A, all circles). The formulation for the pseudo-ECG

in equation 4.1 relied on the location of the lead; therefore, closely clustered leadswill have similar

pseudo-ECG signals. Because the optimizations weight each ECG signal equally, this biases opti-

mizations where there are many ECG leads located close together. The locations of the subset of

9 ECG leads aremore strategically spaced around the heart allowing for a closer fit to the recorded

initiation points.

While the scaled conduction velocities varied between different cases (Fig. 4.4C), these values

fell within a physiologic range reported byprevious simulations (0.65 to 1.5m/s along themyocar-

dial fiber velocity).3,17,25,34,35 Because we assumed the conduction anisotropy in the heart based

on work by Lee et al, scaling of the myocardial fiber velocity did not change the regional pattern

of early and late electrical activation.27 Demonstrated in these 8 optimized cases, our electrical

modeling pipeline can uniquely identify a site of electrical initiation based on ECG data from 9

recorded leads. This optimizationmethod is important as it will be used to tune a baselinemodel

before predicting electrical activation changes with CRT.
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Using the 7 pacing cases, we lastly tested the model’s ability to simulate pacing from different

locations. We mapped the recorded pacing site onto the finite-element mesh as the initiation el-

ements (Fig. 4.5A). The mapping error between the recorded sites and initiation elements is the

minimum possible distance shown in Figure 4.4B. These pacing cases did not feature intrinsic

conduction, so the simulations only had electrical propagation from the mapped initiation ele-

ment. The resulting pseudo-ECG at 9 leads is shown in Figure 4.5B. For all cases, the majority of

pseudo-ECG signals matched the deflection observed in the recorded data. This was a promising

result because it shows that the model can capture different ECG signals associated with pacing

from different locations.

4.4.2 Simulating CRT

We deployed the cellular automata electrical model to simulate 6 subject-specific, canine models.

Two cases (C1 and C2) tested modeling of myocardial infarction scar based on LGE MRI (Fig.

4.2C). The registered scar elements in the finite-element mesh were excluded from the electrical

propagation to simulate complete electrical block.31 The presence of scar has been shown to be

an important factor in determining CRT response and chronic outcomes; therefore, the ability

to accurately simulate the effect of scar on electrical propagation is essential. 1 For each subject-

specific model, a single initiation element was optimized to match either the healthy or LBBB

state. Although the healthy and LBBB data were recorded sequentially during the left bundle

branch ablationprocedure, we independently optimized the two states. Clinically, only theLBBB

state data will be available for preoperative CRT planning.

Because we do not have a recorded initiation site for electrical activation like the EDGAR

data, the models were evaluated by their optimized best fit to the recorded ECG signals. For all

simulations, the pseudo-ECG is plotted against the recorded ECG in Figure 4.6. The healthy

models overall featured higher correlation coefficients compared to the LBBBmodels (Fig. 4.6B);

however, most leads matched deflections in the data. The simulations with scar (C1 and C2) did

not feature anymajor differences in fit to ECGdata compared to the nonischemic cases, and their

LBBB simulations represent a frequent preoperative state for many patients receiving CRT. 1,36

One way to possibly improve the lead fits is the use of multiple initiation elements; however,

the choice of a single initiation element for each model and condition was consistent with the
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methods used by the Giffard-Roisin simulations of EDGAR data.32

LBBBpatients experiencedelayed electrical activation andmechanical contraction in theposterior-

lateral walls of the LV.36,37 The activation times for LBBB models featured delayed activation in

these regions (Fig. 4.7). To match the late activation time (QRS duration), the myocardial fiber

velocity was slowed in all models from healthy (1.6±0.2 m/s) to LBBB (0.7±0.1 m/s). An alter-

native approach to simulating LBBB includes slowing of the fast endocardial layer conduction

velocities in the LV. Lee et al simulated slowing of the basal two-thirds of the LV endocardial

layer to match bulk myocardium speeds and showed no significant changes in the location of the

simulated andmeasured late activation time.27 Additionally, slowing of the LV endocardial layer

would prevent retrograde activation of the LV Purkinje which has been clinically observed and

simulated in models of CRT.38,39

To predict changes in electrical activation associated with CRT, we can take a tuned baseline

model and add initiation elements to represent pacing leads. In two cases (ischemic C1 and nonis-

chemicC6),weused the tunedLBBBmodel to simulate biventricular (BiV)pacing (Fig. 4.8). The

two pacing locations were added at the epicardium of the LV lateral wall and the endocardium of

the RV apex. They were simultaneously initiated with the tuned LBBB initiation element. We

calculated a difference map between the LBBB and BiV paced electrical activation times to show

the impact of pacing (Fig. 4.8B). The pacing decreased the simulated QRS durations by more

than 25% in both cases.

4.4.3 Computational cost of electrical modeling pipeline

The patient-specific electrical modeling pipeline in this chapter was developed starting from the

simplest methods available to minimize computational costs. On a desktop with 4 cores, a cellu-

lar automatamodel simulating depolarization (atmost 178ms) computes in about 50ms, and the

pseudo-ECGcalculation for 9 lead locations takes about 1.7 seconds. In comparison, theMitchell-

Schaeffer model simulated 300 ms of the cardiac cycle with a computation time of 2 min using a

GPU implementation.32 And in themost state-of-the-art frameworks, the high-resolutionmodel

by Arevalo et al simulated multiple cardiac cycles with a computation time of about 1 hour for

each second of the simulation on a supercomputer.40 While simulating other phases of the car-

diac cycle (beyond depolarization) are important for predicting electrical abnormalities, we only
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needed to predict depolarization to couple to mechanical contraction of the heart. Furthermore,

our fast electrical model is also capable of being rapidly tuned (by running multiple model opti-

mizations) due to its computational efficiency.

In the current pipeline, we used brute force optimization to tune the initiation element simu-

latingpropagation fromover 2,500possible endocardial elements, which required a computation

timeof over 80minutes. Using amore strategic optimization scheme can greatly reduce the search

space and speedup the computation time required to tune a baselinemodel. Froma tunedmodel,

a simulation of CRT pacing can be computed in less than 2 seconds. Overall, the electrical mod-

eling pipeline we developed can be rapidly tuned tomatch a patient’s baseline electrical activation

state and screen potential CRT pacing configurations. The pipeline is a promising method for

predicting changes in electrical activation times relevant for predicting CRT outcomes.

4.4.4 Limitations

The electricalmodel thatwehavedeveloped is limited spatially and temporally in simulation inter-

pretation compared to current state-of-the-art models. The cellular automata method can work

on any sized mesh; however, we discretized the heart to solve at about 9000 points with an aver-

age resolution of 4±1.5mm. The goal of the cellular automatamodel was to predict the timing of

electrical activation for different regions to inform mechanical contraction. Although our mesh

resolution was low, it appropriately matched the resolution of the geometry generated from cine

MRI and the mechanical data from DENSE MRI. In comparison, the range of solving points

can vary from 65,000 points in the Giffard-Roisin model to more than 40 million points featur-

ing a resolution of 200 to 350 µm developed by Arevalo et al.32,40–42 While our low-resolution

model was able to make similar predictions to the Giffard-Roisin model regarding electrical acti-

vation time, it is not capable of simulating re-entrant arrhythmias possible in the high-resolution

models. However, this fundamental limitation does not hinder the applicability of our electrical

modeling pipeline towards predicting CRT outcomes.
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4.5 Conclusion- Predictive electrical modeling for CRT

The electrical modeling pipeline in this chapter is the first step in the Virtual CRT pipeline to

model long-term outcomes of CRT. Using a human patient-specific data set featuring PVC, we

validated the pipeline’s ability to match patient-specific ECG data and simulate LV pacing. Addi-

tionally, we tuned 6 canine subject-specific models to data from a pre-CRT state featuring LBBB

(andmyocardial infarction scar in two subjects). To fully validate the electricalmodeling pipeline,

we will need a data set which includes multiple pacing lead locations and the resulting ECG in a

pre-CRT patient. Invasive contact mapping of electrical activation times could also help validate

the electrical activation time predictions simulated from themodel. In the next chapter, we build

the next step of Virtual CRT by coupling the electrical activation times from the tuned LBBB

subject-specific models to inform a mechanical model.
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5
Developing a finite-element mechanical

model for predicting mechanics of cardiac

resynchronization therapy

5.1 Introduction

5.1.1 Virtual CRT, continued

In the past decade,many groups have developed electrical andmechanicalmodels to predict acute

effects of CRT. 1–8 These models have all featured high-resolution biventricular models that sim-

ulated electrical propagation with reaction-diffusion type formulations. The coupled mechani-

cal models also used the same high-resolution geometries to simulate mechanics. These models

were capable of simulating changes in electrical and mechanical function from different pacing

locations, which can help optimize patient-specific CRT. However, the high computational cost

makes them intractable for clinical translationwithout high performance computing. To create a

clinically translatable model, we developed a simple electrical model capable of simulating LBBB
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and pacing in Chapter 4. The results of that model are intended to serve as an input for me-

chanical model that will simulate the mechanics of a cardiac cycle. In this chapter, we tested the

utility of a finite-element mechanical model for the mechanical component of the Virtual CRT

pipeline.

5.1.2 Mechanical modeling

Mechanical models of the heart simulate the stress and strain experienced by the tissue through-

out the cardiac cycle. Different implementations of mechanical models vary in their geometric

assumptions about the LV. The simplest geometric representations include a thin-walled sphere

or a thick-walled cylinder, which can be solved analytically.9–13 More physiologic, patient-specific

geometries can be generated using finite-element methods; however, they require dedicated nu-

merical solvers to implement. While the simple geometries can provide a global estimate of stress

and strain in the LV, finite-element models provide higher spatial resolution that can account for

regional variations in geometry ormaterial properties. This capability may be particularly impor-

tant in the case of LBBBwhere different regions of the heart contract at different times and some

regions may include post-infarction scar.

One key advancement in the field of biomechanics is the development of algorithms to pre-

dictLVgrowthbasedon changes in regionalmechanics. 13–18 Extending these techniques topatient-

specific models may allow for integration of imaging and clinical data to predict long-term re-

sponse from CRT. The success of these remodeling predictions heavily relies on the ability to

accurately simulate LV mechanics. Non-invasive imaging techniques now enable tracking of tis-

suemechanics (strains) throughout the cardiac cycle. 19,20 These techniques track tissue at various

short- and long-axis slice planes, which can be registered together using methods developed in

Chapter 3 to interpolate mechanical metrics across the whole LV.21 In this chapter, we used LV

volumes from cineMRI and strain tracking from displacement encoding with stimulated echoes

(DENSE) MRI to tune subject-specific finite-element mechanical models to accurately simulate

pre-CRT mechanics. While we were able to match reported strains in some situations, the simu-

lated local active contraction curves required to do sowere physiologically implausible, suggesting

that some critical aspects of the mechanics of dyssynchrony are still not adequately represented

in our models.
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5.2 Methods

5.2.1 Mechanical modeling pipeline

Thegoal of themechanicalmodelingpipeline is to simulate themechanics of theLVduringLBBB

aswell as the changes associatedwithCRT.The idealizedmodeling pipeline using a finite-element

mechanicalmodel is laid out in Figure 5.1 (A andB). The first step is coupling of the electrical and

mechanical models. Simulated electrical activation times are used to generate active contraction

load curves which define when different regions of the LV contract. The electrical activation

times can come from a baseline (LBBB, pre-CRT)model or a paced (CRT)model. A full cardiac

cycle is simulated using the active contraction load curves and patient-specific LV pressures. The

resulting regionalmechanical response (strains) are used to predict growth and remodelingwhich

feed back into the mechanical model for subsequent cardiac cycle simulations. 16,22–24

The critical component of the mechanical modeling pipeline is the electro-mechanical cou-

pling. Ideally, we can define a function that takes in the electrical activation times and predicts

regional active contraction load curves to prospectively simulate mechanical response (LV vol-

ume and strains); however, we do not know the formulation of this coupling. In this chapter, we

used subject-specific baseline models (pre-CRT) to simulate LVmechanics. We optimized active

contraction load curves based on either volume or strain errors to match measured mechanics

data from cine or DENSE MRI (Fig. 5.1C and 5.1D). With these optimizations, we evaluated

whether the mechanical modeling pipeline could accurately simulate mechanics.

5.2.2 Mechanical data

Wesimulated 6 canine subject-specificmodelswithLBBB (including 2withmyocardial infarction

scar). For each canine, cine and DENSE MRI were recorded one week after inducing LBBB to

provide volume and strain data, respectively. LV cavity volumes were calculated using segmented

short- and long-axis slices of the LV throughout the cardiac cycle. LV pressure was also recorded

from a pressure catheter immediately after the MRI recording. The volume and pressure data

were aligned to generate a pressure-volume (PV) loop for each subject (Fig. 5.2A). The end dias-

tolic point of the PV loop (bottom right corner) indicates the end of passive filling and start of

active contraction in the cardiac cycle.
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Figure 5.1: Mechanical modeling pipeline. (A) Input from an electrical model defines the regional active contrac-
tion load curves in a finite-element mechanical model. (B) The resulting regional strains are input into a growth
model to predict changes in the LV geometry. (C, D) To tune the electro-mechanical coupling defining the ac-
tive contraction load curves, we used recorded mechanical data from cine and DENSE MRI to compare to the
simulated mechanical outputs.
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Wemeasured circumferential and radial strains fromDENSEMRI in 6 short-axis slices of the

LV.25 For each slice, the strain data was binned into 6 sectors for a total of 36 distinct regions (Fig.

5.2C). We aligned the DENSE MRI frames to the PV loop to indicate when the strain data was

measured throughout the cardiac cycle (Fig. 5.2A, circles). For all subjects, the strain data began

after the start of active contraction (end diastole). For comparison of model simulations to this

strain data, we adjusted the simulated strain reference point to match DENSE MRI. To evaluate

the impact of the delay in measuring strains, we also modeled canine case C3 at a later time point

(9 weeks after inducing LBBB) whenDENSEMRI strains were available for the full cardiac cycle.

5.2.3 Building a finite-element model

Mechanicalmodels were created to simulate themechanics of the LVduring LBBB for the canine

dataset using FEBio v2.9.26 Subject-specific models of the LVwere created using themethods de-

scribed inChapter 3. A ring of rigid-body elements was added next to themost basal, endocardial

elements at the mitral valve position. The mitral valve ring was fixed in all directions. A ring of

rigid-body elements was added at the apex and constrained to slide along and rotate around the

base-apex axis of the LV similar to Estrada et al.27 Apressure loadwas applied to the inner surface

of the LV to simulate loading from the blood. To represent loading from the RV, a pressure load

scaled to 20% of the LV pressure was applied to a selected region of the LV outer surface where

the elements were located inside the RV in the biventricular geometry (Fig. 5.2B).

The material properties were assigned using a transversely isotropicMooney-Rivlin (TIMR)

material with active contraction. All myocardial elements were given the same passive material

properties fitted by Estrada et al. with the exception of a slightly softer isotropic stiffness (C1 =

0.34kPa).27 For models with scar, an isotropic, stiffer combination of parameters with no active

contraction was used for the TIMR material in scar elements. The isotropic coefficients were

increased to C1 = 1.65 kPa and C2 = 4.0 kPa and the fiber terms were set to zero based on

previous work by Moyer to simulate cardiac fibrosis.28

Active contractionwas implemented by providing a load curve which adds active stress along

the muscle fiber direction as well as scales C1 and K, the bulk modulus, by 10 times. The active

contraction implemented by Estrada et al. also accounts for force-length and force-velocity rela-

tionships of cardiac muscle.27 36 active contraction load curves were defined for the 36 regions
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allowing for dyssynchronous contraction associated with LBBB (Fig. 5.2C).

Unloading geometry

Throughout the cardiac cycle, the LV is always pressurized by the blood volume present in the

chamber. The LV models were generated from segmented MRI at end diastole. Simulating a

finite-element mechanical model relies on starting from a completely unloaded (un-pressurized)

geometry. To approximate the unloaded geometry, we iteratively scaled down the LV geometry

while conserving wall mass and simulated passive inflation to the recorded end-diastolic pressure.

We constrained the unloaded LV cavity volume to be smaller than the minimum volume of the

PV loop. We assessed the fit of each scaled down geometry by comparing the simulated PV with

the passive filling portion of the recorded PV loop. The unloaded geometry with the best fit was

used as the starting geometry for the cardiac cycle simulations. The optimized passive inflation

simulations for each subject are shown in Figure 5.3.

5.2.4 Optimization schemes

Volume cost function

To test whether the finite-element mechanical model could replicate in vivo LBBB mechanics,

we first tested an optimization scheme to tune active contraction load curves based on measured

LV cavity volume. For each region, we assumed active contraction started at its average electrical

activation time (from the electrical model) but followed a common tension generation profile

thereafter; therefore, we time-shifted the common load curve to start at each region’s electrical

activation time (example in Fig. 5.4C).

The error between the simulated and measured volume was used to tune the common load

curve. Because the regions contracted at different times, each point in the load curve contributed

to the simulated volume at different times throughout the cardiac cycle. Therefore, the error

applied to alter the load curve was calculated by summing regional errors. Each regional error

was calculated by time-shifting the volume error by the regional time delay and scaling the volume

error by the mass of the region. The common contraction load curve was iteratively altered until

the volume error converged. An example of the volume cost optimization is shown in Figure 5.4.
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Strain cost function

As an alternative approach, we uncoupled the electrical and mechanical models by removing the

commonactive contraction load curve constraint andoptimized each subject using regional strain

data. We allowed for all 36 regions to contract with independent load curves regardless of the

electrical activation time. Each region startedwith the same initial contraction load curvebasedon

the elastance of the LV calculated from the recorded PV loop. Themodel strains were calculated

as the average circumferential and radial strains for the elements in each region (with matched

reference time to the DENSE MRI data).

Each regional strain error was calculated by summing the difference between the simulated

and recorded circumferential and radial strains. The regional strain error was used to directly

tune the regional active contraction load curve. The load curves were iteratively altered until the

sum of all regional strain errors converged. An example of the strain cost optimization is shown

in Figure 5.4.

Comparing optimization cost functions

Thevolumeand strainoptimization approacheswere comparedby looking at their fits to recorded

data and their optimized active contraction load curves. Volume error was calculated using sum

of squared errors. The strains were compared for a single short-axis slice located halfway base-to-

apex in the LV. Sum of squared errors was calculated for the circumferential and radial strains.

The volume and cost optimizations were repeated for a final subject case which includedDENSE

MRI for the entire cardiac cycle.

5.3 Results

5.3.1 Simulating LBBB mechanics

We used two optimization schemes (volume and strain cost functions) to simulate 6 canine mod-

els to match LBBB mechanics. The first two subject-specific models (cases C1 and C2) included

myocardial infarction scar. We evaluated the final results of the optimizations for their fit to mea-

sured volumes and strains.
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LV volume

The volume cost optimization achieved a better fit to volume data for all cases compared to the

strain cost optimization (Fig. 5.5). For the strain cost, the deviation in volume fit is most evident

during the early systole phase (from time0) inFigure 5.5B.The start of the recordedDENSEMRI

occurred about 122±33 ms after end diastole, which meant no changes to the active contraction

load curves could be made during the beginning of contraction in the strain optimization. This

led to an overall decrease stroke volume (width of the PV loop) compared to the data (Fig. 5.5A).

The sum of squared volume errors were much larger for the strain cost optimization compared

to the volume cost (Fig. 5.5C).

LV strains

To compare circumferential and radial strains to DENSEMRI, we reported strains from a single,

mid-LV short-axis slice in all cases. The reference time for DENSE MRI was slightly after end

diastole for all cases; therefore, the model strains were calculated from a matched reference state

for each case (time greater than 0 ms, Fig. 5.6A and 5.6B). Overall, the simulated circumferential

strains for both cost functions had lower ranges than the data (Fig 6A). The circumferential strain

patterns observed in the data were not distinguishable in the optimized simulations.

For both cost functions, the radial strains bettermatched the data ranges (Fig. 5.6B).With the

exceptionof caseC2, the simulated radial strains bettermatcheddatawith the strain cost function.

For cases C3, C4, C5, andC6, the Posterior-Lateral (light green) andAnterior-Lateral (dark green)

regions thicken (positive radial strain) similar to the data. And the Anterior-Septal (dark red)

and Posterior-Septal (light blue) regions thin (negative strain) similar to the data. Overall, the

simulated strains slightly improved with the strain cost function compared to the volume cost

(Fig. 5.6C). However, the simulated patterns of circumferential and radial strains require further

improvement to match measured patterns.

5.3.2 Active contraction load curves

The volume and strain cost optimizations were marked by dramatic differences in the final active

contraction load curves for the 36 regions in eachmodel (Fig. 5.7). For the volume cost, one active
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contraction load curve was altered and applied to all regions according to the electrical activation

time. For the strain cost, each region featured its own active contraction load curve that changed

based on the strain error. The volume cost contraction load curves all converged towards a similar

shape featuring a double-hump. In contrast, the strain cost contraction load curves did not share

a distinguishable common shape. The strain cost optimization results were also confounded by

the lack of data during early contraction causing all regional load curves to remain unchanged

during that portion of the cardiac cycle.

5.3.3 Full cardiac cycle mechanics

Because the DENSEMRI reference time for the 6 cases did not align with end diastole, we tested

one additional data set with DENSE MRI reference starting at end diastole. A new, biventricu-

lar geometry was generated for the case, and the electrical activation times previously simulated

for case C3 were mapped onto the model. The same unloading, volume cost, and strain cost

optimizations were completed for the new data set.

The simulated volumes from both cost functions matched the recorded volume well (Fig.

5.8A and 5.8B). The simulated strains did not match the data for the volume cost optimization;

however, the simulated patterns of strain greatly improved with the strain cost function (Fig.

5.8C and 5.8D).While the patterns are more distinguishable, the ranges for both circumferential

and radial strains are still smaller compared to the data.

The optimized active contraction load curves for the volume cost featured a similar double-

hump shape to the previously simulated cases (Fig. 5.7 and 5.8E). The strain cost contraction

load curves did not share a common, distinguishable shape. Overall, the strain cost optimization

was able to reproduce more features of regional mechanics than the volume-based optimization

approach when full-cycle DENSE was available, but still displayed obvious limitations.

5.4 Discussion

The goal of the mechanical modeling pipeline is to generate accurate predictions of LV mechan-

ics which will be used to predict long-term growth and remodeling. We tested whether our

finite-element mechanical modeling pipeline could simulate LV mechanics including volumes
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and strains. We used 6 canine subject-specific models based on the electrical modeling from the

previous chapter to simulate pre-CRT mechanics. We used two optimization schemes to tune

regional active contraction load curves to match mechanics.

5.4.1 Assuming a simple electro-mechanical coupling

Different electro-mechanicalmapping techniqueshavebeenused to reveal a homogeneous electro-

mechanical delay of about 20 to 40 ms in canines.29–31 In our modeling pipeline, we assumed a

homogeneous, constant electro-mechanical delay across the LV. The simplest formulation for

electro-mechanical coupling assumes that each region of the LV contracts along the same active

contraction load curve time-shifted according to its electrical activation time. This assumption

requires tuning of only one common load curve among all 36 regions. We tuned all of the subject-

specific models to match their recorded LV volumes throughout the cardiac cycle (Fig. 5.5B).

The simulated volumes matched the data very well in all subjects, and the tuned common con-

traction load curves all shared a distinguishable double-hump shape (Fig. 5.7). While the shape

is a promising finding for defining an electro-mechanical coupling function, the simulations did

notmatch recorded circumferential and radial strains, whichmeans themodels failed to simulate

LBBB mechanics (Fig. 5.6).

One feature of the finite-element model that affects the mechanical response is the bound-

ary conditions. The models did not have full valve boundary conditions to enforce isovolumet-

ric contraction and relaxation during the cardiac cycle. This confounded the interpretation of

the resulting contraction load curves by increasing the sensitivity of the simulated mechanics to

the load curve during those phases. The load curve may reflect additional stresses needed to en-

force the isovolumetric phases that are unrelated to the muscle contraction. While these models

matched volumes well, simulating proper valve boundary conditions may constrain the volume

cost optimizations to also better match measured strain patterns.

Anothermajor assumption about themodelwas thehomogeneous, constant electro-mechanical

delay. While this assumption was based on electro-mechanical mapping data, previous finite-

element mechanical models by Kerckhoffs et al. showed that a heterogeneous electro-mechanical

delay was needed to simulate physiologic patterns of strain.32 However, the need for heteroge-

neous electro-mechanical delay may be a result of the active contraction model implemented in
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their model. Their results along with ours supports further exploration of active contraction

physiology and how it is modeled.

5.4.2 Matching LBBB mechanics

Matching strain is important because it is the input for mechanics-based growth algorithms for

predicting long-term remodeling in the heart. 16,22–24 Therefore, we tested an alternate approach

of optimizing regional active contraction in the model to match strain measured from DENSE

MRI (without input from the electrical model). We allowed for each of the 36 regions to have

independent load curves to best match their own regional circumferential and radial strain data.

The data we used for the 6 cases recorded strain after the start of contraction (Fig. 5.2A).

The lack of data for early contraction led to poor fits in the simulated volumes (Fig. 5.5B). This

finding was not surprising because early errors in contraction could not be corrected leading to

error propagation throughout the contraction cycle. At the time point that the simulated strains

were referenced (Fig. 5.3, red circle), the incorrect deformation of the LV further confounded the

resulting strains. It is likely that the simulated and recorded strains were calculated from differ-

ent deformed states since the volumes did not match. These optimization cases highlighted the

importance of the data used for tuning a finite-element mechanical model. When we optimized

a case with strain data starting from end diastole (the start of contraction), the simulated model

matched both the volume and strains (Fig. 5.8).

While we only simulated one model that replicated LBBB mechanics, this model did not

incorporate any information from the electrical model. The tuned active contraction load curves

did not share any common shape and therefore did not provide any insight towards coupling

electrical activation times to mechanical contraction (Fig. 5.8E, strain cost). This may be a result

of the missing valve boundary condition highlighted in the previous section. Additionally, the

hyperparameters of the active contraction model implemented by Estrada et al. and used in our

model simulationsmay need to be re-tuned for LBBB physiology, which has been experimentally

shown to feature reduced peak shortening and impaired contractile kinetics.33,34
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5.5 Conclusions- Finite-elementmechanicalmodeling of LBBB andCRT

In this chapter, we tested a finite-element mechanical model for use in ourVirtual CRT pipeline

for simulating long-term outcomes of CRT. We used optimization schemes to test whether the

model could replicate the mechanics of the pre-CRT state (LBBB). By accurately simulating me-

chanics, our goal was to generalize a method to couple electrical activation times to mechanical

contraction. Only one case, dependent on the quality of the recorded mechanical data, achieved

promising fits to LV volume and strains throughout the cardiac cycle. A larger set of accurate

subject-specific simulationswill beneeded to explore electro-mechanical couplingmethods. Once

an electro-mechanicalmodeling pipeline is developed, electrical activation times can be used to di-

rectly simulate LVmechanics without the need for any optimization. To simulate a cardiac cycle,

the finite-elementmodel required 4minutes on a desktopwith 4 coresmaking it computationally

tractable for clinical applications.

5.5.1 Current model limitations

Our implementation of a finite-element mechanical model was limited by the available data for

model validation and the assumptions we made about subject-specific models. With limited

strain data from DENSE MRI, the mechanical models could not simulate both the global and

regional mechanics; however, we showed one case with full cardiac cycle DENSE MRI which

resulted in improved matches to mechanics. This case demonstrates the need for a more com-

plete data set of regional strain throughout the cardiac cycle to accurately tune the finite-element

mechanical models.

To apply our finite-element mechanical modeling pipeline to multiple subject-specific mod-

els, we limited the number of subject-specific model parameters by assuming the same mate-

rial properties, boundary conditions, and active contraction hyperparameters across all subjects.

These components of the finite-element mechanical model are difficult to tune from available

clinical data; therefore, we set them based on previous finite-element mechanical models devel-

oped by our group.27,35,36 Among these three assumptions, we expect the model to be most sen-

sitive to active contraction hyperparameters. Changes to the material properties may change the

magnitude of regional strains but not the temporal pattern of strains. Similarly, the regional
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strains we are analyzing are located in the middle of the LV away from the boundary conditions

at the base and apex; therefore, the effect of the boundary conditions on regional mechanics is

limited. The active contraction hyperparameters include variables affecting the force-length and

force-velocity relationships of the simulated muscle. In the case of LBBB, the delayed timing of

muscle contraction uses a larger range of the force-length and force-velocity relationships than

used in the synchronous heart model simulated by Estrada et al.27 Therefore, further tuning of

active contraction will have the greatest impact on accurately simulating LBBB mechanics.

5.5.2 Future model improvements

The single case we simulated in Fig. 5.8 showed that a data set including full cycle strain can allow

for optimization of themodel tomatch both global and regionalmechanics. The next step in test-

ing the finite-element mechanical modeling pipeline is repeating the optimization on additional

subject-specific models with full cycle strain data. As we work to formulate electro-mechanical

coupling and tune active contraction hyperparameters, a bank of subject-specific models will al-

low for us to vary model parameters and directly quantify their effect on simulated mechanics.

In this chapter, we qualitatively evaluated the shapes of the active contraction load curves to

hypothesize electro-mechanical coupling formulations. From the active contraction load curves

(Fig. 5.7 and 5.8E), the strain optimizations resulted in increased ranges in active contractionmag-

nitude. We canuse this to improve the volume optimization. The volumeoptimizations featured

a common active contraction shape across all regions; however, we could scale the magnitudes of

the regional curves based on their electrical activation times. The exact relationship between the

electrical activation times and active contractionmagnitude can be optimized tomatchmeasured

volumes. If this newmodel cannotmatch both global and regionalmechanics, themethod can be

iterated by adding additional parameters based on the electrical activation times, such as scaling

the temporal width of active contraction curves in each region.

Using a bank of subject-specific models, an alternative approach could incorporate more

quantitative approaches to tune the active contraction model. For each case in the bank of mod-

els, we can employ the strain cost optimization to match the global and regional mechanics. If

we repeat the optimizations while varying the active contraction hyperparameters, we can popu-

late a solution space of active contraction load curves that accurately simulate LVmechanics. We
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can apply data-driven quantitative approaches, such as machine learning, to simultaneously tune

active contraction hyperparameters and formulate the relationship between electrical activation

time and active contraction load curves. The final result will have used retrospective data to tune

active contraction to be used in prospective simulations of CRT patients.

For clinical translation, we aimed tominimize the number of patient-specific inputs required

for making a predictive model. The bank of models will enable us to systematically test the effect

of adding in and taking out different patient-specific parameters. We can also simulate sensitivity

analyses of various assumptions in the modeling pipeline. For example, we could test the impact

of material property changes in the model. Or we could test the effect of implementing different

boundary conditions such as isovolumetric constraints.

Another option for improving themechanicalmodel is incorporating a hemodynamic circuit

model similar to the left atrium model in Chapter 2. A circulation model can be used to define

thepressure loading and account for hemodynamic feedback associatedwithLBBB. Furthermore,

circulationmodels (without finite-element coupling) have been used to simulate LV growth and

remodeling in different heart diseases including LBBB. 13,37,38 With these recent developments,

hemodynamic circuit models could also be used to fully replace our finite-element mechanical

model in Virtual CRT.
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6
Conclusions- Computational modeling for

the clinic

Computational modeling is a powerful tool for simulating cardiac injuries and ther-

apies. Researchers build biophysical models by developing and tuning governing equations to

replicate recorded data. These models can then be extended to test de novo conditions, develop

therapies, and design experiments. There is an immense, untapped potential for integrating com-

putationalmodels into clinical decisionmaking. And this opportunitywill require tailoring com-

putational modeling methods to suit the needs of physicians and patients. Even as researchers

continue developing novel computational methods, older, validatedmodeling techniques can be

adapted for the clinic. Two current examples include HeartFlow and Medtronic’s CardioInsight

CardiacMapping. HeartFlow simulates patient-specific coronary blood flow to predict coronary

artery disease.* And CardioInsight maps electrical information onto the heart surface to charac-

terize cardiac arrhythmias.†

*Heartflow.com
†Medtronic.com
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In this dissertation, we demonstrated the use of computational modeling at different spatial

and computational scales for different clinical applications. In Chapter 2, we employed a coupled

hemodynamic circuit and finite-element mechanical model of the left atrium. While the model

may be too complex to tailor for patient-specific simulations, the validated baseline model was

used to directly compare various ablation patterns. Theoretically, this model can be used to de-

sign new ablation patterns not yet available in the clinic. In Chapters 3, 4, and 5, we developed

methods geared towards patient-specific clinical applications. In Chapter 3, we created a data

fusion routine to register and display anatomic and functional information from multimodal

imaging. This method serves as the initial step for building and validating a biophysical model;

however, the display of the information is already a useful tool for clinical decision making. The

data fusion routine was developed to quickly generate a patient-specific visual for CRT planning

within 24 hours and is currently being tested in a randomized clinical trial.‡ In Chapter 4, we de-

veloped and validated a simple, fast electrical model capable of simulating LBBB and LV pacing,

which in the future will drive models of LV mechanics, growth, and remodeling in response to

CRT. In Chapter 5, we tested finite-element mechanical modeling for simulating accurate LBBB

mechanics, which is necessary for making predictions about LV growth and remodeling.

The work in Chapters 4 and 5 aims to improve upon the decision-making tool developed in

Chapter 3 by introducing biophysically based predictive modeling. Future work for the model-

ing pipeline includes improving the finite-elementmechanical modelingmethod to better match

in vivo mechanics or switching to an alternative mechanical modeling technique, such as com-

partmental modeling. Then, incorporating a mechanics-based growth algorithmwill enable sim-

ulations of long-term CRT outcomes. If the pipeline is computationally efficient, Virtual CRT

can be used in the clinic by physicians to rapidly screen potential CRT lead configurations and

optimize patient-specific CRT prior to implantation. Overall, this pipeline will connect three

well established advancements in the field of cardiac modeling (simulating electrical activation

patterns, LV mechanics, and LV growth and remodeling) and translate them to the clinic.

As we translate Virtual CRT to the clinic, we will need to comprehensively assess the mod-

eling results and how they should be interpreted by physicians. For a given CRT pacing lead

location, the main output from Virtual CRT will be the predicted change in end diastolic vol-
‡clinicaltrials.gov/ct2/show/NCT03398369
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ume of the LV six months after CRT. This metric can be used by physicians to plan CRT lead

placement. However, given the generalized assumptions we use in themodeling pipeline, wewill

need a method to evaluate the confidence of our predictions. We can apply developments from

the field of uncertainty quantification to assess the Virtual CRT modeling pipeline and calculate

confidence intervals for our predictions.

Furthermore, we will need to develop a method to test Virtual CRT predictions in a clinical

setting. We can first retrospectively test the modeling pipeline accuracy by simulating patient-

specific CRT lead placement and comparing themodel predictions to recorded patient outcomes.

The modeling pipeline should be tested on a patient data set including those who succeeded and

those who failed to respond to CRT. The model can then be tested in a prospective clinical trial

in which a control group receives standard treatment and a test group receives Virtual CRT op-

timized CRT lead placement.

This dissertation presented computational modeling specifically for the heart to guide ther-

apies; however, there are undoubtedly many areas in medicine which may benefit from looking

back to simpler models for uses in the clinic. The opportunity for clinically translatable models

is becoming more evident as the library of computational models expands with new advances

in experimental techniques. For example, computational modeling of the lungs has followed a

similar trajectory to the cardiovascular field. Lung modeling has ranged in complexity from sim-

ple lumped parameter models to simulate global lungmechanics tomore complex finite-element

models to predict particulate deposition throughout the airway tree. The remodeling of the lung

through different diseases, such as asthma and pulmonary fibrosis, presents an opportunity for

developing mechanics-based growth algorithms similar to the heart to predict long-term func-

tional changes. As computational models are continually developed and improved, their impact

in medicine will be even greater if they can be adapted for use in the clinic.
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