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Abstract 

Clouds constitute a large portion of uncertainty in predictions of equilibrium climate 

sensitivity (ECS), with tropical high cloud feedbacks exhibiting considerable spread across 

models. This study applies the cloud radiative kernel technique of Zelinka et al. (2012a; 2013) to 

22 models across the CMIP5 and CMIP6 ensembles to survey tropical high cloud feedbacks and 

analyze their relationship to ECS, mean state properties, and changes to the tropical overturning 

circulation, precipitation efficiency, and deep convective organization across scales. First, the 

intermodel spread in tropical high cloud net, altitude, and optical depth feedbacks exhibit 

significant correlations to ECS in the tropical mean and on convective margins while the spread 

in the high cloud amount feedback is uncorrelated to ECS, motivating further exploration of 

physical mechanisms driving the intermodel spread in high cloud feedbacks. Intermodel 

variability in deep convective organization – at both the mesoscale and planetary scales – relates 

to the intermodel spread in high cloud feedbacks along convective margins. Most notably, 

decreases in tropical ascent area and increases in mesoscale organization of deep convection 

relate to more positive high cloud feedbacks, particularly within weak ascent and weak descent 

regimes. Increases in mesoscale organization also coincide with a greater weakening of the 

Pacific Walker circulation. Precipitation efficiency, on the other hand, does not appear to 

systematically drive much spread in high cloud feedbacks across the tropics. Finally, connections 

between mean state high cloud properties and high cloud feedbacks are explored in an attempt to 

place observational constraints on high cloud feedbacks and ECS. High ECS models are cloudier 

in the upper troposphere but have a thinner high cloud population. Having more thin high clouds 

in the mean state generally yields more positive high cloud altitude and optical depth feedbacks 

and it either amplifies or dampens the high cloud amount feedback depending on the large-scale 
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dynamical regime. A clear link between mean state high cloud characteristics and deep 

convective onset behavior across the CMIP ensemble highlights how model diversity in 

convective processes contributes systematically to diversity in mean state high cloud properties. 

In summary, this analysis highlights the importance of tropical high cloud feedbacks for driving 

intermodel spread in ECS, underscores the influence of dynamical regime shifts on the response 

of high clouds to warming, and suggests that mean state high cloud characteristics might provide 

a unique opportunity for observationally constraining high cloud feedbacks. 
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1. Introduction  

A critical objective for the climate science community is estimating the amount of 

warming that will occur as a result of anthropogenic greenhouse gas emissions. This is typically 

quantified as equilibrium climate sensitivity (ECS), a metric defined as the amount of the long-

term global average surface temperature change due to a doubling of CO2 relative to 

preindustrial levels. One of the earliest assessments of ECS reported a sensitivity range of 1.5 to 

4.5 °C (Charney, 1979). Since this initial estimate, global climate models (GCMs) have evolved 

to become the most comprehensive representation of the climate system and the most useful tool 

for quantifying climate sensitivity. However, despite improvements in model representation of 

physical processes, the two most recent generations of GCMs, Coupled Model Intercomparison 

Project 5 (CMIP5) and CMIP6, contain models with ECS values ranging from 2.1 to 4.7 K 

(Andrews et al., 2012) and 1.8 to 5.6 K (Meehl et al., 2020), respectively. This demonstrates that 

even with advancements in modelling and theory, there is a persistent disagreement around the 

value of climate sensitivity.  

Although the initial radiative forcing associated with a doubling of CO2 varies across 

models, climate feedbacks have been identified as the dominant driver of uncertainty in climate 

sensitivity (Roe & Armour, 2011; Webb et al., 2013). Thus, there is a particular focus in the field 

on understanding how models differentially represent feedbacks in the climate system and how 

the intermodel variability of these feedbacks is related to the intermodel variability of ECS. The 

global mean net feedback can be decomposed into additive parts, including the Planck, water 

vapor, lapse rate, albedo and cloud feedbacks, though decomposition methods vary (Forster et 

al., 2021). Of these components, cloud feedbacks exhibit the most variability among GCMs 

across model ensemble generations, notably increasing in spread from CMIP5 to CMIP6 
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(Zelinka et al., 2020). Clouds represent an important component of the climate system through 

their fundamental role in the planetary energy budget. They reflect incoming solar radiation and 

trap and reemit outgoing longwave radiation, resulting in global mean net cooling of about -20 

W m-2 (Boucher et al., 2013). The radiative effect of clouds is variable, with individual tropical 

convective systems evolving from strongly cooling deep convective cores to detrained thin cirrus 

that impart heating on the climate system (Gasparini et al., 2021). Moreover, the predominance 

of different cloud populations across various regions yields a spatially heterogeneous cloud 

radiative effect (Hartmann & Berry, 2017; Zelinka et al., 2017). The ways that clouds will 

change in response to the dynamic and thermodynamic changes to the atmosphere that 

accompany surface warming are likewise complex, varying spatially and across different cloud 

species. Variability in the global mean net cloud feedback is closely related to variability in 

climate sensitivity across GCMs (Wang et al., 2021), so reducing uncertainty in cloud feedbacks 

among models could help constrain ECS. In sum, understanding how clouds will change under 

global warming as environmental conditions evolve and estimating the resultant effect of cloud 

feedbacks on the Earth’s radiative balance remain critical questions in climate science.  

The purpose of this study is to examine the relationships between intermodel variability 

in tropical high cloud feedbacks, mean state tropical high cloud characteristics, dynamical 

responses to warming, and equilibrium climate sensitivity across an ensemble of fully-coupled 

GCMs. This thesis is organized as follows: Section 2 overviews a background of relevant 

literature. Section 3 outlines three research questions guiding this study. Sections 4-6 are the 

data, methods, and results sections, respectively, all divided into three subsections corresponding 

to each of the three research questions. Section 7 contains a discussion of the results and 

directions for future work. Section 8 outlines main conclusions. 
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2. Background 

In order to more precisely identify sources of cloud feedback variability, the global mean 

net cloud feedback is commonly decomposed by climatological region such that tropical, 

subtropical, and polar cloud feedbacks are considered separately. While the large variability of 

cloud feedbacks among models arises from a combination of differences in cloud feedbacks 

across regions (Lutsko et al., 2021), the tropics have been highlighted as making a significant 

contribution to the intermodel spread of cloud feedbacks (Bony et al., 2006; Webb et al., 2013; 

Zelinka et al., 2020). For instance, Vial et al. (2013) attribute 55% of the standard deviation of 

climate sensitivity among an ensemble of CMIP5 models to cloud feedbacks, highlighting that a 

majority of this variability comes from the shortwave component across a variety of tropical 

dynamical regimes. Beyond variability of cloud feedbacks among climate models, Sherwood et 

al. (2020) highlight that the tropical marine low cloud and tropical anvil feedbacks occupy a 

significant portion of the uncertainty associated with cloud feedbacks by using a combination of 

historical data, paleoclimate evidence, and process understanding. Consequently, constraining 

the variability of cloud changes in tropical environments characterized by warm sea surface 

temperatures, high humidity, and weak temperature gradients, could make significant progress 

towards constraining climate sensitivity. 

In addition to decomposition by region, cloud feedbacks occurring in the boundary layer 

are often considered separately from cloud feedbacks occurring at higher altitudes in the free 

troposphere. In the tropics, low cloud feedbacks have garnered significant attention due to the 

strong cooling effect of marine low clouds (Hartmann et al., 1992) and their sensitivity to 

changes in sea surface temperatures and inversion strength (Klein et al., 2017; Ogura et al., 2023; 

Qu et al., 2015). Although there is a general consensus that low clouds will reduce under 
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warming, resulting in a positive feedback (Ceppi et al., 2017; Sherwood et al., 2020), the 

magnitude and sign of the low cloud feedback vary among GCMs, and it has been highlighted as 

the largest contributor of variance to the global cloud feedback (Bony & Dufresne 2005; 

Caldwell et al., 2016; Zelinka et al., 2016). High cloud feedbacks also exhibit substantial 

intermodel spread, and the disagreement among models has garnered recent attention in the 

literature. For example, Zelinka et al. (2022) found that 8 out of 19 GCMs produced tropical high 

cloud anvil feedbacks that were above the expert-assessed value published by Sherwood et al. 

(2020). They also noted that the high cloud altitude feedback had the largest number of models 

falling outside of these best-estimate ranges. Additionally, the Intergovernmental Panel on 

Climate Change (IPCC) Assessment Report 6 (AR6), which corresponds to CMIP6, labels the 

sign of the tropical high cloud amount feedback with “low confidence,” while the sign of the 

subtropical marine low cloud feedback is assessed with “high confidence” (Forster et al., 2021), 

demonstrating substantial improvements from AR5 in the understanding of changes to low 

clouds without accompanying advancements regarding high clouds. This persistent uncertainty 

warrants further research into the drivers of variability in tropical high cloud feedbacks in 

particular. 

2.1 High Cloud Feedback Components 

 Cloud feedbacks are often separated by physical mechanism, typically into amount, 

altitude, and optical depth feedback components. These cloud feedback components describe the 

radiative effect of changes to total cloud amount, redistribution of cloud fraction across altitudes, 

and redistribution of cloud fraction across optical thicknesses under warming, assuming the other 

components are held constant (Zelinka et al., 2012b). Each feedback component describes a 

different physical process contributing to unique changes in cloud characteristics that can be 
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assessed across models and observations. The high cloud altitude feedback has been assessed as 

robustly positive due to the strength of evidence supporting its underlying physical mechanisms. 

Observations show that tropical high clouds have risen across the satellite era (Raghuraman et 

al., 2024; Richardson et al., 2022) and increased in altitude in response to interannual surface 

warming (Zelinka & Hartmann, 2011; Zhou et al., 2014). To explain this phenomenon, 

Hartmann and Larson (2002) put forth the Fixed Anvil Temperature (FAT) hypothesis, which 

argues that tropical anvil clouds remain at a constant emission temperature regardless of surface 

warming. They assert that convective detrainment preferentially occurs at a fixed temperature 

that coincides with the temperature at which the efficacy of clear sky radiative cooling by water 

vapor declines. Given the dependence of humidity on the Clausius-Clapeyron relationship, they 

contend that the decline in radiative cooling will remain at an isotherm regardless of surface 

temperature, with anvil tops following suit. This implies that cloud altitude will increase as the 

tropical troposphere deepens with warming (Ramaswamy et al., 2001) while the emission 

temperature of cloud tops will remain the same, yielding a positive feedback due to the constant 

longwave emission to space despite the positive radiative forcing. This hypothesis was modified 

by Zelinka and Hartmann (2010) with the proposal of the Proportionally Higher Anvil 

Temperature (PHAT) hypothesis. They assert that increases in upper tropospheric static stability 

with warming cause a slight increase in cloud top temperature as clouds rise. However, this 

increase in temperature does not compensate for the radiative forcing causing surface warming, 

so the net result is still a strong, positive feedback. The PHAT mechanism has found support in 

both models (Bony et al., 2016; Stauffer & Wing, 2022) and observations (Saint-Lu et al., 2020; 

Zelinka & Hartmann, 2011), and the IPCC AR6 assesses the high cloud altitude feedback as 

positive with “high confidence.” However, despite the consensus surrounding the sign and 
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physical mechanism of the high cloud altitude feedback, its magnitude varies significantly 

among GCMs (Po-Chedley et al., 2019; Sherwood et al., 2020; Zelinka et al., 2022), indicating 

that further work is needed to constrain this feedback in models. 

 There is less certainty surrounding the magnitude and sign of the high cloud amount 

feedback. Lindzen et al. (2001) proposed an “Iris Feedback” to explain the reduction of high 

cloud fraction with warming. They contend that under warming, enhanced precipitation 

efficiency causes a contraction of high clouds in the tropics such that outgoing longwave 

radiation is enhanced, resulting in a negative feedback. Following this initial hypothesis, Zelinka 

and Hartmann (2010) and Bony et al. (2016) formed the “Stability Iris” hypothesis, which draws 

on similar physics underlying the PHAT hypothesis. They argue that enhanced upper 

tropospheric stability reduces convective outflow and a contraction of clouds at the level where 

cloud fraction is climatologically greatest. In line with theory, tropical high cloud amount has 

been shown to reduce in response to interannual warming in observations (Saint-Lu et al., 2020; 

Saint-Lu et al., 2022; Su et al., 2017; Zelinka & Hartmann, 2011). Additionally, there is 

observational evidence that changes to upper tropospheric stability (Ito & Masunaga, 2022; 

Wilson Kemsley et al., 2024), precipitation efficiency (Choi et al., 2017), and convective 

aggregation (Bony et al., 2020) contribute to changes in tropical anvil extent. In contrast, 

modelling studies demonstrate mixed results. While some idealized simulations similarly show a 

reduction of high cloud amount with warming (Cronin & Wing, 2017; Wing et al., 2020), other 

work suggests that high cloud fraction increases with rising surface temperatures (Ohno et al., 

2019; Tsushima et al., 2014). Moreover, while it has been shown that increases to precipitation 

efficiency (Li et al., 2022; Li et al., 2023) and upper tropospheric stability (Bony et al., 2016) are 

linked to contraction of tropical high clouds under warming in models, other factors such as 
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model resolution (Jeevanjee & Zhou, 2022), sensitivity of cloud lifetime to warming (Beydoun et 

al., 2021; Seeley et al., 2019), and intermodel variability in changes to ascent area (Schiro et al., 

2019; Su et al., 2017) are also linked to the response of high cloud extent under warming in 

GCMs. Additionally, the resulting sign of the high cloud amount feedback is uncertain, with 

recent studies suggesting a neutral feedback (Chao et al., 2024; McKim et al., 2024; Raghuraman 

et al., 2024) in contrast to the original hypothesis that a reduction of high cloud amount acts to 

mitigate warming. 

The redistribution of cloud fraction across optical thicknesses separate from an overall 

loss in coverage in response to surface warming further complicates the interpretation of anvil 

feedbacks. Tropical anvils, which consist of a diverse array of clouds ranging from deep 

convective cores to thinner anvil cirrus, have been shown to have an approximately neutral cloud 

radiative effect (Hartmann & Berry, 2017). However, small changes in the relative proportion of 

clouds across optical thicknesses could impose a large optical depth feedback owing to the 

cancellation between large positive longwave and negative shortwave effects that produces a 

near-neutral effect in the mean state (Hartmann et al., 2018). Unlike the high cloud amount and 

altitude feedbacks, the high cloud optical depth feedback lacks theoretical support aside from 

suggestions that changes to precipitation efficiency with warming could cause changes to anvil 

optical thickness (Li et al., 2019). In observations, there is evidence that cirrus fraction reduces 

in the tropical Western Pacific in response to interannual warming (Choi et al., 2017), resulting 

in an overall “thickening” of high clouds and a corresponding negative high cloud optical depth 

feedback. Similarly, other recent studies find that tropical anvil albedo is positively sensitive to 

warming on interannual timescales (Chao et al., 2024; McKim et al., 2024). However, there are 

also contradictory findings that high clouds are thinning over the tropical Western Pacific (Kubar 
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& Jiang, 2019) and in the tropical-mean (Raghuraman et al., 2024) in response to warming. 

Idealized models also yield mixed results, with some demonstrating a thinning of high clouds 

with warming (Li et al., 2019; Sokol et al., 2024) and others showing a thickening (Gasparini et 

al., 2021). Regardless, changes to high cloud optical depth have not been extensively studied in 

fully-coupled GCMs separate from changes to high cloud amount (Ceppi et al., 2017), and 

diagnosing mechanisms underlying changes to anvil optical depth has been highlighted in the 

literature as a topic that requires further work (Gasparini et al., 2023).  

2.2 Emergent Constraints 

One method for relating the variation in cloud feedbacks to the spread of climate 

sensitivity across GCMs is to perform analysis within an emergent constraint framework. 

Emergent constraints describe correlations between present-day climate variability or mean state 

climate variables and ECS across a model ensemble in conjunction with a physical mechanism to 

explain the relationship (Klein & Hall, 2015). By establishing a plausible linkage between 

variability in an observable parameter and variability in climate sensitivity across models, 

emergent constraints provide an opportunity to narrow the spread of ECS using observations of 

the current climate predictor as a constraint. Tropical clouds have been the subject of several 

proposed emergent constraints. For example, Volodin (2008) finds that models with less cloud 

coverage in the tropics relative to the midlatitudes have higher climate sensitivity, and Siler et al. 

(2017) suggest that models with higher sensitivity have lower mean-state tropical cloud albedo 

than models with lower sensitivity. While boundary layer cloud feedbacks and characteristics 

have been a particular area of interest for establishing emergent constraints (Brient et al., 2016; 

Brient & Schneider, 2016; Zhai et al., 2015), tropical high cloud feedbacks have not been widely 

represented in the emergent constraint literature. Though they do not discuss the relationship 
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between high cloud feedbacks and climate sensitivity, Po-Chedley et al. (2019) find that a 

model’s climatology of tropical high clouds can explain changes in tropical upper tropospheric 

cloud fraction by assuming that cloud fields track with isotherms and that warming in the tropics 

follows a dilute moist adiabat. This result implies that changes to tropical high clouds are related 

to mean state high cloud fraction through the high cloud altitude feedback, which could be used 

as a constraint on climate sensitivity if the tropical high cloud altitude feedback were found to be 

correlated to ECS. Thus, although relatively unexplored, high cloud feedbacks represent an area 

that could help to relate variability in mean state high cloud characteristics to variability in 

climate sensitivity and expand on the existing emergent constraint literature. 

2.3 Convective Sensitivity to Moisture 

 The amount of tropical high clouds produced by GCMs varies, with some suggestions 

that tropical upper tropospheric cloud fraction is greater in high ECS models than low ECS 

models (Su et al., 2014). One approach for analyzing why mean state high cloud coverage varies 

across models is to analyze the extent to which the diversity of parameterizations of processes 

governing cloud formation is related to variability in climatological high cloud fraction. This 

question has most commonly been approached using a perturbed parameter ensemble (PPE) 

technique, which involves varying parameters that characterize deep convective activity or 

microphysical processes within a single model and comparing the resulting output across 

different model configurations. The literature suggests that parameter choices that characterize 

the sub-grid scale processes that represent cloud formation have a large impact on the mean state 

high cloud fields that a model produces. For example, Schiro et al. (2019) conclude that 

perturbing convective parameters across a PPE results in highly varied high cloud climatologies 

by influencing climatological tropical circulation. Other PPE studies have highlighted 
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entrainment of environmental air into a convective plume (Tsushima et al., 2020), representation 

of ice autoconversion (Proske et al., 2022), and the threshold of relative humidity for high cloud 

formation (Zhang et al., 2012) as key parameters influencing climatological high cloud amount. 

While the representation of deep convective processes has a direct impact on the formation of 

thick high clouds, thinner cirrus clouds are also intrinsically linked to convection as about half of 

tropical cirrus are formed from convective detrainment (Luo & Rossow, 2004). Although 

improvement of small-scale microphysics processes has been highlighted as key for improving 

the model representation of the amount and radiative effect of tropical cirrus (Atlas et al., 2024; 

Gasparini et al., 2023; Turbeville et al., 2022), results have also shown that deep convective 

processes are equally influential for modelling anvil cirrus (Muhlbauer et al., 2014). Thus, 

characterizing deep convective processes is an important step in understanding variability in 

tropical high cloud amount across different cloud types in GCMs. 

 While PPEs have been a useful tool for highlighting specific parameters that have a 

strong impact on the amount of high clouds present in a model, they are limited in their 

generalizability given that they only apply to a single model. Ahmed and Neelin (2021) present a 

method for characterizing a model’s convective sensitivity to atmospheric moisture that can be 

applied to an ensemble of GCMs and thus characterize variability in convective 

parameterizations without directly perturbing parameters. This method builds on the tendency of 

convection to exhibit a “precipitation pickup,” which describes a phase transition from weak to 

strong convection beyond a critical value of column water vapor that is also marked by a sharp 

increase in precipitation (Peters & Neelin, 2006). This phase transition has been related to the 

effects of entrainment on plume buoyancy, with suggestions that entraining plumes have 

enhanced buoyancy in environments with higher column water vapor (Holloway & Neelin, 



 13 

2009). Ahmed and Neelin (2018) present a precipitation-buoyancy framework in which a metric 

of lower free tropospheric buoyancy accurately captures the sharp pickup of precipitation with 

increasing column water vapor that has been noted in other papers (Neelin et al., 2009; Schiro et 

al., 2016). They conclude that using a profile of deep inflow (Schiro et al., 2018) into an 

entraining plume, environmental buoyancy integrated from the top of the boundary layer to the 

freezing level captures the onset of precipitation in the tropics, providing evidence that 

tropospheric moisture is key for explaining the behavior of precipitation pickup in the tropics 

through its contributions to entrained buoyancy into a rising plume. Ahmed and Neelin (2021) 

expand on these results by applying the same framework to an ensemble of CMIP6 models, 

finding that the sensitivity of precipitation to lower-tropospheric subsaturation varies across 

models. This finding suggests that intermodel variability in convective activity is related to 

variability in convective sensitivity to entrainment of tropospheric air such that models that are 

more sensitive to entrainment will experience convection only under relatively moist conditions 

whereas models with lower sensitivities will see convection across a broader range of 

environmental conditions. While these results shed light onto this systematic difference in the 

way that GCMs represent convective processes and the resulting behavior of precipitation, the 

relationship between variability in convective sensitivity to moisture and variability in 

climatological high cloud fraction remains unexplored. 

2.4 Precipitation Efficiency 

 Precipitation efficiency, defined as the ratio of surface precipitation rate to the rate at 

which cloud particles condense (Lutsko et al., 2023), has been highlighted in the literature as a 

potential modulator of tropical high cloud feedbacks across different scales. A distinction is often 

made between microphysical precipitation efficiency, which considers condensation as the net 
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result of microphysical processes such as vapor deposition across a single cloud type, and bulk 

precipitation efficiency, which characterizes the average efficiency across many different cloud 

types and multiple convective systems (Lutsko et al., 2023). Both have been explored with 

respect to the response of high clouds to warming. The relationship between changes to 

microphysical precipitation efficiency and high cloud feedbacks were first highlighted by 

Lindzen et al. (2001), who postulated that an increase in the conversion efficiency of clouds 

results in a contraction of anvil cloud fraction with increasing surface temperature, yielding a 

negative high cloud amount feedback.  Idealized modelling studies suggest that microphysical 

precipitation efficiency should increase with increasing surface temperatures as condensation 

efficiency increases due to an increase in cloud density (Lutsko & Cronin, 2018). Moreover, 

inclusion of this behavior in GCMs causes a reduction in climate sensitivity (Mauritsen & 

Stevens, 2015), providing some evidence that increasing precipitation efficiency with warming 

has a stabilizing effect on the climate. However, Li et al. (2019) find that an increase in 

microphysical efficiency increases climate sensitivity due to increased thinning of anvil clouds, 

which results in a more positive optical depth feedback. Thus, the net result of increasing 

microphysical precipitation efficiency with warming from high cloud reduction and thinning 

remains uncertain. 

 While bulk precipitation efficiency has also been found to increase in a single model 

across different parameter schemes in response to surface warming (Zhao, 2014), the responses 

of CMIP6 models are varied (Li et al., 2022; Li et al., 2023). Zhao (2014) finds that model runs 

with greater increases in bulk precipitation efficiency under warming experience a greater loss of 

low and middle cloud fraction relative to high cloud fraction and a more positive shortwave 

cloud feedback, attributing this behavior to preference towards deeper convection. Li et al. 
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(2023) similarly suggest that an increase in bulk precipitation efficiency under warming results 

in an increase in climate sensitivity via more positive cloud feedbacks, finding that among 36 

CMIP6 models, the 24 models that increase in efficiency generally see more positive high cloud 

feedbacks in the West Pacific and more positive low cloud feedbacks in the East Pacific than 

models that decrease in precipitation efficiency. They suggest that this is related to the slowdown 

of the Walker Circulation wherein an increase in precipitation efficiency implies a weakening of 

the Walker Circulation, which they connect to a contraction and thinning of high clouds in the 

West Pacific and suppression of stratocumulus decks in the East Pacific. However, assessment of 

the relationship between the explicitly decomposed high cloud feedback components and 

changes to precipitation efficiency across GCMs has not been performed thus far, necessitating 

further analysis to verify these suggestions in the literature. 

2.5 Convective Organization 

 Convective aggregation, or convective clustering, is a phenomenon in which convection 

spatially organizes in groups. Convective organization has been investigated primarily in 

idealized radiative-convective equilibrium (RCE) experiments, which represent an 

approximation of the tropical atmosphere that follows an energy balance between radiative 

cooling and convective heating (Wing et al., 2020). RCE experiments demonstrate clustering that 

occurs spontaneously even under homogenous initial and boundary conditions, referred to as 

convective self-aggregation (Wing et al., 2017). Clustering is maintained through positive 

longwave feedbacks from clouds in moist regions (Wing & Emmanuel, 2014), though this has 

been found to decrease as aggregation progresses and cloud amount decreases (Pope et al., 

2021). High cloud amount tends to decrease with clustering in RCE experiments (Wing & 

Cronin, 2016; Wing et al., 2020) as well as observations (Bony et al., 2020; Stein et al., 2017; 
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Tobin et al., 2012), presenting a potential mechanism to explain changes to tropical high cloud 

extent under different conditions. However, RCE experiments do not exhibit a clear relationship 

between warming and aggregation (Wing et al., 2020), so the relationship between aggregation 

and the high cloud amount feedback in idealized models is unclear. 

 Limited work has been done to assess the relationship between intermodel variability in 

convective organization and tropical high cloud feedbacks across fully-coupled GCMs. At the 

mesoscale, a majority of CMIP6 models demonstrate an increase in aggregation under warming, 

but the intermodel spread is substantial (Bläckberg & Singh, 2022) and has not evaluated with 

respect to high cloud feedbacks. At the planetary scale, changes in the width of the Intertropical 

Convergence Zone (ITCZ), the near-equatorial zone of large-scale ascent where the surface trade 

winds converge, can be thought of as the largest scale of convective organization. Observations 

indicate that the ITCZ has narrowed in response to surface warming (Wodzicki & Rapp, 2016), 

and this behavior is present across a majority of CMIP5 models (Byrne & Schneider, 2016). This 

has been linked to a decrease in tropical high cloud fraction (Schiro et al., 2019), which relates to 

intermodel variability in changes to tropical outgoing longwave radiation (OLR) such that a 

greater tightening of tropical ascent results in a greater loss of tropical high clouds and enhanced 

OLR (Su et al., 2017). Moreover, both models (Su et al., 2019) and observations (Su et al., 2020) 

suggest that tightening tropical ascent is also associated with an increase in ascent strength, 

which has been further linked to changes in high cloud amount (Schiro et al., 2019). Unlike 

CMIP5 models, the CMIP6 ensemble demonstrates variable changes to tropics-wide ascent area 

in response to warming with models that decrease in area demonstrating a greater loss of tropical 

high and low cloud fraction, resulting in a more positive tropical net cloud feedback (Schiro et 

al., 2022). As noted in Bony et al. (2015), the role of convective aggregation in climate remains a 
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key question, particularly as a potential mechanistic explanation for the relationship between 

changes to precipitation efficiency and high cloud amount (Lutsko et al., 2023). However, 

changes to convective organization across different scales have not been explicitly linked to high 

cloud feedback components across fully-coupled GCMs, representing a key avenue for continued 

work. 

In summary, tropical high cloud feedbacks account for a non-negligible portion of 

uncertainty in ECS. The high cloud altitude feedback has strong physical support for being 

positive, but its magnitude varies across models. The high cloud amount feedback is likely small 

in magnitude owing to the neutral radiative effect of tropical anvil clouds, and it shares similar 

physics to the high cloud altitude feedback. On the other hand, the sign, magnitude, and physical 

basis of the high cloud optical depth feedback are uncertain in models and observations. Analysis 

of drivers of variability of tropical high cloud feedbacks across models, such as differences in 

changes to precipitation efficiency and convective organization under warming, could help to 

reduce the spread of feedbacks across models. Additionally, analysis of systematic differences in 

the ways that GCMs represent convective sensitivity to moisture is an approach for 

understanding intermodel variability of climatological tropical high cloud amount. More broadly 

speaking, pursuing these research questions with an emergent constraint framework presents an 

opportunity to constrain intermodel variability in climate sensitivity, which has the potential to 

make a large impact on the state of climate science. 

3. Research Questions 

Q1: To what extent does the intermodel variability in tropical high cloud feedbacks contribute to 

the intermodel variability in equilibrium climate sensitivity across fully coupled GCMs?  
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The first objective of this study is to assess the extent to which the tropical net high cloud 

feedback and its decomposed parts are driving the variability of ECS across the most recent 

generations of fully-coupled GCMs. Although literature has highlighted the variability of the 

tropical high cloud feedback across models, a quantification of its direct contribution to the 

variability in estimates of climate sensitivity has not been performed. Doing so would 

contextualize the importance of tropical high cloud feedbacks for driving climate sensitivity 

relative to more commonly studied feedbacks, such as the subtropical marine low cloud 

feedback. 

Q2: How do climatological tropical high cloud characteristics vary with equilibrium climate 

sensitivity and tropical high cloud feedbacks across GCMs? 

 In line with recent emergent constraint literature, the second objective of this study is to 

analyze whether mean cloud characteristics, including high cloud fraction and thickness, vary 

with climate sensitivity across a model ensemble. In addition, relationships between mean cloud 

characteristics and high cloud feedbacks are analyzed to provide a mechanistic explanation for 

relationships found between mean state cloud characteristics and ECS. Convective sensitivity to 

moisture is investigated as a potential mechanism driving intermodel variability in climatological 

tropical high cloud fraction. In conjunction with conclusions surrounding the contribution of 

variability in high cloud feedbacks to variability in ECS, this analysis helps identify any 

relationships that could be used to form new emergent constraints based on tropical high cloud 

climatologies. 

Q3: Can model representation of changes to precipitation efficiency and convective organization 

under warming explain intermodel differences in tropical high cloud feedbacks? 
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 Recent focus in the tropical high cloud feedback literature, particularly surrounding the 

high cloud amount and optical depth feedbacks, has been placed on changes to precipitation 

efficiency and convective aggregation in response to surface warming as potential physical 

explanations for changes to tropical high cloud amount and opacity. While these topics have 

been investigated in idealized experiments, limited work has been done to analyze how they 

influence intermodel variability in tropical high cloud feedbacks in fully-coupled GCMs. Thus, 

the third objective of this study is to analyze the extent to which variability in large scale 

measures of precipitation efficiency and convective organization can explain variability in the 

tropical high cloud amount and optical depth feedbacks in GCMs. 

4. Data 

4.1. High Cloud Feedback Relationship to ECS 

 To assess the relationship between tropical high cloud feedbacks and climate sensitivity, 

output is used from 22 models that participated in CMIP5 (8 models) and CMIP6 (14 models) 

(Taylor et al., 2012; Eyring et al., 2016; see Table 1 for a list of models). High cloud feedbacks 

are computed by comparing monthly output from years 1-10 and years 131-140 of the abrupt-

4xCO2 run, an experiment wherein CO2 is quadrupled relative to preindustrial levels and then 

held fixed (Eyring et al., 2016). Computing cloud feedbacks relative to an early period of the 

abrupt-4xCO2 run rather than a period from a control experiment where CO2 is held at 

preindustrial levels removes the effect of rapid adjustments of clouds to CO2, which are 

traditionally defined separately from long-term cloud feedbacks (Zelinka et al., 2013). 

 Cloud fraction is characterized using the cloud fraction variable clisccp produced by the 

International Satellite Cloud Climatology Project (ISCCP) simulator run inline with model 

experiments (Klein & Jacob, 1999). The ISCCP simulator mimics the method of measuring 
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cloud fraction that is employed by a collection of satellites contributing to ISCCP observational 

datasets, allowing for direct comparisons to be made between modelled and observed output. 

The simulator divides each model grid cell into a set of subgrid columns in which each altitude 

level is either read as completely cloudy or clear, remaining consistent with a model’s cloud 

overlap parameterization. A single value of cloud top pressure (CTP) is found by applying a 

radiative transfer model to each subgrid column to determine a brightness temperature that is 

then converted to a cloud temperature, which is collocated with a pressure level using the vertical 

temperature profile of the column. A column integrated optical depth (τ) is computed as the sum 

of reported τ from cloudy layers. The subgrid values of cloud fraction organized by CTP and τ 

are then averaged and expressed in a joint histogram of 49 different cloud types across seven 

discretized CTP categories and seven τ groups (Klein et al., 2013). Output from the ISCCP 

simulator is advantageous for computing cloud feedbacks as it considers only radiatively relevant 

cloud coverage in terms of top-of-atmosphere fluxes (Zelinka et al., 2012a) and allows for 

decomposition of cloud feedbacks into contributions by specific cloud types rather than reporting 

a bulk quantity. 

 To compute cloud feedbacks using the method of Zelinka et al. (2013), monthly near-

surface temperature (tas) is downloaded for the early and late periods of the abrupt-4xCO2 

experiment. Additionally, monthly downwelling (rsdscs) and upwelling (rsuscs) clear-sky 

shortwave radiation from the early period of the abrupt-4xCO2 experiment are downloaded to 

assign grid boxes into surface albedo categories. To consider feedbacks constrained to ascent and 

descent regions, monthly vertical pressure velocity (ω) from the early period of the abrupt-

4xCO2 experiment is utilized. ECS values are taken from Zelinka et al. (2020) for the models 

that are available. For models that do not have published ECS values, climate sensitivity is 



 21 

computed using years 1-150 of monthly output from the abrupt-4xCO2 experiment and piControl 

experiment of top-of-atmosphere (TOA) outgoing longwave (rlut) and shortwave (rsut) 

radiation, TOA incoming shortwave radiation (rsdt), and surface termperature (ts). 

Table 1 

List of the models used to investigate tropical high cloud feedbacks. 

Model CMIP 
Generation Variant Control 

Experiment ECS 

MIROC6 CMIP6 r1i1p1f1 piControl 2.60 

MRI-CGCM3 CMIP5 r1i1p1 piControl 2.61 

MIROC-ES2L CMIP6 r1i1p1f2 piControl 2.66 

MIROC5 CMIP5 r1i1p1 piControl 2.71 

MRI-ESM2-0 CMIP6 r1i1p1f1 piControl 3.13 

MPI-ESM-LR CMIP5 r1i1p1 piControl 3.63 

CanESM2 CMIP5 r1i1p1 piControl 3.70 

GFDL-CM4 CMIP6 r1i1p1f1 piControl 3.89 

E3SM-2-0-NARRM CMIP6 r1i1p1f1 piControl 3.93 

E3SM-2-0 CMIP6 r1i1p1f1 piControl 3.97 

IPSL-CM5A-MR CMIP5 r1i1p1 piControl 4.11 

IPSL-CM5A-LR CMIP5 r1i1p1 piControl 4.13 

IPSL-CM6A-LR-INCA CMIP6 r1i1p1f1 piClim-control 4.13 

HadGEM2-ES CMIP5 r1i1p1 piControl 4.60 

MIROC-ESM CMIP5 r1i1p1 piControl 4.65 

IPSL-CM6A-LR CMIP6 r1i1p1f1 piControl 4.70 
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Model CMIP 
Generation Variant Control 

Experiment ECS 

CNRM-ESM2-1 CMIP6 r1i1p1f2 piClim-control 4.79 

CNRM-CM6-1 CMIP6 r1i1p1f2 piClim-control 4.90 

E3SM-1-0 CMIP6 r1i1p1f1 piControl 5.31 

UKESM1-0-LL CMIP6 r1i1p1f2 piControl 5.36 

HadGEM3-GC31-LL CMIP6 r1i1p1f3 piClim-control 5.55 

CanESM5 CMIP6 r1i1p2f1 piClim-control 5.57 

 

4.2 Mean State High Cloud Relationships to ECS and High Cloud Feedbacks 

 To characterize the climatological cloud fields of the 22 models that are utilized in the 

feedback analysis, monthly output is taking from either the piControl experiment, which holds 

CO2 concentrations at pre-industrial levels, or the piClim-control experiment, a 30-year 

experiment in which pre-industrial conditions are applied to the model but sea surface 

temperatures and sea ice concentrations are held constant (Pincus et al., 2016), as done in 

Zelinka et al. (2022). piClim-control is utilized to represent the mean state high cloud fields of 5 

models that do not have available output for the piControl experiment. Years 21-30 are used for 

the piClim-control experiments, and years 121-130 or the closest available 10-year period are 

used for the piControl experiments. Cloud fraction is represented using both ISCCP simulator 

output (clisccp) and 2-dimensional cloud area fraction (cl), which outputs the percentage of a 

gridbox covered by clouds at each model pressure level. To characterize the dynamical regimes 

of mean state clouds, monthly vertical pressure velocity (ω) and monthly vertical pressure 

velocity at 500 hPa (ω500) are taken from the corresponding control experiment and time period.  
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To analyze the relationship between convective sensitivity to moisture and mean high 

cloud fraction, 19 CMIP6 models are considered from the models used by Ahmed and Neelin 

(2021) (see Table 2 for a list of models). Data are taken from the historical experiment from 

January 2012 to December 2014. 6-hourly instantaneous specific humidity (hus) and temperature 

(ta) and 3-hourly mean precipitation rate (pr) are utilized. In conjunction, mean cloud fraction is 

characterized using monthly 2-dimensional cloud area fraction (cl) from the same period. IPSL-

CM5A2-INCA is excluded due to a lack of availability of cl output. Additionally, monthly 

vertical pressure velocity (ω) is utilized to characterize the dynamic regime of clouds across the 

ensemble. 

Table 2 

List of the CMIP6 models used in the characterization of convective sensitivity to moisture. 

Model Variant 

BCC-CSM2-MR r1i1p1f1 

IPSL-CM6A-LR r1i1p1f1 

NESM3 r1i1p1f1 

IPSL-CM5A2-INCA r1i1p1f1 

CanESM5 r1i1p1f1 

MRI-ESM2-0 r1i1p1f1 

MPI-ESM1-2-LR r1i1p1f1 

TaiESM1 r1i1p1f1 

CNRM-CM6-1-HR r1i1p1f2 

AWI-ESM-1-1-LR r1i1p1f1 
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Model Variant 

ACCESS-ESM1-5 r1i1p1f1 

MPI-ESM1-2-HR r1i1p1f1 

GFDL-CM4 r1i1p1f1 

CMCC-ESM2 r1i1p1f1 

MIROC-ES2L r1i1p1f2 

CNRM-CM6-1 r1i1p1f2 

GISS-E2-1-G r1i1p1f1 

MIROC6 r1i1p1f1 

FGOALS-g3 r1i1p1f1 

 

4.3 Precipitation Efficiency and Convective Organization Relationship to High Cloud Feedbacks 

To assess the relationship between changes to precipitation efficiency, convective 

organization, and high cloud feedbacks, output is considered for 21 of the 22 models used to 

compute the cloud feedbacks (HadGEM2-ES is excluded due to lack of data availability). To 

calculate bulk precipitation efficiency, monthly data is downloaded for years 1-10 and 131-140 

of the abrupt-4xCO2 experiment. Surface precipitation rate (pr) and vertically-integrated cloud 

water path that includes ice and liquid water (clwvi) are used to calculate the change in 

precipitation efficiency as is done in Li et al. (2022). To calculate changes to mesoscale 

organization, daily pr is utilized from years 1-10 and 131-140 of the abrupt-4xCO2 experiment. 

To compute planetary scale changes to organization, monthly vertical pressure velocity at 500 

hPa (ω500) are taken from the same time periods. 

5. Methods 
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5.1 High Cloud Feedback Relationship to ECS 

5.1.1 Cloud Radiative Kernels 

 One commonly used method for quantifying feedbacks in climate models and 

observations is the application of radiative kernels. Radiative kernels represent the radiative flux 

at TOA that accompanies an incremental change in a climate variable (Shell et al., 2008). While 

several different versions of cloud radiative kernels have been developed, the most detailed 

version is published by Zelinka et al. (2012a). These kernels utilize cloud fraction from the 

ISCCP simulator output such that changes in radiative fluxes resulting from changes to cloud 

fraction are detailed across different CTP-τ groups. Zelinka et al. (2012a) compute each kernel 

for a given CTP-τ bin by differencing the radiative flux associated with a single cloud of that 

CTP-τ group from the radiative flux under clear skies at every latitude, month, and at three 

surface albedo values of 0, 0.5, and 1. Figure 1 depicts the global mean longwave, shortwave, 

and net cloud radiative kernels of Zelinka et al. (2012a).  
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Fig. 1. The longwave (top left), shortwave (top right), and net (bottom middle) ISCCP cloud 

radiative kernels. From Zelinka et al. (2012a). 

To apply the cloud radiative kernels, normalized cloud fraction anomaly matrices are first 

produced by subtracting the early period abrupt-4xCO2 run clisccp matrix from the late period 

abrupt-4xCO2 run clisccp matrix (subtracting a percentage cloud fraction from a percentage 

cloud fraction) and normalizing by the global average change in surface temperature (dTs) 

following interpolation to a common 2° x 2.5° grid. The longwave and shortwave cloud 

feedbacks are computed by multiplying the normalized cloud fraction anomaly matrices by the 

cloud radiative kernels, assigning the kernels to the correct latitude, surface albedo, and month. 

The total net cloud feedback is calculated as the summation of the longwave and shortwave 

cloud feedbacks. Each bin of the radiative kernel represents the change in radiative flux in W m-2 

%-1 that results from a 1% increase in cloud fraction for that cloud type; therefore, multiplying 

the radiative kernel by the change in cloud fraction normalized by the change in global mean 
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surface temperature yields the feedback associated with the change in that cloud type in units of 

W m-2 K.-1. 

 The net cloud feedback is then decomposed into the amount, altitude, and optical depth 

feedbacks using the methods of Zelinka et al. (2013). Each of these components represents the 

effect of changes to the cloud field across the corresponding category assuming that the 

distribution of clouds across the other two categories remains constant relative to the control 

period. This feedback decomposition is performed by dividing the cloud fraction anomaly 

histogram (∆𝐶!") into two components:  

                                                           ∆𝐶!" = %#!"
##$#

& ∆𝐶$%$ +	∆𝐶!"∗                                             (1) 

Here, 𝐶$%$	is the total cloud fraction summing across the entire histogram, 𝐶'".The first 

term represents the change in total cloud fraction holding the distribution of the cloud field 

constant across CTP-τ groups. The second term represents changes to cloud cover associated 

with the redistribution of clouds across CTP-τ groups assuming that total cloud cover remains 

constant. The cloud radiative kernel (𝐾'") is also decomposed into 2 terms:  

                                                    	𝐾'" =	𝐾(	 +	𝐾!"*                                                           (2) 

 The first term is the average of the radiative kernel across each CTP-τ group weighted by 

the proportion of total cloud cover represented in each category: 

                                               𝐾(	 =	∑ ∑ %#!"
##$#

&+
"	,-

.
!	,- 𝐾'"                                              (3) 

Multiplying this first kernel term by the total change in cloud cover represents the amount 

feedback. The second term of the decomposed radiative kernel can further be divided into 

altitude (𝐾!*), optical depth (𝐾"*), and residual components (𝐾/* ): 

                                                 𝐾!"* =	𝐾!* +	𝐾"* +	𝐾/*                                                      (4) 
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The altitude kernel component, for example, represents an effective kernel summed 

across all τ groups and weighted by the proportion of cloud cover in each τ group, accounting for 

systematic variations in τ with CTP: 

                                                             𝐾!* =	∑ (𝐾!"* ∑
#!"
##$#

.
!	,- )+

"	,-                                               (5) 

 Finally, the altitude and optical depth effective kernels are multiplied by the portion of 

the anomaly histogram decomposition that accounts for changes to cloud fraction across CTP-τ 

groups, summing over the other category. The final cloud induced radiative anomalies (∆𝑅#)	are 

expressed as follows: 

   ∆𝑅#  = 𝐾(∆𝐶$%$ +	∑ (𝐾!* ∑ ∆𝐶!"∗+
"	,- ).

!	,- +	∑ (𝐾"* ∑ ∆𝐶!"∗.
!	,- )+

"	,- +∑ ∑ 𝐾/*+
"	,-

.
!	,- ∆𝐶!"∗ 	     (6) 

Here, the first term represents the amount feedback, the second the altitude feedback, the 

third the optical depth feedback, and the final is the residual. The altitude feedback portion is 

composed of the effective altitude kernel (𝐾!*) being multiplied by the anomaly histogram 

component summed across optical depths (∑ ∆𝐶!"∗+
"	,- ), representing the total change in cloud 

fraction at each CTP bin. The final result is an altitude feedback computed by multiplying an 

effective radiative kernel that varies with CTP with the total change in cloud fraction at each 

CTP. This method, in comparison to the decomposition method first proposed by Zelinka et al. 

(2012b), minimizes the residual term and is therefore a better representation of the individual 

feedback components. 

 To avoid an unrealistic influence of changes to boundary layer clouds on free 

tropospheric clouds, this decomposition is applied separately for the bottom two rows of the 

ISCCP histogram, representing pressures of 1000 hPa < CTP < 680 hPa, and the top five rows, 

representing pressures of 680 hPa < CTP < 50 hPa, as done in Zelinka et al. (2016). Additionally, 

due to the anomalous assignment of partly cloudy pixels to low optical depth bins by the ISCCP 
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algorithm (Pincus et al., 2012), the feedbacks are computed only using cloud fraction from .3 < τ 

< 380 (the right six columns of the ISCCP histogram). High cloud feedbacks are therefore 

defined as the radiative anomalies imposed by the changes to cloud fields summed from 680 hPa 

< CTP < 50 hPa and .3 < τ < 380. 

5.1.2 Gregory Method 

For 3 models (E3SM-2-0, E3SM-2-0-NARRM, and CanESM5) that do not have ECS 

values published by Zelinka et al. (2020), ECS is estimated using the methods of Gregory et al. 

(2004). While true climate sensitivity is most accurately represented by running millennia-length 

experiments (Rugenstein et al., 2019), this is computationally expensive and CMIP protocol 

requires experiments to be run for several hundred years (Eyring et al., 2016). Thus, climate 

sensitivity is often estimated using 150 years of model output, characterizing a transient 

“effective climate sensitivity” (Murphy, 1995) that is used as an approximation of the true 

equilibrium value. 

Climate sensitivity is estimated using the following equation from Gregory et al. (2004): 

                                                         𝑁 = 𝐹 + 	𝜆𝑇	                                                            (7) 

Here, N is the net top-of-atmosphere (TOA) radiation (W m-2), F is the effective radiative 

forcing (W m-2), λ is the net feedback parameter (W m-2 K.-1), and T is the change in global mean 

surface temperature (K). Gregory et al. (2004) apply data from the first 20 years of the abrupt-

4xCO2 experiment to Equation 7, quantifying a radiative forcing for a doubling of CO2 as half of 

the y-intercept and the feedback parameter as the slope. ECS is then computed as the x-intercept 

of the linear regression using the estimated forcing and feedback terms. Here, ECS values are 

computed using a similar method. First, data from the piControl and abrupt-4xCO2 experiments 

are interpolated to a common 2° x 2.5° degree grid. Global monthly means of rlut, rsut, rsdt, and 
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ts are found and the future and control TOA imbalance are calculated following rsdt - rsut - rlut 

(downwelling minus upwelling radiation). For the piControl run, a 21-year centered moving 

monthly mean is calculated for the net TOA imbalance and ts. Finally, annual means are taken of 

the piControl and abrupt-4xCO2 net TOA imbalance and ts and subtracted from each other to 

yield 150 values of dN and dTs, representing the evolution of TOA radiative imbalance and 

corresponding surface temperature change following a radiative forcing associated with a 

quadrupling of CO2 relative to preindustrial levels. A linear regression is computed between dN 

and dTs, and a final ECS value is obtained by solving for T in Equation 7 using the slope (net 

feedback parameter) and half of the y-intercept (radiative forcing associated with a doubling of 

CO2) computed from the regression. An example Gregory regression is shown in Figure 2. 
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Fig. 2. Gregory regression for E3SM-2-0. The y-axis is the global mean net radiative imbalance 

following a quadrupling of CO2, and the x-axis is the change in surface temperature relative to 

the piControl experiment. Each point represents the change in radiative imbalance and 

temperature for one year in the 150 year abrupt-4xCO2 experiment relative to the piControl 

experiment, and the blue line represents the line of best fit. The equilibrium climate sensitivity is 

shown in the top right corner. 

5.1.3 Feedback Relationships to ECS 

 To analyze the contribution of intermodel variability in tropical high cloud feedbacks to 

intermodel variability in climate sensitivity, Pearson correlation coefficients are computed 

between the tropical mean (30°S - 30°N) cloud feedback components and ECS. The net 

feedback, which in part determines the magnitude of climate sensitivity, is traditionally 

decomposed into additive components including Planck, water vapor, lapse rate, albedo, and 

cloud feedback terms (Caldwell et al., 2016). Thus, while all cloud feedback components 
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contribute to the net feedback as portions of a sum, individual cloud feedback components may 

be correlated or anticorrelated with ECS. Due to the causal relationship between the cloud 

feedback magnitude and ECS arising from the contribution of the cloud feedback to λ in 

Equation 7, positive correlations between a cloud feedback component and ECS are interpreted 

as an indication that the intermodel spread in the cloud feedback is driving intermodel variability 

in ECS; an anticorrelation between a cloud feedback component and ECS suggests that, while 

serving as a portion of net feedback, the variability in the cloud feedback component among 

models is not strongly influencing the intermodel spread in ECS. This isolates particular cloud 

feedback components as the most important for determining the magnitude of ECS and 

highlights opportunities for constraint. Additionally, ascent and descent region cloud feedbacks 

are computed as an area-weighted average constrained to grid boxes where the mean ω500 over 

years 1-10 of the abrupt-4xCO2 experiment is < 0 hPa day-1 for ascent regions and > 0 hPa day-1 

for descent regions. 

 Pearson correlation coefficients are also computed between the local cloud feedback 

components and ECS and visualized over space. This highlights regions where the intermodel 

spread of the high cloud feedbacks is more likely to contribute to the intermodel spread of ECS. 

However, relative to the tropics-wide, ascent, or descent correlations, these are less clearly 

indicative of causation given that the magnitude of the feedbacks vary significantly across space. 

A significant correlation between the high cloud feedback at a given grid point and ECS could be 

relatively unimportant for the tropics-wide relationship if the range of the feedback magnitudes 

across the ensemble is relatively small at that location. To account for this, the high cloud 

feedback components are composited across different ECS groups. The high ECS group is 

defined as 7 models with ECS values ≥ 4.7 K and the low ECS group as 7 models with ECS 
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values ≤ 3.7 K, representing the highest and lowest thirds of the ensemble with respect to ECS. 

Differencing the high and low composites highlights regions where the feedbacks differ the most 

between the groups and can be compared to the regions where significant correlations between 

local feedback values and ECS appear across the entire ensemble. This verifies that significant 

local correlations are important for driving the tropical mean spread in the feedback. 

5.2 Mean State High Cloud Relationship to ECS and High Cloud Feedbacks 

5.2.1 High Cloud Characterization 

Several characterizations of climatological high cloud fraction are considered. Using the 

ISCCP simulator output for the piControl/piClim-control experiments, tropical mean (30°S - 

30°N) time mean histograms are first computed. Total high cloud fraction is defined as the sum 

of cloud fraction across 680 hPa < CTP < 50 hPa and .3 < τ < 380. Thin high cloud fraction is 

defined as the sum of cloud fraction across 680 hPa < CTP < 50 hPa and .3 < τ < 9.4, and thick 

high cloud fraction is defined as the sum of cloud fraction across 680 hPa < CTP < 50 hPa and 

9.4 < τ < 380. Additionally, mean high cloud opacity is characterized by taking the ratio of thick 

to thin high cloud fraction, where values > 1 (unitless) are indicative of relatively more thick 

high clouds than thin high clouds and values < 1 represent relatively more thin high clouds than 

thick high clouds. Additionally, ascent and descent region climatological cloud fraction are 

computed as area weighted averages constrained by monthly ω500 values across the 

piControl/piClim-control experiments, where ascent regions are characterized by ω500 < 0 hPa 

day-1 and descent regions  > 0 hPa day-1. For analysis over space in relationship to climate 

sensitivity and cloud feedbacks, high cloud definitions are computed as time means at each 

tropical grid box.For analysis of 2-dimensional cloud area fraction (cl) utilized in the 

characterization of high and low ECS model composites, cloud fraction is interpolated to 
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common standard pressure levels, constrained to the tropical region, and binned by monthly ω 

values. 

5.2.2 Convective Sensitivity to Moisture 

Convective sensitivity to moisture is characterized using the methods of Kuo et al. 

(2018). They find that precipitation rates increase dramatically beyond a threshold value of 

column water vapor (CWV). This threshold is found first by conditionally averaging 

precipitation rate on column water vapor across different saturation specific humidity groups 

(Figure 3a). The threshold increases with saturation specific humidity, displaying a dependence 

of the relationship on the temperature of the column. To account for this, the pickup curves are 

collapsed (Figure 3b). To collapse the curves, a common reference precipitation rate is first 

defined, marking the transition between non-precipitating and precipitating states. For each of 

the precipitation curves, the threshold CWV corresponding to the reference precipitation rate is 

found and the curves are shifted by this CWV value such that the x-axis becomes CWV minus 

the reference CWV and all curves transition to a precipitating state at a normalized CWV value 

of 0. This allows for the curves to collapse, eliminating the temperature dependence. Finally, a 

critical CWV is defined as the x-intercept of a best-fit line through a range of precipitation rates 

greater than the one chosen as the threshold rate. Values of lower critical CWV and less steep 

linear regression slopes are representative of convection that is less sensitive to entrainment of 

tropospheric air whereas convection that is more sensitive to entrainment of tropospheric air is 

associated with higher critical CWV values and a steeper slope of the pickup.  
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Fig. 3. a) Precipitation rate averaged across CWV bins and separated by column-integrated 

saturation specific humidity in mm. b) Collapsed precipitation rate averaged across CWV bins 

and separated by column-integrated temperature in K. The grey line indicates the line of best fit 

for the computation of the critical value. From Kuo et al. (2018). 

In discussing the moisture-precipitation relationship across the CMIP ensemble, a steeper 

slope is also indicative of higher rates of entrainment in a given model. This is clearly illustrated 

by the modeling results of Kuo et al. (2017) (Figure 4), whereby a reduction of the entrainment 

rate below default values reduces the slope of the pickup considerably. This is indicative of deep 

convection onset at lower CWV and generally across a broader range of CWV values (see also 

probability and PDFs in Figure 4) and, therefore, a reduced sensitivity of convective precipitation 

to CWV, as one would expect. 
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Fig. 4. The CESM-simulated convective transition statistics at a site in the tropical western Pacific 

(Manus Island, at location of DOE ARM site) for various entrainment (dmpdz) cases: (left) 0.08 

km-1 (low entrainment) and (right) 2.0 km-1 (high entrainment). Note that the CESM default in this 

model version is 1 km-1. (top) The average total (color) and convective (gray) precipitation rate 

conditionally averaged by column water vapor (CWV). (middle) The probability of total (blue; P > 

0.1 mm h−1) and convective (gray; Pc > 0.1 mm h−1) precipitation. (bottom) The PDF of CWV for 

all (dark gray) and precipitating (blue; P > 0.1 mm h−1) events. Adapted from Kuo et al. (2017). 

To apply this method, first, at every grid box and timestep, vertical profiles of specific 

humidity are integrated into column-integrated mass-weighted specific humidity. Additionally, 

vertical profiles of temperature are converted to saturation specific humidity and integrated over 

the column. 6-hourly column relative humidity (CRH) is then calculated as the ratio of specific 
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humidity to saturation specific humidity. Then, instantaneous temperature and CRH are 

collocated with precipitation rates for the following 3-hourly period. Considering values from 

20°N-20°S, precipitation curves are conditionally averaged on CRH for each column average 

temperature from 267 to 274 K. This is adjusted to the four most common temperatures 

following the finding that the middle quartiles of data for each model fall across varying 

temperature ranges. To collapse the precipitation curves, the threshold for precipitation is defined 

as .15 mm/hr and each curve is shifted by the CRH value corresponding to that precipitation rate 

such that the transition to precipitating regimes across all curves is placed at 0 on the x-axis. The 

critical CRH value is computed as the x-intercept of the linear regression of points falling 

between .2 and .4 mm/hr. Because this analysis is focused on the increase of precipitation with 

increasing environmental moisture and there are fewer data points at the higher precipitation 

rates which may cause a fluctuation of precipitation rates at the highest CRH values, points are 

only included in the regression that increase monotonically. 

Finally, for analysis of the relationship between convective sensitivity to moisture and 

high cloud fraction using 2-dimensional cloud area fraction (cl), model output is first interpolated 

to common standard pressure levels, and tropical mean (30°S - 30°N) time mean cl vertical 

profiles are computed. High cloud fraction is defined as the maximum of cloud fraction between 

400 and 150 hPa to characterize the coverage of anvil clouds, which typically exist at the level of 

maximum detrainment at around 200 hPa (Hartmann & Larson, 2002). 

5.3 Precipitation Efficiency and Convective Organization Relationship to High Cloud Feedbacks 

5.3.1 Precipitation Efficiency 

 Precipitation efficiency is calculated using the large-scale definition published by Li et al. 

(2022). Efficiency is defined following:  
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                                                                   𝜀 = 	 .%
#0.

                                                                     (8) 

Here, ε is precipitation efficiency, Ps is surface precipitation rate, and CWP is vertically 

integrated condensed water and ice in the column. To compute the tropical mean change in 

precipitation efficiency, a ratio is taken as pr/clwvi at every monthly timestep and gridbox in 

both the early and late abrupt-4xCO2 periods. Li et al. (2022) note that particularly in arid 

regions such as the Arabian Peninusla, local precipitation efficiency can be large and is therefore 

not a suitable metric. This is observed at some grid points and timesteps in which precipitation 

efficiency is computed as infinite or very large (> 106 s-1). To account for these outliers, a filter is 

applied before taking a tropical and time mean such that any precipitation efficiency values > 1  

s-1 are removed from the data. This threshold is chosen because the inverse of precipitation 

efficiency represents the residence time for condensed water in the atmosphere (Li et al., 2022), 

so a timescale of 1 second represents a conservative lower bound. After applying this filter, 

tropical mean (30°S - 30°N) and time mean averages are taken across the early and late abrupt-

4xCO2 periods, differenced, and divided by the global mean change in surface temperature. 

Ascent and descent region precipitation efficiency are computed as area weighted averages 

constrained by monthly ω500 values across the early abrupt-4xCO2 experiments, where ascent 

regions are characterized by ω500 < 0 hPa day-1 and descent regions  > 0 hPa day-1.  

5.3.2 Convective Organization 

 Mesoscale convective organization is defined using the methods employed by Bläckberg 

and Singh (2022). First, in both the early and late abrupt-4xCO2 experiments, tropical (30°S - 

30°N) grid boxes are filtered at every timestep to include only pr values that are greater than or 

equal to the 97th percentile of tropical precipitation rate computed across all grid points at that 

timestep and within a given model. This guarantees that the total area fraction representing 



 39 

convection remains the same, ensuring an apples-to-apples comparison between models (Tobin 

et al., 2012). Convective objects are then defined using 8-connectivity, meaning that contiguous 

boxes including those that are situated diagonally, are considered a single “cluster.” 

Following definition of convective objects, Radar Organization Metric (ROME) is 

utilized to characterize the organization of convection (Retsch et al., 2020). ROME is a measure 

of organization that considers both the distance between convective objects and their size. 

Between two convective objects, ROME assigns a measure of organization defined as follows:  

                                           𝑅𝑂𝑀𝐸 =	𝐴1 +min %1,
2&
2'
&𝐴3                                             (9) 

Here, Aa is the area of the larger object in km2, Ab is the area of the smaller object in km2, 

and Ad is the square of the shortest distance between the two objects (Figure 5). This yields a 

metric composed of the summation of the larger object’s area with the smaller object’s area 

weighted by the distance between the two objects. As a result, objects that are larger and closer 

together are considered more organized and yield higher values of ROME. At every timestep, 

this calculation is applied to each unique pair of the 8 largest convective objects across a scene, 

and an average is taken across all pairs. The change in organization is computed as a difference 

of the time mean value of ROME across the late abrupt-4xCO2 period and the early abrupt-

4xCO2 period normalized by the global mean change in surface temperature. The fractional 

change in organization is defined as the late period ROME minus the early period ROME, 

normalized by the early period ROME and the global mean change in surface temperature. 
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Fig. 5. Schematic depicting two convective objects and the dimensions used to calculate ROME. 

From Retsch et al. (2020). 

6. Results 

6.1 High Cloud Feedback Relationships to ECS 

6.1.1 Net High Cloud Feedback 

 To quantify the relationship between intermodel variability of the tropical net high cloud 

feedback and intermodel variability of climate sensitivity, the tropical mean net high cloud 

feedback (Figure 6a) and the local net high cloud feedback at each grid box (Figure 6b) are 

correlated with ECS.  The tropical mean net high cloud feedback is significantly correlated to 

ECS (r = 0.66; p < 0.001). Building on literature highlighting uncertainty in tropical cloud 

feedbacks (Vial et al., 2013), this relationship signifies that intermodel variability in tropical high 

clouds is driving a non-negligible portion of intermodel variability in ECS, thus motivating 

further analysis of the sources of spread in tropical high cloud feedbacks. The strongest positive 

local correlations between the net high cloud feedback and ECS (red shading) are found in 

climatological descent regions, particularly in the eastern equatorial Pacific. In contrast, deep 

convective zones, where high clouds are climatologically most abundant, display weak 

correlations or anticorrelations (blue shading) between the local net high cloud feedback and 
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ECS, indicating that variability in high cloud feedbacks in the areas of strongest ascent are not 

strongly driving the spread in ECS. 

 

Fig. 6. a) Tropical mean relationship between the net high cloud feedback and ECS. The Pearson 

correlation coefficient is in bold and statistical significance at a = .05 is indicated by an asterisk. 

Models are listed in order of increasing ECS. b) Spatial correlation of the local net high cloud 

feedback and ECS. The multi-model mean early period abrupt-4xCO2 experiment ω500 = 0 

contour is depicted by the thick black line. Significance at ɑ =.05 is indicated by stippling. 

 To compare differences in the spatial arrangement of the net high cloud feedback across 

the tropics, the high cloud feedback is visualized across a high ECS (Figure 7a) and low ECS 

(Figure 7b) group. Both show strong, positive feedbacks in narrow bands along the Pacific ITCZ 

and weaker positive feedbacks across equatorial land regions. Notably, the low ECS composite 
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displays strong negative feedbacks along the equatorial Pacific and Atlantic regions in addition 

to subtropical ocean basins, which are absent from the high ECS map. Figure 7c confirms that 

this near-equatorial band is the region where the feedbacks diverge the most between the two 

groups. Additionally, this provides supporting evidence that the strongest local correlations 

shown in Figure 6b are relevant for the tropics-wide relationship between the net high cloud 

feedback and ECS. Reflecting the spatial pattern of the local correlations between the net high 

cloud feedback and ECS, the descent region relationship is stronger (r = 0.71; p < 0.001) than the 

ascent region relationship (r = 0.53; p = 0.012). In sum, these results suggest that variability in 

high cloud feedbacks on convective margins and in regions of climatological descent are more 

strongly related to the spread in ECS than high cloud feedbacks in tropical deep convective 

zones.  

 

Fig. 7. Net high cloud feedback for the a) high ECS group, (b) low ECS (£ 3.7 K) group, and c) 

difference between the high and low ECS groups.  
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6.1.2 High Cloud Altitude Feedback 

Next, the relationship between the tropical high cloud altitude feedback and ECS is 

analyzed. The tropical mean high cloud altitude feedback is significantly correlated with ECS (r 

= 0.55; p = 0.007; Figure 8a). This relationship suggests that the intermodel variability of the 

high cloud altitude feedback is a non-trivial driver in the intermodel variability in ECS. The 

tropical mean high cloud altitude feedback is positive in 20 models and near-zero in the 

remaining two models, mimicking the results found by Zelinka et al. (2022) in an ensemble of 19 

GCMs. This is expected given that the high cloud altitude feedback has support for being 

positive from theory (Hartmann & Larson, 2002; Zelinka & Hartmann, 2010), observations (Xu 

et al. 2007; Zelinka & Hartmann, 2011), and GCMs (Bony et al., 2016; Zelinka & Hartmann, 

2010). Visualizing the correlations between the local high cloud altitude feedback and ECS over 

space mimics the pattern displayed by the net high cloud feedback (Figure 8b). Both patterns 

show the strongest correlations to ECS in the equatorial Pacific and east Pacific subtropical 

ocean and anticorrelations in ascent regions across the Amazon and Congo. The high cloud 

altitude feedback displays positive correlations that extend further into the Maritime Continent 

and Warm Pool than demonstrated by the net high cloud feedback. 
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Fig. 8. As in Figure 6, but for the high cloud altitude feedback. 

The composited high and low ECS high cloud altitude feedback maps and the difference 

between them are shown in Figure 9. The high cloud altitude feedback composited for the 7 

highest ECS models (Figure 9a) demonstrates positive values across most of the tropics with the 

largest magnitude in Pacific ITCZ and Congo regions. This is indicative of a rising of high 

clouds across most of the tropics. In contrast, the high cloud altitude feedback composited for the 

7 lowest ECS models (Figure 9b) shows strong, positive values that are limited to the deep 

convective regions of the ITCZ and Congo and smaller positive magnitudes or even negative 

high cloud altitude feedbacks across the Pacific basin. The largest difference in the two groups 

comes from the equatorial central Pacific and east Pacific subsidence regions (Figure 9c), 

affirming that the significant correlations shown in Figure 8b are relevant for the tropical-mean 

correlation. This difference is also qualitatively similar to that displayed by the net high cloud 
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feedback in Figure 7c, albeit with a smaller relative difference along the Pacific equatorial zone. 

As with the net high cloud feedback relationship to ECS, the correlation between the high cloud 

altitude feedback constrained to descent regions (r = 0.63; p = 0.017) and ECS is stronger than 

the relationship between the ascent region high cloud altitude feedback and ECS (r = 0.50; p = 

0.018). In sum, these results suggest that intermodel variability in the tropical high cloud altitude 

feedback, particularly across convective margins along the Pacific ITCZ, are contributing to 

intermodel variability in climate sensitivity and are qualitatively similar to the relationships 

found between the net high cloud feedback and ECS. 

 

Fig. 9. As in Figure 7, but for the high cloud altitude feedback.  

6.1.3 High Cloud Optical Depth Feedback 

The correlation between the tropical mean high cloud optical depth feedback and ECS is 

shown in Figure 10a (r = 0.54; p = 0.01). As with the high cloud altitude feedback, this 

significant relationship suggests that variability in the high cloud optical depth feedback is 

driving variability in climate sensitivity. 10 out of 22 models exhibit a positive high cloud optical 
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depth feedback, which corresponds to a net thinning of high clouds with warming. The 

disagreement in the ensemble around the sign of the high cloud optical depth feedback reflects 

the uncertainty of the net radiative impact of changes to cloud opacity in GCMs that has only 

been noted in recent intermodel comparisons (Sokol et al., 2024; Zelinka et al., 2022). 

Visualizing this relationship over space demonstrates that significant positive correlations are 

limited to convective margins such as the eastern equatorial Pacific, equatorial Atlantic, and 

North Africa (Figure 10b). While deep convective cores are found in observations primarily 

across tropical ascent regions (Houze et al., 2015), thinner high clouds are spread more 

ubiquitously across the tropics (Sassen et al., 2009). Thus, the pattern demonstrated by Figure 

10b could indicate that changes to anvils extending away from areas of deep convection are 

primarily responsible for the overall correlation between the tropical high cloud optical depth 

feedback and climate sensitivity. 

 
 



 47 

 

Fig. 10. As in Figure 6, but for the high cloud optical depth feedback.  

The high and low ECS composited maps of the high cloud optical depth feedback are 

shown in Figure 11. Both groups demonstrate a band of positive feedbacks within the east 

Pacific ITCZ, corresponding to a thinning of high clouds. This is accompanied by negative 

optical depth feedbacks immediately to the south, representing a thickening of the high cloud 

population. However, the low ECS composite shows a much more negative magnitude and 

greater spatial extent of the negative feedbacks, indicating enhanced thickening. This pattern 

could be representative of a southward and eastward shift of convection across the Pacific under 

long-term warming that has previously been identified in CMIP models (Mamalakis et al., 2021; 

Vecchi & Soden, 2007). Visualizing the difference between the high and low ECS groups 
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confirms that the greatest difference in the changes to high cloud optical depth among models is 

in the Pacific and Atlantic ITCZ regions (Figure 11c).  

 

Fig. 11. As in Figure 7, but for the high cloud optical depth feedback.  

As with the high cloud altitude feedback, the correlation between the high cloud optical 

depth feedback constrained to descent regions (r = 0.64; p = 0.001) and ECS is stronger than the 

relationship between the ascent region high cloud optical depth feedback and ECS (r = 0.44; p = 

0.039). Considering analysis of both the high cloud altitude and optical depth feedback, these 

results suggest that variability in the effects of changes to high cloud altitude and optical depth, 

particularly along convective margins adjacent to the Pacific ITCZ, are contributing to 

intermodel variability in climate sensitivity such that high ECS models experience a more 

positive altitude feedback and less negative optical depth feedback in this region, which is 

driving the tropical-mean spread in the feedbacks. 

6.1.4 High Cloud Amount Feedback 
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 Finally, the relationship between the high cloud amount feedback and climate sensitivity 

is assessed. The high cloud amount feedback is uncorrelated with ECS in the tropical mean (r = 

0.16; p = 0.53; Figure 12a). The weakness of this relationship suggests that the tropical mean 

high cloud amount feedback is not a primary driver of intermodel variability in climate 

sensitivity. Moreover, the range of the amount feedback across models is smaller than the range 

of values produced by the high cloud altitude and optical depth feedbacks, with many models 

clustering around 0 W m-2 K-1.  This is not surprising given that anvils have an approximately 

neutral radiative effect resulting from the cancellation between the large positive longwave and 

negative shortwave radiative effects of thin and thick clouds (Hartmann & Berry, 2017). The 

spatial arrangement of local correlations between the high cloud amount feedback and ECS 

(Figure 12b) does not yield extensive regions of significant correlations between the amount 

feedback and ECS as the high cloud altitude and optical depth feedbacks did. However, descent 

regions generally show correlations and ascent regions display anticorrelations, qualitatively 

matching the pattern exhibited by the net high cloud feedback. 
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Fig. 12. As in Figure 6, but for the high cloud amount feedback.  

 The high and low ECS composited maps of the high cloud amount feedback generally 

demonstrate negative values across descent regions and convective margins and positive values 

in the regions of strongest ascent (Figure 13a-b). Both the positive and negative high cloud 

amount feedback magnitudes are stronger in the low ECS composite than the high ECS 

composite. Because the amount feedback characterizes the radiative effect of a change in high 

cloud amount separate from changes to cloud opacity or altitude, a loss of high clouds could 

yield a positive or negative amount feedback depending on the climatological high cloud opacity. 

Figure 14 shows the local net change in high clouds across the high and low ECS composites. 

Both groups demonstrate a net loss of high clouds in the deep tropics with warming, 

corresponding to a positive high cloud amount feedback, and a net increase in high cloud amount 

in descent regions, corresponding to a negative high cloud amount feedback. Given this 
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additional context, low ECS models generally see a greater decrease of high clouds in ascent 

regions and a greater increase in high cloud amount in descent regions, resulting in more positive 

and negative high cloud amount feedbacks, respectively.  

 

Fig. 13. As in Figure 7, but for the high cloud amount feedback.  

 
Fig. 14. Normalized change in high cloud fraction (680-50 hPa) for the a) high ECS and b) low 

ECS group between the early and late abrupt-4xCO2 periods. 



 52 

These conclusions are limited in their robustness by weak correlations of the ascent (r = -

0.24; p = 0.29) and descent region (r = 0.44; p = 0.04) high cloud amount feedback with ECS. 

Overall, these results suggest that variability in the high cloud amount feedback is a relatively 

weak driver of the intermodel variability of climate sensitivity in comparison to the high cloud 

altitude and optical depth feedbacks.  

 In summary, the tropical mean net high cloud feedback is strongly correlated with climate 

sensitivity, arising from significant tropical mean correlations between the high cloud altitude 

feedback and high cloud optical depth feedback and ECS. The high cloud amount feedback is a 

relatively weaker driver of the spread in ECS in comparison. Additionally, the net high cloud 

feedback, high cloud altitude feedback, and high cloud optical depth feedback relationships to 

ECS are strongest outside of the deep tropics, highlighting convective margins and descent 

regions as areas driving the tropics-wide spread in each component. 

6.2 Mean State High Cloud Relationships to ECS and High Cloud Feedbacks 

6.2.1 High Cloud Relationships to ECS 

Following the robust correlations found between high cloud feedbacks and ECS, the 

relationships between the intermodel spread in mean state high cloud characteristics and 

intermodel spread in high cloud feedbacks are explored as potential opportunities for emergent 

constraints. Figure 15 shows the high ECS composite, low ECS composite, and difference in 

climatological high cloud fraction between the high and low ECS groups averaged from 30°N to 

30°S and conditionally sampled on vertical velocity at 500 hPa (ω500) and pressure using output 

from the cl variable. Both groups see a maximum of high cloud fraction in strong ascent 

conditions around 200 hPa (Figure 15a-b), which corresponds to the level of maximum 

detrainment where anvil extent is greatest (Hartmann & Larson, 2002; Zelinka & Hartmann, 
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2011). High ECS models show greater high cloud fraction in the upper troposphere in ascent 

regions (at vertical velocities < 0 hPa day-1), particularly between 400 hPa and 100 hPa (Figure 

15c). This aligns with the findings of Su et al. (2014). Figure 16 displays the high ECS 

composite, low ECS composite, and difference in climatological cloud fraction between the two 

groups using ISCCP output organized in CTP-𝜏 space. High ECS models have, in sum, more thin 

high clouds than low ECS models in the 680-150 hPa bins, whereas low ECS models have more 

thick high clouds than high ECS models. 

 

Fig. 15. Composited piControl/piClim-control experiment tropical mean (30°N - 30°S) cloud 

fraction conditionally averaged on pressure and ω500  between the a) high ECS (≥ 4.7 K) group, 

b) low ECS (≤ 3.7 K) group, and c) difference of high and low ECS groups from the cl output. 
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Fig. 16. As in Figure 15, but using ISSCP simulator output from the clisccp variable. Only the 

free tropospheric portion of the histogram is shown.  

To further understand how the relationships between mean state high cloud fraction and 

ECS arrange over space, the local correlations between different measures of high cloud fraction, 

defined as ISCCP output summed between 680 hPa < CTP < 50 hPa, and ECS at each grid box 

are mapped. Thin high cloud fraction (.3 < τ < 9.4) is significantly correlated to ECS in regions 

of climatological ascent, particularly equatorial land regions (Figure 17a). This is reflected in a 

significant correlation between thin high cloud fraction constrained across each model’s ascent 

region and ECS (r = 0.50; p = 0.018; Figure 17c). In contrast, thin high cloud fraction is 

unrelated to ECS across descent regions (r = 0.20, p = 0.38; Figure 17d). 
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Fig. 17. a) As in Figure 6b but for piControl/piClim-control thin high cloud fraction. b-d) The 

correlation of piControl/piClim-control thin high cloud fraction and ECS across b) the tropics, c) 

ascent regions, and d) descent regions. 

Next, the relationship between thick high cloud fraction and ECS is examined over space. 

Thick high cloud fraction (9.4 < τ < 380) is anticorrelated with climate sensitivity across the 

entire tropical domain, with the strongest relationships coming from convective margins along 

the South Pacific convergence zone, Warm Pool, and Atlantic subtropical basins (Figure 18a). 

This relationship computed over the entire tropics (r = -0.60; p = 0.003; Figure 18b), within 

ascent regions (r = -0.58; p = 0.005; Figure 18c), and within descent regions (r = -0.61; p = 

0.003; Figure 18d) varies little, indicating that models with higher ECS values tend to have 

climatologically fewer thick high clouds distributed across the tropics than models with lower 

climate sensitivities. 
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Fig. 18. As in Figure 17, but for thick high cloud fraction. 

Finally, to consider mean high cloud opacity separate from high cloud amount, thick and 

thin high cloud fraction are combined into a single metric by taking the ratio of thick to thin high 

cloud fraction. Here, a higher ratio signifies a thicker high cloud population. Mean high cloud 

opacity is significantly anticorrelated to climate sensitivity across most of the tropics (Figure 

19a) with ascent regions displaying the strongest relationships. Like the relationship between 

thick high cloud fraction and ECS, the anticorrelation between the ratio of thick to thin high 

cloud fraction and ECS is significant when considering the entire tropics (r = -0.63; p = 0.002; 

Figure 19b), ascent regions (r = -0.62; p = 0.002; Figure 19c) and descent regions (r = -0.62; p = 

0.002; Figure 19d). These results suggest that models with higher ECS values tend to have 

relatively thinner high clouds across the tropics in comparison to models with lower climate 

sensitivities. 
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Fig. 19. As in Figure 17, but for the ratio of thick to thin high cloud fraction.  

6.2.2 High Cloud Relationships to High Cloud Feedbacks 

 Next, relationships between mean state high cloud characteristics and high cloud 

feedbacks are explored to provide mechanistic explanations for the high cloud relationships to 

climate sensitivity - a necessity for forming emergent constraints (Klein & Hall, 2015). The high 

cloud altitude feedback is considered first. In their review of cloud feedbacks, Ceppi et al. (2017) 

suggest that the magnitude of the high cloud altitude feedback in GCMs is related to the change 

in high cloud top altitude, the associated decrease in longwave radiation emitted per unit increase 

in altitude, and climatological high cloud fraction. Here, the relationship between climatological 

high cloud fraction and the high cloud altitude feedback is considered to test the hypothesis that 

greater mean state high cloud fraction yields a more positive altitude feedback.  

Figure 20 shows the correlation between high cloud fraction between 680 and 180 hPa 

and the high cloud altitude feedback at each grid box. High cloud fraction is summed across the 

troposphere excluding the highest altitude bin (180-50 hPa). This choice is made because of 
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discretization of ISCCP output into altitude categories such that mean state high cloud fraction in 

the 180-50 hPa bin cannot rise to a lower pressure and therefore is not contributing to the 

magnitude of the high cloud altitude feedback. Significant positive correlations are present 

across ascent regions characterized by deep convection, including the Amazon, equatorial Africa, 

and the Maritime Continent. This suggests that models that tend to simulate greater 

climatological high cloud fraction, particularly across ascending regions of the tropics, see more 

positive local high cloud altitude feedbacks. This relationship provides a plausible mechanistic 

linkage between mean high cloud amount and climate sensitivity through the altitude feedback.  

 

Fig. 20. Spatial correlation of 680-180 hPa cloud fraction and the high cloud altitude feedback. 

The multimodel mean control experiment ω500 = 0 contour is depicted by the thick black line. 

Significance at ɑ =.05 is indicated by stippling. 

 In addition to the high cloud altitude feedback, correlations between mean state quantities 

and the high cloud amount and optical depth feedbacks are considered. Hartmann et al. (2001) 

hypothesize that clear and cloudy areas of the tropics maintain a similar radiative balance 

through a feedback process between convective intensity, high cloud albedo, and sea surface 

temperature (SST) gradients. Wall and Hartmann (2018) argue that this feedback could be 

represented in GCMs such that regions with a positive radiative imbalance will adjust through 

enhanced convective intensity and an increase in cloud opacity, resulting in a compensatory 
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decrease in the net radiative balance and a negative feedback. Thus, it is plausible that models 

with thinner high clouds in tropical ascent regions see an increase in high cloud amount and 

opacity in response to greenhouse gas forcing relative to models with more thick high clouds. 

To test this hypothesis, the ratio of thick to thin high cloud fraction is correlated to the 

high cloud amount and optical depth feedback at each grid box across the tropics. Mean high 

cloud opacity is strongly correlated to the high cloud amount feedback broadly across tropical 

ascent regions (Figure 21). This indicates that models with thicker high clouds in deep 

convective regions see a more positive high cloud amount feedback, which corresponds to an 

enhanced loss of high clouds under warming (Figure 14). This result aligns with the logic of the 

purported “cloud shading feedback” (Wall et al., 2019) such that models with relatively thicker 

clouds, which have a strong negative shortwave effect, induce a negative radiative effect under 

warming that causes muted SST increases and moisture convergence alongside increases in 

stability, thus reducing convective activity relative to models with a thinner cloud population. 

The relationship flips in descent regions, displaying strong anticorrelations in the equatorial east 

Pacific and subtropical ocean basins. The cloud shading feedback does not explain why models 

with thinner clouds on convective margins experience more positive amount feedbacks 

associated with a muted increase in high cloud fraction. Because the amount feedback considers 

the effect of changes to cloud amount separate from changes across optical depths and altitudes, 

it is related to both the change in high cloud fraction and the radiative effect of mean state high 

clouds. To assess the contribution of changing high cloud amount to the amount feedback, the 

local correlations between the change in high cloud fraction and the high cloud amount feedback 

are mapped (Figure 22). In descent regions, models that see a less negative high cloud amount 

feedback generally have a muted increase in high cloud fraction. Thus, it likely is a combination 
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of both effects – models with thinner mean high cloud population and a muted increase in high 

clouds – that results in weaker stabilizing amount feedbacks in descent regions.  

Fig. 21. As in Figure 20, but with the ratio of thick to thin high cloud fraction and the high cloud 

amount feedback. 

 

Fig. 22. As in Figure 21, but with the change in high cloud fraction and the high cloud amount 

feedback. 

To test the hypothesis that the cloud shading feedback causes enhanced thickening in 

models with thinner mean state high clouds, the relationship between mean high cloud opacity 

and the high cloud optical depth feedback are visualized over space (Figure 23). The 

relationships are much weaker than those identified for the high cloud amount feedback. 

Convective margins, including the equatorial Central Pacific and Atlantic, display significant 

anticorrelations, suggesting that models with thinner high clouds in these regions experience 
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enhanced thinning. This result highlights behavior that is counter to the expected stabilizing 

effect of the cloud shading feedback. 

Fig. 23. As in Figure 21, but with the high cloud optical depth feedback. 

Finally, to consider tropics-wide relationships between mean high cloud characteristics 

and high cloud feedbacks, Table 3 summarizes the tropical mean high cloud altitude, optical 

depth, and amount feedback correlations with mean state total high cloud fraction, thick high 

cloud fraction, thin high cloud fraction, and the ratio of thick to thin high cloud fraction. 

Generally, if a model has more thin high clouds or a greater proportion of thin high clouds in the 

mean state, it will have more positive altitude and optical depth feedbacks than a model with 

fewer thin high clouds. This helps to explain the result shown in Figure 16. The altitude feedback 

and total tropical mean state high cloud fraction (HCF) correlation, as well as the amount 

feedback and total tropical mean state HCF correlation, are significantly correlated, yet the 

correlation is driven strongly by the two IPSL-CM6A-LR models and thus are not considered to 

be robust. 
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Table 3 

Tropical mean correlation coefficients between high cloud feedbacks (rows) and mean state high 

cloud quantities (columns). Significance at ɑ =.05 is indicated by an asterisk.. 

 Total 
HCF 

Thin 
HCF 

Thick 
HCF 

Thick:Thin 
HCF 

High Cloud Altitude Feedback 0.53* 0.62* 0 -0.53* 

High Cloud Optical Depth Feedback    0.25 0.62* -0.45 -0.76* 

High Cloud Amount Feedback 0.68* 0.59* 0.29 -0.18 

 

 In summary, high ECS models tend to have greater upper tropospheric cloud fraction 

than low ECS models, particularly in regions of strong ascent. This relationship is driven 

predominantly by a greater coverage of thin high clouds. In contrast, low ECS models have 

greater thick high cloud coverage broadly across the tropics relative to high ECS models. 

Accounting for high cloud opacity separate from total high cloud amount by taking a ratio of 

thick to thin high cloud fraction demonstrates that high ECS models have tropical cloud 

populations that are relatively thinner than shown in low ECS models. In ascent regions, greater 

mean state cloudiness amplifies the altitude feedback, and more thick high cloud coverage 

amplifies the amount feedback through a cloud shading mechanism. Finally, models with greater 

thin high cloud coverage and relatively thinner high cloud populations demonstrate more positive 

altitude and optical depth feedbacks at the tropics-wide scale. 

6.2.3 Climatological High Cloud Fraction and Convective Sensitivity to Moisture 

Given that tropical upper tropospheric high cloud fraction is found to vary systematically 

with ECS across the ensemble (Figure 15), it is worth exploring whether there are systematic 

relationships between intermodel differences in convective physics and mean state high cloud 
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properties. While it is easy to point fingers at intermodel differences in convective and 

microphysical parameterization, it is very difficult to identify specific parameter choices or 

aspects of a parameterization that differ among such a large climate model ensemble. Hence, an 

approach is adopted here that characterizes the sensitivity of deep convection to lower 

tropospheric moisture across the ensemble – a key mechanism relating the two being the 

entrainment rate of environmental air into updrafts –without explicitly determining intermodel 

differences in entrainment parameterization, though variations in the entrainment rate would be 

expressed through such a relationship. A number of studies have highlighted that the mean 

climate is highly sensitive to variations in the entrainment parameter (Del Genio & Wu, 2010; 

Mauritsen et al., 2012; Qian et al., 2015; Tsushima et al., 2020; Zhao, 2014), motivating the 

choice to explore these relationships across the CMIP ensemble. 

To characterize convective sensitivity to moisture across an ensemble of GCMs, 

precipitation is conditionally sampled on column relative humidity (CRH). Figure 24 shows the 

collapsed pickup curves for 19 models. All models demonstrate a collapsing of precipitation 

pickup curves, evidenced by best fit-line correlations above p = 0.85 and validating the use of 

this method for characterizing precipitation pickup. Here, the models are arranged in order of 

increasing critical value such that models with higher critical values have a more rapid increase 

in precipitation with increasing column relative humidity, which is also evidenced by a steeper 

slope of the best-fit line. Models with lower critical values exhibit a more gradual increase of 

precipitation with increasing CRH, characterizing a weaker precipitation pickup. A steeper slope 

is indicative of higher rates of entrainment in a given model (Kuo et al., 2017), though 

entrainment is not the only factor controlling the characteristics of the pickup curve (Ahmed et 

al., 2020). 
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Fig. 24. Collapsed precipitation pickup curves as a function of column relative humidity and 

column integrated temperature. The red points indicate values that were used in the linear 

regression that yielded the critical value. The black line represents the best-fit linear regression. 

The numbers in the bottom corner indicate the correlation of collapsed and precipitation rate for 

the points used in the regression. 

 To assess the differences in the climatological cloud fields across models with different 

sensitivities to entrainment of moisture, cloud fraction is compared across the models with the 7 

highest and 7 lowest critical values, averaged from 20°N to 20°S and conditionally sampled on 
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ω500 and pressure using output from the cl variable (Fig. 25a-b). The high critical value group has 

fewer high clouds than the low critical value group, maximizing in strong ascent regions around 

ω500  = -50 hPa day-1 and 200 hPa (Fig 25c). This indicates that models that are more sensitive to 

the entrainment of tropospheric air see fewer high clouds under strong ascent conditions and at 

the pressure where anvil extent is typically greatest.  

 

Fig. 25. As in Fig. 15 but for the a) high critical value group, b) low critical value group, and c) 

difference between the two groups considering output from 20°N to 20°S. The high critical value 

group is an average of models with the 7 highest critical values, and the low critical value group 

is an average of models with the 7 lowest critical values. 

 To identify the regions where the relationship between convective sensitivity to moisture 

and high cloud fraction is strongest, the local correlations between critical values and the 

maximum of cloud fraction between 400 and 100 hPa are visualized across the tropics (Figure 

26). Significant anticorrelations are present across the Maritime Continent, Warm Pool, and 

South Pacific Convergence Zone. These anticorrelations highlight strong ascending regions 

across the Pacific as the dominant driver of the variability in climatological high cloud fraction 

across the groups shown in Figure 25.  
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Fig. 26. Spatial correlation of critical values and maximum cloud fraction between 400 and 100 

hPa from 20°N to 20°S. 

 Finally, to confirm that the significant anticorrelations shown in Figure 26 are indicative 

of regions that contain the largest spread in cloud fraction across the ensemble, composited maps 

of maximum cloud fraction between 400 and 100 hPa for the high and low groups and the 

difference between the two groups are plotted in Figure 27. While high cloud fraction is 

maximized across the Maritime Continent in both groups, the low critical value group 

demonstrates greater coverage across the Warm Pool. Additionally, the low critical value group 

also shows greater cloud fraction across the Atlantic ITCZ, Congo, and Amazon regions, 

highlighting other ascent regions as zones where high cloud fraction varies between the two 

groups, albeit these areas lack statistically significant correlations to critical values across the 

entire ensemble. 



 67 

 

Fig. 27. Composited maximum high cloud fraction between 400 and 100 hPa between 20°N and 

20°S for the a) high critical value group, b) low critical value group, and c) difference between 

the two groups. 

 In summary, intermodel variability in convective sensitivity to moisture acts as a non-

trivial driver of intermodel variability in climatological high cloud fraction. Models that are more 

sensitive display a sharper precipitation pickup and higher critical value, exhibiting relatively 

fewer high clouds in strong ascending regimes particularly across the West Pacific and Indian 

Oceans. Models that are less sensitive experience convection across a broader range of 

environmental conditions and consequently display greater high cloud coverage in the deep 

tropics. 

6.3 Precipitation Efficiency, Convective Organization, and Tropical High Cloud Feedbacks 

6.3.1 Convective Organization 

 Next, convective organization is considered as a potential mechanism explaining 

variability in the high cloud amount and optical depth feedbacks across the ensemble. Similar to 

the results published by Bläckberg and Singh (2022), there is agreement on the sign of the 
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change in mesoscale organization under warming, with 19 out of the 21 models experiencing an 

increase in aggregation. To assess the relationship between the change in mesoscale organization 

under warming and the high cloud net, amount, and optical depth feedbacks, the tropical mean 

change in ROME is correlated to the local high cloud feedbacks and visualized across the tropics 

(Figure 28). All three maps demonstrate qualitatively similar patterns of relationships wherein 

models that see a greater increase in mesoscale organization demonstrate more positive 

feedbacks over the Maritime Continent, the South Pacific Convergence Zone, and northward of 

the climatological ascent regions along the Atlantic ITCZ (red shading). Additionally, models 

with a greater increase in mesoscale organization yield more negative feedbacks along the 

equatorial central Pacific, North Africa, and within the Atlantic ITCZ (blue shading). While none 

of the tropical mean correlations between the change in ROME and the net, optical depth, or 

amount feedbacks are significant (r = -0.15, p = 0.51; r = 0.16, p = 0.49; r = -0.35, p = 0.12, 

respectively), the dipole-like pattern of relationships across the Pacific, with correlations in  

strong ascent regions and anticorrelations on convective margins, may be indicative of 

dynamical shifts related to the weakening and eastward shift of the Pacific Walker circulation, 

the climatological pattern of ascent in the West Pacific and descent in the East Pacific, with 

surface warming. 



 69 

 
Fig. 28. Correlation of tropical mean fractional change in ROME normalized by change in 

surface temperature to the local a) net high cloud feedback, b) high cloud optical depth feedback, 

and c) high cloud amount feedback. 

 To test the hypothesis that the relationship between the changes in mesoscale 

organization and high cloud feedbacks are related to changes to the Pacific Walker circulation, 

the tropical mean change in ROME is correlated with the change in ω500 and mapped (Figure 

29a). The strong correlation in the West Pacific suggests that models with a greater increase in 

mesoscale organization tend to see a greater weakening of ascent in this region. Note also that 

significant anticorrelations along the Atlantic ITCZ indicate that a greater increase in mesoscale 

organization is associated with a strengthening of ascent, perhaps indicative of changes in the 

Hadley circulation, encompassing the rising of air near the equator and subsidence in the 

subtropics, separate from the changes seen in the Pacific Walker circulation. These differences in 

the change of ascent strength are confirmed by composites of the change in ω500 across the 

groups of models representing a strong increase in ROME, weak increase or decrease in ROME, 
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and the difference between them (Figure 29b-d). Both sets of models generally experience a 

weakening of ascent in the deep tropics, a weakening of descent across subsidence regions, and a 

strengthening of ascent or weakening of descent along convective margins across the equatorial 

Pacific. The largest difference between the two composites is situated in the West and Central 

Pacific where models with a greater increase in aggregation demonstrate a more pronounced 

eastward shift and weakening of the Walker circulation than models with a weaker increase in 

aggregation. 

 

Fig. 29. a) As in Fig. 28a but with the local change in ω500. b-d) Composites of the change in 

local ω500 across the 7 models with the most positive change in ROME, the 7 models with the 

least positive or negative change in ROME, and the difference between the high and low groups. 
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To further isolate the effects of changes to the Walker Cell, vertically resolved changes to 

vertical velocity averaged from 20°N to 20°S across the West and Central Pacific are plotted for 

the high and low change in ROME groups (Figure 30a-b). Both sets of models demonstrate a 

weakening of the Walker cell, evidenced by tendency towards descent in climatological ascent 

regions and tendency towards ascent in climatological descent regions. However, the high 

composite experiences a stronger trend towards descent over the West Pacific and a stronger 

trend towards ascent over the Central Pacific than the low composite. These relationships are 

also statistically significant across the ensemble (Figure 30c), affirming that models that 

experience a stronger increase in mesoscale organization demonstrate a greater weakening of the 

circulation. These results confirm that the spatial pattern of correlations in Figure 29a represents 

a tendency for models that have a stronger increase in mesoscale organization to experience a 

greater eastward shift and weakening of the Pacific Walker circulation under warming than 

models with a weaker increase in organization. 
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Fig. 30. Change to vertical pressure velocity normalized by global mean change in surface 

temperature averaged between 20°N and 20°S for the a) high Δ ROME group, b) low Δ ROME 

group, and c) the correlation of the change in vertical pressure velocity and Δ ROME. 

 Unlike mesoscale organization, there is disagreement across the ensemble on the change 

in tropics-wide ascent area under warming with 9 out of 21 models demonstrating a loss of 

fractional ascent. None of the tropical mean correlations between the change in ascent area and 

the net, optical depth, or amount feedbacks are significant (r = -0.29; p = 0.19; r = -0.31, p = 

0.17; r = -0.35, p = 0.12, respectively), indicating that changes to organization at the scale of the 

ITCZ are not driving variability in high cloud feedbacks, at least not considering the tropical 

means. To assess these relationships spatially, correlations between the fractional change in 
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ascent area and the local high cloud net, optical depth, and amount feedbacks are visualized 

(Figure 31). Again, the most notable relationships between changes to convective organization 

(at any scale) and high cloud feedbacks are expected to be with the optical depth and amount 

feedbacks, hence the choice to analyze these high cloud feedbacks most closely. All three 

feedbacks show modest significant anticorrelations, illustrating that models that experience a 

decrease in ascent area under warming tend to have more positive high cloud feedbacks along 

equatorial convective margins. Interestingly, there are significant positive correlations between 

each feedback and the change in ascent area along the South Pacific Convergence Zone. At 

present, an explanation for this behavior is not obvious.  

 

Fig. 31. Correlation between the tropics-wide (30°N - 30°S) fractional change in ascent area 

normalized by change in global mean surface temperature and local a) net high cloud feedback, 

b) high cloud optical depth feedback, and c) high cloud amount feedback. 

The constraint of this relationship to convective margins along the ITCZ suggests that 

changes to the local dynamic environment associated with the shifting of tropical ascending 



 74 

regions is important for high cloud feedbacks along convective margins. However, ascent area 

fraction is only one metric capturing changes to the large-scale circulation and does not explicitly 

account for changes in circulation occurring in descent regimes. Therefore, to expand this 

analysis, the local change in vertical velocity at 500 hPa is correlated with the local high cloud 

feedbacks (Figure 32). Across the net, optical depth, and amount feedbacks, there are strong, 

significant correlations between the local changes in ω500 and the local high cloud feedbacks 

covering the equatorial Pacific and Atlantic, South Pacific Convergence Zone, parts of the Warm 

Pool, the eastern Amazon, and the subtropical North Atlantic basin. In areas of climatological 

descent, a positive correlation indicates that models that see a lesser weakening of descent 

experience more positive (or less negative) high cloud feedbacks, whereas in regions of 

climatological ascent, a correlation represents an association between enhanced weakening of 

ascent and more positive high cloud feedbacks. In other words, positive correlations in this map 

are interpreted to mean that a reduction of ascent and/or strengthening of descent along 

convective margins relates to more positive high cloud feedbacks.  
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Fig. 32. Correlation between the local change in ω500 normalized by change in global mean 

surface temperature and local a) net high cloud feedback, b) high cloud optical depth feedback, 

and c) high cloud amount feedback. 

 Finally, to isolate the climatological conditions in which the relationships between local 

dynamic shifts and high cloud feedbacks are the strongest, correlations between the change in 

ω500 and high cloud feedbacks are computed across climatological ω500 regimes binned in 10 hPa 

increments (Figure 33). The net high cloud feedback, as well as the optical depth and amount 

feedbacks, yield significant correlations to the change in ω500 in the weak ascent and weak 

subsidence regimes of -10 < hPa < 10, reflective of the convective margin shifts highlighted in 

Figure 32. This confirms that models that experience enhanced weakening of ascent or greater 

increase in descent strength adjacent to climatological ascent regions tend to experience an 

enhanced thinning and decrease in high cloud amount under warming on those margins. 
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Fig. 33. Correlation between the local change in ω500 normalized by change in global mean 

surface temperature and local a) net high cloud feedback, b) high cloud optical depth feedback, 

and c) high cloud amount feedback across climatological ω500 groups. Significance at ɑ =.05 is 

indicated by an asterisk 
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 In summary, enhanced mesoscale aggregation is associated with a pronounced weakening 

of the Walker Circulation, which results in an enhanced loss and thinning of high clouds in the 

West Pacific and co-occurring thickening and increase of high clouds in the Central Pacific, 

contributing to more negative high cloud feedbacks particularly across the equatorial Pacific. 

Elsewhere, an increase in mesoscale organization is associated with more positive high cloud 

feedbacks along convective margins. A reduction of tropics-wide ascent area – or enhanced 

planetary-scale convective organization – is also moderately associated with more positive high 

cloud feedbacks along convective margins. However, a stronger relationship exists between 

changes in local dynamic environments and high cloud feedbacks such that greater decreases in 

high cloud amount and albedo in climatological weak descent regimes are related to a general 

tendency for these regimes to be more strongly subsiding in the future. 

6.3.2 Precipitation Efficiency 

 To assess the extent to which intermodel variability in changes to precipitation efficiency 

are driving intermodel variability in high cloud feedbacks, the high cloud net, altitude, optical 

depth, and amount feedbacks are correlated with the tropical mean change in efficiency (Figure 

34). None of the relationships are statistically significant, but this is in part driven by two outlier 

models with large decreases in efficiency, IPSL-CM5A-MR and IPSL-CM5A-LR. Similar to Li 

et al. (2023), the ensemble varies on the sign of the change in tropics-wide precipitation 

efficiency. Following their division of models into those with positive and negative sensitivities 

of precipitation efficiency to warming, the 15 models that increase in tropics-wide efficiency are 

correlated to each of the high cloud feedback components (Figure 35). None of correlations are 

statistically significant at the ɑ =.05 level, though the correlation to the high cloud optical depth 

feedback has a p-value of 0.07. These results suggest that the intermodel variability in changes to 
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precipitation efficiency are not strongly related to variability in high cloud feedbacks tropics-

wide. 

 

Fig. 34. Correlation between the tropical mean (30°N - 30°S) change in precipitation efficiency 

normalized by the global mean change in surface temperature and the high cloud a) net feedback, 

b) altitude feedback, c) optical depth feedback, and d) amount feedback. The Pearson correlation 

coefficient is in bold and statistical significance at a = .05 is indicated by an asterisk. 

 

Fig. 35. As in Figure 34, but for the 15 models that increase in tropical mean precipitation 

efficiency. 
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 To further test the hypothesis that a greater increase in precipitation efficiency is 

associated with enhanced thinning of high clouds as described by Li et al. (2019), the local net 

high cloud optical depth feedback is correlated with the change in efficiency across models that 

increase in efficiency (Fig 36a). The high cloud optical depth feedback is significantly correlated 

to the tropics-wide change in efficiency in the subtropical south Pacific and Atlantic basins and 

along the equatorial Pacific, indicating that models with a greater increase in precipitation 

efficiency under warming experience more positive high cloud optical depth feedbacks in these 

regions of climatological descent. This yields a statistically significant correlation across descent 

regions (r = 0.55; p = 0.03). Dividing the ensemble into the 7 models with the greatest increase in 

precipitation efficiency (Fig 36b) and the 7 models with the smallest increase in efficiency (Fig 

36c) affirms that the most pronounced difference between the groups comes from the equatorial 

Pacific region adjacent to the ITCZ wherein models with stronger increases in precipitation 

efficiency experience muted increases in high cloud albedo, leading to less negative high cloud 

optical depth feedbacks in this region relative to models with a weaker increase in efficiency. 
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Fig. 36. a) Spatial correlation of the local high cloud optical depth feedback and tropical mean 

change in precipitation efficiency normalized by the global mean change in surface temperature. 

Significance at ɑ =.05 is indicated by stippling. High cloud optical depth feedback composited 

for the b) 7 models with the strongest increase and c) 7 models with the weakest increase in 

tropical-mean precipitation efficiency. 

  Additionally, the spatial arrangement of the relationship between the high cloud amount 

feedback and precipitation efficiency in models that increase in precipitation efficiency under 

warming is considered (Figure 37a). The pattern is qualitatively similar to that displayed by the 

high cloud optical depth feedback, wherein the Central and East Pacific basins and subtropical 

Atlantic demonstrate significant correlations while broad ascent regions across the Amazon and 

equatorial Africa present anticorrelations. Comparing the high and low composites (Figure 37b-

c) demonstrates much stronger positive feedbacks across ascent regions and stronger negative 

feedbacks across descent regions in the models that experience a weaker increase in efficiency. 

The correlation is statistically significant across descent regions (r = 0.52; p = 0.05), suggesting 
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that models that demonstrate a weaker increase in efficiency see a greater increase in high cloud 

amount along convective margins and descent regions, particularly across the Pacific. 

 

Fig. 37. As in Figure 36, but with the high cloud amount feedback. 

Similar to the spatial pattern displayed by the relationships between the change in tropics-

wide mesoscale organization and high cloud feedbacks (Figure 28), the dipole-like pattern of 

correlations between high cloud feedbacks and changes to precipitation efficiency across the 

equatorial Central Pacific and anticorrelations in the West Pacific suggests that changes to the 

tropical circulation may account for the connection between changes to precipitation efficiency 

and high cloud feedbacks. While Li et al. (2023) conclude that broadly speaking, models that 

increase in efficiency see an enhanced slowdown of the Walker circulation relative to models 

that decrease in efficiency, they do not assess the extent to which intermodel variability in 

changes to the strength of the Walker circulation drive variability in the magnitude of the 

increase in precipitation efficiency under warming. To analyze this question, vertically resolved 
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changes to vertical velocity averaged from 20°N to 20°S across the West and Central Pacific are 

plotted for the 7 models with the strongest increase in efficiency and the 7 models with the 

weakest increase in efficiency (Figure 38a-b), and changes to vertical pressure velocity are 

correlated with the tropical mean change in precipitation efficiency across all 15 models (Figure 

38c). The changes to the Walker circulation are not significantly related to the tropics-wide 

change in precipitation efficiency. Moreover, the composited maps suggest that the models with 

a weaker increase in efficiency experience a stronger weakening of the circulation, contrary to 

the hypothesis based on the results of Li et al. (2023) that models displaying a stronger increase 

in efficiency experience a greater weakening of the circulation. 

 

Fig. 38. As in Figure 30, but for changes to precipitation efficiency across models that increase 

in tropical-mean efficiency. 
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 In summary, the relationships between changes to precipitation efficiency under warming 

and high cloud feedbacks are weak in the tropical-mean. While there is some evidence that 

models that see a greater increase in efficiency under warming experience more positive high 

cloud optical depth and amount feedbacks in descent regions, particularly in the Central and 

Eastern Pacific, these relationships are modest and are not explained by changes to the strength 

of the Walker circulation as highlighted previously in the literature. 

7. Discussion and Future Work 

This study highlights that the intermodel variability of the tropical high cloud altitude and 

optical depth feedbacks is related to the spread of equilibrium climate sensitivity. While the 

uncertainty of the high cloud altitude and anvil feedbacks has been noted in recent assessments 

of cloud feedbacks across GCMs (Zelinka et al., 2022; Sherwood et al., 2020), a quantification of 

the contribution of this variability to uncertainty in ECS has not been performed. Although the 

disparate responses of subtropical marine low clouds to warming are also highly uncertain across 

models (Sherwood et al., 2020; Zelinka et al., 2020; Bony & Dufresne, 2005), the results shown 

here underscore the importance of constraining changes to tropical high cloud altitude and 

opacity for reducing the uncertainty of climate sensitivity across future generations of climate 

models.  

Assessment of the spatial arrangement of correlations between the tropical net high cloud 

feedback and ECS illustrates that the strongest relationships exist outside of regions of deepest 

climatological ascent. This is likely reflective of uncertainty in the response of anvils and thinner 

cirrus extending away from deep convective zones, which have been highlighted as difficult for 

coarse models to represent (Gasparini et al., 2023) and could be related to variability of both 

convective and microphysical processes. Convection may influence the frequency of occurrence 
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of thin high clouds through mechanisms such as convective aggregation (Wing & Cronin, 2016), 

convective detrainment (Bony et al., 2016), and entrainment of air into a convective plume 

(Tsushima et al., 2020). Moreover, recent work has highlighted microphysical parameters and 

processes such as ice autoconversion size threshold (Duffy et al., 2024), cloud lifetime and decay 

(Seeley et al., 2019), and ice fall speed and density (Schiro et al., 2019; Tsushima et al., 2020; 

Wang et al., 2020) as factors impacting anvil cloud fraction. Additionally, comparisons of global 

storm resolving models – which explicitly simulate convection but parameterize cloud 

microphysics – find significantly variable cloud radiative effects of tropical cirrus across 

microphysics schemes (Atlas et al., 2024; Turbeville et al., 2022). However, missing from this 

discussion, aside from recent work by Sokol et al. (2024) analyzing idealized convection 

permitting simulations, is the somewhat unsurprising finding that intermodel variability in 

tropical high cloud feedbacks is most strongly related to intermodel variability in climate 

sensitivity in regions dominated by thinner high clouds. Because disentangling the particular 

mechanisms underlying the variability in thin high cloud responses across an ensemble of fully-

coupled models is not feasible and results of PPE studies are limited in their applicability to 

broader conclusions across models, the attribution of intermodel variability in tropical high cloud 

feedbacks to differences in parameterizations is somewhat speculative. However, in alignment 

with the conclusions of Sokol et al. (2024), given that regions dominated by thinner high clouds 

drive the most variability in ECS and that a multitude of parameters contribute to the 

representation of thin high clouds within GCMs, it is likely that a non-negligible portion of 

intermodel variability in tropical high cloud feedbacks highlighted in this study is related to the 

radiative, dynamic, and microphysical processes that impact the representation of thin high 

clouds across models. 
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In line with an emergent constraint framework, this study also provides support for a 

relationship between mean state high cloud fraction and the altitude feedback in areas of ascent 

where climatological tropical high cloud fraction is largest, aligning with the logic noted by 

Ceppi et al. (2017). Limited evidence of the relationship between climatological high cloud 

amount and the high cloud altitude feedback has been suggested in the literature aside from the 

results of Po-Chedley et al. (2019) that demonstrate that the rise of high clouds in GCMs can be 

predicted from a model’s climatology and Zelinka et al. (2022), who find that weather regimes 

dominated by high clouds see a more pronounced increase in cloud altitude under warming in 

comparison to regimes dominated by other cloud types. While this constraint applies to 

climatological ascent regimes over continental regions (Figure 20), the relationship between 

local high cloud amount and the high cloud altitude feedback is not ubiquitous across the tropics. 

Moreover, significant correlations are absent across the equatorial Pacific region where the high 

cloud altitude feedback displays the strongest correlation to climate sensitivity and varies the 

most between high and low ECS models (Figure 9). Thus, while climatological high cloud 

amount may provide a suitable constraint on the high cloud altitude feedback in the deep tropics, 

it does not provide a sufficient explanation for the variability of the high cloud altitude feedback 

along convective margins. Moreover, the relationship between climatological high cloud amount 

and the altitude feedback does not help to explain why models with more thin high clouds tend to 

see a more positive high cloud altitude feedback in the tropical mean (Table 3). On the contrary, 

as noted in Ceppi et al. (2017), all else being equal, one might expect that models with thicker 

high clouds would produce more positive altitude feedbacks given that clouds with higher optical 

depths induce a more positive longwave radiative effect than thinner clouds (Figure 1). These 

results suggest that other factors may be influencing the magnitude of the high cloud altitude 
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feedback. Tropical upper tropospheric warming has been shown to vary significantly across 

models (Keil et al., 2021; Mitchell et al., 2020), so some of the unexplained variability may be 

related to differences in the degree of upward shifting of high clouds and changes to stability of 

the upper tropospheric environment in which they exist. Additionally, different representations of 

cloud microphysics may be playing a role, but analysis of this contribution is beyond the scope 

of this work. 

This study also highlights a robust relationship between mean high cloud opacity and the 

high cloud amount feedback with opposing signs across ascent and descent regions. While 

significant correlations between high cloud opacity and the high cloud amount feedback in 

ascent regions could be due to a cloud shading feedback that acts to dampen radiative forcings 

through changes to convective intensity (Hartmann et al., 2001; Wall & Hartmann, 2018), a 

mechanistic explanation for the relationship between mean opacity and the high cloud amount 

feedback away from deep convective zones is less clear. Regardless, the opportunity to utilize 

this relationship as a constraint on climate sensitivity is limited by the weak correlation of the 

high cloud amount feedback to ECS. Unlike the high cloud amount feedback, relating mean high 

cloud opacity to responses of high cloud optical depth through the cloud shading feedback 

mechanism could reasonably be used as the basis for an emergent constraint given the significant 

correlation between the high cloud optical depth feedback and ECS (Figure 10a). However, the 

lack of coherent correlations between opacity and the optical depth feedback across ascent 

regions in conjunction with anticorrelations along convective margins (Figure 23) suggest that 

the cloud shading feedback mechanism does not explain optical depth changes across the 

ensemble. On the contrary, significant anticorrelations between mean high cloud opacity and the 

high cloud optical depth feedback in the tropical mean (Table 3) suggest that changes to cloud 
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albedo act to enhance the radiative effects of the mean state cloud population rather than dampen 

them. In other words, models that tend to exhibit a thinner high cloud climatology experience 

relative thinning in the tropical mean. The reason that a model simulating a climatology of 

clouds with lower opacity in the mean state would tend to simulate an enhanced thinning of those 

clouds under warming remains unclear. 

The variability in climatological high cloud fraction in the tropics, particularly in regions 

of strong ascent, is found to systematically relate to variability in the sensitivity of convection to 

the entrainment of tropospheric air. The importance of deep convective parameterizations for 

influencing climatological high cloud amount have been highlighted in PPE studies (Schiro et 

al., 2019; Tsushima et al., 2020; Zhang et al., 2012), suggesting that alongside microphysical 

parameters, the variable representation of deep convection across models drives spread in 

tropical high cloud fraction. The precipitation pickup behavior has been related to three factors: 

entrainment rate (Kuo et al., 2017), undilute buoyancy characterizing environmental instability 

separate from the effects of entrainment, and dilution of buoyancy by dry air from the lower free-

troposphere (Ahmed & Neelin, 2021). Thus, the tropical vertical stability profile, degree of 

subsaturation of the lower free-troposphere, and entrainment rate prescribed in a model can all 

affect the phase transition from non-precipitating to precipitating states. Because CMIP6 models 

display a wide range of sensitivities to environmental stability and free tropospheric moisture 

(Ahmed & Neelin, 2021), and entrainment, typically understood through entraining plume 

models (Zhang & McFarlane, 1995), may vary across different parameterization schemes, this 

analysis cannot isolate the individual effects of each of these components on high cloud amount. 

However, given that an increase in entrainment and increasing sensitivities to both instability and 

moisture result in a stronger pickup (Ahmed & Neelin, 2021), it can be inferred that GCMs with 
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fewer high clouds in ascent areas exhibit some combination of these characteristics and provide a 

mechanistic explanation for the intermodel variability of tropical high cloud amount. Future 

research could test whether the strength of precipitation pickup systematically varies with ECS 

and analyze whether it mechanistically relates to climate sensitivity through its impact on 

climatological high cloud-high cloud feedback relationships such as the mean high cloud fraction 

relationship to the altitude feedback highlighted previously. 

The importance of dynamical regime shifts, their correlation to convective organization 

across scales, and their relationship to the variability of high cloud feedbacks are also highlighted 

in this study. Increases in organization – a greater decrease in ascent area and a greater increase 

in ROME – are associated with more positive high cloud feedbacks across different regions but 

broadly characterize the same behavior. For example, change to ascent area is anticorrelated to 

each of the cloud feedback components within weak ascent regimes (Figure 31), exhibiting a 

greater thinning and loss of cloud amount at the edges of the ITCZ as ascent area reduces. In 

conjunction, changes to mesoscale organization at daily timescales are correlated to high cloud 

feedbacks in weak subsidence regimes (Figure 28), signaling high cloud thinning and loss as 

convection becomes more organized. Whereas ascent area drives changes to high cloud 

feedbacks within weak ascent regimes, ROME displays strong relationships to feedbacks along 

weak subsidence regions that are not captured by tropics-wide ascent changes. Thus, both 

metrics capture different aspects of the same tendency for models that increase in large scale 

organization under warming to exhibit more positive high cloud feedbacks on convective 

margins. 

The arrangement of ascent area relationships to feedbacks along the equator suggest that 

changes to tropical deep convective organization predominantly characterize the effects of ITCZ 
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narrowing or expansion. A majority of CMIP5 models predict a reduction of ITCZ width under 

warming and this change is associated with a shift of the southern edge to the north (Byrne & 

Schneider, 2016), reflecting the patterns shown in Figure 30. In contrast, studies of cloud 

resolving models (CRMs) run in RCE demonstrate an increase in ascent fraction under warming 

(Mackie & Byrne, 2023). A loss of ascent area has previously been characterized by an increase 

in ascent strength and convective activity in the core of the ITCZ and a reduction of ascent 

strength along its edges across GCMs (Byrne & Schneider, 2018; Su et al., 2014) and in 

observations (Wodzicki & Rapp, 2022), termed the “deep tropics squeeze” (Lau & Kim, 2015). 

This yields dynamic cloud feedbacks that are the most positive in the heart of the ITCZ in the 

multimodel mean stemming from a positive longwave component (Byrne & Schneider, 2018). 

While positive high cloud feedbacks are produced along a narrow band of the Pacific ITCZ 

across the ensemble (Figure 7a-b), this region is not characterized by a strong relationship 

between changes to ascent strength and the magnitude of the high cloud feedbacks. Rather, the 

equatorial Pacific demonstrates the strongest relationship between changes in ω500, ascent area, 

and high cloud feedbacks (Figures 31-32). Given that changes to tropics-wide ascent area are 

more strongly related to changes in ascent strength than descent strength (Su et al., 2019), it is 

unsurprising that feedbacks along convective margins under weakly ascending and descending 

conditions see a stronger relationship to local changes in ω500 than changes to tropical mean 

ascent area. Thus, while acknowledging that dynamic and thermodynamic cloud feedback 

components are not explicitly separated in this study, these results underscore that regime shifts 

along convective margins rather than changes to ascent in the climatological deep tropics relate 

most strongly to variability in tropical high cloud feedbacks, providing an alternative perspective 
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to the current body of literature focused on intermodel variability of changes to ascent width and 

strength (Byrne et al., 2018; Byrne & Schneider, 2018; Su et al., 2019).  

 In addition to capturing the effects of changes to tropical ascent within convective 

margins, the response of mesoscale convection to warming strongly relates to intermodel 

variability of high cloud feedbacks through variability in changes to the strength of the Pacific 

Walker cell. This is demonstrated through the prominent dipole-like feature in the Pacific basin 

shown in Figure 29d, wherein models with a strong increase in ROME experience a greater 

weakening of the Walker circulation than models with weaker increases in organization, 

resulting in more positive high cloud feedbacks in the West Pacific and more negative high cloud 

feedbacks along convective margins in the Central Pacific as convection moves eastward. 

Related to the coupling of clouds and circulation, studies have assessed how differential SST 

warming patterns, commonly referred to as the “Pattern Effect” (Stevens et al., 2016), impact the 

strength of the Pacific Walker circulation. The literature has focused primarily on how changes 

to the overturning circulation impact low cloud feedbacks in the East Pacific (Andrews, 2015; 

Zhou et al., 2017), wherein more El Niño-like warming patterns reduce the east-west SST 

gradient across the Pacific basin, weaken the Walker circulation, and result in a reduction of 

stratocumulus decks in subsidence regions. However, the significant relationship between Pacific 

high cloud feedbacks and Walker circulation changes shown here hints at a potential relationship 

between the Pattern Effect and variability of high cloud feedbacks, presenting an avenue for 

future work to expand on the existing Pattern Effect literature. 

The relationship between intermodel variability in changes to the Pacific Walker 

circulation and convective organization under warming have not been highlighted in the 

literature. Most studies that consider the relationships between circulation changes and 
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organization utilize idealized RCE scenarios that represent a simplification of the tropical 

atmosphere. While there is a general consensus that large-scale circulation weakens in RCE 

simulations in response to increasing SSTs (Silvers et al., 2023), and that large-scale aggregation 

is present in large-domain RCE simulations (Stauffer & Wing, 2022; Wing et al., 2020), there is 

disagreement in the response of aggregation to warming (Wing et al., 2020). “Mock-Walker” 

experiments represent a novel approach for investigating the effects of SST gradients and the 

induced large-scale circulation in RCE setups (Wing et al., 2024), but a comprehensive 

intermodel comparison has only recently been proposed in the second iteration of the RCE 

intermodel comparison project, RCEMIP-II. While an individual mock-Walker study suggests 

that longwave cloud radiative effects act to enhance aggregation and circulation strength below 

500 hPa, it does not identify significant effects of aggregation on the mean circulation strength 

(Silvers & Robinson, 2021). Moreover, CRMs and GCMs run in standard RCE setups see similar 

levels of organization across different levels of convective intensity, though this could be 

reflective of self-aggregation rather than aggregation induced by circulation changes (Silvers et 

al., 2023). Thus, confirmation that intermodel variability in decreased circulation strength 

systematically relates to increases in mesoscale organization with warming requires further work 

and should be pursued in RCEMIP-II.   

Changes to the Pacific Walker circulation have been most directly connected to high 

cloud feedbacks through a framework of precipitation efficiency (Li et al., 2022; Li et al., 2023), 

wherein GCMs that exhibit an increase in precipitation efficiency experience an enhanced 

slowdown of the Walker cell, demonstrating a loss of anvil coverage in climatological ascent 

regions of the West Pacific and stratocumulus extent in the East Pacific (a positive feedback).  
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Counter to these findings, the relationship between changes to Walker cell strength and the 

magnitude of precipitation efficiency increase under warming is not significant here (Figure 

38c). Moreover, the tropics-wide change in mesoscale organization is not significantly correlated 

with the change in precipitation efficiency among models that increase in efficiency (r = -0.42; p 

= 0.11), undermining increased organization as a potential mechanism explaining enhanced 

efficiency under warming highlighted by Lutsko et al. (2023), at least in the CMIP ensemble. 

Lending some support to the conclusions of Li et al. (2023), models that experience a greater 

increase in efficiency demonstrate modest positive high cloud optical depth feedbacks over the 

Indian Ocean and Maritime Continent in contrast to the negative optical depth feedback 

displayed in models with a weak increase in efficiency (Figure 36b-c). However, the regions 

accounting for the greatest difference between the groups and containing statistically significant 

relationships across the ensemble are the equatorial Central Pacific and subsidence zones of the 

East Pacific (Figure 36a). Correlations here suggest that models that demonstrate an enhanced 

increase in efficiency experience a less pronounced increase in high cloud albedo - a more muted 

negative high cloud feedback - along climatological margins. While this result generally aligns 

with the PPE results from Li et al. (2019), it does not support the linkage between changes to 

precipitation efficiency and changes to the Pacific Walker cell strength. Given that a weakening 

of the Walker circulation is associated with the movement of convection eastward under El 

Niño-like conditions when warming is enhanced in the East Pacific (Bayr et al., 2014; Plesca et 

al., 2018), one would reasonably expect that an enhancement of Walker weakening would 

produce more negative high cloud feedbacks in the central Pacific as convection shifts eastward 

in conjunction with warm SSTs, in contrast to the results shown here. Considering the small size 

of the ensemble and methodological limitations related to precipitation efficiency outliers in arid 



 93 

regions, analysis of the relationship between the high cloud optical depth feedback, changes to 

precipitation efficiency, and changes to the strength of the Walker circulation require further 

examination across a more comprehensive ensemble of GCMs.  

8. Conclusions  

 This work demonstrates that intermodel variability of the tropical high cloud altitude and 

optical depth feedbacks is related to the spread of equilibrium climate sensitivity. The strongest 

relationships between high cloud feedbacks and climate sensitivity exist outside of regions of 

deepest climatological ascent, highlighting the uncertainty with which thinner anvils and cirrus 

respond to warming. Analysis of the relationship between mean state high cloud characteristics 

and climate sensitivity shows that high ECS models have greater mean state high cloud fraction 

and thinner high clouds than low ECS models, evidenced by greater thin high cloud coverage 

across tropical ascent regions and fewer thick high clouds broadly across the tropics. Given the 

significant, positive correlations between the tropical high cloud altitude and optical depth 

feedbacks and ECS, in addition to significant relationships between climatological high cloud 

characteristics and ECS, these results motivate analysis of relationships between cloud fraction 

and high cloud feedbacks within an emergent constraint framework.  

 To test the applicability of the cloud shading feedback to the ensemble, the relationship 

between mean high cloud opacity and the amount and optical depth feedbacks are analyzed. 

While ascent regions suggest that high cloud opacity modulates the high cloud amount feedback 

under this mechanism, descent regions do not support this argument and suggest that models 

with thinner high clouds experience enhanced thinning of high clouds and a muted increase of 

high cloud fraction. Additionally, the relationship between high cloud amount and the altitude 

feedback is tested, demonstrating correlations across ascent areas and in the tropical-mean but 
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not ubiquitously across the tropics nor along convective margins where the high cloud altitude 

feedback varies the most. Moreover, models with thinner high clouds tend to see enhanced 

optical depth and altitude feedbacks in the tropical-mean, but these relationships lack a physical 

mechanism. Thus, while this analysis highlights relationships between mean state high cloud 

characteristics, high cloud feedbacks, and ECS, none are coherent enough to propose a new 

emergent constraint. Disentangling the underlying drivers of these correlations, whether that be 

differences in cloud microphysics schemes and deep convective parameterizations, additional 

mean state parameters, or variability in the response of other components of the modeled 

atmosphere to warming, remains an important task. 

 To better explain the intermodel variability of tropical high cloud fraction, this study 

analyzes the systematic relationship between convective sensitivity to the entrainment of 

environmental air into deep convective updrafts and climatological high cloud amount across 

models. Models that are more sensitive to tropospheric moisture and display a stronger 

precipitation pickup exhibit lesser high cloud coverage in strong ascent regions than models that 

experience convection across a variety of environmental conditions, characterized by a weaker 

precipitation pickup. Although not explicitly perturbing deep convective parameters, this result 

emphasizes the influence that the representation of convection has on a model’s high cloud 

climatology and underscores the diversity of model representation of sub-grid scale processes as 

a driver of the variability in not only mean high cloud characteristics but also, as evidenced 

through the relationship between high cloud amount and the altitude feedback, changes to high 

clouds with warming. 

Additionally, this work emphasizes the strong relationship between changes to the local 

dynamic environment and the responses of high clouds under warming within weak ascent and 
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weak subsidence regimes. Decreases in tropics-wide ascent area result in more positive high 

cloud feedbacks along the southern edges of the ITCZ, while increases in mesoscale organization 

yield more positive high cloud feedbacks along convective margins in weak subsidence regimes. 

Additionally, increases in mesoscale organization are associated with more positive feedbacks in 

the West Pacific and more negative feedbacks in the equatorial Central Pacific through an 

enhanced weakening and eastward shift of the Walker circulation. Moreover, along convective 

margins where descent weakens less (or ascent weakens more), high cloud feedbacks are found 

to be more positive through enhanced cloud thinning and loss. These results suggest that 

processes that affect the shift of convective margins play a key role in driving variability of high 

cloud feedbacks in these regions. Given that variability in tropical high cloud feedbacks along 

convective margins systematically relates to variability in ECS, the strong relationship between 

local dynamics and cloud feedbacks shown here could be used to constrain climate sensitivity in 

future work.   

In sum, this study outlines the extent to which tropical high cloud feedbacks drive 

intermodel variability in climate sensitivity, considers variables that could drive spread in the 

high cloud feedbacks, and explores relationships between modeled high cloud climatology, high 

cloud feedbacks, and ECS. While factors including intermodel variability in responses of 

precipitation efficiency, the overturning circulation, and convective organization are analyzed, 

other processes such as low cloud feedbacks, changes to tropospheric stability, and the pattern of 

warming are not considered. Thus, there is non-zero likelihood that certain correlations with ECS 

presented here are influenced non-trivially by high cloud feedback relationships to other cloud 

changes or atmospheric processes that drive substantial spread in ECS. Nevertheless, this work 

demonstrates the need to strongly consider tropical high cloud contributions, particularly the 
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high cloud altitude and optical depth feedbacks, to the intermodel spread in ECS in efforts to 

constrain future warming. 
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