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Abstract 
Power and energy consumption have become some of the main hurdles for performance advancement in 

modern digital systems. High transistor densities and clock speeds have created significant thermal and 

power delivery issues, and increasingly pervasive portable electronic devices have limited energy sources 

but high performance expectations. Power affects and is affected by almost every aspect of digital system 

design, enticing designers and researchers to approach this problem from every possible aspect. 

This work explores two such aspects: dynamic reconfigurability and vertical integration. Dynamic 

reconfigurability is the ability to change the configuration of the system dynamically during runtime, and 

vertical integration is using low-level design information in high-level decisions (and vice-versa) as well 

as co-optimizing multiple design levels simultaneously. Both of these concepts can be targeted to various 

system metrics; in this work, they are used to reduce the total energy consumption of the system with the 

goal of increasing system battery lifetime while still providing the necessary performance and functional 

capabilities. 

This work explores dynamic reconfigurability and vertical integration through the use of three practical 

systems. We go through the steps and analysis in designing these systems that will show the potential 

benefits of our methods. Through the steps of designing the systems, we show the impact of several 

significant aspects of vertically integrated dynamically configurable systems, thus providing a framework 

for identifying potential benefits of reconfigurability and co-optimization and for general guidelines of 

how to implement them on other systems. We also look at the granularity of configurability and the 

overhead that it incurs, as well as the circuit-level details and information that might affect and be 

affected by architectural or system-level decisions. 

The first system is a wireless body sensor node that consumes most of its energy wirelessly transmitting 

data. We investigate how adaptive software can compress the data before sending without sacrificing 

information using only the limited processing and memory resources that typically reside on body 



sensors. We go through the various aspects that affect our solution and the different design levels we have 

to take into account when applying the compression. 

The second example system is a custom digital signal-processing system utilizing Panoptic Dynamic 

Voltage Scaling (PDVS), in which we investigate adding fine-grained spatial and temporal granularities 

of voltage scaling to the processor. We use a vertically integrated approach to explore the trade-offs of the 

ability to switch the voltage of a single arithmetic component (spatial) for a single operation (temporal), 

as well as the different variables that need to be considered for scheduling such systems. 

The third system is a Field Programmable Core Array (FPCA), in which we investigate various methods 

for creating a configurable processor capable of switching between SISD, SIMD, and MIMD 

configurations. In this system, we also characterize the trade-offs of different levels of configurability and 

analyze the effect of the circuit overheads on the architectural design of the system. 

By studying the various design aspects of these three systems and their effects on system-level tradeoffs 

through simulations and physical measurements, we present some of the main variables as well as simple 

guidelines to consider when adding dynamic configurability and vertical integration to system designs.  
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 Introduction Chapter 1
With the accelerating advancement of electronics, numerous problems and obstacles are emerging that 

present bottlenecks for improvements. One of those main bottlenecks is power consumption and its 

adverse effects. Power affects many aspects of digital system design, from thermal production to 

accelerated aging, power delivery to battery lifetime, and many others. 

Given the many dimensions and impacts of power consumption, there are many approaches, tradeoffs, 

and target metrics for system optimization. In this work, the focus is on energy efficiency, where energy 

consumption is minimized given requirements for performance and/or other metrics. This helps increase 

battery lifetime with minimum impact on performance and functional capabilities. However, maximizing 

energy efficiency does not necessarily alleviate thermal or power delivery issues. 

Energy efficiency is particularly important in emerging portable computing devices, which contain a 

limited power supply yet often have a performance demand comparable to plugged-in devices. Improving 

energy efficiency for those devices can help increase their usability significantly and make them 

applicable to new scenarios. Many of those new devices have extremely varying workloads, which can be 

exploited to increase their battery lifetime. 

Energy consumption research has generated many partial solutions that target many different aspects of 

the problem. Many of those partial solutions focus on specific architectures or applications, such as 

creating specialized hardware like the highly used Graphics Processor Unit (GPU). Specialized hardware 

is very effective for the range of applications they cater to, but it can only be used when a big percentage 

of the system workload matches its target, which prevents the use of specialized hardware in many more 

general-purpose systems. What are needed are more generic solutions and design methods that can be 

broadly applied and benefit a much wider range of systems. 
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1.1 Background 

There are many design methods that have been used in a variety of ways to maximize energy efficiency. 

This research explores three: finding the right balance of specialization and flexibility, applying dynamic 

voltage and frequency scaling to tradeoff energy and performance, and using a vertically integrated 

approach to co-optimize design decisions across system abstraction levels. 

1.1.1 Specialization vs. Flexibility 

Many designers have identified ways to design specialized analog and digital circuits to provide more 

energy-efficient implementations of specific functions. An example of a specialized block is the multiply 

and accumulate (MAC) [10], which many general processors and most signal-processing processors use. 

Another example is the streaming processor [11], where the whole processor configuration is optimized 

for specific types of applications, thus increasing the system’s efficiency. 

Another form of specialization is allocating resources based on known frequency of use. This is useful for 

applications that execute specific types of operations frequently, thus straining some components of a 

processor more than others. This is exemplified in GPUs [23], where a single fetching and decoding unit 

might cater to tens or hundreds of executing components. This way, the energy consumed for fetching and 

decoding is not repeated for the extra data points because they share the same instruction. This technique 

saves energy without sacrificing performance for data-parallel applications. This is why for graphics 

applications, this kind of specialization has made progress and speeds up at rates sometimes exceeding 

Moore’s law. However, if an application’s parallelism type is at thread level, then it requires a different 

kind of specialization. A better design to improve thread-level parallel applications is to have multiple 

cores sharing a cache to handle each thread separately. 

As expected, those specialized designs are useful and energy efficient for a specific and narrow range of 

applications. However, once they are executing other types of applications, those specialized designs 

become less efficient than typical generic ones. Therefore, adding reconfigurability to switch between 

various specialized configurations is beneficial to a larger range of applications.  
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As part of this work’s contributions, we aim to produce some general guidelines to help optimize the 

reconfigurability granularity. 

1.1.2 Dynamic Voltage and Frequency Scaling 

Reducing the voltage of circuits and devices remains one of the main methods for trading off energy per 

task and delay. Currently, almost all portable and many non-portable devices have low-power modes 

where the voltage supply, along with the performance, is reduced. The effectiveness of this technique is 

due to the quadratic relation between voltage and power and the linear relation between voltage and 

performance. Many devices use this technique mainly to reduce power consumption and curb thermal 

production, but it can also be used to increase battery lifetime by reducing the energy consumed per task.  

Many challenges accompany the change of voltage supply. For example, the overhead of the voltage 

change can be significant, thus limiting the opportunities for the system to lower its voltage to save 

energy. Implementing this ability in systems affects many other aspects, like the need to have level 

converters and mechanisms for switching the voltage. Additionally, to determine the energy overhead of 

the voltage switching, numerous design decisions have to be considered. 

Voltage scaling can vary in spatial and temporal granularity. Some techniques lower the voltage of the 

whole chip when running in low-power mode [12]. This technique has significant switching overhead and 

pretty coarse spatial and temporal granularity but saves area on control signals and has a better voltage 

supply grid since the whole chip is supplied by one big grid. Other techniques look at the component-

level granularity where copies of the same component have different voltage sources, thus producing 

multiple performance-energy profiles of each component [13]. The system can take advantage of such 

multiple operating options depending on the performance required of the individual components.  

As a contribution in this area, this work explores the various trade-offs of adding finer temporal and 

spatial granularity and identifies the sensitivity of several variables in those trade-offs. 

1.1.3 Vertical Integration 



4 Introduction 

 

4 

Since system complexity is increasing steadily, it is convenient to define abstraction levels with complete 

design independence between each level. This method of designing is useful to scale to large systems. It 

is known, though, that many design decisions at any specific design level affect multiple other levels of 

the design. It is therefore not surprising that optimizing multiple design levels produces better results. The 

difficult part is identifying whether the extra complexity of co-optimization outweighs the potential 

benefits.  

Vertical integration can take many forms, like synthesizing and placing multiple blocks together rather 

than each block independently. Another aspect of vertical integration is determining multiple design 

decisions related to different design levels at the same time, like the transistor width and the processor 

configuration. Even simply exposing low-level information to the system level is considered vertical 

integration.  

This work contributes to the needed exploration of the challenges and benefits of such co-optimization 

and to identify some of the key information that should be exposed to different design levels to achieve 

maximum energy efficiency. 

1.2 Problem Statement 

This work is focused on developing design methods to maximize energy efficiency in digital systems 

using dynamic configurability and vertical integration and evaluating their effectiveness through case 

study designs. 

1.3 Related Work 

The idea of incorporating dynamic configurability and vertical integration for energy savings is not new. 

Wan et al. [6] presented some methods for designing reconfigurable DSP processors, showing that energy 

efficiency can be obtained. Similarly, Sen et al. [7] added dynamic configurability for the radio frequency 

transceiver to show that changing the performance rate according to workload demand provides energy 

savings and a more efficient system overall. Ahmadinia et al. [14] explored the interconnect 
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configurations compatible with dynamically reconfigurable devices. Other researchers have looked into 

dynamic configurability according to the dynamic workload. Yang et al. [15] tried to use configurability 

through workload prediction for energy savings. Others investigated application-specific voltage scaling; 

for example, Zhao et al. [16] where the authors created a specific reconfigurable architecture to deal with 

variable size FFT transformations. This variability increased around 14% increase in area, but it achieved 

energy savings reaching to ~94% relative to general purpose architecture execution. Pouwelse et al. [19] 

on the other hand focused on increased battery lifetime in wearable devices by dynamically changing the 

voltage level of the microprocessor. Wearable devices in general are very limited in energy consumption, 

but their performance requirements vary drastically from doing nothing to bursts of high performance. 

For such systems, varying performance to save energy is an ideal method to increase battery life. As 

expected, dynamically changing the voltage source is not simple to implement, Martin et al. [20] explains 

how, due to leakage power consumption in newer generations, voltage scaling is not achieving the hoped 

power savings. The authors suggest adjusting the body biasing as well as the voltage to mitigate the 

leakage issues related to voltage scaling. Zhang et al. [21] also tries to help in problems associated with 

introducing dynamic reconfigurability in processors. In their work, the authors present some interface and 

programming wrappers to simplify the use of dynamic heterogeneous processors like the Pleiades 

processor. Rana et al. [22] presents a general overview of some of the dynamically reconfigurable 

embedded systems. The authors also present the different models and architectures used to enable the 

dynamic reconfigurability. 

Many researchers have identified the potential of dynamic reconfigurability and have begun to address the 

associated difficulties, but this work differs by focusing on the methodology for adding the 

configurability and employing vertical integration to investigate the main variables affecting the 

efficiency of the reconfigurable system. We are not suggesting a specific configurability; instead, we are 

attempting to help clarify the main aspects to investigate before adding dynamic configurability to a 
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system. In particular, we are trying to provide the main aspects to investigate in order to determine the 

suitable level of granularity. 

In vertical integration, Jain and Panda [9] optimize the power consumption of the discrete wavelet 

transform, common in JPEG image compression formats, by co-optimizing the memory banks and 

architecture with the application memory access patterns. This co-optimization between software and 

circuit level hardware can increase overall efficiency significantly. Zea et al. [8] suggested co-

optimization of the pipeline stages and an error-resilient mechanism to produce an overall more energy-

efficient model. Jhaveri et al. [17] focused on commercial outcome optimization by co-optimizing the 

circuit alongside the layout and the lithography to minimize the cost of commercial production of the 

circuits. Iyengar et al. [18] also looked into co-optimization focusing mainly on high-level System on 

Chip (SoC) design. 

We see that vertical integration and co-optimization is known to researchers as a beneficial tool for 

increasing energy and performance efficiency. Though our work is similar in nature to those works, as 

stated before, our focus is a vertically integrated approach to dynamic reconfigurability to achieve higher 

energy efficiency. We achieve this mainly by exposing circuit-level information to system-level tools. 

1.4 Approach Overview 

As mentioned above, work on energy saving techniques has been approached from almost every possible 

aspect. In this work, we focus on improving energy efficiency – for example, reducing energy per task 

within performance constraints. We aim to achieve that through targeting two generic aspects that can be 

applied to a very large range of applications and many other energy-saving techniques. The first aspect is 

identifying the optimal granularity for adding dynamic configurability to systems. The second aspect is 

vertical integration through exposing information to various hierarchical design levels, namely, circuit 

level and system level. The exploration of these two aspects is done through designing systems that utilize 

them. 
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To investigate the process of designing dynamically reconfigurable systems, we walk through the steps of 

designing and adjusting a few such systems. In the process of the design, we explored several aspects that 

significantly affect the energy efficiency of systems. The design analysis and results were mainly 

obtained through low-level accurate simulations; some of those results were validated and confirmed 

through physical measurements. 

The analysis and results were obtained from three main projects that addressed one or more aspects of 

reconfigurability: adaptive compression algorithm for body sensors, panoptic dynamic voltage scaling 

(PDVS), and field programmable core array (FPCA). In the following sections, we will describe the 

overview of each project and the research questions we aimed to answer.  

1.4.1 Adaptive Lossless Compression for Body Sensors  

This project studies the benefit of adding configurability to compression techniques aimed to reduce the 

data transferred through the wireless components in body sensor devices. Those devices are typically 

small in size and very limited in energy source. Wireless communication is typically their main energy 

consumption source. In this project, we create a lossless compression technique that can adapt to the 

nature of the data collected through body sensors while using specific metrics that span over several 

design levels. 

Project Overview 

To try our compression technique and compare it with others, we implemented this technique in an 

MSP430 to show its simplicity. The analysis and results from this project were obtained by applying 

different compression techniques and algorithms on actual physical acceleration measurements taken 

through TEMPO [24]. The comparison was done against several techniques that provide similar features.  

In our project, we focused on what other non-traditional metrics that we should consider that due to 

abstraction are usually disregarded. Those metrics include several specific characteristics typically found 

in resource constrained body sensor nodes. 
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Research Questions 

The research questions here focused mainly on reconfigurability. This project was implemented to test 

whether adding configurability to low-power, low-performance electronic devices such as body sensors is 

significantly beneficial. Another question we wanted to answer whether other non-traditional aspects of 

the compression algorithms (e.g., implementability of the algorithm, size of cache etc.) need to be 

considered for small embedded systems. 

1.4.2 Panoptic Dynamic Voltage Scaling 

This project explores the spatial and temporal granularity of dynamic voltage and frequency scaling 

(DVFS), including evaluating the benefits and challenges of PDVS, which can change the voltage of a 

single arithmetic component for a single operation without affecting the performance of other 

components.  

Project Overview 

To explore the ability of PDVS voltage switching, we created a digital signal processor that is capable of 

running simple signal-processing applications. To enable the fast voltage switching for the components, 

we added switching headers for each of the arithmetic components in the processor shown in Figure 1-1. 

The headers allow us to switch the voltage of any arithmetic component with low time and energy 

overhead without any significant effects on the other components. 
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1
 

Because we are interested in the effects of such techniques on a system level, we designed a chip capable 

of performing simple DSP applications. In our design, we had several adders and multipliers, each 

capable of switching to one of the three voltage rails. The other components, such as the registers and the 

multiplexers (muxes), are statically connected to the highest voltage rail. We added voltage converters in 

front of the arithmetic components to make sure that the data voltage level is compatible with the rest of 

the processor. In later sections we will describe the system in more depth. 

Research Questions 

This project covers several aspects of both dynamic reconfigurability and vertical integration. We aimed 

to learn more about the potential benefits of adding configurability at fine granularity as well as its 

potential complications. We explored what aspects to consider when adding this reconfigurability and 

how to resolve some of the additional decisions we had to make because of the configurability. 

On the vertical integration front, we wanted to know how the header transistors’ sizes and the voltages of 

the rail can affect the system scheduler and whether the energy consumed in those headers during the 

                                                      

1 The graph has been taken from [4] 

VDDL  VDDH VDDL VDDM VDDH 

VDDH 

VDDM 

VDDL 

Block 1 Block 2 

Virtual Rail 

Three rails routed 

throughout the chip 

Figure 1-1: PDVS implementation using header switches and a set of shared VDDs routed throughout the chip. The 

headers can be toggled dynamically during execution to switch voltages. 
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switching between voltage rails significantly affects the design decisions we had to make at the 

scheduling and binding level. 

1.4.3 Field Programmable Core Array 

In this project, we designed a dynamically configurable processor that can morph into several 

architectural configurations to maximize energy efficiency according to the application running. To 

achieve this, we created a multicore processor using multiple in-order processors divided into front ends 

(FEs) and processing elements (PEs). By having a configurable interconnect between those components, 

we can morph the design into different SIMD and MIMD architectures. Because different applications 

can vary in energy efficiency depending on the architecture, a configurable architecture can achieve better 

average energy consumption. 

Project Overview 

Designing the FPCA processor is not a trivial task. Therefore, in this work, we opted to create a 

dynamically configurable interconnect processor by using a simple off-the-shelf in-order processor and a 

simple reconfigurable interconnect. We chose OpenRISC as the in-order processor to use and a simple 

array of different sizes of multiplexers to achieve reconfigurability. The processor is a simple pipelined 

in-order processor that enables us to divide the processor into FE and PE. 

As a final design, we opted to create a 16-core system capable of dynamically switching to four different 

SIMD/MIMD configurations illustrated in Figure 1-2. The analysis in this project was performed using 

 
Figure 1-2: Block diagram of our designed reconfigurable SIMD/MIMD system. The reconfigurability is achieved at 

the interface between the I$ and the cores. 
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various simulators from various levels; circuit-level simulations were used for various components and 

wires energy consumption estimations, RTL tools were used for interface and connections between 

components information, and architectural simulators were used to estimate the utilization and 

performance of the different stages of the processor across different benchmarks. 

Research Questions 

Our aim for this project included learning the benefits that processors can gain from introducing this 

coarse grain granularity and how much flexibility such a system should have to achieve maximum energy 

efficiency. 

Another aspect that was investigated through this project is how circuit-level information and simulations 

can affect high-level design decisions. The use of many simulators across the broad use of design 

hierarchy showed interesting effects and complexities in optimizing such systems. We analyzed the 

impact of energy consumed in wires on the final system architecture, as well as the multiplexers overhead 

from the system configurability. 

 

 

1.5 Document Structure 

The remainder of the document is organized as follows: 

Chapter 2 talks about adding configurability at the software level for low power embedded devices like 

body sensors. In that chapter, we will explain the other parameters needed to be considered when adding 

configurability while exploring the potential benefits of adding it. 

Chapter 3 explains the various tradeoffs we encountered when introducing voltage reconfigurability at a 

single component’s level in processors. We describe the various affected design levels and what kind of 

optimization we had to go through to maximize the energy efficiency of the overall system. 
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Chapter 4 describes the design decisions and the analysis of the parameters we undertook while creating a 

reconfigurable processor that is capable of dynamically switching between various SIMD and MIMD 

configurations. 

Finally, Chapter 5 describes briefly the summary of results and the contributions of the projects in this 

work. We present simple guidelines and recommendations learned through this work as well as research 

questions and extensions to this work that might be the target of future work. 
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 Reconfigurability at Software Level
2
 Chapter 2

In most wireless body area sensor network (BASN) applications, the vast majority of the total energy is 

consumed by the wireless transmission of sensed data. Reducing this transmission energy—even at the 

expense of increasing another component’s energy—is essential to meeting the battery life and form 

factor (i.e., small battery) requirements of many BASN applications. While improved wireless 

communication and networking techniques can help do just that, simply compressing the sensed data to 

reduce the number of transmitted bits can provide significant savings. However, BASN platforms and 

applications impose many constraints on compression techniques, including fidelity (focus on lossless 

techniques, as required for many medical BASN applications), programmability (enable ease of code 

development and deployment), adaptability (achieve high compression ratio regardless of location, 

subject, activity, etc.), and implementability (require low processing and memory resources). This chapter 

analyzes variations of two known real-time lossless compression algorithms—Huffman encoding and 

delta encoding—within the context of these BASN constraints. Experimental results on a multi node 

accelerometer–based BASN show the strengths and weaknesses of each algorithm and ultimately reveal 

the superiority of dynamic delta encoding for BASNs, including an average of 35% energy savings across 

a range of activities, sensor locations, and sensor axes. 

2.1 Motivation and Background 

Wireless BASNs are emerging as a technology with tremendous potential for a variety of applications, 

including health care, clinical medicine (including telemedicine), biomedical research, emergency 

medicine, first responder safety, homeland security, athletics, and others. Although significant efforts 

have been made to develop and deploy BASNs, there are numerous technical challenges that remain in 

order for BASNs to be practical for the applications for which they are envisioned. In particular, BASN 

nodes must be smaller to minimize invasiveness and maximize wearability and must have longer battery 

                                                      

2 Most text and data in this chapter are taken from  [1] 
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lifetimes to enable significant data collection. However, these are competing metrics because the size (and 

therefore capacity) of the battery is the primary factor in determining the dimensions of a BASN node. 

Although improved energy harvesting and storage provide promise for the future [47], the options 

immediately available to BASN developers involve improving energy efficiency—especially energy 

related to the wireless transmission of sensed data, which is the largest energy consumer in most BASN 

systems. 

Although work is being done to improve the energy efficiency of wireless transceivers and to explore the 

energy versus quality-of-service trade-offs in communication coding and wireless networking protocols, 

the most direct way to reduce energy consumption due to wireless transmission is to simply reduce the 

number of bits that need to be transmitted. On-node signal-processing algorithms, such as feature 

detection and pattern recognition, can be used to convert some of the raw sensed data into application 

information that can be coded using fewer bits, but most of these algorithms are application specific. It is 

desirable from a programmability and deployment perspective for BASN devices to be general enough 

that a single device executing the same code can be efficient for a wide range of applications and even 

sensor locations and activities within applications. Even within a particular application, the critical 

data/information cannot always be reliably determined/extracted, so any such preprocessing may be 

problematic for fidelity-critical applications, such as the many medical applications for which BASNs are 

envisioned. Therefore, lossless compression techniques are the most general and reliable tools for 

reducing wireless transmission energy in BASNs. 

However, given the severe resource constraints of most BASN nodes, any compression algorithm must 

have low processing and memory requirements while still providing real-time throughput (i.e., the 

processing must keep up with the data sampling rate) and overall energy savings (i.e., the additional 

energy consumed by the processor running the compression algorithm cannot exceed the wireless 

transmission energy saved). Resource-aware compression techniques have been developed for traditional 

wireless sensor networks (WSNs). In [43] the authors show how wirelessly transmitting 1 bit can 
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consume about 1000 times the energy of a single computation, which motivates the use of compression 

techniques on the nodes before transmission. In  [45] [51] the authors present different ways to save energy 

in wireless nodes, including data routing techniques combined with compression algorithms to reduce the 

transmission energy consumption. In dealing with wireless BASN nodes, we have to be aware of the 

severe constraints. The embedded processors on BASN nodes typically operate in the tens of megahertz 

and have on-chip memories of only several kilobytes. Efforts to increase total memory by including off-

chip memories have been proposed [50], but off-chip access time can be quite high, and the additional 

resources (particularly area and power) may not make this approach worthwhile, especially in resource-

scarce BASNs. Finally, the characteristics and requirements of many BASN applications are significantly 

different from most Wireless Sensor Network (WSN) applications, including both static parameters (e.g., 

higher data rates and fidelity requirements) and dynamic variables (e.g., rapidly varying data properties 

and channel conditions). 

This chapter provides an analysis of resource-aware lossless compression techniques specifically 

targeting BASN characteristics and requirements. The following metrics are considered in the analysis: 

 Compression ratio: number of bits before compression divided by the number of bits after 

compression 

 Processor cycles: number of cycles that the processor needs to run the compression algorithm for 

each sample, which is proportional to the processing energy consumption of the algorithm 

 Average energy savings: combination of the previous two metrics that is estimated from the data 

sheets of common BASN transceivers and embedded processors 

 Memory requirement: approximate amount of memory required to implement the algorithm 

 Adaptability: ability of the compression algorithm to adapt to static parameters (application, 

wearer, sensor type, sensor location) and dynamic variables (activities, time), continuing to 

provide high performance without negatively affecting the other metrics of interest 
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 Programmability/deployment: related to the previous metric, the ability to adapt to static 

parameters enables the developer to program and deploy all nodes the same way, regardless of the 

application, wearer, sensor type, and sensor location 

Background work considered a number of lossless compression techniques, but this chapter focuses on 

two of the most promising with respect to the metrics of interest—delta encoding and Huffman encoding. 

Delta encoding transmits the difference between each reading rather than the full reading. If the number 

of bits required to encode the delta (referred to as delta bits) is regularly less than what is required to 

encode the full reading, significant compression ratios can be achieved. The compression can be made 

lossless by including a special code after a reading that exceeds the representable delta range. The number 

of delta bits can be determined statically or dynamically, and both approaches are considered here. 

Huffman encoding depends on some readings occurring more than others, so by assigning frequent 

reading codes with fewer bits, the total number of transmitted bits will decrease. This chapter compares 

both algorithms and some of their derivatives within the context of BASNs and with respect to the above 

metrics. 

The work detailed in this chapter included the consideration of a number of lossless compression 

algorithms. The two families that were identified as the most promising given the BASN metrics detailed 

above are Huffman encoding and delta encoding. Several variations of each are evaluated in Section 2.4. 

2.1.1 Huffman Encoding 

Huffman encoding leverages the uneven distribution of readings in data sets, using fewer bits to encode 

more common readings to achieve an overall compression. An imbalanced tree structure is generated 

based on the presumed frequencies of each reading, with high-frequency readings at shallower leaf nodes 

than those occurring less often. Each reading’s code is determined by traversing the tree from root to leaf, 

with each branch node providing one bit to the code. The length of each code is therefore determined by 

the depth of its leaf. 
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A number of practical issues make the use of Huffman encoding a challenge for BASNs. First, 

Section 2.1 reveals that many of the reading frequency distributions (using the accelerometer-based 

BASN platform and multiple sensor locations and activities) are relatively flat, thus limiting the 

compression capabilities of Huffman encoding. Second, although the computational complexity of the 

Huffman algorithm, as it is running with an existing tree, is small, the tree itself can be quite large and 

potentially exceed the memory constraints of many BASN-embedded processors. This is especially 

problematic in lossless compression when every possible reading must be encoded and must therefore 

have a leaf in the tree, even if that reading is extremely rare. Finally, traditional static Huffman encoding 

depends on the existence of a reading frequency distribution to generate the tree, and the compression 

performance achieved depends on how well the dynamic data conform to that frequency distribution. It is 

therefore essential that a BASN developer wanting to use Huffman encoding performs extensive data 

collections to profile the reading frequency distribution. As discussed, this can be extremely difficult 

given the numerous static and dynamic variables. Therefore, this static technique’s ability to perform well 

across many applications, wearers, sensor locations, sensor axes, and activities is limited. 

It is therefore desirable to also consider an adaptive Huffman encoding technique that dynamically 

generates and alters its tree based on the actual reading frequency distribution as it occurs and changes. 

This does not require a previously constructed tree or any reading profiling. In the tree, each reading will 

carry its value along with the frequency of its use. This way, the tree can update itself, keeping the most 

frequent readings on the shallower levels to minimize their code lengths [46]. This adaptability can 

potentially provide higher compression performance across all of the static and dynamic variables without 

additional programming and deployment effort. However, as discussed previously, the performance of 

adaptive Huffman encoding in a sample BASN application is limited because of a number of factors. 

Although this adaptive technique is significantly more computationally complex than static Huffman 

encoding, it can potentially be implemented in real time on BASN-embedded processors, although the 

number of processor cycles (cycles in Equation 3.2) required per reading may be relatively high. 
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Although adaptive Huffman encoding includes the storage of reading frequencies in addition to the 

coding tree, its total memory requirements are often smaller than those of the static technique. The static 

tree remains a fixed size in memory throughout execution regardless of the occurrence (or lack thereof) of 

certain readings. The adaptive technique can choose to discard certain readings that have not occurred for 

some time, keeping the tree size to some maximum memory requirement and reinserting a discarded 

reading should it reoccur in the future [54]. 

2.1.2 Delta Encoding 

Delta encoding achieves compression by sending the difference between a reading and its predecessor 

rather than sending the full reading. This technique has been used effectively for a variety of applications, 

from images to Web pages [48]. The compression rate is determined by the difference between the 

number of bits designated for conveying the difference (delta bits) and the number of bits required for the 

full reading. This technique is often used in lossy compression, as differences that exceed the range that 

can be represented by the number of delta bits may occur. However, delta encoding can be made lossless 

by including a special overflow code in place of the difference, followed by the full reading. This lossless 

algorithm has been used here for BASNs. 

One of the challenges for both the lossy and lossless versions is the selection of the number of delta bits 

to be used. If too few bits are used, the lossy delta encoding will become extremely lossy (too many 

readings will be beyond the encoding range), and the lossless encoding may actually have a compression 

ratio that is less than one (many readings will both be transmitted in full and include the special overflow 

code). If too many are used, the compression ratio will be lower than what is possible. Like as is required 

to determine frequency distributions for the static Huffman tree, the BASN application must be profiled, 

and the collected data must be analyzed to determine the optimal number of delta bits. This again adds 

significantly to the programming and deployment effort and is still limited by dynamic variables, such as 

different activities over time. 
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Delta encoding can also be made capable of adapting to static and dynamic variables, much in the same 

way as adaptive Huffman encoding, but with significantly lower complexity. For a given interval of time 

(or number of samples), dynamic delta encoding determines whether it would have been better to use a 

different number of delta bits, and it sets the number of delta bits for the next interval accordingly, 

including a special code to indicate to the receiver that the number of delta bits has been changed. 

Equation 1 calculates the number of bits needed for encoding an interval of samples: 

 FROFDBIBits **  ,   (3.1) 

Where I is the number of samples in each interval, DB is the candidate number of delta bits, OF is the 

number of samples that results in overflow given DB, and FR is the number of bits in a full reading. 

Using this equation, the processor reevaluates DB at every interval, always adjusting to maximize the 

compression ratio. 

The computational and memory requirements of this technique are slightly higher than static delta 

encoding but are significantly lower than both static and adaptive Huffman encoding. The complexity 

depends on the range considered for delta bit alteration. According to our results, this study determined 

that 1 delta was sufficient to provide high performance. 

2.2 Metrics 

Normally, to evaluate a compression technique, only the compression ratio is taken into consideration. 

However, like in WSNs, compression in BASN devices must consider several other metrics [53]. In this 

section, we detail a mix of metrics that provides an overall performance evaluation for compression 

techniques within the context of BASNs. 

2.2.1 Energy Savings 

Because the main point of implementing a compression algorithm directly on BASN sensor nodes is to 

reduce energy consumption, a formal energy savings equation must be introduced. Given that the 

embedded microprocessor on the sensor node may be in a sleep mode if it were not being used for 
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compression, the energy equation must include both the reduction in transmission energy due to the 

reduced number of transmitted bits and the increase in processing energy. Given that compression does 

not affect other sources of energy consumption (e.g., the energy drawn from the sensors), only those two 

sources are considered here. 

The average energy savings per sample is simply the difference between the energy before and after 

compression: 
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Ecycles
Bit

ERES
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E **   (3.2) 

 
Active

Ecycles
Bit

E
CR

RES

After
E **  , (3.3) 

where EBefore and EAfter are the energy consumption per sample per sensor before and after the 

compression, respectively; RES is the number of bits for each reading (i.e., bits per sample per sensor); 

CR is the compression ratio; EBit is the energy required to transmit one bit wirelessly; cycles is the number 

of active processor cycles that the compression algorithm needs to compress one reading; and EIdle and 

EActive are the energy per idle and active processor cycle, respectively. RES, EBit, EIdle, and EActive are 

specific to the BASN platform—specifically the transceiver and the embedded microprocessor; cycles is a 

function of both the compression algorithm and the microprocessor, and CR is a function of the 

compression algorithm and the actual data. This chapter uses a custom accelerometer-based BASN 

platform in a motion-capture application to obtain all of these values. 

Even within a given BASN platform, EBit may vary based on a number of factors. Wireless devices 

typically stay connected all the time, consuming energy constantly, and the energy consumption surges 

during transmission. In Equations 3.2 and 3.3, EBit represents the difference between the ―stay connected‖ 

energy and the ―transmit‖ energy. Many factors and overheads affect the transmission energy; namely, for 

Bluetooth burst transmission, the transmission rate and packet size affects greatly the energy consumed 

per burst, which affects the energy consumed per bit.  This chapter assumes a transmit rate of 115.2 kbps 

and the maximum packet length, which minimizes the per-bit transmission energy in our system. This 
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maximum packet length will be maintained regardless of the compression ratio, so EBit is reduced because 

of the lower packet rate. 

Many embedded microprocessors are programmed to go into a sleep mode (i.e., a very low-power mode) 

when no processing is required, so the additional active cycles required—and processing energy 

consumed—by the compression algorithms are considered in the energy savings as EActive>>EIdle. 

However, in many systems, the overhead of going to sleep and waking up does not justify the often short 

amount of time spent in the sleep mode. In such cases, the processor will perform ―No Operations‖ 

(NOPs) until functional processing is again required. NOPs often consume almost as much energy as a 

functional cycle, so EIdle almost equals EActive. In such systems, the additional processing energy consumed 

by the compression algorithm is negligible. 

In most BASN systems, EBit>>EActive, often by several orders of magnitude. However, if the processing 

load imposed by a compression algorithm is significant, the additional processing energy can be 

significant. For example, Algorithm A may provide a higher compression ratio than Algorithm B, but if 

the complexity of Algorithm A is significantly higher, Algorithm B may actually provide greater total 

energy savings. 

2.2.2 Resource Requirements 

Because any compression algorithm will be implemented on the embedded processor, the algorithm will 

be constrained by the processor’s limited resources. The processors used on BASN platforms are typically 

significantly smaller and less capable than those used in WSNs, making algorithm implementability a 

significant constraint. 

The processor’s memory imposes one of the key constraints because many embedded processors that are 

appropriate for BASNs have only a few kilobytes of memory. Algorithms that use tables, trees, or 

dictionaries could easily exceed this memory restriction and therefore be excluded from use in BASNs. 
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Algorithms must also operate under the limited throughput capabilities of the processor, which typically 

has a relatively simple datapath and runs at tens of megahertz. Depending on the sampling rate of the 

BASN platform (the accelerometer-based node used in this study samples three sensor axes at 120 Hz, 

resulting in 360 readings per second), it may be difficult for a compression algorithm to be executed in 

real time, which is a hard requirement. 

2.2.3 Adaptability 

It is highly desirable to have a compression algorithm for a BASN platform that will perform well for any 

application, wearer, sensor location, activity, and so on. Although different compression algorithms can 

be programmed onto each BASN node based on these factors, this requires significant additional 

programming and deployment effort, not to mention the challenge of profiling that would be required to 

determine the appropriate compression algorithm for each scenario. In addition, the data being collected 

by a BASN is rarely static, as the wearer is often performing different activities that change the 

compression capabilities of the implemented algorithms. 

Instead of using such static techniques, BASN compression algorithms should have the ability to adapt and perform well across 

different 

 applications, 

 test subjects (wearers), 

 sensor locations and orientations, 

 axes of the same sensor, and 

 activities over time. 

As shown in Section 2.4, the performance of compression algorithms across these static and dynamic 

variables can vary greatly. Although traditional WSNs also suffer from this problem because of node 

location and dynamic data, the effects are typically more extreme in BASNs. The overall energy 

efficiency of a BASN, therefore, depends on identifying the algorithm that performs the best on average 

across an entire data collection. 
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2.3 Experimental Setup 

To compare between the identified compression techniques, we used the TEMPO BASN [52] shown in 

Figure 2-1, which measures linear acceleration in three axes. The sampling frequency is 120 Hz, and the 

resolution of each sample is 12 bits per channel. Without any on-node compression, each node sends its 

4320 bits per second over a Bluetooth wireless channel. The compression algorithms were implemented 

on the resident MSP430F1611-embedded microprocessor. (The code is available online at 

http://www.ece.virginia.edu/inertia/embedded.php.) 

 
Figure 2-1: TEMPO BASN node showing the small form and the limited energy source 

 

TEMPO nodes were attached at multiple points on the body (including the wrists, ankles, hip, and 

forehead) of a healthy 22-year-old male. The results in Section  2.4 are for both a 45-minute recording of 

various movements and activities and shorter recordings of specific activities. The compression 

techniques described previously were implemented and evaluated with respect to the metrics described in 

Section 2.2. 

2.4 Sweeping Variables 

In this section, we vary each of the variables we identified to be significant in determining the energy 

efficiency of the systems and investigate the impact and the breakeven points between them.   

Through simple extrapolation and sweeping of the ratio between CPU active energy per cycle and idle 

energy per cycle and sweeping the energy of transmitting 1 bit to 1 idle CPU cycle, we were able to 

calculate the compression ratio that different algorithms need to achieve to break even energy 
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consumption. The figure below shows the compression necessary to achieve energy breakeven according 

to different systems. Each line represents a specific hypothetical system with specific active to idle CPU 

energy consumption ratio and 1 bit transmission to 1 CPU cycle energy ratio. For example we are 

working on a system that has ―active to idle‖ cycle energy ratio of 2 and transmitting 1 bit consumes 

energy equivalent to 100 idle CPU cycles, and the compression algorithm takes 200 cycles to compress 8 

bits, then it should be able to compress the data to at least 70% of its original size to breakeven with 

sending the raw data without compression. In general we want to be under the line that most closely 

represents the characteristics of our system, namely, the ―Active to Idle‖ cycle energy ratio and ―1 bit 

Transmission to 1 Idle CPU cycle‖ energy ratio. 

 

 
Figure 2-2: Graph showing the compression that should be achieved by the algorithm to breakeven in energy 

consumption. 

2.5 Results 

Figure 2-3 shows the average compression ratios for each axis of selected sensor locations across the 

entire 45-minute data set for adaptive Huffman, static Huffman, and dynamic delta encoding. The tree for 
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the static Huffman was generated based on the probability distribution of the readings over the entire 45-

minute data set. Figure 2-4 shows the compression ratios for selected sensor locations for a 15-second 

window of healthy symmetric gait. The static Huffman tree was generated from the probability 

distribution over this specific 15-second window. We also show in the figure the results from the 

compression algorithm we concluded to use, dynamic delta encoding, which will be described later.  

 
Figure 2-3: Compression ratios for the entire 45-minute recording 

 
Figure 2-4: Compression ratios for 15 seconds of normal gait 
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2.5.1 Huffman Encoding 

Huffman encoding is an old compression technique that has been adjusted and used numerous times. In 

this work, we investigate two widely used variations of Huffman encoding: static and adaptive Huffman. 

2.5.1.1 Static Huffman 

As shown in Figure 2-3, across the entire collected data set, sensor locations, and axes, static Huffman 

encoding was able to achieve an average compression ratio of approximately 135%. Although the 

Huffman tree was constructed based on the actual data set, it was not tailored to each of the individual 

activities and movements over the 45-minute period. Therefore, the frequency distributions of readings 

may have matched well during certain periods with the probability distribution used to generate the static 

tree (as was the case in Figure 2-4, when an average compression ratio of almost 160% is achieved). But 

that is not always the case, and the overall compression ratio suffers from this lack of adaptability. As 

expected, it was difficult to identify a single static probability distribution that was appropriate across a 

wide range of activities, axes, and locations. So the overall frequency distribution was used. It is possible 

to generate a number of Huffman trees from profiled probability distributions and invoke them at the 

appropriate time and for the appropriate sensor location and axis, but this is problematic with respect to 

programmability and deployment. 

It is interesting to note in Figure 2-4 that Huffman encoding did better than dynamic delta encoding for 

the ankle sensors, but not for the hip sensor. The hip acceleration is much less than that of the ankles and 

therefore requires few delta bits for encoding. 

Another major issue regarding static Huffman is that it requires a relatively large amount of memory. For 

lossless compression, each reading value must have its own dictionary index, so a 12-bit resolution 

system like TEMPO has 4096 indexes. However, some applications may assume that only a subset of the 

reading values actually occurs and simply assign one more index for all other values. The data collected 

during this study revealed that less than 1024 of the possible readings occurred, but that still requires that 

a large number of leaves and the accompanying tree structure be stored in memory. Some techniques can 
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be used to minimize the memory requirements for such structures, but this is still likely to be problematic 

for most BASN platforms. In addition, the complexity of the tree search is high, which increases the 

number of active processor cycles (cycles in Equation 2), and can cause the throughput constraints of the 

system to be violated. 

2.5.1.2 Adaptive Huffman 

The adaptive Huffman technique is designed to address the static technique’s lack of adaptability with the 

goal of dynamically tailoring the Huffman tree to the current reading frequency distribution. However, the 

compression ratios provided by adaptive Huffman encoding were mixed based on (1) the amount of time 

it took for a tree to be adapted versus the amount of time the new tree provided good performance and (2) 

the distribution of the readings to be encoded, with more even distributions providing lower compression 

ratios. 

Both of these factors come into play when examining the performance of adaptive Huffman in Figure 2-3. 

Given the adaptability of this technique and the various activities that were performed over the 45-minute 

data collection (and the resulting various reading frequency distributions), one might expect that adaptive 

Huffman would perform significantly better than the static version. However, it is clear that the activities 

and resulting distributions were not held constant long enough to enable the Huffman tree to adapt to 

them and provide an extended compression ratio benefit. This is revealed in Figure 2-4, as the 15 seconds 

of walking does not provide enough time for the adaptive technique to settle on the appropriate tree and 

ultimately benefit from it. In fact, the compression ratio is <1 for some sensor axes. It is likely that 

longer-term activities would result in better adaptive Huffman performance. In addition, some of the 

activities had relatively even reading frequency distributions on some axes and locations, resulting in 

lower compression rations regardless of adaptability. Finally, the memory and processing requirements of 

adaptive Huffman encoding also pose challenges, as described in Metrics section before. 
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2.5.2 Delta Encoding 

It is clear from Figure 2-3 that dynamic delta encoding provides by far the best compression ratio for 

every sensor and axis over a long data collection that includes a variety of activities. Figure 2-5 shows 

how the number of delta bits changes for different activities over the 45-minute data collection (data from 

the right wrist), demonstrating the algorithm’s ability to adapt to the current activity and achieve the 

highest compression ratio without having to change the algorithm. Figure 2-4 shows that it also does well 

over short periods of a single activity, even performing better than the optimized static Huffman for the 

hip sensor for the reason mentioned above. 

In addition to providing the best compression ratio, it also requires little memory and the fewest processor 

cycles, further adding to its energy-saving capabilities relative to static and dynamic Huffman. Finally, it 

uses the same simple algorithm regardless of the application, test subject (i.e., BASN wearer), sensor 

location, sensor axis, or activity, making it extremely flexible and adaptable and easing the programming 

and deployment. It is therefore the conclusion of this chapter that delta encoding is the best algorithm for 

lossless compression in BASNs. The question, therefore, becomes one of optimizing dynamic delta 

encoding for the metrics detailed in Section 2.2. 
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Figure 2-5: Number of delta bits across different activities 

The algorithm changes the number of delta bits at every predetermined interval and does so by inserting a 

special code, which incurs an overhead. Therefore, changing the number of delta bits too often may 

reduce the compression ratio or cause rapid oscillations between settings. However, not changing often 

enough may reduce the algorithm’s ability to adjust to rapid changes in the data characteristics. Figure 2-6 

shows the compression ratio for the three axes on the right wrist over the 45-minute data collection period 

as a function of the delta bit update interval. It is clear that the optimal interval for all three axes lies 

between 0.25 and 1 second, and 0.5 second was selected for the rest of the results in this chapter, 

including those in Figure 2-3 and Figure 2-4. However, this optimal interval is data (and therefore BASN 

system, application, wearer, sensor, and axis) dependent, and the proper selection of the update interval is 

essential to compression performance. 
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The fact that the number of bits to represent each piece of data changes categorizes this algorithm under 

variable length coding. It is important to consider this characteristic when designing the transmission 

system to use. A known downside of variable length coding protocols that if one bit was wrongly 

transmitted (1 bit flip) then the rest of the streaming bits will be parsed wrongly. In our case, if a bit was 

erroneously flipped during sending the special code the indicates the change of delta bits, then the 

receiver will think the delta bits per sample did not change and it will continue parsing the stream of bits 

according the old number of delta bits. The Huffman algorithm faces the same problem since data can be 

represented by different length of bits. We do think Delta encoding is slightly more robust than Huffman 

in this aspect because it only changes code length during special occasions (i.e. changing number of delta 

bits or overflow) unlike Huffman where each data might be of a different length than the one before it. 

 
Figure 2-6: Compression ratio across different update intervals 

Another interval-related issue is how large changes in optimal delta bits are handled. Consider, for 

example, the situation when the current number of delta bits is set to four and the data suddenly changes 

to include large deltas that require six or more delta bits for representation. Using Equation 3 and the 1 

delta bit options, it may be determined that the number of delta bits should be reduced by one rather than 

increased by one because the new deltas will overflow any of the available choices—three, four, or five 

delta bits. Given that every reading will result in overflow, the highest compression ratio will be provided 

by the fewest number of delta bits. Three approaches were considered to address this issue. First, the 
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maximum change in the number of delta bits could be increased to 2 or 3, but that dramatically 

increases the computational complexity of the algorithm and is unlikely to provide a significant benefit 

for real BASN data streams. Second, the update interval could be increased in the hope that any dramatic 

change in delta sizes is not long lasting, but this cannot be guaranteed. Third, Equation 3 could be altered 

to only make changes in the number of delta bits when the benefits of the change exceed a defined 

threshold, but that does not guarantee that the algorithm will converge on the optimal number of delta bits 

over time. Combinations of these three methods were investigated, but none improved the compression 

ratios more than 2%. 

Figure 2-7 compares the performance of dynamic delta encoding with two other variations of delta 

encoding. The first, passive delta encoding, always uses seven delta bits. Seven was selected based on an 

analysis of the deltas for all of the sensor locations and axes from several data sets. The second, optimized 

delta encoding, also uses a constant number of delta bits, but that number was determined for each 

individual sensor location and axis based on the deltas in the 45-minute data set. Neither technique 

benefits from dynamic adaptation nor therefore achieves the compression ratios provided by dynamic 

delta encoding. Optimized delta encoding approaches that of the dynamic algorithm, but it has issues 

related to programmability and deployment. It is impractical to individually characterize and program 

every sensor location and every axis, especially because that process will likely have to be performed for 

every BASN platform, application, and wearer. Dynamic delta encoding provides better compression 

while enabling the same algorithm to be pervasively implemented. 
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Figure 2-7: Compression ratios for delta encoding 

While neither of these alternative delta encoding techniques benefit from dynamic adaptation to activities, 

they are both simpler algorithms (no dynamic decision making and no need to keep track of the number of 

overflows) and require fewer processing cycles and less memory as a result. The average number of 

processor cycles per sample on the MSP430F1611 to execute dynamic delta encoding was about 95, 

whereas the two static techniques (passive and optimized) required only 75. 

Figure 2-8 shows the percent energy savings provided by the three delta encoding techniques over the 

uncompressed baseline. As specified in Equations 1 and 2, these results take both transmission energy and 

processor energy into account. The transmission energy per bit and processor energy per active cycle 

were taken from the data sheets of the Bluetooth module [44]and the MSP430F1611 [49], respectively. It 

is interesting to note that when processor energy is taken into account, the optimized delta encoding 

sometimes provides slightly higher energy savings than the dynamic algorithm. However, the 

programmability and deployment issues remain and prevent optimized delta encoding from being 

practical for most BASN applications. Dynamic delta encoding provides nearly the same energy savings 

while being much easier to program and deploy. 
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Figure 2-8: Percent energy savings for delta encoding 

2.6 Conclusion about Software Reconfigurability 

Given that the vast majority of energy consumption in most BASN platforms is due to the wireless 

transmission of sensed data, pre-transmission data compression is one of the most direct and high-impact 

ways to increase the energy efficiency of BASNs. However, the use of compression comes with trade-offs 

and constraints, especially given the extreme resource limitations on BASN nodes and the many static and 

dynamic variables associated with various BASN applications, wearers, sensor locations, sensor axes, 

dynamic activities, etc. First, the compression algorithm must fit within the limited memory of a BASN 

embedded processor while providing real-time performance. A typical instruction cache size for several 

commonly used platforms ranges from only 8KB to 32KB [67]. Second, given the difficulty of 

differentiating important from unimportant data and the criticality of many target BASN applications 

(e.g., those in the medical domain), lossless compression is desirable and can be made application 

independent. Finally, in order to provide significant energy savings, the algorithm must maintain a high 

compression ratio regardless of the static and dynamic variable settings and without significant additional 

programming and deployment effort. That is, it is highly desirable to program every sensor node the same 

way without profiling and without consideration of application, sensor location, etc. 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

X Y Z X Y Z X Y Z

Right wrist Left ankle Head

%
 e

n
e

rg
y
 s

a
v
in

g
s

Sensor location

Passive Delta 
encoding "7 bits"

Optimized Delta 
encoding

Dynamic Delta 
encoding



34 Reconfigurability at Software Level 

 

34 

This chapter evaluated two families of lossless compression techniques—Huffman encoding and delta 

encoding—within the context of these BASN requirements using a custom accelerometer-based BASN 

platform within a motion-capture application. Both static and adaptive/dynamic variations of these 

techniques were considered. Results revealed that dynamic delta encoding provided the best combination 

of energy savings (including both reduced transmission energy and increased processing energy), low 

memory requirements, high performance across a range of activities and sensor locations/axes, and low 

programming and deployment effort. The approximately 35% average energy savings provided by 

dynamic delta encoding can go directly toward extending a BASN platform’s battery life and/or reducing 

the required battery (and total BASN node) size. 

While dynamic delta encoding showed strong adaptability, future work will evaluate its performance on 

other BASN platforms and applications and in combination with other on-node signal-processing 

techniques, such as feature detection and pattern classification algorithms.  
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 Reconfigurability at Components Voltage Chapter 3

Level
3
 

This chapter talks about the work done in adding voltage scaling at a fine-grained granularity to 

processors and what benefits/complications this configurability adds. We will go over the concept this 

project was based on and its main research goals. For ease of reference, the technique of adding fine-

grained voltage-switching abilities to arithmetic components is referred to as Panoptic Dynamic Voltage 

Scaling (PDVS). 

To improve energy efficiency, PDVS uses headers and several global VDD rails instead of dedicated 

block-level DC-DC converters. This architecture speeds up virtual-VDD switching, allowing PDVS to 

lower energy even for brief changes in workload, which cannot be realized in conventional DVS 

implementations. The delay of switching the virtual VDD depends on the header size, but for our 

processor, this time is less than our target clock period.  

3.1 Concept and Design Overview 
The idea of reducing performance to save energy when applicable is a very widely used concept. Almost 

every circuit can operate at a lower voltage than what it is typically running on. This reduction of voltage 

will increase the delay and hurt the performance of that circuit, however; it will also decrease the energy 

and power consumed in that circuit. The most famous technique used to utilize this concept is Dynamic 

Voltage and Frequency Scaling (DVFS), where the voltage is reduced along with frequency, which saves 

a significant amount of energy at the expense of performance.  

In this project, we try to explore the various tradeoffs of adding this fine granular voltage scaling and we 

try to maximize the efficiency by finding the right amount of configurability voltage scaling should be 

implemented at. 

                                                      

3 Most text and data in this chapter are taken from  [2] [3] [4] [5]. The work in this chapter was done in collaboration with 3 other 

Ph.D. candidates. The focus in this dissertation is on the individual contribution I had in this project. 
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To increase the granularity of the voltage scaling, we added headers to arithmetic components. Each of 

those headers is linked to a different voltage rail, with a different voltage value. Having those multiple 

voltage rails enables each arithmetic component to independently switch its voltage to one of the discrete 

voltages available, as illustrated in Figure 3-1. This fine granularity voltage scaling will definitely 

increase the potential benefits of voltage scaling; however, it also adds a significant amount of 

complexities on various aspects of the design. In this work, we explore the range of the options that affect 

the overhead of the configurability and the efficiency of the system. During this work, we aimed to find 

the best point for maximizing the energy savings across several variables. 

 

To explore the full benefits of PDVS, we designed a 32-bit data flow processor, illustrated in Figure 3-2, 

capable of executing arbitrary data flow graphs (DFGs) at 1 GHz at 1.2V. We used the PDVS architecture 

to implement the datapath of the processor. The datapath consists of four Baugh-Wooley multipliers and 

four Kogge-Stone adders. Each of these components uses three PMOS header switches tied to the three 

VDDs (VDDH, VDDM, VDDL) that are common throughout the processor. The processor includes a 

programmable crossbar that feeds input registers of the datapath components either from the datapath, the 

register bank, or the memory. To prevent short-circuit current from blocks operating below the nominal 

Component Component 

Level Converter Level Converter 

Figure 3-1: Block diagram of the concept of a header-based voltage-switching system 
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VDD, level converters (LCs) are used at the output of each multiplier and added to up-convert their outputs 

to the VDDH level that is used at the register file.  

 

 
Figure 3-2: Die photo of the custom digital signal processor used for PDVS testing showing some of the main components 

 

In order to provide a fair hardware comparison to PDVS, we included three additional datapaths on the 

chip that are functionally identical but that use different power management options: single VDD (SVDD), 

multi-VDD (MVDD), and a sub-VT optimized PDVS datapath. In the SVDD datapath, the four multipliers 

and adders all share the same VDD. In the MVDD datapath, the four multipliers and adders are permanently 
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tied to either VDDH, VDDM, or VDDL, and operations can be scheduled for execution on any of these 

components based on the timing requirements. The processor has a 32kb data memory and a 40kb 

instruction memory that are shared for all of the datapaths. The control word for controlling the data flow 

(and header control where applicable) of the various datapaths is 160b for this test chip. 

The PDVS processor, shown in Figure 3-3 contains a 40kb data memory and a 32kb instruction memory. 

Since the focus of the processor was to evaluate the benefits of the PDVS datapath compared to the other 

datapaths, the memories operate at a nominal voltage of 1.2V and use 6T SRAM. These SRAMs are 

designed to run at the maximum processor frequency of 1 GHz. The memory design is a main 

contribution done by a different researcher. The instruction memory is in the critical path of the 

processor; the 160b control word must be read every clock cycle. However, the data memory is not on the 

critical path since it is only read and written at the start or the end of a DFG iteration.  

 

Figure 3-3: Block diagram of custom digital signal processor that executes arbitrary data flow graphs. SRAMs and 

control serve three similar copies for direct comparison of PDVS, SVDD and MVDD. [4] 
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We were able to acquire a large amount of data from this chip. My individual work was focused on the 

system-level data and the tools performance. In the following sections, we will present some of the main 

data collected in this project. 

While the premise of voltage scaling is sacrificing performance for energy, sometimes there is an extra 

slack for some of the components created due to dependency on other components. This has been utilized 

in many aspects, like when there is a cache miss, processors will typically try to do something else rather 

than just wait for the cache to come back with the correct value. Similar thing with voltage scaling; in 

some cases, some arithmetic components are waiting on other components to finish. In this case, the 

component can lower its energy without affecting the overall performance. 

Of course the energy saved from those small slacks is limited; however, this was not viable with the 

traditional voltage scaling, which required several components to reduce performance at the same time. 

Error! Reference source not found. shows the observed energy savings in our system in comparison to 

traditional methods. More detailed explanation of the results will be presented in the following sections.  
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Designing for configurability introduced several variables that need to be considered. In our case, the 

overhead of switching is directly influenced by the headers and the additional scheduling task of 

assigning which rail each operation should execute on. Another aspect that affects the energy efficiency 

of the system indirectly is the voltages of the rail. Since the number of voltage rails is limited, the 

voltages of those rails determine the energy-delay profile the arithmetic can operate on, which affects the 

efficiency of the scheduler at different rates. Those aspects will be discussed in the following sections.  

3.2 Approach and Tool Creation 

Energy-savings benefits can become apparent once the benchmark is scheduled to use the lower-voltage 

rails. The scheduler has to be redesigned and adjusted to include this voltage-selection ability. In this 

work, we created the algorithm and then a program that is capable of scheduling the operations to 

arithmetic components and lowering the voltages whenever possible. 

To test the energy savings in PDVS, we created a series of tools that can convert a simple data flow graph 

(DFG) into microcode, illustrated in Figure 3-5, which can be downloaded to our processor and executed 

on the three different schemes (a fourth scheme using subthreshold existed; however, it is a mainly 

individual contribution of another student). The series of tools to achieve this task is used extensively 

during this project to explore and analyze the effects on the system level. The tools are responsible for 

scheduling the application according to a user-specific time constraint and for optimizing the schedule to 

reduce the energy consumption without violating the timing constraints. The microcode output of those 

tools contains all the scheduling, switching, and binding information required to run the PDVS system 

efficiently. Figure 3-5 below describes the stages that the DFG has to go through before it is executed on 

the chip. 
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To be able to find the right schedule, we had to obtain the energy-delay graph for the adder and the 

multiplier units, showing our results of this graph in Figure 3-6. Using this data as an input to the 

scheduling tools, we were able to compare the benefits of using various methods in choosing the voltage 

of the rails and the effects of using different voltages for the rails. 

Scheduling 
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Figure 3-5: Flow diagram for tools chain for PDVS showing the different stages the application has to go through before 

it can be executed by the processor 
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3.3 Scheduling with Circuit-Level Information 

Scheduling and binding is the process by which application operations are assigned to a clock cycle (C-

step) and a specific resource (adder/multiplier) for execution. Typically, the inputs to this process, shown 

in Figure 3-7 (left), are the various operations (represented by nodes), the data dependencies between 

those operations (represented by vertices), the time constraint (typically given in C-steps), the available 

computational resources (adders, multipliers, registers, etc.), and, unique to multirail systems, the number 

and voltages of the rails. The output of the algorithm is the time-specific assignment of those operations 

to the specific resource. The schedulers in DVS systems that are capable of operation-level voltage 

selection have to determine, additionally, the voltage of each operation without violating the timing 

constraints [55]. 
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However, unlike non-header-based systems, components in header-based systems can switch voltage 

independently, thus requiring modifications to preexisting multirail scheduling algorithms. Figure 3-7 

(right) shows an example of scheduling the DiffEq benchmark on a header-based multi–voltage rail 

system. The schedule is capable of reaching the same maximum performance as a non-DVS system while 

reducing system energy.  

As an input for the scheduler, we used the simulated energy and delay information about the Kogge-Stone 

adder and the Baugh-Wooley multiplier shown in Table 3-1. Those numbers were used to schedule the 

benchmarks, trying to reduce their total energy as much as possible without violating resource or timing 

constraints set by the system. 
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3.3.1 Scheduling Background 

Obtaining the optimal schedule even in non-header-based systems is an NP-complete problem. Therefore, 

researchers and designers have opted to use heuristics algorithms instead [57][58]. One of the more 

successful and simple of these algorithms is the list-based algorithm [56]. We have created a list-based 

algorithm to accommodate our system’s independent voltage-switching feature. 

The scheduling algorithm we implemented is designed to minimize energy consumption while satisfying 

time and resource constraints. The scheduler minimizes energy through assigning some operations to 

lower voltages. The criterion to choose which operations to assign to a lower voltage determines the 

effectiveness of the scheduler. We studied five different selection criteria; these criteria differ in the 

priority given to assigning operations to lower voltages. 

Since we use a list-based algorithm, the complexity of scheduling for this system is similar to a single 

voltage rail system. The scheduling occurs before the application execution, which is typical in most 

systems, and therefore does not incur additional delay overheads during the application. 

3.3.2 The Algorithm 

We describe in this section the algorithm we used to schedule and bind the components in our PDVS 

system. Below are the terms we used in the algorithm, and then we present the algorithm itself. 

Table 3-1: Simulated energy and delay of the components including level converters overhead. Results show the large 

energy savings and the extra delay at lower voltages 

Voltage (V) 1.2 1.1 1.0 0.9 0.8 0.7 0.6 

Adder Delay (C-steps) 1 1.08 1.2 1.4 1.76 2.6 5.51 

Multiplier Delay (C-steps) 7.85 9.01 10.17 12.79 15.42 24.25 33.11 

Adder Energy (pJ) 2.95 2.4 2.05 1.71 1.46 1.24 1.09 

Multiplier Energy (pJ) 55.07 47.17 39.41 32.37 25.32 19.12 12.94 
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Algorithm Terms 

 Nodes: The operations in the application. In our applications, operations are addition/subtraction 

or multiplication. However, the algorithms presented can be applied to additional types of 

operations. 

 C-step: This represents the system’s clock cycle. The timing constraint is supplied to the 

scheduler as a maximum number of C-steps to complete all the operations in the application. 

 Relaxing a node: This means decreasing the voltage of an operation (node) to decrease its energy 

consumption and increase its execution time. 

 ASAP schedule: ―As soon as possible‖ is a schedule where all operations are assigned to the 

earliest possible start time.  

 ALAP schedule: ―As late as possible‖ is a schedule where all operations are assigned to the latest 

possible start time. 

 Slack: The maximum number of C-steps a node’s start time can be delayed without violating the 

timing constraint of the application. 

The Scheduling Algorithm 

We present the pseudo code of the scheduling program used to generate the subsequent data. The 

algorithm itself is not a significant contribution of this chapter, but it is presented for clarity. 

1. Assign highest voltage to all components 

2. Make an ASAP schedule that takes resource constraints into account, prioritizing nodes that reside on 

longer paths 

3. Create an ALAP schedule, taking resource constraints into account 

4. Assign the differences between the start times of the operations in the schedules from step 3 and step 

2 as the slack of each node 

5. While there is a node that can be relaxed: 

a. Lower the voltage of a node or a group of nodes (chosen by a specific selection criterion) 
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b. Adjust the schedule by moving the start times of the necessary nodes to maintain resource 

constraints and correct data dependencies 

c. Recalculate the slack time for all nodes  

We see in that algorithm that we reduce the voltages of some nodes. The choice of which node is relaxed 

first affects the efficiency of the algorithm. In the next section, we will discuss several options for 

selecting the nodes’ order. 

3.3.3 Node Relaxation Criteria  

We present the various criteria that we use to determine which nodes to relax first (decrease their assigned 

voltage). After the relaxation of a node, the scheduler will go through an iterative function to move other 

nodes around to ensure data dependency and resource constraints are not violated due to relaxation. The 

selection criteria are as follows: 

 Random: Randomly choosing a node to relax 

 Slack: Prioritizing to relax first the node with the largest slack  

 Inverse slack: Prioritizing to relax first the node with the least slack 

 Energy per slack: Prioritizing to relax first the node that saves the most energy relative to the 

total slack lost by all other nodes 

 Max energy step: Prioritizing all the possible nodes in the C-step that can achieve the highest 

energy savings relative to other C-steps (typically means that most nodes in the selected C-step 

can be relaxed) 
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Analyzing the selection criteria shows that all of them have the complexity of O(N
2
 * V), where N is the 

number of nodes in the schedule and V is the number of voltage rails. The algorithm loops N * V times to 

iterate through each node and each voltage level, and when extending any node, there is a chance that N-1 

nodes will need to be moved around to accommodate constraints. The complexity is similar among the 

different criteria; though some of them are more complex, they relax more nodes in each loop, thus 

achieving the same overall complexity. 

Table 3-2 shows the comparison between the different relaxation selection criteria for seven DSP 

benchmarks running on the header-based multi–voltage rail system, using 1.2V, 0.8V, and 0.7V for the 

three rails. The minimum values are highlighted. We see that all of the selection criteria provide 

significant energy savings (~40% over single–voltage rail systems) and the differences between their 

Table 3-2: Different node selection criteria impact on energy consumption across different rates. The complexity of 

all the criteria is the same (O(N^2*V)). 

Benchmark All Filter AR Lattice DiffEq Ellip FFT FIR8 GCD Kalman Average 

Selection Criteria Rate range 1x to 2x 

MaxEnergyStep 0.688 0.696 0.662 0.663 0.634 0.711 0.747 0.665 0.683 

EnergyPerSlack 0.699 0.755 0.667 0.665 0.622 0.771 0.747 0.680 0.701 

InverseSlack 0.759 0.773 0.662 0.721 0.630 0.772 0.798 0.688 0.725 

Random 0.845 0.839 0.785 0.842 0.717 0.841 0.899 0.767 0.817 

Slack 0.702 0.779 0.693 0.690 0.701 0.804 0.798 0.711 0.735 

 Rate range 1x to 3x 

MaxEnergyStep 0.588 0.592 0.573 0.575 0.558 0.601 0.635 0.575 0.587 

EnergyPerSlack 0.594 0.627 0.576 0.576 0.552 0.641 0.635 0.584 0.598 

InverseSlack 0.627 0.636 0.573 0.607 0.556 0.648 0.663 0.588 0.612 

Random 0.721 0.732 0.673 0.717 0.643 0.741 0.818 0.663 0.713 

Slack 0.596 0.640 0.590 0.590 0.598 0.656 0.663 0.601 0.617 

 Rate range 1x to 4x 

MaxEnergyStep 0.565 0.568 0.552 0.555 0.541 0.576 0.610 0.555 0.565 

EnergyPerSlack 0.570 0.597 0.555 0.556 0.536 0.608 0.610 0.562 0.574 

InverseSlack 0.598 0.604 0.552 0.581 0.539 0.614 0.633 0.565 0.586 

Random 0.674 0.683 0.634 0.671 0.610 0.696 0.759 0.626 0.669 

Slack 0.572 0.607 0.567 0.567 0.573 0.621 0.633 0.576 0.589 

 Rate range 1x to 5x 

MaxEnergyStep 0.529 0.530 0.520 0.523 0.513 0.536 0.569 0.522 0.530 

EnergyPerSlack 0.532 0.549 0.522 0.524 0.510 0.557 0.569 0.527 0.536 

InverseSlack 0.550 0.554 0.520 0.540 0.512 0.561 0.584 0.529 0.544 

Random 0.599 0.605 0.573 0.599 0.558 0.617 0.666 0.569 0.598 

Slack 0.533 0.556 0.530 0.531 0.535 0.565 0.584 0.536 0.546 
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effectiveness are limited. However, we see that the MaxEnergyStep criterion provided the best results 

almost in all benchmarks at all rates. This indicates that scheduling approaches that take multiple nodes 

into consideration is preferable, since they enhance results without incurring additional complexity. 

3.3.4 Changing Operating Rate 

Header-based multiple–voltage rail systems are designed for applications that require variable operating 

rates and transition frequently between those rates. To exploit extra slack in the time constraint, the DFG 

needs to be changed to represent a different operating rate. This enables the system to save extra energy. 

In this section, we will discuss three main methods to achieve that: simple extension, partial extension, 

and multiple DFGs. 

Simple Extension with or without Dithering 

The simplest scheme to extend a DFG is lowering the voltage of each component by one voltage rail. If 

an operation was scheduled to run at the highest voltage, simple extension will schedule the operation to 

run on the medium voltage. If it was assigned to run at the medium voltage, it will run at the lowest 

voltage. Operations that were already scheduled to run at the lowest voltage would simply remain at that 

voltage. 

The simple extension scheme is easy to implement. We add extra status bits, indicating the operating rate. 

With the addition of simple combinational logic, we can sufficiently implement this scheme in most 

systems. Figure 3-8 shows the changes to the DFG after the simple extension compared to its original 

form, shown in Figure 3-8a. Note: this is analogous to DVS in non-header-based architectures, as all 

components connected to a particular rail have their voltages adjusted by the same amount. 
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Figure 3-8: Example DFG and scheduling strategies to extend DFGs for different processing rates 

 

Since this scheme can switch every operation or not switch at all, it requires extra slack by a factor equal 

to the highest component delay factor to ensure functionality. Heterogeneous components, such as 

multipliers and adders, do not have similar energy-delay trends. For example, Figure 3-9 shows the 

energy delay for a Kogge-Stone adder and a Baugh-Wooley multiplier, with clear differences in their 

energy-delay relationships. The energy-delay differences will reduce the efficiency of this scheme 

because we will not be able to switch the DFG to a lower rate until we have extra latency equal to the 

highest component delay factor. For example, if one component’s delay factor is 2x and the other 

component is 2.5x, then we cannot extend the DFG unless we are operating, at least, at 2.5x the latency. 

Dithering can be used to save energy while running at intermediate rates by spending certain percentages 

of the execution at the available discrete rates. This dithering is made efficient by the header-based 

architecture and is less practical for traditional DVS systems. 
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For our system, the biggest ratio of component delays is 2x and 3.125x. Therefore, the discrete latencies 

we can achieve are 1x, 2x, and 3.125x without dithering. Error! Reference source not found. shows the 

energy of applying the simple extension scheme with and without dithering. Other two schemes, Partial 

Extension and Multiple DFGs, are illustrated in the figure also. Those two schemes will be introduced 

below. Note that energy results at 1x, 2x, and 3.125x rates are the same with or without dithering, because 

dithering is not needed when operating at one of the available discrete rates (the rates are determined by 

the voltages of the rails). In other rates, the energy benefit of dithering between two rates is clear and 

significant. 
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Figure 3-9: Normalized energy and delay of the arithmetic components showing the general trend when varying 

voltage 
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Partial Extension 

In the previous scheme, we discussed simple extension’s limitation in achieving intermediate rates 

without dithering. We can introduce a modification on the simple extension scheme to enable it to achieve 

very fine granular rates. In partial extension, we extend only part of the DFG while running the rest of the 

operations at the original rate. For example, if the DFG contains 20 C-steps, then extending only the first 

10 C-steps will produce a 1.5x delay DFG. By choosing the percentage of the DFG we are extending, we 

can have very fine granular operating rates.  

This extra flexibility comes at the cost of efficiency since blind partial extension is not efficient in 

specific situations. Consider for example Figure 3-8b-c, if the algorithm blindly extends the first part of 

the DFG (Figure 3-8b), the solution will be suboptimal (Figure 3-8c), which is clearly non-optimal. 

Therefore the algorithm must select its extensions strategically. 

Benchmark Rate 

Figure 3-10: Average energy of benchmarks when using the different schemes for changing rates 
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Implementing this scheme is more complex than the previous one, the simple extension scheme, but still 

not difficult. The scheme is implemented by adding a simple tracker of the current C-step to the previous 

scheme. By tracking the C-step and depending on the desired rate, a flag indicating extension can be 

toggled. 

Since this method extends the DFG conservatively to ensure functionality it cannot use dithering. 

Dithering can be used only if there is extra slack after finishing the whole DFG. In this scheme, unlike the 

previous one, we extend the DFG to consume as much as we can from the extra slack. We can see in 

Error! Reference source not found. that this technique is useful only if dithering is not available or too 

costly to implement. 

Store Multiple DFGs in Cache 

In the two previous schemes, the extension of the DFG is done without rate-specific optimization, thereby 

losing opportunities for further energy savings. Therefore, the third scheme stores multiple copies of the 

same DFG, optimized for different rates. 

Additionally, the operating rates can be chosen independently from the latency factor of the components, 

unlike the first scheme. This can be particularly useful if the profile of operating rates is known a priori. 

Knowing the operating rates of the application enables the production of the corresponding rates, 

achieving maximum efficiency, especially when combined with voltage rail selection (see below). 

The overhead of this scheme can vary depending on several aspects of the system, such as memory access 

time and energy and cache capacity. If the instruction cache is much larger than the DFG, then the 

overhead is pretty minimal since we can easily store multiple copies of the DFG inside the cache. If the 

instruction cache can fit only one copy of the DFG, the scheme will incur memory reading and writing 

overheads for switching rates. For example, looking at memory reading and writing overheads using 

CACTI, each ―instruction word‖ read from a 256kb cache, which is reasonable for an L2 cache, needs 

21pJ and writing each instruction word into a 64kb instruction cache needs 13pJ. These numbers assume 
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a 1 GHz clock speed. We use the DiffEq DFG to illustrate this example. The DFG, which contains around 

16 instruction words, will need 32ns and 544pJ to switch to a different rate. The DiffEq DFG at 1x 

latency consumes 312pJ. By extending the latency to 1.5x, the DFG consumes 218pJ. This introduces the 

concept of a breakeven time to overcome the energy overhead of rewriting the cache. In this example, the 

DFG needs to run at least six consecutive times at the 1.5x latency to outweigh the energy overhead 

consumed by switching from and to the 1x latency. Running six consecutive times is very reasonable 

practical scenario since these DFGs are used for applications processing thousands of data, like sound and 

video applications. 

The example assumed the worst-case scenario, where without the extra copies, the 1x rate DFG will fit 

inside the cache perfectly. Most DFGs (and the DFGs of their various rates) have to be stored in multiple 

cache levels due to their size. Therefore, the overhead of reading and writing from higher memory levels 

might make having longer DFGs not as energy efficient. 

Another issue with this scheme is that although it achieves maximum efficiency, it will only provide 

operating rates corresponding to the stored DFGs. However, we can use dithering between few copies of 

the DFGs while operating at intermediate rates. This will provide better efficiency than simple extension 

even with the same number of points. This is because we can choose the rates of those DFGs unlike 

simple extension, where they are bound to the corresponding latency factor of the voltage rails. However, 

the overhead of switching DFGs must be considered when determining the dithering duty cycle. 

Error! Reference source not found. shows the energy of several DFGs obtained using the mentioned 

schemes. Multiple DFGs scheme does not always provide benefits over simple extension with dithering. 

This is the case because if the DFG is small and the rate of the DFG is close to 1x, the available slack for 

extending within the DFG is small. This may make it impossible for the scheduler to exploit this small 

slack, especially if the delay factor between voltage rails is high. On the other hand, dithering, by nature, 

accumulates those small slacks to enable exploitation by operating several iterations at a lower rate. This 
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effect will be small if the DFG is large because the dithering savings is linear, while savings from within a 

DFG is quadratic. Therefore if the DFG is big enough, even small reductions in operating rates will 

produce enough slack to be exploited by the scheduler. There will be enough quadratic savings within the 

DFG, even if the slack was not exploited fully, it will triumph over the linear savings of dithering.  

Each of the three mentioned schemes has its own benefits and drawbacks. Summary of those aspects are 

shown in Table 3-3. Characteristics of the system and the nature of the applications will determine which 

scheme is better.  

Table 3-3: General comparison between the extenstion schemes, highlighting the main differences 

 Fully Extended DFG 
Partially Extended 

DFG 
Multiple Copies of the DFG 

Possible Rates 
Limited to the number 

of rails 
Very fine granularity 

Limited to the number of 

stored DFGs 

DFG’s Efficiency 
Within 5% of optimal 

using dithering 
10%–20% of optimal As optimal as the scheduler 

Overhead Very simple glue logic 
Slightly complicated 

glue logic 

Storing and retrieving multiple 

DFGs (system dependent) 

3.4 Level of Reconfigurability 

In this section, we will explore the trade-offs of adding more voltage rails as well as the potential 

selection methods for selecting the voltages of the rails. 

3.4.1 Number of Rails 

Through most of the literature and our results in the previous sections, three voltage rails are 

used [63][64][65][66]. In this section, we explore the trade-offs of the number of rails through qualitative 

analysis of the overheads and estimation of the energy savings provided by additional rails. 

Less Metal per Rail Network 

As technology scales, the same designated routing area for the power distribution network is required to 

support more components, causing power delivery and voltage drop problems [59][61]. Having more rails 

requires dividing this limited area into even smaller power networks, reducing the amount of metal in 

each rail, exacerbating these problems as follows. 
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In modern devices, a high surge in the current drawn from the power network is common when complex 

blocks power on. This in turn causes the voltage on the power network to drop momentarily. This drop 

can cause many faults and problems across the system, especially in near-threshold circuits. A reduction 

in the amount of metal per power network results in smaller rail capacitance and higher rail resistance, 

thus making the voltage drop even more severe. That is why commercial products try to limit the number 

of networks as much as possible. 

DC-DC Voltage Converters 

DC-DC converters are used to provide different voltages on chip. They are also used to change the 

voltage rail level dynamically in traditional DVS systems. In multi–voltage rail systems (header-based or 

non-header-based), each rail requires a separate DC-DC converter, while in traditional DVS systems, each 

voltage-independent section needs its own DC-DC converter. Typically there are more voltage-

independent sections in DVS systems than number of rails in multi–voltage rail systems. This causes the 

complications of the DC-DC converters to be more severe in traditional DVS systems. 

The main disadvantage to increasing the number of DC-DC converters is the increase in area and their 

energy inefficiency (e.g., peak efficiency of 77%) [62]. Furthermore, this peak energy efficiency is only 

achieved when the DC-DC converter is optimized for the given output load and voltage[60]. In header-

based systems, the output voltage is constant but the output load varies, thus reducing the energy 

efficiency of the converters.  

Increasing the number of voltage rails does not necessarily reduce the overall energy efficiency of the 

DC-DC converters. However, it lowers the average output load and changes the distribution of loads per 

rail. This significantly complicates the process of optimizing the DC-DC converters and renders achieving 

high energy efficiency very difficult. Traditional DVS systems suffer from this same problem because the 

output voltage varies. 
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Designing and optimizing the DC-DC converters for variable load and variable output voltage requires 

considering many other system variables that are outside of this chapter scope [62]. It is hard to predict 

whether adding voltage rails will decrease energy efficiency overall; however, it will definitely 

complicate the power system design and increase the area overhead. 

Scheduling Results 

 The main benefit of increasing the number of voltage rails is the better utilization of timing slack 

available in the applications, thus allowing us to achieve a more optimal schedule. To investigate the 

potential energy savings from having more voltage rails, we used the ―Best Step‖ selection criterion to 

schedule the benchmarks over various numbers of voltage rails. One voltage rail is kept at 1.2V (the 

maximum voltage) to ensure the ability to operate at the 1x rate. 

To provide a fair comparison, we used an exhaustive search to choose the optimal voltages for each 

number of rails. The selection of optimal voltages was done over the average normalized energy of all 

rates of all the benchmarks. The energy overhead of adding voltage rails, previously discussed, is not 

included in the results because our system does not include the energy efficiency of the power system on 

chip. 

Figure 3-11 presents the benchmarks’ energy savings of increasing the number of voltage rails. These 

results reveal that there is little additional energy savings beyond two voltage rails (within 5%, 7%, and 

11% for three, four, and five rails, respectively). Given all of the complexity and overhead of adding 

voltage rails to the system, two voltage rails seems the best option for the header-based system and 

benchmarks considered here. 
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3.4.2 Voltage Selection 

Voltage selection has a significant impact on the energy savings due to the limited number of voltage 

rails. Smaller voltage differences between the rails result in utilization of smaller timing slacks and more 

frequent switches. On the other hand, larger voltage differences can save more energy but only if the 

timing slack is large enough. 

One of the simplest ways to choose the rail voltages is to select voltages that produce 1x, 2x, and 3x the 

delay of the components at the maximum voltage (in our case 1.2V). We set our C-step period typically to 

the delay of the fastest component at the highest voltage, including all the extra delays (e.g., level 

converters, control and data signals delay). Having an integer multiple of C-steps for component delay 

maximizes C-step utilization. However, achieving this integer multiple proves extremely difficult when 

dealing with multiple types of components. Since all component types use the same voltage rails, a 

voltage that results in one component type to run at an integer multiple of C-step will not necessarily 

result in an integer multiple C-step in a different component type as seen previously in Table 1.  

Figure 3-11: Energy savings provided by increasing the number of voltage rails. Adding more than two voltage rails 

have a greatly diminishing return (only 4% extra energy savings when adding the third voltage rail). 
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Even if the delay trend is identical between different components, the absolute energy and delay can 

differ significantly; for example, in our system, a multiplication is around 8x of an addition’s delay but 

20x of its energy. Therefore, reducing the energy of a multiplication by 10% saves more energy than 

reducing the energy of an addition by 50%.  

Additionally, having a reduced utilization of a one C-step (typically one CPU cycle) reduces the energy 

efficiency insignificantly in the big picture. Having the aforementioned complications and the 

insignificance of 100% C-step utilization made us conclude that aiming for the integer delay multiple 

when selecting voltages is not worth the effort. However, we are still motivated to analyze the impact of 

voltage selection criterion on the benchmark energy. 

Table 4 shows the average energy of the benchmarks of every possible voltage combination normalized to 

single rail system, assuming three voltage rails and 100mV voltage granularity. The highlighted cells 

represent the minima for that range. We starred four noteworthy intuitive voltage selection criteria: 

*Multiplication energy: Choosing the voltages to achieve 3x, 2x, and 1x of the multiplication energy 

**Addition energy: Choosing the voltages to achieve 3x, 2x, and 1x of the addition energy 

***Equal differences: Choosing equal voltage differences between the rails 

****Component delay: Choosing the voltages to achieve 1x, 2x, and 3x of addition/multiplication delay 

The results show that intuitive voltage selection techniques, like according to component delay, produces 

near-optimal voltage selection results (within 0.03).  
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3.5 Demonstration of PDVS 

As a demonstration of the benefits of PDVS, we implemented a simple video processing application that 

brightens dimly lit areas of a frame. The workload of this application varies according to the number of 

dark pixels of each frame. The number of dark pixels that need to be brightened can easily be calculated 

from each image. With this information, we can compute the workload needed to achieve the required 

application rate, e.g., 24 frames per second (FPS) or 30 FPS. For the sake of simplicity, we created a 

program that brightens pixels by multiplying the pixels below a threshold value by a specific constant. 

The multiplication can be done either at VDDH or VDDL (i.e. fast or slow). With the knowledge of the total 

number of pixels that need brightening before processing the frame, we calculate the number of 

multiplications that will be scheduled at VDDH and the multiplications scheduled at VDDL to meet the exact 

deadline.  

 

Table 3-4: Voltage selection impact on energy consumption across a range of rates. Most selection criteria provide 

significant improvements over single VDD 

Rail Voltages (V)  
Range of Rates  

1x–2x 1x–3x 1x–4x 1x–5x 

1.2|1.1|1.0 0.803 0.757 0.742 0.735 

1.2|1.1|0.9 0.750 0.668 0.641 0.627 

1.2|1.1|0.8 0.720 0.593 0.551 0.530 

1.2|1.1|0.7 0.794 0.643 0.551 0.504 

1.2|1.1|0.6 0.832 0.769 0.611 0.532 

1.2|1.0|0.9 0.743 0.665 0.639 0.626 

1.2|1.0|0.8 0.714 0.591 0.549 0.529 

1.2|1.0|0.7* 0.759 0.611 0.529 0.487 

1.2|1.0|0.6** 0.769 0.641 0.558 0.491 

1.2|0.9|0.8 0.715 0.591 0.549 0.529 

1.2|0.9|0.7 0.736 0.588 0.514 0.476 

1.2|0.9|0.6*** 0.742 0.603 0.525 0.463 

1.2|0.8|0.7**** 0.725 0.566 0.499 0.464 

1.2|0.8|0.6 0.722 0.565 0.487 0.433 

1.2|0.7|0.6 0.834 0.662 0.549 0.479 
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Since our test chip was a custom processor designed to demonstrate the benefits of PDVS, it does not 

contain any operating system that enables video data input, so we feed each frame as an image to the 

input data. We can see in Figure 3-12 the demo images before and after the processing that was executed 

on our test chip, which was the simple brightness application. We acknowledge that we actually distort 

the picture, but this application is for demonstration and it mimics, in behavior, practical image enhancing 

applications. If the processor knows the number of pixels that need processing beforehand, it can reduce 

its work rate to finish right on deadline thus saving energy when the workload is low. Figure 3-13 shows 

the significant (~60%) energy savings obtained from running the brightness application on a PDVS 

processor relative to single voltage rail system.  
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Figure 3-12: Pictures before and after running through the brightness application. Depending on the number of dark 

pixels, the workload changes thus allowing the processor to save energy 
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Figure 3-13: Brightening different pictures in PDVS can save different amount of energy depending on the workload 

3.6 Conclusions about Voltage Reconfigurability 

During this project, we aimed to study the potential benefits of adding configurability to voltage scaling 

on a finer scale than traditional DVFS. We have seen significant benefits without any big sacrifice of 

performance. The downside of adding the fine granularity falls mainly on the layout of the power delivery 

network, which gets pretty more complicated with every additional rail we add. The other components 

(i.e., the switching headers and the level converters) are small in area, and their energy overhead is 

relatively insignificant. 

We studied as well the changes that had to be done to the scheduling system. The adjustment from other 

scheduling algorithms is pretty simple and reasonable. One important factor to keep in mind is the 

switching overhead of the header. With larger components, larger headers are required. This increase in 

header size increases the energy overhead of switching voltages, which can affect scheduling decisions. 

While in our case the switching overhead was less than the energy saved in the arithmetic components, 

we can easily see different systems where the switching overhead can overshadow the energy saved. It is 

vital to include switching overhead calculations in the scheduling algorithm. 
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After exploration of voltage selection methods, utilizing simple intuitive voltage-selection techniques 

seem to provide near-optimal results. However, the granularity of reconfigurability (the number of 

voltage rails) was surprisingly low. It seems since our system is running at low voltages, it does not need 

more than two voltage rails. While different systems might have different results, we anticipate that most 

systems that use relatively low voltages will have greatly diminishing returns after the addition of the 

second voltage rail similar to our system. 
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 Reconfigurability at Processor Chapter 4

Architecture Level
4
 

In this chapter, we will describe the research in designing configurability at the processor level. We aim 

to create a dynamically reconfigurable SIMD/MIMD system using simple in-order processor components. 

The reason for using preexisting processor parts as the main components for this system is that with more 

transistors residing on the dame die, the bottleneck is shifting toward power delivery and consumption, so 

using many simple cores is now more desirable than one complex, power-hungry core. 

4.1 Concept and Background  

 

To improve performance at a lower system cost and ameliorate power and thermal issues, multicore 

architectures are increasingly customized to best exploit the available parallelism in a given application or 

set of applications. Such systems are often organized for data- or thread-level parallelism (DLP or TLP) 

or both. 

DLP and TLP are different enough that, traditionally, distinct architectures have been employed to take 

advantage of each. Multiple instruction, multiple data (MIMD) architectures, illustrated in Figure 4-1 

(left), are optimized for TLP. For the purposes of this discussion, the important feature of MIMD 

                                                      

4 Most text and data in this chapter are currently under consideration for publication 
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architectures is that each core has all of the components necessary to fetch and execute instructions 

independently. 

Single instruction, multiple data (SIMD) architectures, illustrated in Figure 4-1 (right), are a cost-saving 

refinement of MIMD architectures, specifically optimized for DLP. Data-parallel applications perform the 

same sequence of operations on a large number of data elements. In this case, the components that give 

MIMD systems the flexibility to execute arbitrary independent threads are unnecessary overhead; these 

applications can be executed using a single front end (FE) to fetch a single sequence of instructions and 

distribute it to processing elements (PEs) that operate on different data points. SIMD architectures, 

therefore, remove redundant FE components, reducing power (fewer instructions are fetched and 

decoded) at the expense of flexibility (only a single instruction stream is fetched and executed). 

While MIMD and SIMD architectures are each able to execute certain classes of applications very 

efficiently, problems arise with inter- and intra-application parallelism diversity. In the literature, various 

classes of reconfigurable architectures have been proposed to address variations in available parallelism: 

Liquid SIMD [30] and Vapor SIMD [31] dynamically adjust SIMD width as DLP changes; other 

architectures employ heterogeneous cores [32][33][34]; other approaches combine SIMD and MIMD 

architectures into reconfigurable systems—the focus of this chapter. In Sankaralingam et. al. [25] and E. 

Mirsky  [27], the authors create a reconfigurable SIMD/MIMD system by creating an array of components 

with a reconfigurable network. Other researchers focus on improving specific applications/algorithms, 

such as [26], [28], and [29], where a reconfigurable system is created to optimize a specific type of 

applications. Those researchers have shown the performance benefits for such reconfigurable 

SIMD/MIMD systems in the presence of parallelism diversity. However, the circuit-level overhead of 

introducing this reconfigurability has not been explored in depth. This chapter studies that overhead and 

how it impacts decisions on flexibility in reconfigurable SIMD/MIMD systems. 
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To investigate these design decisions and trade-offs, we designed a reconfigurable SIMD/MIMD system, 

by (1) partitioning an in-order core into its FE and PE, (2) interconnecting an array of FE-PE pairs, and 

(3) controlling which FEs drive which PEs to support various SIMD and MIMD configurations. To 

explore the design space, we performed circuit- and architecture-level simulations and found that 

partitioning results in high energy overheard and consequently leads to unexpected design choices. In 

particular, we found that the energy consumption of cache accesses and FE-PE interconnect dominate the 

system energy. Consequently, it is more energy efficient to not divide cores between pipeline stages like 

traditional SIMD architectures (e.g., Figure 4-1 [right]); instead, we partition at the interface between the 

instruction caches (I$) and the instruction fetch (IF) units.  

We use our system to analyze the trade-offs between the flexibility of the system and the resulting energy 

overhead. We found, for this architecture, that due to the interconnect energy overhead, it is better to 

support a limited number of configurations even though supporting more configurations resulted in a 

greater number of energy-optimal benchmarks. 

4.2 Vertical Integration in Design Decision 

Vertical integration refers to any coordination or co-optimization between different design levels. During 

this work, we explored exposing low-level circuit information to the system-level tools to make better 

decisions. We also briefly explore the potential benefits and overhead of optimizing multiple components 

together. 

4.2.1 System Design 

In SIMD architectures, the main source of energy savings is having multiple PEs under the control of a 

single FE. Enabling a single FE to control multiple PEs requires that control logic drive long wires, 

consuming significant energy. This is especially critical as process technology advancements reduce 

transistor energy faster than the wire energy, making the energy consumed in wires significant [36]. By 

changing the partitioning point, a designer can change the number of control signals as well as the shared 

components and therefore the energy overhead/savings of SIMD operation. 
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We explored a variety of places to divide an OpenRISC [41] core into an FE and a PE: (a) before the 

instructing fetch (IF) stage (the FE is just the I$), (b) before the instruction decode (ID) stage (the FE is 

the I$ and IF stages), and (c) before the execution (EX) stage (the FE is the I$, IF, and ID stages). 

Because of the number of signals passing between the ID and EX stages, we also considered (d) 

replicating the ID stage in both the FE and the PE. 

Using Cadence tools, we analyzed the energy consumption of various partitioning strategies, by 

determining (1) the per-cycle energy consumption of different processor components, (2) the energy 

consumption of wires of different lengths, and (3) the number of signals driven from FEs to PEs (and 

back again) under different partitioning approaches. 

Components Energy 

The first question we had to ask was how to partition the processor (OpenRISC) into two sections (FE 

and PE). Putting more components in the FE side will save energy and power during SIMD execution 

because in SIMD execution, one FE is controlling many PEs. While sharing more components is useful, it 

affects different parts, which we will mention in the next few sections. 

To estimate the energy impact from sharing more or less components, we used circuit-level simulators 

(Cadence tools) to estimate the energy per cycle for the main components in the OpenRISC processor. 

The results of this are illustrated in Figure 4-2. We see that the majority of the energy is consumed in the 

registry file, the floating-point arithmetic units, then in the instruction fetch (IF) and the instruction 

decode (ID). 



68 Reconfigurability at Processor Architecture Level 

 

68 

 

Figure 4-2: OpenRISC’s components energy distribution per cycle assuming 100% utilization 

 

Cache Energy 

Another significant section of the processor is the cache access energy, which is triggered with every 

instruction fetch or data read or write. To estimate this energy, we used CACTI 6.5 [42], which is a tool to 

estimate cache parameters according to the configuration. While this is not a significant contribution of 

this work, we still had to sweep the variables of cache parameters to choose a reasonable set of 

parameters for our design. Illustrated in the figures below are the results of sweeping different variables 

related to caches on cache reading energy and area.  
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Figure 4-3: Area of cache when varying the number of banks and ports 

 

 
Figure 4-4: Energy of cache read when varying the number of banks and ports 
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Figure 4-5: Normalized energy and area of cache when sweeping the associativity 
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Figure 4-6: Energy of transmitting 1 bit across different lengths of wires 
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Figure 4-7: Number of signals connecting the FE and the PE under different configurations 
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To better estimate the energy consumption breakdown in the processor during typical benchmarks, we 

used the architectural simulator gem5 [35] to count the number of instructions that triggers the different 

components during the execution of several benchmarks used before in [37]. Those benchmarks are 

extracted from MineBench [38], SPLASH-2[39], and Rodinia [40]. Every instruction will trigger the 

instruction fetch (IF) and the instruction decode (ID) components; however, only arithmetic operations 

will trigger the registry file and either trigger the integer ALU or the FPU. Each instruction will trigger 

different set of components. After taking this into account, we used the ratio of instructions that 

correspond to different components to have a better breakdown of components energy during 

benchmarks. Combining all the data extrapolated in the previous sections and using architectural 

simulators to estimate the utilization of each component according to the benchmarks, we came up with 

Figure 4-8.  

In our system, we aimed to incorporate 16 cores to represent a sizable system that is capable of running 

highly parallel applications in a relatively efficient manner. Using this assumption and an activity factor 

 
Figure 4-8: OpenRISC’s components energy breakdown when running a variety of benchmarks 
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of 0.25 for the signals connecting the processor stages (this is a very standard activity factor value). Our 

calculations show that the energy of transmitting bits between the FE and the PE for the configurations 

we considered (sharing the I$ only, sharing the I$ and the IF, sharing the I$ and the IF and the ID, or 

sharing the I$ and IF and duplicating the ID) is 9.3%, 35%, 43.5%, 29.6%, respectively, relative to a 16-

way MIMD configuration.  

In conclusion, sharing just the I$ between the different cores results in the least energy overhead despite 

the fact that it requires redundant instruction fetching and decoding in each PE. Fetch and decode energy 

(~8%) is far less expensive than driving the extra signals (~25%), as shown previously in Figure 4-8. 

The circuit-level energy overhead affected the best granularity of configurability as well. The description 

of that effect will be included in the following section, which focuses on figuring the best level of 

configurability such system should have 

4.3 Granularity of Reconfigurability 

In reconfigurable SIMD/MIMD systems, the number and nature of the supported configurations has 

significant implications for both system performance and energy overhead. In this section, we estimate 

the performance and energy benefits gained from supporting more configurations, as well as the 

reconfigurable interconnect energy overhead. The configurations vary from a 16-way SIMD (one FE 

controls all 16 PEs) to multiple narrower-width SIMD groups to a 16-way MIMD execution (every FE 

controls one PE). 
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4.3.1 Energy Results 

To estimate the energy overhead of flexibility, we measured the energy of the multiplexers and the long 

wires required to support different combinations of configurations. We then compare that overhead with 

the resulting benefit of reconfigurability with respect to improved application efficiency.  

Table 4-1 shows the number of multiplexers and long wires needed to support a variety of different 

combinations of configurations. While other combinations might be better for any specific set of 

applications, it is very difficult to determine the best combination of configurations to support without 

prior knowledge of the applications running on the system. For our analysis, we chose what we 

considered to be reasonable combinations that cover the full range of flexibility possible using 16 cores. 

Based on Figure 4-7 and Table 4-1, the reconfigurable interconnect energy overhead for supporting two, 

three, four, or five configuration combinations listed in Table 4-1 is 11.5%, 13.3%, 19.4%, or 26.1%, 

respectively, relative to the average cycle energy of a static 16-way MIMD.  

Table 4-1: The number of long wires and multiplexers needed to support more configurations 

Supported 

Configurations 
16-way SIMD and  
16-way MIMD 

16-way,  

2 8-way SIMD and 16-

way MIMD 

16-way,  

2 8-way, 

4 4-way SIMD and  
16-way MIMD 

16-way,  

2 8-way,  
4 4-way, 
 8 2-way SIMD and  
16-way MIMD 

Multiplexers 15 2to1 8 2to1, 

7 3to1 
4 2to1,  
8 3to1,  
3 4to1 

4 2to1,  
6 3to1,  
4 4to1,  
1 5to1 

Extra Wires in the 

Interconnect 
1 16x,  

15 1x 
1 16x,  
1 8x,  
14 1x 

1 16x,  
1 8x,  
2 4x,  
12 1x 

1 16x, 
18x,  
2 4x,  
4 2x,  
8 1x 

 



76 Reconfigurability at Processor Architecture Level 

 

76 

 

While supporting more configurations increases the energy overhead of the interconnect, it reduces the 

energy consumption among various benchmarks since each benchmark has an optimal energy SIMD 

width. The more configuration we support, the closer to the optimal point we get. To estimate how the 

number of supported configurations affect the energy efficiecny, we ran the benchmarks on widths 

varying from 1 to 16. The results are shown in Figure 4-9. The figure shows how different benchmarks 

have different optimal SIMD widths. 

 
Figure 4-9: Normalized energy of different SIMD width execution of various benchmarks 
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Figure 4-10: Average energy and performance of supporting more configurations (changing the level of configurability). 
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supported configuration adds energy overhead to the reconfigurable interconnect as seen previously. 

Adding the reconfigurable interconnect energy overhead of supporting two, three, four, and five 

configurations to the benchmark energy results shows that the overall system consumes on average 

98.5%, 81.1%, 67.4%, 70.1%, respectively, relative to the energy of running the applications using a 16-

way MIMD. We observe that due to the overhead of interconnect, supporting four configurations 

produces the optimal flexibility for our system rather than supporting more configurations. The results 

that directed us to this conclusion are shown in Figure 4-10. 
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4.3.2 Performance Results 

 

 
Figure 4-11: Normalized performance of various SIMD width systems 
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configurations. The fact that performance stopped improving after four configurations while the overhead 

of supporting more configurations is always increasing, it is clear that the optimal number of supported 

configurations for our system and for our suite of benchmarks is four configurations. While the specific 

number of supported configurations will vary from one system to another, it is interesting to point that the 

returns of configurability diminished very fast.  

4.4 Sweeping Variables 

In this section we briefly analyze the different variables in such a system that will affect the energy 

optimal partitioning configuration (i.e., deciding what components should be in the FE and the PE). 

In the figure below we swept the energy of transmitting 1 bit in a wire across 16 cores to analyze at what 

point each partitioning configuration become the energy optimal one. We assumed a 0.2 activity factor for 

the signals going from FE to PE and 0.1 factor for the signals from PE to FE. The reason we assumed that 

different activity factors between FE to PE and PE to FE is because running in SIMD mode, one FE will 

be sending commands to all PEs for every instruction but not all instructions require commands back to 

the FE. 

According to Figure 4-12, we see that different configurations are optimal at different transmission 

energies. If the system we used had a more energy consumed in the IF and ID components or if the wires 

used do not consume as much energy in transmitting signals, then the optimal configuration would have 

been affected significantly.  However in our case, the wires were about 8% of the core’s energy, so that is 

why in our system it was clearly better to only share the I$ among the cores rather than sharing more 

components.  
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Figure 4-12: Energy of Paraflex according to various configurations if the wires energy was different. It is clear that the 

wire energy was a main factor of choosing a configuration 

4.5 Conclusions about Adding Reconfigurability to Processors 

Reconfigurable SIMD/MIMD systems are able to dynamically respond to changing application 
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better to minimize the communication between blocks by sharing only the instruction cache. Cache 
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any other point significantly increases the communication between SIMD FE and PE. 

We also analyzed the benefit and energy overhead of supporting more SIMD/MIMD configurations in the 
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We analyzed which components of the processor use the most energy, and we have created an appropriate 

reconfigurable system accordingly. We saw that cache configurations in general produce a similar amount 

of cache access energy, and this energy during typical benchmarks consumes a significant percentage of 

the total energy of the system. Reducing the energy of cache access for simple processors like OpenRISC 

seems the most effective way to increase the energy efficiency of the system.  
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 Summary of Work and Contributions Chapter 5
In this chapter, we go over a summary of the main tasks we have done and an overview of the main 

conclusions we had about vertically integrated dynamically reconfigurable systems.  

5.1 Summary of Work 

In this work, we aimed to increase energy efficiency of systems by adding vertically integrated dynamic 

configurability to them. When we added configurability to the compression algorithm, the results were 

much better without incurring much overhead. We saw that even small embedded systems can benefit of 

dynamic reconfigurability if done with other aspects of the design in mind. We showed that simple 

metrics typically used to compare algorithms cannot be used when dealing with special systems like low 

energy embedded body sensors and different set of metrics spanning to various design levels should be 

considered. 

We showed how adding voltage reconfigurability at a finer granularity improves energy efficiency 

significantly. During the process of adding this configurability, we went over the main additional aspects 

this configurability adds, like how the scheduling system has to change to accommodate voltage selection 

of individual operations. To maximize the energy efficiency of the reconfigurable system, we had to 

incorporate vertical integration by looking at multiple design layers. We explained how the switching 

overhead due to the transistors in the headers affects the scheduler since it will prevent some operations of 

running at a lower voltage due to the switching overhead. We showed that including some of the low-

level information into the higher-level design decisions increases energy efficiency without incurring 

unreasonable efforts. 

We showed a comparison of the methods of selecting the voltages for multi–voltage rail systems. We 

showed how simple methods, which are used traditionally, are actually reasonable effective, like using the 

delay of components. We investigated the number of voltage rails a system should support to maximize 

benefits, and we saw very limited benefits of adding more than two rails. The benefit of adding more rails 

gets overshadowed very fast by the complexities it causes to the rest of the design, mainly in the power 
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delivery network. While the quantitative analysis of those effects is outside the scope of this work, we 

have discussed qualitatively the effect of adding more voltage rails to the rest of the system. 

In the programmable core array project, we showed how reconfigurability at a relatively high design level 

(system architecture) is still very useful and can be done without recreating every component in the 

processor. We used existing components from the OpenRISC core to build a bigger and a reconfigurable 

system capable of switching between various width SIMD and MIMD configurations. During the design 

of this system, we investigated the effect of interconnect energy consumption on the overall system. We 

also showed how including this information in the architecture decision has significantly changed the 

design and without it the energy efficiency of the system would have suffered. We analyzed the energy 

overhead of adding the configurability, we studied the benefits of adding or decreasing the level of 

configurability, and we showed that we reach near-optimal results even with a limited level of 

configurability and how adding more configurability will just add more overhead than benefits. 

In general, this work focused on designing systems from beginning to end using reconfigurability and 

low-level circuit information in system-level decisions to show the potential of dynamic configurability 

and vertical integrations. Throughout this work, we showed many times how configurability is currently 

underutilized and that it should be a more explored option in designing new systems. We showed how 

this configurability combined with vertical integration can save a significant amount of energy without 

significant negative effects on other aspects. 

5.2 Individual Contributions 

 Developed a simple adaptive compression algorithm suitable for BASN devices by adjusting 

preexisting algorithm ideas 

 Analysis of the created compression technique against others from the aspect of BASN devices 

 Equal partner in creating and designing the first processor that uses PDVS 

 The main designer of the block-level design of the PDVS chip 
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 The designer of the microcode, the scheduling algorithm, and the series of programming tools for 

the PDVS chip 

 Main partner for the measurement and testing/debugging of the PDVS chip 

 Readjusting the RTL Verilog of OpenRISC to create a partition used for creating different SIMD 

and MIMD widths 

 Synthesize, place, and route several FPCA configurations for power and area estimations 

 Performed performance and energy analysis on the benchmark results (running the benchmarks 

was not my individual contribution) 

5.3 General Guidelines and Recommendations 

 Adaptive delta encoding compression provides a very high energy-saving potential, especially 

with its simplicity, which enables implementability on most embedded devices. 

o As see in the BASN project where simple algorithms can make big difference. 

 Having small components switching voltages independently is energy efficient. 

o As seen in the PDVS project, increasing spatial and temporal voltage scaling granularity 

is beneficial. 

 If the voltage reconfigurability is targeting small components, few voltage levels are sufficient to 

extract most of the potential energy savings. 

o As seen in PDVS, the number of rails determines the number of voltage options each 

component has. Working on such spatial granularity means a greatly decaying benefit of 

each additional option. 

 If the level of configurability is relatively high, then having more options is desirable. 

o As seen in FPCA, since we are changing the width of SIMD and affecting the whole 

system (coarse granularity), supporting relatively high amount of configurations (widths 

of 1, 2, 4, and 16) was more beneficial. 
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 The overhead of the circuit levels should always be considered in system architecture and layout 

for it might impact things heavily. 

o As seen in the FPCA project, the transmission bits between different components 

dominated the energy consumption which affected the optimal energy configuration. 

 Exposing circuit-level information to system-level tools is an efficient way to optimize energy. 

o As seen in the PDVS project, giving the scheduler the switching overhead information is 

sufficient to save energy without requiring complex co-optimization. 

5.4 Open Questions and Future Work 

Though this work have discussed many questions related to introducing configurability and vertical 

integration to a system, there are many more that have not been addressed. The configurability and 

vertical integration aspects are very generic and have almost unlimited supply of questions to be 

answered. Here we will present some of the questions and topics that we felt we would have tried to 

answer if more work is done on this topic. 

This work was focused on energy efficiency more than anything; it would be interesting to see if power 

consumption or performance were the main aspects to optimize. Would the design decision differ, or 

would there be an optimal configuration that optimizes most of those aspects?  

In each of the projects we worked on, we still have numerous variables we would have liked to explore 

and analyze—like the number of arithmetic components connected to one header or if other types of 

single components should have access to voltage scaling. 

During our work with a reconfigurable processor, we wondered if the decisions we made would be 

significantly different if other processors were used as our base in-order processor. Would the energy in 

wires still be as significant as it was in OpenRISC? What about different configurations that we could 

have supported, like federation, where two in-order cores act as a single out-of-order processor. 
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In all the projects, we always wondered how the results would differ if a different set of benchmarks were 

used. This was particularly interesting because we were strongly limited in the benchmarks we could use 

either because they use many features our custom PDVS processor does not possess or because the 

benchmarks are not compatible with the architectural simulators we used, like in our reconfigurable 

processor project. 

Another aspect of reconfigurability that we did not have time to explore is how and when to actually 

switch the configurations. We investigated the overhead of the switch, but we did not explore algorithms 

that can determine when the hardware needs to switch to a different configuration according to the 

running application. This aspect was too complicated and large to be addressed and could become a 

stand-alone project by itself. 

While there are many more questions to ask, those are some of our main questions that we wish we had 

time to explore. We hope in our future work or with the support of other researchers, we would be able to 

answer some of these questions. 
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