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Abstract

This study is motivated by a trace element analysis procedure often used in forensic

science for the analysis of glass and other trace evidence. Existing glass data sets

used to analyze error rates are of small sample size (n) relative to dimension (p);

and potential benefits may arise from the consolidation of multiple small data sets

into one. However, while forensic data is generally not readily available, information

concerning their covariance (or correlation) matrices may be. This research proposes

two methods for detecting similarity between covariance matrices and their true

effective dimension as well as a method for combining covariance matrices based on

the subspaces they span. These metrics and methods may apply to similar situations

where data is inaccessible or otherwise unavailable due to privacy or other reasons.

They may also apply if the data is believed or known to contain many outliers, as

analysis of the covariance matrix may be more robust in reducing some of the effect

of outliers. Although motivated by small n, we believe these methods may scale to

the case where both n and p are large or p > n.
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Chapter 1

Introduction

1.1 Introduction

Every contact leaves a trace.

– Dr. Edmond Locard, 20th century French forensic science pioneer

Wherever he steps, whatever he touches, whatever he leaves, even un-

consciously, will serve as a silent witness against him. Not only his

fingerprints or his footprints, but his hair, the fibers from his clothes,

the glass he breaks, the tool mark he leaves, the paint he scratches, the

blood or semen he deposits or collects. All of these and more, bear mute

witness against him. This is evidence that does not forget. It is not con-

fused by the excitement of the moment. It is not absent because human

witnesses are. It is factual evidence. Physical evidence cannot be wrong,

it cannot perjure itself, it cannot be wholly absent. Only human failure

to find it, study and understand it, can diminish its value.

– Paul Kirk, forensic scientist [58]
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Locard’s exchange principle and Kirk’s statement formulated the basis of and

paved the way for forensic science today. Although physical evidence “does not

forget,” it may be easily contaminated or degraded in its natural environment. Most

importantly, as Kirk himself recognized, physical evidence may be misinterpreted by

well-meaning forensic scientists. The research presented in this paper is motivated

by a procedure known as trace element analysis, which has been used to evaluate the

source of trace evidence such as bullets, glass, paint, and copper wire. While our data

specifically concerns glass fragments, the procedure for all trace element analysis is

similar. The “working hypothesis” is that concentrations of certain elements – those

presumably highly specific to different pieces of evidence – provide a distinctive

“signature” that allows one to conclude whether “analytically indistinguishable”

evidence found at a crime scene and that in possession of a suspect share a common

source.

The statistical issues surrounding this approach are evident. Consider a glass

manufacturer who produces float glass for windowpanes. If the batch of material

from which many windows are manufactured is extremely homogeneous, measure-

ments on many windows from the same batch may be deemed “not distinguishable”

(depending on the level of error in the measurements themselves), leading one to

erroneously conclude different windows “came from the same source” (are actually

one window) and hence to potential false positives. Conversely, if the windowpane

in question is rather inhomogeneous, measurements from two different fragments

of the same window may be different, leading to false negatives. Trace element

analysis of forensic evidence may be unsatisfactory for both inclusion and exclusion

purposes.

Recently, three American Society for Testing and Materials (ASTM) Interna-

tional standards have been proposed detailing the full procedure for trace evidence
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analysis of forensic glass evidence. The standards, which describe the process of

determining if two glass fragments are “analytically indistinguishable,” do not ex-

plicitly use the terms “inclusion” and “exclusion”; however, evidence has shown

that jurors, at least in the U.S., may understand “analytically indistinguishable”

to mean “identification” or “from the same source” [34]. Additional phrasing from

the standards, “[i]f the samples are distinguishable... in any of these observed and

measured properties [for example, color, refractive index, density, elemental com-

position], it may be concluded that they did not originate from the same source of

broken glass,” provides conditions where “distinguishable” evidence samples may be

used for exclusion (ASTM E2330-12 Section 1.1 [51], ASTM E2927-16 Introduction

[53], ASTM E2926-13 Introduction [52]). ASTM E2927-16 [53] further asserts that

the described technique “yields high discrimination among sources of glass” and

“provides high discriminating value in the forensic comparison of glass fragments.”

In addition to jurors potentially misunderstanding the meaning of “not distinguish-

able,” the standards themselves describe the probative value of this determination

in a manner that may well be highly misleading.1

Up until recently, there has been minimal use of statistics in forensic science

disciplines. The 2009 National Academy of Sciences (NAS) report, Strengthening

Forensic Science in the United States: A Path Forward (National Research Council

(NRC) 2009) [22], recognized this and proposed a number of recommendations for

the future direction of the field. An earlier report provided detailed findings on a

trace evidence analysis procedure previously in use at the U.S. Federal Bureau of

Investigation (FBI) known as Compositional Analysis of Bullet Lead (CABL) [21],

which is described due to its similarity to the procedure in use for analysis of glass

fragments. Some background on forensic glass analysis and the specific analysis

1The author thanks Professor William Thompson for this remark.
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procedure are provided before introducing the data currently available to us.

1.2 Compositional Analysis of Bullet Lead (CABL)

In 2004, the NAS published its findings on the Compositional Analysis of Bullet

Lead (CABL), a procedure for comparing the “signatures” of two bullets (or bul-

let fragments): one from the crime scene (CS) and one from the potential suspect

(PS), often referred to in the forensics discpline as the “known” (K) and “ques-

tioned” (Q) or “recovered” (R) [21]. Using the working hypothesis described above,

a vector of seven measured trace elemental concentrations (silver Ag, antimony Sb,

arsenic As, bismuth Bi, cadmium Cd, copper Cu, lead Pb) was assumed to provide

a unique “signature” [with the ability] to distinguish samples from differing and

common source. Elemental concentrations from the K and Q bullets were measured

in triplicate, and the sample mean and standard deviation were calculated for each

bullet (fragment). The “2-SD-overlap” procedure then involved forming “mean ±

2·SD” intervals. If the K and corresponding Q intervals overlapped for all seven

elements, they were deemed “analytically indistinguishable.” The FBI often went

further in the courtroom by testifying that K and Q “likely originated from the

same manufacturer’s source of lead” or “must have come from the same box” [21,

pp. 91-92]. A “false positive error rate” (probability of claiming “same source” when

the samples came from different sources) by counting the number of pairs between

any two of 1,837 samples in their “data base” that resulted in a “false match” by

their procedure; i.e., they found 693 among their 1,686,366 pairs that resulted in a

“false match.” In this paper, we refer to the rule used to determine “analytically

indistinguishable” as the “match rule” and the proportion of times that the rule is

satisfied as the “match rate.”
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The NAS Committee concluded that:

1. The “data base” of 1,837 samples including “one specimen from each com-

bination of bullet caliber, style, and nominal alloy class” [59, 62] cannot be

viewed as a representative sample of bullets – they were “selected” in hopes

of spanning the space of all possible bullet types, thereby resulting in pairs of

bullets that could be expected to be more different than might be seen in a

real case.

2. A procedure for estimating CABL’s error rate is based more properly on sta-

tistical modeling of the covariance (or correlation) matrix among the seven

elements in the proposed “signature,” from which more valid estimates of sen-

sitivity (given that the true concentrations differ by less than a prescribed

“difference threshold,” the probability that the FBI procedure properly con-

cludes “same source”) and specificity (given that the true concentrations differ

by more than a prescribed “difference threshold,” the probability that the FBI

procedure properly concludes “different source”) can be calculated.

The Appendices in the NRC (2004) report concluded that the CABL procedure

error rates would be much higher than the claimed 0.04%. The Committee found no

fault with the elemental concentration measurement technique (inductively coupled

plasma optical emission spectrometry, or ICP-OES) and had few recommendations

on the laboratory procedures; rather, the concerns centered around the claimed

[stated] error rates and the documented claims of “same source” identifications using

the FBI’s “match” procedure.

Another major concern that was raised was the existence of thousands or even

millions of bullets with similar chemical “signatures” simply due to the consistency

in the lead manufacturing process: large homogenized batches of lead are likely to
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yield very similar concentrations for the thousands or millions of bullets created from

a homogeneous batch. Further, once made into bullets and packaged into boxes of

25 or 50 bullets per box, no box could be guaranteed to have bullets originating from

only one batch of lead. Hence, a definitive statement such as “this bullet must have

come from this box of 50 bullets” could not be supported, knowing that hundreds

of other boxes likely contained bullets with the same signature. Moreover, bullets

that did not satisfy the “match rule” did not guarantee that the two bullets came

from different boxes, as bullets from different batches might have ended up in the

same box. Thus, the procedure was useful for neither “inclusion” nor “exclusion”

(for more about CABL, see [94, 37]).

1.3 Forensic Glass Analysis

1.3.1 Background and History

Glass is defined as “an inorganic product of fusion which has cooled to a rigid condi-

tion without crystallizing” [50], of which a typical melting tank may produce several

hundred tons per day [13]. Different types of glass are manufactured for various pur-

poses, including but not limited to flat/sheet glass, float glass, toughened/tempered

glass (safety glass which shatters without sharp edges or points [50] and may be

four to five times stronger than non-tempered glasses [106]), and laminated glass

(required for vehicle windshield glass in the U.S. for safety reasons [13]).

When glass shatters, fragments may eject in all directions and land on any person

within a few feet [13, 74]. Glass fragments may be retained on clothing but tend to

fall off over time. These fragments, which may be extremely small, are collected by

forensic examiners for use in analysis.
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It is clear that the only conclusive proof of the origin of a fragment of

glass is the finding among the “comparison” glass of a piece or pieces

with which the “exhibit” fragment shows a perfect fit.

– F. G. Tryhorn [103]

The early analyses of forensic glass evidence examined how glass physically broke.

Glass can be regarded “as a slightly elastic medium of uniform composition” [103]

that bulges, causing one side becomes convex and the other concave, upon the

application of force. When the force exceeds the tensile forces of the glass’ surface,

the glass breaks. If possible, broken fragments were pieced together – the only

“conclusive” proof of fragments having a common origin [103, 36, 73]. This method

becomes impossible if fragments are too small or missing.

Physical, optical, and chemical properties of glass

Before chemical analysis of glass was performed on a large scale, examiners com-

pared the physical and optical properties of glass. These include properties of glass

such as thickness, color, edge marks and hatch marks, fluorescence, specific gravity,

and refractive index (RI). In the 1980s, refractive index was considered among the

most discriminating methods for comparing glass fragments. However, following im-

provements in the manufacturing process, the difference in refractive index between

glasses from manufacturers and machines decreased, rendering refractive index less

discriminating.

At the same time, chemistry equipment was becoming cheaper and required less

labor and time to operate. The widespread availability of such machinery pushed

forensic glass analysis in the direction of chemical concentration analysis for forensic

glass discrimination, which was shown to be effective when RI and other physical
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or optical properties were inadequate [12, 19, 20, 63, 109, 64, 28, 60, 61]. Although

challenges of using chemical analysis remain today, Koons and Buscaglia (1999) [60]

state that:

The forensic scientist should use the most discriminating technique avail-

able in the examination of glass or other form of trace evidence because

it is the most effective means of both avoiding false associations and

excluding two similar, but separate, sources. It is in the best interest

of the court for the scientist to use the most discriminating analytical

technique even if this means that exact probability figures for a conclu-

sion cannot be calculated. In cases where the analytical discrimination

is very good, as in compositional measurements of glass, factors such

as manufacturer distribution of products and age and breakage of glass

objects in the crime scene and suspect environments are more significant

than the probability of two randomly selected sources from a large glass

population having coincidentally indistinguishable characteristics. These

factors can either be determined by standard investigative techniques or

they involve everyday experiences of the nonscientist. As a result, their

significance can be readily weighed by the trier of fact without resorting

to statistical calculations. [emphasis added]

The job of a statistician is to understand the validity of the claims made in this

paragraph; specifically: probabilities for a conclusion are needed in order to assure

that (1) the most discriminative analytical technique has been used; (2) experiments

can and should be designed to quantify the magnitude of effects of factors such as

“manufacturer distribution of products and age and breakage of glass objects in

the crime scene and suspect environments” to determine whether these factors are
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indeed “more significant than the probability of two randomly selected sources from

a large glass population having coincidentally indistinguishable characteristics”; and

(3) the trier of fact cannot judge their significance without resorting to statistical

calculations.

The measurements of chemical concentrations in glass can be conducted using

any of several methods, including spectrographic analysis [36, 12, 93], neutron acti-

vated analysis (NAA) [42, 49, 19, 43], spark source mass spectrometry [42, 12, 19],

dilution spark source mass spectrometry [42], flame atomic emission spectrometry

[43], energy dispersive X-ray (EDX), inductively coupled plasma atomic emission

spectrometry (ICP-AES) [20, 43, 63, 64, 16, 60, 61, 29], inductively coupled plasma

mass spectrometry (ICP-MS) [116, 28, 29], and laser ablation ICP-MS (LA-ICP-MS)

[102, 7, 65, 101, 9].

1.3.2 ASTM Standards

When small fragments of glass are recovered in the investigation of break-

ings or of motor accidents the problem presented is usually that of deter-

mining whether the fragments came from a given source... conclusive

proof of the origin of the fragments is difficult to obtain. As is so often

the case with circumstantial evidence the result of the examination usu-

ally indicates the probable rather than the actual source of the glass.

– F. G. Tryhorn [103]

An approach similar to CABL’s “2-SD-overlap” procedure has been recom-

mended for comparing glass samples found at a crime scene (the “known” K frag-

ment) with those found on or in connection with a potential suspect (the “ques-

tioned” Q or “recovered” R fragment). Using measured trace elemental concentra-
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tions from these glass fragments, the standards provide a method for determining if

two fragments are “analytically distinguishable” and “it may be concluded that they

did not originate from the same source of broken glass” [51, 52, 53]. These three

ASTM standards outline the same general process but differ in the instruments and

techniques used to measure and process glass samples and the number of elements

that should be analyzed (8-17).2

� ASTM E2330-12, Standard Test Method for Determination of Concentrations

of Elements in Glass Samples Using Inductively Coupled Plasma Mass Spec-

trometry (ICP-MS) for Forensic Comparisons

� ASTM E2927-16, Standard Test Method for Determination of Trace Elements

in Soda-Lime Glass Samples Using Laser Ablation Inductively Coupled Plasma

Mass Spectrometry for Forensic Comparisons

� ASTM E2926-13, Standard Test Method for Forensic Comparison of Glass

Using Micro X-ray Fluorescence (µ-XRF) Spectrometry

For simplicity, these methods are denoted by ICP-MS, LA-ICP-MS, and µ-XRF,

respectively. Where applicable, samples from completely different panes of glass will

be referred to as “samples,” and pieces from the same pane of glass as “fragments,”

because more consistency is expected in fragments from a single pane than between

samples from different panes. Indeed, this difference in consistency forms the basis

of the ASTM standards on forensic glass evidence.

2The elements in the “signature” differ for each standard. Standard ASTM E2330-12 for ICP-
MS recommends 14 elements: magnesium (Mg), aluminum (Al), iron (Fe), titanium (Ti), man-
ganese (Mn), rubidium (Rb), strontium (Sr), zirconium (Zr), barium (Ba), lanthanum (La), cerium
(Ce), neodymium (Nd), samarium (Sm), and lead (Pb). ASTM E2927-16 for LA-ICP-MS recom-
mends all of the same except Sm, plus lithium (Li), potassium (K), calcium (Ca), and cerium (Ce)
for a total of 17 elements. The standard for XRF is less specific; see ASTM E2926-13 Section
10.6.2.1 [52].
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Each standard includes a section entitled “Calculation and Interpretation of

Results.” The steps in this section are similar in each standard; below are those for

ASTM E2330-12 (ICP-MS):

10.1.1 For the Known source fragments, using a minimum of 3 measurements,

calculate the mean for each element.

10.1.2 Calculate the standard deviation for each element. This is the Measured SD.

10.1.3 Calculate a value equal to 3% of the mean for each element. This is the

Minimum SD.

10.1.4 Calculate a match interval for each element with a lower limit equal to the

mean minus 4 times the SD (Measured or Minimum, whichever is greater) and

an upper limit equal to the mean plus 4 times the SD (Measured or Minimum,

whichever is greater).

10.1.5 For each Recovered fragment, using a minimum of 3 measurements, calculate

the mean concentration for each element.

10.1.6 For each element, compare the mean concentration in the Recovered fragment

to the match interval for the corresponding element from the Known fragments.

10.1.7 If the mean concentration of one (or more) element(s) in the Recovered

fragment falls outside the match interval for the corresponding element in the

Known fragments, the element(s) does not “match” and the glass samples are

considered distinguishable.
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For ASTM E2927-16 (LA-ICP-MS), “Calculation and Interpretation of Results”

appears as Section 11, also with a “4-SD match interval”; for E2926-13, Section

10.7.3.2 uses a “3-SD match interval”:

“For each elemental ratio, compare the average ratio for the ques-

tioned specimen to the average ratio for the known specimens ±3s. This

range corresponds to 99.7% of a normally distributed population. If, for

one or more elements, the average ratio in the questioned specimen does

not fall within the average ratio for the known specimens ±3s, it may be

concluded that the samples are not from the same source.”

It should be noted that the “99.7%” coverage applies only if the standard de-

viations were known, not estimated – as it is here, from possibly as few as three

measurements – and only if the measurements come from a Gaussian (normal) dis-

tribution.

Justification for these procedures [26, 108, 102, 61] appears to be based on em-

pirically observed “error rates” calculated from all possible pairs of glass samples

from different sources. For example, Weis et al. [108] measured 62 different glass

samples, mostly from different manufacturers, but some from the same manufacturer

produced from different batches at different time periods. The “error rate” was then

calculated as the proportion of all pairs that satisfied the “match” criterion, even

though the two came from different sources. Comparing each one of the 62 samples

as the K with any one of the other 61 samples as the Q, they found two of the

1,891 pairs satisfied their “modified n-sigma criterion with fixed relative standard

deviations (FRSDs),” giving a Type II error rate of 0.11%, where the FRSDs varied

between 3.0% and 8.9%. Dorn et al. [26] used a similar “4-SD match criterion,” but

with an RSDmin set to 3% for the concentrations of the 10 elements in their study.
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They found similarly small error rates: 0.27% (6/2256, 48 same-source samples)3 for

their Type I error rate (two samples from same source failed to satisfy the “match”

criterion), and 0.11% (7/6642, 82 different-source samples) for their Type II error

rate (two different samples satisfied the “match” criterion).

Reported error rates from four commonly referenced papers are very low, typi-

cally less than 1% [26, 108, 102, 61]. These error rates are calculated, as above, by

comparing two different-source samples from among all possible pairs in the data

set, and marking a comparison as a “false positive” if sample means for all 17 ele-

ments from the R fragment fall within the “mean ± 4·SD” interval created from the

K fragment. In this process, the same sample is used for multiple different-source

comparisons, and the match or no match conclusion may differ if samples i and j

are the R or K fragments, respectively. False positive rates (FPR) calculated in

this manner also depend heavily on the specific data set used, some of which are

purposefully created to be diverse. If samples in the data set are all highly simi-

lar samples (e.g., Toyota windshields) manufactured at similar times, the expected

mean difference between these samples will be lower than if samples were very dif-

ferent (e.g., car windshields and baby food jars). The estimated FPR for the first

data set may well be higher than that of the second data set.

While the FBI’s CABL procedure involved calculating “mean ± 2·SD” for both

the K and R specimens, the glass standards calculate instead “mean± 4·SD” for only

the K fragment and check to see if the means for the R fragment fall in that interval.

In other words, only one set of standard deviations (for the K fragment) is calculated,

and variability in the R fragment is not taken into consideration. The glass standards

also recommend the use of 8–17 elements, not just seven. Correlations between the

3Note that Dorn et al. (2015) [26] actually measured 24 fragments 9 times each, and a 25th

fragment 24 times, which is quite different from 48 fragments. See page 87, “Group 1 ”, for details.
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elements, which are not insignificant, are also not accounted for; and exploratory

data analysis plots have indeed shown that certain corresponding pairs of elements

are highly correlated. Thus, individual “match intervals” cannot be treated as

independent.

Ideally, a multivariate version of Student’s t such as Hotelling’s T 2 is conducted

to account for the issues mentioned above. Unfortunately, sample sizes are usually

not large enough to allow for such testing. ASTM E2330 above requires a minimum

of three measurements per sample, while ASTM E2927 requires “a minimum of 9

measurements (from at least 3 fragments, if possible)” [53]. None of the data sets

available to us for analysis has more than nine replicates, yet the number of elements

varies from 8–17 depending on the standard. Thus, Weis et al. (2011) [108] dismiss

the use of Hotelling’s T 2 statistic for assessing the significance of the measurement

difference in elemental concentrations in two samples:

Hotelling’s T 2-test, a multivariate equivalent of Student’s t-test, has

the disadvantage that for mathematical reasons the number of factors

(replicate measurements on the control sample plus replicate measure-

ments on the recovered sample) must be at least larger by two than the

number of dimensions (i.e. the number of element concentrations, in

our case 18). Therefore, at least 10 replicate measurements of both sam-

ples to be compared must be conducted for the Hotelling’s T 2-test to be

applicable. If only six replicate measurements are carried out for each

of the two samples to be compared, the number of elements used for the

comparisons has to be reduced to 10, which leads to a loss of evidential

value. Hence, Hotelling’s T 2-test calculations will not be addressed in

this paper.
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In fact, having fewer replicates than elements does not relieve us of the need for

more replicates, because we still need to estimate the correlations in the measure-

ments among the different elements. Forensic glass experts are well aware of the

correlations among certain elements, based on their chemical properties.4 The cor-

relation (or covariance) matrix is used explicitly in Hotelling’s T 2 statistic, but even

if not used explicitly, knowing the correlations between pairs of elements removes

any temptation to treat individual “match intervals” as independent.

1.4 Data Introduction

Our motivation stems from roughly normal (or lognormal) glass data which tends to

contain outliers, is of small sample size n, and has dimension p of similar magnitude

to n. However, forensic science is a discipline where data may likely be inaccessible;

and the proposed methods may extend not only to data sets of higher dimension-

ality (large n and large p), but also to cases where only covariance (or correlation)

information is available.

For a few reasons, we are interested in logarithms of the glass data. First,

chemists tend to refer to the “relative standard deviation” (RSD) rather than raw

SD, as the SD of elemental concentrations tends to be related to the mean. For

example, six measurements of 7Li might be very different from six measurements of

90Zr, which has means and SDs around 11 times larger, but whose RSDs are very

similar (see Table 1.1). Second, elemental concentration measurements may have

slightly skewed distributions, while the distributions of the logarithms tend to be

more symmetric. The data we receive from laboratories has typically undergone

4For example, the very high correlation between hafnium and zirconium is well known: not
surprising to chemists, as Hf and Zr are near each other in the periodic table, as are other pairs of
elements.
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some basic manipulation (e.g., background correction), on which we further take

logarithms.

raw data 1 2 3 4 5 6 mean/SD RSD

7Li 4.56 4.68 4.79 4.25 4.33 4.49 0.205/4.517 4.54%
90Zr 54.16 55.25 51.93 50.13 49.97 49.44 2.416/51.813 4.66%

log data 1 2 3 4 5 6 mean SD

log(7Li) 1.517 1.543 1.567 1.447 1.466 1.502 1.507 4.54%
log(90Zr) 3.992 4.012 3.950 3.915 3.911 3.901 3.947 4.62%

Table 1.1: Means, SDs, and RSDs for six measurements of 7Li and 90Zr. The
estimated SDs are approximately the RSDs.

A toy data set containing 10 elements is shown in Table 1.2. The first three

rows indicate three measurements taken on a known glass sample. The next sets of

rows are calculations of, as the standards instruct, the means, standard deviations,

and 3% of the mean to give a lower bound for the SD. The lower and upper bounds

of the created interval can then be calculated using “mean ± 4·max{0.03*mean,

SD}” to create the match interval. The last row shows elemental concentrations

means from three measurements of a recovered (or questioned) glass fragment. As

concentrations for two of the elements fall outside the interval (in this case, larger

than the upper interval bound), according to step 10.1.7, these glass samples “are

considered distinguishable” [51].

1.5 Data Sets

In this section we describe the four glass data sets that formed the basis for our

research motivation and some preliminary exploratory analyses. The first three

data sets are measured using LA-ICP-MS while the fourth uses ICP-MS. Since the

elements measured using these methods differ, we use these two groups of data



17

Mg Al Fe Ti Mn La Ce Nd Sm Pb

K fragment 1 30500 2217 4169 206 112 2.994 5.728 2.54 0.542 1.086
K fragment 2 30110 2150 4213 194 111 3.034 5.648 2.81 0.68 1.056
K fragment 3 30580 2226 4155 208 115 2.954 5.69 2.58 0.89 1.13

meanK(x) = x̄K 30396.67 2197.67 4179 202.67 112.67 2.99 5.69 2.64 0.7 1.09
sdK = σK 251.46 41.53 30.27 7.57 2.08 0.04 0.04 0.15 0.18 0.04

0.03x̄K 911.9 65.93 125.37 6.08 3.38 0.09 0.17 0.08 0.02 0.03
max {0.03x̄K , σK} 911.9 65.93 125.37 7.57 3.38 0.09 0.17 0.15 0.18 0.04

lower bound 26749.07 1933.95 3677.52 172.39 99.15 2.63 5.01 2.04 -0.02 0.93
upper bound 34044.27 2461.39 4680.48 232.95 126.19 3.35 6.37 3.24 1.42 1.25

meanR(x) 30400 2321 4590 240 112 2.4 5.8 3 0.7 1.3

Table 1.2: An illustration of ASTM E2330 with a toy data set. The measured
concentrations in two elements from the recovered glass fragment, Ti and Pb, fall
outside the upper bound of the 4 ± max {0.03x̄K , σK} interval; thus these glass
samples “are considered distinguishable.”

separately in analyses.

The data provided by each laboratory may have previously undergone some

basic manipulation (e.g., background correction, usually involving subtracting a

lower limit). Logarithms are further taken to help normalize the data, especially

given the small sample sizes.
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Figure 1.1: Outliers. Points indicate mean log elemental concentrations averaged
across replicate measurements per fragment (ranging from 3 to 9 with the exception
of certain fragments in Data Set 3). The first three plots show Ti against K with
n = 24, 33, 24 (one pane chosen at random from Data Set 3). The plot for Data
Set 4, which did not include K, is of Ti against Ba for Container glass (n = 160).
Outliers can be seen in almost all elements.
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1.5.1 Data Set 1 – Canadian data set

Dr. David Ruddell (Centre of Forensic Sciences, Toronto, Canada) kindly shared

the data from Dorn et al. (2015) [26]. The data from the “pane study” consisted of

48 “samples” taken from a single 4’ × 6’ pane of glass: 24 fragments were cut from

the glass pane and measured 9 times each; a 25th fragment was measured 24 times

(see page 87, “Group 1,” for details). These fragments spanned the entire pane

of glass. The 23 elements measured include all 17 elements cited in E2927-16, plus

silicon (29Si), cobalt (59Co), tin (118Sn), thorium (232Th), and uranium (238U). These

data can be used to estimate within-fragment variability (from the 25th fragment

measured 24 times).

1.5.2 Data Set 2 – German data set

Dr. Peter Weis (Bundeskriminalamt/Federal Criminal Police Office, Forensic Sci-

ence Institute, KT 42 – Inorganic Materials and Microtraces, Coatings, Wiesbaden,

Germany) kindly shared the data that were published in Weis et al. (2011) [108].

Each fragment was measured 6 times, which allows for reliable estimates of within-

fragment variability for all 20 elements that were measured. The elements include

all 17 of the elements cited in E2927-16, plus sodium (23Na), tin (118Sn), and silicon

(29Si, as the constant standard). In this collection, data set (A) “Same” consisted

of 33 fragments from the upper triangular half of the same pane of glass, plus a

34th fragment that was measured 6 times on each of 11 consecutive days, permit-

ting rough estimates of between-fragment variability (among the 33 fragments) and

between-day variability (among the 11 days). We also can verify that the within-

fragment variability (measurement variation among the 6 replicates) is consistent

with the within-day variability (also 6 replicates each on 11 days).
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1.5.3 Data Set 3 – ISU data set

Dr. Soyoung Park and Dr. Alicia Carriquiry of Iowa State University (ISU) kindly

shared data on float glass samples from two manufacturers [77, 78]. The 18 elements

measured included all 17 cited in ASTM E2927-16 as well as sodium (23Na). Data

from 48 glass panes were collected, 31 from Company A produced over a three week

period, and 17 from Company B produced over a two week period. From each

pane, 24 fragments were randomly sampled, with 21 fragments having five replicate

measurements and three fragments having 20 measurements. These data provide

valuable information on within- and between-manufacturer variability. Exploratory

analyses suggest that for within-manufacturer panes, at least half the elements vary

by at least δ = 0.1, or roughly 10% on the log scale. Between-manufacturer panes

differ in certain elemental concentrations for just over half of the 18 elements (see

Figure 1.2).
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Figure 1.2: Log concentrations for three elements from Company A (left of vertical
red line) and Company B (right of vertical red line). Each vertical boxplot represents
concentrations from a single pane (48 panes total). Relatively clear splits between
manufacturers similar to those shown here can be observed in just over half of the
18 elements; concentrations of 27Al, 39K, 42Ca (and other elements) from the 31/17
different panes within-manufacturer tend to be (but are not always) very similar.

1.5.4 Data Set 4 – FIU data set

Data were obtained from Florida International University (FIU) in which concen-

trations of 16 elements were measured on multiple glass samples via ICP-MS [5].
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The elements include 13 of the 14 cited in E2330-12 (with two isotopes of strontium,

86Sr and 88Sr) minus neodymium (Nd), plus antimony (121Sb and 123Sb), gallium

(71Ga), and hafnium (178Hf). Each sample had 3 measurements, and the collec-

tion of 590 samples included seven types of glass: 160 Container glass samples, 189

Float Architecture, 46 Float Autowindow (CFS), 97 Float Autowindow (non-CFS),

45 Headlamp, 10 Laboratory, and 43 “Rare.” Not all types of glass had elemental

concentration measurements for all 16 elements.

Because the types of glass are so different, from container to decorative archi-

tectural to automotive, and because the measurement technique (ICP-MS) differs

from the previous three data sets, these data cannot be combined with the previous

three data sets, and any analyses will be performed separately. However, this data

set confirms the high (generally positive) correlation between elements. Table 1.3

shows several pairs of elements with consistently high correlations across all glass

types.

Ce-La Ce-Sm La-Sm Mn-Sm Ba-Mn Ba-Sm Mn-Ti La-Mn Sm-Ti

Container 0.98 0.92 0.94 0.83 0.47 0.65 0.63 0.83 0.74
Float Arch∗ 0.96 0.92 0.95 0.76 0.70 0.82 0.77 0.70 0.43

Float Auto (CFS)∗ — 0.37 — 0.87 -0.83 -0.75 -0.77 — -0.73
Float Auto (non CFS)∗ 0.89 0.92 0.95 0.83 0.83 0.92 0.79 0.81 0.87

Headlamp 0.98 0.96 0.92 -0.32 0.17 0.37 -0.23 -0.29 0.48
Lab† 0.98 1.00 0.98 0.71 0.97 0.86 0.88 0.82 0.96
Rare 0.99 0.92 0.95 0.42 0.90 0.72 0.54 0.41 0.80

Table 1.3: Robust correlations for FIU data (Italic: 0.7 ≤ |x| < 0.8, Bold: 0.8 ≤
|x| ≤ 1).
∗Float Auto (CFS) does not have measurements for La; all three Float glass types
do not have measurements for Sb. †Lab has only 10 samples (and some missing
values), not enough to calculate robust correlations. Classical correlation values are
shown.



21

1.6 Goals and Outline of Dissertation

All four of these data sets to which we have access are all of small sample size

yet relatively large dimension (e.g., 24 × 17). A combined overall data set with

increased sample size would likely produce much better and more stable estimates.

So, we would like to consider situations in which data sets are sufficiently similar

enough to combine – then combine them. Two questions thus arise: (1) what does

it mean for data sets to be “similar”; and (2) assuming adequate “similarity” has

been determined, what is the best way to “combine” (pool) data sets?

One issue with combining data sets is lack of access to data. While we were

kindly granted permission to use the data sets mentioned above, there are many

situations in which data would likely be inaccessible. Forensic scientists and labo-

ratories may be extremely hesitant to share case data on information concerning or

related to criminals or criminal activity that may be highly classified; or out of reluc-

tance for statisticians to calculate error rates for their methodology and practices.

Researchers in psychology and related areas with human experimental data likewise

may be restricted from distributing data due to privacy concerns. Companies may

be unwilling to provide access to large, unique data sets that they have arduously

collected over long periods of time. In other cases, one may wish to conduct a

meta-analysis of multiple papers, in which full data sets may not be published but

covariance or correlation matrices may be. (This was the case with Data Set 2 [108];

the paper contained correlation matrix information, but we had to request and were

almost denied the data.) Thus, we propose combining covariance matrices directly

instead of data sets. As the data motivating our work are of small sample sizes, we

believe that combining covariance matrices may also help to mitigate some of the

variability and effect of outliers.
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The question that naturally follows is what it means for covariance matrices to

be “similar” or “equal.” We are interested in something analogous to the F -test for

equal variances, but for covariance matrices. Furthermore, assuming two (or more)

covariance matrices are similar enough to be combined, (1) how should they be

combined; and (2) how can we tell if the resulting combination is a good estimator?

This thesis explores approaches to address these questions, which led to ad-

ditional considerations regarding effective dimension of subspaces spanned by our

covariance matrices.

Chapter 2 reviews existing literature on testing for equality and similarity of co-

variance matrices, combining covariance matrices, robust covariance estimators. We

will consider the limitations created by restrictive assumptions and computational

complexities, and discuss why robust covariance estimators are unsuitable for our

data. We will then discuss methods for analyzing the subspaces matrices span in-

stead of the matrices themselves, and argue this is the preferred way for comparing

and combining covariance matrices.

In Chapter 3 we will introduce our proposed methods. Two simple metrics for

comparing similarity of covariance matrices and determining true effective dimension

based on the singular value decomposition (SVD) are introduced, as well as a method

for combining covariance matrices based on the subspaces they span. These metrics

and methods are illustrated with simulation data.

In Chapter 4, the proposed methods are applied to our motivating forensics glass

data and simulation data based on these motivating data. Our results indicate that

the proposed methods can be used for small sample data as well as larger data sets.

Chapter 5 concludes and discusses potential future research directions concerning

our proposed metrics and methods.
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Chapter 2

Literature Review

The first section focuses on methods based on covariance matrices, and the second

section introduces methods based on the subspaces these covariance matrices span.

2.1 Covariance Based Methods

First, we review several tests that have been proposed for testing the equality of

covariance matrices. Next, we look at literature that attempts to combine covari-

ance matrices; many originate from DNA microarray data, where data collection

is expensive. Lastly we cover robust covariance estimators which downweight the

effect of outliers, and a brief discussion on the limitations of these existing methods.

Robust covariance estimates would be useful for combining covariance matrices

if they are known to come from the same Σ, especially in elemental composition data

where outliers have been observed and are known to exist. However, we must first

decide if matrices are similar enough to combine; and if so, whether to calculate

robust estimates using the full matrices or a dimension-reduced version of them.

For example, if the true dimension of a 17 × 17 covariance is only six (the other
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11 dimensions are effectively “noise”), then it would be more practical to consider

a robust estimator of the reduced-dimension covariance matrix.

The end of this section examines robust covariance estimates that could be ap-

plied to similar matrices, and leads into the next section discussing methods for de-

termining similarity and effective dimension based on subspaces that provide more

meaningful information on covariance structure.

2.1.1 Equality of Covariance Matrices

The assumption of equal covariance matrices is common in certain multivariate

analysis tests such as Hotelling’s T 2 test, multivariate analysis of variance, and

discriminant analysis. In other cases, testing for equality may be used as an initial

test for determining if further analysis is needed. While many tests and test statistics

have been proposed for testing the equality of covariance matrices, they are generally

very complicated and have many assumptions.

The likelihood ratio statistic for testing H : Σ1 = ... = Σk = Σ rejects the null

hypothesis if test statistic

Λ =

∏k
i=1 det(Ai)

Ni/2

det(A)N/2
· NnM/2∏k

i=1N
mNi/2
i

≤ cα

where

X̄i =
1

Ni

N∑
i=1

Xij, Ai =
N∑
i=1

(Xij − X̄i)(Xij − X̄i)
′
, A =

k∑
i=1

Ai, N =
k∑
i=1

Ni

and cα is chosen so the test is of size α [72]. Although this test may be considered

asymptotically unbiased as n → ∞, it is known to be biased when sample sizes

are unequal [75, 6, 17, 80, 99]. Bartlett’s modified likelihood ratio test statistic
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uses the degrees of freedom instead of number of observations as weights [8, 81, 99,

72]. The test statistic itself may be reasonable for elliptical or other moderately

nonnormal distributions, but the asymptotic χ2 distribution may not hold [114].

While unbiased, these likelihood ratio based tests are very sensitive to violations of

normality and “may not be appropriate to use the likelihood ratio test if [p] is much

larger than ni/2” [91]. Several more robust procedures were proposed to combat

this sensitivity [100, 76, 114].

Schott 2001 [90] developed several Wald tests for H0 : Σ1 = ... = Σk = Σ where

Σ is an unknown common covariance matrix. Schott considered four assumptions

for the k populations with m parameters (dimension) and their corresponding test

statistics. Letting Si denote the unbiased sample covariance matrix given by Si =

1
ni

∑Ni

j=1 (xij − x̄i)(xij − x̄i)
′

and S =
∑k

i=1
ni

n
Si, these test statistics take on the

general form

T2 = n

(
k∑
i=1

{
1

2
δ̂1γitr(SiS

−1SiS
−1)− δ̂2γitr(SiS

−1)2

}

−
k∑
i=1

k∑
j=1

1

2
δ̂1γiγjtr(SiS

−1SjS
−1)− δ̂2γiγjtr(SiS

−1)tr(SjS
−1)

)

and follow an asymptotic χ2
ν distribution with degrees of freedom ν = (k−1)m(m+1)

2

(see [90] for specifics on test statistics T1, T3, T4). Each of the test statistics, respec-

tively, has differing assumptions:

1. T1. Populations follow multivariate normal distributions. This test statistic

is an alternative yet asymptotically equivalent (i.e., M = T1 + op(1)) test to

the likelihood ratio test, and thus also suffers from sensitivity to violations of

normality.
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2. T2. Populations have elliptical distributions with common kurtosis parameter

κ. This statistic should perform better than M and T1 when the underlying

distributions are not normal, and holds where κ > −2
m+2

.

3. T3. Populations have elliptical distributions but different kurtosis parameters.

4. T4. Distributions have finite fourth moments.

Simulation evaluations of these statistics suggest that, as expected, T1 performs best

when the assumption of normality holds, although T2 and T3 perform reasonably

well when n ≥ 20. T2 is fairly robust to violation of common kurtosis and is more

and less powerful than Zhang and Boos [114] for the normal and multivariate t

distributions, respectively. T4 converges slowly to the asymptotic distribution and

has inflated significance levels. T2 appears to be the most useful of the tests, as it

is more robust under normal theory, computationally simpler, and performs better

than T3. T4 may not be appropriate unless m is very small or n very large. However,

these test statistics are complicated and in addition to the restrictive assumptions

mentioned above, require kurtosis parameters (T2 and T3) or estimates of M4i (T4);

and the choice of estimates may significantly impact the significance level for small

samples. The statistic mentioned as most useful, T2, assumes elliptically distributed

data with common kurtosis. Schott (2007) recognized the need for a similar statistic

that would function in “[a] more realistic situation” where “[p] is not particularly

large, but the ni’s are very small” [91]. This is a common occurrence in DNA

microarray data, where data may involve thousands of gene expressions on around

100 people. However the proposed statistic [91], which performs when the likelihood

ratio test cannot and is asymptotically normally distributed, assumes populations

are multivariate normal.
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Srivastava (2005, 2007) [95, 96] and Srivastava and Hirokazu (2010) [97] pro-

posed multiple tests concerning covariance matrices. The two tests proposed in [97]

are most relevant to the situation arising from glass data, and are roughly based

on differences between the traces of two squared covariance matrices (tr{Σ2
1} and

tr{Σ2
2}), which may “throw a light on the differences between the two covariances.”

These tests can be used in all situations (does not require p >> n), but assume pop-

ulations are normally distributed and are rather complicated; requiring use of the

Moore-Penrose inverse and consistent estimators. Proposed test statistics (denoted

by T 2
k and Q2

k) are compared to Schott (2007) [91] (denoted by Jk). All three per-

form well if n, p are large, and Jk and Q2
k perform well (power-wise) for small n, p.

Srivastava and Hirokazu (2010) define the Attained Significance Level (ASL) metric

to measure how close the empirical and asymptotic distributions of test statistics

are. The ASL of Jk fluctuates substantially, thus Q2
k may be preferred.

More recent proposed tests include Li and Chen (2012) [67] based on the squared

Frobenius norm tr{(Σ1 − Σ2)2}, Cai et al. (2013) [18] based on the maximum of

standardized differences between entries in two covariance matrices, and Bilgrau et

al. (2018) [10] for high inter-study homogeneity.

2.1.2 Combining Covariance Matrices

The simplest method for combining covariance matrices is a pooled or weighted

average estimate of the sample covariance matrices, such as that used in Hotelling’s

T 2. This method implicitly assumes the existence of a global covariance matrix and

may not be applicable if subgroups are clearly distinct or batch effects exist [10];

cf. Data Set 3 in Figure 1.1. While the classical sample covariance estimate S is

consistent and efficient under the normal model, it is not at all robust to outliers
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[82]. Our data sets of interest are known to have outliers and small sample sizes;

thus pooling unstable estimates is not ideal.

However, there are many circumstances where it would be ideal to “pool” or

combine covariance matrices (or data, if available). Pooling data across studies or

labs can increase sample sizes, which may in turn increase power [54]. Even if data

is unavailable, the information contained in “similar” covariance matrices can be

combined to obtain as much information as possible. A common issue with DNA

microarray data is the existence of batch effects, meaning data cannot be directly

combined unless first processed in some manner [54, 66]. However, this involves

some background knowledge or assumptions that batch or lab effects exist as well as

a general idea of how they should be treated. Unfortunately, we lack this knowledge

for glass data, and hope to propose a method not requiring such existing knowledge.

Bilgrau et al. (2018) [10] propose a hierarchical random covariance model (RCM)

for the meta-analysis of gene correlation networks from different studies. Individual

p-dimensional covariance matrices are assumed to come from a common inverse

Wishart distribution, and study data is then generated from a multivariate normal

distribution given each individual covariance matrix.

Σi ∼ W−1
p (Ψ, ν), x|Σi ∼ Np(0p,Σi), i = 1, ..., k

The maximum likelihood estimator for the underlying common covariance matrix

is then estimated by an EM algorithm. The proposed method is complex, not

easily interpretable, and “computationally demanding and only feasible when p is

sufficiently small” (and not generalizable to p � n). Furthermore, the estimator

“perform[s] better or not worse than a simple pooled estimator” [10].
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2.1.3 Robust Covariance Estimators

The classical sample covariance estimate S is not robust to outliers and has an

asymptotic and explosion breakdown value of zero [82]. Because “REAL DATA

OFTEN FAIL to be Gaussian IN MANY WAYS” [14] and “we know that the para-

metric model is not quite true” [40], alternative, robust estimators are necessary for

“[safeguarding] against unsuspectedly large amounts of gross errors [and] putting a

bound on the influence of hidden contamination and questionable outliers” [41].

Robust covariance estimators fall into two general families: (1) high-breakdown

affine equivariant estimators and (2) non-affine equivariant estimators [82, 47]. Gen-

erally, it is recommended to choose a high breakdown affine equivariant estimator

if p < 10 and a non-affine estimator (OGK, DetMCD) for higher dimensions.

Affine Equivariant Estimators

Affine equivariant scatter estimators by definition behave well under linear trans-

formations of the data. They have a sharp upper bound finite-sample breakdown

value (FSBV) of b(n − p + 1)/2c/n [23, 85], and begin calculations with a large

numbers of random initial subsets. This causes computation time to increase ex-

ponentially as dimension increases – meaning these procedures may not be ideal if

p ≥ 10 [47, 82]. The Stahel-Donoho estimator [98, 25, 69], calculated as a weighted

mean and covariance matrix based on Stahel-Donoho outlyingness (univariate and

multivariate),

SDOi = SDO(1)(xi, Xn) =
|xi −med(Xn)|
MAD(Xn)

SDOi = SDO(xi, Xn) = sup
a∈Rp

SDO(1)(axi, Xna)
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was the first affine equivariant estimator with a breakdown point of 50%. This

estimator performs best if non-outlying values are roughly elliptical or symmetrically

distributed, as the mean absolute deviation (MAD) will not capture asymmetry

[89]. Highly contaminated data may result in the estimator being singular; and

modifications have been proposed to address these and improve performance for

skewed or outlier-containing data [15, 46, 24, 105, 82].

(a) (b)

Figure 2.1: Tolerance ellipses for the classical (red) vs. robust MCD (blue) estima-
tors. Figure (a) comes from [87] and is of the Animal data set of brain vs. body
weights. Figure (b) from [45] is of two variables from the Wine data set. In both fig-
ures, outliers largely affect the classical estimate whereas the robust MCD estimate
ignores such outliers.

More often used in this family estimators are the Minimum Covariance Deter-

minant (MCD, the “mean of the h points of X for which the determinant of the

covariance matrix is minimal”) and Minimum Volume Ellipsoid (MVE, the “cen-

ter of the minimal volume ellipsoid covering (at least) h points of X”) estimators

[83, 84]. The parameter h, constrained to [(n + p + 1)/2] ≤ h ≤ n, is the number

of observations and controls the breakdown value [82]. As the MCD estimator in-

volves calculation of the determinant of a covariance matrix, h must be larger than

dimension p to avoid a determinant of zero; which is satisfied by n ≥ 2p, but n ≥ 5p
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is recommended to avoid excessive noise [82]. Despite fast implementations of these

algorithms (FastMVE [71] and FastMCD [86]), they remain computationally inten-

sive and not recommended for p much larger than 10 or 12. Between the two, the

MCD estimator is preferred, as the MVE estimator is not asymptotically normal

and harder to calculate than the MCD. The MCD has a finite-sample breakdown

value (FSBV) of b(n− p+ 1)/2c/n [85].

Non-Affine Equivariant Estimators

Non-affine equivariant estimators sacrifice affine equivariance for computation time;

thus they scale much better as dimension increases [47].

Maronna and Zamar [70] applied their methodology for obtaining approximately

affine equivariant, robust positive definite scatter matrices from pairwise robust

covariance matrices to Gnanadesikan and Kettenring’s robust covariance estimate

[38] to obtain the orthogonalized Gnanadesikan-Kettenring (OGK) estimator. The

Deterministic MCD (DetMCD) algorithm, as the name suggests, is a deterministic

(permutation invariant) alternative to Fast-MCD with lower runtime [48, 86]. The

deviance of both of these estimators from affine equivariance is very small [82].

2.1.4 Shortcomings of Existing Approaches

Many of the existing tests for equality of covariances assume normality or at least

elliptically distributed data, which, “however, is still quite strong and hard to ver-

ify in small samples” [114]. Although the elliptically distributed assumption may

not be an issue for our motivating glass data (because logarithms symmetrized the

distributions), other data sets may violate this assumption. Other assumptions con-

cern moderate dimensionality, relating to either n, p, or p/n (while our glass data is
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of small to moderate dimensions, we hope methods can scale to larger dimensional-

ity as well). Tests geared towards more high dimensional covariance matrices may

have more specific assumptions (e.g., sparsity) or more particular goals (e.g., testing

equality of off-diagonal sub-matrices or joint distribution of rows between covariance

matrices). In addition to restrictive assumptions, many tests are computationally

intensive or intuitively difficult to understand for non-statisticians.

Methods for combining covariance matrices originate mainly from DNA microar-

ray data, and are not ideal for our purposes because (1) while batch or laboratory

effects likely exist in our data, the existence and amount of such effects is unknown

(and likely of a different manner than that of DNA microarray data) and therefore

microarray data preprocessing methods cannot be applied directly to our (and other)

data sets; (2) ideally methods do not require such assumptions or existing knowl-

edge; (3) methods should be simpler and more intuitive to facilitate understanding

between disciplines.

Although robust covariance estimators have high breakdown points and our data

is known to have outliers, they generally assume multivariate normal or elliptically

distributed data (the MCD estimator assumes “elliptically symmetric unimodal dis-

tribution” data [45]). Large sample sizes (n > 2p or n > 5p [82]) are required to be

effective, and the algorithms are computationally intensive especially as dimension

increases. While our motivating data is of small dimension, we hope to propose a

method that can scale to large dimensionality. Such data might include social me-

dia, marketing, or retail companies with data constantly streaming in. These data

can be expected to be of very large n with possibly even larger p.
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2.2 Subspace Based Approaches

Subspace methods arise largely from image recognition and pattern matching tech-

niques, where the goal is to discover similarity or patterns between subspaces. These

techniques are widely used in facial recognition applications, where a subject may

be represented by a set of vectors – a subspace – and compared to subspaces gen-

erated from other subjects [3, 107]. The Mutual Subspace Method (MSM) [112]

and Constrained Mutual Subspace Methods (CMSM) [33] are extensions of sub-

space methods that use the cosine of the smallest principal (or canonical) angle to

compare subspaces for similarity.

Principal angles, also called canonical angles, were introduced by Jordan in 1875

and formalized by Hotelling in 1936 [57, 44, 35, 113]. Intuitively, these angles are

the “minimal angles between all possible bases of two spaces” [115]. The principal

angles, 0 ≤ θ1 ≤ ... ≤ θk, between two subspaces U1 and U2 can be recursively

defined for k = 1, ..., p by [44]

cos θk = max
uk∈U1

max
vk∈U2

uTk vk, ||uk||2 = 1, ||vk||2 = 1

subject to

uTj uk = 0, vTj vk = 0 for j = 1, ..., k − 1

where vectors ui and vi are the principal vectors of the subspaces. Principal angles

are always uniquely defined (although the principal vectors may not be), and can

be computed using the singular value decomposition where the singular values of

UT
1 U2 are the cosines of the principal angles [11, 4].

Distance metrics based on the principal angles [110, 113] have been proposed

to quantify the distance between subspaces, mainly in mathematics and computer
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Metric Principal angles

Asimov dα(U, V ) = θk

Binet-Cauchy dβ(U, V ) =
(

1−
∏k

i=1 cos2 θ
)1/2

Chordal dκ(U, V ) =
(∑k

i=1 sin2 θ
)1/2

Fubini-Study dφ(U, V ) = cos−1
(∏k

i=1 cos θ
)

Grassmannian dγ(U, V ) =
(∑k

i=1 θ
2
i

)1/2

Martin dµ(U, V ) =
(

log
∏k

i=2 1/ cos2 θi

)1/2

Procrustes dρ(U, V ) = 2
(∑k

i=1 sin2 θi/2
)1/2

Projection dπ(U, V ) = sin θk
Spectral dσ(U, V ) = 2 sin θk/2

Table 2.1: Table 2 from [113] including Grassmannian distance.

science literature. Many of these are defined in terms of the Grassmannian. In

mathematics, the Grassmannian, sometimes denoted as Gr(n, k), is the set of k-

dimensional subspaces in n-dimensional vector space [2]. The Grassmannian man-

ifold gn,k is the space of k-dimensional subspaces in Rn [1, 104]. Subspaces of k

dimension can be considered “points on the Grassmannian Gr(k, n), a Riemannian

manifold, and the geodesic distance between them gives [an] intrinsic distance” [113].

Some commonly cited distances are listed in Table 2.1. Other distance metrics in-

clude the product angle cosine, Friedrich’s angle, Dixmier angles, and the maximum

and minimum correlations [35, 39].

Distances and metrics must be invariant under different representations of sub-

spaces. While a “distance” quantifies the length of the path between two points,

a “metric” is a distance that satisfies a few additional axioms for all u1, u2, u3 ∈ U

[39]:

1. d(u1, u2) ≥ 0

2. d(u1, u2) = 0 iff u1 = u2
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3. d(u1, u2) = d(u2, u1)

4. d(u1, u2) + d(u2, u3) ≤ d(u1, u3)

In the following, we refer to “distance” and “metric” interchangeably.

Some of these distances are based only on the largest canonical angle while

others are functions of all the angles. Although there may be cases where a metric

based on all of the principal angles is ideal [39], we focus on the Asimov, or largest

principal angle, as it is the simplest to interpret and sufficient for our applications

(see additional discussion in Section 3.1.2).

Absil et al. 2006 [4] derive the probability distribution and density functions

for the largest principal angle (dα in Table 2.1) between two subspaces of the same

dimension from the uniform distribution on the Grassmannian manifold, Grass(p, n).

The uniform distribution on the Grassmannian is defined as “the distribution with

probability measure invariant under the transformation of Grass(p, n) induced by

orthogonal transformations of Rn” [4]. To begin, Absil et al. derive the joint PDF

of the eigenvalues of the Cholesky decomposition of the orthonormalized U2, which

has multivariate Beta distribution Betap
(

1
2
n1,

1
2
n2

)
. The PDF is rewritten in terms

of the largest principal angle (which corresponds to the smallest singular value or

eigenvalue) x, where x = λp. Since the cosines of the principal angles are the

singular values of UT
1 U2, a change of variable using x = cos2 θp can be made. Then,

the probability density function for θp is given by

dens (θp) = p(n−p)
Γ(p+1

2 )Γ(n−p+1
2 )

Γ(1
2)Γ(n+1

2 )
(sin θp)

p(n−p)−1
2F1

(
n− p− 1

2
,
1

2
;
n+ 1

2
; sin2 θpIp−1

)

where 2F1 is the Gaussian hypergeometric function of matrix argument. The correspond-
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ing probability distribution function is

Pr
(
θp < θ̂p

)
=

Γ(p+1
2 )Γ(n−p+1

2 )

Γ(1
2)Γ(n+1

2 )
(sin θ̂p)

p(n−p)
2F1

(
n− p

2
,
1

2
;
n+ 1

2
; sin2 θ̂pIp

)

Distribution functions for distances based on the largest principal angle can be calcu-

lated in a similar manner.
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Chapter 3

Approach

We propose straightforward, easily-computable methods to compare covariance matrices

and identify sources or cases where it makes sense to pool data (specifically, the covari-

ance matrices themselves). These methods are based on the singular value decomposition

(SVD), which for symmetric positive definite covariance matrices is equivalent to the

eigenvalue decomposition. The SVD is defined as S = UDV T , and in this case U = V T .

The U and V matrices are orthonormal (UTU = I, V TV = I) and capture direction (the

left and right eigenvectors) while the diagonal D matrix captures scale (the non-singular,

square roots of non-zero eigenvalues). We believe that analysis of covariance matrices

should involve comparison and combination of the subspaces they span, which the SVD

can provide.

Ideally in testing these methods we have a set of covariance matrices spanning a known

range from equality or extremely similar, i.e. Σ̂ = Σ, to completely different, i.e. Σ̂ 6= Σ;

with similarity and differences confirmed by multiple metrics. We did not find such a set

of matrices in the literature; defining such a set of matrices is a potential future direction.

Here, simulations were performed under varying conditions in attempt to cover a wide

range of “similar” and “different” covariance matrices.
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3.1 Similarity and Effective Dimension

We propose two metrics for determining the similarity and effective dimension of covariance

matrices. While previous approaches have considered batch and lab effects or modeling

covariances from an inverse Wishart distribution, our approach is more intuitive. The more

similar two covariance matrices are, they closer the subspaces they span and thus overlap

should be. Subspace information is obtained using the singular value decomposition, which

decomposes a covariance into direction (U, V ) and scale (D) matrices.

3.1.1 Xia Metric

Xia et al. (2010) propose a dimension reduction method in the context of survival anal-

ysis data for estimating the entire central subspace consistently and exhaustively [111].

The goal is to find a p × q0 matrix B, where q0 < p, such that all information regarding

the relationship between T (the true and sometimes unobservable failure time) and X

((x1, ..., xp)
T covariates) is included in BTX. In addition to a dimension reduction tech-

nique, they propose a metric for quantifying asymptotic results for their dimension-reduced

estimate.

If the working dimension q is correctly specified, that is, q = q0... the largest

singular value of B0B
T
0 − B̂qB̂T

q tends to 0... If the working dimension q is

greater than the true dimension, then the true central subspace is consistently

contained in the estimated space; if q is smaller than the true dimension, then

the estimated space is consistently a subspace of the central subspace.

The metric of interest is the largest singular value of B0B
T
0 −B̂qB̂T

q , which should tend

to zero as n increases or as B0 and B̂q become more similar. Intuitively, this metric is easy

to understand. The more similar two matrices are, the smaller the differences between

them will be, and thus the largest singular value of those differences will tend towards
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zero. Rewritten in terms of the U matrix from the SVD, this metric becomes

U0U
T
0 − ÛqÛTq → 0 (3.1)

where U0 is the matrix of directions of a “true” covariance matrix and Ûq denotes directions

of an estimated covariance matrix. This metric should tend towards zero at q, assuming

q is correctly specified. The reasoning behind using the U matrices for comparison in the

metric is to see how well the space spanned by the U directions of two covariance matrices

match.

This metric can be applied in one of two ways. First, assume a covariance matrix Σ is

known to be the true covariance with effective dimension (or rank) q lower than dimension

p. Let U0 be of dimension p×p and Ûq of dimension p× q, then if true effective dimension

q is correctly specified, the metric should indicate this by tending towards zero at q. This

allows us to determine if a p×q subset of the covariance matrix is adequate for capturing all

information the full matrix contains. This metric may tend towards zero at true effective

dimension q even when the scree plot does not show a clear drop. Second, if the goal is

to test similarity between two covariance matrices (to find something in common between

the two; or perhaps it is known there are similarities but not exactly where or what), one

can let both U and Û be of dimension p× q, q = 1, ..., p.

To illustrate the use of this metric for analyzing effective dimension, two low dimen-

sional toy data sets of dimension two and three were generated from a standard Gaussian

distribution with a signal to noise ratio (SNR) of 10. Figure 3.1 indicates the Xia metric

drops towards zero at the true effective dimension as expected.

Two toy data set of dimension 17 and true effective dimension five were generated with

varying signal to noise ratios to analyze the effect of column permutation within the signal

and noise spaces. The Xia metric was calculated using these toy data sets as the true Σ

compared against Σ̂ created by combining all possible 120 permutations of the five signal

columns and a random subset of 120 permutations of the noise columns. Under these
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(a) Xia metric for 2D toy data set. (b) Xia metric for 3D toy data set.

Figure 3.1: Xia metric for two low dimensional toy data sets with signal to noise
ratios of 10. (a) has one signal and noise column; (b) has one signal and two noise
columns.

situations, the Xia metric still indicated (effective) similar matrices (apart from “noise”),

with a drop at true effective dimension of five, cf. Figure 3.2. The almost-zero ordinate

values further indicate the metric is able to detect that the matrices are essentially the

same despite permutation within the signal and noise subspaces.

We then analyze the performance of the metric under situations closer to our moti-

vating data sets. We generate a true covariance matrix Σ with p = 17 and a true effective

dimension of q = 5 (the remaining 12 dimensions are essentially noise). First, matrices U

and D were generated with five effective signal dimensions and 12 noise dimensions were

generated from various normal distributions. These were then combined using Σ = UDUT

to create a true covariance matrix Σ. We denote these matrices used to generate Σ by

gen u and gen d, respectively, and the U and D resulting from the singular value decom-

position of Σ by true u and true d. In Figure 3.3, 10,000 estimates Σ̂ were generated

from a Wishart distribution with true Σ and varying degrees of freedom. Xia metric scores

are calculated from each of the simulated vs. true covariance matrices, and the average

scores are plotted in Figure 3.3. As expected, fewer degrees of freedom result in more

variable Σ̂ being sampled and thus higher Xia metric scores. A drop to zero can be seen

at dimension five as expected.
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Figure 3.2: Xia metric for two toy data sets of dimension 17. The left figure has
a signal to noise ratio of 2, and the right has a signal to noise ratio of 1.33. All
possible permutations of signal columns and a random subset of permutations for
noise columns were used to calculate the Xia metric. The Xia metric is able to detect
that the matrices are essentially the same despite permuting within the signal and
noise subspaces, as can be seen from the almost-zero ordinate values. Signal to noise
ratios of 10 and 4 were also analyzed and show similar results. Yellow line indicates
the mean over 10,000 simulation runs.

Figure 3.4 shows the effects of changing D on the Xia metric. While the Σ and Σ̂ used

in the two subfigures is different, the simulation process is the same. The true u matrix

obtained from the SVD of Σ is used as is. A new D matrix is generated assuming effective

dimensions of either q = 4, 5, 6. This D and true u are combined to create the estimate Σ̂,

from which Xia metrics are calculated (averaged over 10,000 simulations). Subfigures la-

beled (1) use the same distribution to generate D as true d, while the following subfigures

(2) through (5) increase (ˆ) or decrease (v) signal or noise variation. The main difference

between (a) and (b) is that (a) uses a true u generated from two normal distributions:

N(0, 1) (first five columns) and N(0, 0.1) (last 12 columns), while true u for (b) (all 17

columns) is generated from a N(0, 2) distribution. (However, the D matrices vary slightly

as well.)

Figure 3.5 uses gen u in generation of Σ̂ instead of true u as the previous images

did. This has a relatively large influence on the resulting Xia metric scores. It is clear

intuitively that an estimate Σ̂ generated from true u will be much closer to the true Σ

for reasonable values of D as opposed to one generated from gen u, which is a few steps
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Figure 3.3: Eigenvalues and Xia metric scores (averaged over 10,000 runs). Using
a true Σ created from the Gaussian distributions specified in the first column, esti-
mates Σ̂ are generated from a Wishart distribution with varying degrees of freedom.
As expected, Xia metric scores are lower for higher degrees of freedom (more stable
estimates).
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Figure 3.4: Eigenvalues and Xia metric scores. Given a true Σ from a Gaussian
distribution, estimates Σ̂ are generated using true u and a modified D matrix.
Scenarios (1) through (5) indicate increases (denoted by ˆ) or decreases (v) in the
signal or noise variation for generating new D. Solid black lines (1) indicate q = 4,
dashed red lines (2) q = 5, and dotted green lines (3) q = 6.
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Figure 3.5: Xia metric scores and eigenvalues give a true Σ and an estimated Σ̂
generated with gen u instead of true u in addition to modifying D. The three lines
in the first column indicate effective dimension q = 4, 5, 6 (solid black line, dashed
red line, dotted green line) used to generate D. Xia metric scores drop to zero at
five regardless of how many effective dimensions D was generated with.

further removed from true u. In contrast to the previous simulations using true u, the

Xia metric in this situation is much more variable, and the drop towards zero is not quite

as steep. Furthermore, Figure 3.4 showed clear troughs at the effective dimension used in

generating Σ̂ (q = 4, 5, 6), while Figure 3.5 shows troughs only at around q = 5, regardless

of the effective dimension actually used to generate Σ̂.

The simulations in Figure 3.6 modified the effective dimensions (q = 4, 5, 6) of the U

in addition to the D matrix. It is evident this has a much larger effect on the metric, as

modifying the U matrix greatly increases the variability. The red dotted lines in the first

column, which correspond to Σ̂ with effective dimension of five (same as Σ), still show

drop to zero at q = 5 as expected. However, the black and green lines with dimensions

q = 4, 6 no longer tend towards zero until around p = 17.

The Xia metric can be considered as the largest singular value of a random matrix.

If we consider the square or the eigenvalue instead, this can be considered to follow the

Tracy-Widom distribution for the largest eigenvalue of a random matrix, cf. Section 4.1.3.
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Figure 3.6: Xia metric scores and eigenvalues. These simulations change the the
effective dimensions (q = 4, 5, 6) of U as well as D, and has a much larger effect
on Xia metric scores. Solid black lines indicate q = 4, dashed red lines q = 5, and
dotted green lines q = 6. The Xia metric drops to zero at q = 5 only when the
effective dimensions was also equal to five. The caret in the second row indidates
an increase in noise variation.

3.1.2 Largest Principal Angle

We discuss a simple visual comparison that can be performed on the matrix of eigenvectors

U , especially for low dimensional examples, before moving onto the largest principal or

canonical angle method.

U-Based Visual Method

In estimating the similarity between two covariance matrices, we can consider a visual

method based only on the U direction matrices from an SVD. The dot product between

two U matrices,

UT1 U2 (3.2)

where U1 is from the “true” covariance matrix and U2 is from an estimated covariance

matrix, essentially calculates the cosine of angles between two columns at a time, and can
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Figure 3.7: Data generated from a N(0, 1) distribution. A diagonal structure can be
seen clearly in the top row as outlying observations are removed, which gets harder
to detect (bottom row) as the effect of outliers is increased.

clearly visually us how similar two U matrices are. A heatmap of the dot product should

show a diagonal structure if the U ’s are similar, and roughly block diagonal structure if the

U ’s also have similar effective dimensions less than p. The effectiveness of this metric can

be illustrated by comparing classical and robust estimates of covariance matrices where

data sets have known outliers. Letting each of the U matrices be from SVDs of the

estimates, absolute value of the heatmaps are plotted.

Data from a N(0, 1) distribution were simulated and the classical and robust (MCD)

estimators calculated for this data. Figure 3.7 shows heatmaps of UT1 U2 from the classical

and robust estimates for (first row) all data and data with slightly “outlying” values (abs(x)

less than 3 or 2) removed. A diagonal structure can be seen, which gets clearer as more

“outlying” values (outliers) are removed. The second row exaggerates these “outlying”

values by multiplying them by a factor of 2, 3, or 4. The diagonal structure, once clear,

gets increasingly hard to detect (adding outliers causes the difference between the classical

and robust estimates to increase).

This can further be illustrated by some well known data sets containing outliers. We
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Figure 3.8: The Animals data set contains average brain (g) and body weight (kg)
data for 28 species of land animals, including three species of dinosaurs, indicated
by the three red dots in the scatterplot (a) [88, p. 57]. Despite only having two
variables, the heatmaps behave as we expect. The diagonal structure in heatmap
(b) indicates that a classical estimate of the data without outliers and a robust
estimate of all the data are very similar. Heatmaps (c) and (d) indicate that the
two estimators differ; the classical estimate is affected by as few as three outliers.
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Figure 3.9: The original Wood Specific Gravity data set contained 20 observations
with 6 parameters [27, p. 227]. Four rows were purposefully contaminated by
Rousseeuw and Leroy [88, p. 243] in all dimensions with bad leverage points not
outlying in any individual variable (masking effect, so these outliers are hard to
detect using traditional methods). The first heatmap on the left shows a clear
diagonal structure indicating the two estimates are similar; and that the MCD
estimator is correctly identifying outliers. The blurry diagonals and off-diagonals in
heatmaps (b) and (c) indicate the estimators are not as similar as in (a).

let all denote the entire data set including outliers and no out denote the data set with

outliers removed, c() denote the classical covariance estimate, and r() denote the robust

MCD estimator. These are shown in Figures 3.8 and 3.9.

Largest Principal Angle

Table 2.1 listed many possible distance metrics for comparing subspaces, some of which use

only the largest principal angle while others are functions of all angles. We can relate this
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to the use of Hotelling’s T 2 multivariate test. There may be scenarios where Hotelling’s

test is clearly a better choice (e.g., correlations between variables exist, and ideally all

variables and their interactions are taken into account together); this might be sensitive

to small deviations in all variables, but at the same time has the disadvantage of potentially

not capturing large deviation in just one variable. In contrast, univariate t tests could

capture deviation in variables independently, but not correlation across multiple variables.

The nine metrics in Table 2.1 were calculated and compared for an oceanography data

set and shown in Figure 3.10. The Martin metric had the largest range and variability

in comparison to all others, unsurprisingly – it is the only metric taking the logarithm

of the inverse of the cosine of the principal angles. The Chordal and Procrustes metrics

followed similar trends, confirmed by the similarity in their formulas (both involve the sine

of the angles). Although modern computers are capable of extremely quick calculations,

their formulas indicate the Martin and Procrustes distances may be most computationally

expensive, based simply on the number of operations required. We conclude the Asimov

distance (or the largest principal or canonical angle), which is simplest to calculate and

interpret, is sufficient for the purposes of our analyses. Situations may exist where a

metric taking into account all the angles may be preferred, and can be analyzed in future

research.

These metrics were also calculated for our motivating glass data sets to ensure they

behave as expected (see Figure 3.11).

We propose the use of the largest principal angle as a metric for similarity between

covariance matrices. First, the singular value decomposition of two covariance matrices

is taken to obtain the eigenvectors. Then, principal angles between these two matrices

of eigenvectors are calculated using the singular value decomposition and the cosines of

the singular values. This is done in cumulative fashion adding columns one by one. We

expect larger angles (up to θ̂ ≤ π
2 ) when subspaces are very different or even orthogonal

(θ̂ = π
2 ), and smaller angles for more similar subspaces.
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(a) Subspace distance metrics comparing oceanography data from 2001 to years 2002
through 2012. The asterisk indicates distances involving only the largest principal angle.
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(b) Subspace distance metrics comparing oceanography data for consecutive years from
2001 to 2013.

Figure 3.10: Nine metrics from Table 2.1 for oceanography data with five variables
(temperature, salinity, density, chlorophyll, and nitrate).
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(a) Subspace distance metrics for four motivating data sets. The metrics are lower for
comparisons between data from the two companies in Data Set 3, indicating these are
more similar to each other than to Data Sets 1 or 2. The asterisk indicates distances
involving only the largest principal angle.
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(b) Subspace distance metrics by data set. The top right plot compares Data Set 2 to
itself; the corresponding metrics are essentially zero. The Martin distance is consistently
larger than the others.

Figure 3.11: Nine metrics from Table 2.1 for three motivating glass data sets.
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If we have an idea of what the true effective dimension q is, we can observe the largest

principal angle in a small range around q (e.g., q ± 2, 3) to find at which specific q the

subspaces are most “similar.” For dimensions q̂ < q, the principal angle may be larger or

more variable due to the dimensions not capturing enough common signal. Another possi-

bility is that the eigengaps are too small, resulting in neighboring eigenvectors exchanging

positions. For dimensions q̂ > q, the largest principal angle may start to increase as more

noise is included in addition to the signal.

We can analyze the effect of variability on this metric through simulation (see Section

4.2). First, we can vary the eigengaps and magnitude of eigenvalues (or singular values)

for the true covariance matrix Σ. Second, Σ̂ can be simulated from various distributions

(Wishart if simulating covariance matrices directly; Gaussian or t if data is first simulated)

with varying degrees of freedom. From these data, for each dimension, we can estimate a

robust regression line between the degrees of freedom and quantiles of interest – mainly,

the median and 95th percentile. This linear relationship may break down for smaller

degrees of freedom (or n) where p and n are of similar magnitude (our simulations used

p = 17 and n ranging from 25 to 100,000); values of n ≤ 50 were excluded in fitting

the line; cf. Figure 4.22. Theoretical quantiles can also be calculated from the density

functions [4].

For each quantile, the intercept and slope are plotted against dimension (analogous

to using the slope or intercept to estimate parameters for discrete distributions, such as

Poisson or Binomial). While either intercept or slope may be used, the slope values tend to

be more stable, as our simulations (see Section 4.2.2) confirm. Confidence intervals using

the estimated standard error can also be calculated for the coefficients at each dimension.

Sudden jumps in expected intercept or slope values may indicate the value corresponding

to the true effective dimension.
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3.1.3 Other Considered Metrics

Li’s 1991 paper on sliced inverse regression is a method for evaluating the effectiveness of

an estimated dimension reduction (e.d.r.) direction [68].

R2(b) = max
β∈B

(bΣxxβ
′
))2

bΣxxb · βΣxxβ
′

This R2 metric is a squared multiple correlation coefficient between bx, the projected

variable, and β1x, ..., βkx, the ideally reduced variables. While this was considered a

potential metric for finding true effective dimension, we focused on the previous metrics

which seemed more suitable for the problem at hand.

3.2 Combining Covariance Matrices

Three approaches were considered for combining multiple covariance matrices.

1. Pooled or weighted average

2. Use the U matrix calculated from the pooled data, and average D matrices from

individual covariance matrices

3. Average the U and D matrices

The arithmetic mean in the first method suffers from non-robustness from placing too

much weight on outliers, but it may be appropriate if data are believed or known to be

“similar” (e.g., produced from the same machine, data from same person, etc.). The sec-

ond method results in estimates very similar to the first, and as it requires actual data

in addition to the covariance matrix, was not further considered. The third method, av-

eraging the U (and V = UT ) and D matrices, is the proposed method. As information

concerning the subspace spanned by a covariance matrix can be captured by the U and D

matrices from an SVD, combining this information from multiple covariances essentially
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combines information on the subspaces of multiple covariances. Instead of pooling indi-

vidual elements from a covariance matrix, we propose a method to pool the spaces they

span.

The proposed estimator has properties of robustness (more so than a simple pooled

covariance) and is positive definite (PD) without any modifications (U is orthogonal with

orthonormal columns). Other desirable properties are further discussed in Section 5.
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Chapter 4

Simulations and Applications

In this section we will apply our proposed methods to the motivating glass data sets and

simulations based on realistic scenarios based on these data sets.

4.1 Xia Metric

Simulations in Section 3.1.1 illustrated the use of the Xia metric for checking effective

dimension of a covariance matrices, showing plots with a sudden drop at the true q. We

see a different pattern when attempting to use this metric to determine similarity between

covariances for Data Sets 1, 2, and 3. Data Sets 1 and 2 measure only one pane of

glass; for consistency, one pane was selected at random from Data Set 3 (which contains

information on 48 different panes). Recall that calculation of the Xia metric involves

comparing the first q directions (abcissa in Figure 4.1) from the SVD of two covariances

for q = 1, ..., p, and will tend towards zero as the two matrices become more similar

(smaller scores indicating higher similarity). Figure 4.1 indicates that comparing Data

Sets 2 and 3 gives the lowest score at q = 1 of 0.66, as well as lower scores from q = 14 to

16. This shape, which resembles a downward-facing parabola, suggests that the first few

eigenvalues are very close (i.e., the eigengap between eigenvectors is very small), especially
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Figure 4.1: Xia metric for comparing similarities between Data Sets 1, 2, and 3 (a
single pane). The legend indicates pairs of comparisons by “x – y” (comparing data
set x to data set y).

taking into account small sample sizes, resulting in the eigenvectors swapping positions

(or ordering). Indeed, if this is the case, heatmaps of the correlation (covariance) matrices

(see top row of Figure 4.24) of Data Sets 2 and 3 are more similar than either of those

with Data Set 1. This is examined further with simulations in Section 4.2.2.

Focusing on the 48 glass panes from Data Set 3, individual glass panes (31 from

Company A and 17 from Company B) were compared against each other to analyze

within- and between-manufacturer variability. Subfigure (a) in Figure 4.2 shows within-

manufacturer comparisons – each individual pane compared to the remaining 30 or 16

from the same company. Subfigure (b) shows between-manufacturer comparisons (i.e.,

each pane in Company B compared to the 31 from Company A and vice versa). The

thin, colored lines indicate Xia metrics resulting from individual pane comparisons, and

the thick black line gives the average score across all comparisons. Curves for the missing

panes closely resemble those plotted. Subfigure (b), which show Xia metric scores for

within-manufacturer panes of glass, have not only overall lower scores than subfigure (a),

but also smoother, “rounder” downward facing parabolic shapes (as opposed to the more
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(a) Within-manufacturer comparisons. Each pane compared to against the other 16.
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(b) Between-manufacturer comparisons. Each pane compared against the 31 from Company A.

Figure 4.2: Company B pane comparisons. Thin colored lines indicate Xia metrics
for individual pane comparisons, and the black line indicates the average across all
comparisons.
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square ones in subfigure (a)). However, these differences are not very clear; the Xia metric

is better suited for determining true effective dimension rather than similarity of covariance

matrices.

4.1.1 Performance Under Varying Signal to Noise Ratios

and Covariance Structures

In Section 3, the effect of permuting columns within the signal and noise spaces was

analyzed, as well as the effects of specific U and D matrices. Since this is applied to

covariance matrices, we are also interested in the effect of covariance matrix noise and

structure on the Xia metric. First, a true Σ was generated from a toy data set of dimension

17 with five signal and 12 noise columns. Signal columns were generated from a standard

Gaussian N(0, 1) distribution and noise columns generated from Gaussian distributions

with standard deviations of 0.1, 0.25, 0.33, 0.5, and 0.75, resulting in signal to noise ratios

(SNR) of 10, 4, 3, 2, and 1.33. Σ̂ was generated by adding various types of noise to

Σ, either by simulating from a Wishart with varying degrees of freedom or by adding

additional noise observations to data simulated from Σ then calculating the covariance

matrix. Overall, the metric is relatively robust for high signal to noise ratios of 10 and 4,

but begins to break down at lower ratios of 2 (depending on other factors) and 1.33.

We also consider different covariance structures, namely, the case where all elements

are equal to some σ, a block diagonal covariance structure, and a Toeplitz matrix structure.

These are chosen as they appear relatively often in applications – time series models (AR,

ARMA, MA) may have Toeplitz structured covariance matrices, and Gaussian processes

or block Gaussian processes may have block structured covariances.

Varying Signal to Noise Ratios

Variations in data measurement for different batches, labs, or countries may result in

different signal to noise ratios being present in covariance matrices. Simulations were
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Figure 4.3: Xia metric for covariances with SNR of 10 and 2. Left column: the true
(t) and estimated (e) covariances have equal SNR; right column: different SNR.
Effective dimension q = 20 is detected in all cases and clearest when the SNRs are
the same. Yellow line indicates means.

performed to analyze if the Xia metric can detect true effective dimension between two

covariances with differing signal to noise ratios. Covariance matrices were generated with

dimension 100 and effective dimension q = 20, and signal to noise ratios of 10 and 2. The

Xia metric was calculated pairwise for these four covariance matrices and shown in Figure

4.3. The true dimension is detected for all cases, but the minimum value the Xia metric

reaches varies based on SNR. It is lowest when the two matrices have the same SNR.

Multiplying Σ by a factor

This set of simulations (Figures 4.4 and 4.5) adds noise to Σ by combining the original

data (denote by X) used to calculate Σ with randomly generated data (denote by ε) from

a Gaussian distribution with varying covariance matrices. This random data is added into

the true data to generate Σ̂ = cov{X + ε}.
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Figure 4.4: Xia metric for Σ̂ = c · Σ, where c = 1.5, 100. Xia metric is unaffected.
Yellow line indicates means of 10,000 simulation runs; other colored lines display
certain individual simulation results.

Figure 4.4 indicates that adding noise of the form ε ∼ N(0, c · Σ) does not affect the

Xia metric, which still detects an effective dimension of five. These results are shown for

the lowest SNR tested, 1.33, and are very similar for the other ratios.

Figure 4.5 show results from simulations generating ε from varying N(0,Σ) with signal

to noise ratios of 10 and 1.33. Overall, the dip in Xia metric at p = 5 decreases as Σ̂ varies

more from Σ and as signal to noise decreases. As Figure 4.5(a) and the first row of Figure

4.5(b) indicate, when the SNR is high, the Xia metric can detect effective dimension when

ε varies further from the true covariance matrix.

If Σ is merely multiplied by a factor or a similar diagonal structured covariance matrix,

the Xia metric is still able to detect effective dimension. However if ε comes from a

distribution of the opposite extreme where all elements in the covariance matrix are the

same, this metric breaks down very quickly (Figure 4.5b).

Block Structure Covariance Matrices

A block diagonal covariance structure was created by adding a 5 × 5 matrix of constant

c to a 17 × 17 identity matrix. Constant values c ranging from 1 to 14 were tested for

the four signal to noise ratios, but the magnitude of c did not have a noticeable effect.
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(a) Signal to noise ratio of 10

(b) Signal to noise ratio of 1.33

Figure 4.5: Xia metric for noisy covariance matrices; ε ∼ N(0,Σ) is indicated by
individual plot titles. Simulation results for SNRs of 4 and 2 fall between the values
shown for SNR of 10 and 1.33. Simulation results with ε as in the second row of (b)
look the same for all SNRs. The yellow line indicates means.
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Error data ε were generated from this block covariance structure to calculate Σ̂. Signal

to noise ratio seems to have a larger effect on the Xia metric than block structure. The

Xia metric proves to be relatively robust to block diagonal covariance structure, which is

reasonable – effective dimension remains relatively clear in a block covariance structure.

An interesting pattern for this covariance structure is that in addition to dipping at p = 5,

the Xia metric also has a slight dip at p = 2.

Figure 4.6 shows simulation results for a subset of c values ranging from 2.25 to 3.25.

Figure 4.7 shows a similar pattern for p = 100 and q = 10. Here, the Xia metric clearly

breaks down with a signal to noise ratio of 1.33.

Toeplitz Structure Covariance Matrices

Error data ε were then simulated from Gaussian distributions with Toeplitz structured

covariance matrices with varying number of diagonals. All diagonals contained the same

constant “multiplier” – 1.05, 1.10, 1.15, 1.20, or 1.25, essentially adding in 5% to 25%

variation to the original data X and true covariance Σ.

The Xia metric breaks down very quickly using a Toeplitz covariance structure as the

variability and number of diagonals increase. Each combination of simulation parameters

(number of diagonals, amount of variability, and signal to noise ratio) resulted in a plot of

the Xia metric with some identified effective dimension. Since the drop towards zero is not

always clearly a minimum, this p was identified manually for each case and summarized in

Figure 4.8. Green indicates the correct dimension (p = 5) was identified and red indicates

no reduced effective dimension detected, i.e. the entire space p = 17 was identified. We

note there may be minor variations as to where the border where green transitions to red

may lie if varying simulations parameters are used not captured by this specific simulation

data set; however, this is adequate in giving a general range of breakdown.
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Figure 4.6: Xia metric for simulations with block covariance structure with p = 17.
Results for all constant values from c = 1, ..., 14 were similar thus only a subset are
shown. The Xia metric breaks down as signal to noise ratio decreases to 1.33. Red
line indicates the mean over 10,000 simulations.
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Figure 4.7: Xia metric for simulations with block covariance structure with p = 100.
Results for all constant values from c = 1, ..., 14 were similar thus only a subset are
shown. The Xia metric is stable for all signal to noise ratios but 1.33; thus results for
SNR of 4 and 2 are omitted. Red line indicates the mean over 10,000 simulations.

4.1.2 Bootstrap Approach

While we have the luxury of running simulations tens if not hundreds of thousands of

times, this is not realistic for real world applications. Usually, we will be given one

true covariance and one estimated covariance – or perhaps just a true covariance matrix.

Bootstrap approaches can be used to estimate the Xia metric under these conditions.

True and Estimated Covariance

We consider the case where two covariance matrices are given: the true and estimated.

There are two methods of bootstrapping for this approach.

First, for the estimated covariance Σ̂, we bootstrap by simulating additional covariance

matrices Σ̂
′

from the Wishart distribution with degrees of freedom ranging from 20, 50,

80, 120, 150, and 500. Figure 4.9 shows that for high signal to noise ratios of 10 and 4,

the Xia metric with bootstrap is able to detect the correct effective dimension. However,

it breaks down for signal to noise ratios of 2 or less (figures omitted).
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Figure 4.8: Heatmap visualizing the breakdown of the Xia metric under various
simulation parameters (signal to noise ratio, number of diagonals, and amount of
variation). Green indicates the Xia metric correctly dropped at p = 5, and red
indicates no reduction in effective dimension detected (p = 17).
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(a) Signal to noise ratio of 10

(b) Signal to noise ratio of 4

Figure 4.9: Xia metric simulation results for the bootstrap approach generating Σ̂
′

from the Wishart distribution with varying degrees of freedom. This approach can
correctly detect effective dimension with just 20 degrees of freedom for higher signal
to noise ratios. The black line indicates the Xia metric calculated from Σ and Σ̂;
the blue line plots the mean over all simulation runs.
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Second, from Σ̂, we generate data from four potential distributions (Gaussian and t

with 9, 6, and 3 degrees of freedom) and three sample sizes (25, 100, 200), from which a Σ̂
′

is calculated and compared to the true Σ. Similar to the previous method, this approach

is able to capture the true effective dimension well for higher signal to noise ratios (10, 4),

larger degrees of freedom, and lighter tailed distributions. Figure 4.10 shows results for

these simulations. For a 17 dimensional data set, bootstrapping only 25 samples breaks

down very quickly as the amount of noise increases.

True Covariance

Second, we consider the case where only one true covariance matrix Σ is given. The

simulation procedure is similar to the second scenario discussed previously, but data is

generated (from four potential distribution using three sample sizes) using Σ as Σ̂ is

not given. Figure 4.11 shows a portion of these simulations results, which are further

summarized in Figure 4.12.

Figure 4.12 shows the breakdown of the Xia metric using this bootstrap approach

under varying simulation parameters. Green indicates the correct effective dimension was

identified and red indicates no reduction in effective dimension detected.

Many real world applications will involve larger dimensions and differing effective

dimensions. This bootstrap approach is tested for covariance matrices of dimension 100

and 200. Although detailed simulation results are not shown, the heatmaps in Figure 4.13

give an idea of the breakdown of the Xia metric.
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(a) Signal to noise ratio of 10

(b) Signal to noise ratio of 4

Figure 4.10: Xia metric simulation results for the bootstrap approach where data
generated from varying distribution with covariance Σ̂ is used to estimate Σ̂

′
. This

approach works well for high signal to noise ratios in all conditions (see (a)), but
breaks down very quickly if sample sizes are too small or distributions too heavy
tailed (b). The black line indicates the Xia metric calculated from Σ and Σ̂; the red
line plots the mean over all simulation runs using Σ̂′.
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(a) Signal to noise ratio of 10

(b) Signal to noise ratio of 4

Figure 4.11: Xia metric simulation results for the bootstrap approach where data is
generated from the only given Σ. This approach works well for high signal to noise
ratios in all conditions (see (a)), but breaks down very quickly if sample sizes are
too small or distributions too heavy tailed (b). The black line plots the mean over
all simulation runs using.
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Figure 4.12: Heatmap visualizing the breakdown of the Xia metric under various
simulation parameters (signal to noise ratio, number of diagonals, and amount of
variation). Green indicates the Xia metric correctly dropped at p = 5, and red
indicates no reduction in effective dimension detected (p = 17).
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(a) bootstrap simulations with dimension p = 100.
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(b) Bootstrap simulations with dimension p = 200.

Figure 4.13: Heatmaps visualizing the breakdown of the Xia metric for larger di-
mensions with varying true effective dimension q.
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Figure 4.14: QQ plots for the largest singular value and eigenvalue against Tracy-
Widom quantiles (β = 1) at p = 4, 5, 17.

4.1.3 Distribution of Xia Metric

In Section 3, it was mentioned that the largest singular value could be thought of in terms

of its square – the largest eigenvalue, which is known to follow a Tracy-Widom distribu-

tion. To confirm this, quantile-quantile (QQ) plots of quantiles from the Tracy-Widom

distribution were plotted against quantiles of the largest singular value and eigenvalues.

The Tracy-Widom distribution parameter can take on three values, β = 1, 2, or 4, corre-

sponding to Gaussian Orthogonal Ensembles, Gaussian Unitary Ensembles, and Gaussian

Symplectic Ensembles, respectively [56]. QQ plots using β = 1 and 2 both show linear

trends, and results for β = 1 are shown below.

For both the eigenvalues and singular values, QQ plots show linear trends at larger

signal to noise ratios of 10 and 4 at both p = 5 and 17. Those for smaller signal to noise

ratios are only linear at p = 17, with QQ plots at all other dimensions showing heavy

right tails. This trend is also seen for data up to dimension 100 with effective dimension

ten. Figure 4.14 shows the QQ plots for SNR = 4 at certain dimensions.
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4.2 Largest Principal Angle

4.2.1 U-Based Visual Method

Section 3.1.2 illustrated the diagonal structure of the UT1 U2 metric when comparing clas-

sical and robust estimates of covariance matrices of data sets with known outliers for a

series of simulated and small yet well known data sets. This is further illustrated with

Data Set 3.

Data Set 3 contained data on float glass panes from two manufacturers, Company

A and Company B. Figure 1.2 showed that log concentrations of certain elements (about

half of the 18 elements) varied rather largely between the two manufacturers. Rather than

manually contaminating data sets by creating outliers ourselves, which may be unrealistic

as the distribution of trace elements in float glass is unknown (at least to us), we can use

data from one of the two companies as the “true” data and slowly introduce data from

the other company as “outliers.” Here we will use panes from Company A as the “true”

data and panes from Company B as “outliers”; where the “outliers” are outlying from the

“true” data by at least 10% in half of the 18 elements.

Each float glass pane had around 24 fragments (some had fewer due to missing data).

Glass panes were randomly selected from Company A and contaminated by an increasing

number of “outlying fragments” from a Company B pane. The algorithm is as follows:

1. Randomly select Company A pane, X, to represent “true” data

2. Obtain UX from SV D(cov(X))

3. for num outliers = 1, ..., 11:

(a) for num panes = 1, ..., 100:

i. Randomly select Company B pane, Y , from which “outliers” will be draw

ii. for num samples = 1, ..., 100:
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A. From Y , randomly select num outliers fragments as “outliers”

B. Create contaminated data set Z (n = 24 + num outliers fragments)

C. Obtain UZ from SV D(cov rob(Z))

D. Calculate UTXUZ

(b) Average 10,000 resulting UTXUZ matrices and plot heatmap of absolute values

where num outliers indicates the number of fragments to select from Company B pane

Y and num samples and num panes indicate 100 samples of num outliers sampled for

100 panes. SVD denotes the singular value decomposition, cov calculation of the classical

covariance matrix, and cov rob calculation of Rousseeuw’s robust MCD estimator.

This algorithm was run for all 31 panes from Company A, and the majority display

a similar trend (see Figure 4.15 (a) and (b)). The strong diagonal structure can be seen

for up to num outliers = 6, after which point the MCD estimator breaks down. The

finite-sample breakdown value (FSBV) of the MCD estimator, given by b(n− p+ 1)/2c/n

[85], would be around

b(24− 18 + 1)/2c
24

=
3

24
= 12.5%

b((24 + 6)− 18 + 1)/2c
24 + 6

=
6

30
= 20%

b((24 + 7)− 18 + 1)/2c
24 + 7

=
7

31
= 22.58%

for six and seven outlying fragments. Figure 4.15 (c), Pane 20, was the only pane to show

a breakdown at only five outliers, likely due to variability in that single pane.

4.2.2 Largest Principal Angle

In addition to simply calculating the Asimov distance, we are interested in the 95th per-

centile to get an idea of what a cutoff value and what the tail end of the distribution looks

like. Simulations using the covariance matrices estimated from three of our motivating
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Figure 4.15: UT
1 U2 metric applied to Data Set 3, where U1 is obtained from the

classical covariance of data with no outliers (only Company A data) and U2 is
obtained from the robust MCD estimator of data containing outlying fragments
(from Company B). Of the 31 Company A panes, all but one (Pane 20, subfigure
(c)) showed strong diagonal structure with varying levels of off-diagonal noise until
seven outlying fragments were introduced, at which point the MCD estimator broke
down. Pane 20, (c), was the only pane to break down after four outlying fragments.
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data sets were performed with varying degrees of freedom (p = 17 for all). Results from

Data Set 1 are shown in Figure 4.16. Simulations from Data Sets 2 and 3 display similar

oscillating patterns (see Appendix A). As the degrees of freedom increases, the range in

which the metrics oscillate increases. This stabilizes when the degrees of freedom is 100

or more, indicating that less than 100 degrees of freedom may be far too few and unable

to capture enough information for data of dimension 17.

This oscillating pattern may be due to small eigengaps. As the eigengaps decrease

towards zero, it becomes increasingly difficult to distinguish between consecutive subspaces

and may result in eigenvectors swapping positions – causing the overall subspaces at

times to look more (or less) similar with the presence of just one additional eigenvector.

There are two ways to test this hypothesis: (1) set pre-specified eigengaps of known size;

and (2) largely increase the degrees of freedom to mitigate the effect of small eigengaps.

Simulations were performed with modified versions of the Data Set 1 covariance matrix

with specified eigengaps and larger degrees of freedom.

Table 4.1 shows some of the singular values and corresponding eigengaps used in sim-

ulations, labeled 5 through 10. True covariance matrices Σ were created by decomposing

the Data Set 1 covariance matrix into the corresponding eigenvectors and singular values

and reassembling the eigenvectors with using the singular values in Table 4.1. The eigen-

gaps for simulation 5 and 6 are relatively similar, and eigengaps 7 and 8 are generated by

multiplying eigengap 5 by a factor of 100 and 10, respectively. These are referred to in

the following as “gap5” through “gap10.”

Figure 4.17 shows the largest principal angle for five of the simulation scenarios above,

as well as the logarithms of the distances. The distribution of the largest principal angle at

various dimensions seem to vary widely, with some having considerably longer and heavier

tails. These look much more normal after taking logarithms.

Figure 4.18 shows simulations results from gap5 in more detail. The vertical bars below

each dimension correspond to a scaled version of the eigengap. As eigengap decreases,
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(a) Subspace distance metrics for Data Set 1. The metrics all show an oscillating pattern
as p increases, though it is not as clear when the degrees of freedom is close to p.
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(b) Subspace distance metrics by degrees of freedom. Variability in the metrics decreases
as the degrees of freedom increases. An oscillating pattern can still be seen.

Figure 4.16: Nine metrics from Table 2.1 for Data Set 1. An oscillating pattern can
be seen for each of the metrics over varying dimensions p. The asterisk indicates
distances involving only the largest principal angle.



77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5 12 10 7 3 1 0.5 0.4 0.2 0.1 0.09 0.08 0.06 0.05 0.04 0.03 0.02 0.01
6 18 16 7 3 1 0.5 0.4 0.2 0.1 0.09 0.08 0.06 0.05 0.04 0.03 0.02 0.01
7 1200 1000 700 300 100 50 40 20 10 9 8 6 5 4 3 2 1
8 180 1600 70 30 10 5 4 2 1 0.9 0.8 0.6 0.5 0.4 0.3 0.2 0.1
9 45 28 18 10 4 2 1 0.5 0.4 0.2 0.1 0.09 0.08 0.06 0.05 0.04 0.03
10 100 60 35 20 10 4 2 0.5 0.4 0.2 0.1 0.09 0.08 0.06 0.05 0.04 0.03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

5 - 2 3 4 2 0.5 0.1 0.2 0.1 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
6 - 2 9 4 2 0.5 0.1 0.2 0.1 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
7 - 200 300 400 200 50 10 20 10 1 1 2 1 1 1 1 1
8 - 20 90 40 20 5 1 2 1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1
9 - 17 10 8 6 2 1 0.5 0.1 0.2 0.1 0.01 0.01 0.02 0.01 0.01 0.01
10 - 40 25 15 10 6 2 1.5 0.1 0.2 0.1 0.01 0.01 0.02 0.01 0.01 0.01

Table 4.1: Singular values (top) and gaps (bottom) used to create covariance ma-
trices for six different simulations.

notably when p ≥ 6, an oscillating pattern can be seen to emerge with long as heavier

tails in the distribution of the Asimov distance. The colored lines indicate the 95th

percentile of the Asimov distance. Together, Figures 4.17 and 4.18 indicate that the size

of the eigengaps seems to be the determining factor causing the oscillating pattern rather

than the magnitude of the singular values.

Following figures and approaches focus on data from simulations using gap5 and gap10,

which have eigengaps of relatively different magnitude and pattern. Figure 4.19 shows

the largest angle and logarithm of the largest angle for these simulations, as well as the

corresponding plot of eigengaps for smaller degrees of freedom (from 25 to 250).

While data sets exist where having 100,000 or more degrees of freedom for 17 dimen-

sions is realistic, it is improbable this will ever be the case for forensic glass evidence.

Nonetheless, the approach may apply to “big data” scenarios. Figure 4.20 shows the

Asimov distance for ten different degrees of freedom ranging from 25 to 100,000. There

is a relatively clear decreasing trend between the largest principal angle and increasing

degrees of freedom. These are confirmed by the QQ plots of the logarithms of the Asimov

distances in Figure 4.21, especially if smaller degrees of freedom, namely 25 and 50, are

overlooked. QQ plots for simulations using gap5 have similar trends so are not shown;

the only difference being the specific dimensions at which heavier tails exist (which is

dependent on the true effective dimension of the covariance matrix). The QQ plots which
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(a) The largest principal angle (Asimov distance) for five different simulated eigengaps.

(b) Logarithms of the values in Figure (a).

Figure 4.17: The largest principal angle for five different simulated eigengaps (a) as
is and (b) after taking logarithms.

Figure 4.18: Simulations with increased degrees of freedom using gap5. The bar
plot on the bottom indicates a scaled version of the eigengaps between dimensions,
and the colored lines mark the 95th percentile of the largest principal angle.
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(a) Largest principal angle (Asimov distance).

(b) Logarithms of the largest principal angle.

Figure 4.19: The largest principal angle for simulations using gap5 and gap10 with
smaller degrees of freedom and their corresponding eigengaps.
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show deviation from normality in the tails correspond to the heavy tails seen in previous

figures (e.g., Figure 4.19).

From the distributions of the largest principal angle, we are interested mainly in two

quartiles: the median and 95th percentile. These quartiles will give an indication of how

stable and what the tail of the Asimov distance could look like, and help in determining

when two subspaces can be considered “similar.” In real world applications, it is likely a

single data set exists or only a small number of simulations would be able to performed.

Using our simulated data, we will model the log of the Asimov distance as a function of the

degrees of freedom (less values 25 and 50, which are too small considering the dimension is

of 17). Ideally, knowing the value of the median or 95th percentile at one specific degree of

freedom will allow us to infer the rest. Figure 4.22, using values from the 95th percentile,

indicates a clear linear relationship between the logarithm of the Asimov distance and the

logarithm of the degrees of freedom exists for most p, corresponding to the p mentioned

in Figure 4.21. Figures for the median are not shown as they are almost perfectly linear

for all p.

A robust regression line

log(df) ∼ log(quantile)

is fit for all dimensions p < 17 with eight degrees of freedom (n = 100, 150, 200, 250, 500,

1,000, 10,000, 100,000). Smaller degrees of freedom (25 and 50) were considered too vari-

able for 17 dimensions, but theoretical quantiles may be calculated from the distribution

and density functions derived in [4].

For each dimension, we estimate an intercept and slope, as well as biweight regression

weights w for each point using the residuals r.

wi =
(
1− u2

)2
, where u =


r

4·sd(r) |u| ≤ 1

1 otw
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(a) Simulations using gap5

(b) Simulations using gap10

Figure 4.20: The largest principal angle for simulations using gap5 and gap10 at
different values of degrees of freedom ranging from 25 to 100,000.
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Figure 4.21: QQ plots for gap10 simulation data. Lines for larger degrees of free-
dom are omitted as the show similar trends to those plotted. Very clear linear
patterns can be seen for dimensions up to p = 10 (excluding p = 8). The remaining
dimensions have much heavier tails.
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Figure 4.22: log(df) ∼ log(quantile) for each dimension p; data from the 95th per-
centile of simulations using “gap10.” A very clear linear relationship exists between
the logarithms of the Asimov distance and degrees of freedom.
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These weights are used to estimate the standard error, from which an approximate 95%

confidence interval is calculated and shown for each dimension. While either the intercept

or slope may be used to estimate a threshold, the slope tends to be more stable, and is

here as well (Figure 4.23). We can see that around true effective dimension p = 9 in (a)

and p = 11 in (b), the slope spikes above the mean and median. As expected, the 95th

percentile is much more variable than the median.

Figure 4.23 indicates the slope values to be around -0.51 for the median (or 50th

percentile) and -0.54 for the 95th percentile. However, many of the confidence intervals

for the 95th percentile seemed to include -0.51. Future work can be done to determine if

the quantile has a significant effect on slope (and intercept) values; and if so, how they

are related.

Recalling the eigengaps in Table 4.1, we can see that the eigengaps and singular values

for gap10 drop at p = 8, and again so (albeit at a smaller magnitude) at p = 11 before

shrinking to very small values. This seems to be reflected in Figure 4.23(b), as the slope

dips down below the mean and median at p = 8 before jumping up at p = 11. In analyzing

a scree plot (see Figure 4.19), one might conclude the effective dimension is p = 8. Using

this method based on the largest principal angle, one might decide to keep up to p = 11

dimensions. In other words, using the largest principal angle may give a conservative

estimate of the true effective dimension.

4.3 Combining covariance matrices

Proposed methods for combining covariance matrices can be illustrated via heatmaps.

Covariances and the three estimates discussed in Section 3.2 are visualized by plotting

absolute values of the heatmaps of the corresponding correlation matrices. In the following

figures, proposed estimation methods as numbered as in Section 3.2 and labeled as:

1. Weighted average – “weighted avg”
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(a) Simulations using “gap5.”

(b) Simulations using “gap10.”

Figure 4.23: Intercept and slope values for the median and 95th percentile. Slope is
more stable than intercept, and median more stable than the 95th percentile. Blue
dashed lines indicate the mean and blue dotted lines indicate the median.
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Data set 3 (24)
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1: weighted avg
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3: avg udv
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Figure 4.24: Two different estimates, using methods (1) and (3), resulting from
combining covariance matrices from Data Sets 1, 2, and 3 (one pane selected at
random). Heatmaps plot absolute values of correlations (blue = -1, white = 0, red
= 1); and numbers in parentheses indicate sample sizes.

2. U from the pooled data and average individual D matrices – “share uv, avg d”

3. Average U and D matrices – “avg udv”

We first illustrate these estimates using Data Sets 1, 2, and 3, assuming data is un-

available and using only the covariance matrices (thus, only estimates (1) and (3) can be

calculated). Only one pane from Data Set 3 was used for consistency.

We can also illustrate these estimates using pairs of the three data sets. Each column

in Figure 4.25 shows estimates (1) and (3) for a pair of Data Sets: 1 and 2, 1 and 3, and

2 and 3, respectively.

These estimates are further applied to Data Set 4, in which we use available data to

split certain glass categories into subcategories, then combine the covariance matrices of

these subcategories. Since data were available, we calculated estimate using method (2)

as well for comparison. First we will look at container glass (Figure 4.26). These glass

samples under container can be classified into one of three groups: (1) alcoholic beverage

bottles; (2) beverage bottles; (3) other (including baby food, olive jars, etc.). The first
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Data sets 1, 2
1: weighted avg

Data set 1, 2
3: avg udv

Data sets 1, 3
1: weighted avg

Data set 1, 3
3: avg udv

Data sets 2, 3
1: weighted avg

Data set 2, 3
3: avg udv

Figure 4.25: Covariance estimates using methods (1) and (3) for all pairs of Data
Sets 1, 2, and 3. Each column represents the two estimates, which can be seen to
differ. Heatmaps plot absolute values or correlations (blue = -1, white = 0, red =
1).

row of Figure 4.26 indicates that correlation (covariance) matrices between the subgroups

are considerably different (the number in parenthesis indicates sample size n). The second

row show correlation matrices of the three estimates.

Similar to container glass, float architecture glass comes from four main manufacturers:

Guardian, PPG, Temp Glass, and Cardinal, all of which have relatively different corre-

lation matrices (Figure 4.27). Float automotive glass comes from two categories: CFS

(Centre of Forensic Sciences in Canada) casework samples and non-CFS (Figure 4.28).
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Figure 4.26: Correlation (covariance) matrices of container glass and its three sub-
categories: alcoholic beverage bottles, beverage bottles, and other (baby food,
ketchup jars, etc.). Heatmaps plot absolute values (blue = -1, white = 0, red =
1); and numbers in parentheses indicate sample sizes. The first row shows that
correlation matrices of subcategories are considerably different. The second row
shows correlation matrices of the three estimates discussed in Section 3.2 and the
percentage of variation explained by eigenvalues.

Guardian (31) PPG (38) Temp Glass (25) Cardinal (49)

farch all (143) 1: weighted avg 2: share uv, avg d 3: avg udv

Figure 4.27: Correlation (covariance) matrices of float architecture glass and the
four main manufacturers: Guardian, PPG, Temp Glass, and Cardinal. Heatmaps
plot absolute values (blue = -1, white = 0, red = 1); and numbers in parentheses
indicate sample sizes. Correlation matrices from four manufacturers (first row) are
considerably different. The second row shows correlations of all the data and the
three estimates. A scree plot is not show, but resembles that of Figure 4.26.
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fauto all (103) CFS (43) Non−CFS (60)

1: weighted avg 2: share uv, avg d 3: avg udv

Figure 4.28: Correlation (covariance) matrices of float automotive glass from CFS
(Centre of Forensic Sciences in Canaday) casework samples and non-CFS (other)
samples. Heatmaps plot absolute values (blue = -1, white = 0, red = 1); and
numbers in parentheses indicate sample sizes.
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Chapter 5

Conclusions and Future Work

In this chapter, we summarize advantages of the proposed metrics and methods concerning

covariance matrices over existing methods. After that, we discuss potential directions for

future study of these topics.

5.1 Conclusions

Two methods for comparing the similarity of covariance matrices and estimating true ef-

fective dimension were presented, as well as a method for estimating a combined (pooled)

covariance matrix. These methods are based on the belief that analysis and compari-

son of covariance matrices should be based on the subspaces they span, which we obtain

through the singular value decomposition. Our motivating forensic science data originate

from a field where it is often the case that data is inaccessible or otherwise unavailable;

and these methods can be performed given only information on covariances (or correla-

tions). The main advantages over existing methodology are simplicity, lack of distribution

assumptions, no sample size requirements, and fast computation time.

The lack of minimum sample size requirement is crucial for forensics glass data, which

is of small n, relatively large dimension p, and is known to contain outliers. This is also
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the reason many robust covariance estimators, which may require n > 5p, are unsuitable.

However, the simplicity and fast computation times of the proposed methods allows for

applications to much larger data sets (and their covariance matrices) with large sample

size and dimensionality. They may be especially applicable to fields (e.g., social media,

marketing, etc.) with constantly streaming (yet possibly confidential) data.

The proposed methods for determining effective dimension may be preferable to simple

eigenvalue-based methods (e.g., scree plot). When n and p are of similar magnitude,

the eigenvalues of a sample covariance matrix are known to be poor estimators of the

population covariance (the largest sample covariance eigenvalue tends to overestimate that

of the population covariance); and in “large n, large p” asymptotics, sample covariance

matrix eigenvectors “are not consistent estimators of the population eigenvectors” [32, 79].

Furthermore, our simulations indicate the largest principal angle method may give a more

conservative estimate of effective dimension than a scree plot.

5.2 Practical Implications

Although these methods may suggest two covariance matrices have the same effective

dimension, whether or not it is appropriate to combine them depends heavily on the

context. Our motivation arises from glass chemical composition data from various labs.

The decision to combine or not will benefit greatly from subject matter experts; one can

imagine an ideal scenario for combining covariance matrices would be when they have

similar effective dimension and similar elements. If the effective dimension is the same

yet specific elements vary with little or no overlap, chemists may be able to inform us

how meaningful or appropriate (or not) it would be to combine these matrices. Similarly,

different detected effective dimensions may indicate the subspaces that data span are very

different and should not be combined.

Rotating one subspace into another, regardless of dimension, may result in a loss of
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information. Knowing two subspaces have the same (or similar) effective dimension can

provide information that one can be rotated into the other, which is in itself useful. For

example, continuing with the forensic glass lab motivation, the information may suggest

that neither lab needs to measure all 17 elements: five dimensions will suffice, determine by

five principal components, but those components may involve different linear combinations

of different sets of 7 elements, depending on the lab (one lab may have better facilities for

measuring one set of five elements than another). Another aspect for consideration is the

scale. If the eigenvalues defining two “similar” subspaces are of very dissimilar magnitude

(e.g., diagonal values of 1 versus 20), this seems to indicate lab measurements differ at

least with respect to scale, and thus may be inappropriate to combine. The proposed

methods may help us conclude the structure of the data is similar if not accounting for

scale. Again, in the case of labs, one lab may have far greater precision than another -

inspiring the less precise lab to undergo an investigation for its greatly reduced precision

relative to the other lab. Either way, the information about effective dimension has been

insightful.

Generally, any decision involving combining or rotating subspaces will depend heavily

on the application – the actual variables involved, how interpretation may be affected,

and the overall aim. The needs, requirements, and guidelines for combining subspaces will

differ when considering combining data on glass panes versus those for combining medical

data related to detection of disease.

5.3 Future Work

In this section, we discuss potential future directions building on top of the proposed

methods for covariance comparison and combination.



93

5.3.1 Comparison and Effective Dimension Methods

At the beginning of Section 3, we mentioned that ideally, a set of covariance matrices

ranging from identical to very different would be ideal for testing our proposed methods on.

One direction would be to identify such a set of covariances and analyze the performance

of our methods as well as other methods mentioned in Section 2.

We chose to use the Asimov distance, or the largest principal angle, as a metric.

However, many potential distances were identified in Table 2.1. Future directions in-

clude identifying under which cases metrics based on one or more principal angles is most

appropriate.

While visual examination of Xia metric plots may be adequate for determining di-

mensionality (effective dimensions), a numerical test or threshold is necessary. Recall

that the Xia metric is defined as the largest singular value of the difference between two

matrices. Although eigenvalues of random matrices are known to follow Tracy-Widom

distributions, more theoretical research can be done in this area. Random matrix the-

ory literature, which discusses derivations of asymptotic distributions for singular values

of differences between two random matrices [30] and eigenvalues of covariance matrices

[55, 79, 31, 32], may provide a basis to confirm the Tracy-Widom distribution is appro-

priate, as well as potentially detect a threshold (e.g., a 95th percentile) of the Xia Metric

score. Potential questions to be considered include:

� Does the distribution depend on number of non-zero singular values?

� What if the matrix is singular?

� What are the assumptions? (matrix singular, effective dimensions, etc.)

Empirically, it may also be possible to calculate a threshold or critical value by simulating

and sampling of two Σ̂ from a known Σ under the same null hypothesis. A procedure

similar to that in Section 3.1.2 and 4.2.2 might also be performed.
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Largest Principal Angle

Section 4.2.2 and Figure 4.23 analyzed the intercept and slope values of the median and

95th percentile for using the largest principal angle to determine similarity between sub-

spaces. These analyses suggested the slope had a median of around -0.51 for the median

or 50th percentile and a median of around -0.54 for the 95th percentile, although many of

the confidence intervals for the 95th percentile seemed to include or fall very close to -0.51.

Additional simulations with varying parameters can be conducted to see if this effect still

holds (our analyses included data from simulations of dimension p = 17 and degrees of

freedom larger than 100). Further work can be performed to determine if the intercept

and slope values are significantly related to the specific quantile of interest.

5.3.2 Proposed Estimator

Detailed properties of the proposed estimator should be determined, including but not

limited to,

� Affine equivariance (or close to)

� Breakdown point – perhaps calculated by simulation, or using sensitivity curves

(comparing the performance of estimator with and without outliers) or influence

functions

� Comparison to MCD or other robust estimators (and their properties)

In line with examining the properties above, it is necessary to show the proposed

estimator is robust, which could be done by adding large outliers into covariance matrix

(e.g., misplacing decimal places, a rather common occurrence). From this, the breakdown

point of our estimator can be calculated to determine what percentage of outliers can

exist before the estimator breaks down. Another direction to examine for the proposed

estimator is the use of the Fréchet mean instead of a straight average of the U matrices.

Subspace distance metrics mentioned in Table 2.1 may be potential distances to use.
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Further study can be conducted on how outliers (and different data distributions)

influence the estimator, or more specifically the U and D matrices themselves. If outliers

are present, does this affect one of the SVD matrices more than the other, or do they

equally display effects of outliers? We also must decide what it means to be “sensitive;”

e.g., what percentage of the U matrix (number of columns) can be affected, and how this

effect establishes itself (perhaps the angles of multiple columns are rotated or directions

changed, or one direction is largely affected; possibly measured in degrees of percentage

of degrees).
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Appendix A

A.1 Asymptotic Distribution of Xia Metric

The Xia Metric in Section 3.1.1 is defined as the largest singular value of

U0U
T
0 − ÛqÛTq (A.1)

where U0 denotes the matrix of directions of a “true” covariance matrix and Ûq denotes

directions of an estimated covariance matrix. In other words, Ûq = U0 +ε where ε denotes

error in the estimation of directions of the “true” covariance matrix. The Xia Metric

becomes, in turn, the largest singular value of

U0U
T
0 − (U0 − ε)(U0 − ε)T = U0U

T
0 −

(
U0U

T
0 + U0ε

T εUT0 + εεT
)
, (A.2)

which we denote by V .

For any given covariance matrix, the eigenvectors U0 are a constant matrix. [Without

loss of generality] we assume that the error term, ε, follows a Gaussian distirbution with

zero mean and some covariance Σ, or, ε ∼ N(0,Σ).

The expected value of V is then

E[V ] = E
[
U0U

′
0 −

(
U0U

′
0 + U0ε

′
εU

′
0 + εε

′
)]

= 0− E
[
U0U

′
0 + U0ε

′
εU

′
0 + εε

′
]

= E[εε
′
]

where the expectation of the first and third moments are zero following from the distri-
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bution of ε. As the product of two random matrices, this is known to follow a Wishart

distribution with expected value given by the degrees of freedom multiplied by the covari-

ance matrix. Letting ei denote the columns of ε, Schott (2016) [92, p. 488] Theorem 11.28

derives this as:

E[εε
′
] =

n∑
i=1

E[eie
′
i] =

n∑
i=1

Σ = nΣ. (A.3)

Our expected value will −nΣ.

The variance of V can be calculated as in Theorem 11.29 [92, p. 489], which is repro-

duced below with slightly modified notation. This proof uses vectorized form, where the

vec() operator converts a matrix into a vector by stacking the columns, and vec(ab
′
) =

b ⊗ a [92, Theorem 8.9, p. 489]. Let ei denote the columns of ε and µi the columns of

constant matrix U0,

V ar{vec(V )} = V ar

{
vec

(
n∑
i=1

(ei + µi)(ei + µi)
′

)}

= V ar

{
n∑
i=1

vec
(

(ei + µi)(ei + µi)
′
)}

=
n∑
i=1

V ar {(ei + µi)⊗ (ei + µi)}

The inside of the summation and variance evaluates to

(ei + µi)⊗ (ei + µi) = ei ⊗ ei + ei ⊗ µi + µi ⊗ ei + µi ⊗ µi

= ei ⊗ ei + (Imm +Kmm) (ei ⊗ µi) + µi ⊗ µi

= ei ⊗ ei + 2Nm (Imm ⊗ µi) ei + µi ⊗ µi

Where the matrices Imm denote the Identity matrix of size m × m, Kmm denotes the

commutation matrix with property K · vec(A) = vec(A
′
), and Nm = 1

2(Imm +Kmm) [92,
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p. 380]. The variance of this becomes

V ar {(ei + µi)⊗ (ei + µi)} = var(ei ⊗ ei) + var {2Nm(Im ⊗ µi)xi}

= 2Nm(Σ⊗ Σ) + 4Nm(Im ⊗+ui)Σ(Im ⊗ µ
′
i)Nm

= 2Nm(Σ⊗ Σ) + 4Nm(Σ⊗ µiµ
′
i)Nm

= 2Nm(Σ⊗ Σ + Σ⊗ µiµ
′
i + µiµ

′
i ⊗ Σ)

Substituting this back into the original summation, the variance of the vectorized form of

V becomes

V ar{vec(V )} = 2Nm{n(Σ⊗ Σ) + Σ⊗ U ′
0U0 + U

′
0U0 ⊗ Σ} (A.4)

Using Theorem 8.9, vec(ab
′
) = b⊗ a [92, p. 489], the matrix form is provided below.

2Nm{n(Σ⊗ Σ) + Σ⊗ U ′
0U0 + U

′
0U0 ⊗ Σ}

= 2Nm{nΣΣ
′
+ U

′
0U0Σ

′
+ ΣU

′
0U0}

= (Imm +Kmm){nΣΣ
′
+ U

′
0U0Σ

′
+ ΣU

′
0U0}

= {nΣΣ
′
+ U

′
0U0Σ

′
+ ΣU

′
0U0}+Kmm{nΣΣ

′
+ U

′
0U0Σ

′
+ ΣU

′
0U0}

= {nΣΣ
′
+ U

′
0U0Σ

′
+ ΣU

′
0U0}+ {n(ΣΣ

′
)
′
+ (U

′
0U0Σ)

′
+ (ΣU

′
0U0)

′}

= {nΣΣ
′
+ U

′
0U0Σ

′
+ ΣU

′
0U0}+ {nΣΣ

′
+ Σ

′
U

′
0U0 + U

′
0U0Σ

′}

= 2{nΣΣ
′
+ U

′
0U0Σ

′
+ ΣU

′
0U0}

The last inequality holds because covariance matrix Σ is symmetric.

A.2 Additional Simulation Figures

Figure 4.16 which showed subspace metrics for Data Set 1. The following correspond Data

Sets 2 and 3.
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(a) Subspace distance metrics for Data Set 2. The metrics all show an oscillating pattern
as p increases, though it is not as clear when the degrees of freedom is close to p.
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(b) Subspace distance metrics by degrees of freedom. Variability in the metrics decreases
as the degrees of freedom increases. An oscillating pattern can still be seen.

Figure A.1: Nine metrics from Table 2.1 for Data Set 2. An oscillating pattern can
be seen for each of the metrics over varying dimensions p.
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(a) Subspace distance metrics for Data Set 3a. The metrics all show an oscillating pattern
as p increases, though it is not as clear when the degrees of freedom is close to p.
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(b) Subspace distance metrics by degrees of freedom. Variability in the metrics decreases
as the degrees of freedom increases. An oscillating pattern can still be seen.

Figure A.2: Nine metrics from Table 2.1 for Data Set 3a. An oscillating pattern can
be seen for each of the metrics over varying dimensions p.
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(a) Subspace distance metrics for Data Set 3b. The metrics all show an oscillating pattern
as p increases, though it is not as clear when the degrees of freedom is close to p.
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(b) Subspace distance metrics by degrees of freedom. Variability in the metrics decreases
as the degrees of freedom increases. An oscillating pattern can still be seen.

Figure A.3: Nine metrics from Table 2.1 for Data Set 3b. An oscillating pattern can
be seen for each of the metrics over varying dimensions p.
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