




Abstract

Pre-trained language models dominate modern natural language processing. They

rely on self-supervision to learn general-purpose representations. Given the redundant

information encoded in these representations, it is unclear what information encoded

leads to superior performance on various tasks and whether it can be even better if

it is encoded in an interpretable way. In this work, with stylistic datasets, we explore

whether style and content can be disentangled from sentence representations learned

by pre-trained language models. We devise a novel approach leveraging multi-task

and adversarial objectives to learn disentangled representations. The latent space is

divided into different parts and fine-tuned so that they encode different information.

Our approach is demonstrated using parallel datasets with different styles from var-

ious domains. We show that style and content spaces can be disentangled from the

sentence representations through this simple yet effective approach.
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Chapter 1

Introduction

1.1 Background

Large pre-trained models (Devlin et al., 2018; Yang et al., 2019; Radford et al., 2018)

have come to dominate modern Natural Language Processing (NLP) in a variety of

downstream tasks by learning general-purpose representations. They have constantly

pushed the state-of-the-art in NLP tasks such as Question Answering, Textual En-

tailment, Machine Translation, Natural Language Inference (NLI) (Rajpurkar et al.,

2016; Wang et al., 2018; Edunov et al., 2018; Liu et al., 2019). Each new model

introduces a deeper and wider architecture while learning multiple tasks without any

supervision (Radford et al., 2019). This highly performing modeling capability is a

consequence of multiple layers of non-linear transformations of input sequences. Such

transformations make the intermediate features latent, that is, they do not have

any explicit meaning and are not interpretable. It is not obvious what information

gets encoded in the latent representations learned by these models, which leads to

competitive performance in a multitude of downstream tasks. This, in turn, hinders

the model’s robustness and interpretability. Moreover, it is not clear whether the

performance can be improved further by encoding the representations in an inter-

pretable way. Therefore, it is essential to learn how the information is encoded in

these representations and find out methods to improve this process. In this work,
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we try to address the issue of obscurity in the sentence representations from pre-

trained language models. We propose to push these models on learning disentangled

representations.

1.2 Disentangled Representations

Disentangled representations map different aspects of data into distinct, indepen-

dent, and complementary low-dimensional latent vector spaces. They have become

an increasingly important research topic for making deep learning models more inter-

pretable (Cheng et al., 2020). A sequence of operations, such as selecting, combining,

and switching, can be performed on the learned disentangled representations to utilize

them in downstream applications. They can be used in tasks like domain adaption

(Liu et al., 2018), style-transfer (Lee et al., 2018), conditional generation (Denton

and Birodkar, 2017; Burgess et al., 2018), and few-shot learning (Verma et al., 2018).

Disentangled representations have been widely used in various domains, such as, im-

ages (Lee et al., 2018; Tran et al., 2017), videos (Hsieh et al., 2018; Li and Mandt,

2018) and speech (Chou et al., 2018; Zhou et al., 2019). However, disentangled repre-

sentations have received limited attention in natural language processing (John et al.,

2018).

Compared to images that have apparent independent factors of variation such

as size, position, color, and orientation which have a physical grounding, natural

language text lacks such attributes that can be formalized in terms of actions of sym-

metry subgroups (Higgins et al., 2018). To overcome this challenge and disentangle

various text attributes, we can consider two factors: style and content (John et al.,

2018). The content embedding is designed to encode the semantic information of a

sentence. The style embedding can then be used to represent any desired attribute

of text such as sentiment, personality, formality, etc. Disentangling style and content

in a text are essential as they can benefit many downstream tasks. Disentangled
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representations can help generate text in a controlled manner while manipulating

its various attributes. They can be used in dialog/conversational systems to induce

various personalities that interact with humans. They can also be highly useful for

aiding humans in writing various types of text. In this work, we explore whether style

and content as two text attributes can be disentangled from sentence representations

in pre-trained language models.

1.3 Thesis Overview

Section 2 gives an overview of the research carried out related to probing neural

networks and disentangling latent representations of text learned by neural networks.

In Section 3 we introduce our approach towards probing and disentangling sentence

representations. We first probe sentence representations from pre-trained language

models for style information. We then propose an approach to disentangle sentence

representations by fine-tuning the pre-trained models. We design multi-task and

adversarial loss functions to segregate the information learned by the distinct vector

spaces. Section 4 discusses the experimental setup and we discuss the results in

Section 5.

We evaluate our approach using four style-transfer datasets. We demonstrate the

efficacy of our method by comparing the classification scores from the style and con-

tent spaces. We evaluate the content space representations by ranking the sentences

based on the content embedding and comparing the ranks of sentences with com-

plementary styles. This gives an idea about how close the sentences are in their

meaning. We both qualitatively and quantitatively show that latent representations

of text sentences can be disentangled using this simple yet effective approach.
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Chapter 2

Related Works

2.1 Disentangled Representation Learning for Text

Disentangling the latent space in neural networks has been widely explored in the

context of images/videos in computer vision (Chen et al., 2016; Higgins et al., 2018,

2016). These approaches learn disentangled representations in a purely unsupervised

manner. They do no use any style labels. Images have clear independent factors of

variation such as size, position, color, rotation etc. which have a physical ground-

ing and can be formalized in terms of action of symmetry subgroups (Higgins et al.,

2018). Unfortunately, natural language text does not have attributes that have phys-

ical grounding and can be formalized mathematically. Hence, we have not observed

disentangled attributes in text without using supervision.

In NLP, the definition of ”style” itself is vague. Researchers have often treated

sentiment as a style attribute. Rao and Tetreault (2018) treat ”formality” of writing

as the style. They create a parallel corpus for style transfer. Jhamtani et al. (2017)

create a parallel dataset of 17 Shakespeare plays and their corresponding modern

English conversions. (Pryzant et al., 2020) treat ”bias” in a sentence as style and de-

sign a model to automatically remove the bias words neutralizing the sentence. They

create a dataset that contain sentences from wikipedia articles that were tagged as

exhibiting some kind of bias sentences and the corresponding edited neutral sentence.
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We use these three definitions of style for our work, namely, old-modern writing style,

formality, bias.

Shen et al. (2017) align the recurrent hidden decoder states of original and style-

transferred sentences using a pair of adversarial discriminators. Fu et al. (2018)

propose two methods for controlling style. In the first approach they train style-

specific embeddings while in the second approach they train style-specific decoders.

Zhao et al. (2018) use the multi-decoder approach along with a Wasserstein-distance

penalty to align content representations of sentences with different styles. Xu et al.

(2018) and Logeswaran et al. (2018) use the cyclic consistency of back translation to

ensure content preservation. These methods employ reinforcement learning and are

usually difficult to train.

Some work on disentangling representations in text has focused on generating fac-

tored representations for controlled generation tasks. Larsson et al. (2017) use a CNN

to generate sentence representations and traverse the latent space for manipulating

the sentiment. Some of the recent work has focused on learning distinct representa-

tions for syntax and semantics (Chen et al., 2019; Ravfogel et al., 2020; Zhang et al.,

2021).

John et al. (2018) use adversarial and multi-task objectives to learn separate style

and content vectors. They use a variational autoencoder model to reconstruct the

sentence. They use a style classifier to evaluate the encoded style information while

they use bag-of-words features to evaluate the content information.

Inspired by this idea, we create adversarial and multi-task objectives for sentence

representations from pre-trained language models. We use a style classifier as an

adversary so that the style information is captured only in the style space. We use

some similarity measurements to impose certain constraints on the latent space.
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Chapter 3

Disentangling Representations

Figure 3.1 shows the overview of our approach. We use an encoding transformer

as our base model. We assume that the style and content information may either be

encoded in separate dimensions or they could be a linear combination of these indi-

vidual dimensions. Hence, we attach a fully-connected linear layer to the transformer

model to take that into consideration. Then we design auxiliary losses for style and

content embeddings for disentanglement.

Figure 3.1: Overview of our Approach

We divide the sentence representation from a transformer model into two parts,

first, the style space Vs and second, as the content space Vc. For any example x, its
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latent representation ~z can be decomposed as:

~z = ~zs ⊕ ~zc (3.1)

with ~zs ∈ Vs and ~zc ∈ Vc.

We choose to use the same style classifier on both the style and content embeddings.

The style classifier will be used to make the style embedding encode all the style

information while it will be used as an adversary on the content embedding space so

that no style information gets encoded in it. If we use a different style classifier for

both embedding spaces then the style classifier for content embedding may just learn

to be a bad classifier rather than de-learning the style information. Thus, in order to

share weights we maintain the size of the both style and content spaces to be equal.

We choose the first half of the latent representations to be the style space and the

second half to be the content space.

The transformer model is fine-tuned with a joint loss function for disentangling in-

formation between Vs and Vc. The overall loss function consists of two discriminators

and two similarity measurements as described below.

3.1 Style Discrimination

We want the style space to encode all the stylistic information from a text, while

the content space should not encode any style-related information. We train a single

discriminator D to predict style from the style and content embeddings. The style

discriminator D is a binary classifier defined on the style Vs and content space Vc.

For any sample x and its style label y, the discriminator of style representation ~z is

defined as below,

p(ys) = σ(~w~zs + b) (3.2)

which represents the style prediction probability given ~zs.
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The corresponding loss function on which the discriminator is trained is,

Jdis(s) = CE(ys, y) (3.3)

~w and b are parameters of the style discriminator and CE(.) represents the cross-

entropy loss. Similarly, we can define the style prediction probability for the content

embedding ~zc as,

p(yc) = σ(~w~zc + b) (3.4)

where ~w and b are same parameters of the discriminator and the corresponding loss

function to train the discriminator is,

Jdis(c) = CE(yc, y) (3.5)

In the training process the discriminator is trained using Equations 3.3 and 3.5.

Intuitively, we would like the prediction of Equation 3.2 as accurate as possible

while the prediction of Equation 3.4 to be as inaccurate as possible. Therefore, the

loss function for fine-tuning the transformer model using the discriminator is defined

as,

Ldis = CE(ys, y)− CE(yc, y) (3.6)

where CE(.) represents the cross-entropy loss and y is the ground truth label for the

sentence.

3.2 Similarity Measurements

In addition to the discriminators, we would also like to impose two (dis)similarity

constraints into the content space and the style space. For an aligned pair (x, x′)

with x and x′ have similar content but different styles, the (dis)similarity constraints

imposed in Vs and Vc will make sure ~zc and ~z′c are close to each other in Vc, while ~zs

and ~z′s are separated apart in Vs. To be specific, we measure the similarity between

8



two vectors with `2 norm and define the corresponding loss function as,

Lsim = ‖~zc − ~z′c‖2
2 − ‖~zs − ~z′s‖2

2 (3.7)

This loss function tries to minimize the distance between the content embeddings of

two sentences with same meaning while maximizing the distance between the style

embeddings of the pair with different styles.

3.3 Negative Sampling

If we use only Equation 3.7 to fine-tune the transformer model then that may

result in the model to learn the trivial vector (~0) for the content representation. This

would satisfy our similarity requirements but make the model loose all the content

information. In order to avoid this situation we introduce negative sampling (Mikolov

et al., 2013) in our approach. We select a few samples from the training data and add

introduce constraints to avoid problems where the model may completely disregard

the encoded information. The negative sampling constraints are added on both the

content and style embeddings separately which are as described below.

Content Embeddings For each sentence x, we select k sentences randomly from train-

ing data (except x′ which is same in content but only differs in style). These k sen-

tences serve as negative samples since they differ completely in meaning with the

given sentence.

Let’s say we have m training examples with ~zic denoting the content embedding

learned by the model for the i′th sentence. Then we define the negative sampling loss

as,

Lneg(c) = −1

k

j=k∑
j=1

‖~zic −
~zjc‖2

2 (3.8)
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This loss function tries to maximize the distance of content embedding between

two sentences that have different content. This constraint helps us in learning distinct

content vectors for different sentences while the similarity constraint helps in learning

the same vector for sentences with the same content. Thus, we can avoid the problem

of learning trivial vectors.

Style Embeddings We use a similar negative sampling approach to learn better rep-

resentations for the style embedding. We minimize the distance between two style

embeddings that belong to the same style while maximizing the distance between two

style embeddings that belong to different styles.

Let’s say we have m training examples with ~zis denoting the style embedding

learned by the model for the i′th sentence. For each sentence x, we select k sen-

tences randomly from training data. Then we define the negative sampling loss as,

Lneg(s) =
1

k

j=k∑
j=1

NS(~zis,
~zjs) (3.9)

where NS is defined as,

NS(~zis,
~zjs) =


‖~zis −

~zjc‖2
2, if i and j belong to the same style,

−‖~zis −
~zjc‖2

2, if i and j belong to different styles,
(3.10)

This loss function ensures that we learn the same style embeddings for sentences

with same style irrespective of the content. It also tries to learn different style em-

beddings for sentences with different style.

3.4 Fine-Tuning Algorithm

The overall loss function for fine-tuning a transformer model is as shown below:
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L1 = Ldis

L2 = Lsim + Lneg(c) + Lneg(s)

Lovr = L1 + L2 (3.11)

Here,

Ldis makes the model encode the style information only in the style embeddings,

Lsim makes the content embedding similar for sentences with same semantics and

contrasting style while making their style embeddings dissimilar,

Lneg(c) makes the model learn unique content vectors for sentences with different

meanings,

and,
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Lneg(s) makes the model focus on the style embedding irrespective of the content,

allowing the model to learn the same style embedding for a particular style label.

Algorithm 1: Fine-tuning Algorithm

for ( each epoch ) {

if epoch < l then

/* Pre-train the discriminator */

minimize Jdis(s)

minimize Jdis(c)

else

if epoch is odd then

/* Train the discriminator */

minimize Jdis(s)

minimize Jdis(c)

else

/* Fine-tune the model */

for ( each mini-batch ) {

if if iteration number is odd then

minimize Ldis

else

minimize Lsim + Lneg(c) + Lneg(s)

end

}

end

end

}

Algorithm 1 describes our algorithm for fine-tuning the model to learn disentangled

representations.
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Since the pre-trained model already learns some information about the style and

content we pre-train the style classifier for l epochs1 so that it can intelligibly dis-

criminate the learned vectors. Then we alternate between training the classifier and

training the transformer model to minimize our objective functions. Since the value

of Ldis is on a different scale it might result into uneven optimization over the dif-

ferent loss functions. Hence, we alternate the training between L1 and L2 in each

mini-batch. This also helps us eliminate the need of hyper-parameters to weight the

different loss functions in the overall loss function.

The details about how we setup the experiments and training are explained in the

next section.

1we use l = 3
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Chapter 4

Experimental Setup

4.1 Transformer Models and Sentence Representation

In this work we consider two transformer models, namely, BERT (Devlin et al.,

2018) and XLNet (Yang et al., 2019) transformer models. BERT is a type of au-

toencoding model (AE) while XLNet is a type of autoregressive model.

We use the last hidden state of these models as the sentence representation. The

last hidden state for a single sentence is a two-dimensional vector of the number of

hidden states and the sequence length. We take the average of the hidden state over

the sequence length dimension to get a single vector of length equal to the hidden

state size of the model and treat this as the sentence representation.

4.2 Datasets

We use aligned stylistic datasets that comprise of pairs of sentences with comple-

mentary styles and similar content. This helps us evaluate both style classification

on the style space and content preservation on the content space.

The four datasets we use for the experiments are as follows:

• Shakespeare: This dataset is comprised of modern English translations of 17

Shakespeare plays (Jhamtani et al., 2017)
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Dataset Train Dev Test
Shakespeare 18395 1218 1462
Wiki-Neutrality Corpus 53803 700 1000
GYAFC-EM 52595 2877 1416
GYAFC-FR 51967 2788 1332

Table 4.1: Dataset Overview

• WNC (Wiki-Neutrality Corpus): This dataset contains sentences from wikipedia

articcles that were tagged as exhibiting some kind of bias sentences and the cor-

responding edited neutral sentence (Pryzant et al., 2020),

• GYAFC-EM and GYAFC-FR: This is a part of the Grammarly’s Yahoo

Answers Formality Corpus (Rao and Tetreault, 2018). They contain informal

sentences from different domains on Yahoo Answers and their corresponding

formal sentences written by human annotators. The two domains that we use

are the Entertainment & Music (EM) and Family & Relationships (FR).

We use the standard training, development and testing splits of each of the datasets

which are described in Table 4.1.

4.3 Disentangling Representations

Algorithm 1 describes our algorithm to learn disentangled representations using

transformer models.

The style classifier is first pre-trained on the training data until the it’s classifica-

tion accuracy is better than a random model 1. The style classifier is a single-layer

neural network which is trained on the Binary Cross Entropy loss function as de-

scribed in Equations 3.3 and 3.5. Next, the classifier is then alternately trained with

the transformer model.

We fine-tune the transformer model using the loss function described in Equation

3.11. We alternate between L1 and L2 for each mini-batch during the training process.

1Experimentally we find that the training for first 3 epochs is sufficient
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We use Adam (Kingma and Ba, 2014) for optimizing the loss function. We termi-

nate the model training after 50 epochs. Since, we are fine-tuning the model we use

low values of the learning rate. We use different values of learning rate for both L1

and L2 losses that are defined in Equation 3.11. The learning rate for L1 loss is 10−8

while for the L2 loss is 10−5.

4.4 Evaluation Metrics

To evaluate the degree by which the style information is present in the embeddings

we use style classification accuracy for the two embeddings.

To visualize how the latent space changes while fine-tuning we use TSNE (Van der

Maaten and Hinton, 2008) to project both the style and content spaces into 2-

dimensional plots as shown in Figure 5.1.

We also perform a quantitative evaluation of the content space by rank estimation.

We randomly sample 100 sentences from the test set. For each sentence, we estimate

the rank of the complementary style sentence, R′, among all samples. Next, we

estimate the mean reciprocal rank (MRR) of all samples as shown below,

MRR =
1

n

n∑
i

1

R′i
(4.1)

where, n=100. This metric measures how closely sentences with similar meaning

but different styles are ranked. We also another metric for evaluating content that

estimates how many sentences have the corresponding R′ (rank of the complementary

style sentence) within a 10% rank.
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Chapter 5

Results and Discussion

5.1 Style Classification

Firstly, we evaluate the extent to which the style information is encoded in the style

and content embeddings. Table 5.1 shows the style classification results. We first

estimate the style classification accuracy from the pre-trained model using the entire

sentence representation. Next, we disentangle the latent space using the approach

described in Section 3. Then, we estimate the style classification accuracy on the

individual style and content spaces. As we can see from the results in Table 5.1, the

style classification accuracy of the style space in the disentangled model is better than

the pre-trained model. This indicates that all the style embedding has learned more

style information. On the other hand, the style classification accuracy for the content

Shakespeare GYAFC-EM GYAFC-FR WNC

Pre-Trained Model

Entire Representation 79.83 81.25 80.40 60.14

Disentangled Model

Style Space 84.28 85.67 86.01 65.3

Content Space 48.63 48.21 47.11 51.4

Table 5.1: Performance of style and content latent spaces on the pre-trained model and the disen-
tangled model
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embedding falls to approximately 50%. Thus, we can say that the content embedding

loses all the style information.

5.2 Clustering Quality

The two latent spaces are evaluated based on their clustering quality. Ideally the

style space should exhibit two distinct clusters that belong to separate styles while

the content space shouldn’t exhibit any clusters.

We project the style and content embeddings on a 2-dimensional plot using the

t-distributed stochastic neighbor embedding method (t-SNE) (Van der Maaten and

Hinton, 2008). A single batch of the test data is randomly selected and it’s stlye

and content embeddings are generated from the transformer model. Next, these

embeddings are plotted using t-SNE on a 2-dimensional plot. The embeddings are

generated and plotted after every 10 epochs of training. This gives us a qualitative

measure of how the embeddings for different styles are separated in the style and

content spaces.

As we can see in the Figure 5.1, the style embeddings show some separation of

the sentences belonging to different style as the training progresses. However, the

content embedding for sentences of different styles are a mixed group of cluster. This

validates our hypothesis, that the sentences of different styles need to be far away

in the style space, however pairs of sentences with different styles but same meaning

should to be together in content space.

Apart from this qualitative measure of clustering, we also estime the V-measure

score (Rosenberg and Hirschberg, 2007) for both style and content spaces while fine-

tuning. A higher score means better and more separate clusters while a lower score

indicates no clustering. As we can see in Table 5.2, the V-measure scores for the style

space increase with training. The V-measure score for the content space is not shown

in the table as it was always 0 during fine-tuning indicating no clustering.
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Figure 5.1: TSNE visualization of Style (above) and Content (below) latent spaces at 10, 20, 30, 40
epochs of fine-tuning
Red: Shakespearean English, Blue: Modern English
Sentences with different styles get separated in style space while they remain close in content space

Epoch Shakespeare GYAFC-EM GYAFC-FR WNC

Style Space

0 0.03 5.4× 10−4 0.04 0

10 0.05 0.05 0.08 4.4× 10−5

20 0.24 0.19 0.16 4.5× 10−5

30 0.38 0.24 0.23 5× 10−5

40 0.39 0.27 0.25 2× 10−4

50 0.41 0.27 0.27 2.7× 10−4

Table 5.2: V-measure score for style during fine-tuning (Higher score better clustering)

5.3 Content Evaluation

The content of a sentence is usually hard to evaluate without human supervision.

We use two strategies to evaluate the content embeddings. Rank estimation is used

to quantitatively evaluate the content space. 100 sentences are randomly sampled

from the test set. For each sentence, the rank of complementary style sentence,

R′, is estimated. Next, the mean reciprocal rank(MRR) of the batch of all samples

is estimated using Equation 4.1. This metric measures how closely sentences with

similar meaning but different styles are ranked. Table 5.3 shows the MRR of the

content space versus the style space. As we can see from the results, content space
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Shakespeare GYAFC-EM GYAFC-FR WNC

Content Space 0.34 0.42 0.41 0.5
Style Space 0.28 0.25 0.23 0.49

Content Space 76.4 91.4 89.2 100
Style Space 64.8 61.2 58.2 99.6

Table 5.3: Mean Reciprocal Rank (Above); Percentage sentences in test set for which R′ is within
10% (Below);

performs better at ranking sentences closer in meaning than the style space. This

indicates that the content space has learn some content-based information which is

not present in the style space.

The results for WNC dataset indicate almost the same content information in

both the style and content spaces. We believe that this may be due to the way the

dataset has been created. The WNC dataset was created using biased sentences from

Wikipedia articles and their corresponding neutral edits. These edits are very small in

nature and the resulting neutral sentence is not significantly different than the biased

one. This causes the model to learn the same representation for both the biased and

neutral sentences.
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Chapter 6

Conclusion and Future Work

In this thesis, we explain the significance of disentagled representations, it’s chal-

lenges and design a novel approach to solve this problem. We use multi-task and

adversarial objectives along with negative sampling to learn disentangled representa-

tions from pre-trained models. The results indicate that with some fine-tuning it is

possible to separate out the style and content information into different vectors. Both

qualitative and quantitative metrics are used to evaluate the efficacy of the proposed

approach.

This research is still in early phases. Despite demonstrating how disentangled

learning can be achieved using pre-trained transformer models, there are many lim-

itations in our proposed framework. Firstly, we assume the style and content latent

spaces to be of the same size. Since style is a less complex attribute that content

it should use fewer dimensions. We assume the same size as we want the classifier

to share the weights of both the latent spaces so that we don’t learn a bad classi-

fier during the adversarial training. Secondly, we assume that the text has only two

attributes that are independent. Natural language text contains multiple attributes

which may or may not be independent. Lastly, we assume that all sentences in the

training data differ in meaning and try to maximize the distance between them in
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the content space. An approach to rank sentences based on the semantics and use

that as supervision while fine-tuning might be helpful to eliminate this problem.

The emphasis of this thesis was to propose and demonstrate that representations

from pre-trained language models can disentangled, in turn, making these models

more interpretable. However, a lot more experimental research needs to be carried

out in order to make the pre-trained language models interpretable. We hope that

this research might be a strong starting point towards understanding how pre-trained

langauge models learn.
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