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 ABSTRACT 
 

Multiscale computational models are powerful tools that integrate data and systems across 

spatial, temporal, and biological scales in order to make predictions about the behaviors of complex 

systems. Continued advancements in experimental methods and biomedical technology are 

generating vast amounts of data that require more sophisticated computational models and 

analytical methods in order to draw conclusions about complex processes and outcomes that span 

multiple scales of resolution.  In the context of biomedical sciences and human health, these models 

are particularly relevant in the area of drug design and discovery where small molecules are 

designed with sub-cellular targets, but have effects across many biological and temporal scales. 

Experimental data from preclinical animal models can be expansive and have high variability, and 

multiscale computational models can be leveraged to predict how therapies will translate to 

humans. Additionally, the rapid growth of big data in health care in recent years including wearable 

sensors, telehealth, and electronic health records provides an opportunity for multiscale models to 

integrate disparate data sources to inform evidence-based interventions and transform the delivery 

of health care. Multiscale computational models provide a unique platform for high-throughput 

and systematic perturbation of parameters and conditions that may not be otherwise feasible due 

to time, cost, technological, or ethical considerations. An integrated approach that combines 

experiments with computational models can aid the design of preclinical and clinical studies, as 

well as public health interventions. The work presented in this thesis demonstrates novel 

applications of multiscale modeling approaches to design interventions in the case of diabetic 

wound healing, infarct healing following myocardial infarction, and the use of electronic health 

records to identify individual social risk factors and their impact on patient-level health outcomes.   
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Overview 

Multiscale computational models are powerful tools to accelerate and enhance biomedical 

research discovery and health care innovation with wide-ranging applications across these sectors. 

Consequently, this thesis will not focus on one specific disease model or system, but instead 

demonstrates how the fundamental assumptions and core principles of multiscale modeling can be 

applied to important challenges in the treatment of cardiovascular disease and innovations in public 

health. This chapter aims to provide an overview of the core principles and topics that will be 

integrated throughout the multiscale modeling applications presented in this thesis. First, I will 

start with a comprehensive overview of the applications of multiscale computational models and a 

deeper discussion of agent-based modeling, a specific type of multiscale model. This will be 

followed by an overview of population health and opportunities for multiscale models to inform 

interventions and innovations in the delivery of health care and public health. Finally, I will 

describe the epidemiology and physiology of cardiovascular disease in particular, with a focus on 

the biological processes and cell types involved in wound healing in the context of diabetic wound 

healing and scar formation following myocardial infarction. 

Multiscale computational modeling 

Continued advancements in experimental methods and technology has enabled 

measurements with finer resolution and precision in addition to generating very large datasets 

using new technologies such as single cell RNA-seq, proteomics, diagnostic imaging, wearable 

sensors, and electronic health records.1 These advancements necessitate similar advancements in 

computational methods and data analytics in order to make assumptions and draw conclusions for 

complex biomedical phenomenon spanning multiple scales of spatial and temporal resolution. This 
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is particularly relevant in the area of drug design and discovery where small molecules are designed 

with targets at the cellular or sub-cellular level, but often have effects across many length scales 

from the single cell to multi-organ systems, and time scales from milliseconds to years.2 

Computational models are powerful tools that can integrate data and processes across all of these 

scales to make predictions in a systematic and high-throughput manner about how perturbations 

to individual parameters influence the behavior of complex systems. 

Multiscale computational models are a broadly defined class of models that explicitly 

represent processes which occur across multiple spatial, temporal, or biological scales.3 An example 

application of multiscale models for drug development in cardiac disease is predicting the tissue-

level effects of antiarrhythmic drugs, which have targets on potassium and sodium channels in the 

heart. Multiscale models attempt to link individual models that describe the mechanisms of drug 

interactions with ion channels at the molecular scale, with models at the multi-cellular and tissue 

level that describe the electrophysiology of cardiomyocytes and predict the potential for arrythmias, 

which are an emergent phenomenon at this spatial scale.2, 4 Multiscale computational models are 

useful for extracting understanding from highly dynamic temporal and spatially heterogeneous 

systems by linking processes from the molecular scale, to cell-cell and cell-matrix interactions, up 

to tissue-level remodeling, and multi-organ system effects, and even population-level outcomes. 

By coupling experimental methods with theoretical and computational models, we can gain further 

understanding of complex biomedical systems by identifying emergent phenomenon that are not 

otherwise apparent at the individual scales of resolution. This approach can be used to couple and 

validate data across many scales of resolution and generate new questions and hypotheses that can 

be further explored experimentally. 
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Multiscale computational models have several unique advantages that make them a 

powerful tool in biomedical research and health care innovation including the ability to: i) measure 

parameters that are impossible to measure with experimental methods5, 6, ii) perform high-

throughput perturbation and analysis of parameters that would not be feasible experimentally7, iii) 

develop patient-specific models (e.g. “digital twins”) to inform diagnoses and intervention 

strategies8-10, iv) aid the design of preclinical and clinical studies by translating results from animal 

models to human patients11-13, and v) model population-level behaviors to identify new 

interventions and innovations in the delivery of health care.14-16 

The following examples highlight a few of these key advantages and contributions of 

multiscale models to advancing biomedical research and health care innovation. A network model 

of cardiac fibroblast signaling by Zeigler et al. was developed to perform high-throughput in silico 

screening of 36 unique drug-target interactions of FDA-approved drugs to predict their effects on 

collagen deposition and fibrosis.17 Klank et al. developed a model of tumor progression and 

metastasis to predict how alterations to single cell migration and proliferation rates impacted the 

rate of tumor growth.5 An agent-based model of neovascularization in tissue-engineered scaffolds 

developed by Artel et al. identified the optimal pore size for tissue scaffolds in order to promote 

vascularization in engineered tissues.7 Bruce et al. developed an agent-based computer simulation 

to predict the most effective strategies for vaccine allocation and distribution during an H1N1 

influenza outbreak.15 These examples also highlight that computational models can be used at all 

phases of the pipeline in biomedical research, biomedical device design and development, and 

innovation in the delivery of health care. Multiscale computational models can be leveraged to 

design experimental studies by identifying the most promising parameters or hypothesis to test, to 
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synthesize the results of many experimental studies and develop new understanding of the 

underlying mechanisms, and to inform new strategies and policies in the delivery health care. 

While there have been many recent advancements in linking models across several spatial, 

temporal, and functional scales to generate multiscale models, the field is still far from generating 

complete “gene-to-organism” models. There is a need for improvement and standardization in the 

data sources, parameterization and validation methods, computational resources, and software 

platforms to generate more comprehensive and usable multiscale computational models. 

Agent-based modeling 

The application of agent-based models in the biomedical sciences is a relatively new 

approach, but agent-based models have been widely used in epidemiology, ecology, and the social 

sciences.18-22 While continuum-based modeling methods generally assume a homogenous cell 

population or global environmental parameters, agent-based models represent cells as discrete 

entities that can modify their behavior based on the local environment and interactions with other 

agents. The overarching assumption of agent-based modeling is that local interactions between 

agents results in complex emergent phenomenon that cannot otherwise be explained by other 

methods. Local interactions between agents may include cell-cell or cell-matrix interactions 

defined by parameters that govern cell migration, proliferation, matrix properties, biochemical or 

biomechanical stimuli, and other finely tunable parameters. 

 The basic components of an agent-based model include the agents, value layers or 

environment, rules that govern agents’ behavior, and initial conditions. Agent-based models can 

be 2D or 3D models and represent a wide range of spatial scales ranging from a single cell model 

where agents represent individual proteins or components of a cell, to tissue or organism level 
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models where agents represent individual or groups of cells. An example of the former is an agent-

based model of the Notch signaling pathway in angiogenesis, where the agents are individual 

signaling receptors that are shuttled from the cell membrane to the nucleus within a single cell.23 

However, the most common scale of spatial resolution in agent-based models is the depiction of 

individual cells as agents, where there can be a single class of agents representing one cell type, or 

multiple classes of agents each representing a different cell type that behave by their own set of 

governing rules. A model of pulmonary fibrosis, which included agents representing both fibroblast 

and epithelial cell populations, was able to identify novel interventions that targeted the co-

regulatory behaviors of these cell populations as pro-fibrotic mediators.24 

The rule set that governs agents’ behavior is typically defined based on literature and 

experimentally determined values in combination with a conceptual understanding of the 

biological processes involved. These rules can be either deterministic or stochastic in nature.3 

Systems of ordinary differential equations (ODEs) or partial differential equations (PDEs) are 

generally used to represent receptor signaling or reaction-diffusion kinetics and are typically 

deterministic25, whereas rules governing cell migration, for example, may be defined by a 

probability distribution that can be modified by local chemokine concentrations or mechanical 

stimuli.26 One of the unique advantages of agent-based modeling is the explicit representation of 

spatial scales of resolution. However, the choice of spatial resolution and continuous or discrete 

spatial scale can significantly impact model predictions and consideration of the appropriate spatial 

scale is essential in the conceptualization of an agent-based model.27 This explicit representation 

of spatial parameters is particularly useful for predicting emergent spatial patterning in biological 

systems, such as vessel branching patterns during angiogenesis in vascular biology,28, 29 or tumor 

angiogenesis.30, 31 Similarly, the timescale of agent-based models can vary widely from milliseconds 
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to hours or days and is an important consideration based on the hypothesis or objective of the 

model.32 

 Agent-based models are particularly amenable to multiscale modeling since they can be 

easily coupled with other modeling approaches. ODE or PDE models, for example, can even act 

as sub-models or modules operating with different temporal or spatial scales within an agent-based 

model. A common example of this is the coupling of an ODE network model to inform the 

intracellular signaling state of individual cells represented spatially in an agent-based model.33 The 

network model will likely have a time step several orders of magnitude smaller than that of the 

agent-based model. Agent-based models can also be coupled with models at higher tiers of spatial 

or temporal resolution. This has been achieved by coupling finite element models that predict local 

changes in tissue mechanics and strains using a mesh that corresponds to locations in the agent-

based model value layers.27, 34 

Defining rules and parameters for agent-based models is quite challenging. Modelers often 

discover that the exact parameters needed are not readily available in existing literature, or even 

feasible to measure in experimental studies. Furthermore, validating parameters or model outputs 

that are not easily measured experimentally makes model validation difficult. It is important to 

consider the experimental data available for model validation when designing an agent-based 

model and the relevant outputs that should be quantifiable. One strategy that has been suggested 

for the validation of multiscale models is “hierarchical validation” where individual sub-models are 

validated at a single scale of resolution before validating the systems-level multiscale predictions.3, 

35 Parameter estimation, model validation, and uncertainty analysis are ongoing and important 

topics of discussion in agent-based modeling. 
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Multiscale models in health care and public health 

Agent-based models also have applications in policy analysis and public health. They are 

useful tools for simulating social networks by representing individuals as agents and modeling their 

behavior and decisions.36, 37 In this manner, agent-based models have been used to simulate 

everything from how the spread of misinformation on the Internet impacted health behaviors 

during a norovirus outbreak,38 to modeling COVID-19 vaccine distribution and its impact on the 

number of infections.39 Furthermore, there has been an explosion of data in health care in the past 

two decades – from wearable sensors and remote monitoring, to telehealth, and the introduction 

of electronic medical records.40 Advancements in multiscale modeling and predictive analytics have 

the potential to transform the delivery of health care by integrating all of these data sources to 

inform new strategies that can improve health outcomes and reduce health care costs. 

Motivated partially by the evolution of the U.S. healthcare system from fee-for-service to 

value-based payment models, there have been more efforts to utilize data analytics and predictive 

models particularly for identifying high-risk and high-cost patients.41 It has been estimated that 

up to one-third of hospital admissions are avoidable, which presents an obvious opportunity to 

improve the delivery of health care and reduce costs.41, 42 In 2012, the Centers for Medicare and 

Medicaid Services (CMS) introduced the Hospital Readmissions Reduction Program (HRRP), 

which reduces payments for hospitals that have high 30-day hospital readmission rates, 

incentivizing healthcare systems to implement new processes and interventions to reduce 

preventable readmissions.43, 44 This has prompted an increasing number of efforts to develop and 

improve predictive models for hospital readmission risk.45, 46 These predictive models have typically 

utilized electronic medical records and insurance claims data to access measures such as laboratory 
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results, vital signs, comorbidities, or history of health care utilization, but these models have 

relatively poor predictive performance.46 Efforts to improve the predictive performance of these 

models have focused on integrating other sources of data, with a particular emphasis on capturing 

the socioeconomic factors that contribute to an individual’s health.47 The future of multiscale 

modeling in healthcare will involve linking data from many different sources, to potentially include 

genomics and proteomics data, real-time remote monitoring, insurance claims, electronic medical 

records, smart phone data, and more. 

Population health and determinants of health 

Increased emphasis on the social and economic conditions that contribute to individual 

health and well-being are a result of the historic shifts in the determinants of health and evolution 

of medicine and health care. The innovations in medicine and public health over the last century 

have led to a change in the leading causes of death worldwide from infectious diseases to chronic 

diseases, with cardiovascular disease now the leading cause of death globally.48 With this shift in 

the primary causes of death also brings a new and evolving set of determinants that affect the health 

of individuals and populations.  

In the first half of the 20th century, the leading causes of death included pneumonia, 

diarrhea, and enteritis, which were largely associated with poor sanitation and unhealthy living 

conditions.49 Public health interventions focused on motor-vehicle safety, occupational safety, food 

safety, and the fluoridation of drinking water.50-52 The middle of the 20th century saw a dramatic 

increase in the rates of heart disease and cancer. The focus of the healthcare system shifted to 

improving health care services including childhood vaccination, maternal and prenatal care, and 

treatments for high blood pressure.53 Some interventions such as screening for high blood pressure 
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began to emphasize preventative care, but largely the focus of health care was on the treatment of 

disease. Large seminal studies in the second half of the 20th century, such as the Framingham 

study, began to point to the contributions of individual health behaviors such as smoking, diet, 

physical inactivity, and alcohol use to the leading causes of death, which were heart disease, cancer, 

stroke, and lung disease.54 The overwhelming sentiment at this time was that lifestyle choices were 

the primary determinants of health and well-being, which were deemed to be modifiable and 

entirely within the control and personal responsibility of individuals.55 

The era of precision medicine at the turn of the century brought with it an understanding 

of the association between genetic risk factors and disease outcomes, in addition to the individual 

health behaviors identified previously. The idea that pharmacologic interventions could be tailored 

to individuals based on their genetic profile emerged, and the complete sequencing of the human 

genome accelerated genome-wide association studies56 and the use of genomics for diagnosis and 

treatment.57 The focus of precision medicine has been on tailoring drug prescribing based on an 

individual’s biomarkers58, or developing patient-specific models to guide interventions.59, 60 

More recently, public health efforts are shifting to focus on the “upstream factors” or social 

and economic conditions that contribute to morbidity, mortality, and quality of life. Increasingly, 

research points to the social and economic determinants of health (i.e. socioeconomic status, race 

and ethnicity, housing conditions, income inequality, educational attainment, etc.) that account 

for up to 80% of modifiable determinants of health.61-64 Access to medical care and quality of care 

comprise only 20% of these modifiable factors, as outlined by County Health Rankings.65 These 

social determinants of health are the conditions in which people are born, grow, live, and work, 

and are largely outside the control of the individual. Instead, they are shaped by local and national 

policies and the amount of money, power, and resources that individuals and communities can 
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access.66 The next era of health care and public health will involve the coordination of care between 

health systems and social services or community-based organizations to address the many facets of 

individual health and well-being. These efforts will require data-driven approaches linking many 

sources of data to identify high-risk patients and provide appropriately personalized care.  

Epidemiology and health care burden of cardiovascular disease 

Cardiovascular disease (CVD) is the leading cause of death worldwide, accounting for more 

than 900,000 deaths annually in the U.S., and 18.6 million globally.67, 68 Nearly 50% of these deaths 

are attributed to ischemic heart disease.68 Advances in treatment options and preventative care 

helped promote large declines in CVD mortality in the late 20th century, but this trend has slowed 

significantly in the past decade and the CVD mortality rate is no longer demonstrating the same 

improvements.69 There also exists alarming geographic variation in the burden of CVD and 

mortality rates at the state and county levels, with some localities experiencing an increase in the 

burden of CVD and even a decrease in the life expectancy for some groups, while other regions 

have seen marked improvements in CVD burden and mortality.67 There are also significant 

disparities in CVD burden across sex, race, ethnicity, and socioeconomic status,70, 71 and the 

disparities are staggering; African Americans and non-Hispanic whites are 30% more likely to die 

from heart disease.72  

The increasing burden of CVD has also contributed significantly to rising health care costs 

in the U.S., accounting for nearly 15% of all health expenditures.73 Direct costs are over $200 

billion annually, with another $130 billion attributed to lost productivity.73 The rise of other 

chronic diseases including diabetes and obesity also contribute to increasing costs and utilization 

of health care, with nearly 50% of the U.S. population suffering from chronic disease and 
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comprising more than 85% of all health care costs.74 CVD and diabetes are often closely linked, 

with CVD being the most common cause of morbidity and mortality in diabetic patients. Many 

of the risk factors for CVD including obesity, hypertension, and high cholesterol and blood glucose 

are prevalent in diabetic patients.75 Chronically elevated blood glucose levels and insulin resistance 

have deleterious effects on the cardiovascular system, particularly the capillaries, which are the 

smallest blood vessels in the body. Diabetes is associated with chronic low-grade inflammation 

through the overexpression of many inflammatory cytokines in adipose tissue including tumor 

necrosis factor-! (TNF!), IL-1, IL-6, and others.75 This inflammation and elevated blood glucose 

levels can have many consequences for the vasculature including endothelial dysfunction, 

atherosclerosis, impaired wound healing, retinopathy, and nephropathy.76 Normal physiologic 

responses to injury allow for functional recovery of the cardiovascular system whether due to 

cutaneous wounds, or ischemic events, such as stroke and myocardial infarction. However, the 

chronic inflammation and impaired wound healing associated with CVD has widespread impacts 

on multiple disease progressions ranging from peripheral arterial disease, diabetic retinopathy, 

acute myocardial infarction, to cutaneous wound healing. 

Physiologic wound healing and tissue repair 

Wound healing is a complex and coordinated series of cellular and molecular events 

comprised of four distinct phases: coagulation and hemostasis, inflammation, proliferation, and 

tissue remodeling.77, 78 Following injury to a tissue, hemostasis marks the first phase of wound 

healing as the damaged blood vessels initiate vasoconstriction and formation of a platelet plug 

through activation of circulating platelets.79 Following hemostasis, the inflammatory phase is 

marked by the increase of inflammatory cytokines including IL-1b and TNFa leading to capillary 
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vasodilation.80 Increased vascular permeability allows neutrophils and monocytes to emigrate from 

the vascular circulation to the wound site within 24 hours, and inflammatory cell populations peak 

within the first week of wound healing.81 Neutrophils are the first inflammatory cell population 

recruited to the site of injury and remove bacteria from the wound.82 Macrophages phagocytose 

and digest tissue debris and include both monocytes recruited from the bone marrow that 

differentiate to macrophages and tissue-resident macrophages.79 However, monocyte-derived 

macrophages are the primary source of inflammatory macrophages; the role of tissue-resident 

macrophages during wound healing in not well documented. Some macrophage subpopulations 

secrete TGFb which stimulates fibroblast recruitment and proliferation and may also contribute 

to the transformation of macrophages to a more anti-inflammatory phenotype.83  

As the inflammatory phase subsides, the proliferative phase may last for days to weeks and 

is marked by the proliferation of fibroblasts and transition to a myofibroblast phenotype, along 

with synthesis of many extracellular matrix (ECM) components including collagen.81 

Myofibroblasts express aSMA and are a contractile cell type that deposits collagen to form the 

scar tissue and coordinates contraction to physically close the wound.79 During this proliferation 

phase, endothelial cells also rapidly proliferate and angiogenesis supplies granulation tissue with 

the necessary oxygen and nutrients to aid healing. Remodeling of the tissue and ECM turnover 

may continue for weeks to months and is directed by myofibroblasts.77 Myofibroblasts are 

eventually cleared from the injured tissue through a combination of apoptosis and possibly their 

differentiation back to a quiescent fibroblast phenotype.79 The persistence of a myofibroblast 

population and collagen deposition can lead to interstitial and perivascular fibrosis. 



 14 
 

Physiologic wound healing requires precise and complex temporal and spatial coordination 

of the cell types and chemokine signals that direct each of these distinct phases. Improvements in 

single-cell technology have increased the understanding of the amount of heterogeneity that exists 

in these cell types, particularly fibroblast and macrophage populations. Dysregulation of any one 

of these phases of wound healing can lead to chronic wounds that do not heal or aberrant scar 

formation leading to fibrosis. In diabetes, for example, chronic inflammation prolongs or delays 

normal wound healing and can prevent wound closure in the case of diabetic ulcers.84 Wound 

healing in cardiac tissue is unique because cardiomyocytes cannot replicate and instead, 

myofibroblasts deposit large amounts of collagen to replace necrotic tissue with collagen-rich scar. 

Macrophage recruitment and polarization during wound healing 

Recruitment of inflammatory cells (i.e., macrophages and neutrophils) is essential for 

wound healing and are the primary source of the cytokines and chemokines that drive cell 

migration and proliferation, and resolve inflammation in physiologic wound healing. Macrophages 

are broadly classified into two phenotypes: classical, or pro-inflammatory (M1) macrophages and 

alternative, or anti-inflammatory (M2) macrophages.83, 85 Circulating monocytes are recruited to 

the wound site, extravasate from the vasculature, and differentiate to M1 type macrophages. Bruce 

et al. have previously demonstrated that circulating monocytes are recruited exclusively from 

postcapillary venules during arteriogenesis following spinotrapezius ligation in a murine model.86  

In acute wound healing, pro-inflammatory macrophages phagocytose foreign debris, necrotic cells, 

and clear neutrophils. As wound healing progresses, macrophages assume a more anti-

inflammatory M2 phenotype that promotes the migration and proliferation of fibroblasts, and 

produces matrix metalloproteinases (MMPs) which are important for ECM turnover during scar 
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formation.87 Macrophages also important in promoting the proliferation of endothelial cells, 

directing angiogenesis, and vessel stabilization through the recruitment of pericytes.85 In chronic 

wounds, inflammation often persists and the proliferative and remodeling phases of wound healing 

cannot proceed.87 

It is now widely accepted that there are multiple origins of macrophage lineages and a 

dynamic range of macrophage phenotypes, surface markers, and secreted cytokine profiles. 

Currently, there exist at least five different classifications for macrophage phenotypes.85, 87, 88 While 

macrophage polarization implies two static states of macrophage phenotypes, many prefer to 

describe the dynamic range of macrophage phenotypes as a spectrum that is transient.85 The extent 

to which differentiated macrophages can switch between these phenotypes and the role of tissue-

resident macrophages in wound healing is not well known.87, 89 

There are a variety of stimuli that drive macrophage activation pathways and are present at 

varying times and levels following an injury or ischemic event, creating a heterogenous and 

dynamic macrophage population. Several computational models have investigated the recruitment 

and dynamics of M1 and M2 macrophages following injury.90, 91 Martin et al. published an agent-

based model of inflammation following skeletal muscle injury that predicts the time course of 

macrophage infiltration as well as phenotype switching between an inflammatory (M1) and 

reparative (M2) phenotype.91 Wang et al. developed a mathematical model that describes the 

dynamics of macrophage activation following myocardial infarction based on levels of IL-1, IL-

10, and TNFa.90 Computational models that accurately capture macrophage dynamics and 

heterogeneity will require the integration of many varying spatial and temporal cues. Multiscale 
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modeling is an important tool for understanding and modeling perturbations to macrophage 

dynamics following injury.  

Wound healing in the context of myocardial infarction 

Approximately 605,000 Americans will experience their first myocardial infarction (MI) 

this year, and another 200,000 will experience a recurrent MI73. Early treatment options including 

reperfusion therapy and pharmacologic intervention have led to a steady decline over the past 

several decades in the 30-day mortality rate.92, 93 While the short-term outcomes are improving, 

the long-term complications are becoming more apparent and difficult to mitigate. The 5-year 

mortality rate for patients over 65 is over 50%94, largely due to the risks of life-threatening 

complications including recurrent MI, stroke, infarct rupture, and left ventricular remodeling 

leading to heart failure.  

Scar remodeling following MI is a dynamic process involving both temporally and spatially 

varying cell types, extracellular matrix (ECM) composition, cytokines, and growth factors. 

Myocyte death due to prolonged ischemia initiates an inflammatory response led by cytokines such 

as IL-1b and TNFa.80 Neutrophils and macrophages are recruited to the wound site within 24 

hours and inflammatory cell populations peak within the first week of wound healing and then 

subside as the proliferative phase begins.81 Inflammatory macrophages secrete TGFb which 

stimulates fibroblast recruitment and proliferation and may also contribute to macrophage 

conversion to a more anti-inflammatory phenotype.83 The proliferative phase may last for days to 

weeks and is marked by the proliferation of fibroblasts and transition to a myofibroblast phenotype, 

along with synthesis of many ECM components including collagen.81 Infarct healing is a complex 
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process involving both temporally and spatially varying cell types, cytokines, and constant ECM 

turnover, all further complicated by the unique mechanical environment of the heart. 

The development of anti-fibrotic therapies for cardiac fibrosis is complicated because 

complete elimination of fibrosis would increase the likelihood for infarct rupture since some 

amount of scar tissue is necessary to reinforce and replace the damaged myocardium.  Preliminary 

studies indicate that surgical reinforcement of the infarct95, or injection of stiff polymers96, 97 can 

improve LV function, but require invasive procedures.98 Current pharmacological approaches, 

while less invasive, generally act by mitigating the risk factors associated with development of heart 

failure, but do not directly target cardiac fibroblasts and fibrosis. This class of drugs (e.g., ACE 

inhibitors, beta-blockers, angiotensin receptor blockers, etc.) largely target the renin-angiotensin-

aldosterone system (RAAS) to reduce blood pressure and cardiac hypertrophy that leads to heart 

failure. TGFb inhibitors more directly target ECM synthesis and fibrosis, but TGFb is important 

in many complex signaling pathways affecting multiple cells types and may play different roles 

throughout the time course of wound healing, making therapies targeted specifically at fibroblasts 

and ECM synthesis difficult. Pirfenidone is a novel anti-fibrotic drug approved for treatment of 

idiopathic pulmonary fibrosis that inhibits the synthesis and secretion of TGFb1. In animal 

models it has shown the ability to increase survival and attenuate collagen deposition, and clinical 

trials are currently ongoing.98, 99  

One concern with any therapy that alters collagen deposition in the heart is that it will 

modify interstitial fibrosis in both the surviving healthy myocardium and scar, altering pump 

function of the heart. The ideal pharmacologic intervention will enhance scar formation in the 

infarct, while reducing interstitial fibrosis in the remote myocardium. Our novel approach to this 
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problem is to exploit the distinctive and dynamic signaling contexts in the infarct and remote 

myocardium, with a particular focus on the dynamics of pro-inflammatory and pro-fibrotic signals, 

to achieve the desired outcome of increased collagen deposition in the scar and reduced fibrosis in 

the remote myocardium. This multiscale framework for cardiac fibrosis that spans drug targets in 

fibroblast signaling networks to tissue-scale changes in extracellular matrix composition (Figure 1-

1) will allow for systematic screening of novel drugs and combination drug therapies. 

  
Figure 1-1. Multiscale model of cardiac fibrosis will span from drug-target interactions to tissue 
level infarct healing. 

 

Wound healing in the context of diabetes 

Diabetic foot ulcers are a type of chronic wound that can persist for months to years because 

the normal mechanisms of wound healing are profoundly impaired in diabetic patients. Over 30 

million Americans are affected by diabetes, and nearly 15% of these patients experience diabetic 

foot ulcers in their lifetime.100, 101 Diabetic foot ulcers are the leading cause of hospitalizations for 

patients with diabetes, and they are associated with significant pain, suffering, loss of quality of 

life, and increased risk for lower extremity amputation.100 During acute wound healing in healthy 

individuals, cells respond dynamically to chemotactic cues (e.g., inflammatory cytokines and 

growth factors) to coordinate a linear progression of wound healing, which eventually leads to 
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complete wound closure. However, this coordinated progression is dysregulated in the case of 

chronic wounds. In particular, patients with diabetes experience microvascular dysfunction77 

combined with chronic inflammation102, which delay or prohibit the normal wound healing 

process.  

The key components for the treatment of chronic diabetic wounds include 1) pressure 

relief, 2) debridement, 3) infection control, and 4) revascularization.103 Several novel therapies have 

been introduced to address each of these components including negative pressure wound therapy, 

hyperbaric oxygen therapy, tissue-engineered skin substitutes, antimicrobial biomaterials, stem cell 

therapies, and growth factors and cytokines to promote angiogenesis.104 Numerous treatments 

designed to promote effective wound healing in diabetic patients have been evaluated in pre-

clinical and clinical studies with limited efficacy and chronic diabetic wounds remain a costly and 

challenging clinical problem.105-107 Stimulation of angiogenesis, or new microvessel formation108, 

109, has been pursued as one approach to jump-start the wound healing cascade in the angiogenesis-

impaired setting of diabetes. Many growth factors have been investigated in the treatment of 

diabetic ulcers to promote angiogenesis, including platelet derived growth factor (PDGF), vascular 

endothelial growth factor (VEGF), fibroblast growth factor (FGF), and insulin like growth factor 

(IGF), but they each have complex effects at different phases in the wound healing process.110 

Combination therapies are a promising approach to target different cell types and phases of wound 

healing, but more studies are needed to identify the most effective approaches.109 

Diabetic wound healing is another example of a complex biological process that requires 

precise spatial and temporal control of many cell types, cytokine and growth factors, and 

extracellular matrix components. Multiscale modeling is an important complement to 
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experimental methods in order to provide insight into the complex spatial and temporal 

interactions between cells and environmental factors and identify potential therapeutic targets. 

Outline of thesis 

Multiscale computational models can be leveraged to investigate processes spanning a wide 

range of spatial, temporal, and biological scales. Commonly used modeling approaches include: 

(1) ordinary differential equations (ODEs) which are often used to depict cell signaling and 

receptor kinetics or time dependent cell populations90, 111, 112; (2) partial differential equations 

(PDEs) which describe both temporal and spatial kinetics of phenomenon such as chemokine 

production and diffusion113, 114; (3) agent-based models (ABMs) which prescribe stochastic 

behaviors for individual agents that result in emergent behavior of the population26, 115, 116; and (4) 

statistical models which can be used to describe correlations between individual level predictors 

and population level outcomes. Multiscale models in particular, aim to integrate these modeling 

approaches across molecular, cellular, tissue, organ, organism, and population scales. Using 

multiscale modeling approaches, perturbations to parameters at the molecular or cellular level can 

predict quantitative changes at the tissue or organ level. This approach has been used in the design 

of preclinical and clinical studies where simulations of molecular perturbations, such as gene-

editing or pharmacologic interventions, can predict quantitative changes in tissue-level structure 

and function.91, 111, 115 In this thesis, many of these multiscale modeling approaches are utilized to 

design novel interventions in the case of infarct healing following myocardial infarction (Chapters 

2 and 3), drug delivery for diabetic wound healing (Chapter 4), and utilizing electronic health 

records to identify individual social risk factors and their association with patient-level health 

outcomes (Chapter 5). 
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In Chapter 2, we developed a multiscale model of cardiac fibrosis by coupling a logic-based 

network model of fibroblast intracellular signaling with an agent-based model of multicellular 

tissue remodeling. The work presented in Chapters 2 and 3 was done in collaboration with the 

Saucerman and Holmes labs at the University of Virginia. Pathological remodeling of scar 

following an infarct can lead to complications including scar rupture and left ventricular dilation 

resulting in heart failure. The ability to effectively improve infarct healing will require spatial 

control of fibrosis. Previous computational models have extensively characterized cardiac fibroblast 

signaling pathways and expression profiles to provide information about fibroblast activation and 

kinetics25, 117, 118, but fibroblast activation has generally been studied in response to single stimuli in 

vitro. Other researchers in the field have noted the need to understand fibroblast activation in 

response to mixed stimuli, and have called for the development of computational models that can 

integrate the effects of spatial and temporal shifts in fibroblast activation, with the cell-cell 

interactions and cell-matrix interactions that coordinate the short and long-term remodeling of 

scar tissue.119 We developed a coupled logic-based network model of fibroblast intracellular 

signaling and agent-based model of tissue fibrosis, and then prescribed gradients of inflammatory 

and fibrotic cues to simulate the interactions between fibroblast intracellular signaling and spatially 

heterogeneous extracellular cues such as cytokines and collagen content. A subset of model 

predictions was validated by comparison to in vitro experiments using human cardiac fibroblasts 

treated with combinations of TGFb1 and IL-1b. This multiscale model is the first example of 

coupling of a large-scale network model with an agent-based model to make predictions about 

individual cell network states and tissue-level changes in ECM composition. Further extension of 

this model and application in the context of post-MI wound healing will allow for predictions with 
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more precise spatial and temporal resolution with regards to cytokine concentrations, collagen 

content and heterogeneity, and cell behaviors and can ultimately be leveraged for high-throughput 

screening of drugs for the mitigation of cardiac fibrosis. This work has been published previously 

in Frontiers in Physiology. 

In Chapter 3, we characterize the spatiotemporal dynamics of macrophage infiltration and 

polarization during the early phases of wound healing following myocardial infarction. The 

multiscale model developed in Chapter 2 demonstrated the importance of cytokine gradients and 

history-dependent behavior of fibroblast activation states. We sought to understand the upstream 

inflammatory cells that are responsible for the dynamic spatial and temporal gradients of 

inflammatory cues that direct fibroblast migration, proliferation, and activation to myofibroblasts. 

Using a rat model of myocardial infarction induced by permanent occlusion of the left descending 

artery, we harvested tissue biopsies from the left ventricular wall on days 1-6 post-infarction. A 

combination of histological techniques and immunohistochemistry were used to identify changes 

in the tissue architecture and collagen composition as well as the spatiotemporal dynamics of both 

M1 and M2-like macrophages at these time points. Image analysis methods were developed in 

order to quantify the trends in macrophage distribution and heterogeneity across spatially distinct 

regions of the infarct. We provide examples of unique spatial patterns of macrophage colocalization 

with cardiac fibroblasts in the infarct and evidence of a CD68+CD163+ macrophage population, 

which challenges traditional M1/M2 classifications to describe the diverse macrophage phenotypes 

observed in vivo. This work is one of the first examples of characterizing the spatiotemporal 

dynamics of macrophage populations in the heart following myocardial infarction and will inform 

future studies that aim to target macrophages for novel therapeutics to treat cardiac fibrosis and 

the development of heart failure. 
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In Chapter 4, we adapted a previously published mathematical model of cutaneous wound 

healing to simulate and modify spatial parameters of drug delivery with a modified VEGF-A 

mRNA to accelerate impaired diabetic wound healing. This work was done in collaboration with 

colleagues at AstraZeneca in Sweden. Diabetes causes chronic low grade-inflammation that 

impairs the normal wound healing process and can lead to chronic wounds or ulcers. We have 

previously demonstrated that injections with a modified RNA designed to upregulate VEGF-A 

protein expression in the skin and promote angiogenesis can accelerate healing in a murine model 

of diabetic wound healing. Previous studies have investigated the impacts of dose and timing of 

drug delivery on wound healing, but no studies have described the impact of spatial parameters 

such as location of injection or diffusivity of the drug on the rate of wound closure. We 

implemented a previously published model of cutaneous wound healing based on a system of 

coupled partial differential equations (PDE) that describe the density of sprouting capillary tips, 

chemoattractant concentration, and density of blood vessels in a circular wound and then modified 

this model to also include a PDE that describes the spatiotemporal dynamics of mRNA and 

VEGF-A production following injections with the modified mRNA drug. This new system of 

coupled PDEs was then used to predict how diffusivity of mRNA and location of the injection 

affect angiogenic sprouting, vascularization of the wound bed, and time to wound closure in a 

model of diabetic wound healing. The model predicted that wound healing could be accelerated 

by delivering injections a short distance inside the wound border. Perturbations to the diffusivity 

of mRNA predicted that limited diffusion could delay wound healing, while very high diffusivity 

would have no effect on wound healing. These findings highlight the importance of understanding 

the spatial parameters of drug delivery when designing preclinical and clinical models with 
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proangiogenic factors to promote wound healing. The work presented in Chapter 4 has been 

previously published in Cellular and Molecular Bioengineering. 

In Chapter 5, we utilized electronic health records to identify individual social risk factors 

and developed mixed-effects statistical models to determine the association of those factors with 

increased risk for unplanned readmissions, emergency department utilization, and extended length 

of stay. This work was done in collaboration with Data Science at the UVA Health System and 

the Center for Health Policy in the Frank Batten School for Leadership and Public Policy. As the 

health care system in the U.S. begins to evolve from a fee-for-service to a value-based payment 

model, social and economic determinants of health have becoming an increasing area of focus for 

intervention since their impacts on a person’s health and quality of life have been widely 

documented. Social determinants of health broadly describe factors including health behaviors 

(e.g., alcohol and drug use, physical activity, etc.), socioeconomic factors (e.g., employment, 

income, educational attainment, social support systems, etc.), and the physical environment (e.g., 

access to transportation, air and water quality, etc.). Up to 80% of modifiable determinants of 

population health outcomes (i.e., life expectancy and quality of life) can be attributed to social 

determinants of health, but these are not routinely considered in the development of patient care 

plans and impact on health outcomes. Even in the absence of standardized screening tools to assess 

a patient’s social determinants of health, physicians are often aware of these conditions that impact 

their patient’s health and document these findings in electronic health records. In this study, we 

used data in electronic health records to identify individual social and economic determinants of 

health for a set of inpatients treated at the UVA Health System over a one-year study period. 

These social determinants of health were used as a predictor variable in addition to clinical 

predictors such as severity of illness, sex, and age, in a set of statistical models that predict risk for 
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unplanned impatient readmission, emergency department admission, and extended length of stay. 

These models demonstrated that social determinants of health have significant impacts on all of 

these outcomes studied, but were the single most important predictor of emergency department 

revisits within 30 days of discharge from the hospital. This work in one of the first examples of 

using individual social determinants of health to predict health outcomes and provides an example 

for how health care systems can use existing data to determine the prevalence of social and 

economic needs in their patient population and prioritize further data collection or intervention 

programs to address these needs.  

Finally in Chapter 6, I will conclude with a discussion of the key contributions and 

innovation of this work. I will expand on some of the most promising future directions for each of 

these studies and provide a commentary on the state of multiscale modeling, recommendations for 

advancement in the field, and potential new applications for multiscale modeling in preclinical and 

clinical studies. I will conclude with an overview of the broader societal implications of this work.  
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Abstract 

Wound healing and fibrosis following myocardial infarction (MI) is a dynamic process 

involving many cell types, extracellular matrix (ECM), and inflammatory cues. As both incidence 

and survival rates for MI increase, management of post-MI recovery and associated complications 

are an increasingly important focus. Complexity of the wound healing process and the need for 

improved therapeutics necessitate a better understanding of the biochemical cues that drive 

fibrosis. To study the progression of cardiac fibrosis across spatial and temporal scales, we 

developed a novel hybrid multiscale model that couples a logic-based differential equation (LDE) 

model of the fibroblast intracellular signaling network with an agent-based model (ABM) of 

multi-cellular tissue remodeling. The ABM computes information about cytokine and growth 

factor levels in the environment including TGFb, TNFa, IL-1b, and IL-6, which are passed as 

inputs to the LDE model. The LDE model then computes the network signaling state of 

individual cardiac fibroblasts within the ABM. Based on the current network state, fibroblasts 

make decisions regarding cytokine secretion and deposition and degradation of collagen. 

Simulated fibroblasts respond dynamically to rapidly changing extracellular environments and 

contribute to spatial heterogeneity in model predicted fibrosis, which is governed by many 

parameters including cell density, cell migration speeds, and cytokine levels. Verification tests 

confirmed that predictions of the coupled model and network model alone were consistent in 

response to constant cytokine inputs and furthermore, a subset of coupled model predictions were 

validated with in vitro experiments with human cardiac fibroblasts. This multiscale framework for 

cardiac fibrosis will allow for systematic screening of the effects of molecular perturbations in 

fibroblast signaling on tissue-scale extracellular matrix composition and organization. 
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Introduction 

Approximately 605,000 Americans experience their first myocardial infarction (MI) each 

year, and another 200,000 experience a recurrent MI.73 Approximately 82% of males and 77% of 

females survive at least one year following their MI73, making management of post-MI recovery 

an increasingly important topic. 

Wound healing and scar remodeling following myocardial infarction (MI) is a dynamic 

process involving many cell types, extracellular matrix, and inflammatory cues. Myocyte death due 

to prolonged ischemia initiates an inflammatory response led by cytokines such as IL-1b and 

TNFa80. Neutrophils and macrophages are recruited to the wound site within 24 hours and begin 

to phagocytose debris and propagate the inflammatory response. Inflammatory cells peak within 

the first week of wound healing and then begin to subside as the proliferative phase begins.81 

Inflammatory macrophages secrete TGFb, which stimulates fibroblast recruitment and 

proliferation.83 The release of TGFb may also contribute to the conversion of macrophages to a 

more anti-inflammatory phenotype.83 The proliferative phase may last for days to weeks and is 

marked by the proliferation of fibroblasts and transition to a myofibroblast phenotype, along with 

synthesis of many ECM components including collagen.81 ECM deposition produces a scar in the 

infarct region that contributes to its structural stability during wound healing. This proliferative 

phase is followed by weeks to months of scar remodeling and significant ECM turnover. 

Post-MI cardiac wound healing is a complex and dynamic process with many overlapping 

phases. The cardiac fibroblast is the key effector cell throughout the phases of wound healing that 

creates and remodels scar tissue.120, 121 However, fibroblasts are a highly dynamic and plastic cell 

type that can transition from a pro-inflammatory phenotype in the early phases of wound healing 
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to an anti-inflammatory and pro-fibrotic phenotype later in the wound healing cascade.121, 122 

Fibroblast response to single cytokine inputs are well documented,123-125 but fibroblast activation 

and cytokine secretion in response to multiple cytokines and other stimuli in vivo that shift over 

the time course of MI wound healing are not well described.119 This lack of understanding of 

activation shifts over the time course of healing is at the core of the failure of many attempts to 

improve post-MI wound healing by modulating scar formation.126 Inhibition of inflammation too 

early in the wound healing cascade can lead to thinning of the LV wall and scar rupture.127-129 

Aberrant fibrosis can lead to LV dilation and heart failure. This inherent complexity of the 

biological phenomenon necessitates the development of computational models to design and test 

therapeutic interventions that potentially have opposite effects at different phases throughout the 

wound healing cascade. Previous computational models have extensively characterized cardiac 

fibroblast signaling pathways and expression profiles to provide information about fibroblast 

activation and kinetics25, 117, 118, but fibroblast activation has generally been studied in response to 

single stimuli in vitro. Other researchers in the field have noted the need to understand fibroblast 

activation in response to mixed stimuli, and have called for the development of computational 

models that can integrate the effects of spatial and temporal shifts in fibroblast activation, with the 

cell-cell interactions and cell-matrix interactions that coordinate the short and long-term 

remodeling of scar tissue.119 A multiscale model that can translate cardiac fibroblast gene and 

protein expression to tissue level functional remodeling with spatial and temporal precision could 

provide an invaluable platform for identifying, testing, and validating new therapeutic 

interventions for inducing functional regeneration and mitigating fibrosis. 

Our group has recently developed computational models to study distinct scales of cardiac 

wound healing, including a logic-based differential equation (LDE) model of intracellular 
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signaling in individual cardiac fibroblasts and an agent-based model (ABM) of collagen 

remodeling by multiple cells in the infarct.25, 26 Each model represents a different spatial and 

temporal scale of the wound healing process. The LDE model provides detailed information about 

the network state of 91 different signaling nodes in an individual fibroblast, while the ABM 

predicts fibroblast number, collagen area fraction, and collagen alignment at the tissue level. In the 

work presented here, we couple these LDE and ABM models in order to capture the dynamic 

interplay between fibroblast intracellular signaling and spatially heterogeneous extracellular cues 

such as cytokines and ECM composition, which themselves are modulated by individual fibroblast 

behaviors. Verification tests confirmed that the coupled model and network model alone exhibit 

consistent behavior in response to constant cytokine and growth factor inputs, allowing for the 

establishment of a framework that can readily incorporate updates from either the network model 

or ABM without affecting the integrity of the individual model predictions. Furthermore, a subset 

of coupled model predictions was validated by comparison to measurements of pro-collagen 1, 

aSMA, and F-actin expression in human cardiac fibroblasts treated with combinations of 

cytokines and growth factors in vitro. We believe this work demonstrates the first coupling of a 

large-scale network model to predict tissue-level changes in ECM composition in the setting of 

fibrosis with feedback from environmental cues (e.g., diffusible cytokines) to regulate the signaling 

of individual cells. Predictions about cytokine and growth factor production from fibroblasts are 

computed in physical units, which were not previously possible with a logic-based network model 

alone. This coupled model provides a platform for systematically testing molecular interventions 

with the ability to measure their effects on single cell signaling and ECM composition with 

detailed spatial resolution.  
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Materials and Methods 

Description of Individual Models 

Agent-based Model 

An agent-based model (ABM) is comprised of value layers and agents.130 The value layers 

in this two-dimensional ABM represent features of the extracellular space, including collagen, 

latent TGFb, active TGFb, IL-1b, IL-6, and TNFa. All cytokines are stored as concentrations 

in pg/mL, and collagen is quantified as an area fraction. The value layers are divided into a 10x10 

grid, where each individual grid space measures 10µm x 10µm. A volume for each grid space is 

approximated based on cell culture conditions in a 96 well plate, which is the primary source of 

experimental data used to inform this model. For soluble cytokines (active TGFb, IL-1b, IL-6, 

and TNFa), it is assumed that these cytokines are uniformly distributed in the media above each 

cell, resulting in a compartment of 10µm x 10µm x 3125µm (3.125e-7 mL). Latent TGFb binds 

to the extracellular matrix131, and is thus assumed to occupy the space immediately surrounding 

the cell, or 10µm x 10µm x 10µm (1e-9 mL).  The individual grid space approximates the footprint 

of a single fibroblast, allowing the model to simulate a maximum of 100 fibroblasts simultaneously. 

The total number of fibroblasts is kept relatively low to allow for calculation of the entire network 

state of each fibroblast while minimizing computational time for the purposes of method 

development. Value layers store a unique quantity in each grid space that can be modulated by 

parameters including degradation rates, activation rates, and the agents that move over them. The 

agents in this model represent cardiac fibroblasts that migrate and modulate their extracellular 

space by depositing and degrading collagen, and secreting cytokines.  
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Logic-Based Network Model  

The logic-based differential equation (LDE) network model is a previously published25 

model of cardiac fibroblast signaling that integrates 10 signaling pathways with 11 biochemical or 

mechanical stimuli that are important for myofibroblast activation and ECM remodeling. These 

stimuli include IL-1 (interleukin 1), IL-6 (interleukin 6), TNFa (tissue necrosis factor a), NE 

(norepinephrine), NP (natriuretic peptide), b-integrins, TGFb (tissue growth factor b), 

angiotensin II, PDGF (platelet derived growth factor), ET1 (endothelin 1), mechanical 

stimulation, and forskolin. The network includes 91 nodes connected by 142 reactions, which are 

supported by in vitro data collected from cardiac fibroblasts. The network was constructed using a 

logic-based ordinary differential equation modeling approach, where the activity of each node is 

modeled using a normalized Hill ODE with default parameters and logic gating. Default reaction 

parameters include weight (0.9), Hill coefficient (1.4), and EC50 (0.6), and species parameters 

include yinit(0), ymax(1), and t. The t parameter (time constant) was scaled according to the type of 

reaction: 6 min for signaling reactions, 1 h for transcription reactions, and 10 h for translation 

reactions. The baseline level of input is defined as 25% activity for all input nodes. The system of 

ODEs is generated using the Netflux software available at: 

https://github.com/saucermanlab/Netflux, and implemented in MATLAB. 

Coupled Model 

Interactions that drive the coupled model 

Figure 2-1 provides an overview of the components and interactions between the network 

model and ABM. The ABM contains the value layers that represent the extracellular space and 

the cardiac fibroblasts that migrate over and interact with these value layers. The time step for this 
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coupled model is 1 hour, representing the approximate timescale for a change in input to the cell 

signaling network to affect production of cytokines and ECM proteins that will be deposited in 

the ABM.132, 133 Agents execute a series of methods at each time step: receive input from value 

layers, update network state, secrete latent TGFb and IL-6, deposit collagen, migrate. Migration 

occurs randomly for all simulations, and cell proliferation and death are not simulated. One agent 

is allowed to occupy an individual grid space, and agent migration is confined to the borders of the 

simulation space. This series of methods is repeated for 1,008 time steps (6 weeks). 

 

 
Figure 2-1. Components of individual ABM and network models.  
The ABM is comprised of agents that store information about attributes and perform methods. 
Value layers can be modified independently by defined parameters or by the activity of agents. 
Individual agents store a network state, which is updated by the fibroblast network model. 
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Interactions between the network model and ABM are described by equations 1-10. These 

equations are used to define the behavior at the interface of the two models and are distinct from 

the equations that define the network model alone. The network model operates using normalized 

values between 0 and 1, whereas the ABM stores values in terms of physical concentrations. This 

set of equations act as a translator between these two systems. Figure 2-2 describes how these 

equations interact with components of each model and the order in which these methods are 

executed. 

Network Model Inputs 

Equations 1-4 are used to translate the cytokine levels stored as concentrations in the value layers 

of the ABM into inputs for the network model. Input weights for the network model range from 

0 to 1, representing receptor activation between 0-100%. These weights are determined using the 

quantitative dissociation constants (Table 2-1) for the inputs of interest (IL-6, IL-1b, TNFa, 

TGFb). The dissociation constant is the concentration of ligand at which approximately half of 

the free ligand is bound to receptor at equilibrium. Receptor activity is described by a Hill equation, 

where a concentration of ligand equal to the Kd is considered 50% activation of the input node. 

Values for each of these dissociation constants are listed in Table 2-1. 
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Figure 2-2. Coupled model process diagram. 
A detailed process diagram illustrates the methods and order in which they occur at each time 
step (1 hour), and components of the ABM and network model that interact. Boxed numbers refer 
to the equation number which describes that process. 
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Table 2-1. Dissociation constants 
Parameter Description Equation # Value Unit Value Unit Citation 
Kd,IL-6 Dissociation 

constant for IL-6 
1 22 nM 462,000 !"/$% 134 

Kd,IL-1b Dissociation 
constant for IL-1b 

2 500 pM 8,750 !"/$% 135, 136 

Kd,TNFa Dissociation 
constant for TNFa 

3 19 pM 323 !"/$% 137, 138 

Kd,TGFb Dissociation 
constant for TGFb 

4 28 pM 700 !"/$% 139 

 

Active TGFb and Latent TGFb 

Equation 5 describes the production of latent TGFb from sources other than fibroblasts 

(kgen), secretion of latent TGFb from fibroblasts (ksec) based on the network activity of latent TGFb 

(latentTGFbnet), degradation of latent TGFb (kdeg), and activation of latent TGFb (kact) based on 

the concentration of latent TGFb in the ABM (latentTGFbABM). The generation rate (kgen) 

describes the production of latent TGFb from sources that are not currently represented in this 

model (e.g., macrophages, neutrophils, etc.) and is used to maintain the gradient setup as described 

below under Initial Conditions. The secretion rate (ksec) describes the maximum physiological 

secretion of latent TGFb from fibroblasts under stimulated conditions and this rate is scaled based 

on the network activity level (0-1) of latent TGFb for each fibroblast. The degradation rate is a 

first-order rate based on the stability of latent TGFb in vitro, and the activation rate describes the 

proportion of latent TGFb that is converted to active TGFb. Based on literature review, we chose 

a value for kact,latentTGFb that maintains active TGFb at 4-5% of total TGFb, which is consistent with 

values measured in both in vitro and in vivo studies.140, 141 In equation 6, we use a rapid equilibrium 

assumption for active TGFb concentration because the degradation rate of active TGFb is on the 

order of minutes, much faster than our model time step of one hour. Thus, we assume that the 
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kinetics of active TGFb are rate limited by the kinetics of latent TGFb and come to a rapid quasi-

equilibrium based on current latent TGFb concentrations. Parameter values for equations 5 and 6 

can be found in Table 2-2. 
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Table 2-2. Parameters for active and latent TGFb kinetics 
Parameter Description Equation # Value Unit Citation 
kgen,latentTGFb Generation rate of latent 

TGFb required to create 
gradient 

5 530,000 7"
$% ∗ ℎ9

 Mass balance 
constraint 

ksec,latentTGFb Latent TGFb secreted by 
fibroblasts 

5 23,700 7"
$% ∗ ℎ9

 139, 142-145 

kdeg,latentTGFb First-order degradation 
rate for latent TGFb 

5 0.0096 /hr 146 

kact,latentTGFb Activation rate of latent 
TGFb to active TGFb 

5 & 6 0.045  140, 141 

 

Inflammatory Cytokines 

Equations 7-9 describe the production and degradation of IL-1b, IL-6, and TNFa. IL-

1b and TNFa are not secreted by the current fibroblast network model, so these equations simply 

consist of a generation rate and first-order degradation rate. The generation rates are selected to 

maintain prescribed cytokine gradients as described below under Initial Conditions. The equation 

for IL-6 kinetics simply has the addition of a secretion rate that represents the maximum 

physiological secretion of IL-6 from fibroblasts under stimulated conditions and is scaled based on 
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the network activity level (0-1) of IL-6 for each fibroblast. Parameter values for equations 7-9 can 

be found in Table 2-3. 
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Table 2-3. Parameters for inflammatory cytokine kinetics 

Parameter Description Equation # Value Unit Citation 
kgen,IL-1b Generation rate of IL-1b 

required to create gradient 
7 4,847 7"

$% ∗ ℎ9
 Mass balance 

constraint 
kdeg,IL-1b First-order degradation rate 

for latent IL-1b 
7 0.277 /hr 147, 148 

kgen,IL-6 Generation rate of IL-6 
required to create gradient 

8 256,000 7"
$% ∗ ℎ9

 Mass balance 
constraint 

ksec,IL-6 IL-6 secreted by fibroblasts 8 79,360 7"
$% ∗ ℎ9

 125, 149-151 

kdeg,IL-6 First-order degradation rate 
for IL-6 

8 0.277 /hr 152 

kgen,TNFa Generation rate of TNFa 
required to create gradient 

9 895.4 7"
$% ∗ ℎ9

 Mass balance 
constraint 

kdeg, TNFa First-order degradation rate 
for TNFa 

9 1.386 /hr 153 

 

Collagen 

Equation 10 describes the deposition and degradation of collagen in the ABM based the 

collagen I and III mRNA nodes in the network model. Deposition of collagen occurs only where 

a fibroblast is present and is based on the value of the collagen I and III mRNA nodes in the 

network model for each fibroblast. Degradation is modeled as a first-order process based on the 
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current collagen concentration in the ABM and thus occurs at every grid location, regardless of 

the presence of a fibroblast. This assumes evenly distributed MMP activity since we are not 

explicitly representing MMP production in this model. 

These two parameters (Table 2-4) were fit based on previously published data in a rat 

model of myocardial infarction.154 Baseline collagen area fraction was considered to be 4%, based 

on typical measurements from a healthy rat prior to an infarction.155 Collagen I and III mRNA 

activity levels from the network model run at a baseline condition for 6 weeks (0.25 for all input 

nodes) were used to fit the baseline experimental data. This was done by analytically solving 

equation 10 for the ratio of kdep/kdeg that produces a steady state collagen area fraction of 4%. Then, 

the network model was run for 6 weeks to simulate a stimulated condition (0.5 input for TGFb, 

IL-1b, IL-6, and TNFa network nodes) and used to fit the infarct experimental data. This was 

accomplished by doing a parameter sweep of values for kdep while constraining kdeg to satisfy the 

ratio determined previously and minimizing the sum of squared error (SSE) between the model 

fit and infarct experimental data. 

!9:""#+%&!"#
!$ =	(/%;,9:""#+%&(>?+:@<A&%$ + >?+:::@<A&%$) − (/%+,9:""#+%& ∗ >?++,"./012 (10) 

 

Table 2-4. Parameters for collagen deposition and degradation 
Parameter Description Equation # Value Unit Citation 
kconv,Collagen Coefficient of collagen 

deposition 
10 0.0056 Area fraction Fit to exp. data 

kdeg,Collagen Coefficient of collagen 
degradation 

10 0.0035 Area fraction Fit to exp. data 
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Initial Conditions 

To evaluate the effects of spatial gradients in fibrotic and inflammatory cues, the value 

layers are initialized with a gradient of TGFb increasing from bottom to top, and a gradient of 

inflammatory cytokines (IL-1b, IL-6, and TNFa) increasing from left to right. Thus, each 

individual grid space contains a unique combination of fibrotic and inflammatory cues. Cytokine 

gradients were specified by scaling the generation rate (kgen) along the x or y axis to result in 

concentrations ranging up to twice the dissociation constant for that particular cytokine or growth 

factor, corresponding to receptor activation rates between approximately 16-67% (Figure 2-3A - 

C). The purpose is two-fold: to explore a dynamic range of inputs to the network model and to 

create an environment where fibroblasts migrate through spatially varying environmental cues. 

 
Figure 2-3. Agent-based model is initialized with cytokine gradients.  
(A) Four phenotypic regions are created by a combination of fibrotic and inflammatory cues. (B) 
TGFb is initialized with an increasing gradient from bottom to top. (C) IL-1b, IL-6, and TNFa are 
initialized with an increasing gradient from left to right. 
 
Parameter Estimation and Fitting 

A total of 17 parameters are defined in this set of 10 equations. Of these parameters, 11 

are based on literature and 6 are estimated, or fit to experimental data, as noted in Tables 2-1 – 2-
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4. The dissociation constants, degradation rates, and production rates from fibroblasts are based 

on literature. The generation rates are estimated based on a mass balance constraint in order to 

create the specified initial gradient, which are ultimately based on the dissociation constants found 

in literature. Coefficients for collagen deposition and degradation are fit based on experimental 

data. 

Sensitivity Analysis 

A sensitivity analysis of all 17 model parameters was conducted. Each parameter was 

decreased individually by an order of magnitude (0.1x) and compared to the results of a model run 

with all parameters at baseline values. A sensitivity coefficient was calculated using equation 11, 

where yo and yi are the measured state variable when parameters are at baseline or perturbed, 

respectively, and po and pi are the values of the baseline parameter and perturbed parameter.  

+ = 	 :1#:2
;1#;2

∗ ;2
:2

  (11) 

The state variables measured in the sensitivity analysis are the total collagen content, global 

semivariance (rxy), and semivariance in either the x (rx) or y (ry) dimension. Collagen content is 

measured by summing collagen area fraction across all individual grid spaces. Global semivariance 

is (rxy) defined as: 

,<: = -
=>3
∑ ∑ .?@/0? − 0@1=@?   (12) 
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where xi is an observed data point, xj is an adjacent observation, Wij is a matrix of spatial weights, 

and s0 is the sum of all Wij. If two data points are immediate neighbors, Wij is assigned as 1, 
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otherwise Wij is set to 0.27 Semivariance in the x dimension is calculated by assigning 1 to Wij for 

adjacent observations in the x direction and 0 otherwise, and vice versa for the y dimension. 

Model Implementation 

This model was implemented using Repast Simphony 2.6 with a java engine to connect to 

MATLAB R2018b, which was used to run the network model and perform all data analysis. All 

simulations here were performed on a single CPU (Intel® Xeon® E5-2640 v4 @2.4GHz). The 

approximate runtime to simulate 100 fibroblasts for a period of 6 weeks is 1 hour and 17 minutes. 

Cardiac fibroblast in vitro experiments 

Primary human ventricular cardiac fibroblasts were purchased from PromoCell (PromoCell 

C-12375; PromoCell GmbH, Germany). Cells were cultured in DMEM containing 10% FBS 

and 1% Pen/Strep, and were kept in an incubator maintained at 5% CO2. Cells were plated in a 

96-well plate at 5,000 cells/well and then grown in 10% FBS for 24 hours, serum starved for 24 

hours, and then treated with the following conditions for 96 hours: 0%FBS control media, 0%FBS 

media with 20ng/mL TGFβ1 (Cell Signaling Technology, 8915LC), and 0% FBS media with 10 

ng/mL human IL1β (Cell Signaling Technology, 8900SC). Cells were then fixed in 4% PFA in 

PBS for 30 minutes, permeabilized and blocked for 1 hour in a solution containing 3% BSA and 

0.2% Triton, and then stained overnight at 4°C with a 1:500 primary Anti-Collagen I antibody 

(Abcam, ab34710). After an overnight incubation, cells were washed 3x in PBS and stained with 

1:5000 Dapi, 1:1000 Phalloidin CruzFluor 647 stain (Santa Cruz Biotechnology, sc-363797), 

1:250 α-Smooth Muscle Actin preconjugated antibody (Sigma-Aldrich, C6198), and 1:1000 

Goat-anti-Rabbit (secondary for Anti-Collagen I) (ThermoFisher Scientific, A-11034). 
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Microscopy and image analysis 

96-well plates we imaged using the Operetta CLS High-Content Analysis System with 

confocal view, and Dapi, Alexa 488, TRITC, and Alexa 647 imaging channels (Perkin Elmer). 

Three wells for each condition were imaged and quantified. To identify individual cells, an 

automated image analysis pipeline was employed in CellProfiler.156 Fibroblast nuclei were 

identified by DAPI signal, and fibroblast boundaries corresponding to each nuclei were segmented 

based on collagen and phalloidin (actin) signals using the “propagate” algorithm. αSMA, pro-

collagen I, and phalloidin signals were integrated within each cell's boundary to determine 

fluorescence per cell. To reduce error from edge effects, only cells in the center tile of each well 

were measured. The median fluorescence for all cells in a given well was reported (n=3 replicate 

wells per treatment group, 250-450 cells per well imaged). Significance between groups was 

determined by one-way ANOVA with Tukey HSD post-hoc test, p-value ≤ 0.05 considered 

significant. 

Results  

Coupled model can reproduce predictions made by network model alone 

Verification tests were performed to evaluate whether coupling of LDE and ABM models 

affected results obtained from each model individually. This was accomplished by seeding one 

fibroblast in each grid space with no migration and simulating either an unstimulated condition 

(0.25 input for all nodes) or stimulated condition (0.5 input for TGFb, IL-1b, IL-6, and TNFa). 

We compared the activity level of all 91 nodes of the fibroblast network state at steady state for 

each condition and calculated the sum of squared error (SSE) between the network-only and 

coupled models. The SSE for the unstimulated condition is 3.865e-7 (Figure 2-4A) and 1.168e-
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6 for the stimulated condition (Figure 2-4B). We next examined the SSE between the network 

states of the coupled model and network model alone for all 100 combinations of cytokine inputs 

from Figure 2-3, resulting in SSEs in the range of [2.07e-8 - 8.88e-5]. Thus, the network-only 

and coupled models produce equivalent network states for non-migrating fibroblasts when 

cytokine inputs are maintained at a constant level for individual cells. 

 
Figure 2-4. Verification tests confirm that coupled model and network model produce equivalent 
fibroblast network states. 
(A) In an unstimulated condition (0.25 input for all nodes), and a (B) stimulated condition (0.5 input 
for TGFb, TNFa, IL-1b, and IL-6 nodes), the network state of a fibroblast using the coupled model 
or network model alone are comparable with an SSE of 3.865e-7 (A) and 1.168e-6 (B). 

 

Coupled model predicts that inflammatory cytokines antagonize TGFb-induced collagen 

accumulation 

Model parameters for collagen deposition and degradation were fit to match experimental 

data obtained previously from a rat model of myocardial infarction.154 For these simulations, a 
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single fibroblast was placed in every grid space and not allowed to migrate. Model simulations were 

initialized to match the measured rise in collagen area fraction in healing infarcts when fibrotic 

and inflammatory inputs to the coupled model (TGFb, IL-1b, IL-6, and TNFa) were maintained 

at an elevated level of 0.5, and to match the normal myocardial collagen area fraction when the 

same inputs were maintained at their baseline values of 0.25 (Figure 2-5A). Expanding to a broader 

range of cytokine combinations (100 combinations of fibrotic vs. inflammatory cytokines), the 

coupled model predicted biologically plausible variations in steady-state collagen content. As 

shown in Figure 2-5B, collagen content is highest in areas with high TGFb input and low 

inflammatory input, and is reduced as inflammatory input increases for the same magnitude of 

TGFb input.  

 
Figure 2-5. Coupled model predicts collagen profile over a range of physiological conditions. 
(A) Collagen area fraction for an unstimulated condition (0.25 input for all nodes) is compared to 
baseline collagen area fraction (4%) in a healthy rat. Model predictions for a stimulated condition 
(0.5 input for TGFb, TNFa, IL-1b, and IL-6 nodes) are compared to results from a rat model of 
myocardial infarction up to 6 weeks post-MI. Error bars = SEM. (B) Collagen area fraction 
predictions at 6 weeks from a model simulation with gradient initial conditions and a fibroblast in 
each grid space (n = 100). 
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Crosstalk between TGFb and inflammatory extracellular cues produces complex signaling 

behaviors  

The fibroblast network model exhibits complex behaviors due to its integration of 10 

interdependent signaling pathways. Figure 2-6 illustrates representative nodes in the fibroblast 

network and their activity level under conditions of constant cytokine inputs for many 

combinations of inflammatory and fibrotic inputs, as described previously. Network receptors 

display a range of activation patterns based on their extracellular cues (Figure 2-6A – C). IL-1b 

receptor activation closely follows the gradient created by the initial conditions. In contrast, 

TGFbR1 and endothelin-1 (ET-1) are influenced by autocrine feedback loops. Inflammatory 

cytokines cause inhibition of TGFbR1 that increases along the x-axis as the concentration of 

inflammatory cytokines increase. TGFbR1 activation is also influenced by the rate of latent TGFb 

activation, which occurs in the agent-based model value layers. Fibroblasts secrete latent TGFb, 

which is then activated to active TGFb. But as noted in Figure 2-6G there is minimal latent TGFb 

produced in environments of low TGFb and inflammatory input. As a result, there is decreased 

TGFbR1 activation in this quadrant. In contrast to the gradual applied input gradients, ET-1 

receptor displays switch-like activation, due to autocrine feedback of activator protein 1 (AP1) 

downstream of both TGFb and IL-1b.  

Some nodes downstream of each of these inputs display similar activation patterns (Figure 

2-6D - F), while others integrate multiple unique upstream inputs. Smad7, which is immediately 

downstream of STAT and IL-1b receptor, displays an activity pattern similar to the IL-1b 

receptor. Smad3 is downstream of TGFbR1, and it regulates many network outputs including 

collagen mRNA, fibronectin, periostin, and aSMA. NF-kB activity is regulated by many inputs, 
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including IL-1bR, ERK, p38, and AKT. But ERK and p38 (which are immediately downstream 

of the ET-1 receptor) dominate the response of NF-kB, so it displays an activation pattern most 

similar to ET-1 receptor. NF-kB contributes to the expression of MMPs, fibronectin, and 

provides feedback to IL-6 input.  

Network outputs represent the integration of many upstream inputs (Figure 2-6G - I). 

Latent TGFb expression is primarily influenced by AP1 transcriptional activity, which itself is 

regulated by ERK and JNK. The model predicts that IL-1b antagonizes TGFb-induced collagen 

I mRNA and aSMA mRNA, which is validated by experimental studies in lung and dermal 

fibroblasts.157 Expression of collagen I mRNA is predicted to be a product of input from Smad3, 

SRF (serum response factor), and CBP (CREB binding protein). proMMP 1 expression is a prime 

example of integration of multiple upstream inputs that each exhibit distinct activation patterns 

including AP1, Smad3, and NF-kB. Visualization of how this combination of transcription factors 

regulates proMMP 1 expression is shown in Supplemental Figure 1. In summary, the coupled 

model provides a platform to investigate how combinations of dynamic inputs affect downstream 

intermediate network nodes and network outputs. 
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Figure 2-6. Signaling network exhibits a range of activation patterns in response to extracellular 
cues. 
Node activity level of individual network nodes for each fibroblast at steady state (6 weeks). Model 
simulation with gradient initial conditions and a fibroblast in each grid space (n = 100). Heat maps 
show network states for input receptors (A, B and C), intermediate network nodes (D, E, and F), 
and network outputs (G, H, and I). 
 

Key parameters affect spatial gradient of collagen deposition 

A sensitivity analysis was conducted to determine the relative influence of decreasing the 

values of parameters associated with ABM-network coupling on overall collagen content (area 

fraction) and collagen heterogeneity (semivariance, either globally, or in the x or y dimension). 

Parameters were individually decreased by an order of magnitude (0.1x), and normalized sensitivity 
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coefficients were computed, in which positive coefficients indicate positive correlation of the 

parameter with the output measured (see Eq. 11). Parameters were ranked by their positive 

influence on collagen area fraction (Figure 2-7A).  Parameters related to TGFb production, 

activation, and degradation are the most influential in determining collagen content, because 

TGFb input is important in altering downstream collagen I and III mRNA activity in the 

fibroblast signaling network. As expected, the coupled model is also highly sensitive to the two 

parameters in equation (10) that govern deposition and degradation in the collagen layer. In terms 

of inflammatory inputs, this analysis reveals that IL-1b and IL-6 are more influential in 

determining the collagen profile than TNFa input. This is likely because IL-6 has a downstream 

effect on Smad3, which promotes collagen mRNA activity, and IL-1b upregulates NF-kB, which 

has a positive feedback on IL-6. TNFa has a smaller effect on NF-kB signaling and no direct 

connection to Smad3 signaling. It is also noted that the two parameters related to secretion of 

latent TGFb and IL-6 (ksec,latentTGFb and ksec,IL-6) from the fibroblast have little effect on the overall 

collagen profile, yet TGFb and IL-6 inputs themselves seem to be very influential. This is likely 

because the production rates from fibroblasts are not high enough to significantly impact the 

gradients that are created in the initial conditions. 
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Figure 2-7. Key parameters affect spatial gradient of collagen deposition.  
(A) Sensitivity coefficients calculated based on equation 11 with individual parameter 
perturbations of 0.1x. State variable outputs include total collagen area fraction, global 
semivariance, semivariance in the x direction, and semivariance in the y direction. Collagen area 
fraction heat maps at 6 weeks with (B) all parameters at baseline, (C) kgen,IL-1b parameter multiplied 
by 0.1, and (D) Kd,TGFb parameter multiplied by 0.1. 
 

 

Interestingly, some parameters may have different effects on overall collagen content and 

collagen spatial heterogeneity. Decreasing parameters such as the Kd of TGFβ for its receptor, 

increase both collagen content and collagen heterogeneity (Figure 2-7A and 2-7D), compared to 

a collagen profile at 6 weeks when all parameters are at baseline values (Figure 2-7B). Decreasing 
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parameters associated with synthesis of latent TGFβ or collagen, or degradation of IL-6, cause a 

decrease in both collagen content and heterogeneity in both dimensions. In contrast, decreasing 

the IL-1 generation term (kgen,IL-1) has little effect on the total collagen content, but has opposite 

effects on collagen heterogeneity in the x and y dimension, as measured by semivariance in either 

direction (Figure 2-7C).  

Single cell dynamics in response to a changing extracellular environment 

To test the role of fibroblast migration on collagen remodeling, fibroblasts were seeded 

sparsely in the coupled model and allowed to migrate stochastically at a rate of one grid space per 

hour. Fibroblasts were seeded at moderate density (20 fibroblasts) within the fibrotic vs. 

inflammatory cytokine grid and responses simulated for 6 weeks. Fibroblasts experience changes 

in their extracellular environment as they migrate, which causes their intracellular signaling 

network state and rate of collagen deposition to change accordingly. Figure 2-8 illustrates single 

cell migration trajectories (panels A and C), local cytokine inputs, and gene expression (panels B 

and D) for two representative fibroblasts migrating within the cytokine gradient environment. The 

fibroblast shown in panels A and B remains in areas with high to moderate TGFb levels and with 

increasing levels of inflammatory cytokines. Correspondingly, this fibroblast exhibited relatively 

high levels of collagen mRNA expression that mirrored the level of TGFb input. As this fibroblast 

migrated to regions of increasing IL-6, there was a delayed but then rapid increase in MMP 

mRNA expression, consistent with switch-like responses seen in Figure 2-6I.  

Figure 2-8C and 2-8D track a separate fibroblast that remains in areas of low to moderate 

TGFb levels, but migrates from a region of high to low inflammatory inputs. This simulation 

shows similarly that collagen mRNA expression closely follows TGFb inputs. Interestingly, it also 
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demonstrates that exposure to high IL-6 levels triggers a rapid and sustained increase in MMP 

mRNA expression, which persists well after the cell migrates to a region with lower levels of 

inflammatory cytokines. Thus, some network nodes respond with close coordination to particular 

cytokine inputs, whereas other nodes may be activated in a switch-like manner consistent with the 

activation patterns seen in Figure 2-6. Videos provided in the supplemental material offer a visual 

of how the entire network state changes over time for the individual fibroblasts presented in Figure 

2-8. 

 
Figure 2-8. Individual fibroblasts respond dynamically to extracellular environment.  
(A and C) Fibroblast migration path for a single fibroblast over a period of 50 hours. Fibroblast 
starting location indicated by filled black triangle and end location indicated by open white 
triangle. (B and D) Corresponding TGFb and IL-6 inputs for the fibroblasts tracked in (A) and (C), 
and their respective collagen and MMP mRNA activity over the time course of 50 hours. 
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Fibroblast migration speed and density affect collagen spatial heterogeneity 

Under normal conditions, fibroblasts migrate at a speed of approximately 10µm/hr, but 

this can vary significantly in the presence of growth factors and cytokines.158, 159 As noted above, 

individual grid spaces are 10µm x 10µm, so the baseline migration speed was set at 1 grid space 

per hour. To test the impact of altered migration speed, migration speeds were set to default values 

(1 grid/hr), decreased (1 grid space/10 hr) or increased (10 grid spaces/hr). Slower migration speed 

resulted in greater heterogeneity in the collagen profile, while faster migration speed resulted in a 

more homogenous collagen profile (Figure 2-9A-C). In contrast, overall collagen content was 

linearly dependent on fibroblast density, but not migration speed or initial cell location (n=10 

simulations per condition) (Figure 2-9D). As with the sensitivity analyses, heterogeneity in 

collagen was quantified by global, x-direction, or y-direction semivariance (see Eq. 12). Consistent 

with qualitative observations from Figure 2-9A - C, decreasing the migration speed enhanced both 

the average magnitude and run-to-run variance in collagen heterogeneity. Faster migration 

decreased collagen heterogeneity globally and in the y dimension, but not in the x dimension. The 

coupled model predicts that fibroblast migration can have a substantial impact on the spatial 

heterogeneity and stochasticity of collagen deposition. 
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Figure 2-9. Fibroblast migration speed and density affect spatial heterogeneity of collagen.  
Collagen area fraction heat map at 6 weeks for simulations with 20 randomly migrating fibroblasts 
with a migration speed of (A) 1grid/10hrs, (B) 1grid/hr, and (C) 10grids/hr. (D) Average collagen 
area fraction at 6 weeks for each migration speed and simulations with 20, 40, 60, 80, or 100 
fibroblasts. Mean reported for 5 runs. Error bars = standard deviation. (E) Semivariance calculated 
globally, in the x direction, and y direction for each migration speed. Mean reported for 10 runs. 
Error bars = standard deviation. *p<0.05. 
 

A subset of coupled model predictions was validated by comparison to in vitro experiments 

In order to perform experimental validation of our coupled model predictions, we ran a series 

of simulations wherein input cytokine (IL-1b) and growth factor (TGFb1) levels were varied from 

baseline to simulate those tested with in vitro experiments using primary human cardiac fibroblasts 

(HCFs). HCFs were treated with either TGFb1 (20 ng/mL), IL-1b (10 ng/mL), or TGFb1 (20 

ng/mL) + IL-1b (10 ng/mL), and compared to a control condition in media without FBS (since 
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this is also a source of TGFb1). Pro-collagen I, aSMA, and F-actin expression were quantified 

using immunocytochemistry and image processing to quantify the median fluorescence in each of 

these experimental conditions (Figure 2-10A). Treatment with TGFb1 significantly increased 

expression of pro-collagen I, aSMA, and F-actin compared to the control condition, while IL-1b 

treatment alone had no significant effect on pro-collagen I, aSMA, or F-actin expression when 

compared to the control condition. The combination of TGFb1 and IL-1b treatment decreased 

expression of pro-collagen I, aSMA, and F-actin when compared to TGFb1-only treatment, and 

was statistically significant in the cases of pro-collagen I and F-actin. Representative images of 

pro-collagen 1 (green), aSMA (orange), and F-actin (blue) expression in HCFs for each of these 

treatment conditions indicate the trends described above (Figure 2-10C). These experimental 

measurements were compared to in silico predictions that simulated the addition of these factors 

at the same concentrations tested experimentally: TGFb1 (20 ng/mL), IL-1b (10 ng/mL), or 

TGFb1 (20 ng/mL) + IL-1b (10 ng/mL). As with the experimental results, predictions were 

compared to a control simulation in which all parameters were set to baseline levels (Figure 2-

10B). Most model predictions qualitatively agreed with the trends observed with in vitro 

experiments. For example, network expression of collagen I mRNA, aSMA, and F-actin were 

increased relative to the control simulation in response to TGFb1 stimulation. Similar to observed 

experimental results, IL-1b treatment alone had no effect on collagen I mRNA, aSMA, or F-

actin network expression compared to the control simulation, but the combination of TGFb1 and 

IL-1b treatment was predicted to decrease the expression of collagen I mRNA and aSMA when 

compared to TGFb1 only treatment. Unlike experimental results, however, simulating this 

combined treatment predicted no change in F-actin network expression when compared to 
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simulating TGFb1 only treatment. These model predictions were further validated by published 

experimental studies wherein IL-1b attenuated TGFb1-induced collagen I synthesis and aSMA 

expression of lung and dermal fibroblasts.157 

 

 
Figure 2-10. Coupled model predictions were compared to independent in vitro experiments using 
human cardiac fibroblasts treated with TGFb1 and/or IL-1b.  
(A) Pro-collagen 1, aSMA, and F-actin expression from in vitro experiments with human cardiac 
fibroblasts were quantified by image analysis to measure the median fluorescence for all individual 
cells in each well (n=3). Treatment conditions included control, TGFb1 (20 ng/mL), IL-1b (10 
ng/mL), and TGFb1 (20 ng/mL) + IL-1b (10 ng/mL). Error bars = standard deviation. *p<0.05 with 
reference to control condition. ^p<0.05 with reference to TGFb1 condition. (B) Coupled model 
predicts network expression of collagen I mRNA, aSMA, and F-actin when simulating the addition 
of TGFb1 (20 ng/mL), IL-1b (10ng/mL), and TGFb1 (20 ng/mL) + IL-1b (10 ng/mL), compared to a 
simulation with all parameters at baseline. (C) Representative images of human cardiac fibroblast 
expression of pro-collagen 1 (green), aSMA (orange), and F-actin (purple) when treated with 
TGFb1 (20 ng/mL), IL-1b (10 ng/mL), and TGFb1 (20 ng/mL) +IL-1b (10 ng/mL), compared to 
control. Nuclei are stained with DAPI (blue). Scale bar = 500 microns. 
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Discussion 

A novel hybrid multiscale model of tissue fibrosis 

Here we present a novel hybrid multiscale model of tissue fibrosis that couples a logic-

based differential equation model of cardiac fibroblast intracellular signaling with an agent-based 

model of multi-cellular tissue remodeling. Prescribed gradients of inflammatory cues (IL-1b, IL-

6, and TNFa) and fibrotic cues (TGFb) stimulate migrating fibroblasts to respond dynamically to 

their locally varying extracellular environment. Under conditions with no fibroblast migration and 

constant cytokine input levels, the coupled model was verified to exhibit consistent network states 

predicted by the network model alone (Figure 2-4). In contrast, the addition of fibroblast 

migration across a gradient of cytokine inputs demonstrated that fibroblasts respond dynamically 

to both their local cytokine environment and their previous history of cytokine exposure. Spatial 

heterogeneity of collagen was dependent on the speed of fibroblast migration and key parameters 

(e.g., Il-1b synthesis rate) identified in a sensitivity analysis as having distinct effects on 

semivariance in the x or y dimension. Additionally, several parameters were identified to be 

influential in contributing to the overall amount of collagen deposition, including cell density and 

model parameters related to TGFb production and activation. 

The effects of pro-fibrotic stimuli (TGFb) on increasing collagen expression and other 

myofibroblast markers is well established.160-162 However, the crosstalk of IL-1b with other fibrotic 

signaling pathways is not as well described. This coupled model provides a framework for 

investigating the effects of combined inflammatory and pro-fibrotic cues on spatial fibroblast 

activity and ECM composition. A subset of coupled model predictions was validated by 

comparison to experiments with human cardiac fibroblasts treated with combinations of TGFb1 
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and IL-1b in vitro. The model accurately predicted TGFb1-enhanced expression pro-collagen I, 

aSMA, and F-actin, as well as negative crosstalk on pro-collagen I and aSMA by IL-1b. 

However, the model did not predict the experimentally-observed attenuation of TGFb1-enhanced 

F-actin expression by IL-1b, suggesting that additional cross-talk mechanisms may need to be 

explored in future experiments and model revisions. 

Previous mathematical models of fibrosis have used deterministic, continuum methods to 

holistically represent the complex processes of fibrosis.113, 163 For example, Hao et al., describe a 

model of liver fibrosis using a system of 24 partial differential equations (PDEs) that represent 

many different cell types, cytokines and growth factors, and interactions between cells, and then 

use this model to interrogate different treatment options.163 Other continuum-based models have 

focused more on specific mechanisms that contribute to the progression of fibrosis, such as 

macrophage activation and polarization.90, 111 A model developed by Wang et al, for example, 

explores how the timing of monocyte recruitment and macrophage differentiation affects left 

ventricular remodeling following MI.90 However, an interesting study by Figueredo et al. suggested 

that stochastic differential equation approaches that assume continuous space and time could not 

capture the individual variability and spatial heterogeneity predicted by an agent-based modeling 

approach applied to the same biological case study, and that emergent behavior of the ABM 

contributed additional insight about the system.164  

An increasing number of hybrid models couple continuum with discrete approaches. These 

hybrid models typically couple agent-based models, which use a discrete representation of 2D 

space or 3D volumes, with continuum based approaches that represent cytokine gradients and/or 

receptor-ligand kinetics.24, 115, 165 For example, Warsinske et al. simulated granuloma-associated 
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fibrosis by incorporating a system of ODEs and PDEs that describe molecular level diffusion of 

chemokines (TGFβ and prostaglandin) and receptor ligand signaling, coupled with discrete 

cellular agents whose behaviors were defined by a set of rules that related receptor activation levels 

to cell proliferation, differentiation, chemotaxis, and secretion of ECM proteins. In these hybrid 

continuum-ABM models, outcomes at the tissue scale are the emergent product of actions of the 

individual agents governed by rules that are informed by molecular scale interactions simulated 

using continuum assumptions.165  

The hybrid multiscale model presented here represents the coupling of a large-scale 

intracellular network model, comprising 10 cytokine/neurohormonal inputs and 134 reactions, 

with an agent-based model that maps physiologically relevant in vitro concentrations of cytokines 

and ECM components to normalized network activity levels and vice versa. We believe that this 

represents the first coupling of a large-scale network model to make predictions about tissue-level 

changes in extracellular matrix composition in the setting of fibrosis. This coupled model and its 

use of concentration scaling between the logic-based model and physical units enables the 

quantitative prediction of fibroblast production of cytokines and growth factors and spatial 

gradients of cytokine concentrations, which was not previously possible with the network model 

alone. This coupled model framework will ultimately enable quantitative comparisons of model 

predictions to in vivo experimental data such as measurements of multiple cytokine concentrations 

over time, spatial profiles and gradients of ECM components, cell densities, and single cell mRNA 

expression. 
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Impact of spatially varying environmental cues on fibroblast signaling 

The response of a complex signaling network to multiple simultaneous cues is rarely 

intuitive, and we have demonstrated that individual nodes of the signaling network respond with 

distinct patterns of activation (Figure 2-6). Some receptors respond in sync with their input, such 

as IL-1bR, whose activity level mimics the gradient initial conditions of IL-1b input. Meanwhile 

other receptors, such as TGFbR1, display a more complex pattern of activation reflecting not only 

the gradient initial conditions but also feedback from latent TGFb activation and inhibition by 

IL-1 activity. Intermediate nodes often display a similar pattern of activation to their immediate 

upstream receptors (e.g., Smad7 and IL-1bR, Smad3 and TGFbR1, NF-kB and Endothelin1-

R), while network outputs integrate the effects of many upstream network nodes that represent a 

combination of stimulatory and inhibitory inputs. MMP1, for example, is upregulated by NF-kB 

and AP1 (activator protein 1) activity, and inhibited by Smad3 activity. Tracking the response of 

individual fibroblasts moving through varying levels of inflammatory and fibrotic inputs revealed 

a complex kinetic relationship between the locally sensed extracellular environment and network 

state of a migrating fibroblast (Figure 2-7). For example, a fibroblast that experiences a high 

inflammatory context will upregulate its MMP activity, which remains elevated even if the 

fibroblast moves to an environment with low inflammatory and fibrotic inputs. The fibroblast’s 

network state is highly dependent on the current extracellular environment in some cases (e.g., 

collagen mRNA expression in response to TGFb input) but displays history-dependence of 

previous environments in other cases. 
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Processes that contribute to spatial heterogeneity of collagen deposition 

The artificially prescribed cytokine gradient environment employed in these simulations 

(Figure 2-3) was not intended to represent a particular in vivo situation, but was used to evaluate 

the ability of the coupled signaling and multicellular model to predict the progression of fibrosis 

across a wide range of signaling contexts. Thus, changes in heterogeneity discussed here reflect the 

range of responses a population of fibroblasts would be expected to generate across those varied 

signaling contexts (Figure 2-5B). For example, we found fibroblast migration speed to be an 

important determinant of collagen heterogeneity in our simulations (Figure 2-9). Slower migration 

speed leads to pockets of high collagen deposition and overall higher heterogeneity. Faster 

migration produces a more uniform collagen distribution. In healing wounds where cytokine 

concentrations vary in both space and time, we expect that high migration speeds could similarly 

blur the effects of variable cytokine levels while slow migration speeds could accentuate them. In 

contrast, migration speed did not substantially affect average collagen accumulation across the 

entire simulated range of cytokine combinations. Rather, overall collagen accumulation was 

strongly dependent on fibroblast density. In addition to fibroblast density, model parameters 

related to TGFb production, activation, and degradation are among the most important model 

parameters in determining total collagen content as well as the gradient of collagen deposition in 

either dimension (Figure 2-7), which agrees with the findings from similar models of fibrosis.24 

Other parameters such as the degradation or synthesis of IL-1b had opposite effects on collagen 

heterogeneity in two dimensions. One advantage of coupling an agent-based model is that it 

produces stochastic predictions as a result of individual-based rule sets and a spatial context 
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(Supplemental Figure 2). Repeated runs of the coupled model may help to capture individual 

variability of spatial fibrosis seen in animal models. 

Computational requirements for scaling up 

Simulations were performed on a single CPU (Intel® Xeon® E5-2640 v4 @2.4GHz). The 

runtime for 100 fibroblasts for a period of 6 weeks with access to 10 cores is 1 hour and 17 minutes. 

This model is structured such that parallel computing can be implemented across multiple CPUs 

to reduce simulation runtime. The limit of computational efficiency is reached when the number 

of cores is equal to the number of fibroblasts in a simulation, allowing the network state of each 

fibroblast to be updated simultaneously at each time step. We anticipate that with access to 100 

cores, this model with 100 fibroblasts for 6 weeks of simulated time would be computed in 

approximately 8 minutes. Simulation on a high-performance computing system with thousands of 

cores is expected to enable simulation of up to 100,000 fibroblasts (comparable to a myocardial 

infarct).  

Limitations and sources of error 

The prescribed input cytokine gradients employed here were used to explore the dynamic 

range of the network model and create an environment where fibroblasts migrate through a rapidly 

changing extracellular environment. However, this environment is not representative of a specific 

physiological environment. Cytokine diffusion was not enabled in the current simulations, in order 

to maintain the prescribed cytokine input gradients over small spatial area (100x100µm). 

Furthermore, the current model did not include proliferation and apoptosis, which have been 

simulated in previous work.24, 165 Future applications will incorporate cell migration and 

proliferation rates that are driven by the dynamic network state of individual fibroblasts.166, 167 

Additionally, this model focused specifically on the contributions of fibroblasts in the progression 
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of fibrosis, through the coupling of a fibroblast signaling network, but future work will incorporate 

inflammatory cells that serve as local sources of many of the inflammatory cytokines that affect 

fibroblast signaling.115  

State of the multiscale modeling field and contributions of this multiscale model 

A primary focus of the computational modeling community is to develop methods for 

integrating biological data across spatial, temporal, and functional scales.3 Continued 

advancements in the capabilities and availability of high-performance computing has allowed 

models to tackle more complex problems with greater resolution. Perturbations to fine-grained 

parameters, such as protein or gene expression data, can predict observable changes to coarse-

grained parameters (e.g. cell distributions, tissue patterning).28, 165, 168 Furthermore, the use of 

multiscale models allows for in silico predictions for a wide range of parameter values in a high-

throughput manner that would otherwise not be feasible with experimental assays, either due to 

time or cost constraints, or lack of the appropriate technology. For example, the multiscale model 

presented here allows for real time tracking of individual fibroblasts and continuous measurements 

of their network states, which would not be feasible in vivo. While models cannot fully replace 

experimental studies, they can offer insight into unexpected predictions that can then be 

experimentally tested or lead to new hypotheses entirely, as demonstrated by Martin et al., who 

predicted a new therapeutic approach as a result of their in silico experiments of muscle regeneration 

following injury.91  

In summary, we have contributed a hybrid multiscale model of tissue fibrosis by coupling 

models across spatial and temporal scales. This represents the coupling of a large-scale network 

model with an agent-based model to make predictions about fibroblast production of cytokines 

and growth factors and tissue-level changes in ECM composition. This coupled model makes 
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predictions about fibroblast production of cytokines and growth factors in physical units, which 

was not possible previously with the logic-based model alone. Verification tests confirmed that the 

model coupling did not disrupt the behavior of the individual models, allowing for future model 

revisions or software implementations of individual modules. Application of this coupled model 

in the context of post-MI wound healing will allow for further investigation and validation of 

cytokine concentrations, collagen content and heterogeneity, and cell behaviors with both fine 

spatial and temporal resolution. Experimental studies suggest that collagen density alone may have 

effects on fibroblast behavior, including adhesion, migration, and gene expression169, and that 

furthermore, collagen density and fibroblast density play an important role in the mechanical 

properties of the myocardium.170, 171 This multiscale model framework allows for further 

investigation and understanding of emergent phenomena that result from the dynamic interplay 

between molecular signaling, cell behavior, ECM composition, and tissue mechanics. For example, 

previous computational models have demonstrated that simultaneous targeting of multiple cells 

types rather than fibroblasts alone can enhance the efficacy of therapies for pulmonary fibrosis.24 

Inflammatory cells, including macrophages and neutrophils, will be incorporated into a model of 

post-MI wound healing as the primary source and modulators of inflammatory cytokines and 

TGFb input, as has been demonstrated previously in simulations of skeletal muscle and lung 

fibrosis.24, 115, 172 This will add another layer of complexity to the spatial heterogeneity of the coupled 

model by representing cytokine production from individual cells, diffusion of soluble cytokines and 

growth factors, and migration that is driven by chemokine gradients. Our goal is to develop a 

hybrid multiscale model that can systematically screen the effect of therapeutic interventions on 
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the progression of cardiac fibrosis, from the level cell signaling to a tissue level of ECM 

remodeling, with both spatial and temporal resolution. 
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Abstract 

Macrophages are a target for novel therapeutics to prevent adverse ventricular remodeling 

leading to heart failure following myocardial infarction (MI). Improvements in single cell 

sequencing and transcriptomics have improved our knowledge of the heterogeneities that exists in 

cardiac macrophage populations and the distinct temporal dynamics and roles that they play in 

wound healing following MI. However, few studies have characterized the spatial heterogeneity 

of macrophage populations and activation states during the early inflammatory stage of post-MI 

wound healing. Understanding macrophage spatial and temporal dynamics will likely be necessary 

to identify novel therapeutics that target inflammatory processes that contribute to the 

development of heart failure. In this study, we describe the spatiotemporal dynamics of M1 and 

M2 macrophage infiltration in the heart in a rat model of myocardial infarction induced by 

permanent occlusion of the coronary artery. To our knowledge, this represents the first data set to 

characterize the spatial distributions of macrophages in the heart post-MI and their colocalization 

with cardiac fibroblasts and other unique regions of interest in the infarct, including regions of 

necrosis and intramyocardial hemorrhage. We also present evidence of a CD68+CD163+ 

macrophage population that defies M1/M2 classifications and further supports the need to fully 

characterize the diverse macrophage phenotypes that exist in vivo and their unique functions. This 

work contributes important findings about the spatiotemporal dynamics of macrophages in the 

heart during post-MI wound healing that will inform future studies that aim to identify novel 

therapeutics targeting the inflammatory response that leads to adverse remodeling of the heart and 

cardiac fibrosis. 
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Introduction 

Timely reperfusion therapy following MI has dramatically improved short-term survival, 

but ventricular remodeling resulting in heart failure remains a significant clinical challenge 

associated with high morbidity and mortality in the long-term impacts of MI.173-176 Current 

therapeutics including ACE inhibitors and beta blockers have failed to prevent deaths related to 

the development of heart failure.177 There is a need to better understand the processes that regulate 

maladaptive remodeling of the heart following MI in order to develop novel therapeutic targets.178 

Wound healing following MI includes three unique, but integrated phases: inflammation, 

proliferation, and remodeling. Macrophages play important roles throughout all of these phases 

including phagocytosis of cell debris, recruitment of fibroblasts, and promotion of scar formation 

and angiogenesis.179, 180 Inflammation and scar formation are necessary for wound healing and 

repair, but excess inflammation or fibrosis causes maladaptive ventricular remodeling leading to 

heart failure.178 Macrophages are important regulators of this remodeling, with pro-inflammatory 

M1 macrophages directing early phases of wound healing, which then switch to an anti-

inflammatory M2 phenotype that promotes angiogenesis and scar formation.180, 181 This M1/M2 

classification of macrophages is based on in vitro polarization of bone marrow-derived 

macrophages in response to LPS and IFN-4 (M1 macrophages), or IL-4 and IL-13 (M2 

macrophages)182-184, and has been recognized as an oversimplification of the macrophage 

phenotypes that exist in vivo.178, 179  

New experimental techniques including single-cell RNA sequencing (scRNA-seq) and 

mass spectrometry have enabled more complete descriptions of macrophage polarization states 

using unbiased clustering of cell populations based on their expression profiles.181, 185, 186 Mouton et 
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al. performed whole transcriptome analysis of cardiac macrophages isolated from the infarct region 

at days 1, 3, and 7 following permanent coronary artery ligation. Using principal component 

analysis, macrophages from each day formed their own cluster, indicating that they exhibit unique 

expression profiles at these time points. Day 1 macrophages expressed pro-inflammatory genes 

related to cytokine signaling and extracellular matrix degradation; day 3 macrophages differentially 

expressed genes related to metabolic reprogramming processes and demonstrated increased 

phagocytosis and proliferation; day 7 macrophages displayed a more reparative phenotype, 

upregulating genes related to ECM assembly and scar formation. They also demonstrated that day 

7 macrophages expressed collagen I and periostin mRNA, indicating that they may be important 

direct contributors to ECM remodeling.185 Furthermore, Walter et al. showed that while day 3 

macrophages generally express pro-inflammatory markers and day 7 macrophages express ant-

inflammatory markers, these phases are overlapping and macrophages simultaneously expressed 

classical M1 and M2 markers, indicating that this classification system does not accurately capture 

the nuances of macrophage phenotypes.186 

While these studies have contributed important knowledge about the temporal dynamics 

of macrophage transcriptional profiles and polarization following MI, there is a need to also 

describe the spatial dynamics and heterogeneity of macrophage infiltration and colocalization with 

cardiac fibroblasts. Macrophages play an important role in fibroblast recruitment and 

differentiation to myofibroblasts, which are the primary cells that deposit collagen to form scar in 

the infarct. Scar heterogeneity that develops as a result of differences in fibroblast alignment and 

local collagen deposition is an important determinant of the mechanical function of the heart and 

will be an important consideration in the design of therapeutics for cardiac fibrosis.187-189 We 

hypothesize that the spatial heterogeneity of macrophage recruitment and polarization following 
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MI is a significant contributor to subsequent fibroblast and scar heterogeneity. Our objective in 

this study was to describe the spatiotemporal dynamics of macrophage populations in the heart 

following MI and their spatial localization with unique regions of interest and cell types within the 

infarct, including cardiac fibroblasts. Using an animal model of myocardial infarction by 

permanent occlusion of the coronary artery, we utilize histological techniques and image analysis 

to quantify CD68, CD163, and aSMA density within the infarct region of the myocardium during 

the early inflammatory and proliferative phases (days 1-6) of post-MI wound healing.  

Materials and Methods 

Animal model of myocardial infarction 

Adult male Sprague-Dawley rats weighing 275-300 g (age 8-9 wk) were used in this study. 

Animals were allowed to acclimate for at least 1 week prior to surgery and were provided ad libitum 

access to food and water for the duration of the study. Animals were anesthetized with 

intraperitoneal injection of ketamine (60-80 mg/kg) and xylazine (5-10 mg/kg), intubated, and 

ventilated with oxygen and supplemental isoflurane (0.5-1%). Bupivacaine was administered 

locally at the site of incision. Following left thoracotomy, large transmural infarcts were created by 

permanent occlusion of the left anterior descending (LAD) coronary artery with a 6-0 suture. The 

chest wall was closed in layers and subcutaneous buprenorphine (0.05-0.2 mg/kg) was 

administered immediately with additional doses every 8-12 hours as needed for postoperative pain. 

All procedures were approved and conducted in accordance with the requirements of the 

Institutional Animal Care and Use Committee at the University of Virginia. 
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Histological Analysis 

At days 1, 2, 3, 4, 5, and 6, animals were anesthetized with 3% isoflurane in 100% oxygen, 

intubated, and ventilated with oxygen and supplemental isoflurane (2.5-3%). The chest was 

opened via a midline sternotomy the heart was arrested by retrograde perfusion with cold 2,3-

butanedione monoxime (BDM) in phosphate-buffered saline (PBS) and removed. A rectangular 

sample of the infarct scar (8-10 mm on each side) was dissected from the heart for histological 

analysis. Scar samples were embedded in OCT compound and snap frozen using isopentane 

immersed in liquid nitrogen. Frozen tissue was stored at -80C and then sectioned parallel to the 

epicardial surface at 7 um thickness through the entire depth of the heart wall. Tissue sections 

taken from the myocardium (50% wall depth) were subsequently stained and analyzed with the 

following assays. 

Immunohistochemistry 

Tissue sections were thawed at room temperature, rehydrated with PBS, and permeabilized 

in a solution of TBS containing 0.1% TWEEN and 2% BSA for 30 minutes. Samples were then 

blocked for 30 minutes in a solution of TBST with 10% mouse serum, and then incubated for 1.5 

hours at room temperature with 1:300 anti-actin, α-smooth muscle antibody pre-conjugated to 

Cy3 (Millipore Sigma, C6198), 1:100 CD68 pre-conjugated to Alexa Fluor 488 (Bio Rad 

MCA341A488), and 1:100 CD163 pre-conjugated to Alexa Fluor 647 (MCA342A647). 

Following antibody incubation, samples were washed 3x with PBS for 10 minutes and then 

ProLong Diamond (Thermo Fisher, P36962) with DAPI mountant and coverslip was applied. 

Samples were allowed to dry completely overnight in the dark at room temperature before imaging 

with a Leica THUNDER high resolution imaging system. Complete tissue sections were imaged 
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with tile scanning at 20x and automating stitching of the tiles performed with LAS X Navigator 

(Leica Microsystems). 

Hematoxylin and Eosin 

Frozen sections were thawed and then fixed in cold acetone at -20°C for 10 minutes. 

Sections were then cleared and dehydrated in a series of serial washes with xylenes and ethanol. 

Nuclei were stained with Harris modified hematoxylin solution (Sigma-Aldrich, HHS16) and 

blued with running tap water for 10 minutes. Samples were then counterstained with eosin 

containing phloxine (Sigma-Aldrich, HT110316), and then dehydrated and cleared with serial 

washes of ethanol and xylenes. Slides were coverslipped with Cytoseal mounting media and imaged 

with a Leica THUNDER high resolution imaging system at 10x with automatic tile scanning 

using LAS X Navigator (Leica Microsystems) under brightfield light. 

Picrosirius Red 

Frozen sections were thawed and then fixed in cold acetone at -20°C for 10 minutes. 

Sections were then cleared and dehydrated in a series of serial washes with xylenes and ethanol. 

Sections were rinsed for 1 minute in DI water and then stained with picrosirius red F3BA stain 

(Polysciences, Inc. #24901) for 90 minutes. Sections were rinsed for 2 minutes with 0.1 N 

hydrochloride acid and then dehydrated in serial washes of ethanol. Slides were coverslipped with 

Cytoseal mounting media and imaged with a Leica THUNDER high resolution imaging system 

at 10x with automatic tile scanning using LAS X Navigator (Leica Microsystems) under polarized 

light to visualize type I and III collagen fibers. 

Image Analysis 

All image analysis was performed using ImageJ (version 2.1.0). Hematoxylin and eosin 

(H&E) stained tissue sections were manually annotated to identify regions of interest in the 
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infarct. Regions of interested identified for annotation included the entire tissue section, necrotic 

region, areas of hemorrhage, and any regions of healthy cardiomyocytes (Figure 3-1). Necrotic 

regions were identified by a lack of nuclei staining and non-injured regions were identified by 

highly aligned and elongated nuclei. Additionally, a cross-section of the left ventricular cavity was 

visible in some tissue sections and was excluded from any area measurements and subsequent 

analysis. 

 
Figure 3-1. H&E image annotation 
Example hematoxylin and eosin staining and image annotation for a cardiac section on (A) day 3 
and (B) day 5 following myocardial infarction. 
 

Immunohistochemistry images were analyzed by annotating these same regions of interest 

by visual comparison to a serial section stained with hematoxylin and eosin (H&E) from the same 

animal (Figure 3-2). DAPI staining was used to identify the border of the tissue section and the 

necrotic region, which was identified by a complete lack of DAPI staining within the tissue section. 

Additionally, a border region adjacent to the necrotic area was defined by enlarging the necrotic 

region of interest (ROI) by 500 5m and including only this 500 5m band of tissue adjacent to 

necrosis as a separate ROI. Any areas of non-injured tissue or sectioning artifact (including regions 
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corresponding to cross-sections of the left ventricle) were excluded from the infarct region. All 

image channels (DAPI, ED1, ED2, aSMA) were thresholded using the default auto threshold 

method in ImageJ and the pixel area within each ROI was measured for all channels. 

 
Figure 3-2. IHC image annotation with DAPI 
Example DAPI staining and image annotation for a cardiac section on (A) day 3 and (B) day 5 
following myocardial infarction. 
 
Results 

Macroscopic regions of interest within the infarct area 

Tissue sections stained with H&E were analyzed to quantify the area fraction of several 

unique macroscopic regions of interest within the infarct that appeared on days 1-6 (Figure 3-3). 

Areas of non-injured tissue that contained elongated nuclei and highly aligned cardiomyocytes 

were present up to day 3. Necrotic regions lacking any nuclei staining appeared in these tissue 

sections as early as day 2, and were most prominent on day 4. Areas of intramyocardial hemorrhage 

were identifiable in one infarct on day 4, and two of three infarcts on days 5 and 6. Previous models 

of myocardial infarction with ischemia reperfusion (I/R) have similarly noted significant edema 

leading to intramyocardial hemorrhage in the most severe infarcts.190 



 
CHAPTER 3: Spatiotemporal Dynamics of Macrophages Following Myocardial Infarction 

 75 

 

 
Figure 3-3. Area fraction of annotated ROIs in H&E Images 
Percent area as a fraction of the total tissue section area for annotated regions of interest in H&E 
stained sections. Error bars = SEM. 
 
 
Tissue-resident macrophages are lost in necrotic regions of the infarct 

CD163+ cells, which represent a M2-like tissue-resident macrophage population, were 

present in a regularly-spaced pattern in areas of non-injured tissue that were identifiable at early 

time points (Figure 3-4A). These non-injured regions were also characterized by a lack of M1-

type (CD68+) macrophages and minimal aSMA+ cells that were not otherwise easily identifiable 

as vascular smooth muscle cells. Interestingly, necrotic regions which lacked any DAPI staining, 

which would indicate intact nuclei, maintained this regularly-spaced pattern of CD163 staining 

that was observed in non-injured tissue at earlier time points (Figure 3-4B). This suggests that 

M2-like macrophages were previously present in this ischemic area, and that potentially these cells 

have recently undergone apoptosis and the CD163 membrane protein is more stable than the 

DNA contained in the nucleus identified by DAPI staining. CD163+ pixel area was quantified as 
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a fraction of the total tissue section area for several regions of interest identified previously (i.e., 

non-injured tissue, infarct, border region). CD163+ macrophages were present on day 1 in regions 

of non-injured tissue and the infarct region at densities comparable to that of healthy control 

animals, but these tissue-resident macrophage populations were reduced in all regions on days 2 

and 3 (Figure 3-4C). CD163+ cell area slowly recovered on days 4 and 5, reaching an area fraction 

similar to initial densities by day 6. We hypothesized that macrophages would be present in higher 

numbers at the border of necrosis as the site of the most severe injury. However, there was no 

significant difference in CD163+ cells in the border region of necrosis compared to the entire 

infarct region. 
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Figure 3-4. Tissue-resident macrophages (CD163+) are lost from necrotic regions in the infarct. 
M1 (CD163+) and M2 (CD68+) macrophages are identified in (A) a region of non-injured tissue at 
day 1 and (B) a necrotic region at day 5. (C) CD163+ pixel area was quantified for regions of non-
injured tissue, infarct area, and a 500 5m border region of necrosis at days 1-6 following 
myocardial infarction and compared to a control tissue sample obtained from a healthy animal. 
Error bars = SEM. Scale bar = 100 5m. 
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Inflammatory and tissue-resident macrophages have distinct time courses of infiltration 

CD68+, or M1-like inflammatory macrophage densities were quantified as a fraction of 

the total area for several regions of interest on days 1-6 following myocardial infarction in 

additional to control samples obtained from a healthy rat heart (Figure 3-5). M1 macrophages 

were present in very low numbers in non-injured areas at early time points that was comparable to 

the densities observed in control samples, but appeared at higher densities in the infarct and border 

regions on day 2 and increased significantly on day 4. There was not a significant difference in M1 

macrophage density between the border region and entire infarct, except for on day 6 where there 

was a higher density of M1 macrophages at the border of the necrosis. There was also evidence of 

a CD68+CD163+ subpopulation of macrophages (Figure 3-6A). This could indicate phenotype 

switching of tissue-resident macrophages to a more inflammatory phenotype, or a unique 

subpopulation of M2 macrophages.85, 191, 192 When comparing M1 (CD68+) and M2 (CD163+) 

densities they demonstrate unique time courses of infiltration following myocardial infarction 

(Figure 3-6B). M2 tissue-resident macrophages are present on day 1 at a density seen in healthy 

control samples, but their density quickly drops on day 2 and is followed by a slow return to initial 

densities by day 6. M2 inflammatory macrophages are present at very low densities initially and 

experience a rapid increase on day 4 that is sustained through day 6. 
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Figure 3-5. Inflammatory macrophages increase in number during week 1 following myocardial 
infarction. 
CD68+ pixel area was quantified for regions of non-injured tissue, infarct area, and a 500 5m 
border region of necrosis on days 1-6 following myocardial infarction and compared to a control 
tissue sample obtained from a healthy animal (day 0). Error bars = SEM. 
 

 
Figure 3-6. Comparing M1 and M2-like macrophage density following myocardial infarction and 
the presence of a CD68+CD163+ macrophage population. 
(A) Example of CD68+ (green), CD163+ (blue), and DAPI (grey) staining in the infarct region on day 
5 following myocardial infarction. White arrows indicate CD68+CD163+ cells. Scale bar = 100 5m. 
(B) CD68+ and CD163+ pixel area was quantified as a fraction of total infarct area on days 1-6 
following myocardial infarction and compared to a control tissue sample obtained from a healthy 
animal (day 0). Error bars = SEM. 
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aSMA+ myofibroblasts are present with unique spatial patterns of localization with macrophages 

Interstitial myofibroblasts were visually identified by aSMA+ cells which were not 

immediately adjacent to a blood vessel. While quantification of aSMA+ pixel area cannot rule out 

the inclusion of vascular smooth muscle cells or mural cells193, 194, interstitial myofibroblasts could 

be identified visually by their elongated morphology (Figure 3-7A and B). Presented here are two 

striking examples of myofibroblast spatial distribution in the infarct region from the same animal 

on day 4 following myocardial infarction. In the first example (Figure 3-7A), myofibroblasts 

appear to be evenly distributed and intermixed with other CD68+ and CD163+ cells. This is 

contrary to the example image in Figure 3-7B, where myofibroblasts appear to be highly 

concentrated in one area and distinct from other CD68+ or CD163+ cell populations. When 

quantifying aSMA+ pixel area as a fraction of total tissue area for several regions of interest (Figure 

3-7C) there was a low density of aSMA on days 1-3 in all regions, likely accounting for vascular 

smooth muscle cells of the surviving vasculature since a similar density was observed in healthy 

control samples. There was an increase in aSMA+ density on day 4 that was sustained through 

day 6. There was little difference in aSMA+ density between any of these regions of interest, 

except for on day 5 where aSMA+ density was slightly higher in the infarct region compared to 

the border region surrounding the necrosis. 
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Figure 3-7. aSMA+ unique spatial distribution and time course following myocardial infarction 
(A and B) Example images from the same tissue section taken on day 4 following myocardial 
infarction where myofibroblasts are identified by aSMA (magenta), as well as CD68+ (green) and 
CD163+ (blue) macrophages. Nuclei are stained with DAPI (grey). Scale bar = 100 5m. (C) aSMA 
pixel area fraction was quantified for several regions of interest on days 1-6 following myocardial 
infarction and compared to a control tissue sample obtained from a healthy animal (day 0). Error 
bars = SEM. 
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High density of macrophages, including CD68+CD163+ macrophages, present in the epicardium 

All previous staining and quantifications were done with tissue sections taken from the 

myocardium (50% wall depth) of the left ventricle. Previous studies suggest that the epicardium is 

a source of cardiac progenitor cells that may differentiate to macrophages or vascular smooth 

muscle cells during wound healing.195-199 Immunohistochemistry of the epicardium on day 5 

following myocardial infarction revealed a high density of both CD68+ and CD163+ macrophages 

(Figure 3-8), 3.3x and 6.5x higher, respectively, than in a tissue section from the myocardium of 

the same animal. There also appears to be a much higher density of double-positive 

CD68+CD163+ macrophages, indicated with white arrows in Figure 3-8B. The density of 

aSMA+ cells was also 1.6x higher than in the myocardium from the same animal, but this appears 

to most likely reflect the high density of coronary arteries in the epicardium as opposed to 

interstitial fibroblasts (Figure 3-8C). There was no region of apparent necrosis in the epicardium 

of this animal at day 5, suggesting that the region of necrosis is primarily restricted to the 

myocardium. 

Capillary dropout adjacent to region of necrosis 

A tissue section taken from the myocardium on day 5 following myocardial infarction was 

stained with CD31 to identify the endothelium of the surviving capillary network (Figure 3-9). A 

dense vascular network is observed at the border of the infarct with vascular smooth muscle cells 

and interstitial fibroblasts identified as aSMA+ cells. The region of necrosis is identified as the 

area lacking DAPI staining and is outlined with a dashed white line. Extensive capillary dropout 

is observed near the border of necrosis and within the necrotic region, indicating that this area is 

experiencing severe ischemia. Additionally, within this same tissue section CD31+ staining 
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identified the endothelial lining of the left ventricular cavity, which was also lined with a ring of 

highly aligned aSMA+ cells (Figure 3-10). This endocardial layer was surrounded by an 

approximately 250 5m wide band of aSMA+ cells, which may also be a source of progenitor cells 

that contribute to arteriogenesis following myocardial infarction.200, 201 

 
Figure 3-8. High density of macrophages in the epicardium. 
(A and B) Example of CD68+ (green), CD163+ (blue), aSMA+ (magenta) and DAPI (grey) staining in 
the epicardium at day 5 following myocardial infarction. White arrows indicate CD68+CD163+ 
cells. Scale bar = 100 5m. (C) Tile scan at 20x of epicardium tissue section. Scale bar = 1000 5m. 
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Figure 3-9. Capillary dropout adjacent to region of necrosis. 
(A and B) CD31 (blue), aSMA+ (magenta), and DAPI (grey) staining in the myocardium on day 5 
following myocardial infarction. Region of necrosis is indicated by dashed white line. Scale bar = 
100 5m. 
 

 
Figure 3-10. Endocardial lining of the left ventricle is surrounded by aSMA+ cells. 
Cross-section of left ventricular cavity on day 5 following myocardial infarction stained with CD31 
(blue) and aSMA+ (magenta). Scale bar = 500 5m. 
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Minimal collagen deposition during week one following myocardial infarction 

Picrosirius red stain is used to identify collagen fibers in the infarct, where yellow-red 

staining indicates type I collagen fibers and green staining indicates type III collagen fibers. Type 

III collagen fibers are immature, thin collagen fibers that are deposited by fibroblasts during 

healing and are later replaced by stronger type I collagen fibers.202, 203 An example of picrosirius red 

staining of collagen fibers for a tissue section on day 5 following myocardial infarction is provided 

in Figure 3-11A. Collagen area fraction was quantified by calculating the ratio of picrosirius red 

pixel area as a fraction of total tissue area (Figure 3-11B). Collagen area fraction was approximately 

6% throughout week 1 following myocardial infarction, but dropped to nearly 3% on day 3, which 

may indicate when the heart is most susceptible to myocardial rupture.204, 205 

 

 
Figure 3-11. Collagen area fraction following myocardial infarction. 
(A) Example of picrosirius red staining in a tissue section on day 5 following myocardial infarction. 
Scale bar = 1000 5m. (B) Collagen area as a fraction of total tissue area is quantified on days 1-6 
following myocardial infarction. Error bars = SEM. 
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Discussion 

In this work, we characterize the spatiotemporal dynamics of CD68+ and CD163+ 

macrophage infiltration in the heart on days 1-6 following permanent occlusion of the coronary 

artery in a rat model of MI. We identify distinct macroscopic regions of interest in the infarct, 

including a region of necrosis that appears between days 2 and 3, and intramyocardial hemorrhage 

that appears between days 4 and 5. Resident cardiac macrophages (CD163+) are present in a 

regularly spaced pattern in non-injured regions of tissue that borders the infarct at early time 

points, and are lost from ischemic regions of necrosis that lack capillary perfusion. CD163+ 

macrophage populations are reduced significantly in the infarct region on days 2 and 3, and 

subsequently recover to initial densities by day 6. Inflammatory (CD68+) macrophages are not 

present in non-injured tissue, or in the infarct at early time points, but increase substantially in 

density on day 4 which is sustained through day 6. This is consistent with previous studies that 

have reported that M1 macrophages peak between days 3 and 5, and M2 macrophages peak around 

day 7, with total macrophage infiltration reaching maximum levels on day 7 in models of 

permanent coronary artery occlusion.178, 181, 206, 207 Furthermore, we showed in this work that 

macrophages demonstrated multiple distinct patterns of spatial colocalization with aSMA+ 

cardiac fibroblasts. In some cases, macrophages were evenly dispersed within populations of 

aSMA+ cardiac fibroblasts, yet there were examples within the same tissue section where 

fibroblasts occupied a unique spatial niche distinct from macrophage populations. We 

demonstrated evidence of a CD68+CD163+ positive macrophage population which does not fit 

the canonical M1/M2 classifications, and appears to be enriched within the epicardium.  
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Previous studies have documented the temporal dynamics and heterogeneity that exists in 

macrophage phenotypes and transcriptional profiles following myocardial infarction,181, 185, 208 but 

there are few examples of the spatial localization of these macrophage phenotypes in the infarct. 

Recently, Chakarov et al. demonstrated that there are unique populations of resident tissue 

macrophages in lung, fat, heart, and dermal tissues that occupy different spatial niches. 

Lyve1loMHCIIhi macrophages were enriched near nerve bundles and Lyve1hiMHCIIlo 

macrophages were localized near endothelial cells and upregulated genes related to angiogenesis.209 

This study provides evidence that there is a link between macrophage phenotypes and the spatial 

niches that they occupy, but no study to date has mapped the spatial distribution of macrophages 

in the heart following MI to their dynamic phenotypes and functions. To our knowledge, this 

work is the first example of the spatial distributions of macrophage populations in the heart 

following MI and their colocalization with cardiac fibroblasts and other unique regions of interest 

within the infarct, including regions of necrosis and the epicardium. This work will inform future 

studies that aim to target macrophages for novel therapeutics to treat cardiac fibrosis and the 

development of heart failure. 

Developing therapies that target the roles of macrophages in post-MI wound healing is 

complex. There exist many different sources of macrophages that play opposing roles throughout 

the time course of wound healing. Studies in both mice and humans have documented a correlation 

between increased monocyte infiltration following MI and reduced ventricular function.210, 211 

Alternatively, resident cardiac macrophages have been shown to improve outcomes and limit 

maladaptive remodeling of the ventricle following MI.212, 213 However, the complete depletion of 

circulating monocytes during the early inflammatory phase of wound healing increased necrotic 

tissue and apoptotic cells, and depletion of monocytes during the later reparative phase decreased 
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collagen deposition and angiogenesis.206 Therapies that successfully improve wound healing and 

long-term improvement in cardiac function will require a robust understanding of the complex 

spatiotemporal dynamics, and varied sources and activation states of macrophages that contribute 

unique and important functions throughout the course of wound healing. Current therapies have 

focused on either limiting monocyte recruitment to the infarct, or altering the phenotypes of 

macrophage populations with varying levels of success.178 One approach that has demonstrated 

promising results is the use of a monoclonal antibody to IL-1b, canakinumab, which has been 

shown to reduce additional cardiovascular events following MI, but the complete mechanisms by 

which this contributes to improved outcomes is not fully understood.214, 215 

The model systems used to study MI also present challenges to translating these findings 

to the clinical setting. Permanent occlusion of the coronary artery is a widely used animal model 

because it induces severe ischemia and a reproducible inflammatory response, but with increasing 

widespread access and success of reperfusion therapy the findings of these studies may be limited 

in their translation to clinical therapeutics and outcomes. Ischemia-reperfusion (I/R) models more 

accurately mimic the clinical scenario of primary angioplasty, but these models have important 

documented differences. A study by Yan et al. described the difference in the temporal dynamics 

of macrophage recruitment between models of permanent total occlusion of the coronary artery 

and timely reperfusion of the occluded coronary artery. They demonstrated that macrophage 

infiltration peaked nearly 4 days earlier in the I/R model, shifting from day 7 to day 3 compared 

to the permanent occlusion model, and exhibiting smaller infarct size and less adverse 

remodeling.181 Furthermore, the mortality rate is high for animal models of permanent occlusion 

due to cardiac rupture. Since these animals are excluded from the results of these studies, an 
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important question that is difficult to answer is how the inflammatory response and macrophage 

populations differ in animals that experience cardiac rupture.185 

One approach to identifying novel therapeutic targets is leveraging computational models 

to reduce complexity of systems with heterogenous spatial and temporal dynamics.216 

Computational models are useful for integrating large data sets to explain experimental 

observations, to identify the biological mechanisms involved, and to generate new hypothesis for 

further exploration. Wang et al. developed a mathematical model that describes how IL-1, IL-10, 

and TNFa contribute to monocyte differentiation and macrophage activation states following 

myocardial infarction.90 A large-scale network model of macrophage signaling developed by Liu 

et al.  demonstrated how combinations of conflicting pro-inflammatory and anti-inflammatory 

stimuli contributed to a wide range of gene expression patterns, which more accurately represented 

the macrophage activation phenotypes observed in vivo.217 Similarly, computational models of 

cardiac fibroblast signaling were able to predict how dynamic pro-inflammatory and pro-fibrotic 

stimuli regulate the differentiation of cardiac fibroblasts to myofibroblasts, and the temporal 

dynamics of post-MI stimuli that drive the progression of fibroblast phenotypes during wound 

healing and scar formation.25, 218 Network models of this scale are also useful tools for performing 

high-throughput screening of drugs to identify the most promising drug candidates for novel 

therapeutics, as Zeigler et al. demonstrated in their in silico screen of FDA-approved drugs to 

target cardiac fibroblast signaling mechanisms that contribute to the progression of fibrosis.17 The 

experimental insight gained from the work presented here will help to inform future computational 

models that aim to integrate the spatiotemporal dynamics of macrophage and fibroblast 

populations during post-MI wound healing and their contributions to scar formation and fibrosis. 
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These models could further be coupled with mechanical models (e.g., finite element models) to 

predict how the mechanical environment of the heart is modified during wound healing and the 

impacts on cardiac output and function.27 

There are several limitations to the work presented here, notably the simplified 

classification of macrophages as M1 and M2 phenotypes based on a limited set of available 

markers. As has been discussed here, this classification is an over-simplification of the varied 

phenotypes that macrophages adopt in vivo, and this is supported in our work by the identification 

of a subpopulation of macrophages that simultaneously express M1 (CD68+) and M2 (CD163+) 

markers. Future studies should aim to more comprehensively describe the heterogenous 

macrophage expression profiles that exist, and investigate whether these macrophage phenotypes 

are present in spatially heterogenous patterns in addition to the temporal dynamics of macrophage 

activation that have been documented previously.181, 185 A combination of single-cell and spatial 

transcriptomics will likely be required to answer these questions and exhaustively characterize the 

spatial heterogeneity of macrophage populations within the infarct.219 

An additional limitation of this study is that aSMA by itself is not sufficient to uniquely 

identify cardiac fibroblasts since this also labels vascular smooth muscle cells and other mural cells. 

Cardiac fibroblasts can typically be identified visually by their spindle-like morphology, but the 

quantification of fibroblast density by image analysis methods is complicated by the lack of a 

unique marker for fibroblasts. There exists no single unique marker for identifying cardiac 

fibroblasts, but recent studies have identified novel markers that are more specific.220, 221 Lineage 

reporter animal models could be utilized to investigate macrophage or fibroblast populations with 

specific lineages.222 Despite these limitations, we believe this work provides valuable contributions 
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to the understanding of the spatial dynamics of macrophage infiltration in the infarct during the 

inflammatory and proliferative phases following myocardial infarction. A comprehensive 

description of the spatiotemporal dynamics of macrophage infiltration and activation will be 

required to identify novel therapeutics that can reduce maladaptive remodeling of the ventricle that 

leads to heart failure following myocardial infarction.
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Abstract 

Introduction: Pharmacologic approaches for promoting angiogenesis have been utilized to 

accelerate healing of chronic wounds in diabetic patients with varying degrees of success. We 

hypothesize that the distribution of proangiogenic drugs in the wound area critically impacts the 

rate of closure of diabetic wounds. To evaluate this hypothesis, we developed a mathematical model 

that predicts how spatial distribution of VEGF-A produced by delivery of a modified mRNA 

(AZD8601) accelerates diabetic wound healing.  

Methods: We modified a previously published model of cutaneous wound healing based on 

coupled partial differential equations that describe the density of sprouting capillary tips, 

chemoattractant concentration, and density of blood vessels in a circular wound. Key model 

parameters identified by a sensitivity analysis were fit to data obtained from an in vivo wound 

healing study performed in the dorsum of diabetic mice, and a pharmacokinetic model was used 

to simulate mRNA and VEGF-A distribution following injections with AZD8601. Due to the 

limited availability of data regarding the spatial distribution of AZD8601 in the wound bed, we 

performed simulations with perturbations to the location of injections and diffusion coefficient of 

mRNA to understand the impact of these spatial parameters on wound healing.  

Results: When simulating injections delivered at the wound border, the model predicted that 

injections delivered on day 0 were more effective in accelerating wound healing than injections 

delivered at later time points. When the location of the injection was varied throughout the wound 

space, the model predicted that healing could be accelerated by delivering injections a distance of 

1-2 mm inside the wound bed when compared to injections delivered on the same day at the 

wound border. Perturbations to the diffusivity of mRNA predicted that restricting diffusion of 
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mRNA delayed wound healing by creating an accumulation of VEGF-A at the wound border. 

Alternatively, a high mRNA diffusivity had no effect on wound healing compared to a simulation 

with vehicle injection due to the rapid loss of mRNA at the wound border to surrounding tissue. 

Conclusions: These findings highlight the critical need to consider the location of drug delivery 

and diffusivity of the drug, parameters not typically explored in pre-clinical experiments, when 

designing and testing drugs for treating diabetic wounds.  

Introduction 

Diabetic foot ulcers are a type of chronic wound that can persist for months to years because 

the normal mechanisms of wound healing are profoundly impaired in diabetic patients. Over 30 

million Americans are affected by diabetes, and nearly 15% of these patients experience diabetic 

foot ulcers in their lifetime.100, 101 Diabetic foot ulcers are the leading cause of hospitalizations for 

patients with diabetes, and are associated with significant pain, suffering, loss of quality of life, and 

increased risk for lower extremity amputation.100 Current therapies for treating chronic diabetic 

wounds have limited efficacy, and diabetic wounds remain a costly and challenging clinical 

problem. The development of new therapies for healing chronic diabetic wounds would have a 

substantial impact on individual patients and on society, but is challenged by a lack of model 

systems for designing drug delivery strategies that predict the influences of dosages, delivery routes 

and locations, and mechanisms of action. A novel approach that has been shown to accelerate 

angiogenesis and the healing of cutaneous wounds in a murine model of diabetic wound healing 

is the delivery of a modified mRNA (AZD8601) designed to enhance VEGF-A expression in the 

skin.223 There is limited spatially resolved data available about the diffusion and degradation of this 

modified mRNA and a limited number of drug delivery parameters that have been tested in 
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preclinical models. To address this challenge, we developed a mathematical model that predicts 

how location of delivery and spatial distribution of AZD8601 impacts the rate of wound closure 

in an established murine model of diabetic wound healing. 

Wound healing is a complex and coordinated series of cellular and molecular events 

comprised of coagulation, inflammation, granulation tissue formation, angiogenesis, 

reepithelization and extracellular matrix remodeling.77 During acute wound healing in healthy 

individuals, cells respond dynamically to chemotactic cues (e.g., inflammatory cytokines and 

growth factors) to coordinate this cascade of events, which eventually leads to complete wound 

closure. However, this coordinated progression is dysregulated in the case of chronic wounds. In 

particular, patients with diabetes experience microvascular dysfunction77 combined with low grade 

chronic inflammation102, which delays or prohibits the normal wound healing process via a peak 

in inflammation that triggers the proliferative phase.  

For decades, numerous pharmacological treatments designed to promote effective wound 

healing in diabetic patients have been evaluated in pre-clinical and clinical studies.105-107 

Stimulation of angiogenesis, or new microvessel formation108, 109, has been pursued as one approach 

to jump-start the wound healing cascade in the angiogenesis-impaired setting of diabetes. For 

example, delivery of both recombinant VEGF-A protein and naked or adenoviral vector-mediated 

gene transfer to upregulate VEGF-A have been shown to accelerate wound healing in pre-

clinical224, 225 and clinical studies.226 Our team has recently shown that intradermal injection of 

AZD8601, an mRNA designed to upregulate VEGF-A expression, accelerates angiogenesis and 

the healing of cutaneous wounds without causing edema or micro-hemangioma formation in an 

established murine model of diabetic wound healing.223 While these results were encouraging, the 

reproducibility and extensibility of our experiments, like most pre-clinical studies in the diabetic 
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wound healing field, are challenged and constrained by the fact that only a limited number of drug 

dosages, drug injection timings, and spatial locations of intradermal injections were tested in vivo, 

allowing for the possibility that a more effective injection protocol was not evaluated.  

Mathematical and computational models have demonstrated utility in leveraging 

experimental data to predict the outcomes of hypothetical experiments that have not yet been 

tested at the bench.227 Running in silico experiments using computational and mathematical 

modeling can also save time, money, and reduce the number of animals needed for 

experimentation. Previous computational models have been developed to study mechanisms of 

cutaneous wound healing228-233 and to identify drug targets for stimulating angiogenesis in wound 

healing.234 Almquist et al. recently reported an empirical pharmacokinetic and pharmacodynamic 

model of AZD8601 in diabetic wound healing, which captures statistical variation in wound 

healing dynamics at both the individual and the population level using a nonlinear mixed effect 

(NLME) modelling approach.235 While this model describes the time-dependent aspects of wound 

healing, it does not account for spatial heterogeneity of drug delivery and wound healing. 

Therefore, we modified a previously published partial differential equation (PDE) model of 

cutaneous wound healing originally reported by Pettet et al.114 that describes the spatiotemporal 

regulation of chemoattractant production, capillary tip sprouting, and neovascularization to also 

include a PDE that describes the spatiotemporal dynamics of mRNA and VEGF-A production 

following injections of AZD8601. We then used this new system of coupled PDEs to predict how 

diffusivity of mRNA and location of AZD8601 injection in the wound affect angiogenic sprouting, 

vascularization of the wound bed, and time to wound closure in a model of diabetic wound healing. 
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Materials and Methods 

Murine model of diabetic wound healing 

All procedures were conducted in accordance with the guidelines of the University of 

Virginia Animal Care and Use Committee or the Local Ethics Committee on Animal 

Experiments in Gothenburg, Sweden. Three different experimental studies were carried out in 

two different research laboratories: 1) in the Biomedical Engineering Department at the University 

of Virginia, Charlottesville, VA, USA, and 2) in the Bioscience Cardiovascular Department, 

Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals 

R&D, AstraZeneca, Gothenburg, Sweden. The data acquired in these experiments have been 

published, along with detailed experimental methods by Sun et al.223 and Almquist et al.235 Briefly, 

circular, full-thickness, cutaneous wounds approximately 1 cm in diameter were surgically made 

on the dorsum of anesthetized eight-week old diabetic B6.BKS(D)-Leprdb/J mice (Jackson 

Laboratory). Mice received injections of either vehicle or AZD8601 in 10 µL of 10 mM 

citrate/130 mM saline intradermally at four equidistant points around the wound edge. Some 

groups of mice received injections at a single timepoint (on day 0 or day 3), and some groups 

received injections on multiple days (days 0 and 3). For the study groups that were injected twice, 

the four injection sites were shifted 45° on day 3 in order to avoid injecting the same location twice 

(Figure 4-1A). Wounds in anesthetized mice were serially imaged using an iPhone6 (Apple) or a 

Canon 600D with a Tamron SP 900 mm F/2.8 objective under bright-field illumination. The 

open wound area, identified as the region in the center of the wound lacking an epithelial layer, 

was measured by tracing the border of the wound in ImageJ. The study groups and time points at 

which images were acquired and quantified for each study are provided in Table 4-1. In total, 584 
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open wound area measurements were made. Percent open wound area was calculated by dividing 

the wound area measurement at each time point by the initial wound area (at t = 0 days) for 

individual animals. It should be noted that some wounds increased in size by day 3 due to initial 

wound recoil, leading to wound area measurements at day 3 that were greater than the initial area 

for some individual animals. 

 
Figure 4-1. Experimental model and PDE model geometry. 
(A) Full thickness cutaneous wounds of approximately 1 cm in diameter were made on the dorsum 
of db/db mice and injected with AZD8601 at four injection sites at the initial wound edge separated 
by 90 degrees. (B) The PDE model describes the density of sprouting capillary tips (6), 
chemoattractant concentration (7), and blood vessel density (9) in a healing wound. (C) Model 
geometry in cylindrical coordinates depicting uniform circular healing. At t = 0, the initial wound 
edge is at r = R (5 mm), and healing occurs towards r = 0. Healing occurs uniformly with respect to 
:. Examples of a wound on the dorsum of a mouse are shown on day 0 and day 10. 
 
 
 
Table 4-1. Summary of experimental design across all studies.  

Location Study 
Groups 

Treatment Time Points 
Measured 

Study 
1 

University of 
Virginia 

Group 1 Vehicle Day 0 
Days 0, 3, 6, 10, 13, 
and 18 

Group 2 100 µg AZD8601 Day 0 
Group 3 Vehicle Days 0 and 3 
Group 4 100 µg AZD8601 Days 0 and 3 
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Pharmacokinetic model 

In a separate study, the pharmacokinetics (PK) of VEGF-A protein was measured after 

injection of a single dose of 100 µg AZD8601 intradermally in mice without wounds. Briefly, 

intradermal injections were given in up to three different locations (n=13 mice). Mice were 

sacrificed at 6, 24, 48, 72, and 144 hours after injection, and the amount of VEGF-A protein in 

the skin was quantified according to methods that have been published previously.223 The lower 

limit of quantification (LLOQ) for VEGF-A was 0.156 pg/mg tissue. At 144 h, 10 out of 12 

observations were below LLOQ. This study, including the bioanalytical methods for quantifying 

the amount of VEGF-A protein in skin, is described in detail by Sun et al (2018).223 

The PK of AZD8601 (VEGF-A mRNA) and VEGF-A protein was represented by the 

following model: 

                                                6BC*7(1)
61

= −%- ×<=>?(A)                                                            (1)    

                                     6FG/+(1)
61

= %= ×<=>?(A) − %H × BCDE(A)                                           (2)  

                                                  <=>?(0) = BCDE(0) = 0                                                        (3) 

 

Study 
2 

University of 
Virginia 

Group 1 Vehicle Days 0 and 3 
Days 0, 3, 6, 10, and 
13 

Group 2 30 µg AZD8601 Days 0 and 3 
Group 3 100 µg AZD8601 Days 0 and 3 
Group 4 200 µg AZD8601 Days 0 and 3 

Study 
3 

AstraZeneca, 
Sweden 

Group 1 Vehicle Day 3 
Days 0, 3, 7, 10, 14, 
and 17 

Group 2 100 µg AZD8601 Day 3 
Group 3 Vehicle Days 0 and 3 
Group 4 100 µg AZD8601 Days 0 and 3 
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where <=>?(A) is the amount of AZD8601 and BCDE(A) is the concentration of VEGF-A 

protein. The parameters %-, %=, and %H are kinetic parameters describing degradation of mRNA, 

synthesis of VEGF-A, and degradation of VEGF-A, respectively (Table 4-2). Note that these 

parameters are only valid for full-thickness wounds of 1cm in diameter. A complete description of 

this model and its underlying data is reported by Almquist et al.235  

Table 4-2. Pharmacokinetic model parameters. 
Description Symbol Unit Value 

mRNA degradation (<  hr-1 0.055 
VEGF synthesis (= pg (VEGF-A) mg-1 (tissue) 

µg-1 (mRNA) hr-1 

0.16 

VEGF degradation (> hr-1 0.23 
 

Partial differential equation model 

A PDE model was implemented in MATLAB (R2020a, The MathWorks, Natick, MA) 

based on the wound healing model previously described by Pettet et al.114  This model treats the 

wound as a one-dimensional geometry with healing occurring in one direction, from the edge to 

the center of the wound. The system of coupled PDEs (Eqs. 4-6) published by Pettet et al. 

describes three dependent variables: sprouting capillary-tip density (6), chemoattractant 

concentration (7), and blood vessel density (9). A schematic of these variables in a healing wound 

is illustrated in Figure 4-1B. The dimensionless conservation equations from Pettet et al. in 

Cartesian coordinates are given by: 
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                                      04
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                                       0I
01
= 04I

0<4
+ J5

=
H1 + tanh H-#K

L
II − (KM + KN9)7                                     (5)  

 

                                              0K
01
= 5K 0

0<
H6 0K

0<
I − 54 040< + G6

0I
0<

                                               (6) 

 

Descriptions and values for the constant parameters in these equations are given in Table 4-3. In 

this model, chemoattractant is defined broadly to represent proangiogenic factors secreted by 

macrophages that promote migration of sprouting endothelial cells and wound healing. 

Macrophages are assumed to be evenly distributed throughout the wound space. The 

chemoattractant profile drives the wave-like ingrowth of capillary-tip sprouts and new blood vessel 

formation, representing angiogenesis that occurs during wound healing. The formation and 

chemotaxis of sprouting endothelial cells from the existing vasculature occurs via both random 

motility of sprouts and migration up the chemotactic gradient. The kinetic terms associated with 

sprouting capillary-tip density include production via budding and loss of capillary-tips due to 

decay and tip-to-tip anastomosis (Eq. 4). The equation for chemoattractant concentration (Eq. 5) 

describes the diffusion of chemoattractant, the production by macrophages in the wound space, 

removal via the vasculature, and decay of chemoattractant. The blood vessel density (Eq. 6) is 

described primarily by the maturation of migrating capillaries connected with the existing 

vasculature and random motility of the capillary tips. Full details for the original system of 

equations are described by Pettet et al.  
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Table 4-3. PDE model parameters in Cartesian and cylindrical coordinate systems. 

Parameter Parameter Description 
Parameter Value in 

Cartesian Coordinates 
described by Pettet et al. 

(Dimensionless) 

Parameter Value in 
Cylindrical Coordinates 

(Dimensionless)  
[fitted value] 

B? Rate of tip anastomosis 100 200 [856] 
B< Tip production 100 800 [3860] 
B= Decay of sprouting tips 10 40 

C& 
Capillary tip 
coefficient of random 
motility 

10-3 10-3 

D 
Capillary tip 
coefficient of 
chemotaxis 

0.1 0.1 [0.146] 

/E  Tip density at wound 
edge 1 2 

= Rate of decay of tip 
density 2.5 10 

B@ 
Decay of 
chemoattractant 
concentration 

100 400 

BA 
Removal of 
chemoattractant via 
vasculature 

10 40 

BB Constant rate of 
blood-borne removal 10 20 

F 
Rate of decreasing 
chemoattractant 
production 

0.01 0.01 

CC  Blood vessel coefficient 
of random motility 10-3 0.5x10-3 

GH Blood vessel density at 
wound edge 1.5 1.5 

rJ 
Margin around wound 
edge that delineates 
inflammation zone in 
initial response 

0.05 0.95 
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Conversion to cylindrical coordinates 

We converted the equations described by Pettet et al. from Cartesian to cylindrical 

coordinates to represent the geometry of the wound more accurately. In the converted model, the 

wound is circular with an initial radius r = R, placing the center of the wound at r = 0, with healing 

occurring in the negative r direction (Figure 4-1C). The governing equations in Cartesian form 

(Eqs. 4-6) were rewritten in general differential form and then recast in cylindrical coordinates. 

The characteristic length in the model described by Pettet et al. is L = 2.5 mm, whereas our model 

is defined with a radius R = 5 mm to reflect the conditions of our experimental wound healing 

model. Thus, in our model, the radial coordinate (r) is non-dimensionalized by R = 5 mm and the 

time coordinate (t) is non-dimensionalized by R2/D = 2.89 days, considering a representative 

chemoattractant diffusivity of D = 10-6 cm2/s based on the diffusivity of acidic fibroblast growth 

factor in agarose.235 Additionally, all dimensionless parameters that appear in Eqs. 4-6 retain their 

original definitions (found between Equations 9 and 10 in Pettet et al.) in the new set of cylindrical 

model equations, except that the wound half-width (L) from the original definitions has been 

replaced by the wound radius (R) in our system. A detailed explanation of the model 

transformation from Cartesian to cylindrical coordinates is described in the supplemental material 

(Supplemental Notes 1 and 2).  

Because the wounds in the murine models are full-thickness, we assume that no healing 

occurs in the z-direction. Additionally, because the wound diameter (~1 cm) is much greater than 

the wound thickness, we assume that the field variables can be lumped in the z-direction and 

therefore modeled solely in the r-direction. This results in a new set of dimensionless conservation 

equations for n, a, and b: 
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             (7) 

                                                           (8) 

                                                                (9) 

The dimensionless initial conditions in cylindrical coordinates are given by: 

     6(,, 0) = 	 Q
4O
P̃6
(, − ,̃)(2,= − ,̃, − ,̃=),			,̃ < , ≤ 1

0,																																																		0 ≤ , ≤ ,̃
               (10) 

                                         7(,, 0) = 0,											0 ≤ , ≤ 1   (11) 

              9(,, 0) = 	 VH
KR#KS

P̃6
I (, − ,̃)(2,= − ,̃, − ,̃=) + 9, ,̃ < , ≤ 1

9W,																																																															0 ≤ , ≤ ,̃
  (12) 

where it is assumed that the wound margin has penetrated an initial distance 1 −  such that the 

radius of the open wound in dimensionless terms is . We note that the initial conditions for n 

and b (Eqs. 10 and 12) are those reported by Pettet et al. and were justified by their monotonic 

behavior in the inflammation zone. The dimensionless boundary conditions in cylindrical 

coordinates are given by: 
!&
!D (0, -) = 0          (13) /(1, -) = 	/E.58$                   (14) 

!#
!D (0, -) = 0          (15) !#

!D (1, -) = 	−BB,(1, -)G
H       (16) 

!C
!D (0, -) = 0          (17) G(1, -) = 	GH                              (18) 

where 6X is the capillary tip density at the wound edge; α is rate of decay of tip density; λ7 is the rate 

of removal of chemoattractant via vasculature; and 9Y is the blood vessel density at the wound edge. 
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The model equations were solved using an explicit finite difference method, as described in the 

supplemental material (Supplemental Note 3).   

Since wound area is not a direct output of the PDE model, in order to compare model 

predictions to experimental measurements of wound area, the percent open wound area in the 

PDE model was determined by the area where the blood vessel density (b) was less than 0.1 

(dimensionless units) divided by the initial wound area (Z==). This is intended to represent the 

border of granulation tissue, composed of neovessels, which fills in the wound during healing and 

was quantified in experimental studies (Figure 4-1B and 4-1C).  

Sensitivity analysis and parameter fitting 

A sensitivity analysis was performed to determine the influence of each of the 13 model 

parameters (Table 4-3) on the rate of wound healing, as described by the percent open wound area. 

Each parameter was increased and decreased by 10%, varying only one parameter at a time, and a 

simulation using the perturbed parameters was compared to a simulation using the unperturbed 

parameters. Specifically, a sensitivity coefficient, S, was calculated using 

                                                  + = 	 :1#:2
|;1#;2|

∗ ;2
:2

                                     (19) 

where yo and yi are the measured percent open wound area at t = 18 days when parameters are set 

to baseline or perturbed levels, respectively, and po and pi are the values of the baseline parameter 

and perturbed parameter, respectively. By measuring the absolute difference between the baseline 

and perturbed parameter, the sign of the sensitivity coefficient, S, can be interpreted as the 

direction of change in the measured output. Therefore, a positive sensitivity coefficient would 

indicate an increase in percent open wound area at t = 18 days, and a negative sensitivity coefficient 

would indicate a decrease in percent open wound area. Additionally, the sensitivity coefficient is 
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normalized by the baseline parameter value and wound area to account for order of magnitude 

variations in parameter values. 

Subsequent parameter fitting was performed using an optimization function (the 

particleswarm function with default settings in MATLAB, R2020a, The MathWorks, Natick, 

MA) to search the parameter space for a combination of parameter values that minimize the 

objective function. The objective function used was the sum of squared errors (SSE) between 

experimental measurements of wound area and model simulated wound area at the specified 

experimental time points. The parameter space was constrained by lower and upper bounds of 0.1-

fold and 10-fold changes from the baseline value to maintain parameter values within 

physiologically plausible ranges. 

Simulating injections of AZD8601 with the PDE model 

Injections of AZD8601 were modeled by a PDE to describe the spatiotemporal distribution 

of mRNA in the wound space, which was then coupled to the equation for chemoattractant (Eq. 

8) to describe VEGF-A synthesis as a function of the local mRNA concentration. In dimensionless 

form, the conservation equation for mRNA is given by 

                 0B
01
= U7

U8
-
P
0
0P
H, 0B

0P
I − HC4

U8
I %-<           (20) 

where m is the dimensionless concentration of mRNA, Dm is the diffusivity of mRNA, Da is the 

diffusivity of chemoattractant, and k1 is the first-order rate constant of mRNA degradation as 

defined above by the PK model. We set Da to be the the typical diffusivity of chemoattractant (10-

6 cm2/s) as previously reported by Pettet et al. 114, 236 Reported values in literature for the diffusivity 

of mRNA are in the range of 2x10-9 – 4x10-9 cm2/s237-239, so we set mRNA diffusivity (Dm) to be 

3x10-9 cm2/s. In equation 20, m has been scaled and non-dimensionalized using the concentration 
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of 100 ug mRNA in a total injection volume of 40	µL (2,500 µg/cm3), as described in the murine 

experimental model. Note that the quantity HC4
U8
I is required to non-dimensionalize k1. A no-flux 

boundary condition is imposed at the wound center: 

            0B
0P
(0, A) = 0   (21) 

and clearance of mRNA at the wound edge is described by the Robin boundary condition 
0B
0P
(1, A) = −KV9Y<(1, A)       (22) 

where KV is the dimensionless rate constant of mRNA removal via vasculature at the wound edge. 

We assume that this rate of clearance by the vasculature is comparable for chemoattractant and 

mRNA, so we set KV = KW (the rate of blood-borne removal for chemoattractant).  

The governing equation for chemoattractant is modified to include an mRNA-

dependent chemoattractant generation term to yield, in dimensionless form, 
0I
01
= -

P
0
0P
H, 0I

0P
I + J5

=
[1 + tanh H-#K

L
I\ − (KM + KN9)7 + %234<         (23) 

where kgen is the dimensionless first-order rate constant for VEGF generation. All other 

variables and parameters are as previously defined. The dimensionless VEGF generation rate 

constant (kgen) was fit by minimizing the SSE between the net amount of chemoattractant 

generated by the PDE model and experimental measurements of VEGF-A following an injection 

with 100 µg of AZD8601 previously reported by Almquist et al.235 Since the PK experiments were 

performed in non-injured tissue, the PDE model was run to steady state to simulate a healed 

wound and then 100 µg of mRNA was uniformly distributed throughout the wound space. 

VEGF-A generated by injections with AZD8601 is considered part of the chemoattractant pool 

in this model implementation. The net amount of generated chemoattractant from the PDE 
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model was calculated by subtracting the total amount of chemoattractant from the unperturbed 

PDE model (without injections) from the total amount of chemoattractant in a simulation with a 

single 100 µg injection. The dimensionless fitted value for kgen was 1.53 x 105. 

Results 

Sensitivity analysis identifies parameters for model fitting 

The original system of equations described by Pettet et al. was based on a rabbit model of 

wound healing in the ear skin. Our experimental model of wound healing is in the dorsum of mice, 

which contains a layer of thin muscle, termed the “panniculosus carnosus”, and causes rapid 

contraction of the wound in the late stages of acute wound healing leading to faster rates of wound 

closure.240 This phenomenon is apparent in the image of a healing wound in a mouse at day 10 

(Figure 4-1C), as evidenced by the lines of tented skin extending radially outward from the wound. 

Because of this difference in experimental models, we conducted a sensitivity analysis to identify a 

set of parameters appropriate for fitting the computational model to the rate of wound healing 

observed in our experimental murine model of diabetic wound healing (see Methods Section 3.5). 

Figure 4-2 depicts the unitless sensitivity coefficient (S) when 13 model parameters were increased 

or decreased by 10% one at a time. Due to the high complexity of the parameter fitting problem 

and data sparsity, the number of free parameters was limited to three. The parameters with greatest 

sensitivity coefficients were selected as candidates for parameter fitting, namely l0, l1 and G. 
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Figure 4-2. Sensitivity analysis of open wound area with respect to individual model parameters. 
Sensitivity coefficients (S) were calculated when individual parameters were increased or 
decreased by 10% one at a time while holding all other parameters at baseline values. S values 
around zero correspond to low sensitivity, while positive S values indicate an increase in open 
wound area, and negative S values indicate a decrease in open wound area at t = 28 days. 
 

In order to calibrate the computational model to the basal rate of wound healing in our 

murine experimental model, we used these selected parameters to fit the PDE model to 

experimental data from all of the vehicle-injected groups in Studies 1, 2, and 3. The predicted 

wound areas were compared to experimental measurements of wound area following vehicle 

injections in all three studies. Parameters were fit by simultaneously varying KA, K-, and G over a 

range of values constrained by 0.1-fold and 10-fold changes from baseline parameter values, and 

minimizing the sum of squared error (SSE) between the model predicted wound area and 

experimental measurements of wound area at all time points for vehicle-injected groups. The fitted 

values for these dimensionless parameters that minimized the SSE were KA = 856,  K- = 3860, 

and G = 0.146, or fold changes from baseline values of 4.3, 4.8, and 1.5, respectively. After 

parameter fitting, the model generated a time course of healing that was similar to the time course 

of healing across all vehicle-injected experimental groups (Figure 4-3). The experimental data 

presented here from vehicle-injected groups demonstrates variability in the rate of wound healing 



 
CHAPTER 4: Mathematical Model of Diabetic Wound Healing 

 110 

between studies. Evaluating the causes and implications of this variability was not the main 

objective of this study, but is discussed comprehensively in Almquist et al.235 Notably, Study 2 

demonstrated a slower rate of wound closure than Studies 1 and 3 and did not include late time 

points beyond day 13. Furthermore, considering that Study 2 comprised less than 20% of the data 

points used for fitting, it is reasonable that parameter fitting resulted in a model output that is in 

better agreement with Studies 1 and 3. 

 
Figure 4-3. Model parameters were fitted using vehicle data from all experimental studies. 
The mean of percent open wound area for all animals is plotted as open circles for Study 1 vehicle 
groups (injected on day 0 or days 0 and 3), Study 2 vehicle groups (injected on days 0 and 3), and 
Study 3 vehicle groups (injected on day 3 or days 0 and 3), error bars = SEM. Horizontal dodging 
of up to 0.6 days has been applied to the data so that overlapping data and error bars are more 
easily visible, but the precise time point of wound area measurement is reported in Table 4-1. 
Wound area predicted by the PDE model is shown for a simulation with original parameter values 
(solid light blue line) and after parameter fitting (solid dark red line). 
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PDE model describes spatiotemporal regulation of chemoattractant concentration and 

angiogenesis during cutaneous wound healing 

The PDE model provides spatial and temporal information about the dynamics of wound 

healing with respect to three dependent variables: chemoattractant concentration, sprouting 

capillary-tip density, and blood vessel density (Figure 4-4A-C). The radial coordinate in these 

plots represents the radial coordinate of the wounds (spanning 0-5 mm), the azimuthal (:) 

coordinate corresponds to time (0-36 days) that increases in a clockwise direction, and the color 

bar indicates the magnitude of the dependent variables. The chemoattractant profile (Figure 4-

4D), which is assumed to be produced by macrophages located throughout the wound space, is 

initially high throughout the wound space and diminishes towards the center of the wound as the 

wound heals. Figure 4-4E demonstrates the wave-like ingrowth of capillary-tip sprouts, as was 

originally described by Pettet et al. Intact blood vessels at the edge of the wound extend sprouts 

that move towards the center of the wound. As the sprouting capillary-tips migrate, they leave in 

their path a new capillary that matures to become part of the established blood vessel network. 

The mature blood vessels are able to provide blood and oxygen supply to the healing wound while 

removing chemoattractant (Figure 4-4F). The effects of geometry on the solutions of capillary tip 

and blood vessel density can be observed at late time points (t = 35 days) in the center of the wound 

(r = 0 mm) by comparing our model, which uses a cylindrical coordinate system, to the original 

solutions reported by Pettet et al. The densities of capillary tips and blood vessels increase as they 

crowd into a smaller wound area and the rate of wound closure slows.  
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Figure 4-4. PDE model provides spatial and temporal resolution of wound healing. 
Heat maps in polar coordinates of the solutions for the governing equations: (A) chemoattractant 
concentration (a), (B) sprouting capillary-tip density (n), and (C) blood vessel density (b). Radial 
coordinate corresponds to radius of the wound where r = 0 mm is at the center of the wound and 
r = 5 mm at the border of the wound, :	coordinate corresponds to time (0-36 days), and color bar 
indicates value of the corresponding solution. (D-F) 2-D snapshots of the heatmaps in A-C at t = 0, 
5, 10, 15, 20, 25, 30, and 35 days. 
 
 
Pharmacokinetic model of AZD8601 injections 

The PK model published by Almquist et al.235 was used to describe the degradation of 

mRNA, as well as synthesis and degradation of VEGF-A protein in the skin following 

administration of AZD8601. The kinetic parameters (k1 and k3) correspond to half-lives of 13 

hours and 3 hours for degradation of mRNA and protein, respectively. VEGF-A protein levels 

peaked around 8 hours after injection of 100 µg AZD8601, and by day 6, ten of twelve 

measurements were below the lower limit of quantification. Due to the lack of available data about 

the spatial parameters of AZD8601 diffusion and clearance rates, we fit a VEGF generation rate 

(kgen) based on the PK model-predicted time course of VEGF-A synthesis following a single 
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injection with 100 µg AZD8601. After parameter fitting, the PDE model predicted mRNA and 

chemoattractant time courses that were consistent with the PK model predictions and 

experimental measurements of VEGF-A (Figure 4-5). However, the PDE model predicted a 

nearly instantaneous increase in VEGF-A following the addition of mRNA unlike the PK model 

output which peaks around 8 hours (Figure 4-5B). This is likely because the PDE model does not 

account for the time required for cells to uptake the mRNA and begin protein production. It has 

been shown previously that VEGF-A can be detected in the eluates from interstitial microdialysis 

sampling approximately 4 hours following intradermal injection of AZD8601 in rabbits.241 

 
Figure 4-5. VEGF generation rate is fit using pharmacokinetic model of AZD8601 injections. 
(A) PK model (solid purple line) and PDE model (dashed green line) predict mRNA amount (µg) 
following injection of 100 µg AZD8601. (B) Experimental measurements of VEGF-A concentration 
were taken at 6, 24, 48, 72, and 144 h after injection with 100 µg AZD8601 (blue circles). PK model 
(solid blue line) and PDE model (solid yellow line) predict temporal dynamics of VEGF-A 
concentration (pg/mg tissue) following injection of 100 µg AZD8601. 
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Modeling the spatiotemporal distribution of mRNA following injections with AZD8601 predicts 

varied effects on wound healing that are dependent on the timing of injections 

An additional PDE was coupled to the system of equations originally described by Pettet et 

al. to simulate injections of AZD8601. The spatial parameters of AZD8601 including effective 

diffusion length scales and clearance rates are not well understood at this time. However, the PK 

model reported by Almquist et al.235 describes the temporal dynamics of mRNA and VEGF-A 

following an injection. We used the PK model to fit a VEGF generation rate that produced a 

spatially averaged concentration of VEGF-A in the PDE model consistent with the temporal 

dynamics of mRNA and VEGF-A predicted by the PK model. This model approach allowed us 

to investigate the impact of parameters related to the spatial distribution of AZD8601 on the rate 

of wound healing, and simulate experimental conditions that were not tested in vivo. 

The mRNA delivered by injections of AZD8601 at the wound border diffuses into the 

wound based on the reaction-diffusion parameters of the governing equation (Eq. 20) and is 

translated to VEGF-A at a rate dependent on the local concentration of mRNA (Eq. 23). This 

model predicted varied effects on the rate of wound healing that were dependent on the time of 

delivery of the injection (Figure 4-6). Simulation of a single injection of 100 µg AZD8601 on day 

0 was predicted to accelerate time to 50% wound closure by 3.1 days. Both a single injection of 

100 µg AZD8601 on day 3, or repeated injections on days 0 and 3, were predicted to have no 

significant impact on time to 50% wound closure and instead caused a temporary reversal of blood 

vessel growth towards the initial wound border. A single injection of 100 µg AZD8601 on day 6 

was predicted to delay time to 50% wound closure by 2.9 days.  
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Figure 4-6. Wound closure is dependent on time of delivery of AZD8601 when injected at the 
wound border. 
Percent open wound area over time is presented for PDE model simulations with a vehicle 
injection (solid blue line), or injections of 100 µg AZD8601 on day 0 (solid red line), day 3 (solid 
yellow line), day 6 (dashed purple line), and days 0 and 3 (dashed green line). 
 

Heat maps of the solution to the governing equations of the PDE model depict the profiles 

for a (Figure 4-7A), n (Figure 4-7B), and b (Figure 4-7C) for a simulation with repeated injections 

of 100 µg AZD8601 on days 0 and 3. The chemoattractant profile (Figure 4-7A and 4-7D) shows 

that the chemoattractant concentration peaks at a distance of approximately 0.4 mm inside the 

wound border and returns to baseline values approaching the wound center. This results in a peak 

in capillary tip density at a similar distance inside the wound border following injections with 

AZD8601 (Figure 4-7B and 7-E). Injections of AZD8601 at the wound border on day 0 cause 

an increase in the rate of capillary tip migration towards the center of the wound; however, a second 
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injection on day 3 causes an accumulation of capillary tips and blood vessels at the wound border, 

preventing the migration of capillary tips towards the center of the wound (Figure 4-7C and 4-

7F). The injection on day 3 results in an increase in the density of blood vessels near the wound 

border that persists throughout the time course of wound healing.  

 
Figure 4-7. Repeated injections of AZD8601 on days 0 and 3 cause an increase in density of 
capillary tips and blood vessels at the wound border. 
Heat maps in polar coordinates of the solutions for the governing equations: (A) chemoattractant 
concentration (a), (B) sprouting capillary-tip density (n), and (C) blood vessel density (b) for a 
simulation with repeated injections of 100 µg AZD8601 on days 0 and 3 (indicated by arrows). 
Radial coordinate corresponds to radius of the wound (0 - 5 mm), :	coordinate corresponds to 
time (0 - 10 days), and color bar indicates value of the corresponding solution. (D-F) 2-D snapshots 
of the heatmaps in C-E at t = 0, 1, 2, 3, 4, 5, 6 and 7 days at the wound border (r = 3 - 5 mm). 
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The diffusion and degradation kinetics of mRNA delivered at the wound border cause the 

VEGF-A concentration to peak a short distance inside the wound border and then return to 

baseline towards the center of the wound. The resulting gradient of VEGF-A can accelerate the 

rate of wound closure when delivered on day 0. However, this causes a regression of the blood 

vessel network towards the wound border and even delays wound closure when an injection is 

delivered on day 6 compared to a simulation with no injection. At these later time points the border 

of the blood vessel network has migrated a distance into the wound space that is closer to the 

center of the wound than the peak VEGF-A concentration created by an injection at the wound 

border. Thus, this model predicts an effect on wound healing that is dependent on the timing of 

the injection and spatial distribution of the chemoattractant gradient with respect to the border of 

the healed blood vessel network at the time of injection. 

Location of AZD8601 injections impacts rate of wound healing 

We used this model to predict the effects of varying the location of injections within the 

wound space, something that was not tested experimentally. Simulating injections of AZD8601 

delivered on day 0 at various locations ranging from the border of the wound (r = 5 mm) to the 

center of the wound (r = 1 mm) substantially impacted the rate of wound closure (Figure 4-8A). 

When injections on day 0 were delivered at the wound border (r = 5 mm), time to 50% wound 

closure was predicted to be accelerated by 3 days compared to no injections. The rate of wound 

closure was predicted to be dramatically accelerated by delivering injections of AZD8601 a short 

distance inside the wound border on day 0. The maximum impact on time to 50% wound closure 

was observed at r = 4 mm, but this effect was diminished at locations closer to the center of the 

wound (r = 3 mm, 2 mm, and 1 mm). However, the simulation with an injection at r = 4 mm 

predicted a longer time to 100% wound closure than the simulations with an injection delivered 
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further into the wound space. An injection delivered at r = 4 mm is predicted to dramatically 

increase the rate of wound closure at early time points, but this effect is not sustained throughout 

the time course of wound healing, whereas injections delivered further in the wound space 

demonstrate a more consistent rate of wound closure.  Model predictions were compared with 

experimental measurements of wound area for animals that received 100 µg injections of 

AZD8601 on day 0 at the wound border (r = 5 mm) (Figure 4-8A) and showed close agreement 

with experimental data at late time points (days 10, 13, and 18), but discrepancies at early time 

points (days 3 and 6) when compared to a simulated injection at the wound border (r = 5 mm). 

Simulations were repeated for injections of 100 µg AZD8602 on day 3 at various distances 

from the wound center (Figure 4-8B). An injection at the wound border (r = 5 mm) on day 3 was 

predicted to cause a temporary regression in blood vessel density and wound area, but had no 

measurable impact on the time to 50% wound closure. However, injections delivered further from 

the wound border (r = 4 mm, 3 mm, and 2 mm) were all predicted to accelerate the time to 50% 

wound closure by approximately 6 days. This effect was slightly diminished by delivering injections 

near the center of the wound (r = 1 mm), where time to 50% wound closure was predicted to be 

accelerated by 4 days compared to a simulation with no injections. Model predictions were 

compared with experimental measurements of wound area for animals that received 100 µg 

injections of AZD8601 on day 3 at the wound border (Figure 4-8B) and demonstrated the most 

agreement with a simulated injection near the center of the wound (r = 1 mm). 

We also simulated the impacts of varying the location of injections with repeated injections 

on days 0 and 3 (Figure 4-8C). When injections were delivered at the wound border (r = 5 mm) 

wound healing was accelerated at early time points, but the second injection on day 3 caused a 
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regression of the blood vessels and wound area that resulted in no significant difference in time to 

50% wound closure compared to a simulation with a vehicle injection. Similar to simulations with 

injections on day 0 or 3, an injection delivered at r = 4 mm was predicted to significantly increase 

wound closure at early time points, but that rate of wound healing was not sustained through later 

time points. Thus, an injection at r = 4 mm was predicted to result in the fastest time to 50% 

wound closure, but injections further in the wound space (r = 3 mm, r = 2 mm, and r = 1mm) were 

predicted to have faster times to 100% wound closure. Model predictions were compared to 

experimental measurements of wound area for animals from experimental groups in three separate 

studies that received 100 µg injections of AZD8601 on days 0 and 3 at the wound border (Figure 

4-8C). Experimental data reveal study to study variation in the rate of wound healing, but 

demonstrated the closest agreement with a simulated injection closer to the center of the wound 

(r = 1 mm) at late time points. 

 
Figure 4-8. Delivery of AZD8601 at various depths in the wound space impacts rate of wound 
healing. 
Percent open wound area is predicted for simulations with injections of 100 µg AZD8601 at 
locations ranging from the border of the wound (r = 5 mm) to near the center of the wound (r = 1 
mm) for injections delivered on (A) day 0, (B) day 3, or (C) days 0 and 3. These simulations are 
compared to a simulation with a vehicle injection (solid blue line) and experimental measurements 
of wound area from a murine wound healing model where injections of 100 µg AZD8601 were 
delivered at the wound border (r = 5 mm) on (A) day 0, (B) day 3, and (C) days 0 and 3. Error bars 
= SEM. 
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Experimental data showed close agreement with simulated injections delivered at the wound 

border (r = 5 mm) on day 0, but experimental data that included injections delivered on day 3 

showed closer agreement to simulated injections delivered at r = 1 mm for later time points. Model 

simulations of an injection at the wound border (r = 5 mm) on day 3 show no difference compared 

to a vehicle simulation, suggesting that the model may underestimate the ability of the mRNA to 

penetrate the wound space and promote an increase in capillary tips at the healing wound border. 

We explore the impacts of altering the diffusivity of mRNA on wound healing in the next section. 

Furthermore, many of these simulations predict a very dramatic or nearly instantaneous 

acceleration of wound closure which may not be physiologically probable and can likely be 

attributed to the limited spatially resolved data available to fit parameters related to mRNA 

diffusion and VEGF-A generation rate. Since wound area is not a direct output of the PDE model, 

this instantaneous healing could also be an indication that blood vessel density may not correspond 

directly to wound area as quantified visually in an experimental model. However, the predicted 

relative differences in the rate of wound closure for injections delivered at various locations in the 

wound space remains an important finding. 

The diffusivity of mRNA affects its ability to promote wound healing  

Due to the limited availability of data regarding the spatial distribution of AZD8601 in the 

wound bed, we performed simulations with perturbations to the diffusion coefficient of mRNA to 

understand the impact of this spatial parameter on wound healing. This provides some insight 

about the effective diffusion length scale of AZD8601, but also provides an opportunity to apply 

this model to other drugs or methods of drug delivery with varied diffusion profiles.  

We first performed model simulations with an mRNA diffusion coefficient (Dm) of 0 cm2/s, 

which assumes that mRNA delivered at the wound border does not diffuse and is translated to 
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VEGF-A only at the border. VEGF-A that is generated at the border due to the injection can 

diffuse some distance into the wound space as determined by the parameters of the 

chemoattractant equation (Eq. 23). For all simulated injection times (day 0, day 3, day 6, or day 0 

and 3) this model predicted a delay in wound healing compared to a simulation with vehicle 

injection (Figure 4-9A). A high concentration of VEGF-A is produced at the wound border, 

which causes an accumulation of capillary tips and blood vessels at the wound border 

(Supplemental Figure 3). This model implementation suggests that a drug intervention with 

restricted diffusion results in an accumulation of VEGF-A at the initial wound border, inhibiting 

normal capillary tip migration towards the center of the wound and thereby slowing the rate of 

wound healing. 

Next, we performed model simulations with Dm = 10-7 cm2/s, two orders of magnitude higher 

than the literature reported values of intracellular mRNA diffusion used for simulations in Figures 

4-6 – 4-8. In this model implementation, an injection at day 0 is predicted to accelerate time to 

50% wound closure by 5.5 days compared to a vehicle injection. When injections are delivered on 

both days 0 and 3, the second injection on day 3 causes some delay in wound closure, but accelerates 

time to 50% wound closure by 3.6 days compared to a vehicle injection. A single injection delivered 

on day 3, or day 6 causes an initial regression of wound area, but the day 3 injection is able to 

promote an acceleration in time to 50% wound closure of 2.6 days, while the injection at day 6 

results in a time to 50% wound closure that is similar to that of a vehicle injection (Figure 4-9B). 

Injections of AZD8601 create a gradient of VEGF-A inside the wound border, increasing the 

density of capillary tips and blood vessels at this location. The second injection at day 3 causes a 

temporary regression of capillary tips and blood vessels towards the wound border (Supplemental 

Figure 4). This model implementation demonstrates a better qualitative fit to the trends seen in 
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the murine model of wound healing, where injections at day 0, day 3, or days 0 and 3 all promote 

an acceleration in wound healing compared to vehicle control groups. 

Lastly, simulations with Dm = 10-5 cm2/s assumes that mRNA delivered by injections of 

AZD8601 at the wound border diffuses rapidly throughout the wound space. In this model 

implementation all simulated injection times (day 0, day 3, day 6, or days 0 and 3) showed no 

notable difference in rate of wound healing compared with a vehicle injection (Figure 4-9C). In 

this scenario mRNA diffuses rapidly throughout the wound space, but is also lost more rapidly at 

the wound border to the surrounding tissue. The short-lived mRNA in the wound space increases 

VEGF-A concentration modestly throughout the wound space, but does not accelerate the 

migration of capillary tips or blood vessels towards the center of the wound (Supplemental Figure 

5). All of these model implementations, however, assume that diffusivity of mRNA in the tissue 

surrounding the wound border is equivalent to the diffusivity in the wound bed. It is unlikely that 

the mRNA diffuses as rapidly in the surrounding tissue due to increased cellularity and density of 

extracellular matrix, which is discussed in more detail later. 

 
Figure 4-9. Diffusivity of mRNA impacts the rate of wound healing. 
Model predictions are displayed for a simulated injection of 100 µg AZD8601 at the wound border 
(r = 5 mm) on day 0, day 3, day 6, or days 0 and 3 for a mRNA diffusion coefficient (Dm) of (A) 0 
cm2/s, (B) 10-7 cm2/s, and (C) 10-5 cm2/s. 
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Discussion 

We hypothesized that the location of proangiogenic drug delivery and the ensuing spatial 

gradients of growth factors would be a critical factor in the acceleration of diabetic wound healing. 

To investigate this hypothesis, we adapted a mechanistic mathematical model by Pettet et al.114 

and coupled it with pharmacokinetic and pharmacodynamic models of a modified mRNA 

(AZD8601) designed to enhance VEGF-A protein expression in the skin, to predict how spatial 

delivery of this drug affects diabetic wound healing. We converted this published model to a 

cylindrical coordinate system to more accurately reflect the geometry of the circular wounds in our 

experimental model. We then deployed a sensitivity analysis to identify parameters appropriate for 

model fitting in order to calibrate the basal rate of wound healing in our computational model to 

a murine model of diabetic wound healing. We coupled a PDE that describes the spatiotemporal 

distribution of mRNA in the wound to the equation for chemoattractant, such that mRNA 

delivered through injections of AZD8601 at specified times and locations produced VEGF-A 

concentrations consistent with previous experimental measurements. We then used the model to 

simulate injections of AZD8601 at various times and locations throughout the wound area. Our 

model made predictions about how the location of drug delivery, combined with timing of delivery, 

affected wound healing rates and suggests that wound healing acceleration can be best achieved by 

repeatedly administering drug injections at a location 1-2 mm inside the healed wound border. 

There are numerous challenges associated with evaluating the bioactivity of developmental 

pharmaceuticals in pre-clinical studies. In addition to the experimental variability inherent to 

animal model systems, studies are frequently carried out in laboratories in different locations and 

at different times, and experimental designs often vary from one study to the next, given the initial 



 
CHAPTER 4: Mathematical Model of Diabetic Wound Healing 

 124 

uncertainties in the dosage and dose scheduling. Experimental models are limited in the number 

of parameters that can feasibly be investigated (i.e., size of wound, dose of drug, route of drug 

delivery, timing of delivery, etc.), which often leads to arbitrary decisions about establishing 

parameters for experimental design. Computational models can be leveraged to conduct high-

throughput variations in model parameters in order to identify those parameters that may be most 

consequential, and thus computational models can aid the design of pre-clinical and clinical 

studies. Previous computational models of wound healing have used differential equation-based 

methods to simulate the interactions between growth factors, cell populations, and ECM 

components. They have evaluated how different treatment protocols (timing and frequency of 

application) using commercially available engineered skin substitutes (Apligraf™ and Dermagraft™) 

impact healing242, as well as other experimental treatments for diabetic ulcers, such as hyperbaric 

oxygen therapy243. In other fields of study, such as cancer therapeutics, mathematical and 

computational models have been used more extensively to design complicated drug dosing 

schedules for pre-clinical244, 245 and clinical trials.246  

We generally note that models of different spatial and temporal scales and complexity are 

useful as complementary views of the same system and can be used to investigate phenomenon 

across biological, spatial, and temporal scales. We have recently reported an empirical 

pharmacokinetic and pharmacodynamic model of AZD8601 in wound healing (Almquist et al. 

2020). This previously published model captures wound healing dynamics at both the individual 

and the population level using a NLME modeling approach. Since the Almquist model is largely 

empirical, it may be difficult to interpret the biological consequences of model parameters. In 

comparison to the empirical NLME model, the advantage of the mechanistic model presented 

here is that it represents known biological processes, making model interpretation easy and 
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facilitating future model revisions and extensions. For example, the mechanistic model is likely 

suitable for expansion to more than one growth factor at the same time, i.e., combination therapies. 

One limitation of the presented mechanistic model is that averaging of experimental 

measurements of wound area from a system with nonlinear dynamics may be inappropriate, 

whereas this problem is inherently addressed in the NLME approach of the empirical model which 

represents the wound healing dynamics on both the individual and the population levels. Another 

limitation of the model presented here is that we assume radial symmetry in the distribution of 

mRNA due to the computational complexity of a 2-D finite volume approach, despite the fact 

that injections in the animal model were delivered at four discrete locations separated by 90 degrees 

around the wound edge (see Figure 4-1A).  

Existing data for the experimental wound healing model is sparse, both with respect to the 

number of dependent variables that are currently accessible for measurement and the number of 

data-points in individual time and spatial series. Due to the lack of available spatially resolved data 

related to AZD8601 diffusion and clearance, we assumed a diffusion coefficient reported in 

literature for other mRNAs and a clearance rate by the vasculature comparable to that of protein. 

However, the diffusion coefficients reported in literature are representative of intracellular 

diffusion of mRNA and it is unclear what the effective length scale for extracellular diffusion would 

be especially in the setting of a cutaneous wound where there is likely less hindrance of diffusion 

due to increased matrix pore size and lack of, or remodeling extracellular matrix components.247, 248 

The wound healing cascade creates an extracellular environment that is constantly changing due 

to edema, neovascularization, altered cell density, and collagen content that would likely impact 

solute absorption through a wound site based on the timing of drug delivery and the phase of 

wound healing.249  
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This model provides unique and valuable insights about the spatial parameters of drug 

delivery that can be applied not only to future pre-clinical and clinical studies with AZD8601, but 

can also be generalized to the design of other wound healing studies with proangiogenic drugs. 

For example, previous studies with murine models of diabetic wound healing have also tested the 

efficacy of a recombinant VEGF-A applied topically to the wound.223 The model presented here 

could be adapted to simulate VEGF-A production that occurs uniformly throughout the wound 

space, or is applied in a bolus at specified time points, to further explore this mode of drug delivery. 

Our model predicts that wound healing could be accelerated by delivering injections of AZD8601 

at a location inside the border of the healed wound, which would imply delivering injections in the 

underlying skeletal muscle of the wound bed. AZD8601 is intended to be delivered intradermally, 

so it remains to be determined whether injections with AZD8601 would be able to produce similar 

levels of VEGF-A if delivered intramuscularly, but this conclusion can be generalized to any drug 

application that is able to promote VEGF-A concentration in the wound area. Furthermore, the 

model could be extended to include a region of healthy tissue beyond the wound border and to 

simulate drugs with other time courses of action – drugs encapsulated in nanoparticles with 

mechanisms for controlled release, for example.250, 251 

Our model makes a number of assumptions about diabetic wound healing as it occurs in the 

murine model. Wound healing involves a complex cascade of molecular signals and cell behaviors 

that are not explicitly accounted for in our model, including hemostasis, inflammation, and 

extracellular matrix remodeling. In the diabetic wound, many aspects of the wound healing process 

are altered, and our model does not include the direct effects of disease on capillary sprouting, such 

as alterations in microRNAs that regulate these phases of inflammation and wound healing252. 

Previous computational models of chronic wound healing and ulcers have also described the 
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mechanical cues that regulate cell-cell adhesion and migration233, 253, and key inflammatory 

mediators that contribute to ulcer formation.254, 255  Furthermore, in order to make direct 

comparisons between the predictions of the PDE model and experimental measurements of wound 

area (which measured wound closure by the extent of re-epithelization), it was necessary to assume 

that the PDE model prediction of blood vessel density was appropriate for estimating the extent 

of re-epithelization. We argue this is a reasonable assumption given the fact that re-epithelization 

requires deposition of granulation tissue, which is predominantly comprised of neovessels. We 

note, however, the discrepancies between the model predicted wound areas and experimental 

measurements of wound area at early time points (Figures 4-3 and 4-8). In our murine model of 

wound healing, many wounds increase in size up to day 3 due to the effect of initial wound recoil256, 

which is not currently captured in the mechanisms of this wound healing model. Furthermore, our 

model does not explicitly account for the time delay required for cells to uptake the mRNA and 

begin producing VEGF-A, which has been documented experimentally.235, 241  

Although this model should be regarded as highly simplistic given the complex nature of 

diabetic wound healing, we believe that it provides a useful representation of the pre-clinical model 

and the effect of spatial delivery of AZD8601 on wound healing. Given the reported disconnects 

between small animal models of diabetic wounds and the clinical scenario in patients257, it would 

be beneficial to identify methods and approaches that accurately scale findings in murine wound 

experiments to patient wounds, enabling data from pre-clinical studies to inform clinical trials 

more effectively. It is enticing to ponder whether and to what extent mathematical and 

computational models like ours and others255 could assist in this endeavor; however, a number of 

challenges would first need to be overcome. First, diabetic wounds in patients, the most common 

of which are diabetic foot ulcers, are typically 1.5 – 5 times larger in diameter and 2-5 times deeper 
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than the standard small animal wound models (e.g., murine, rat, and rabbit), which range from 5 

mm to 10 mm in diameter and 1 to 2 mm in depth, depending on the age and species of the 

animal. The assumptions that our model makes regarding the geometry may not hold in deeper 

wounds that have larger radii. Furthermore, the time scale of delayed healing in patient wounds 

can be orders of magnitude larger than what is typically observed in pre-clinical models, which is 

on the order of days-to-weeks, depending on the initial wound size, location, and species.258 The 

validity of extrapolating our model predictions from the relatively rapidly healing murine wounds 

to the more slowly healing human wounds remains to be confirmed.  

These caveats notwithstanding, our model makes the interesting and not necessarily intuitive 

predictions that: 1) modifying the location of delivery of AZD8601 at varying distances from the 

center of the wound can accelerate the rate of wound closure, 2) limited diffusion of mRNA 

resulting in a gradient of VEGF-A that is highest at the wound border can inhibit capillary tip 

migration towards the center of the wound and even cause regression of blood vessels and delay 

wound healing, and 3) significant increases in the diffusivity of mRNA results in more loss of the 

mRNA at the wound border which reduces its ability to accelerate wound healing. In patients, it 

is not uncommon for diabetic foot ulcers to persist indefinitely until the decision to amputate, so 

complete wound closure is often unachievable. Therefore, although the FDA currently views 

complete closure as the only acceptable endpoint for clinical trials, predicting time to partial closure 

(e.g., 25% or 50% wound closure) may be more clinically helpful, given that a small amount of 

healing can substantially reduce the risk of infection and mitigate bioburden (e.g., bacteria) in the 

wound. Upon further validation, these model predictions may be generalizable to patients and 

could impact clinical trial design and ultimately the use of this drug in the clinical care of wounds.  
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Abstract 

Objective 

Social determinants of health (SDoH) encompass a wide range of modifiable health factors that 

are significant predictors of health outcomes and are a focus of interventions to reduce health care 

costs and improve patient outcomes. Attempts to identify high-risk patients using electronic health 

records (EHRs) have relied on merging neighborhood-level SDoH data from external sources, or 

unreliable administrative and claims data. Newer approaches suggest that unstructured clinical 

notes in EHRs provide a richer and more complete understanding of individual-level social risk 

factors. The objective of this study was to evaluate the prevalence of individual-level social risk 

factors documented in unstructured data from electronic health records and the association of those 

risk factors with patient-level outcomes. 

Methods 

We queried electronic health record (EHR) data for 21,402 inpatient encounters over a one-year 

time span at the University of Virginia (UVA) Medical Center. We identified a set of 41 measures 

related to individual social risk factors in EHRs being documented by health care providers 

through existing documentation workflows and clinical notes. Multivariate logistic regression was 

performed to determine the association of individual social risk factors with increased risk for 

unplanned inpatient readmissions, post-discharge emergency department (ED) visits, and 

extended hospital length of stay (LOS). 

Results 

Independent predictors associated with higher risk for 30-day unplanned readmissions included 

severity of illness (OR = 3.96), location of residence in proximity to UVA Medical Center (OR = 
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1.31), and risk factors for social and community context (OR = 1.26) and economic stability (OR 

= 1.37). All SDoH domains, including economic stability (OR = 1.39), education (OR = 1.38), 

social and community context (OR = 1.39), and neighborhood and built environment (OR = 1.61) 

were associated with increased risk for 30-day post-discharge ED visits, in addition to age (OR = 

0.60) and location of residence (OR = 2.56). All variables, with the exception of social and 

community context were significant independent predictors of extended LOS, with discharge to 

facilities (OR = 2.42) and severity of illness (OR = 2.14) having the most influence on this outcome. 

When social risk factors were aggregated into one score reflecting total SDoH burden, this was 

the single most influential predictor of 30-day post-discharge ED visits (OR = 3.64). 

Conclusions 

Individual-level social risk factors are widely documented as unstructured data in EHRs and are 

associated with higher risk for readmissions, post-discharge ED visits, and extended LOS. In 

particular, economic stability was associated with increased risk for all outcomes studied. While 

individual-level social risk factors are currently documented as unstructured data in EHRs on an 

ad-hoc basis, standardized screening tools for SDoH with validated measures could help eliminate 

bias in the data collection and ensure that all patients are screened regularly for changes to these 

risk factors. 
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Introduction 

The U.S. spends far more on health care per capita than any other country – 17.7% of the 

nation’s gross domestic product (GDP) in 2019.259, 260 Despite high health care expenditures, the 

U.S. has some of the worst health outcomes among developed countries and is ranked last in access, 

equity, and health outcomes in a study of 11 countries.261 Clinical care, including access and quality 

of care, is estimated to account for only 20% of modifiable determinants of health outcomes; up to 

80% of population health outcomes are attributed to social determinants of health (SDoH).65 

These SDoH are the “conditions in which people are born, grow, live, work and age” as defined 

by the World Health Organization.66 SDoH broadly encompasses health behaviors (e.g., tobacco 

and alcohol use, diet, physical activity, etc.), socioeconomic factors (e.g., educational attainment, 

financial strain, social support systems, stress, interpersonal safety, etc.), and the physical 

environment (e.g., air and water quality, housing conditions, access to transportation, etc.).65 The 

links between individual SDoH and population-level health outcomes (i.e. life expectancy and 

quality of life) have been widely documented.262-267 There is an often-repeated paradigm in public 

health that one’s zip code is a better predictor of health than one’s genetic code because of the 

profound impact an individual’s neighborhood has on their environment and opportunities – from 

access, or lack thereof, to healthy foods, public transportation, good schools, affordable housing, 

air quality, and more.268 It is the hope of many in healthcare and public health that by addressing 

these SDoH we can simultaneously promote better health outcomes, reduce inequities, and lower 

health care costs.269 

The term “social determinants of health” has become widely used in many different 

contexts and with a variety of implications. Alderwick and Gottlieb recently outlined a SDoH 
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lexicon for healthcare systems that provides much more clarity around the terms used in this space 

and the tools to describe our work more precisely.270 Social determinants are the conditions that 

shape health, but are neither positive or negative predictors of heath by default. Education is a 

social determinant of health, for example, where high educational attainment is associated with 

better health and low educational attainment is associated with poorer health. Social risk factors, 

however, are the specific adverse conditions associated with poor health outcomes, such as 

homelessness or food insecurity. A systematic review by Chen et al. on the integration of SDoH 

domains in electronic health records (EHRs) found that only 16% of studies identified social risk 

factors as opposed to social or behavioral determinants of health.47 Furthermore, 57% of these 

studies report only neighborhood-level SDoH (e.g., median household income or neighborhood 

crime rates) and not individual-level SDoH (e.g., employment status or housing stability). In the 

studies that utilized SDoH data to improve prediction of high-risk or high-utilization patients, 

they found that models that incorporated only neighborhood-level SDoH demonstrated no 

improvement in predictive performance. Alternatively, models that incorporated individual-level 

SDoH reported significant improvements in model performance for predicting outcomes ranging 

from medication adherence271 to risk for hospitalization.47, 272 

The evolution of the U.S. healthcare system from fee-for-service based care to newer value-

based payment models with the introduction of programs like the Hospital Readmissions 

Reduction Program (HRRP)43, which reduces payments for hospitals that have excess 30-day 

readmission rates, has placed more focus on modifiable SDoH to improve health outcomes and 

thereby reduce health care costs. More health systems are exploring ways to integrate SDoH data 

collection into EHRs in order to implement SDoH-related referrals for non-clinical care into their 
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routine practices and improve quality performance.47 There have been several proposed frameworks 

for integrating collection of SDoH data in electronic health records (EHRs) and calls for 

standardized SDoH screening tools. Multiple screening tools have been developed including the 

Accountable Health Communities Screening Tool273, PREPARE assessment tool, Health Leads 

Social Needs Assessment274, and others. Organizations such as the Institute of Medicine have 

developed recommendations for the relevant domains of social and behavioral health that should 

be captured in EHRs.275 However, these types of standardized screening tools for structured data 

collection of social risk factors are not widely used in clinical practice because they require the 

implementation of new data systems and widespread adoption from health care providers. Some 

researchers have used insurance claims data to identify some social risk factors, but have found that 

these are often unreliably coded and that alternatively, text from physician notes can be used to 

identify individual social risk factors with a much higher prevalence than administrative data.276  

While most studies to date have focused on unplanned readmissions, this is not the only 

outcome of interest to health care systems. Inappropriate ED visits contribute to high healthcare 

costs, ED overcrowding, and EDs are not equipped to provide the primary and preventative care 

that these patients need.277, 278 Some studies have estimated that up to 40% of all ED visits are 

clinically inappropriate.279 Furthermore, extended hospital length of stay contributes to high health 

care costs and increases the likelihood of hospital-acquired infections.280 In this study, our objective 

was to determine the prevalence with which individual social risk factors are currently documented 

as unstructured data in EHRs, and to evaluate the association of those social risk factors with 

increased risk for patient-level outcomes including readmissions, ED revisits, and hospital LOS. 
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Methods 

Patient sample 

Data from EHRs was queried for all inpatient admissions to the UVA Medical Center that 

were discharged during a one-year timespan between July 1, 2018 and June 30, 2019. This query 

identified 30,924 inpatient admissions, representing 22,314 unique patients. We limited the study 

to adults (age ≥ 18 years old), and excluded labor and delivery patients, and admissions where the 

patient expired in hospital, was discharged to hospice, or was discharged against medical advice. 

The final study population included 21,402 inpatient admissions, representing 15,116 unique 

patients who had at least one inpatient admission during the study period.  

Outcome measures and data sources 

The primary data source for this study was EHR data at the UVA Medical Center through 

EpicCare. Additionally, 3M’s All Patients Refined Diagnosis Related Groups (APR-DRG) 

model was used to obtain expected length of stay and severity of illness, which is categorized as 

minor, moderate, major, and extreme.281 We investigated three outcomes in this study – 1) 

unplanned hospital readmissions, 2) ED revisit following discharge, and 3) extended hospital 

LOS. The primary endpoint for readmissions and ED revisits was 30 days following discharge 

from an index admission, with a secondary endpoint of 90 days. Unplanned readmissions were 

defined as a return to the hospital within 30 days of discharge from the index admission and 

excludes admissions for planned care or follow-up treatment, such as scheduled chemotherapy or 

planned surgeries. ED revisits following discharge from the index admission only include patients 

who visited the ED, but were not subsequently admitted to the hospital. If admitted through the 

ED, the outcome was considered an unplanned readmission. LOS was translated into a binary 
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outcome by determining whether the actual length of admission was greater than the expected 

length of admission based on the APR-DRG model. 

Social determinants of health 

Despite efforts to develop standardized screening tools, a recent systematic review by Chen 

et al. including over 70 studies that integrate SDoH data collection in EHRs notes that there is 

currently no broad consensus on the specific questions, measures, or domains that should be 

captured.47 Chen et al. introduced a conceptual framework of SDoH domains and dimensions 

based on the recommendations from the World Health Organization and Healthy People 2020, 

and we utilize this conceptual framework for this study.47 This framework broadly categorizes 

SDoH into five domains – economic stability, education, health care access and quality, 

neighborhood and built environment, and social and community context. 

We queried EHR databases for intake forms, discharge instructions, questionnaires, 

screening tools, social work and case management notes, and other existing note templates for any 

recorded responses and measures that contained information relevant to these SDoH domains and 

dimensions. This query identified a set of 41 different fields currently being captured in EHRs 

(Supplemental Table 2) that were recorded by various disciplines of health care providers during 

an encounter. These data sources identified within the EHR covered 11 different dimensions, and 

four of the five domains of SDoH (Table 5-1). Next, we developed response criteria for each of 

these EHR fields to determine whether the recorded response indicated the presence of a social 

risk factor for that patient. Some fields had a pre-determined set of structured responses to choose 

from, while most were documented by providers with free text comments, and keywords were used 

to identify response criteria for those fields.  For each index admission included in the study, we 
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queried all encounters for that patient with the UVA Medical Center (inpatient, outpatient, 

telehealth, etc.) for the 12 months preceding the index admission to determine the patient’s 

exposure to social risk factors.  

 

Table 5-1. Framework for identifying SDoH domains and dimensions 
Domains Dimensions Identified in 

EHR data 

Economic Stability 

Employment • 
Financial resource strain • 
Housing instability  
Food insecurity  

Education 
High school graduation • 
Early childhood development and education • 
Language and literacy • 

Health Care Access and Quality 
Access to health services  
Access to primary care  
Health literacy  

Neighborhood and Built 
Environment 

Access to healthy foods  
Neighborhood crime  
Environmental conditions  
Quality of housing • 
Transportation • 

Social and Community Context 

Family and community support • 
Interpersonal violence or abuse • 
Stress and depression • 
Marital status • 
Civic participation  
Discrimination  
Incarceration  

 



 
CHAPTER 5: Identifying Social Risk Factors from Electronic Medical Records 

 139 

Statistical analysis 

In addition to the individual social risk factors identified in EHRs, other variables included 

from EHRs in this analysis were age, sex, race, ethnicity, location of residence, discharge 

destination, and severity of illness. We first described the demographics (i.e., age, sex, race, 

ethnicity, primary language, number of admissions) for all patients in the study and for the 

subgroups of patients with identified risk factors in each of the SDoH domains. Next, we evaluated 

the impact of the presence of these social risk factors with increased risk for the following three 

patient-level outcomes: 1) unplanned readmissions, 2) post-discharge ED visits, and 3) extended 

LOS. We developed a set of three generalized linear mixed-effects logistic regression models 

corresponding to these outcomes and included the same six predictor variables in all models: age, 

sex, severity of illness, location of residence, discharge destination, and social risk factors. 

Quantitative variables (i.e., age, severity of illness, and number of social risk factors) were rescaled 

on a range from 0 to 1, and categorical variables (i.e., sex, location of residence, and discharge 

destination) were grouped into two levels. Location of residence was grouped by those who lived 

in the vicinity the of hospital (Albemarle County and Charlottesville City) and all others. 

Discharge destination was grouped by those who were discharged to home (or home health) and 

those discharged to facilities (i.e., skilled nursing facilities, long term care, rehab). These six 

predictor variables were considered the fixed-effects, and since a patient may have multiple 

encounters within the study period these mixed models included random intercepts for each unique 

patient. All analysis was performed using R Studio and the statistical package lme4 (version 1.1.26) 

was used for model implementation. 
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Results 

Patient and encounter characteristics 

A total of 30,924 inpatient encounters occurred during the study period, and 21,402 of 

those encounters met the inclusion criteria, representing 15,116 unique patients treated at the 

UVA Medical Center over the 1-year study period (Figure 5-1). The median age of all patients 

was 62 with slightly more male (51.3%) than female (48.7%) patients. The majority of patients 

were white (80.1%), non-Hispanic (96.6%), and English-speaking (97.4%). The mean number of 

inpatient admissions per patient was 1.42 admissions during the study period, with 25.0% of 

patients having two or more admissions. Characteristics for all patients and subgroups of patients 

with identified risk factors for each SDoH domain are summarized in Table 5-2. The median age 

was lower for patients with identified risk factors for economic stability (58) and neighborhood 

and built environment (50), while the median age was similar for patients with risk factors for 

education (61) and social and community context (62). While females had a higher prevalence of 

risk factors for social and community context (53.3%), males had a much higher prevalence of risk 

factors for neighborhood and built environment (63.2%). Black patients had a higher prevalence 

of risk factors across all SDoH domains, but most notably economic stability (22.5%) and 

education (20.8%). Patients with identified risk factors for economic stability had the highest mean 

number of inpatient admissions during the study period (1.55). 

For all inpatient encounters included in the study (21,402), 12.8% had a readmission within 

30 days, 6.3% had a 30-day post-discharge ED visit, and 42.9% had a greater LOS than expected 

based on admission diagnosis and severity of illness. The median length of stay for all encounters 

was 4.1 days with a mean severity of illness of 2.24. The majority of patients resided outside of 
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Albemarle County (75.9%) and were discharged to home (80.1%), while 19.9% were discharged 

to skilled nursing facilities, long-term care, or rehab facilities. A summary of characteristics for all 

inpatient encounters based on outcome is described in Table 5-3. Encounters with a 30-day 

unplanned readmission and extended LOS had a higher mean severity of illness at admission, 2.59 

and 2.36, respectively. Encounters with a 30-day unplanned readmission or ED visit were more 

likely to reside in Albemarle County, 29.8% and 43.6%, respectively. Discharge to care facilities 

from the hospital was more prevalent for encounters with a 30-day unplanned readmission 

(25.4%), and extended LOS (26.6%). Encounters with 30-day unplanned readmissions and ED 

visits had a higher prevalence of risk factors for economic stability, 44.2% and 44.5%, respectively. 

Risk factors for education were more prevalent among encounters with a 30-day unplanned 

readmission (8.4%) and 30-day ED visit (8.7%). Risk factors for neighborhood and built 

environment were most prevalent among encounters with a 30-day ED visit (6.4%). Encounters 

with a 30-day unplanned readmission and 30-day ED visits had a higher prevalence of risk factors 

for social and community context, 44.2% and 44.4%, respectively. 
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Figure 5-1. Study inclusion criteria 
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Table 5-2. Patient characteristics for all patients and patient subgroups with identified risk factors 
in each of the SDoH domains 

Patient Characteristics All patients 
(n = 15,116) 

Economic 
Stability 

(n = 4,613) 

Education 
(n = 850) 

Neighborhood 
and Built 

Environment 
(n = 454) 

Social and 
Community 

Context 
(n = 4,591) 

Age (median) 62 58 61 50 62 
Age (%)      
18 - 34 11.0% 13.5% 12.7% 22.2% 13.4% 
35 - 54 22.4% 28.4% 23.8% 38.1% 22.2% 
55 - 64 22.7% 22.4% 22.9% 24.4% 19.7% 
65 - 74 24.3% 17.5% 19.9% 9.3% 20.7% 
75 - 84 14.6% 12.5% 13.9% 4.6% 15.2% 
>= 85 5.0% 5.7% 6.8% 1.3% 8.8% 
Sex (%)      
Male 51.3% 50.2% 53.8% 63.2% 46.7% 
Female 48.7% 49.8% 46.2% 36.8% 53.3% 
Race (%)      
White 80.1% 73.1% 63.4% 76.2% 78.0% 
Black 15.8% 22.5% 20.8% 18.5% 17.9% 
Asian 0.7% 0.5% 1.8% 0.2% 0.7% 
Other 3.2% 3.8% 13.5% 5.1% 3.2% 
Unknown/declined 0.3% 0.1% 0.5% 0.0% 0.3% 
Ethnicity (%)      
Non-Hispanic 96.6% 95.6% 82.5% 94.9% 96.8% 
Hispanic 2.8% 3.9% 16.8% 4.8% 2.5% 
Unknown/declined 0.5% 0.4% 0.7% 0.2% 0.7% 
Primary Language (%)      
English 97.4% 96.0% 78.6% 96.0% 98.0% 
Non-English 2.6% 4.0% 21.4% 4.0% 2.0% 
Inpatient admissions 
during study period 
(mean) 

1.42 1.55 1.50 1.50 1.53 

Inpatient admissions 
during study period (%) 

     

1 75.0% 69.9% 72.5% 71.6% 70.6% 
2 16.0% 17.6% 15.2% 16.7% 17.4% 
3 5.1% 6.6% 7.4% 7.3% 6.4% 
4 1.9% 2.7% 2.7% 1.8% 2.7% 
5+ 1.9% 3.2% 2.2% 2.6% 2.9% 



 
 

  

Table 5-3. Admission characteristics by outcome 
Admission Characteristics All 

Admissions 
 (n = 21,402) 

With 30-
day 

readmission  
(n = 2,739) 

With 30-day 
emergency 

department visit  
(n = 1,350) 

With extended 
LOS 

 (n = 9,178) 

Length of stay (median) 4.1 5.1 4.2 6.7 
Severity of Illness (mean) 2.24 2.59 2.27 2.36 
Severity of Illness (%)     
1 - Minor 22.6% 10.2% 20.4% 18.7% 
2 - Moderate 38.8% 33.5% 39.5% 37.2% 
3 - Major 30.4% 43.0% 32.7% 33.7% 
4 - Extreme 8.2% 13.3% 7.4% 10.4% 
Location of Residence     
Albemarle County (including 
City of Charlottesville) 24.1% 29.8% 43.6% 23.1% 

Other 75.9% 70.2% 56.4% 76.9% 
Discharge Destination     
Home (including home health) 80.1% 74.6% 79.3% 73.4% 

Facilities (skilled nursing 
facility, long-term care, rehab) 19.9% 25.4% 20.7% 26.6% 

SDoH Need (%)     
Economic Stability 33.4% 44.2% 44.5% 36.1% 
Education 6.0% 8.4% 8.7% 5.8% 
Neighborhood and Built 
Environment 3.2% 4.4% 6.4% 3.6% 
Social and Community Context 32.9% 44.2% 44.4% 36.0% 

 

Prevalence of individual social risk factors in EHRs 

 All 41 identified fields in the EHR related to SDoH domains were not documented for 

each encounter, or for every patient during the study period. Since these variables were not 

systematically collected, it is possible that the absence of data was not random and subject to the 

bias of the health care providers documenting findings in the EHR. In order to reduce the impact 

of bias and missing data, we identified all encounters that a patient had with the health system 

over the 12 months preceding the index admission to determine if they had any exposure to social 
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risk factors during this time frame. We found that at least one measure within each of SDoH 

domains was documented within the 12-month time frame preceding an encounter for more than 

94% of all inpatient admissions. Of the 21,402 encounters with complete SDoH records, 33.2% 

of encounters had a risk factor identified in one SDoH domain, 16.3% had risk factors in two 

SDoH domains, 2.9% had risk factors in three domains, and less than 0.5% had a risk factor 

identified in all four SDoH domains. 

Individual social risk factors are associated with increased risk for adverse patient-level outcomes 

 In these models, we included individual SDoH domains (i.e., economic stability, 

education, built neighborhood and environment, and social and community context) as 

independent predictors to determine whether certain SDoH domains were associated with higher 

risk for adverse outcomes than others (Table 5-4). We found that 30-day unplanned readmissions 

were associated with higher severity of illness (OR = 3.96), location of residence in proximity to 

the UVA Medical Center (OR = 1.31), and social risk factors for social and community context 

(OR = 1.26) and economic stability (OR = 1.37). Risk factors for neighborhood and built 

environment and education were not significant predictors of 30-day readmissions. Significant 

independent predictors of 30-day ED visits included age (OR = 0.60), location of residence in 

proximity to the UVA Medical Center (OR = 2.56) and risk factors in all of the SDoH domains 

– social and community context (OR = 1.39), economic stability (OR = 1.39), neighborhood and 

built environment (OR = 1.61), and education (OR = 1.38). All variables with the exception of 

social and community context were significant independent predictors of extended LOS - age (OR 

= 0.51), sex (OR = 1.18), severity of illness (OR = 2.14), discharge to facilities (OR = 2.42), location 

of residence (OR = 0.82), economic stability (OR = 1.14), neighborhood and built environment 

(OR = 1.31), and education (OR = 0.79). 
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Table 5-4. Individual SDoH domains and association with risk for adverse patient-level outcomes  
30-day unplanned 
readmission 

30-day ED visit without 
admission 

Extended length of 
admission 

Predictors Odds 
Ratio 

95% CI p Odds 
Ratio 

95% CI p Odds 
Ratio 

95% CI p 

Intercept 0.04 0.03-0.04 <0.001 0.03 0.02-0.04 <0.001 0.58 0.50-0.67 <0.001 
Age 1.09 0.81-1.47 0.570 0.60 0.41-0.88 0.009 0.51 0.41-0.64 <0.001 
Sex (Female) 0.95 0.86-1.05 0.331 1.04 0.92-1.18 0.538 1.18 1.09-1.27 <0.001 
Severity of 
Illness 

3.96 3.36-4.67 <0.001 1.04 0.83-1.29 0.743 2.14 1.88-2.42 <0.001 

Discharge 
Destination 
(Facilities) 

1.12 1.00-1.26 0.050 0.95 0.80-1.11 0.506 2.42 2.20-2.67 <0.001 

Location of 
Residence 
(Albemarle 
County) 

1.31 1.17-1.46 <0.001 2.56 2.24-2.93 <0.001 0.82 0.75-0.90 <0.001 

Social and 
community 
context 

1.26 1.14-1.40 <0.001 1.39 1.21-1.59 <0.001 1.08 0.99-1.17 0.075 

Economic 
stability 

1.37 1.23-1.51 <0.001 1.39 1.22-1.59 <0.001 1.14 1.06-1.24 0.001 

Neighborhood 
and built 
environment 

1.13 0.87-1.46 0.359 1.61 1.21-2.16 0.001 1.31 1.06-1.62 0.013 

Education 1.16 0.97-1.40 0.112 1.38 1.09-1.74 0.007 0.79 0.68-0.93 0.004 
Total 
Observations 

21,402 21,402 21,402 

Random Effects 
 

ICC 0.21 0.25 0.28 
N 15,116 15,116 15,116 

 

Aggregated SDoH risk score is associated with highest risk for 30-day post-discharge ED visits 

In these model implementations, risk factors for each SDoH domain were aggregated to 

reflect a total burden of SDoH on a range from 0 (no risk factors) to 4 (risk factors in all four 

domains). This aggregated SDoH risk score was rescaled on a range from 0 to 1 and included as a 

single predictor to compare the influence of other clinical and demographic variables with the 

presence of any SDoH risk factor on adverse patient outcomes (Table 5-5). Severity of illness 

remained the most influential predictor of 30-day readmissions (OR = 3.98) with aggregated 
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SDoH risk being the second most influential predictor (OR = 2.67). Location of residence 

remained a significant predictor of readmissions (OR = 1.32), and discharge to facilities was also 

a significant predictor in this model (OR = 1.13). Aggregated SDoH risk was associated with the 

highest risk (OR = 3.64) for 30-day ED visits among all independent predictors in this model. 

Other significant independent predictors of 30-day ED visits remained age (OR = 0.58) and 

location of residence (OR = 2.65). All variables were significant independent predictors of 

extended LOS, with discharge to facilities having the highest associated risk (OR = 2.43), followed 

by severity of illness (OR = 2.21), SDoH risk (OR = 1.38), sex (OR = 1.17), location of residence 

(OR = 0.82), and age (OR = 0.60). 

Furthermore, we compared 30-day (a commonly used industry standard) vs. 90-day 

endpoints for unplanned readmissions and ED revisits to see if there was a difference in the 

significance of predictors at a later end point for these outcomes (Supplemental Table 3). We 

found that discharge to facilities was a significant predictor of 30-day unplanned readmissions, but 

not a significant predictor for the 90-day endpoint. Significance of all other predictors across the 

two outcomes remained the same, but predictors had slightly higher odds ratios for 90-day 

outcomes since these outcomes would be more likely to occur within this endpoint. 

 

 

 

 

 



 
CHAPTER 5: Social Risk Factors and Electronic Health Records 

 148 

Table 5-5. Aggregated SDoH risk factors and association with risk for adverse patient-level 
outcomes  

30-day unplanned 
readmission 

30-day ED visit without 
admission 

Extended length of 
admission 

Predictors Odds 
Ratio 

95% CI p Odds 
Ratio 

95% CI p Odds 
Ratio 

95% CI p 

Intercept 0.04 0.03-0.05 <0.001 0.03 0.02-0.04 <0.001 0.60 0.51-0.69 <0.001 
Age 1.06 0.79-1.43 0.699 0.58 0.40-0.85 0.005 0.49 0.39-0.62 <0.001 
Sex (Female) 0.95 0.87-1.05 0.351 1.02 0.90-1.16 0.786 1.17 1.09-1.27 <0.001 
Severity of 
Illness 

3.98 3.38-4.69 <0.001 1.03 0.83-1.28 0.810 2.12 1.87-2.40 <0.001 

Discharge 
Destination 
(Facilities) 

1.13 1.01-1.27 0.039 0.95 0.80-1.12 0.574 2.43 2.20-2.68 <0.001 

Location of 
Residence 
(Albemarle 
County) 

1.32 1.18-1.47 <0.001 2.65 2.32-3.04 <0.001 0.82 0.75-0.90 <0.001 

SDoH 2.67 2.13-3.34 <0.001 3.64 2.72-4.86 <0.001 1.38 1.15-1.65 0.001 
Total 
Observations 

21,402 21,402 21,402 

Random 
Effects 

 

ICC 0.21 0.25 0.28 
N 15,116 15,116 15,116 

 

Discussion 

 In this study, we demonstrated that measures of individual-level social risk factors are 

already widely captured in EHRs without the addition of a specific SDoH screening tool for an 

inpatient population treated at the UVA Medical Center. More than 94% of all inpatient 

encounters had a least one measure documented for each of the SDoH domains included in this 

study. The presence of individual-level social risk factors had significant effects on all outcomes, 

but was the single most important predictor of 30-day ED revisits. Individual risk factors for 

economic stability were significant independent predictors for all outcomes studied here. One-

third of all patients had a risk factor identified in at least one SDoH domain and risk factors for 
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economic stability and social and community context were the most prevalent among this patient 

population. While risk factors for neighborhood and built environment were rare in this patient 

population (3%), they were a significant independent predictor of 30-day ED visits and extended 

LOS, and associated with higher risk for these outcomes than all other SDoH domains. 

Social and behavioral determinants of health and associated risk factors have been a focus 

of research to improve predictive models for high-cost and high-risk patients.41 In a systematic 

review by Chen et al. that identified thirteen studies that examined the impact of including SDoH 

data for risk prediction, all but one study reported that neighborhood-level SDoH had minimal 

contribution to improving predictive performance.47 In contrast, inclusion of individual-level 

SDoH resulted in significant improvements in model performance for predicting outcomes 

ranging from medication adherence271, to HIV risk282, and hospital readmissions.272 A study 

recently published by Zhang et al. compared the addition of individual-level and neighborhood-

level SDoH to improving existing predictive models of 30-day unplanned readmissions. They 

found that SDoH did not improve prediction for a general patient population, but that the 

combination of individual-level and neighborhood-level SDoH significantly improved predictive 

performance for patient subgroups including Medicaid patients, patients over age 65, and obese 

patients.283 The collection of individual-level social and behavioral risk factors will likely be 

necessary to improve upon current methods to accurately identify high-risk and high-cost patients. 

While many clinicians acknowledge that SDoH affect the health and well-being of their 

patients, there are several concerns and considerations for involvement of clinicians and health care 

systems in SDoH screening. Clinicians are sensitive to the perception that this is not necessarily 

their area of expertise and are worried that health care systems do not have the resources and 

experience to coordinate effective interventions, which would necessitate non-clinical 
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interventions or referrals.284 Nevertheless, widespread usage of SDoH screening is likely necessary 

for health systems to be able to identify and therefore mitigate their effects. Important 

considerations for implementing SDoH screening tools include the format of a screening tool, 

who administers it, and the frequency of assessing needs. Electronic formats for self-disclosure, 

compared to in-person interviews, have been shown to have higher rates of disclosure for sensitive 

issues such as household violence and substance abuse.285 It is as yet unclear as to the appropriate 

frequency of assessment; should SDoH screening be administered at every patient encounter, 

annually, or on some other frequency? The varied domains of social and behavioral health may 

change frequently and need to be assessed regularly, while others may be more stable especially in 

adulthood.275  

There is still much research and work to be done to develop intervention strategies that do 

not medicalize the treatment of SDoH, which could inadvertently lead to even higher health care 

costs.269 Effective interventions have hinged on close partnerships and coordination between health 

systems and non-clinical community organizations. For example, housing assistance programs for 

chronically homeless individuals have demonstrated the ability to decrease medical costs 6-12 

months after intervention.286 Accountable care organizations (ACOs), such as that operated by 

Hennepin Health, have invested in community-level partnerships to address multiple SDoH for 

Medicaid patients and have seen a reduction in ED visits and increase in outpatient and primary 

care utilization.287 The Johns Hopkins Children’s Center provides an example of tailoring SDoH 

screening to the specific community-based agencies and programs that are available. Families are 

referred to Health Leads, a non-profit organization that uses trained advocates to connect families 

with the appropriate local services, and social domains for screening are tailored to those available 
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services.288 Interventions and partnerships will be unique to each community’s specific needs and 

priorities.  

Not all health care systems will be poised to implement widespread standardized screening 

for individual social risk factors immediately, but this study demonstrates an opportunity for health 

systems to set priorities for interventions or further screening by identifying the risk factors that 

are most prevalent in their patient population. Others have discussed an “opportunity index” for 

SDoH that could help health care systems identify priorities for quality improvement that would 

provide the greatest cost savings and benefit to patients and the community.269, 289 While there may 

be hesitancy from clinicians to implement SDoH screening for the reasons described above, we 

have demonstrated in this study that individual-level social risk factors are already widely 

documented in EHRs and associated with increased risk for multiple patient-level outcomes. This 

type of data, while imperfect, may provide health systems with a useful starting point to understand 

the prevalence of certain SDoH among their patient populations and design appropriate targeted 

interventions in partnership with community organizations. 

There are several limitations to this study – most notably the lack of standardized and 

validated SDoH screening questions or measures. Without a standardized screening tool and work 

flow there is likely implicit bias involved in the collection of this data when clinicians make 

decisions about which questions are relevant to ask of individual patients.290 The measures that 

currently exist in the EHR typically do not cover all of the dimensions of social risk outlined in 

Table 5-1. For example, existing measures related to quality of housing stability primarily capture 

those individuals experiencing chronic homelessness, and not those individuals experiencing 

housing insecurity, which might include not being able to pay rent, potential for eviction, or 

inability to pay utilities. Similarly, transportation measures only assess the individual’s need for 
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transportation at discharge from the hospital, but do not ask about access to transportation for 

follow-up appointments, or to obtain prescriptions. For these reasons, we anticipate that the 

prevalence of risk factors for many of these SDoH domains is potentially much higher than these 

EHR measures currently capture. Furthermore, EHR data was obtained from a single academic 

medical center and cannot capture readmissions to other medical centers or emergency 

departments. Since the UVA Medical Center serves a wide geographic distribution and many 

patients reside in rural areas, this may artificially decrease readmissions and ED revisits for these 

populations. Despite the limitations of this data, we believe that this study provides a useful 

example of how health systems can use their existing EHR data to estimate the prevalence of 

individual social risk factors in their patient population and develop priorities for screening, 

interventions, and community partnerships. 

Conclusions 

 Individual-level social risk factors are widely documented in existing EHR unstructured 

data and are associated with increased risk for 30-day readmissions, 30-day ED revisits, and 

extended length of stay. Of these outcomes, individual social risk factors were the most significant 

predictor of 30-day ED revisits. Even in the absence of standardized SDoH screening tools, health 

systems can use existing EHR data to understand the prevalence of individual social risk factors in 

their patient population to prioritize further screening or interventions. 
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Overview 

In the work presented in this thesis, multiscale modeling approaches were developed and 

deployed to aid in the design of novel intervention strategies. The exponential rate of growth in 

data produced in the biomedical sciences and health care, combined with the complex relationships 

that exist across spatial, temporal, and functional dimensions of this data creates an opportunity 

for multiscale models to synthesize and make novel predictions about the behaviors of these 

complex systems. Multiscale models provide a framework that can uniquely predict how 

perturbations to individual parameters will impact outputs or outcomes at multiple levels of 

resolution in a systematic and high-throughput manner that would otherwise not be feasible with 

experimental methods. In the work presented here, we combined multiscale computational models 

with experimental models and methods to predict the effect of varying individual parameters on 

systems-level outcomes, provide insight into the mechanisms that contribute to these outcomes, 

identify novel hypotheses for further investigation, and demonstrate the value in unstructured and 

heterogenous sources of data. 

The multiscale models presented in this work focused on applications in the treatment of 

cardiovascular disease, diabetes, and public health interventions. In Chapters 2 and 3, we 

investigated the spatial and temporal heterogeneity that exists in the cellular responses to injury 

following myocardial infarction, and developed a multiscale model that integrates a complex 

network model of intracellular signaling with a multicellular agent-based model to make 

predictions about tissue-level remodeling and scar formation following cardiac injury. This 

multiscale model can be leveraged to test novel therapeutic options for cardiac fibrosis and inform 

the design of future preclinical and clinical studies. In Chapter 4, we integrated data produced by 
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three separate preclinical studies into a mechanistic model of diabetic wound healing to predict the 

impact of varying spatial parameters of drug delivery that were not tested experimentally. This 

enabled us to make novel predictions about the impact of modifying the location of drug delivery 

and diffusivity of proangiogenic drugs on the rate of wound healing that will inform future studies 

and drug development for cutaneous wound healing. Finally, in Chapter 5 we utilized electronic 

health records as a novel source of unstructured data for identifying individual social risk factors 

and demonstrated that these risk factors are associated with adverse patient-level outcomes 

including unplanned readmissions, ED visits, and extended hospital length of stay. This work 

provides the framework for utilizing unstructured data in electronic health records to identify 

individual social risk factors, which will likely be a necessary component to improve predictive 

models for identifying high-risk patients.  

This final chapter will highlight the innovations and contributions of this work, in addition 

to the exciting avenues for future areas of study. I will also provide some recommendations for 

advancing the applications of multiscale models based on my experience developing and designing 

models for cardiovascular disease and public health. I will conclude this chapter with a broad 

overview of the societal impacts of this research. 

Innovation 

The applications of multiscale modeling presented in this thesis cover a wide scope of 

challenges in biomedical sciences and public health and make several novel and innovative 

contributions to these fields. In Chapter 2, we describe the development of the first multiscale 

model of cardiac fibrosis that integrates a large-scale cell signaling network model with a model of 

multicellular tissue-level remodeling. Previous models have included large-scale network models 
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of single cells25, and the temporal dynamics of inflammation and fibrosis following myocardial 

infarction90, 111, but this demonstrates the first model that combines large-scale signaling networks 

for many cells in an infarct with spatially-dependent signaling and extracellular matrix remodeling. 

The novel approach of this modeling framework allows us to perturb the dynamic pro-

inflammatory and pro-fibrotic contexts that change over the course of infarct healing and test 

molecular perturbations that may having opposing effects throughout the course of healing. 

Previous experimental and computational models have investigated the effects of pharmacologic 

interventions on myofibroblast activity and collagen deposition118, 291, 292, but this multiscale 

computational model will additionally be able to predict the spatial heterogeneity of collagen 

deposition in an infarct and co-localization of inflammatory and fibroblast cell populations. Scar 

heterogeneity that develops as a result of differences in fibroblast alignment and local collagen 

deposition is an important determinant of the mechanical function of the heart and will be an 

important consideration in the design of therapeutics for cardiac fibrosis.187, 188 This model can be 

deployed to identify candidate pharmacologic therapies or combination therapies that would 

improve functional recovery following myocardial infarction and leveraged to design future 

preclinical studies.  

In Chapter 3, we present one of the first examples of high-resolution images that 

characterize the spatiotemporal dynamics of macrophage infiltration in the heart during post-MI 

wound healing. Previous studies have characterized the temporal dynamics of macrophage 

phenotypes and transcription profiles at early time points following myocardial infarction,121, 181, 208 

but our work contributes the first example of the spatial distributions and heterogeneity of 

macrophage populations across the entire infarct during post-MI wound healing. We quantify 

changes in macroscopic regions of interest within the infarct including regions of necrosis and 
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intramyocardial hemorrhage, and M1 and M2 macrophage densities within each of these distinct 

regions. We show that M2 (CD163+) resident macrophages are lost by day 2 following infarction, 

which corresponds to the first appearance of regions of necrosis. Necrosis becomes most 

pronounced at day 4, and then subsides in parallel with a marked increase in M1 (CD68+) 

inflammatory macrophage infiltration, which is sustained through day 6. We also present evidence 

of a CD68+CD163+ macrophage population that appears to be enriched in the epicardium 

following MI, and that defies the canonical M1/M2 classifications that have been developed based 

on the polarization of macrophages in vitro.182-184 This provides further support to calls from other 

researchers in the field to fully characterize the diverse macrophage phenotypes that exist in vivo 

and their unique sources, signaling pathways that lead to differential activation states, and 

functions during post-MI wound healing and scar development.178, 179, 219 This work contributes 

important findings about the spatiotemporal dynamics of macrophages in the heart during post-

MI wound healing that will inform future studies that aim to identify novel therapeutics targeting 

the inflammatory response that leads to adverse remodeling of the heart and cardiac fibrosis. 

In Chapter 4, we describe a novel mechanism-based PDE model to predict how spatial 

parameters of drug delivery with a modified VEGF-A mRNA impact the rate of healing in a 

murine model of diabetic wound healing. Previous computational models have been developed to 

study mechanisms of cutaneous wound healing228-232 and to identify drug targets for stimulating 

angiogenesis in wound healing.234 Almquist et al. have reported an empirical pharmacokinetic and 

pharmacodynamic model of AZD8601 in diabetic wound healing, which captures statistical 

variation in wound healing dynamics at both the individual and the population level using a 

nonlinear mixed effect modelling approach.235 While this model describes the time-dependent 

aspects of wound healing, it does not account for spatial parameters of drug delivery and wound 
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healing. Previous models of drug delivery systems have studied the effects of dosage and temporal 

release235, 251, 293, but this is the first model to our knowledge that presents the effects of varying the 

location and diffusivity of a locally injected drug in a model of cutaneous wound healing. This 

multiscale model can be used to specify drug delivery locations for the design of preclinical and 

clinical studies that will optimize healing of diabetic wounds. It could also further be extended to 

investigate the efficacy of combination therapies that use multiple growth factors (e.g., VEGF, 

PDGF, FGF, etc.) to promote angiogenesis and accelerate wound healing.109, 294, 295 Furthermore, 

this model could be applied to other methods of drug delivery, particularly controlled-release drug 

delivery systems, to predict how changes to the diffusivity of a proangiogenic drug or delivery 

system impacts the spatial distribution of the drug and rate of wound healing.251, 296 

In Chapter 5, we demonstrate one of the first examples of using unstructured data in 

electronic health records to identify individual social risk factors. We showed that these individual 

social risk factors, even when controlling for other clinically relevant risk factors, are associated 

with increased risk for unplanned readmissions, emergency department visits, and extended 

hospital length of stay. Previous efforts to capture individual-level SDoH have identified domains 

such as age, sex, ethnicity, insurance coverage, and marital status, but the only studies that have 

captured individual social risk factors (i.e., homelessness, financial resource strain, food insecurity, 

etc.) have relied on the administration of new survey-based screening tools.273, 274 Our work 

demonstrates that health systems can utilize data that is already widely captured in EHRs to 

determine the prevalence of social risk factors in their patient population. Modeling efforts such 

as this can help health systems develop an “opportunity index” for SDoH in order to identify the 

social risk factors present in their patient populations that contribute the most significantly to 

adverse patient outcomes and are modifiable targets for interventions. This approach can inform 
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intervention strategies and partnerships with community-based organizations to address the social 

and economic needs of individual patients that contribute to their health and well-being. 

Extended applications and future directions 

Multiscale models of cell dynamics and ventricular remodeling following myocardial infarction 

We provide one of the first examples that characterizes the spatial distribution of 

macrophages in the heart following MI, and there are many opportunities to further expand our 

understanding of the spatial heterogeneity that exists in macrophage recruitment and polarization. 

In Chapter 3, we presented evidence of a CD68+CD163+ macrophage population that may be 

enriched in the epicardium. Previous studies have suggested that epicardial cells undergo 

epithelial-to-mesenchymal transition (EMT) following MI and are a source of progenitor cells 

that have the ability to adopt multiple cell fates and contribute to healing and neovascularization.198, 

297-299 Similarly, macrophages have been implicated in the promotion of endothelial-to-

mesenchymal transition (EndoMT) which may contribute myofibroblasts during cardiac repair.300, 

301 We also showed examples of a dense band of aSMA+ cells surrounding the endocardium of the 

left ventricular cavity that may be a source of myofibroblasts that contribute to scar formation. 

While our quantification of macrophage infiltration focused on samples taken from the 

myocardium, future work should aim to quantify the spatiotemporal dynamics of macrophage and 

myofibroblast populations throughout the entire depth of the heart wall, from the epicardium to 

endocardium. 

The temporal heterogeneity that exists in macrophage phenotypes and transcriptional 

profiles following myocardial infarction has been well documented,181, 185, 208 but the spatial 

heterogeneity of macrophage populations that are present at each of these time points has not been 



 
CHAPTER 6: Discussion and Future Directions 

 161 

investigated. A recent study by Chakarov et al. demonstrated evidence of two transcriptionally 

unique populations of resident tissue macrophages that occupied different spatial niches across 

multiple tissues, including the heart. Lyve1loMHCIIhi macrophages were enriched near nerve 

bundles and Lyve1hiMHCIIlo macrophages were localized near endothelial cells and upregulated 

genes related to angiogenesis.209 This suggests that macrophages, both tissue resident macrophages 

and monocyte-derived macrophages, may play functional roles that are unique to the spatial niches 

that they occupy. It is unclear whether macrophages are activated to these different states as a result 

of the unique microenvironment that they experience, or whether they are programmed to 

differentiate to these states and then migrate to these spatial niches based on their function. A 

combination of single-cell and spatial transcriptomics will be required to answer these questions 

and exhaustively characterize the spatial heterogeneity of macrophage populations within the 

infarct.219 Spatially resolved transcriptomics was named the method of the year in 2020 by Nature 

Methods, which allows researchers to analyze the transcriptomics of single cells and map that 

information to the positional context of that cell within the tissue.302 The development and 

advancement of this method will be an important tool to determine the unique spatial niches that 

macrophages occupy during post-MI wound healing and how that contributes to their 

heterogenous phenotypes and transcriptional profiles. 

Network models are useful tools for understanding how dynamic inputs and environmental 

cues are integrated in cell signaling networks and lead to differential activation states for individual 

cells. Liu et al. recently developed a large-scale computational model of the macrophage signaling 

network that predicts macrophage activation states based on combinations of nine different 

cytokine inputs.217 Similarly to the multiscale model presented in Chapter 2, a network model of 

macrophage intracellular signaling could be integrated with an agent-based model of post-MI 
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wound healing to predict how local chemokine and cytokine inputs contribute to spatially 

heterogenous macrophage activation states. This model could also be used to predict the relative 

contributions of different sources of macrophages (e.g., progenitor cells from the epicardium, 

proliferation of tissue-resident macrophages in remote regions, monocyte recruitment from the 

vasculature) that most closely recapitulate the patterns observed in vivo.  

The multiscale model presented in Chapter 2 could be expanded in several ways to develop 

a model of post-MI wound healing that would be a useful tool for in silico screening of therapeutics 

to improve cardiac fibrosis. The addition of inflammatory cells, including monocytes, 

macrophages, and neutrophils, would allow the simulation of cytokine production from individual 

cells, diffusion of soluble cytokines and growth factors, and migration rates that are driven by 

chemokine gradients. Macrophages and fibroblasts, informed by large scale network models, 

would modify their phenotypes including migration and proliferation rates, cytokine secretion, and 

ECM degradation and deposition, based on the integration of local biochemical and 

biomechanical stimuli. Furthermore, the spatial resolution of the model could be expanded to 

include both infarct, peri-infarct, and remote zones in the heart after myocardial infarction which 

have been shown to have different patterns of cell recruitment and activation.219 This model could 

even be further coupled with a finite element model that predicts how changes in the ECM 

composition and scar heterogeneity alter the mechanics of the heart to predict pump function and 

cardiac output. In this manner, we could develop a validated multiscale model of cardiac fibrosis 

that depicts many scales of resolution from the level of cytokine and chemokine gradients, to 

individual cell signaling, to tissue level ECM remodeling, and even organ level mechanics and 

pump function.  
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A validated multiscale model of this nature would provide a platform for systematically 

screening the effects of therapeutic interventions on multiple cell types and ECM composition 

that contributes to the progression of cardiac fibrosis with a high degree of both spatial and 

temporal resolution. The ability to effectively improve infarct healing will require spatial control 

of fibrosis. Ideally, a post-infarction therapy would enhance collagen deposition in the infarct, 

while preventing fibrosis in the remote myocardium. We believe that this multiscale computational 

model will be a necessary tool to integrate the dynamic spatiotemporal and complex signaling 

environments and cell distributions in the heart in order to identify a pharmacologic approach that 

can achieve differential control of fibrosis across regions of the heart and mitigate the development 

of heart failure. 

Improving drug delivery strategies for cutaneous wound healing 

The multiscale model of diabetic wound healing presented in Chapter 4 is one of the first 

examples of utilizing a mechanistic model of wound healing to perturb spatial parameters of drug 

delivery. Pharmacokinetic and pharmacodynamic models of drug delivery often focus on the dose 

and timing of drug delivery, but few models have rigorously assessed the impact of spatial 

distribution on the delivery of a locally injected drug. There are several opportunities to further 

expand this model so that it can be used to inform evidence-based decisions about the location of 

drug delivery in the design of future preclinical and clinical studies. The current implementation 

of this model assumes that healing occurs uniformly with respect to :, but injections were delivered 

at four discrete points separated by 90° around the wound border. Based on the predictions of our 

model that the spatial gradient of VEGF-A generated by injections is an important determinant 

of the rate of wound closure, we would hypothesize that these four discrete injections would create 
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a gradient of VEGF-A that would result in a non-uniform rate of healing with respect to :. We 

could expand the model to account for the rate of wound closure in both the radial and azimuthal 

dimensions, which will be a more relevant factor in larger clinical wounds. Additionally, the radial 

dimension of the model could be expanded to include a border region of healthy tissue surrounding 

the wound space. Simulations that perturbed the diffusivity of mRNA demonstrated that the drug 

was consumed at the wound boundary at a rate dependent on this diffusivity. Extending the model 

to account for a region of healthy tissue surrounding the wound would also allow us to explicitly 

model the differences in the tissue properties and diffusivity of drugs in these mediums. 

Due to the limited availability of data about the spatial parameters of AZD8601, we made 

several assumptions when modeling the spatial distribution of mRNA that warrants further 

experimental studies to validate these predictions prior to future clinical studies. We estimated the 

diffusivity of AZD8601 based on literature-reported values for the diffusivity of mRNA, but 

further experimental studies are needed to determine the precise length scale of diffusion for 

AZD8601 in both normal tissue and a healing wound. Furthermore, our model predicted that 

wound healing could be accelerated by delivery injections of AZD8601 at a distance inside the 

border of the healed wound, but it has yet to be determined if injections delivered within the 

wound space would result in similar levels of VEGF-A production. The pharmacokinetic model 

used to describe parameters of VEGF-A production and degradation was based on injections of 

AZD8601 delivered in healthy tissue. These experiments need to be repeated to determine the 

rates of VEGF-A production and degradation in a wound space. 

These experiments are necessary to validate model predictions with injections of AZD8601 

in order to translate model predictions to the healing of human wounds in the clinical setting, 
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which is the ultimate goal of models to inform drug delivery strategies in the clinic. Diabetic ulcers 

in humans can be 2-5x larger in diameter and depth than the wounds used in murine models of 

diabetic wound healing, and can take many weeks to months to heal. Translating the results of 

preclinical animal models to humans in the clinical setting is the ultimate challenge of biomedical 

research and the juncture where computational models can be valuable tools to predict how these 

therapies will translate. This model has the potential to be scaled in these ways to predict how 

injections with AZD8601 will impact the rate of wound closure in the clinical setting over larger 

spatial scales and longer temporal scales. Nevertheless, this model is also a valuable tool to design 

future preclinical animal models of wound healing whether with AZD8601 or other growth factors 

designed to stimulate angiogenesis. The focus of the murine model of diabetic wound healing used 

in these studies was to determine the impact of dose and timing of injections on the rate of wound 

closure, but spatial location of injections was not rigorously considered as a parameter for 

investigation. Models such as the one described here are valuable tools to prioritize and predict the 

impacts of experimental parameters of interest when designing preclinical animal studies in order 

to reduce the number of parameters required to test experientially and reduce time, cost, and 

animals required. 

Similar to the multiscale model of cardiac fibrosis presented in this thesis, this model could 

be coupled with a network model of endothelial cell signaling to extend the biological scales of 

resolution explicitly accounted for in the mechanisms of drug action. An agent-based model 

previously developed by Walpole et al. incorporated Notch1-DLL4 signaling in endothelial cell-

endothelial cell interactions to predict the microvascular network morphology during 

development.28 A large scale endothelial cell network model could directly model the effects of 

VEGF and other growth factors such as PDGF, FGF, and EGF on parameters including 
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proliferation and migration rates, cell sprouting, tip and stalk cell phenotypes, and endothelial tube 

formation.303 While VEGF, FGF, EGF, and other growth factors have been tested in preclinical 

and clinical trials, the only FDA-approved growth factor treatment currently available is 

Regranex®, a hydrogel containing PDGF.304-306 Multiscale computational models that couple the 

mechanisms of drug interaction on individual cells with multicellular responses and tissue level 

predictions about wound closure could help accelerate the identification and development of novel 

therapeutics for the treatment of diabetic wound healing, including the possibility of combination 

therapies. These models could be adapted to simulate other systems of drug delivery as well, such 

as hydrogels, nanoparticles, and scaffolds.304 

Utilizing health care data to improve predictive models of high-risk patients and target 

interventions to modify social risk factors 

The Hospital Readmissions Reduction Program (HRRP), introduced in 2012, reduces 

payments for hospitals that have excess 30-day readmission rates.43 This evolution from fee-for-

service health care to new value-based payment models has placed more focus on modifiable SDoH 

to improve health outcomes and reduce readmissions. Health systems have a need to identify high-

risk and high-cost patients, and the rapid growth in quantity and quality of data available through 

electronic health records presents an opportunity for the development and improvement of 

predictive computational models.  

The ability to predict 30-day unplanned hospital readmissions, in particular, is an 

important area of research since this is a costly financial burden to patients and healthcare systems, 

and it has been estimated that 20% of patients discharged from the hospital are readmitted in a 

short time span.307 This has prompted several groups to try and improve predictive models for 30-

day readmission risk by including SDoH.45, 283, 308, 309 These models have generally found that the 
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inclusion of SDoH data did not improve model predictive performance for a general patient 

population, but may improve risk prediction for subgroups of patients such as Medicaid patients, 

or those ages 65 and older.283, 308, 310 However, these models have primarily incorporated 

neighborhood or census tract-level SDoH and not individual-level reported SDoH.277, 307 In fact, 

a recent systematic review by Chen et al. found that studies that included only neighborhood-level 

SDoH reported no improvements in model predictive performance, but studies that incorporated 

individual-level SDoH reported improvements in model predictive performance for outcomes 

ranging from medication adherence, HIV risk, and hospital readmissions.47 Only one study 

recently published in 2020 by Zhang et al. has attempted to combine individual-level and 

neighborhood-level social determinants of health, where the individual-level factors reported were 

age, sex, ethnicity, and marital status.283 No predictive model has included individual-level data 

about social risk factors including housing stability, food security, transportation, personal safety, 

and other factors now commonly included in standardized SDoH screening tools such as the 

Accountable Health Communities Screening Tool,273 and the Protocol for Responding to and 

Assessing Patients’ Assets, Risks, and Experiences (PREPARE) survey.  

We hypothesize that the inclusion of individual-level social risk factors will improve the 

performance of existing predictive models for 30-day unplanned hospital readmissions. These 

models have previously demonstrated poor predictive performance because hospital readmissions 

are a highly complex problem influenced by the contributions of many factors including the burden 

of confounding chronic diseases, provider and hospital level care indicators, coordination of care 

following discharge, and many other contributors. Currently, one of the most widely used 

predictive models of 30-day unplanned hospital readmissions is the HOSPITAL risk score. This 

is a prediction score that includes seven independent factors: hemoglobin at discharge, discharge 
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from an oncology service, sodium levels at discharge, procedure during admission, type of 

admission, number of admissions during the last 12 months, and length of stay.311 We propose 

building on the work presented in this thesis by utilizing the individual social risk factors identified 

in EHRs to determine whether their inclusion can improve predictive performance of the 

HOSPITAL score for unplanned readmissions. Performance of predictive models is commonly 

evaluated by the C-statistic, or ROC (area under the receiver operating characteristic), and the 

HOSPITAL score has a reported C-statistic of 0.71 for a general patient population.311 We will 

first determine the C-statistic for a model utilizing the HOSPITAL score for our patient 

population of interest treated at the UVA Medical Center. Then, we will compare versions of this 

model implementation that includes only individual-level or neighborhood-level SDoH, or a 

combination of both levels of SDoH factors. We hypothesize that the model that includes 

individual-level social risk factors will perform significantly better than the HOSPITAL score 

alone, and that the model that includes only neighborhood-level factors will demonstrate no 

significant improvement. A model that includes both individual and neighborhood-level factors 

may perform better than a model with only individual-level factors. There is also extensive 

literature that documents the impact of behavioral risk factors (e.g., alcohol use, drug abuse, 

physical inactivity, etc.) on health outcomes.312, 313 We could additionally explore the impact of the 

inclusion of behavioral risk factors on the predictive performance of this model. 

Even if a model that includes individual social risk factors is not able to achieve a higher 

predictive performance than existing models, it would still provide valuable insight to aid clinical 

decision making and interventions to target modifiable risk factors. These models could be used 

to prioritize interventions and community-aid programs that target the social risk factors identified 

to have the most impact on adverse outcomes. This could guide strategy and planning for health 
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systems as they try to determine the need for implementing SDoH screening tools and cultivating 

partnerships with community-based organizations for referral programs to address social and 

behavioral risk factors. Additionally, it is possible that the model would demonstrate higher 

predictive performance for a specific patient population such as those over age 65, Medicare or 

Medicaid beneficiaries, or specific medical subgroups such as surgical admissions. This model 

could be applied to specific patient subgroups to determine whether there are differences in model 

predictive performance, but would likely require a longer time span of data collection depending 

on the sample size of these patient subgroups. 

Electronic medical records represent one source of health care data that is rapidly growing, 

but data analytics and computational models to improve the quality and value of health care 

delivery will integrate many sources of health data. This may include insurance claims data, Census 

data, wearable sensors such as smart watches, smart phone data, genomics and proteomics, real-

time clinical remote monitoring, and many other heterogeneous and varied sources of data. Even 

data about individual social media usage and search history have been shown to be predictors of 

behavioral risk factors and mental health conditions.314, 315 Researchers that hope to identify 

innovations in the delivery of health care by utilizing these varied data sources will also have to 

grapple with and address concerns related to privacy, data security, legal and ethical responsibilities, 

and data infrastructure and usage.  

Recommendations for designing multiscale models 

Based on the work presented in this thesis which encompasses a wide range of multiscale 

modeling approaches and applications, here I will summarize a few key recommendations and best 

practices for developing multiscale models. There exist many modeling techniques that can be 
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classified as continuous or discrete, stochastic or deterministic, and some hybrid methods that are 

each uniquely suited to different scales of spatial and temporal resolution.3 For example, Boolean 

networks and flux balance analysis are well suited to genomic and proteomic scales of resolution. 

Continuous systems of ODEs and PDEs are useful for modeling intracellular and extracellular 

binding kinetics and diffusion of small molecules depending on whether both temporal and spatial 

resolution are needed in modeling the system of interest. Agent-based models are useful for 

modeling interactions between multiple cells and cell types, and finite element or finite volume 

methods can be utilized for tissue or organ-level modeling. The key question that should be 

considered when designing a new multiscale model is to determine which modeling approach is 

best suited for the question or objective based on the spatial and temporal scales that need to be 

explicitly modeled. In this manner, the choice of modeling approach should be chosen 

intentionally based on the task rather than forcing a specific type of model or previously published 

model to achieve an objective for which it is not well suited. Additionally, bigger is not always 

better when it pertains to the scope of a multiscale model. It is counterproductive to assume that 

model complexity is linearly correlated with the ability to produce novel or consequential 

predictions. There exists a trade-off in model development where increased complexity is often at 

the expense of model interpretability. Include only the model parameters, pathways, or 

components that are critical determinants of the question or objective of interest. 

When designing a multiscale model, it is also crucial to think of the end at the beginning. 

Define clearly what outputs need to be measured quantitatively or qualitatively to sufficiently 

answer the question of interest or achieve the desired objective. This model design criteria is also 

crucial to performing rigorous model validation. Modelers may often find themselves with a 

complex model that produces predictions about parameters or outputs for which they have no 
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experimental data to validate those predictions. Model validation is a critical component of model 

development to ensure the accuracy and reliability of model predictions, and to also define the 

scope and specific conditions under which model predictions can be considered valid. There should 

be independent data sets used for model development and validation, which should be explicitly 

defined before beginning model construction and should guide the design of a model. One method 

for model validation that has been particularly useful in the validation of multiscale models is 

“hierarchical validation” where individual models are validated separately at a single scale of 

resolution before coupling models and validating predictions at the multiscale level.3, 35 

Defining parameters for computational models is one of the key challenges in model 

development and relies on existing literature and complimentary experimental studies. Often, 

however, parameters must be defined for which there is no existing literature to support parameter 

selection and the parameter may be impossible or impractical to measure experimentally. One 

approach to developing models for biochemical interactions that require a large number of 

unknown parameters is logic-based models, where the qualitative behavior of activation or 

inhibition reactions are approximated using logical AND and OR gates.316, 317 A review written by 

Peng et al. that explores the intersection of machine learning and multiscale modeling also provides 

several strategies for integrating machine learning techniques to estimate parameters from sparse 

or noisy data sets.318  

There are few models that exist beyond the tissue or organ level spatial scale of resolution, 

and no single “gene-to-organism” level model has yet to be developed, likely because there still 

exist technical limits and a lack of computational power to discretely model all components or 

biological processes across an entire organism. Computational power is increasing at an 

exponential rate, but models must still be developed with computational limits and efficiency in 
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mind. Parallel computing and cloud computing have increasingly been used to increase the number 

of discrete agents or methods that can be incorporated in multiscale models. One method to 

structuring multiscale models is to design many sub-modules that can be executed independently 

and outputs are passed between these modules. There are also many lessons and best practices from 

computer science and software engineering that can be utilized to simply improve the 

computational efficiency of code design and execution. Kirschner et al. have also proposed a 

tunable resolution approach for multiscale models, where models can be easily adapted with finer 

or coarser grained resolution that would improve options to validate predictions at all of these 

levels of resolution and increase model efficiency where needed to increase computational speed.319 

Taken together, these recommendations can improve the quality and rigor of computational 

models and accelerate the advancement of their design and development. 

Developing robust software platforms for multiscale modeling 

Experimental papers should be published with sufficiently detailed methods for other 

researchers to reproduce the results. Similarly, computational models should be published with the 

necessary software and documentation to reproduce model simulations presented in a publication. 

For any computational biologist who has tried to implement another researcher’s model, you know 

that this is no easy task. In PLOS Computational Biology’s “Ten Simple Rules” collection, 

Taschuk and Wilson published “Ten simple rules for making research software more robust”.320 In 

this article they describe the scenario of a graduate student or postdoc trying to use another person’s 

code to reproduce results or analyze their own data as a “rite of passage”. What particularly stands 

out to me is that they state: “The potential new user is then faced with two unpalatable options: 

hack the existing code to make it work or start over.” These are indeed unpalatable options, but 
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acutely relatable to the challenges I encountered throughout the course of this work, and 

unfortunately the choice more often than not was to start over. This hinders the progress of 

computational research if we cannot build upon the work of others and are consistently forced to 

start over on model development. Best practices exist in software engineering to increase 

robustness and usability that should be adopted in computational biology. Taschuk and Wilson 

define robust software by the requirements that “i) it can be installed on more than one computer 

with relative ease, ii) it works consistently as advertised, and iii) it can be integrated with other 

tools.” They make recommendations about using version control, detailed code comments, 

avoiding hard-coded file paths in your program, providing the user a test set to ensure the software 

is working as desired, and providing clear documentation or tutorials. These are simple guidelines 

to follow, but if implemented consistently and rigorously would greatly improve the shareability 

and usability of software developed for computational biology and multiscale modeling. 

Part of the challenge in agent-based modeling, in particular, is that it is used to study a 

wide range of biological mechanisms with limited consistency in the methods used and a wide 

range of existing software platforms and programming languages. Conversely, in finite element 

modeling, for example, there exists more standardized methods, guidelines, and software programs 

for the computational biology community. The application of agent-based modeling to study 

biological systems is a newer field and still grappling with standards for methods and model 

sharing. Agent-based modelers often find that even published computational models that explore 

similar disease states or cell types do not possess the functionality or extendibility to answer their 

question of interest and they must develop a new model from scratch for their purposes. New 

software platforms developed specifically for cell-based simulations have emerged in recent years, 

including CompuCell3D321 and PhysiCell322, that provide built-in methods and sub-modules for 
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common cell and biological processes including proliferation, apoptosis, migration, cell growth, 

and others that allow users to build upon and customize these modules rather than starting from 

scratch. More robust and standardized methods and software platforms will be required to advance 

multiscale modeling. 

Broader societal impacts of this research 

Ischemic heart disease and diabetes combined account for more than 20% of deaths in the 

U.S. annually and despite advancements in biomedical sciences and medicine there is still a lack of 

effective treatments. Only 4% of drugs for cardiovascular disease that enter Phase I clinical trials 

will ultimately be approved for use.323 Cardiovascular disease and diabetes are complex biological 

phenomenon that cause systemic effects on many different cell types and tissues, across many scales 

of spatial and temporal resolution. We have a fairly limited understanding of how these diseases 

progress and the complex mechanisms by which they effect multiple systems, which makes current 

drug therapies ineffective at stopping or reversing the course of disease. As the scientific questions 

become more complex and large amounts of data become readily accessible, multiscale 

computational models will be a necessary tool in the advancement of biomedical sciences to 

integrate large data sets and make predictions about the behavior of complex systems.  

The development and use of multiscale models enable us to test interventions in a high 

throughput manner that increases the efficiency of experimental studies by identifying the most 

relevant or consequential parameters to test experimentally. Models enable researchers to screen a 

large number of interventions or parameters that would not be feasible otherwise due to time, cost, 

technology, or ethical considerations. Ultimately, this allows us to accelerate the identification and 

development of novel therapeutics in a manner that reduces the number of animals required for 



 
CHAPTER 6: Discussion and Future Directions 

 175 

preclinical experiments and increases the chances that translation to humans in clinical trials will 

be safe and effective. 

Moreover, there exist unsettling disparities in the burden of cardiovascular disease and 

health outcomes for underserved and underrepresented communities. The life expectancy after 

myocardial infarction is significantly lower for women than men, and even lower for African 

Americans and Hispanics. The social and economic conditions that determine individuals’ access 

to education, nutritious food, safe neighborhoods, parks, transportation, and so many other 

determinants of health have greater impacts on the health outcomes of individuals and 

communities than the availability and quality of medical care. These social and economic 

determinants of health are influenced by money, power, and access to resources, which are largely 

shaped by policy and societal structures outside of the control of individuals. If our ultimate goal 

is to improve the health and well-being of all individuals, we must address these disparities in the 

development of more effective and individualized health care. In fact, it is my belief that the next 

era of “personalized medicine” will involve a rigorous assessment of individual social risk factors 

and targeted interventions in collaboration with social services and community-based 

organizations in a more coordinated and holistic approach to the delivery of value-based health 

care. 

Luckily, multiscale models have the potential to integrate vast amounts of data and inform 

interventions to reduce health disparities as well. The explosion of data in health care and medicine 

in recent years from the introduction of electronic medical records, to wearable sensors, and real-

time remote clinical monitoring creates an environment where increasing availability of data can 

be leveraged with the appropriate tools and questions to identify innovations in the delivery of 

health care. The most impactful analyses and models will require the integration of data from many 
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heterogeneous sources, both clinical and non-clinical in nature, and will necessitate policies to 

guide questions related to data privacy and security, legal and ethical responsibilities, and data 

infrastructure.  

Concluding Remarks 

This thesis has covered a diverse range of applications for multiscale models, which further 

underscores their power and flexibility to contribute understanding and innovation to a wide range 

of challenging problems. The applications presented have also utilized many different modeling 

approaches and scales of resolution, primarily because the modeling approach should be chosen 

based on the objective or question of interest and not vice versa. Multiscale computational models 

have the ability to integrate data and systems across many scales of resolution to make predictions 

about the behaviors of complex systems that would not be possible with other approaches. The 

field of multiscale modeling can learn from the expertise of computer scientists and best practices 

of software engineering to further advance the capabilities and adoption of multiscale modeling as 

an integral component of research and innovation in biomedical sciences and public health. 
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Supplemental Figure 1. proMMP 1 expression is a combination of multiple upstream inputs. 
Activation patterns of network intermediates (A) NF-kB, (B) Smad3, and (C) AP1. (D) proMMP 1 
network node activity level (E) A simplified network model representation of the immediate 
upstream reactions that regulate proMMP 1 expression. 
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Supplemental Figure 2. Coupled model produces stochastic results. 
Three representative images of the collagen profile at 6 weeks for simulations with migration 
speeds of 1 grid/10 hrs (A-C), 1 grid/hr (D-E), and 10 grids/hr (G-I). 
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Supplemental Figure 3. Restricted diffusion of mRNA increases concentration of VEGF-A and 
density of capillary tips and blood vessels at the wound border following injections of 100 µg 
AZD8601 on days 0 and 3. 
Heat maps in polar coordinates of the solutions for the governing equations: (A) chemoattractant 
concentration (a), (B) sprouting capillary-tip density (n), and (C) blood vessel density (b) for a 
simulation with restricted diffusion of mRNA (Dm = 0 cm2/s) and repeated injections of 100 µg 
AZD8601 on days 0 and 3 (indicated by arrows). Radial coordinate corresponds to radius of the 
wound (0 - 5 mm), :	coordinate corresponds to time (0 - 10 days), and color bar indicates value of 
the corresponding solution. (D-F) 2-D snapshots of the heatmaps in C-E at t = 0, 1, 2, 3, 4, 5, 6 and 
7 days at the wound border (r = 3 - 5 mm). 
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Supplemental Figure 4. Moderate diffusion of mRNA creates gradient of VEGF-A inside the wound 
border following injections of 100 µg AZD8601 on days 0 and 3. 
Heat maps in polar coordinates of the solutions for the governing equations: (A) chemoattractant 
concentration (a), (B) sprouting capillary-tip density (n), and (C) blood vessel density (b) for a 
simulation with moderate diffusion of mRNA (Dm = 10-7 cm2/s) and repeated injections of 100 µg 
AZD8601 on days 0 and 3 (indicated by arrows). Radial coordinate corresponds to radius of the 
wound (0 - 5 mm), :	coordinate corresponds to time (0 - 10 days), and color bar indicates value of 
the corresponding solution. (D-F) 2-D snapshots of the heatmaps in C-E at t = 0, 1, 2, 3, 4, 5, 6 and 
7 days at the wound border (r = 3 - 5 mm). 
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Supplemental Figure 5. Rapid diffusion of mRNA produces modest, but short-lived increase in 
concentration of VEGF-A throughout the wound area following injections of 100 µg AZD8601 on 
days 0 and 3. 
Heat maps in polar coordinates of the solutions for the governing equations: (A) chemoattractant 
concentration (a), (B) sprouting capillary-tip density (n), and (C) blood vessel density (b) for a 
simulation with rapid diffusion of mRNA (Dm = 10-5 cm2/s) and repeated injections of 100 µg 
AZD8601 on days 0 and 3 (indicated by arrows). Radial coordinate corresponds to radius of the 
wound (0 - 5 mm), :	coordinate corresponds to time (0 - 10 days), and color bar indicates value of 
the corresponding solution. (D-F) 2-D snapshots of the heatmaps in C-E at t = 0, 1, 2, 3, 4, 5, 6 and 
7 days at the wound border (r = 3 - 5 mm). 
 
  



 
APPENDIX 

 183 

Supplemental Table 1. Experimental measurements of actin, collagen, and aSMA expression 
following cytokine stimulation of cardiac fibroblasts in vitro 

Treatment 
Group 

Integrated 
Intensity (Actin) 

Integrated Intensity 
(Collagen) 

Integrated 
Intensity (aSMA) 

IL-1b 489.56 212.69 125.91 
IL-1b 548.06 257.09 141.98 
IL-1b 449.47 225.29 123.18 
TGFb 1557.17 440.14 261.35 
TGFb 1598.38 487.01 411.80 
TGFb 1300.40 435.36 245.84 
TGFb+IL-1b 1050.49 364.54 238.78 
TGFb+IL-1b 885.86 303.93 168.39 
TGFb+IL-1b 883.50 296.64 175.00 
control 381.46 299.54 172.73 
control 383.21 276.15 162.39 
control 295.70 216.78 97.03 
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Supplemental Table 2. SDoH domains and dimensions and corresponding EHR fields and response 
criteria  

SDoH Domain Dimension EHR Field or Measure Response Criteria 
Education Early childhood 

development 
and education 

Special Teaching 
Barriers 

“Cognitive” OR “Education” OR 
“Language” 

Education Early childhood 
development 
and education 

Intellectual/Learning 
Disability 

“Yes” 

Education High school 
graduation 

Highest Level of 
Education 

“Primary School” AND Age > 18 

Education High school 
graduation 

Score 1 if patient has 
12 years of education or 
less 

“1” AND Age > 18 

Education Language and 
literacy 

Do you have to call 
interpreter? 

“Yes” 

Education Language and 
literacy 

Interpreter 
Arranged/Needed 

“Yes” 

Education Language and 
literacy 

Literacy “Deficits” OR “Illiterate” 

Education Language and 
literacy 

What is the patient’s 
literacy level? 

“Deficits” OR “Illiterate” 

Education Language and 
literacy 

What is the 
parent/guardian/caregiv
er’s literacy level? 

“Deficits” OR “Illiterate” 

Economic Stability Financial 
resource strain 

Pay Range “1” (100% INDIGENT) OR  
“2” (95% INDIGENT) OR  
“3” (80% INDIGENT) OR  
“4” (55% INDIGENT) OR  
“5” (30% INDIGENT) 

Economic Stability Financial 
resource strain 

Does the patient have 
insurance coverage for 
potential prescription, 
DME, and other post-
acute needs? 

“Indigent program” OR “Self-pay” 

Economic Stability Employment Income (wages, Social 
Security, welfare, etc.) 

“Referral needed” OR “Assistance 
in place” 

Neighborhood and 
Built Environment 

Quality of 
housing 

Home environment 
transitional concerns 

“No electricity” OR “No running 
water” 

Neighborhood and 
Built Environment 

Quality of 
housing 

Pt Resides in Unsafe 
Physical Environment 

“homeless” OR “unstable living” 
OR “lives in car” OR “shelter” OR 
“Haven” 

Neighborhood and 
Built Environment 

Quality of 
housing 

Discharge Destination “Shelter” OR “Foster home” 

Neighborhood and 
Built Environment 

Quality of 
housing 

Type of Residence “homeless” OR “unstable living” 
OR “lives in car” OR “shelter” OR 
“Haven” 
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SDoH Domain Dimension EHR Field or Measure Response Criteria 
Neighborhood and 
Built Environment 

Quality of 
housing 

Living Arrangements “homeless” 

Neighborhood and 
Built Environment 

Quality of 
housing 

VIII. Appropriateness 
of Physical Living 
Space & Environment 
(SIPAT) 

“3” (Limited: Unable to confirm 
reported arrangement or perceived 
to be inappropriate.) OR  
“4” (Poor: Non-existent; patient has 
no stable living arrangements -or- 
lives in environment that doesn’t 
promote transplant health.) 

Neighborhood and 
Built Environment 

Transportation Does the patient have 
transportation for PCP 
follow up and to obtain 
prescriptions? 

“No” 

Neighborhood and 
Built Environment 

Transportation Does the patient need 
discharge transport 
arranged? 

“Yes” 

Social and 
Community 
Context 

Family and 
community 
support 

Are there any custody 
orders? 

“Yes” 

Social and 
Community 
Context 

Family and 
community 
support 

Patient’s support 
system includes 

“None” 

Social and 
Community 
Context 

Family and 
community 
support 

Family Behaviors “Non-supportive” OR 
“Uncooperative” 

Social and 
Community 
Context 

Family and 
community 
support 

Care Partner/Family 
Involvement 

“Not Involved” OR “Sporadic” 

Social and 
Community 
Context 

Family and 
community 
support 

Patient/Family 
Demonstrates 
Understanding of 
Procedure Related 
Education 

“No”  

Social and 
Community 
Context 

Family and 
community 
support 

VI. Availability of 
Social Support System 
(SIPAT) 

“6” (Limited: The patient’s 
identified support system appears 
tentative, inconsistent, unreliable, 
conflicted, uncertain or 
uncommitted. Identified backup 
system’s reliability is questionable.) 
OR  
“8” (Poor: Patient unable to identify 
reliable support system, or 
identified caregiver has failed to 
present to clinic. No reasonable 
back-up support system is in place.) 
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SDoH Domain Dimension EHR Field or Measure Response Criteria 
Social and 
Community 
Context 

Family and 
community 
support 

VII. Functionality of 
Social Support System 
(SIPAT) 

“6” (Limited: Member of the 
identified support system 
themselves has problems (e.g., 
medical or psychosocial) which may 
impair or limit their ability to 
reliably assist the patient -or- The 
identified person(s) have expressed 
doubts/hesitation/conflict/) OR  
“8” (Poor: Patient has suffered due 
to unreliable support system -or- 
the transplant team has not been 
able to effectively work with the 
support team.) 

Social and 
Community 
Context 

Interpersonal 
violence or 
abuse 

Caregiver Substance 
Abuse History 

“Yes” 

Social and 
Community 
Context 

Interpersonal 
violence or 
abuse 

Caregiver History of 
Abuse/Neglect, 
Domestic Violence 

“Yes” 

Social and 
Community 
Context 

Interpersonal 
violence or 
abuse 

Is Patient at Risk for 
Suicidal/Homicidal 
Behavior? 

“Yes (Psychosocial assessment 
required)” 

Social and 
Community 
Context 

Interpersonal 
violence or 
abuse 

Evidence of 
Abuse/Neglect/Exploit
ation 

“Yes” 

Social and 
Community 
Context 

Interpersonal 
violence or 
abuse 

Physical Abuse “Yes” OR “provider concern” 

Social and 
Community 
Context 

Interpersonal 
violence or 
abuse 

Verbal Abuse “Yes” OR “provider concern” 

Social and 
Community 
Context 

Interpersonal 
violence or 
abuse 

Sexual Abuse “Yes” OR “provider concern” 

Social and 
Community 
Context 

Interpersonal 
violence or 
abuse 

Current Risk of 
Threats/Harm 

“Yes” 

Social and 
Community 
Context 

Interpersonal 
violence or 
abuse 

History of 
Threats/Harm 

“Yes” 

Social and 
Community 
Context 

Stress and 
depression 

Psychosocial Needs 
Anticipated 

“Yes” 

Social and 
Community 
Context 

Stress and 
depression 

Pt Reports Problems 
with Family Situational 
Stress 

“Yes” 
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SDoH Domain Dimension EHR Field or Measure Response Criteria 
Social and 
Community 
Context 

Stress and 
depression 

IX. Presence of 
Psychopathology 
(SIPAT) 

“6” (Severe psychopathology: 
Present or history of severe 
psychopathology (e.g., severe mood, 
anxiety or psychotic disorder with 
significant impairment of 
psychosocial functioning). Patient 
has needed psychiatric 
hospitalization(s) in the past or “+” 
history of SI/SA.) OR  
“8” (Extreme psychopathology: 
Present or severe psychopathology 
(e.g., as above) usually associated 
with repeated episodes of psychosis 
or suicidality; and associated with a 
history of multiple psychiatric 
hospitalizations and/or treatment 
with ECT; or history of multiple 
SI/SA). Patient may be in need of 
acute psychiatric intervention before 
proceeding.) 

Social and 
Community 
Context 

Stress and 
depression 

PHQ-9 Depression 
Severity 

“Severe” OR “Moderately Severe” 

Social and 
Community 
Context 

Marital status Marital Status “Widowed” AND Age > 65 
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Supplemental Table 3. Comparing 30-day vs. 90-day outcomes for readmissions and ED visits  
30-day unplanned 
readmission 

90-day unplanned 
readmission 

30-day ED visit without 
admission 

90-day ED visit without 
admission 

Predictors Odds 
Ratio 

95% CI p value Odds 
Ratio 

95% CI p value Odds 
Ratio 

95% CI p value Odds 
Ratio 

95% CI p value 

Intercept 0.04 0.03-0.05 <0.001 0.05 0.04-0.06 <0.001 0.03 0.02-0.04 <0.001 0.06 0.05-0.08 <0.001 
Age 1.06 0.79-1.43 0.699 1.11 0.84-1.45 0.473 0.58 0.40-0.85 0.005 0.49 0.36-0.67 <0.001 
Sex (Female) 0.95 0.87-1.05 0.351 0.97 0.89-1.06 0.488 1.02 0.90-1.16 0.786 1.03 0.93-1.15 0.537 
Severity of Illness 3.98 3.38-4.69 <0.001 4.73 4.07-5.48 <0.001 1.03 0.83-1.28 0.810 1.03 0.86-1.23 0.781 
Discharge 
Destination 
(Facilities) 

1.13 1.01-1.27 0.039 1.04 0.94-1.16 0.438 0.95 0.80-1.12 0.574 0.92 0.80-1.05 0.221 

Location of 
Residence 
(Albemarle 
County) 

1.32 1.18-1.47 <0.001 1.45 1.30-1.60 <0.001 2.65 2.32-3.04 <0.001 2.82 2.52-3.16 <0.001 

SDoH 2.67 2.13-3.34 <0.001 3.25 2.64-4.00 <0.001 3.64 2.72-4.86 <0.001 4.19 3.28-5.36 <0.001 
Total 
Observations 

21,402 21,402 21,402 21,402 

Random Effects 
 

ICC 0.21 0.27 0.25 0.23 
N 15,116 15,116 15,116 15,116 

 



 
 

  

Supplemental Note 1: Derivation of Governing Equations in Cylindrical Coordinates 

The dimensionless model equations (Eqs. 1-3) described in Pettet et al., Mathematical Biosciences 

1996, were converted from Cartesian coordinates to cylindrical coordinates by first defining the 

wound as a circle of radius R and rewriting the Cartesian form of the generalized, dimensionless 

governing equations (described in Pettet et al.) in general form (Eqs. 4-6), followed by evaluating 

the general forms in cylindrical coordinates. The conversion of the initial and boundary conditions 

to cylindrical coordinates is described in Section S2. 

The dimensionless governing equations in 1-D Cartesian coordinates, as defined in Pettet 

et al., are  

 (1) 

 (2) 

  (3) 

These equations can be written more generally as  

  (4) 

  (5) 

  (6) 
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where Jn, Ja, and Jb are the dimensionless fluxes of capillary tips, chemoattractant, and blood vessels, 

respectively, and fn, fa, and fb are dimensionless kinetic quantities. Note that the ∇ operator is also 

dimensionless. 

Turning to the general governing equation for the capillary tip density, n, the dimensionless 

tip flux Jn in 1-D rectangular coordinates is given by 

  (7) 

where ex is the x-direction unit vector. Eq. 7 can be rewritten more generally as 

  (8) 

Substituting Eq. 8 into Eq. 4 and expanding each term results in the following: 

 (9) 

 (10) 

 (11) 

Evaluating the r-component of the differential operators in cylindrical coordinates gives the 

desired dimensionless governing equation describing the radial distribution of the capillary tip 

density n within the wound:  

  (12) 

Turning to the chemoattractant, a, the dimensionless flux in 1-D Cartesian coordinates 

and in general differential form, respectively, is given by 
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 (13) 

 (14) 

Substituting Eq. 14 into Eq. 4 yields 

 (15) 

which is further developed by evaluating the r-component of ∇! in cylindrical coordinates and 

expanding the kinetic term fa to give the governing equation of chemoattractant in the r-direction: 

 (16) 

Applying the same approach for the blood vessel density b results in the following: 

  (17) 

  (18) 

  (19) 

Thus, the dimensionless forms of the governing equations in cylindrical coordinates are given by 

Equations 12, 16, and 19 for variables n, a, and b, respectively.  

 

Definitions of Dimensionless Quantities 

All dimensionless parameters and quantities that appear in Eqs. 12, 16, and 19 retain their original 

definitions and forms from Pettet et al. (found between Equations 9 and 10 in Pettet et al.) except 

that, instead of scaling x by L (the wound half-length in Pettet et al.), we scale the radial coordinate 
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r by R, the wound radius in our system. The characteristic length (L) in the original model 

described by Pettet et al. was L = 2.5 mm. The radius of the wound (R) described by our model in 

cylindrical coordinates is R = 5 mm. Accordingly, L is replaced with R according to R = 2L in the 

definitions of all dimensionless parameters and quantities, where applicable. The time coordinate 

t is made dimensionless in our model by scaling it by the quantity D/R2, where D is the diffusivity 

of chemoattractant. The physical interpretations of all common parameters in our model are the 

same as those described by Pettet et al. Descriptions and values for these parameters are given in 

Table 4-3.  
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Supplemental Note 2: Conversion of Initial and Boundary Conditions 

Converting the coordinate system from Cartesian coordinates to cylindrical coordinates in r 

requires that the initial and boundary conditions be rewritten accordingly with the wound center 

defined at r = 0 (instead of x = L) and the wound edge at r = R (instead of x = 0), where R is the 

dimensional wound radius. For derivatives defined at the wound boundaries, x is simply substituted 

for r in the conversion to cylindrical coordinates. After converting to dimensionless variables, the 

wound center in Cartesian coordinates at x = L becomes x = 1 after scaling x by L; similarly for r 

in cylindrical coordinates, the wound edge at r = R becomes r = 1 after scaling r by R.  

 

Dimensionless Cartesian boundary and initial conditions (from Pettet et al.) 

The following are the initial and boundary conditions used in the wound healing model described 

by Pettet et al. It is assumed that the wound margin has penetrated an initial distance  into the 

wound such that the open wound has the dimensionless width 1 − . 

 

Initial conditions: 

"($, 0) = 	 *
"#
$%! ($ − $,)(2$

! − $,$ − $,!), 0 ≤ $ ≤ $,
0,																																																		$, < $ ≤ 1

  (20) 

 

1($, 0) = 0,											0 ≤ $ ≤ 1  (21) 

 

2($, 0) = 	 34
&'(&)
$%! 5 ($ − $,)(2$

! − $,$ − $,!) + 2, 0 ≤ $ ≤ $,
27,																																																																	$, < $ ≤ 1

 (22) 

 

x!

x!
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Boundary conditions:   

!(0, %) = 	!)*!"#                   (23) $%
$& (1, %) = 0          (24) 

$'
$& (0, %) = 	−-(.(0, %)/0       (25) $'

$& (1, %) = 0          (26) 

/(0, %) = 	/0                           (27) $)
$& (1, %) = 0          (28) 

 

Dimensionless cylindrical boundary and initial conditions 

After converting to cylindrical coordinates, the above boundary and initial conditions take the 

forms listed below. It is again assumed that the wound margin has penetrated an initial distance R 

−  such that the radius of the open wound is . 

Initial conditions: 

"(8, 0) = 	 *
"#
*̃! (8 − 8̃)(28

! − 8̃8 − 8̃!),			8̃ < 8 ≤ 1
0,																																																		0 ≤ 8 ≤ 8̃

  (29) 

 

1(8, 0) = 0,											0 ≤ 8 ≤ 1  (30) 

 

2(8, 0) = 	 34
&'(&)
*̃! 5 (8 − 8̃)(28

! − 8̃8 − 8̃!) + 2, 8̃ < 8 ≤ 1
27,																																																															0 ≤ 8 ≤ 8̃

  (31) 

 

Boundary conditions:   
$%
$* (0, %) = 0          (32) !(1, %) = 	!)*!"#              (33) 

$'
$* (0, %) = 0          (34) $'

$* (1, %) = 	−-(.(1, %)/0       (35) 

$)
$* (0, %) = 0          (36) /(1, %) = 	/0                      (37) 

r! r!
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Supplemental Note 3: Discretization Method Using Finite Differences 

Forward difference method for first-order time derivatives.  

First-order derivatives in time were discretized using an explicit forward finite difference formula, 

where h = ti+1 – ti is the time step size between two discretized time points, C represents the 

concentration of an arbitrary field variable, and λ is an arbitrary constant whose definition depends 

on the specific field variable being evaluated: 

 (38) 

 

 (39) 

 

Central difference method for first-order spatial derivatives.  

First-order derivatives in space were discretized using an explicit first-order central finite difference 

formula, where k is the spatial step size in r between two discretized spatial nodes (k = rj+1 – rj), as 

follows for species C: 

 (40) 

      (41) 

 

 

Central difference method for second-order spatial derivatives. Second-order derivatives in space were 

discretized using an explicit second-order central finite difference formula: 
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  (42) 

 

  (43) 

 

Discretization of model equations in cylindrical coordinates.  

Implementation of the finite difference schemes is illustrated with the following example of 

discretizing the governing equation and boundary conditions for the density of capillary tips, n. 

Evaluating the r-component of the differential operators in cylindrical coordinates, expanding the 

differentials, and discretizing the result yields 

  (44) 

 

 (45) 

 

This discretized equation can be rearranged to solve for the dimensionless tip density n at time ti+1 

and spatial node rj (nj,i+1), given that values for n are known at spatial nodes rj-1, rj, and rj+1 at time 

point ti (represented by nj-1,i, nj,i, and nj+1,i, respectively) accordingly: 
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 (46) 

Discretized boundary conditions. Discretization of Dirichlet boundary conditions requires relating 

the concentration of species of interest at time ti to the value prescribed by the condition, as follows: 

  (47) 

  (48) 

where j corresponds to the spatial node at the wound edge. 

 No-flux Neumann boundary conditions at the wound center require that the concentration 

of a given species at the boundary node be set equal to the interior node immediately adjacent to 

it. Thus, at the wound center:  

  (49) 

 

  (50) 

 

  (51) 

 

where j in this case indicates the boundary node, located at the wound center.  

Reactive Robin boundary conditions are similarly discretized and solved. Using the 

boundary condition for chemoattractant at the wound edge as an example: 
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  (52) 

 (53) 

  (54) 

where j+1 in this case indicates the boundary node, located at the wound edge. 

 

Solutions to discretized model equations.  

At a given time point, the partial differential equations for the field variables were discretized using 

the explicit finite difference method described above. The system of algebraic equations which 

results from discretizing over the wound space domain was then explicitly solved using the known 

concentrations of the field variables from the previous time point, followed by evaluating the 

discretized boundary conditions. The system of equations was then advanced to the next time 

point, and this process was repeated until the final time point was reached. The general method is 

summarized according to the following steps: 

1) All partial differential equations were discretized using finite difference methods. 

2) Concentrations of all field variables were defined for the initial time. 

3) The model was advanced one time step, and the concentrations of all field variables 

were solved for in the bulk (i.e., everywhere except the wound center and wound edge 

boundaries). 

4) At the same time step, the concentrations of all field variables at the wound center were 

solved for using the appropriate boundary conditions at r = 0. 
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5) At the same time step, the concentrations of all field variables at the wound edge were 

solved for using the appropriate boundary conditions at r = 1. 

Steps 3-5 were repeated until the final time point was reached. 
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