

Acceptance Testing at Capital One: Technologies and Processes to Simplify the Testing

Process for Developers

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Micah William Cho

Fall 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-related Assignments

Advisor

Rosanne Vrugtman, Department of Computer Science

ABSTRACT

Capital One needed a singular and

independent acceptance testing process for

their enrollments application program

interfaces (API’s), as the existing process was

inefficient. As a Technology Intern, I utilized

a highly scalable Cucumber-based acceptance

testing suite and the configuration of a Spring

profile to eliminate the need for each

developer to undergo an individual

configuration process. Additionally, I

constructed mocked API responses using

tools such as WireMock and Postman,

making the testing process independent of all

downstream applications and endpoints.

Finally, I developed a comprehensive set of

acceptance tests in a Cucumber-based format

for several of the API’s. This new framework

saved hours of labor on the acceptance testing

process, boosting overall productivity and

allowing for more efficient changes to the

production environment. Future work

involves implementing a similar acceptance

testing suite for all of the enrollments API’s,

and potentially for API’s across Capital One’s

technology department.

1. INTRODUCTION

Time is money. This is especially true for

companies that pay employees hourly wages.

Thus, the implementation of processes to

reduce time spent on tasks that do not directly

contribute to projects, such as configuration

procedures, is imperative for efficiency.

Before this summer, the enrollments team at

Capital One utilized an acceptance testing

process that required each developer to go

through a four-step configuration process just

to run the acceptance tests. First, the

developer would have to install an Integrated

Development Environment (IDE), such as

VSCode or IntelliJ along with the Spring

framework. Next, a set of certificates needed

to be downloaded on the developer’s local

machine in a specific file path for proper

encryption and decryption. For the third step,

a set of program arguments were needed in

order to run the API’s locally. Both the

certificates and the program arguments could

only be retrieved through other developers on

the team. Finally, the developer would have

to gain access to data from secure

downstream applications which the

enrollments API’s needed access to. For a

developer with substantial experience with

Spring, this process could still take hours,

including time waiting for certificates,

program arguments, and data from other

developers, during which no work could be

performed.

In order to make this process more efficient

and reduce the time spent on the

configuration process, I proposed a

Cucumber-based acceptance testing

framework that utilized mocked data and a

preconfigured Spring properties file that did

not require individual setup for each

developer. Essentially, the proposed solution

would eliminate steps two through four in the

existing system, and would reduce the time

needed to setup the acceptance testing process

from almost a full workday to about half an

hour.

2. RELATED WORKS

A number of experts in quality assurance and

software testing are recommending using a

behavior driven development (BDD) testing

methodology, because it is easy to assimilate

the wants of the customer with the work of

the developer. Eqbal (2022) specifically

recommends a Cucumber-based framework

because it offers dependency injection

containers, which can increase efficiency and

decrease state complexity. While other

methodologies, such as test driven

development (TDD), are recommended by

other experts, my solution included a BDD

approach due to the compatibility and

simplicity of Cucumber.

Several industry professionals also

recommend using WireMock when dealing

with RESTful API’s in Java. Baihaqi (2021)

and Bolte (2023) cite the benefits of using

mocked data when performing acceptance

testing, as complications can arise from

accessing endpoints in other code bases.

Baihaqi also notes that using WireMock can

make acceptance testing significantly less

time consuming. Previously, the enrollments

team utilized Mockito, a technology with

similar function, to mock endpoint responses,

but communication with other developers on

the team revealed that Mockito is better

suited for unit tests, while WireMock was

designed specifically for integration and

acceptance testing.

3. PROCESS DESIGN

The acceptance testing process for Capital

One’s enrollments team was improved

through the incorporation of a generic, pre-

configured Spring profile, a mock

environment, a WireMock server, and a

Cucumber-based testing suite.

3.1. REVIEW OF SYSTEM

ARCHITECTURE

Figures 1 and 2 below show the acceptance

testing configuration process before and after

simplifications, respectively, were made.

Figure 1 : Existing Acceptance Testing

Process

 Figure 2 : New Acceptance Testing Process

Figure 1 shows the existing process, which

required a four-step configuration process

with multiple waiting periods. Figure 2 shows

the configuration process after my solution

was implemented, where there is only one

step in the configuration process after an IDE

is installed with no time wasted from waiting.

3.2. METHODOLOGY

In order to reduce the time spent on the

configuration process, it was imperative to

eliminate waiting periods where developers

could not do any work. Thus, elimination of

certificates, program-specific arguments, and

secure data was a primary target in the

process design.

3.2.1. KEY COMPONENTS

In order to eliminate these waiting periods, a

new approach with new components was

needed. The three major components utilized

in the implementation of my solution were a

Spring properties file, mocked data from

WireMock, and a suite of tests in Cucumber

format.

Previously, developers needed to configure

Spring properties files for the production,

non-production, and quality assurance

environments before they could begin to

contribute to code bases. In order to configure

these files, a set of certificates was needed,

which had to be retrieved from another

developer and then downloaded onto the local

machine. This process was dependent on the

availability of developers with access to the

certificates and could result in a waiting

period in which no further work could be

performed.

To eliminate this issue, I configured a Spring

properties file along with a mock

environment for acceptance testing that used

data fabricated in collaboration with a

WireMock server. With this new

configuration, data accessed in the acceptance

testing environment did not need these

certificates for encryption and decryption,

eliminating the need for developers to obtain

the certificates when not working in the

production environment.

The second key component to my solution

was WireMock stubs. These stubs contained

mocked data in JSON format so that

accessing secure data from downstream

applications and other endpoints was not

needed to perform acceptance testing. This

was an issue with the existing process, as

developers would be stuck in another waiting

period when trying to gain access to this data.

With these stubs, the Spring properties file in

the mock environment would connect to a

WireMock server and use the mocked data

from that server instead of the secure data

which required access. This allowed for an

independent acceptance testing process.

Finally, I chose Cucumber to construct the

suite of tests used for acceptance testing, as it

was easy to incorporate the WireMock server,

and because of its usage of behavior-driven

development. In order to protect proprietary

information, no other details about these tests

can be revealed.

4. RESULTS

In order to analyze the effectiveness of the

new system, other interns went through the

new configuration process. The average time

to complete setup was around half an hour.

The existing process took me almost a full

workday (eight hours) when I was first

assigned to the enrollments team. This

reduction to about 6% of the original time is a

substantial decrease and will save hours of

labor as new developers join the team. The

enrollments team will get a substantial

amount of paid hours in which new

developers can actively contribute to the code

base instead of configuring their machines.

5. CONCLUSION

Capital One needed a singular, independent

acceptance testing process in order to increase

efficiency and employee productivity. This

was accomplished by the implementation and

incorporation of a generic, pre-configured

Spring profile, a mock environment, a

WireMock server, and a Cucumber-based

testing suite. This solution condensed a four-

step configuration process that was dependent

on other developers into an independent two-

step process.

Through this project, I gained valuable real-

world experience in software development

and testing. I was able to see how a software

engineering team operates while directly

contributing to quality assurance processes.

Additionally, I acquired many new skills

working with technologies, such as

WireMock and Spring, and methodologies,

such as BDD, that I had not previously used.

6. FUTURE WORK

In addition to the enrollments team, many

other software development teams within

Capital One would benefit from this

acceptance testing process, as Spring is

commonly used throughout the company.

Future work involves implementing a similar

acceptance testing framework on the code

bases of these other teams to increase

productivity across the technology

department. I recorded documentation on my

method and processes in order to make a

broader implementation of my solution

feasible for these other teams.

REFERENCES

Baihaqi, A (2021, April 22). RESTful

Integration Testing with WireMock in Java.

Semaphore.

https://semaphoreci.com/community/tutorials/

restful-integration-testing-with-wiremock-in-

java

Bolte, D. (2023, June 22). More Than Just

Stubs. Medium.

https://betterprogramming.pub/more-than-

just-stubs-b2a7ad3742b8

Eqbal, H. (2022, April 13). Maximize

Software Testing with Cucumber Tests in

Spring Boot. Nisum.

https://www.nisum.com/nisum-

knows/maximize-software-testing-with-

cucumber-tests-in-spring-boot

https://semaphoreci.com/community/tutorials/restful-integration-testing-with-wiremock-in-java
https://semaphoreci.com/community/tutorials/restful-integration-testing-with-wiremock-in-java
https://semaphoreci.com/community/tutorials/restful-integration-testing-with-wiremock-in-java
https://betterprogramming.pub/more-than-just-stubs-b2a7ad3742b8
https://betterprogramming.pub/more-than-just-stubs-b2a7ad3742b8
https://www.nisum.com/nisum-knows/maximize-software-testing-with-cucumber-tests-in-spring-boot
https://www.nisum.com/nisum-knows/maximize-software-testing-with-cucumber-tests-in-spring-boot
https://www.nisum.com/nisum-knows/maximize-software-testing-with-cucumber-tests-in-spring-boot

