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Introduction 

It is estimated by the World Health Organization that 10 in every 1000 people are 

affected by genetic disorders, corresponding to between 70 and 80 million people affected in the 

world (World Health Organization, 2020). This makes genetic research an important area with 3 

billion dollars being spent on it each year (Hentschel, 2017). The amount of data from assay for 

transposase-accessible chromatin with sequencing (ATAC-seq) and chromatin 

immunoprecipitation (ChIP-seq) experiments has exploded over the past 10 years, increasing 

exponentially as sequencing technologies continue improving (Kodama et al., 2012). This 

increase in data can be attributed to the fact that, although the human genome has been fully 

sequenced, cells with the same genetic material can have be very different. (Alberts et al., 2002).  

The difference between cells is not determined by the DNA code, but by their 

epigenomic states. Epigenomics is the study of modifications and associations of genomic 

sequences that are responsible for the differences between cells. Epigenomic modifications vary 

based on cell type and they bring up considerations to be made in analyzing genomic data. In 

fact, failing to adjust studies for differences can limit the accuracy (Qi & Teschendorff, 2022). 

This illustrates the importance of epigenomic data in the larger realm of genetic research. 

Genomic region set data is becoming more prevalent in genomic research (Schwartzman 

& Tanay, 2015) because it gives a look at the epigenomic state to see which regions and genes 

are active in different physiological states and in distinct cell types. Even with the large mass of 

genomic region data being discovered, there still exist many cell and disease types with very 

little or no available data (Mitani & Haneuse, 2020). These data limitations exist because the 

conditions are rare or hard to access. For example, research into the rare autoimmune disease 
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alkaptonuria has stalled as there are not enough patients affected to perform high level analysis 

(Mitani & Haneuse, 2020). 

For biomedical research to progress in finding treatments for these rare diseases, there 

needs to be development in the generation of data corresponding to them. This project proposes 

the idea of utilizing existing genomic region data to create a machine learning (ML) model 

capable of generating relevant genomic region sets to a user-entered search that can then be used 

in experiments for novel biomedical analysis. This has the potential to allow for more developed 

research into rare and hard to assess genetic diseases which could lead to improved patient 

treatment outcomes. However, the integration of machine learning and artificial intelligence into 

the medical industry has lagged behind other fields. Studies have shown that only 65% of 

medical practitioners are aware of clinical machine learning, while only 10-30% have reported 

using AI in the clinic (M. Chen et al., 2022).  It is important to understand what causes this delay 

to streamline integration and improve healthcare in a way that is safe and efficient. 

The current standard for storing genomic region sets is using browser extensible data 

(BED) files (UC Santa Cruz, 2022), which contain data from many genomic regions defined by 

chromosome name, start position, and end position. These regions were all generated in the same 

experiment and as such are biologically related. Typically, BED files are accompanied with 

meta-data annotations which contain text descriptions of the data, often including the cell line 

and antibodies associated with the experiment. 

The goal of this project is to create an interface that allows generation of BED files from 

English language input. Currently, the only way to find relevant genomic data is to use a service 

like genemo.org (Zhang et al., 2016). This site utilizes pattern-matching to find similar BED files 

from an input BED file. It compares the input file to the entire Encyclopedia of DNA Elements 
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(ENCODE database), which is a comprehensive collection of data from the National Human 

Genome Research Institute (Abascal et al., 2020). While this system can accurately find similar 

BED files, it requires a BED file as input and only retrieves existing files rather than generating 

new data. This project seeks to improve on this in two ways: being able to use English language 

text as input and being able to generate novel data. 

 

Representation Learning and Generative AI for Genomic Regions  

To be able to accomplish the association from text to genomic regions, there must be a 

way to represent both entities as comparable dense vectors called embeddings. There already 

exists effective ways to represent text with technologies such as Google’s word2vec (Mikolov et 

al., 2013). The project will utilize a system developed by researchers at the University of 

Virginia that can represent genomic region sets as 100-dimensional vectors that retain biological 

characteristics (Gharavi et al., 2021). This same team has also shown that it is possible to relate 

text to genomic region sets using vector embeddings although no generative work has been done 

(Gharavi et al., 2023). 

To be able to train a generative model, a dataset of corresponding region set embeddings 

and text embeddings is needed. To do this, BED files from the ENCODE database, which 

aggregates data from thousands of different experiments, will be run through the existing model 

to source the region set embeddings, and the corresponding descriptions will be input into 

word2vec to create the text embeddings. This data will then be used to train four separate 

generative models using the PyTorch framework: a text to bed neural network, a direct encoder, 

a diffusion model, and a transformer. Each of these models will be attempted by a separate team 

member, with my focus being on the diffusion model. A diffusion model was chosen as it has 
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recently been shown to be productive in generating biodata such as protein backbones (Guo et 

al., 2023). These models are used to generate new data through an iterative process of noising 

and denoising data using a series of complex mathematical operations. 

Once trained, these models will take in text embeddings and output a region set 

embedding to be decoded by the system designed by the UVA researchers. This process is 

illustrated in figure 1. The final system will only utilize one of these models which will be 

selected by determining which generates the most accurate BED files through comparison to 

existing BED files. 

 

 

Figure 1: Comparison between the existing standard for finding BED files and the proposed new 

system. Note: Only one of the four models will be used in the final process all four are shown 

for completeness.  
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The final step is to develop a web interface, which allows users to input English language 

and generate BED files to allow easy access to researchers and other users. If successful, this 

capstone project would allow researchers to find relevant genomic region sets by inputting 

English language descriptions such as: “H34me3 histone modification on HCC1937 cell line.” 

The final product is a ML technology that will attempt to assimilate into the healthcare industry, 

which has been known to resist such integrations. This makes it important to analyze the effect 

that the product may have in the complex world of medicine as well as the development of the 

model and the collection of data. 

 

Sociotechnical Analysis Using Infrastructure 

 There are various human and social factors to consider when developing this analysis. It 

is important to think about the impact of the many social groups connected to the project, 

especially researchers, physicians, and patients. One of the biggest concerns with any ML 

technology is data privacy. It has long been shown that patients are weary of allowing use of 

medical data as it contains sensitive information such as family history and health conditions 

(Sorani et al., 2015). For this reason, it is imperative that data is anonymized and protected. The 

data for this project is from an open-source collection of independent experiments. All the data is 

anonymous and contains only information needed for the analysis.  

Another concern with ML in healthcare is the exasperation of disparity and inequity in 

the industry. Evidence has been found that ML algorithms regularly underperform on women 

and racial minorities due to unrepresentative data sets (I. Y. Chen et al., 2021). A further 

consideration is how ML is advertised to patients and research participants. Oftentimes they are 

marketed as “democratizing healthcare” and “personalized medicine,” but these labels are often 
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overselling the product. Studies have shown that marketing like this is purposefully misleading 

and has been used to coerce patients into giving access to data with purposefully vague promises 

(Roth & Bruni, 2022). 

 It is also important to examine how researchers and physicians will interact with ML 

technologies. Doctors are known to be a stubborn crowd, and do not like to adjust their routines 

(Roberts et al., 2021). Researchers are also likely to want to incorporate any new system with the 

ones they already use. This makes it important that conventions such as file type, interface, and 

accessibility are followed to ensure models are compatible with existing systems. 

 When considering the effects that these factors have on this technology, Susan Leigh 

Star’s framework in The Ethnography of Infrastructure gives insight into this relationship (Star, 

1999). In this article she lays out several aspects of infrastructure that relate technologies to 

society. The first aspect, built on an installed base, means that systems are not completely built 

from scratch; rather, they use existing technology to build upon in new ways to gain 

functionality. Essentially, old technologies are used as the basis for new ones. In the context of 

this project this can be seen in the adaptation of the existing word2vec to create vector 

embeddings for genomic regions (Gharavi et al., 2021). She also includes the idea of 

embeddedness, which means that a system is fit into other systems hiding their innerworkings 

from the eye of the public. In essence, new technology is sunken into existing systems and 

structures to seamlessly integrate with the infrastructure. The final search engine embodies the 

idea of embeddedness in that it hides the inner model behind a usable interface. The aspect of 

links with conventions of practice means that a technology or system must comply with certain 

standards or conventions whether legal or common practice. In other words, a new technology 

must fit within the common ways that the community utilizes similar technologies to 
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accommodate users. This applies to the project in that it will cooperate with conventions of 

practice such as the use of BED files to ensure that users are willing to adopt the new system. 

 

Research Question and Methods 

 In recent years the amount of research into machine learning for medical applications has 

dramatically increased. There are now technologies that exist that can outperform physicians 

such as algorithms that detect eye diseases (Abràmoff et al., 2018) and apps that can diagnose 

skin cancer using only a cell phone camera (Freeman et al., 2020). Despite this, if you were to 

walk into the nearest doctor’s office or hospital, it is unlikely that you would see anyone using a 

ML technology. In fact only 12% of hospital CIO’s listed utilizing AI as an initiative in 

improving care (Stoltenberg Consulting, 2023). So, what has caused the integration of machine 

learning to be slower in the medical industry compared to other fields? 

 To answer this question, I will gather information from medical professionals employed 

at UVA health facilities utilizing my connections with research faculty. This will include 

conducting interviews with several doctors and other professionals through people I know within 

the health system. Data collected from the interviews will include answers to the questions: do 

they currently use machine learning in their workflow, are they opposed to machine learning in 

medicine, and whether they would be willing to integrate a new technology if it meant they had 

to change their standard procedures among others. 

 Analysis of this data would give insight into the current use of ML at UVA health, 

whether UVA health employees are willing to adopt new technologies, and what reasons are 

being given for reluctance. The responses will be analyzed in the context of Star’s infrastructure 

framework to discover where integration goes wrong and what aspects are falling short. Once 
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data is analyzed, steps can be made to address concerns and shortcomings of technologies to 

increase the likelihood of adoption into practice. 

 

Conclusion 

 As genomic region data continues to grow, many rare and inaccessible cell conditions 

remain without viable data. It is necessary to find a way to generate data for these conditions, so 

that more research can be done to increase knowledge and potentially develop life saving 

treatments. The aim of this project is to create an interface where such data can be generated 

using a machine learning model to rectify data deficiency. New machine learning technologies 

are being made every day, yet their full effects have not been realized. Analysis of data from 

healthcare professionals can bring insights into why this is the case and how these technologies 

can be designed and marketed in ways that make them more acceptable. 
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