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Abstract

Advancement of Hyperspectral Image Unmixing and Analysis: An
Application in Mineral Detection and Identification

Jade Baker Preston

This dissertation contributes to data science by addressing theoretical and practical chal-
lenges to advance hyperspectral image analysis. Hyperspectral imaging captures high di-
mensional spectral information at the pixel level, enabling enhanced material detection and
identification. A common process in hyperspectral image analysis is spectral unmixing —
the task of identifying pure materials, from an observed pixel spectrum and estimating their
relative abundances.

Spectral unmixing is often framed as a regression problem, with Ordinary Least Squares
(OLS) regression serving as a foundational approach. Despite its widespread use, the as-
sumptions underlying OLS and its extensions are seldom articulated, particularly in the
context of spectral unmixing. This body of work compares a variety of unmixing techniques,
but also incorporates an explanation of the algorithmic assumptions and relationships be-
tween OLS and its extensions contributing to their unmixing success and failure. Through
outlining the OLS assumptions, we identify alignments and misalignments with the practical
demands of spectral unmixing and develop a novel technique addressing these discrepancies.

Through this exploration, the research also addresses foundational questions in data
science: To what extent do algorithmic assumptions reflect real-world phenomena, and how
can models balance algorithmic complexity with practical generalizability? Much of the
research contributing to hyperspectral imaging involves developing or enhancing unmixing
algorithms rather than evaluating them. These research questions guided the development
of a comprehensive benchmarking framework. The framework evaluates techniques using
metrics such as root mean squared error (RMSE), computation time, model size, percent
detection, and average precision of the top-K results. To date, no study has integrated this
breadth of unmixing techniques and evaluation metrics into a single framework.

Beyond evaluation metrics, we contribute to the theoretical foundation of unmixing by
examining the physical-chemical phenomena contributing to material identification. We de-
velop a spectral taxonomy classifying minerals based on their molecular design structure,
providing insights into spectral material patterns and detection strengths of various tech-
niques. Our analysis reveals two core findings: 1) technique success depends on the primary
objective of the study and 2) the minerals included in the mixture model were either the
target mineral (successful detection), a substitution from the same mineral category as the
target, or a mineral with similar spectral pattern features (failed detection).
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1. ASD - Analytical Spectral Device

2. AVIRIS - Airborne Visible/Infrared Imaging Spectrometer
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1 Introduction

**This introduction provides a thorough foundation of hyperspectral imaging concepts.**

1.1 Importance of Hyperspectral Imaging

Figure 1.1: Display of a conceptual hyperspectral image and the associated material spectra
from pixels in the image.

Everything on the earth’s surface, natural and man-made, has a unique spectral signa-

ture or spectrum that is characteristic to its material properties. A spectral signature is a

substance’s distinctive pattern of reflected or emitted electromagnetic radiance arriving at

a sensor’s field of vision (FOV), and measured over a continuous range of wavelengths [1],
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[2]. The features defining each spectral signature indicate the molecular structure, chemical

properties, physical attributes, and environmental conditions associated with the substance.

Because of this key environmental phenomenon, hyperspectral imaging has made great ad-

vances in the fields of Spectroscopy and Remote Sensing over the past three decades.

Hyperspectral imaging is an imaging technology that captures the electromagnetic radi-

ation across a wide range of wavelengths, enabling the detailed characterization of materials

based on their spectral signatures. Figure 1.1 provides a conceptual display of hyperspec-

tral imaging, illustrating the spectral signatures associated with individual substances. Each

spectral signature in the figure corresponds to a pixel representing a single substance (though,

in practice, pixels often contain multiple substances). Natural material — i.e. vegetation,

water, soil, and atmosphere — as well as man-made material — i.e. buildings, roads, and

vehicles — follow different spectral patterns. The high resolution characteristic to hyper-

spectral imaging allows for increased precision of material identification and delineation.

Ultimately, hyperspectral images have played a crucial role in mineral detection, agricul-

tural and environmental monitoring, pollution surveillance, medicine, military applications,

and water purity assessment [3]–[5].

1.1.1 Imaging Platforms

Spectroscopy can be characterized as the analysis of electromagnetic radiation mapped as a

function of wavelength. This mapping — also known as spectral signatures — is a measure-

ment of the interaction between electromagnetic radiation and matter [6], [7]. Remote Sens-

ing is the study of acquiring and understanding spectral information at a distance or without

direct contact [8], [9]. Spectral data can be obtained from sensors embedded in a multitude of

platforms to include remote sensing instruments — satellites, aircrafts, drones, balloons, or

space shuttles — as well as direct sensing instruments — laboratory, car-mounted, or hand-

held spectrometers [10]–[13]. Figure 1.2 displays a theoretical application of remotely sensed

data accessed via aircraft imagery. Two of the most common tools used to acquire spectral
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data — and the instruments focused on in this study — are via handheld spectrometers and

airborne observation.

Figure 1.2: Illustration of remotely sensed spectral data using aircraft imagery.

1.1.2 Hyperspectral Imaging Foundations

Remote Sensing Developments

Hyperspectral imaging is considered a remarkable advancement evolving from the broader

field of remote sensing. Though remote sensing — coined in the 1960s by scientist Evelyn

Pruitt — has a long history arguably tracing back to ancient times, hyperspectral imagery has

a distinct origin stemming from the inadequacies of multispectral imagery [14]–[16]. Charles

Cohen credits the human eye as the start of remote sensing and notes certain revolutionaries
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such as Galileo and Newton as milestone contributors [15]. Campbell et al. begin their

remote sensing timeline in the 1800s with Sir William Herschel’s infrared discovery [14].

Arthur Cracknell attributes substantially later contributions such as Neubronner’s homing

pigeons in 1907, polar orbiting beginning in the 1960s and weather satellites in the 1970s

[17]. Conversely, hyperspectral imaging is a relatively modern innovation, which emerged to

address the limitations of multispectral systems such as Landsat Multispectral Scanner [18].

Multispectral Developments

David Landgrebe authored numerous papers discussing multispectral analysis and later its

implications to hyperspectral imagery. He attributed the development of multispectral analy-

sis and satellite observation to four key historical factors: the creation of the digital computer,

successes in pattern recognition, the race for space superiority, and the need for global re-

source management [19]–[22]. Space-based technology and eventually mutispectral imagery

was an efficient economic response to obtaining and processing larger amounts of the earth’s

data. Satellites provided the ability to procure increased regional information on varying

targets sizes (i.e crops), but resulted in a costly resolution payload [21], [22]. Thus the re-

searchers began to glean information from electromagnetic “fingerprints” produced by the

interaction of light energy and matter, also known as spectral data [18].

Hyperspectral Developments

Shen-En Qian explains the progression to hyperspectral image analysis resulted from the

inability to discriminate mineral components or soil mixtures obtained from multispectral

imagery. Researchers recognized the enhanced resolution capabilities of portable or labora-

tory spectrometers compared to satellite sensors and subsequently sought to improve remote

sensing platforms. Qian also provides a detailed overview of air and space borne hyperspec-

tral imagers. The first airborne hyperspectral imagers were developed in the 1980s led by the

United States Airborne Imaging Spectrometer (AIS) and Airborne Visible/Infrared Imaging
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Spectrometer (AVIRIS) and Canadian Fluorescence Line Imager (FLI), Compact Airborne

Spectrographic Imager (CASI) and Shortwave-infrared Full Spectrum Imager (SFSI). Later

in the 1990s, hyperspectral imagers aboard satellites were produced. At the time of Qian’s

article (2021), 25 spaceborne hyperspectral imagers existed, with five more scheduled to be

launched in this decade [18]. Since Qian’s article, Environmental Mapping and Analysis

Program (EnMAP) was launched via SpaceX Falcon 9 rocket in April 2022, Moons And

Jupiter Imaging Spectrometer (MAJIS) was launched via JUpiter ICy moons Explorer in

April 2023 and Ocean Color Instrument (OCI) aboard Plankton, Aerosol, Cloud, ocean

Ecosystem (PACE) spacecraft was recently deployed in February 2024 [23]–[25].

1.1.3 Light Terminology, Attributes, and Measurements

Electromagnetic radiation —– often referred to as light –— consists of energy emitted, ab-

sorbed, or reflected by substances in the form of tiny particles called photons. This energy

propagates through space as electromagnetic waves [26], [27]. Photons represent the small-

est discrete units of electromagnetic energy [28], [29], and their propagation refers to the

wave movement and transfer of energy from a source through space. Electromagnetic waves

are defined by perpendicular, oscillating electric, and magnetic fields [26], [30]. Figure 1.3

illustrates the oscillations of the electric field (in red) and the magnetic field (in blue). The

black arrow indicates the direction of wave propagation, also known as energy flow or photon

movement [26], depicting the relationship between these fields in electromagnetic waves.

Electromagnetic waves can be characterized by their frequency and wavelength, which

together determine their position on the electromagnetic spectrum. The electromagnetic

spectrum includes seven main categories: gamma rays, x-rays, ultraviolet radiation, visible

light, infrared radiation, microwaves, and radio waves [26]–[28]. Figure 1.4 provides a visual-

ization of classifications within the electromagnetic spectrum. The left side of the spectrum

represents the shortest wavelengths, which correspond to the highest frequencies. Wave-

lengths on this end (i.e. ultraviolet and x-rays) can pose greater harm to humans due to
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Figure 1.3: Simplified visualization showing the two components of an electromagnetic wave:
the electric and magnetic fields. The oscillations of these fields are perpendicular to each
other and to the direction of wave propagation [26]–[28].

their high frequency [30]. The visible spectrum — which lies between ultraviolet and infrared

wavelengths — represents the portion of wavelengths that are detectable to the human eye.

These visible wavelengths range roughly from 400 to 700 nanometers (nm). The right side

of the spectrum encompasses the longest wavelengths, which correspond to lower frequencies

of radiation [26], [28].

Radiance — measured in watts per square meter per steradians (W/m2/steradian) — is

the quantified measurement of electromagnetic radiation reflected or emitted from a surface

in a specific direction. Hyperspectral imaging analysis focuses primarily on radiance reflected

off surfaces. Consequently, radiance is often converted to reflectance, a unit-less quantity

ranging from zero to one. This converted measurement represents the proportion of radiation

or light reflected by the surface and typically expressed as a percentage [14], [31]. Figure 1.1

illustrates in the line graph the percent reflectance measurements for each spectral signature

at their corresponding wavelengths.
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Figure 1.4: Illustration of the electromagnetic spectrum showcasing various types of electro-
magnetic radiation, from gamma rays to radio waves. Accompanying images (beneath each
category name) visually represent the relative sizes of their wavelengths, highlighting the
diverse range of frequencies and energies that characterize different regions of the spectrum.

1.1.4 Data Collection and Sampling

Researchers collecting spectral data implement four main sampling processes: spectral, spa-

tial, temporal, and radiometric [28], [31]. Each process addresses a different aspect of data

collection — spectral sampling measures reflectance across various wavelengths; spatial sam-

pling captures spectral information from different locations or pixels; temporal sampling

accounts for changes over time; and radiometric sampling ensures the accuracy and consis-

tency of reflectance measurements [7], [31]. The two methods focused on in this study are

spectral and spatial sampling.

A simplified example of spectral sampling can be described using the visible spectrum

of light which encompasses wavelengths corresponding to the spectral bands of violet, blue,

green, yellow, orange, and red. Figure 1.5 displays discrete points representing the percent
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reflectance at three contiguous narrow spectral bands within the blue, green, and red visible

range. These spectral bands correspond to specific ranges of wavelengths on the electromag-

netic spectrum. Due to the individual properties of the materials in the conceptual image,

objects appear dark or have lower percent reflectance regardless of the spectral band. In

practice, procured spectral data are measured by the reflectance percentage over a large

number of spectral bands [1], [31] — not just three or seven bands. The amount of spec-

tral bands can vary. Researchers in the Hyperspectral field of study focus on spectral data

mapped over hundreds of spectral bands typically spanning between 0.4-2.5 micrometers

(µm) or 400-2500 nm. This region of bands includes the visible, near-infrared (VNIR), and

most of the shortwave infrared (SWIR) light spectrum [3].

(a) (b)

Figure 1.5: Display of the reflectance values of specific wavelengths corresponding to blue,
green, and red color bands on a conceptual hyperspectral image.

While spectral sampling provides information about how materials reflect light across

wavelengths, spatial sampling allows us to analyze the distribution of these materials in a

given area. Specifically, spatial sampling refers to the selection of two-dimensional locations

on the hyperspectral image, typically at the pixel level [31]. The ground sample distance

(GSD) in an image is the distance on the ground between the centers of two neighboring

pixels. GSD has also been used to represent the area that each pixel covers on the ground.

Figure 1.2 illustrates spatial sampling on the conceptual image. The sensor embedded on the

aircraft captures the regional data in the scene at the pixel level. If we imagine the region
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on the ground corresponding to a pixel as a rectangle, the GSD corresponds to the length

of the rectangle and is often thought of as a measure of pixel size or an inverse measure of

spatial resolution. Each pixel represents a sample of light reflectance from a specific region

in the image and can be used to identify substances in that location [31], as well as assist in

the detection of similar materials in other areas of the image [32].

Figure 1.6 represents the results of spectral and spatial sampling. The left of the figure

displays a three dimensional hypercube. Spatial sampling is accomplished by selecting a pixel

or pixels on the x and y plane. Spectral sampling is indicated by the vector z and represents

the spectral bands characterizing each pixel. The figure also shows a selected pixel capturing

a soil region. This selected pixel has corresponding spectral information which is represented

by the plotted spectrum.

(a) (b)

Figure 1.6: Depiction of the spectral signature from a soil pixel on a conceptual hyperspectral
image. The plot illustrates the percent reflectance of light across a wavelength range from
400 to 2500 nm.

1.1.5 Spectral and Spatial Resolution Trade-off

Spectral resolution refers to the width — or number — of spectral bands used to measure

material reflectance across the electromagnetic spectrum. Increasing spectral resolution in-

volves narrowing the bands (across a set spectral range), which in turn provides finer detail

and allows for more precision. Spatial resolution, on the other hand, defines the sensor’s
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ability to capture small distinct objects within a particular area [1]. Even though GSD

can in certain scenarios be smaller than the sensor spatial resolution, the terms GSD and

spatial resolution are often used interchangeably [31]. Increasing spatial resolution involves

enhancing the sensor’s optics and reducing the pixel size, allowing researchers to capture finer

details. While the aperture (the “eye” of the sensor) controls light intake, improvements in

spatial resolution typically depend on enhanced sensor design and optical quality. Hyper-

spectral sensors typically have a higher GSD (larger pixel size) than multispectral sensors

of similar construction and noise levels. Similarly, multispectral sensors have a higher GSD

than comparable panchromatic (single band) imagers.

A unique trade-off between spectral and spatial resolution arises with the acquisition

of hyperspectral images [4] — increasing the spectral resolution (adding more bands) vs.

increasing the spatial resolution (more pixels per area). The signal-to-noise ratio (SNR)

associated with hyperspectral data can decrease as the number of spectral bands increase,

because the intensity of reflected electromagnetic radiation (the signal) is divided across

more bands, resulting in reduced signal strength per band. Enlarging the pixel size or GSD

can improve the SNR as larger pixels collect more light, leading to stronger signals. However,

this increase in pixel size may result in lower spatial resolution of the image, making it harder

to discern fine details. The primary use of hyperspectral imagery is to provide useful spectral

information (high SNR, high spectral resolution). Thus, these images have a relatively low

spatial resolution [4], [33]. Because the GSD of hyperspectral sensors is generally large —

often due to the need for larger pixel sizes to accommodate the many narrow spectral bands

resulting in lowered SNR — the spectrum measured from a pixel often represents a mixture

of the spectra of the individual pure materials present.
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1.2 Mixed Pixel Phenomenology

If only one material is present at the location measured by a pixel, the pixel is called a

“pure pixel” and the spectrum for the pixel will be the spectrum for the given material

[34]. However, the large pixel size associated with hyperspectral imagery as well as the

phenomenology involved (i.e. atmospheric effects, material-to-sensor distancing, material-

to-material proximity or a combination of these) imply that in most situations pure pixels

are rare, and the measured spectrum is a mixture of the spectra of the individual materials

[35].

The mixture of materials in the area represented by a pixel can be categorized as a linear

or nonlinear mixture of spectra. Linear mixing occurs when the area measured by the pixel

spectrum consists of one or multiple materials and light reflects off only one of the material at

a time before reaching the sensor [36]. This is common when the materials occupy adjacent

regions in the area covered by a pixel. An example of this scenario could be when the region

on the ground measured in the pixel includes both a car and road surface around the car. Or

as it pertains to this body of work, a pixel covers two distinctly separated minerals. Figures

1.7a and 1.7b display these examples, respectively.

Nonlinear mixing occurs when the measured pixel spectrum contains contributions from

multiple materials, and the arrangement of these materials results in complex light interac-

tions, such as multiple scattering or nonlinear reflectance effects [32], [33], [37]. There are

various types of nonlinear mixture scenarios, but one that commonly occurs is when the in-

dividual materials are powders or grains, and the pixel area involves particles from multiple

materials mixed together. In this arrangement, called a microscopic or intimate mixture [32],

[33], light makes multiple bounces off of (and/or transmission through) different materials

in the pixel area before reaching the sensor. Another nonlinear mixture can also occur when

light passes through vegetation leaves and reflects off materials underneath before returning

to the sensor, creating a canopy effect [33]. Figure 1.8 displays two mixture scenarios for
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(a)

(b)

Figure 1.7: Presentation of two linear mixture examples: car on the road illustration (1.7a)
and adjacent mineral composition (1.7b)

comparison. Figure 1.8a provides an example of a linear mixture of the minerals alunite and

kaolinite. Conversely, an example of nonlinear mixing is shown in Figure 1.8b. To create the

nonlinear example, the we ground the alunite and kaolinite samples shown in Figure 1.8a

to obtain granular alunite (on the left in Figure 1.8a) and kaolinite (on the right in Figure

1.8a). Spectra of these granular materials were measured with a portable Analytical Spectral

Device (ASD) field spectrometer — 2151 bands from 350-2500nm — and are shown in Figure

1.9 (left and center, respectively). We mixed the granular materials together vigorously. The

resulting nonlinear-mixed spectrum shown is in the right-hand side of Figure 1.9.
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(a) (b)

Figure 1.8: Example of two types of mixture scenarios. Figure 1.8a is an example of a linear
mixture of two materials. Figure 1.8b is a potential nonlinear mixture example where the
components in the image are intimately mixed.

1.3 Data Sources

Hyperspectral data incorporates information primarily from two sources: spectral libraries

and imagery from sensors and spectral libraries. The observed data is typically collected

through advanced imaging systems, as discussed in section 1.1.1). One of the most widely

used systems, and the one employed in this work, is the AVIRIS. Developed by NASA’s Jet

Propulsion Laboratory (JPL), AVIRIS is designed to provide high-resolution spectral data

across the VNIRSWIR ranges. The spectral features of the instrument currently capture data

across 224 contiguous spectral bands, covering wavelengths from 380 to 2500 nm with each

band approximately 10 nm wide, allowing for fine discrimination of material composition

[38], [39]. AVIRIS balances the spatial and spectral resolution, delivering a high SNR that

typically exceeds 1000:1 [40]. This means the actual signal (a surface’s reflected or emitted

light) captured by AVIRIS is over 1000 times stronger than the background noise (e.g. sensor

error, atmospheric effects, etc.)

The reference spectra, used to match the observed data, can be derived either directly
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from the hyperspectral image or from pre-existing spectral libraries. Some of the most com-

monly used libraries include the ECOsystem Spaceborne Thermal Radiometer Experiment

on Space Station (ECOSTRESS) library and the United States Geological Survey (USGS)

library [41], [42]. The ECOSTRESS spectral library — formally known as the Advanced

Spaceborne Thermal Emission Reflection Radiometer (ASTER) spectral library — was cre-

ated in 2018 in response to the launch of ECOSTRESS and its mission. The ECOSTRESS

library contains all the spectra from the ASTER library, along with the addition of 1,116 veg-

etation spectra [41]. The ASTER library includes spectra of natural materials — e.g. snow,

ice, rocks, minerals, lunar soils, terrestrial soils, and vegetation — and manmade materials

from the JPL, Johns Hopkins University, and USGS [43].

Research Specifics

This body of work focuses on a subset of the AVIRIS image consisting of 400 x 350 pixels.

Regions within the subset of the AVIRIS image were selected and employed as the observed

pixel spectra. These observed pixels – regions of interest (ROIs) – were collected using the

python package “Hyperspectralpy.” Using this package, we can export the selected pixels’

location in the image and associated spectral information for selected pixels to a .csv file

[44]. The USGS library, specifically USGS Spectral Library version 7 (splib07a) [42] include

the reference spectra employed in this research effort. The USGS splib07a spectral library

contains 481 spectra of known mineral samples [38], [45].

1.4 Spectral Unmixing

Every observed pixel spectrum can be described by their pure material spectral signatures

and associated fractional abundances [5], [46]. The abundance of each constituent spectrum

in the pixel spectrum corresponds to the fractional abundance of area in the pixel occupied

by the material [32], [47]. This process of identifying the pure materials in a pixel and
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estimating material abundances is called spectral unmixing [33].

1.4.1 Linear Mixture Model

In line with different mixture compositions, spectral unmixing algorithms are generally char-

acterized by two main approaches: linear mixture modeling (LMM) and nonlinear mixture

modeling (NLMM) [32], [48]. Linear unmixing approaches assume the observed mixed pixel

spectrum can be represented as a linear combination of pure materials and their fractional

abundances [1], [33], [49]. More specifically, light photons are assumed to be reflected off

only one material at a time before returning to the sensor [50]. Figures 1.7a and 1.7b depict

cases where a LMM is appropriate. Ideally, the observed pixel spectrum from Figure 1.7a

would be the linear mixture y = acsc + arsr where sc and sr are the spectra of the car and

road, and ac and ar are the fraction of the area measured in the pixel occupied by the car and

road, respectively [51]. It is important to note that the model representing the pixel shown

in Figure 1.7b follows an identical structure. The standard LMM formula approximating the

observed spectrum and representing a weighted sum of the spectra of individual materials

[32], is shown below:

y =
N∑
i=1

aisi + ϵ = Sa+ ϵ (1.1)

where:

y = observed spectral vector

si = spectral signature of the ith material

ai = fractional abundance of the ith material

N = number of constituent spectra

S = matrix of constituent spectra

a = vector of fractional abundances

ϵ = additive noise vector (error term)

In Equation 1.1, y is an M x 1 vector representing an observed pixel spectrum, where M

is the total number of spectral bands. Each si is also a vector of size M x 1, representing the
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spectrum of an individual material present at the pixel’s location. The relative fractional

abundances associated with each material is represented by the scalar value ai. The terms,

si and ai are summed across all N of the constituent spectra. In matrix notation, the linear

mixture model becomes Sa+ϵ, where S is an M x N matrix with each column corresponding

to a spectral signature si and each row corresponding to a specific spectral band. Each of

the abundance values ai are components of a, an N x 1 abundance vector. The noise term

ϵ is an M x 1 vector representing the error values across the spectral bands.

The spectra si are sometimes called endmembers, particularly in the context of linear

unmixing when a single fixed set of si — serving as the reference spectra — is derived

directly from the image pixels. If the materials that are present in the pixel are known, then

unmixing only requires finding the abundances that minimize the error in Equation 1.1.

However, usually the set of materials in a pixel are not known prior to analysis (a priori),

requiring the selection of si from a potentially large library of reference materials. In this

body of work, we will use the term endmember only for the spectra si which are pixel spectra

from an image. Since our emphasis is on unmixing with spectra of known materials from a

library, we refer to the si using the general term “constituent spectra.”

Delineation between endmembers can be somewhat subjective [32] and dependent on the

analysis objectives. For example, if a pixel contains both soil and vegetation, there could be

two end members in a scene. Alternatively, we could increase our enumeration to include the

various minerals within the soil as well as the multiple types of vegetation also within the

pixel [32]. Often by increasing the number of endmembers in a pixel, the unmixing problem

can grow in complexity [33].

Extraction, Detection, Identification, Inversion, and Classification

Extraction, detection, identification, inversion, and classification are related terms regarding

procedures associated with hyperspectral image processing and unmixing. Keshava et al.

explain three primary steps involved in linear unmixing: dimension reduction, constituent
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spectra determination, and inversion. These steps have been implemented simultaneously

as well as consecutively in the unmixing process [33], [52]. Researchers often refer to the

term extraction during the dimension reduction phase of unmixing. Due to the inherent,

high dimensionality of hyperspectral data, feature extraction can be performed to remove

unnecessary information and computational load of the preceding steps. However, this step

is considered optional. Some examples of feature extraction steps include: variations of

principle component analysis (PCA) and maximum noise fraction (MNF) [53].

An alternative use of the term extraction — regarding hyperspectral analysis — arises

from endmember extraction. Many approaches (e.g. pixel purity index, N-FINDR, and iter-

ative error analysis) have been developed to extract pure materials directly from the image

pixel [5]. Detection and identification are associated with the constituent spectra determi-

nation phase. Researchers characterize detection as deciphering the spectra that are rare or

uncommon in comparison to the surrounding spectral information. The identification step,

in constituent spectra determination, is often executed after detection. In the identification

stage, these anomalies are matched to one or many materials within a spectral library [51],

[54]. Inversion is the final step in the unmixing process. The inversion phase refers to the

process of estimating the abundance of the determined material in the scene. Image classi-

fication (in the context of this paper) is broadly defined as the ultimate goal of unmixing.

Conversely, classification can also be referred to as the process of assigning material labels

to pixels with the use of a classifier (e.g. a neural network) and training data [54].

1.4.2 Nonlinear Mixture Model

There are situations where the function used to approximate y based on the constituent

spectra si (the right-hand side of Equation 1.1) is not linear. The process of determining the

coefficients or parameters for this function is called nonlinear unmixing. Nonlinear unmixing

approaches do not assume the observed pixel spectrum is generated by a linear combination

of the endmembers. Instead, they account for more complicated interactions between light
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Figure 1.9: Display of granular mineral compositions: alunite, kaolinite, and a mixture
of the two minerals (from left to right). Underneath each image is their associated pixel
spectrum.

and materials [37]. The alunite-kaolinte intimate mixture shown in Figures 1.8b and 1.9

could be modeled using nonlinear unmixing techniques.

A polynomial function is the most common form of nonlinear unmixing, where higher

order terms are used to model multi-bounce photon trajectories and other nonlinear in-

teractions. The coefficients of these higher-order terms quantify the contribution of these

interactions to the observed spectra. While the polynomial regression formula is nonlinear

with respect to the constituent spectra si, it is linear with respect to the individual terms,

and thus readily solvable when the number of distinct constituent spectra is small. There are

various other types of nonlinear mixture models such as bilinear models, the Hapke model

and neural networks to name a few. Selection of approach depends on the composition of

the pixel and the goal for unmixing. Though nonlinear models have the potential to achieve

higher accuracy in abundance estimation, certain nonlinear models demand information that

is not easily obtained by researchers [55].

Natural mixing can cause materials to become intimately mixed, making it challenging to

distinguish endmembers and estimate abundances using linear methods [37]. Implementation
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in certain scenarios (e.g. intimately mixed material) runs the risk of decreased accuracy

in abundance estimation [56]–[58]. However, many of spectral unmixing studies focus on

linear unmixing because of its faster computation and acceptable approximations for real

world scenarios [32], [59], [60]. Manolakis et. al asserts that exact fractional abundance

measurements are not necessary to assess model quality. “Goodness of fit” estimates — like

mean squared error (MSE) or root mean squared error (RMSE) — suffice [51]. Thanks

to research by authors like Combe et al., Heylen et al., Heinz et al., Schmidt et al., and

Themelis et al., linear mixture modeling has been widely implemented in unmixing pixel

compositions, even in cases where potential nonlinear interactions may be present [55], [56],

[61]–[63]. The performance of the implemented linear techniques will also be compared to

alternative NLMM approaches.

1.5 OLS for Unmixing

The LMM — depicted by Equation 1.1 — is often framed as a regression problem [33], [37]

with OLS being a commonly implemented modeling method [64], [65]. In OLS regression, we

estimate the model parameters by minimizing the sum of squared differences — also known

as the residual sum of squares — between the observed and inferred reflectance values [64].

Alternative regression approaches exist (e.g. generalized or weighted least squares), but this

body of work focuses on OLS because it serves as the baseline for most unmixing techniques

[65]. In the OLS model, the observed mixed pixel spectrum is represented by the dependent

variable y, and can be further described as a vector of the pixel’s recorded reflectance across

M spectral bands. Unmixing using this technique involves determining constituent spectra si

and their associated coefficients ai that result in small error or very little difference between

the observed and inferred spectra. The observed spectrum is modeled by inferring the

constituent spectra from a spectral library, represented by the matrix S. This spectral

library is used to compute the unknown parameters, represented by the vector a. When the
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spectral library is small, we can solve for the abundances using matrix inversion. Equation

1.2 [52] displays this unmixing solution estimating the unknown, fractional proportion of

materials.

â = (STS)−1STy (1.2)

All models inherently incorporate some level of error. Thus, the unmixing solution, shown

in Equation 1.2, is an estimate because it excludes the error vector, ϵ. In least squares models,

the error is referred to as the residual or in this context, the error is the distance between the

inferred reflectance and the true pixel reflectance at wavelength j to M . Common metrics

for assessing model error are MSE (presented by Equation 1.3) and RMSE (presented by

Equation 1.4). MSE is calculated by normalizing the residual sum of squares by the number

of data points (i.e., spectral bands). RMSE, calculated by taking the square root of MSE,

is the error estimate utilized in this body of work.

The OLS objective is to minimize the error by identifying the set of coefficients that

maximize the similarity between the response and the regressor values. Equation 1.5 defines

this optimization problem by minimizing the RMSE between the observed spectrum and the

inferred model. Assuming the matrix of constituent spectra S is invertible, Equation 1.2

serves as the closed form solution to this optimization problem.

MSE =
1

M

M∑
j=1

(yj − (Sa)j)
2 (1.3)

RMSE =

√√√√ 1

M

M∑
j=1

(yj − (Sa)j)2 (1.4)

â = argmin
a

√√√√ 1

M

M∑
j=1

(yj − (Sa)j)2 (1.5)
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1.5.1 OLS Assumptions

In spectral analysis, researchers often discuss the assumptions underlying the LMM, but

the assumptions of OLS are rarely addressed. The outline below highlights primary OLS

assumptions and discusses their validity in the context of spectral unmixing [65]–[67]:

1. Linearity in Relationships — OLS assumes the dependent variable is a linear combi-

nation of the predictor variables and the residuals. Specifically, linearity is exhibited

through the additive nature between parameters. This relationship is modeled as a

linear function (shown by Equation 1.1) in which both the contribution of the input

variables and the error term are considered additive. The linear OLS objective func-

tion, defined in Equation 1.5, minimizes the residual sum of squares and implicitly

assumes Euclidean distance between the observed and inferred spectra.

This linear assumption holds primarily for hyperspectral unmixing scenarios with

macroscopic mixtures. Endmembers in these pixels occupy distinct or adjacent re-

gions thus, we assume light photons interact with only one material before returning

to the sensor.

However, this assumption fails when light photons interact with more than one surface

before returning to the sensor. Scenarios where this assumption fails are when light

interactions with material mixtures are more complicated (e.g. scenes with vegetation

or mineral deposits) [33], [50].

2. Independent Identically Distributed (IID) Error — The residuals from OLS are as-

sumed to satisfy three key properties: independence, normality with mean centered at

zero, and homoscedasticity. Independence implies that there is no correlation between

the residuals. The error of one observation (i.e. band 1 residual) will not be correlate

with the error of another observation (i.e. band 2 residual). Residuals are assumed to

follow a normal distribution with mean equaling zero. This means the residuals follow a
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bell-shaped curve when plotted as a histogram, and their expected value is zero (shown

by Equation 1.6). OLS is considered an unbiased estimator if the true value of the pa-

rameter is equal to its expected value which requires the expected value of the residuals

to be zero. Homoscedasticity means the variance or spread of the residuals is constant

across the observations, and because the residuals are also assumed uncorrelated, the

corresponding covariance matrix can be represented by Equation 1.7. This covariance

matrix, of size M x M (corresponding to the number of spectral bands), is diagonal,

where the σ2 represents the constant variance and I represents the identity matrix.

This structure implies the errors are isotropic, meaning the errors are not computed

in any one direction [68]. Additionally, because the covariance matrix is equal to the

product of constant variance and the identity matrix, there is no correlation between

the residuals and no correlation between the residuals and the input variables [51].

E(ϵ) = 0 (1.6)

E(Γϵ) = σ2
ϵ I (1.7)

In the context of the LMM, a multivariate normal distribution is assumed for the resid-

uals with the mean centered at the observed pixel spectrum. Under this assumption,

the likelihood function for the fractional abundances is given by Equation 1.8 [51]. This

approximation is considered generally reasonable, but errors derived from the LMM

do not always adhere to the properties of independence and homoscedasticity. Contin-

uous and adjacent spectral bands often exhibit correlations, especially between bands

in close proximity [69], [70]. Factors such as correlated bands, spectral variability, and

spatio-temporal effects can disrupt homoscedasticity. As a result, residuals may exhibit

fluctuating variances or, in some cases, follow entirely different distributions [3].
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L(a;y,S, σ2) =
1

(2π)M/2|σ2I|1/2
exp

(
−1

2
(y − Sa)T (σ2I)−1(y − Sa)

)
(1.8)

3. Noncollinear Regressor Variables — OLS requires the regressor variables exhibit non-

collinearity, meaning there is no linear dependency between the input vectors and no

input vector is a linear combination of any of the other input vectors. When the input

vectors are linearly independent, a unique solution can exist which is considered vital

to obtain the closed form solution presented in Equation 1.2.

Noncollinearity is possible when there are more spectral bands than library spectra

(M ≥ N). However, when there are more library spectra than spectral bands a unique

solution of abundances cannot be found. If N > M , inversion is impossible resulting

in infinite solutions. This means that any number of abundance combinations can

reproduce the observed spectrum (y).

4. Correctly Specified Models — The input variables are considered fixed implying that

the information available to describe the response variable to known a priori. We

assume that the pertinent variables are included in the model or otherwise excluded.

Additionally, the implementation of OLS regression assumes the inherent OLS assump-

tions are valid.

Unmixing requires either the observed image or a spectral library. Both of these ap-

proaches can challenge the correctly established modeling assumption as well as the

preceding assumptions. When unmixing a pixel using the image, we must assume

that pure pixels of individual materials are present and can be mapped to the mixed

pixel, or that there exists a pixel with similar spectral properties, indicating identical

materials and or mixtures. Alternatively, unmixing with a spectral library inherently

assumes that the library contains materials that match those in the pixel we aim to

unmix. Any one of the assumptions discussed can fail causing large estimated error or

erroneous modeling conclusions.
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1.5.2 Practical LMM Constraints

The unconstrained OLS model can lead to unrealistic abundance estimates, often resulting

in negative values. This issue arises from overfitting the observed data and minuscule pres-

ence of certain substances in the observed spectra [71]. To address this, practical constraints

are typically introduced. The two most common constraints applied are the nonnegative

abundance constraint and the sum-to-one constraint [72]. The nonnegative abundance con-

straint, often referred to as nonnegative least squares (NNLS), ensures that all abundance

values in the model are greater than or equal to zero. This constraint prevents the model

from assigning negative values to the abundances of substances, which would be physically

meaningless [55]. Equation 1.9 represents the nonnegative abundance constraint imposed

on the OLS model, where N represents the number of explanatory variables or constituent

spectra.

The other frequently applied constraint in LMMs is the sum-to-one constraint (shown in

Equation 1.10). This constraint ensures that the estimated abundances of all substances in

a pixel sum to one, aligning with the assumption that the total fraction of the materials in

the pixel must equal 100% of the observed composition [33]. The combination of both the

nonnegative abundance constraint and the sum-to-one constraint is often referred to as the

fully constrained model. While the sum-to-one constraint is relatively simple to implement

and reflects the physical requirement of a complete pixel composition, it may not always be

appropriate. In some cases, it can be relaxed, especially when “complete prior knowledge” of

pixel components is unavailable [52], [72], [73]. In this body of work, we relax the sum-to-one

constraint based on the assumption that some materials may appear brighter under some

conditions, causing the estimated abundances to exceed one. Therefore, we only enforce the

nonnegative abundance constraint on our models.

ai ≥ 0 ∀ 1 ≤ i ≤ N (1.9)
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N∑
i=1

ai = 1 (1.10)

1.5.3 Challenge with OLS Unmixing

Pure materials can exhibit different spectral characteristics due to various factors. These

factors include fluctuations in lighting conditions, particle size, surface roughness, and atmo-

spheric influences [4], [55]. This means that both different materials and the same material

can display different spectral patterns. For example, minerals from some chemical categories

will have inconsistencies in appearance due to their proximity to minerals in other chemical

categories. Ultimately, the challenge of spectral variability creates a need for extensive spec-

tral libraries to improve material identification [74]. Solving for the coefficients in a least

squares regression problem with a large spectral library — when there are more spectra in

the library than bands — results in an ill-posed inference problem [74] requiring the inversion

of a non-invertible matrix.

As spectral libraries have become more common, unmixing with spectra from a library

rather than image pixels has become substantially more important in practical applications.

Unmixing with library spectra provides precise information that may be essential for the

user (e.g. the specific mix of minerals present for a geological understanding of an area, or

a unique chemical pollutant that may be present in sand or soil.) As such, unmixing with a

library provides a process for sub-pixel material identification [75].

When dealing with microscopic mixture scenarios, the endmembers are typically not

known a priori, therefore an extensive library of materials is often used for unmixing. OLS

regression often fails to accurately detect constituent spectra when spectral libraries are large.

Figure 1.10 depicts an attempt to unmix a pixel from an image over the Cuprite Hills mining

site using OLS. The inferred pixel spectrum includes spectra from the entire USGS mineral

spectral library — represented by the non-bold colored spectra — to model the observed

pixel spectrum. Modeling accuracy is presented through the fit of the plotted observed and
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inferred spectra and assessed using RMSE. In the plot, the observed and inferred spectra

have a very close fit. However, this result is erroneous and impractical because the entire

spectral library of materials is not present in the pixel nor can negative abundance values

exists (which was needed to achieve this close model fit) for materials present in the pixel.

Figure 1.10: Display of OLS unmixing results. The bold blue spectrum represents the
observed pixel. The dashed spectrum represents the inferred model. The non-bold colored
spectra represent the material included in the inferred model.

The increase in library size and complexity is not simply an academic problem. For

example, soil has historically been considered a pure endmember category in the image

unmixing paradigm, but soil is in fact very complex [76], [77]. As of 2016, the “global

vis–NIR soil spectral library” [78] contained over 23,632 distinct spectra measured across 350

- 2500 nm from 92 different countries, and almost all spectra contain substantial metadata.

The scale, variety, and specificity of libraries like this are outpacing exploitation methods

and the collective understanding of how to utilize these methods on such large and detailed
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VNIRSWIR spectroscopy data.

1.6 Alternative Unmixing Techniques

1.6.1 Regularization and Sparse Approaches

Although the linear mixing model is relatively simple, this model has fostered a huge amount

of research leading to “a plethora of unmixing algorithms” [32]. LMMs used for unmixing

intimate or nonlinear mixtures often benefit from constraints, regularization, or Bayesian

techniques. Regularization and sparse approaches are often needed in spectral unmixing

because they address some of the assumption failures associated with OLS regression. Regu-

larization is a technique used to prevent overfitting by enforcing a penalty on the complexity

of the model. Overfitting prevention ensures that the solutions proposed are robust and gen-

eralizable. High correlation among library spectra and between bands introduces a notable

challenge in spectral unmixing. Large spectral libraries are convenient for capturing spectral

variability, but their use can lead to overfitting, making regularization necessary. Moreover,

extensive libraries can complicate the inversion process. Some linear unmixing techniques

inherently incorporate regularization through penalties on model complexity, eliminating the

need for dimensionality reduction methods.

The common penalties imposed on the model coefficients are the L1 norm (also known

as Least Absolute Shrinkage and Selection Operator, or LASSO regression), L2 norm (com-

monly referred to as ridge regression) and a combination of the L1 and L2 norm (ElasticNet)

[79]. LASSO and ridge regression are extensions of OLS with the L1 and L2 penalty norms

weighting the material abundances, respectively [80], [81]. The L1 norm incorporates man-

hattan distancing while the L2 norm incorporates euclidean distancing [82]. Additionally,

it is important to recognize that these regularization techniques are related to Bayesian re-

gression: LASSO regression is Bayes optimal when the parameters follow a Laplace prior

distribution, whereas ridge regression is Bayes optimal when the parameters adhere to a
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Gaussian prior distribution [80].

The L2 norm penalty applied to the abundances results in shrinkage of the values [82],

making them smaller but not necessarily zero. As a result, even within a positively bounded

solution space, the fractional abundances can be very small percentages but will never reach

zero. This regularization characteristic leads to large model sizes, with many constituent

spectra included in the estimated spectrum, ultimately causing substantial overfitting of

the observed spectra. Equation 1.11 represents the objective function of ridge regression,

where â denotes the estimated abundance vector. Note the double bars (∥ · ∥22) represents

the squared L2 norm replacing the summation symbols, from the previous equations. The

goal of ridge regression is to minimize the expression on the right-hand side, consisting of

two components: the residual sum of squares and the model coefficients. The first term,

∥y − Sa∥22, represents the residual sum of squares, which quantifies the difference between

the observed spectrum y and the inferred model Sa. The second term, λ∥a∥22, introduces the

L2 penalty. This penalty shrinks the size of the abundance estimates to prevent overfitting.

Specifically, λ is a regularization parameter that controls the strength of this penalty. A

higher value of λ results in a stronger penalty on the abundance estimates.

â = argmin
a

(
1

M
∥y − Sa∥22 + λ∥a∥22

)
(1.11)

While ridge regression is a form of regularization, it may still retain many variables that

do not significantly contribute to the model. Thus, sparse unmixing emerges as a valuable al-

ternative by selecting an optimal subset of input variables from the library to more accurately

describe the observed spectrum [4]. Numerous studies have achieved success using sparse

unmixing approaches. Typically, sparsity is enforced through the use of a penalty which

shrinks insignificant coefficients or the abundances of absent substances. LASSO regression

shrinks coefficients to zero, thereby penalizing the size of the model [80], [82]. Equation

1.12 displays the modified version of Equation 1.11 which incorporates the L1 penalty on

the model coefficients. The LASSO regression objective function promotes sparsity by forc-
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ing many coefficients to exactly zero, effectively excluding variables that do not contribute

meaningfully to the model. Subsequently, the L1 penalty adheres to the nonnegative abun-

dance constraint as the coefficients are driven toward zero but cannot fall below it. The set

of coefficients â minimizes the objective function subject to the L1 penalty norm.

â = arg mina

(
1

M
∥y − Sa∥22 + λ∥a∥1

)
(1.12)

ElasticNet is a technique that balances the L1 and L2 norms, combining benefits of both

regularization types. The ElasticNet objective function is shown by Equation 1.13. In this

Equation, λ1 and λ2 are the regularization parameters, often selected via cross validation

and set between 0 and 1, that control the influence of the L1 and L2 norms. The λ1 governs

the sparsity of the solution, while λ2 manages the shrinkage of less influential coefficients.

The combination of the L1 and L2 norms has been applied in spectral unmixing across

several studies. Though not Elasticnet, Li et al. proposed a new algorithm incorporating

the L2,1 norm to preserve spectral information for pixels in the same region [83]. Iordache

et al. presented a comparative study of an algorithm using the L2,1 norm, CLSUnSAL —

originally introduced by Bioucas-Dias and Figueiredo — alongside other established sparse

regression techniques [81], [84]. We implemented ElasticNet in an effort to select the subset

of primary spectra (model features) from the library [85]. Additionally, the flexibility of

ElasticNet allows for easy adaptation to different modeling needs by adjusting the relative

influence of each regularization type.

â = arg mina

(
1

M
∥y − Sa∥22 + λ1∥a∥1 + λ2∥a∥22

)
(1.13)

1.6.2 Iterative Approaches

An alternative to sparse approaches is the use of iterative techniques, such as optimiza-

tion strategies like breadth-first and depth-first search strategies. In the traditional sense,
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breadth-first search (BFS) explores multiple variable paths concurrently, evaluating all poten-

tial variables at each step. In contrast, depth-first search (DFS) delves deeply into one path

before searching another path, exhaustively exploring one variable or path before returning

to explore others. In the context of spectral unmixing, BFS and DFS approaches resem-

ble iterative processes that prioritize variables based on their significance. BFS evaluates a

broad set of potential spectra at each step, aiming to find a balance between exploration

and model accuracy. DFS examines the significance of one spectrum at a time which in

turn can be useful in identifying a smaller subset of influential variables. Both strategies are

applied iteratively to optimize model selection, making them suitable for identifying primary

variables in spectral unmixing.

(a) Breadth-first Search Strategy (b) Depth-first Search Strategy

Figure 1.11: Comparison of search optimization strategies: Breadth-first search (a) and
Depth-first search (b).

A closely related technique to this form of model selection optimization is stepwise re-

gression. However, certain nuances of stepwise regression may not fully align with spectral

unmixing assumptions, particularly regarding multicollinearity and negative coefficients. It

is for this reason, we refer to the iterative approaches incorporated in this body of work as

breadth- and depth-first search optimization.

Stepwise regression is primarily implemented for model selection with a secondary aim

of parameter estimation. In this context, stepwise regression directly responds to the goal
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of sparse unmixing. Specifically, we are identifying the subset of explanatory variables —

from a far larger set of materials — that provide the best fit for the observed data [86], [87].

However, concerns over multicollinearity limit the use of stepwise regression’s use in some

cases. When explanatory variables are highly correlated, stepwise regression models struggle

with deciphering variable influence on the response variable. R.D. Routledge says that in

certain scenarios of high correlation, the combination of explanatory variables can show a

significant impact on the response variable, while individually the variables are insignificant

[88]. Additionally, in another paper by Michael Lewis-Beck, the author explains an alter-

native scenario where three variables are considered significant individually, but as they are

iteratively included in the model, their significance lowers. He claims the iterative process

fails to depict the relationship between the variables and ultimately their level of significance

[89].

The limitations of stepwise regression often exhibit two characteristics that spectral un-

mixing does not. Many of the correlated variables in the spectral library represent variations

of the same substance rather than two distinct, highly correlated variables. Additionally,

OLS variables can negatively impact the response variable, which complicates the inter-

pretation of abundance values because negative coefficients are impractical. Despite these

limitations, the search strategies employed by stepwise regression — particularly its iterative

nature — offer advantages when adapted to spectral unmixing.

Considering the attributes of spectral unmixing, breadth-first and depth-first search

strategies provide a more effective solution. Breadth-first and depth-first search strategies

iteratively identify the primary variables, and aim to compute the most statistically signif-

icant substances influencing the observed pixel reflectance. Winter et al. explains that the

iterative process of stepwise regression coupled with nonnegative abundance enforcement

lowers modeling error [71]. In another paper, Gault et al. compares NNLS, sparse, and step-

wise approaches. The authors explain that stepwise regression can out perform non-iterative

approaches especially when detection is the main goal [90].
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Breadth- and depth-first search optimization share similarities with stepwise regression

because these approaches iteratively identify the most significant explanatory variables and

incorporates them into the model. The significance of each variable is evaluated using the

F-statistic, a ratio that compares explained versus unexplained variance. The F-statistic is

used to calculate the probability (p-value) of obtaining the observed ratio by chance. A low

p-value suggests that the computed F-statistic is unlikely to have occurred randomly. When

the p-value falls below a predetermined threshold, the variable is considered to contribute

significantly to the variance observed in the response variable and subsequently included

in the model [87], [88]. Ultimately, breadth-first and depth-first optimizations align well

with unmixing goals, as they systematically address variable selection to produce the best-

fit model, optimizing both accuracy and interpretability in spectral data contexts. We,

subsequently implement breadth-first and depth-first optimizations as the iterative model

selection approaches within this body of work.

1.6.3 Mixed Integer Nonlinear Program (MINLP)

Mathematical programming is another powerful technique designed to identify optimal solu-

tions by adjusting decision variables (e.g., the spectra included in the model) within estab-

lished boundaries (e.g., nonnegative abundances or sum-to-one conditions) that represent

practical limits such as physical properties or resource constraints. Despite its potential

for exact abundance solutions [91], few researchers employ mathematical programming for

spectral unmixing. Among the studies that have utilized mathematical programming, there

is a noticeable lack of consistent terminology. Many papers describe techniques that origi-

nate from the broader field of mathematical programming, such as linear programming [92],

[93], integer programming [94], mixed integer programming (MIP) [95], [96], MINLP [94],

and other variations [97]–[99]. While these techniques are related, each employs slightly

different approaches. Mathematical programming is a field of study that analyzes optimal

decision making subject to a set of limitations. Solutions are derived by optimizing an objec-
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tive — a minimization or maximization function — composed of decision variables. These

variables are iteratively adjusted to find the best solution within the defined constraints.

MINLP, in particular, is an optimization method that extends MIP by incorporating nonlin-

ear relationships. This includes combining concepts from both linear, integer and nonlinear

programming.

1.6.4 Bayesian Model Averaging (BMA)

BMA is a technique in which we ensamble a multitude of models. In Bayesian statistics,

probability is used to quantify uncertainty about parameters and models, updating these

beliefs as new data is observed. The posterior probability is an important component in

Bayesian inference that represents the updated probability of a model after observing data.

BMA was initially developed as a method to address model uncertainty in statistical in-

ference. The idea of averaging across models using bayesian methods emerged in the 20th

century. However, BMA was formally established by David Madigan and Adrian Raftery.

The authors assert that selecting a single “best” model from a set often ignores the uncer-

tainty inherent in the model selection process. They proposed averaging across models using

weights based on each model’s posterior probability [100].

In the context of spectral unmixing, BMA involves the combination of hundreds of mix-

ture models with the primary aim of estimating abundances. Equation 1.14 shows a basic

BMA formula in which N is the total of number models, â(n) represents the estimated vector

of abundances given by model Mn, and P (Mn|y) depicts the posterior probability of model

Mn given the observed pixel spectrum.

â =
M∑
n=1

P (Mn|y)â(n) (1.14)
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1.7 Overview to Dissertation

1.7.1 Research Gaps

In the field of Hyperspectral Image Analysis, many papers develop new and useful approaches

for material identification and classification, but far less research has been completed that

evaluate technique performance in relation to comparative models. OLS has many exten-

sions, but few unmixing papers provide a holistic performance comparison of its many adap-

tations. The few papers comparing OLS extensions consider a small subset and lack a

comprehensive view of algorithm trade-offs, including responsiveness to the aforementioned

challenges. Additionally, at this current time, there are no studies that provide this compar-

ison in terms of physical-chemical feature detection of material types.

1.7.2 Contribution Outline

This research focuses on supervised, hyperspectral mixture modeling with the purpose of

material identification irrespective of the substance type or pixel composition complexity. We

assume successful unmixing for microscopic or intimate mixtures will also prove successful for

macroscopic mixtures. Thus, we concentrate our efforts on unmixing mineral compositions.

The techniques included in this body of work are shown in Table 1.1. This study has

the concurrent aim of responding to the aforementioned challenges and are subsequently

addressed through the incorporated techniques. Additionally, certain aspects of spectral

variation will be explored with the purpose of determining the factors associated with specific

materials that contribute to successful and unsuccessful material identification.

Within the scope of this dissertation, some key nuances to this research are:

1. In Chapter 1, we explain the assumptions behind OLS and its relevance to spectral

unmixing.

34



2. In Chapter 2, we provide a thorough comparison of unmixing with unconstrained least

squares and its extensions or alternative interpretations [101].

3. In Chapter 2, we develop an algorithm taxonomy demonstrating the relationships and

nuances among approaches [101].

4. In Chapters 2, 3, and 4, we provide a framework for benchmarking unmixing techniques

i.e. feature recommendation metrics [101]–[103]. Appendix A showcases — in a full

table — the tradeoffs of each of the incorporated techniques for each ROI within this

body of work.

5. In Chapter 4, we develop a novel approach addressing misalignments of OLS assump-

tions with spectral unmixing [103].

6. In Chapters 3 and 4, we provide a discussion and taxonomy of the physical-chemical

material phenomenon advancing successful unmixing [102], [103].

Unmixing Techniques Categorized by Approach

Non-sparse
Ordinary Least Squares Regression
Nonnegative Least Squares Regression
Ridge Regression

Sparse LASSO Regression
ElasticNet

Optimization

Depth-first Search Feature Selection - NNLS
Depth-first Search Feature Selection - LASSO
Depth-first Search Feature Selection - ElasticNet
Breadth-first Search Feature Selection - NNLS
Mixed Integer Nonlinear Programing

Ensambling

Bayesian Model Averaging - NNLS
Bayesian Model Averaging - LASSO
Bayesian Model Averaging - ElasticNet
Quadratic Bayesian Model Averaging - NNLS
Quadratic Bayesian Model Averaging - LASSO
Quadratic Bayesian Model Averaging - ElasticNet

Band Decorrelation HySUDeB

Table 1.1: Categorization of implemented techniques by unmixing approach
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2 Theoretical and Practical Progress in Spectral

Unmixing from a Sparse Perspective

2.1 Introduction

In this chapter, we provide a thorough performance evaluation of the following investiga-

tive methods: OLS regression, NNLS, ridge regression, LASSO regression, feature search

strategies and BMA. These unmixing approaches were evaluated using multiple criteria: in-

corporation of nonnegative abundances, model size, accurate mineral detection, and RMSE.

We provide a taxonomy of the regression methods, showing that many methods can be

understood as Bayesian methods with specific priors.

2.2 Methods

2.2.1 Data Collection

We collected the observed pixels — regions of interest (ROIs) — using the python package

“Hyperspectralpy”. This package exports the selected pixel locations (in the image) and

associated spectral information to a .csv file [44]. The alunite ROI was comprised of 123

pixels and the kaolinite ROI was comprised of 120 pixels. Figure 2.1 shows the ROIs within

the dataset: alunite and kaolinite are indicated by the orange and purple shaded regions,

respectively. The two ROIs were selected with the goal of successfully detecting the primary
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Figure 2.1: Display of the region of selected pixels using “Hyperspectralpy” [44]. The shaded
orange region indicates the selected alunite pixels and the shaded purple region indicates the
kaolinite pixels.

mineral associated with that pixel location (alunite and kaolinite). Table 2.1 displays the

unmixing techniques incorporated in this study as well as their RMSE functions.

2.2.2 Unmixing Algorithms

We incorporated the OLS unmixing results in this study to present a holistic glimpse sur-

rounding the progression of this research. The unconstrained OLS model means the model

had no requirements associated with constraining the material abundances. Material abun-

dances in this model could assume negative values and a sum greater than one. We utilized

the sklearn “LinearRegression” package to implement the unconstrained OLS unmixing [104].

In this study, the NNLS technique solely constrains the abundances to be nonnegative. We
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avoided constraining the abundances to sum less than or equal to one. To incorporate the

NNLS technique, we implemented the “NNLS” python package from scipy.optimize [105]. We

implemented ridge regression and LASSO regression individually to uncover any unmixing

strengths related to the individual approaches. “Ridge” and “Lasso” python packages from

sklearn were used for implementation [106], [107]. The alpha parameter was set to 0.0005

for LASSO regression and the default value (alpha = 1.0) for Ridge regression. We imple-

mented two iterative approaches — DFS and BFS strategies — to ascertain the unmixing

advantages each model provides. DFS and BFS are commonly described in terms of graph

or tree based analogies, but these strategy can also be effective in unmixing. With DFS,

we start with an empty set and incrementally increase the model size based on predefined

criteria —– specifically, a p-value threshold of 0.05 in this study –— for updating the model.

Alternatively with BFS, the entire spectral library is included in the set of model features

and we decrease the model size based on the predefined criteria. The code for DFS and BFS

were developed independently rather than utilizing a python package. Both techniques are

an extension of OLS regression in which we iteratively update the minerals incorporated as

features in the model with the goal of minimizing error. We conducted NNLS regression on

the model set of minerals deemed most significant following the DFS and BFS searches to

estimate the fractional abundances. In this study, two techniques for BMA were explored –

a basic model and quadratic (BMA-Q) model. We experimented with second order terms to

determine if higher accuracy can be achieved through modeling the interaction between two

materials, in our implementation of BMA-Q. We coded both BMA and BMA-Q techniques

independently rather than using a python package.

2.3 Results

Table 2.2 and Figure 2.2 present the comprehensive results and comparison for Alunite Hill

1 and Kaolinite Region 1. In Table 2.2, the performance of each technique is summarized in
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Unmixing Technique RMSE Function

Ordinary Least Squares (OLS)
√

1
M

∑M
j=1(yj − (Sa)j)2

Nonnegative Least Squares (NNLS)
√

1
M

∑M
j=1(yj − (Sa)j)2, a ≥ 0

LASSO
√

1
M

∑M
j=1(yj − (Sa)j)2 + λ

∑N
i=1 |ai|

Ridge Regression
√

1
M

∑M
j=1(yj − (Sa)j)2 + λ

∑N
i=1 a

2
i

Breadth-first Search
√

1
M

∑M
j=1(yj − (Sa)j)2, a ≥ 0

Depth-first Search
√

1
M

∑M
j=1(yj − (Sa)j)2, a ≥ 0

Bayesian Model Averaging
√

1
M

∑M
j=1(yj − (Sa)j)2, a ≥ 0

Quadratic Bayesian Model Averaging
√

1
M

∑M
j=1(yj − (Sa)j)2, a ≥ 0

Table 2.1: Overview of the unmixing techniques with their associated RMSE loss functions.

Alunite (1) OLS NNLS RIDGE LASSO DFS BFS BMA BMA-Q
Model Size 481 8 133 4 2 3 3 3

Detection Rate 1.0000 0.9675 0.9593 0.9593 0.9268 0.3252 0.8862 0.8455
Mean RMSE 0.0112 0.0250 0.2200 0.1348 0.0363 0.0672 0.0519 0.2743

Run Time (sec.) 0.0084 0.0027 0.0098 0.0070 1.8757 4.1270 0.0858 0.1355
Kaolinite (1) OLS NNLS RIDGE LASSO DFS BFS BMA BMA-Q
Model Size 481 8 187 6 2 4 4 5

Detection Rate 1.0000 1.0000 1.0000 0.8750 0.7833 0.4417 0.6667 0.6167
Mean RMSE 0.0102 0.0284 0.1251 0.1472 0.0412 0.0482 0.0630 0.3863

Run Time (sec.) 0.0088 0.0028 0.0101 0.0146 2.3485 4.0965 0.1255 0.2862

Table 2.2: Displays the comprehensive results of the unmixing techniques for the alunite and
kaolinite ROIs.

terms of model size, target mineral detection rate, error and computation time. Each of these

metrics are a calculated average across all the pixels in the ROI. Also, the target mineral

detection rate refers to the number of inferred models that include alunite or kaolinite from

the observed pixels in their respective ROI. Figure 2.2 displays the average model error on

the y-axis, average model run time on the x-axis and the average model size by the diameter

of the plotted dots. Specifically, the plotted techniques with small dot diameter and in the
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Figure 2.2: Comparison of the unmixing results based on RMSE, runtime, and model size.
The left plot displays the results for alunite. The right plot displays the results for kaolinite.

bottom right corners of the graphs in Figure 2.2, achieved the highest performance.

OLS, ridge regression and BFS demonstrated the poorest performance in unmixing the

range of pixels for both Alunite Hill 1 and Kaolinite Region 1. Though OLS had a relatively

fast run time and low average error (RMSE = 0.01 for both ROIs), this technique incorpo-

rated negative abundance values in the models and included all spectra from the library in

its models. Ridge regression performed similarly to OLS with large model sizes (showing

evidence of overfitting within the inferred y-values). Ridge regression also introduced much

higher average error, with mean RMSE values of 0.2 in the alunite ROI and 0.1 in the kaolin-

ite ROI. BFS produced smaller model sizes, averaging three to four minerals included in the

inferred models, and achieved lower error compared to ridge regression. However, its target

mineral detection rate was below 50% for both ROIs. Additionally, BFS had the highest

computation time among all techniques, averaging four seconds per model.

The BMA approaches achieved lower target detection rates and higher computation time

than NNLS, and LASSO. BMA and BMA-Q differed in terms of error performance: BMA

demonstrated relatively low error with RMSE values of 0.05 for the alunite ROI and 0.06 for

the kaolinite ROI, whereas BMA-Q recorded the highest average RMSE across all techniques.

DFS computed small model sizes, enforced the nonnegative abundance constraint and

maintained low average RMSE. Unlike BFS, DFS had higher detection rates of the target

40



minerals. DFS detected alunite in 93% of the pixels and kaolinite in 78% of the pixels. The

computation time for each pixel was lower than BFS but still higher than the rest of the

techniques.

Despite its sparse characterization, Lasso regression exhibited higher average model sizes

than many of the other techniques — four minerals for the alunite ROI and six minerals for

the kaolinite ROI — as well as greater average error compared to DFS and BFS. However, it

achieved higher target mineral detection rates (above 80%) while maintaining substantially

faster computation times.

NNLS achieved the second lowest average RMSE and the lowest run times. Also, using

this technique, we were able to detect the target minerals in over 95% of the pixels for both

ROIs. The average model size —eight minerals — was smaller than those of OLS and ridge

regression but larger than all other techniques.

2.4 Discussion

This study aimed to unmix intimate mixtures using a variety of OLS-based techniques. OLS

is a common interpretation of the linear mixture model but can result in impractical solutions

or a non-invertible matrix from large spectral libraries. A common challenge associated with

intimate mixtures is the high within class and external class variability from the image and

thus a need for a large spectral library. We presented methodologies that modify the OLS

technique to ensure positive abundance values, penalize model size and or ensamble multiple

methods.

Besides OLS, Ridge regression and BFS performed poorly. The L2 penalty norm asso-

ciated with ridge regression is designed to shrink the abundance values to become smaller,

but not necessarily zero. This regularization attribute caused model sizes to remain large

and substantially overfit the observed spectra. BFS had low detection of the target mineral

and high computation time (due to its iterative methodology). Unmixing one pixel provides
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fairly quick results but because we calculate the p-values for hundreds of models (for each

pixel in the ROI), the computation time compounded. The low detection rate observed with

BFS arises from its process of eliminating variables based on their perceived significance.

Starting with the entire library incorporated in the model (essentially an OLS configura-

tion), the contribution signals of individual minerals often become conflated. As a result,

models including the target, may be removed because their significance is overshadowed or

goes unrecognized.

We achieved the best unmixing results with NNLS and LASSO regression. While LASSO

regression produced smaller model sizes, NNLS had a faster runtime. We achieved fast and

accurate results using both techniques. The LASSO regression L1 norm penalty shrinks

abundance values toward zero resulting in successful sparse regression. Thus, LASSO regres-

sion performed well despite the large spectral library needed for unmixing complex mixtures.

Its also interesting to note the computation time remained relatively low for the BMA ap-

proaches despite the ensambling of hundreds of models and regardless of the number of pixels

in the ROI. This led us to ensambling sparse regression models with the BMA techniques to

identify the ensambling strengths associated with sparse regression, in our next study. This

approach may further enhance performance by leveraging sparsity-promoting properties.
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3 Unmixing with Large Spectral Libraries for

Identifying Soil and Mineral Chemistry

3.1 Introduction

In this chapter, we compare variations of two sparse regression techniques, focusing on the

relationship between structure and chemistry of materials and the accuracy of the various

models for identifying the correct mixture of materials present. Specifically, we examine

LASSO regression and ElasticNet in contrast with variations of iterative feature selection,

BMA, and BMA-Q — incorporating LASSO regression and ElasticNet as their base model.

To evaluate the effectiveness of these methods, we consider the molecular composition simi-

larities and differences of substances selected in the models compared to the ground truth.

3.2 Unmixing Techniques

LASSO regression and ElasticNet are frequently implemented regularization regression tech-

niques. We incorporated a basic version of both techniques to identify their individual advan-

tages as they both encourage sparse solutions. Python’s sklearn “LASSO” and “ElasticNet”

packages were employed for the basic implementation.

For the iterative approaches, we independently developed (without the use of a Python

package) two variations of DFS feature selection strategies. Our feature selection varia-

tions implemented LASSO regression and ElasticNet. We incorporated these variations to
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simultaneously enforce sparsity and reduce modeling error.

LASSO and ElasticNet were also incorporated in a basic BMA implementation and BMA

with quadratic terms, BMA-Q. We compared these sparse versions of BMA and BMA-Q to

non sparse versions using NNLS. In total, we generated six different comparisons using BMA:

BMA NNLS, BMA LASSO, BMA ElasticNet, BMA-Q NNLS, BMA-Q LASSO, and BMA-Q

ElasticNet. The BMA-Q techniques included interactions of materials up to the 2nd order.

We independently developed all of the BMA variations rather than using a Python package.

Table 3.1 presents the alpha parameters used for each method to achieve the unmix-

ing results. Each technique is evaluated based on RMSE, model size, computation time,

and detection percentage. Computation time refers to the average time required for each

technique to unmix a single pixel within the ROI. Detection percentage indicates the propor-

tion of inferred models in the ROI that successfully contain the target mineral. Unmixing

performance may vary based on factors such as the target mineral, pixel location, and the

composition of the mineral mixture. This comparison aims to determine the most effective

techniques in certain scenarios.

LASSO ElasticNet DFS
LASSO

DFS
ElasticNet

BMA
NNLS

BMA
LASSO

BMA
ElasticNet

BMA-Q
NNLS

BMA-Q
LASSO

BMA-Q
ElasticNet

Alpha 0.0004 0.001 0.0001 0.001 - 0.0001 0.0001 - 0.0001 0.001

Table 3.1: Presentation of alpha parameters for each unmixing technique. The parameter α
controls the regularization strength for techniques that use regularization, while ‘-’ indicates
methods where α is not applicable.

3.3 Physical-chemical Taxonomy

Every mineral is comprised of a chemical make up which dictates their physical appearance

and texture. Mineralogist use this chemical structure to define and categorize these sub-

stances. Conveniently, these mineral types follow certain spectral patterns. We not only

examined the mineral category of our target mineral, alunite and kaolinite, but we also

identified the categories commonly detected with the target mineral type. Figure 3.1 dis-
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plays six mineral types: sulfate, hydroxide, and inosilicate, phyllosilicate, sorosilicate, and

cyclosilicate. The spectral library encompassed approximately twenty categories, but the

mineral types referenced here frequently occur in the unmixing results. Each of the subplots

in Figure 3.1 displays the pattern of a few of the minerals within a certain category from the

spectral library.

3.4 Results

Category Technique RMSE Mean Model Size Runtime (s) Detection

Regularization Approaches LASSO 0.1310 4.3740 0.0050 0.9593
ElasticNet 0.1389 7.0650 0.0033 0.9593

Iterative Approaches DFS LASSO 0.0868 2.0894 1.0946 0.9268
DFS ElasticNet 0.0857 2.1870 1.0772 0.9268

Ensembling Approaches
BMA NNLS 0.0519 2.7724 0.0487 0.8862
BMA LASSO 0.0538 2.0732 0.6012 0.7398
BMA ElasticNet 0.0525 2.1870 0.6168 0.7480

Nonlinear Approaches
BMAQ NNLS 0.2743 3.1382 0.0760 0.8455
BMAQ LASSO 0.2452 2.4309 0.6928 0.5203
BMAQ ElasticNet 0.2696 2.3008 0.6403 0.3333

(a) Metrics for unmixing techniques for the alunite ROI.
Category Technique RMSE Mean Model Size Runtime (s) Detection

Regularization Approaches LASSO 0.1348 6.8917 0.0143 0.9667
ElasticNet 0.1384 12.5167 0.0099 1.0000

Iterative Approaches DFS LASSO 0.0732 2.3167 1.3576 0.7583
DFS ElasticNet 0.0733 2.4500 1.3540 0.7917

Ensembling Approaches
BMA NNLS 0.0630 3.6750 0.0730 0.6667
BMA LASSO 0.0484 2.7083 0.6422 0.6833
BMA ElasticNet 0.0493 2.6917 0.6552 0.6833

Nonlinear Approaches
BMAQ NNLS 0.3863 4.6250 0.1529 0.6167
BMAQ LASSO 0.4923 2.3667 0.6293 0.3000
BMAQ ElasticNet 0.4125 2.5417 0.6891 0.3000

(b) Metrics for unmixing techniques for the kaolinite ROI.

Table 3.2: Comparison of unmixing techniques with metrics including RMSE mean, model
size, runtime, and detection rate for two datasets.

3.4.1 Unmixing Performance

Table A.1 compares the unmixing performance of LASSO regression, ElasticNet, DFS using

LASSO, DFS using ElasticNet, BMA using NNLS, BMA using LASSO, BMA using Elastic-
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(a) Chemical Formula: SO4 (b) Chemical Formula: OH−

(c) Chemical Formula: SiO3 (d) Chemical Formula: Si2O5

(e) Chemical Formula: Si2O7 (f) Chemical Formula: SiO3

Figure 3.1: Display of the mineral types sulfate, hydroxide, inosilicate, phyllosilicate, sorosil-
icate, and cyclosilicate. Figure 3.1a shows the target mineral alunite highlighted in purple.
Figure 3.1d shows the target mineral kaolinite highlighted in blue.
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Name Category Formula Abundance

alunite1.spc Alunite GDS84 Na03 Sulfate (Na,K)Al3(SO4)2(OH)6 0.6641
a-alunit.spc Ammonioalunite NMNH145596 Sulfate (NH4)Al3(SO4)2(OH)6 0.1950
mascagn2.spc Mascagnite GDS65.b (fn) Sulfate (NH4)2SO4 0.1667
hyperst5.spc Hypersthene PYX02.f 60um Inosilicate (Mg,Fe2+)2Si2O6 0.1430

Figure 3.2: Alunite Table and Plot. Displays the inferred spectrum using LASSO regression
with the most common minerals and their average abundances. Rows containing alunite are
highlighted in yellow.
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Name Category Formula Abundance

epidote1.spc Epidote GDS26.a Sorosilicate Ca2(Al,Fe+3)3(SiO4)3(OH) 0.0932
elbaite2.spc Elbaite NMNH94217-1.b Cyclosilicate Na(Li,Al)3Al6(BO3)3Si6O18(OH)4 0.0966
gibbsit2.spc Gibbsite WS214 Hydroxide Al(OH)3 0.1172
kaolini6.spc Kaolinite CM3 Phyllosilicate Al2Si2O5(OH)4 0.3362
dickite1.spc Dickite NMNH106242 Phyllosilicate Al2Si2O5(OH)4 0.2205
mascagn2.spc Mascagnite GDS65.b Sulfate (NH4)2SO4 0.1171
kaolini2.spc Kaolinite KGa-1 (wxyl) Phyllosilicate Al2Si2O5(OH)4 0.3645

Figure 3.3: Kaolinite Table and Plot. Displays the inferred spectrum using LASSO re-
gression with the most common minerals and their average abundances. Rows containing
kaolinite are highlighted in cyan.
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Name Category Formula Abundance

alunite1.spc Alunite GDS84 Na03 Sulfate (Na,K)Al3(SO4)2(OH)6 0.3596
alunite2.spc Alunite GDS83 Na63 Sulfate (Na,K)Al3(SO4)2(OH)6 0.1706
alunite5.spc Alunite HS295.3B Sulfate (Na,K)Al3(SO4)2(OH)6 0.2280
a-alunit.spc Ammonioalunite NMNH145596 Sulfate (NH4)Al3(SO4)2(OH)6 0.2285
mascagn2.spc Mascagnite GDS65.b (fn) Sulfate (NH4)2SO4 0.1429
alunite6.spc Alunite SUSTDA-20 Sulfate (Na,K)Al3(SO4)2(OH)6 0.0811
hyperst5.spc Hypersthene PYX02.f 60um Inosilicate (Mg,Fe+2)2Si2O6 0.0640

Figure 3.4: Alunite Table and Plot. Displays the inferred spectrum using ElasticNet with
the most common minerals and their average abundances. Rows containing alunite are
highlighted in yellow.
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Name Category Formula Abundance

kaolini6.spc Kaolinite CM3 Phyllosilicate Al2Si2O5(OH)4 0.1087
kaolini2.spc Kaolinite KGa-1 (wxyl) Phyllosilicate Al2Si2O5(OH)4 0.1046
kaolini7.spc Kaolinite CM5 Phyllosilicate Al2Si2O5(OH)4 0.1041
elbaite2.spc Elbaite NMNH94217-1.b 196 Cyclosilicate Na(Li,Al)3Al6(BO3)3Si6O18(OH)4 0.0759
elbaite1.spc Elbaite NMNH94217-1.a 659 Cyclosilicate Na(Li,Al)3Al6(BO3)3Si6O18(OH)4 0.0597
dickite1.spc Dickite NMNH106242 Phyllosilicate Al2Si2O5(OH)4 0.1696
epidote1.spc Epidote GDS26.a 75-200um Sorosilicate Ca2(Al,Fe+3)3(SiO4)3(OH) 0.0951
kaolini5.spc Kaolinite GDS11 <63um Phyllosilicate Al2Si2O5(OH)4 0.0576
gibbsit2.spc Gibbsite WS214 Hydroxide Al(OH)3 0.0673
halloys5.spc Halloysite+Kaolinite CM29 Phyllosilicate Mixture of halloysite and kaolinite 0.0738
kaolini3.spc Kaolinite KGa-2 (pxyl) Phyllosilicate Al2Si2O5(OH)4 0.0477
mascagn2.spc Mascagnite GDS65.b (fn) Sulfate (NH4)2SO4 0.0885
cookeit1.spc Cookeite CAr-1.a 104-150u Phyllosilicate LiAl4(Si3Al)O10(OH)8 0.0416

Figure 3.5: Kaolinite Table and Plot. Displays the inferred spectrum using ElasticNet with
the most common minerals and their average abundances. Rows containing kaolinite are
highlighted in cyan.
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Net, BMA-Q using NNLS, BMA-Q using LASSO, and BMA-Q using ElasticNet. The table

shows the detection percentage, average model size, average computation time, and average

RMSE. LASSO regression and ElasticNet performed better than all the other techniques in

terms of computation time, and detection percentage. However, both techniques had the

largest models as well as the highest modeling error of the linear approaches. ElasticNet

achieved slightly better accuracy when unmixing pixels for the kaolinite ROI. Overall, the

two regularization approaches had similar results ranging from 95-100% detection.

The iterative approaches had fairly high accuracy in detecting the target minerals and

also achieved low error rates for both ROIs. DFS feature selection achieved a higher detec-

tion percentage with the alunite ROI (above 90% detection of the target mineral) than with

the kaolinite ROI (detection rate between 75–80%). Despite achieving the second highest

detection rates, the computation time for DFS was the highest across all methods imple-

mented.

The detection percentage for BMA was lower compared to the sparse and iterative ap-

proaches. Furthermore, detection percentages for the BMA techniques were substantially

lower with the kaolinite ROI than the alunite ROI. Also, it is interesting to note that the

computation time for BMA NNLS was much faster than that for BMA LASSO and BMA

ElasticNet. Even with the lower detection rates, the computed error for these ensambling

techniques was lower than the sparse and iterative approaches. This means there probably

exists an inferred model from both BMA LASSO and BMA ElasticNet that resembles a close

fit to at least one of the pixels.

The nonlinear approaches achieved the lowest performance in terms of detection accuracy.

Also, the detection percentages were spread over wider ranges — 33–84% with the alunite

ROI and 30-62% with the kaolinite ROI. It’s also important to note, the average unmixing

error was lower with the alunite ROI (RMSE Mean = 0.27, 0.25, 0.27) than with the kaolinite

ROI (RMSE Mean = 0.40, 0.49, 0.41).
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3.4.2 Feature Taxonomy

Figures 3.2 and 3.3 show the inferred models from LASSO regression and Figures 3.4 and 3.5

show ElasticNet for both ROIs. The figures display an inferred model generated from the

most common minerals (technique specific) and their average estimated abundances. This

inferred model is plotted with the closet fitting observed pixel spectrum and the constituent

library spectra. For example, Figure 3.2 shows alunite, ammonioalunite, mascagnite and

hypersthene as the most common minerals included in the inferred model using LASSO

regression. Their average abundances using this technique are listed in the subtable of the

figure. The table beneath the plot also shows each mineral’s classification category and

associated chemical formula.

3.5 Discussion

The results from this taxonomy indicate that many of the minerals included in the inferred

models were from the same chemical category or categories with similar spectral features as

the target mineral. Mascanite was the common alternative sulfate incorporated in the model

regardless of technique for the alunite ROI. Hypersthene – a inosilicate mineral – was the

other frequently incorporated mineral.

Similarly, the models for the kaolinite ROI included minerals from the same phyllosilicate

category or a mineral from a chemical category with similar features in specific bands. Dicktie

was a common phyllosilicate incorporated. Three other common mineral categories — for

the kaolinite ROI — were cyclosilicate, sorosilicate and hydroxide. Models incorporated

variations of elbaite from the cyclosilicate category. Epidote and gibbsite (respectively) were

the most frequently incorporated sorosilicate and hydroxide.
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3.6 Conclusion

In this study we compared the performance of 10 unmixing techniques. We measured per-

formance based on the proportion of inferred spectra that included the target mineral, error

metrics, model size and the unmixing computation time. The basic regularization approaches

preformed the best because they quickly detected the target mineral for almost every pixel.

LASSO and ElasticNet had mildly better performance depending on the ROI, therefore we

recommend implementing both methods for unmixing intimate mixtures.

A notable observation from the ElasticNet unmixing results was the detection of multiple

variations of the target mineral. Both sparse techniques were able to positively detect alunite

and kaolinite with high accuracy, but ElasticNet had several variation of the target material

from the spectral library included in the models. ElasticNet involves both the L1 and L2

norm. Modifying the penalty term in ElasticNet caused the model to be less sparse than

LASSO regression but sparse enough to allow only close variations. This inclusion of near-

variations may reflect ElasticNet’s ability to capture subtle spatial nuances and underlying

phenomenology.

Intra-class variations were not the only variability observed from the taxonomy. We

observed inter-class variability as well. Minerals from different chemical categories and their

slight variations were often included. Certain mineral categories resembled the target mineral

category within specific bands and therefore were included in the model to obtain a closer

model fit. Furthermore, if the target was not included in the model, it was commonly

replaced with a mineral from the same chemical category.
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4 Rethinking Unmixing: A Comprehensive Eval-

uation of Algorithms

4.1 Introduction

In this chapter, we examine variations of OLS models stemming from highly effective ap-

proaches in spectral unmixing – sparse regression, iterative feature search strategies and

Mathematical programming. These variations are compared to a novel unmixing approach

called HySUDeB. We evaluated each approach’s performance by computing the average error

and precision of each model. Additionally, we provide a taxonomy of the molecular structure

of each mineral to derive further understanding into the detection of the target materials.

4.2 Experimental Design

The specific ROIs within the AVIRIS image are comprised of pixels from alunite, kaolinite,

and montmorillonite locations. We used a graphical user interface, “Hyperspectralpy” [44]

and the adaptive coherence estimator (ACE) detection algorithm to select the pixels within

the ROIs. “Hyperspectralpy” is a Python package that provides enhanced analysis and

visualization of hyperspectral images. The ACE algorithm selects target mineral spectra

from the spectral library and calculates the average spectrum. A whitening transformation

is then applied to the image spectra. Following the whitening process, an ACE score is

computed depicting the strength of the target mineral’s presence. Figure 4.1 displays the
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selected ROIs via the red colored regions. The top row in Figure 4.1 are the plots of the

ACE detection score for the target mineral. An increased presence of alunite, kaolinite, and

montmorillonite are indicated by the dark red. Consequently, we selected pixels with higher

computed ACE scores (shown in the bottom row of Figure 4.1).

Figure 4.1: Display of the selected ROIs for three target minerals: alunite, kaolinite, and
montmorillonite. The top row of plots show the regions where the target mineral shows
higher abundance and the bottom row depicts the actual selected pixels from the locations
with higher presence of the target mineral.

We then inferred models from the selected mixed pixels. Each inferred model represents

the best fit of the observed spectrum. Subsequently, we recorded the category of each mineral

from every model. Mineral categories are generally based on the physical-chemical or atomic

bonding structure of the substance. These characteristics have both distinctive as well as

similar properties, ultimately modifying their utility in material identification.

Figure 4.2 displays a few of the most common mineral categories of the spectra incorpo-

rated in each of the models. Each plot depicts the spectral pattern of minerals from specific

categories. The physical patterns are indicative of their chemical structure. Sulfates have

55



(a) Chemical Formula: SO4 (b) Chemical Formula: SiO

(c) Chemical Formula: SiO4 (d) Chemical Formula: Si2O5

Figure 4.2: Comparison of the mineral types sulfate, tectosilicate, nesosilicate, and phyl-
losilicate. The purple spectra represents alunite and the dotted blue spectra are minerals
that were often incorporated in the models.

56



a SO4 chemical formula because they are comprised of one sulfur and four oxygen atoms.

Tectosilicates have a SiO chemical formula which is indicative of their silicon and oxygen

composition. Nesosilicates generally incorporate a silicon atom and four oxygen atoms, SiO4.

Phyllosilicates have the chemical formula Si2O5 describing their composition of two silicon

atoms and five oxygen atoms.

4.3 Statistical Analysis

4.3.1 LASSO Regression

LASSO regression was incorporated in this study because of its sparse solutions and known

computational advantages. It responds to the disadvantages of OLS because it minimizes

overfitting through noise reduction. The penalty parameter controlling sparsity was selected

using cross validation (CV) ranging from 0.001 to 0.1 with 0.001 step size and k=5 fold.

Additionally, we used the Python packages “Lasso” and “LassoCV” for implementation.

4.3.2 DFS Strategy

We implemented a DFS strategy because of its inherent feature selection capabilities. We

developed the script for this technique and did not utilize a Python package. This approach

can incur higher computational risk due to its iterative nature, but this allows for primary

variable identification.

4.3.3 MINLP

The formulation of the MINLP within this paper has similarities to the models developed in

Bourguignon et al. and Mhenni et al. with slight deviations [91], [99]. The following model

is the mathematical program incorporated in this study.
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Sets

I = set of all spectra in the library i = [1, ..., n] ∈ I

J = set of all spectral bands j = [1, ...,m] ∈ J

Parameters

yj = observed pixel reflectance for band j

sij = reflected intensity for spectrum i in band j

M = number of spectral bands

Bi = max abundance associated with spectrum i

P = number of spectra included in the model

Decision Variables

xi = decision to assign spectrum i to the model

ai = abundance associated with spectrum i

Objective Function

minimize Z =

√√√√ 1

M

m∑
j=1

(
yj −

n∑
i=1

(aisij)

)2

Constraints

Bixi ≥ ai
n∑
i

xi ≥ P
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∀xi ∈ {0, 1}, ai ≥ 0

Objective Explained

Minimize the root mean squared error between the observed spectrum and the inferred

spectrum — the spectra incorporated in the model and their associated abundances.

Constraints Explained

1. Abundances can only be assigned to spectra included in the model and must adhere

to the maximum material reflectance.

2. Model size constraint: The sum of the number of spectra assigned to the model must

adhere to the model size parameter (P).

3. The decision to include a spectrum in the model (xi) is binary. The abundance asso-

ciated with a spectrum (ai) must be positive.

4.3.4 HySUDeB

In this novel approach, we decorrelated the spectral bands as part of the unmixing process.

This band decorrelation is also known as whitening. The OLS assumption is that the resid-

uals follow a multivariate normal distribution with the mean centered at the pixel spectrum

and covariance proportional to the identity matrix. However, this assumption may not al-

ways be appropriate, thus whitening becomes beneficial because we assume the covariance

matrix of the spectral bands is not constant. Within the whitening process, we computed

the covariance of our observed image. From the covariance matrix we derived the eigenvalues

and eigenvectors. The library spectra and the observed spectrum were whitened by subtract-

ing the mean and applying a transformation using the covariance matrix’s eigenvalues and
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eigenvectors [108]. Once band decorrelation was complete, we applied LASSO regression to

the whitened spectra.

4.4 Technique Evaluation

We compared the unmixing performance of each technique based on computation time,

error, detection accuracy, mean average precision at k, and the mineral category count

detected. Detection accuracy was based on the number of target spectra inferred from

the modeling approaches. We tallied the number of alunite, kaolinite, and montmorillonite

detections achieved by each approach. Mean precision at k is often used for prediction of

user recommendation in which recommendations are produced based on user preferences.

We treated each model like a recommendation. Minerals were scored based on their assigned

abundance proportion and the number of recommendations (i.e. number of minerals included

in the model). Lastly, the mineral categories included were tallied across the models for each

technique. For example, if a model incorporated two sulfate minerals, the category count

was two and the calculated count was added to the total category count for the ROI.

4.5 Results

Figure 4.3 displays each technique’s performance for the alunite ROI in terms of compu-

tation time and root mean squared error (RMSE). Though Figure 4.3 displays the result

for the alunite ROI and the resulting plots for kaolinte and montmorillonite have different

numeric values, the performance conclusion is the same for each of the ROIs in terms of this

average RMSE vs. average computation time plot. LASSO regression had the lowest average

computation time. MINLP had the lowest average residual error but far higher computation

time than the other three techniques. DFS feature selection was not the highest performer

in either area, but it shows to be the best overall for speed and minimal error. HySUDeB

had similar computation time as LASSO regression, but because the units on the data for
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HySUDeB are different than the units for the other methods, the computed RMSE was much

higher.

Figure 4.3: Comparison of the performance of each unmixing technique based on error and
computation time.

The results for detection accuracy are shown in Table 4.1. For each of the ROIs, LASSO

regression incorporated the highest number of target minerals across each of its models.

MINLP had the second highest detection percentages. When target variables were incorpo-

rated in the solutions, MINLP only included the target mineral once, while other approaches

incorporated variations of the target in many models.

Target Detection Percentage
Lasso DFS MINLP HySudeB

Alunite 1.0 1.0 1.0 0.95
Kaolinite 1.0 0.65 1.0 0.94
Montmorillonite 0.85 0.56 0.77 0.22

Table 4.1: Detection percentages for target minerals (alunite, kaolinite, and montmorillonite)
across four techniques: Lasso, DFS, MINLP, and HySudeB.

Table 4.2 displays the results in terms of detection precision. Precision at k is an indi-
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cation of importance placed on the target mineral. Minerals included in each model were

ranked based on model size and assigned abundance. Specifically, precision at k measures

the number of times the target mineral was one of the top ordered materials. This precision

table shows that HySUDeB performed the best with the alunite ROI, and MINLP preformed

the best with the other two regions, kaolinite and montmorillonite.

Mean Average Precision at k
Lasso DFS MINLP HySudeB

Alunite 0.41 0.58 0.36 0.60
Kaolinite 0.39 0.31 0.51 0.46
Montmorillonite 0.14 0.14 0.18 0.03

Table 4.2: Average mean precision at k for minerals (alunite, kaolinite, and montmorillonite)
across four techniques: Lasso, DFS, MINLP, and HySudeB.

In addition to measuring performance, we identified the mineral categories incorporated

in each modeling approach. The most commonly included categories regardless of technique

were sulfates, tectosilicates, nesosilicates, carbonates, and phyllosilicates. Figure 4.4 shows

the count for all the included mineral categories across all three ROIs. The categories shown

in Figure 4.4 are not an exhaustive list of the mineral types found in the spectral library.

Figure 4.5 shows a more extensive list of the primary library categories as well as the counts

based on unmixing approach. LASSO regression showed to have the most difference in

mineral inclusion but the lowest diversity in mineral category for each ROI. For example,

in Figure 4.5, Hydroxide minerals were included in all the other approaches expect LASSO.

DFS feature selection and HySUDeB had similar spreads of included mineral categories.

Both approaches show a definitive gap between the highest counts and second highest counts.

Even though LASSO regression included the highest amount of sulfates in the models for

the alunite ROI — presumably because alunite is a sulfate — LASSO regression included

nearly as many phyllosilicates. HySUDeB was a close second to LASSO regression in terms

of including sulfates in the model for the alunite ROI, however unlike LASSO regression

there is a distinct difference between the count for sulfates and phyllosilicates. HySUDeB

shows this pattern of category inclusion with the kaolinite and montmorillonite ROIs as well.
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Figure 4.4: Display of the count of the included minerals across all the implemented ap-
proaches.
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Figure 4.5: Display of the count of the mineral from the library that were included in the
models for the alunite ROI.

4.6 Discussion

This study compared four unmixing techniques using four aspects: computation time, error

minimization, detection accuracy, and mean average precision at k. Our results indicate

that the employed techniques dominate in specific tasks and goals. No one method was

universally superior, but each is highly effective depending on the aim of the study. LASSO

regression was the fastest unmixing technique. MINLP had the lowest minimal error and

DFS feature selection achieved the best balance across performance comparison. HySUDeB

performed well in detecting the target mineral category and thus features associated with

those categories.

The goal of this study was primary mineral detection. The established penalty param-

eter for LASSO regression allowed the model to become less sparse. This reduced sparsity

ensured: 1) the target mineral was included in the model at least 85% of the time and 2)

LASSO regression obtained the highest cumulative target mineral count. However, this also

caused the model sizes to be larger and ultimately lowered the mean average precision at k.
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HySUDeB performed well in terms of feature detection of the target mineral — as did

DFS feature selection. For each of the ROIs, the chemical category of the target mineral was

definitive because HySUDeB addresses the OLS homoscedasticity failures. In this approach,

we decorrelated spectral bands, effectively whitening the data. By transforming the spectral

data into a space where the bands were uncorrelated, we stabilized the variance of the

residuals and improved the reliability of our model estimates.

The decorrelation process in HySUDeB enhanced the precision scoring of specific min-

erals, such as alunite. Band decorrelation ensured evenly distributed error, enabling more

precise identification of mineral signatures in the presence of varying noise levels across spec-

tral bands. Computation time was not affected with the implementation of whitening, but

the error had different units and thus comparing RMSE was not meaningful. Future work

could focus on refining techniques like HySUDeB to decrease the residual error while also

maintaining the computation and detection capabilities.
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5 Conclusion and Future Work

This dissertation presents theoretical and practical advancements in the field of Hyperspec-

tral Image Analysis, with particular emphasis on the spectral unmixing domain. Our focus

centered on unmixing intimate mixtures with the dual objective of advancing analysis across

all measures of mixture compositional complexity. By achieving accurate unmixing for min-

eral deposits within soil and detecting target minerals with satisfactory precision, we can

confidently unmix pixel spectra and evaluate technique performance in less complex com-

positions. A core challenge in unmixing intimate mixtures lies within spectral variability

and consequently, the necessity of extensive spectral libraries for material comparison result-

ing in an ill-posed inversion problem. Several techniques for intimate unmixing have been

proposed, but few studies systematically evaluate unmixing techniques.

5.1 Summary of Contributions

In Chapter 2, we unmixed two ROIs (alunite and kaolinite) and compared the performance of

unconstrained OLS with partially constrained least squares, regularization, iterative search

optimization, and two versions of BMA (i.e. linear and nonlinear ensambling). We presented

evaluation metrics as a standard framework for comparing unmixing techniques. The metrics

included in this comparison were model size, computation time, average error, and detection

percentage. Through this study, we showed that OLS and regularization using ridge regres-

sion were poor performers for unmixing because they produce impractical mixture models,

but regularization in the form of model size penalties — or parameter constraints such as
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NNLS and LASSO regression — resulted in high detection percentages.

Chapter 3 focused on evaluating variations of sparse unmixing for the alunite and kaolinite

ROIs. Because Ridge and LASSO regression performed so differently, we explored their

combination through unmixing with ElasticNet. Basic LASSO regression, basic ElasticNet

as well as feature search optimization and ensambling versions of LASSO regression and

ElasticNet were compared in terms of performance. Additionally, we examined the physical-

chemical structure of the minerals included in the models. The sparse approaches achieved

the highest performance for both ROIs.

In Chapter 4, we compared LASSO regression, DFS feature selection and mathematical

programming to a novel unmixing approach in which we decorrelated the spectral bands as

part of the unmixing process. Sparse regression and DFS feature selection were incorporated

in this study because of their high performance achieved in the previous studies. Mathemat-

ical programming has been known to achieve high levels of accuracy in other studies — with

the acceptance of high computation time — therefore, we included a MINLP to assess any

other unmixing strengths. We developed HySUDeB to address the OLS homoscedastic mis-

alignment with spectral unmixing. By whitening the spectra, we removed band correlation.

The performance evaluation metrics incorporated in the study were average computation

time, average error, target detection percentage, average mean precision at k, and the min-

eral category count. Within this study, we continued our exploration of the physical chemical

patterns associated with the target mineral. No spectral unmixing study has incorporated

average mean precision at k as a metric for technique evaluation. However, average mean

precision at k evaluates the technique based on the weight (or abundance) they assign to the

target.

Model size, computation time, average error, target detection percentage, average mean

precision at k, and the mineral category count were included in this dissertation because

of their evaluation strengths. OLS included the entire spectral library, so we decided to

include model size as a metric. Ensambling was an approach initiated in the first study,
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Chapter 2, and incorporated in the follow-on research thrust, Chapter 3. Because thousands

of models were combined for unmixing through the ensambling approaches, we assumed time

complexity for unmixing may increase. Thus, we used computation time as another metric.

We implemented RMSE as an evaluation metric because it is a common metric for regression

models. However, through this dissertation, we noticed frequent scenarios in which RMSE

was low and produced an inferred model with a close fit to the observed spectrum, but lacked

the target mineral. Our main goal was to identify the target mineral thus, we incorporated

percent detection as an additional metric for technique evaluation. Average mean precision

at k takes percent detection a step further by evaluating the techniques based on detection

of the target and also the abundance assigned to the target. Furthermore, average mean

precision at k incorporates some of the other metric strengths such as model size. Larger

models resulted in lowered mean precision at k values. Finally, we included mineral category

count as a metric specifically to assess the detection of the physical-chemical patterns.

5.2 Future Work

Unmixing vegetation as well as granular man-made substances would serve as a powerful

continuation of this work particularly in developing the chemical-physical chemical taxonomy.

Vegetation or synthetic material detection and identification would aid in disaster relief

and military use cases. There is an abundance of research that can be accomplished in

understanding the molecular and chemical bonds for these material types.

Another useful continuation of this work would be determining relevant spectral bands

as it relates to the physical chemical design of material. Research can be developed identify-

ing the exact range of wavelengths on the electromagnetic spectrum to prioritize unmixing

materials in specific chemical categories. We categorized spectral patterns associated with

chemical categories of material, but band isolation for material types would be a valuable

research thrust.
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5.3 Concluding Remarks

Mineral deposits are a well studied and readily available dataset. We presented our research

as an application into mineral detection because the complexity of this mixture composition

forced the resolution of an important and prevalent problem in hyperspectral analysis —

spectral unmixing with a large reference library. Our results demonstrate the performance

and nuanced capabilities of unmixing techniques when applied to a large real world spectral

library. The findings within this body of work are instrumental for future research and

broader advancements in various material identification and detection applications.

This dissertation compared a wealth of unmixing techniques as well as provided an a eval-

uation framework robust for a variety of mixture compositional complexities. We determined

the approaches with high performance based on various objectives for multiple targets. The

analysis of physical-chemical structures shows that the models included the target mineral,

replaced the target mineral with a mineral from the same category, or replaced the target

mineral with a mineral possessing similar spectral pattern features.

We hope this body of work serves the field of Hyperspectral Image Analysis well and

makes a small but useful contribution to the field of Data Science.
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Category Technique RMSE Mean Model Size Runtime (s) Detection Mean Precision

Non-sparse Approaches
OLS 0.0014 481 0.0017 1.0 0.0351
Ridge 0.0980 228 0.0040 1.0 0.1322
NNLS 0.0036 13 0.0011 1.0 0.2756

Sparse Approaches LASSO 0.0226 8 0.1261 1.0 0.4145
ElasticNet 0.0233 13 0.0973 1.0 0.4388

Optimization Approaches

DFS NNLS 0.0080 4 2.3625 1.0 0.5826
DFS LASSO 0.0391 4 2.2703 1.0 0.5495
DFS ElasticNet 0.0386 5 2.2638 1.0 0.5161
BFS NNLS 0.0192 4 1.554 0.31 0.1308
MINLP 0.0044 4 134.3793 1.0 0.3599

Ensembling Approaches
BMA NNLS 0.0102 2 0.0779 1.0 0.7651
BMA LASSO 0.0119 2 0.6488 0.95 0.6202
BMA ElasticNet 0.0117 2 0.7823 0.96 0.6015

Nonlinear Approaches
BMAQ NNLS 0.0744 3 0.0793 1.0 0.7141
BMAQ LASSO 0.0667 3 0.8632 0.95 0.6077
BMAQ ElasticNet 0.0559 2 0.8797 0.95 0.6166

Band Decorrelation HySUDeB 0.1984 6 1.9236 0.95 0.6032

(a) Metrics for unmixing techniques for the alunite ROI.
Category Technique RMSE Mean Model Size Runtime (s) Detection Mean Precision

Non-sparse Approaches
OLS 0.0012 481 0.0030 1.0 0.0424
Ridge 0.1210 351 0.0057 1.0 0.1109
NNLS 0.0044 11 0.0012 1.0 0.3656

Sparse Approaches LASSO 0.0311 9 0.0311 1.0 0.3909
ElasticNet 0.0439 15 0.1800 1.0 0.4727

Optimization Approaches

DFS NNLS 0.0080 4 2.2521 0.65 0.3089
DFS LASSO 0.0200 4 2.3054 0.66 0.2847
DFS ElasticNet 0.0203 5 2.4664 0.67 0.2490
BFS NNLS 0.0144 5 3.8240 0.49 0.1226
MINLP 0.0047 2 94.7523 1.0 0.5102

Ensembling Approaches
BMA NNLS 0.0116 3 0.0636 0.42 0.2601
BMA LASSO 0.0136 3 0.9077 0.85 0.5159
BMA ElasticNet 0.0133 3 0.8784 0.85 0.5232

Nonlinear Approaches
BMAQ NNLS 0.1339 3 0.1887 0.59 0.2660
BMAQ LASSO 0.1588 3 1.0417 0.49 0.2697
BMAQ ElasticNet 0.1178 3 1.0427 0.74 0.2919

Band Decorrelation HySUDeB 0.2131 6 2.5341 0.94 0.4623

(b) Metrics for unmixing techniques for the kaolinite ROI.
Category Technique RMSE Mean Model Size Runtime (s) Detection Mean Precision

Non-sparse Approaches
OLS 0.0012 481 0.0037 1.0 0.0219
Ridge 0.0582 380 0.0044 1.0 0.0511
NNLS 0.0031 14 0.0014 0.72 0.0633

Sparse Approaches LASSO 0.0604 7 0.0731 0.85 0.1394
ElasticNet 0.0345 11 0.0915 1.0 0.1690

Optimization Approaches

DFS NNLS 0.0049 4 1.9409 0.56 0.1415
DFS LASSO 0.0281 4 1.9994 0.56 0.1507
DFS ElasticNet 0.0241 4 1.9951 0.57 0.1593
BFS NNLS 0.0091 6 2.6035 0.27 0.0359
MINLP 0.0037 4 143.7650 0.77 0.1815

Ensembling Approaches
BMA NNLS 0.0091 3 0.1136 0.21 0.0979
BMA LASSO 0.0130 3 0.9359 0.52 0.3180
BMA ElasticNet 0.0129 3 0.9344 0.52 0.2867

Nonlinear Approaches
BMAQ NNLS 0.1679 3 0.1081 0.0 0.0
BMAQ LASSO 0.1781 3 0.8320 0.27 0.1847
BMAQ ElasticNet 0.1602 3 0.6974 0.30 0.1734

Band Decorrelation HySUDeB 0.2089 7 2.5323 0.22 0.0347

(c) Metrics for unmixing techniques for the Montmorillonite ROI.

Table A.1: Complete comparison of unmixing techniques for each of the three ROIs.
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