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Abstract

In this thesis, we present the model of right-handed neutrinos at electroweak

scale (EW⌫R ) and its extended version under two crucial tests by the electroweak

precision measurements and the discovery of the 125 GeV SM-like Higgs boson.

The key feature of the model is the existence of non-sterile electroweak scale right-

handed neutrinos together with scalar triplets. We show that the EW⌫R model

with the new particle content satisfies well the constraint of the electroweak pre-

cision measurements through the contribution to the oblique parameters, S, T, U .

Moreover, the 125 GeV SM-like Higgs discovery necessitates extending the mini-

mal EW⌫R model by adding one more complex scalar doublet and imposing a new

symmetry. We present two very distinct scenarios in which the 125 GeV Higgs

boson candidate of the model behaves like and unlike the SM one. In both cases,

the signal strength of the 125 GeV candidate satisfies the experimental results

of the LHC. The phenomenology of the heavy spin-zero states is also taken into

account.
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Chapter 1

The Standard Model of

Electroweak Interactions

In this chapter, we describe the unified theory of weak and electromagnetic

interactions of the elementary particles which is often referred as the Standard

Model of Electroweak interactions. It is a non-Abelian gauge theory in which the

local phase invariance is spontaneously broken to ensure that weak interactions

are a short range as indicated by experiments. We review the development of the

Standard Model through di↵erent steps.

1.1 Weak Interactions before Gauge Theories

1.1.1 Fermi Theory

In analogy to Quantum Electrodynamics, Fermi proposed the 4-fermion theory

to describe weak interactions in �-decay in 1934:

LF = �GFp
2
(p̄(x)�µn(x))(ē(x)�

µ⌫(x)) + h.c. (1.1.1)

here GF is an empirical constant called the Fermi constant. In fact, setting c =

~ = 1,

GF ⇡ 10�5/m2
p = 1.1663787(6)⇥ 10�5(GeV �2) (1.1.2)

-1-



It turns out the process in Eq.(1.1.1) gives the neutron a very long lifetime ⌧ ⇡

886(s). In a comparison, the mean lifetime of pion is (2.6033 ± 0.0005) ⇥ 10�8s.

In principal, the lifetime depends inversely on the decay width ⌧ ⇡ 1/�. It means

the decay width of the ��decay is very small comparing with the decay width of

pion. Consequently, the coupling in the ��decay is very small. In other words,

��decay is a weak interaction. The process of n ! p + e� + ⌫̄ can be visualized

by:

n

p

e�

⌫̄

Figure 1.1. Fermi 4-fermion interaction model to describe �-decay

As we see, the Fermi model is purely phenomenological. It represents the

interaction between two currents Jweak
µ = p̄(x)�µn(x) and Jweak,µ = ē(x)�µ⌫(x).

The Lagrangian in Eq.(1.1.1) can be rewritten as:

Lweak =
GFp
2
Jweak
µ Jweak,µ (1.1.3)

Unlike electromagnetic interactions, there exists charged currents in weak in-

teractions, for example Jweak
µ = ē(x)�µ⌫(x). Moreover, weak interactions are

not always invariant under the Parity symmetry P . In the case of Jweak
µ =

p̄(x)�µn(x), ē(x)�µ⌫(x), then the weak interactions in these currents are invariant

under P . However, P is not conserved in the other processes such as the ✓ � ⌧

puzzle in Kaon system. The idea of P non-conservation was proposed by Lee

2



and Yang 1956 and later confirmed experimentally by Madam Wu et al 1957.

The discovery of P violation stimulated the research of weak interactions. Even-

tually, Feynman and Gell-man 1958; Marshak and Sudarshan 1958; and Sakurai

1958 completed the Vector minus Axial vector structure, in short V-A, of weak

interactions. Finally, one had the form of weak currents:

Jweak
µ = ē�µ(1� �5)⌫e, µ̄�µ(1� �5)⌫µ, p̄�µ(1� �5)n, ... (1.1.4)

In this form, it is clear that parity is violated

P  ̄(x)�µ�5 (x)P
�1 = � ̄(x)�µ�5 (x)

P  ̄(x)�µ(1� �5) (x)P�1 =  ̄(x)�µ(1 + �5) (x) (1.1.5)

The V-A theory had been the center of achievements in studying weak interactions

for many years. Until there was a sign of the bad behavior at high energy.

1.1.2 Unitarity Violation

In this part, we shall introduce the concept of intermediate vector boson theory

based on unitarity argument. Let one consider a process such as process such as

⌫µe� ! µ�⌫e at the higher order in perturbation theory, for example in the second

order:

⌫µ

e� ⌫e

µ� ⌫µ

e�

GF /
p
2 GF /

p
2

Figure 1.2. 2nd order in Fermi 4-fermion interaction theory

3



The cross-section of the process goes to infinity in the framework of Fermi

theory. The origin of this problem lies in the violation of unitarity of the weak

interactions described by the theory. In scattering theories, the S�matrix can be

decomposed into the two parts:

S = I+ iT. (1.1.6)

Here I is the unit matrix representing the no-scattering part, while T is the scat-

tering matrix. Unitarity means that SS† = S†S = 1. The cross section for the

⌫µe� ! µ�⌫e process goes like � ⇡ G2
F s. Here s = 2meE⌫ ; and E⌫ is the energy of

⌫µ in the lab frame. In the partial wave expansion, the cross section is presented

as � ⇡ |SJ=1|2
s

. Unitarity requires |Sj=1|2  1 implying �  1

s
. The requirement of

unitarity of ⌫µe� ! µ�⌫e means:

G2
F s 

1

s
⌦
p
s  G�1/2

F ⇡ 300 GeV. (1.1.7)

By this rough estimation, the theoretical cross-section of the ⌫µe� ! µ�⌫e process

would violate unitarity for energies above 300 GeV . In detail calculation, unitarity

of weak interactions is violated at E ⇡ 1 TeV .

1.1.3 Intermediate Vector Boson Theory

Quantum Electrodynamics, or QED, had been known for a “good” high energy

behavior and being renormalizable. The coupling constant e in QED is dimen-

sionless. Whereas, in the Fermi theory of weak interactions, the coupling constant

GF has the mass dimension of [M ]�2. To construct a fundamental theory for weak

interactions, we could mimic the successful QED:

LQED = eJem
µ Aµ, (1.1.8)

here Aµ is the photon field which is responsible for carrying electrodynamic in-

teractions. In the same way, one can express weak interactions in terms of weak

4



current Jweak
µ and intermediate vector boson fields called W µ:

Lweak = gJweak
µ W µ (1.1.9)

Weak interactions are carried via the propagator of W µ

1

q2 �m2
W

. (1.1.10)

Then the ⌫µe� ! µ�⌫e process can be displayed in the Feynman diagram:

1

q2 �m2
W

e

⌫µ

⌫e

µ

g

g

Figure 1.3. The ⌫µe
� ! µ�⌫e process with W in exchange.

At low energy when q2 ⌧ m2
W , then

g2

q2 �m2
W

�! � g2

m2
W

⌘ �GFp
2
. (1.1.11)

Thus Fermi theory can be viewed as the low energy approximation.

Unfortunately, the theory with newly proposed vector bosons still has a bad

high energy behavior. A massive spin-one field such asW has 3 degrees of freedom:

2 transverse + 1 longitudinal. Imagine that we are able to produce the process of

⌫e⌫̄e ! W+
L W�

L :

5



⌫̄e

⌫e W�
L

e

W+
L

Figure 1.4. Hypothesize ⌫e⌫̄e !W+
L W�

L with exchanging e .

The longitudinal polarization of W± has the form of ✏(3)µ =
kµ
MW

+ O(MW

k
).

So the squared amplitude of the process has the term of

X

pol

✏µ✏
?
⌫ = �gµ⌫ +

kµk⌫
M2

W

(1.1.12)

The part kµk⌫/M2
W causes the bad behavior at high energy. The cross section of

this process is

� =
G2

F s

12⇡
, (1.1.13)

s is the energy of the process in the center of mass frame. On the other hand, in

the partial wave expansion, the cross section can be expressed as

� =
⇡

E2
cm

X

J

(2J + 1)|SJ
0,0,1/2,�1/2|2 (1.1.14)

Here, J is the angular momentum. Because only J = 1 component contributes to

the cross section, we have

|S1
0,0,1/2,�1/2|2 =

G2
F s

2

36⇡2
 1 (1.1.15)

Or

p
s 

r
12⇡

GF

⇡ 1800 GeV. (1.1.16)

Unitarity would be violated when the energy of the process in the center of mass

frame Ecm =
p
s/2 = 900 GeV . We need a new development for the theory or

tree-level weak interactions would be broken down at 1 TeV .
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1.1.4 The rise of SU(2) Group

It turned out if the W vector bosons have the symmetry of a Lie group, then

the ⌫⌫̄ ! W+
L W�

L process can be protected from the bad behavior at high energy

by adding an extra diagram:

⌫

⌫̄
W 0

W�
L

W+
L

? ?

Figure 1.5. The additional diagram.

This diagram comes from the interaction of W bosons themselves. Because W

bosons are spin 1 particles, they satisfy Bose symmetry. If we assume they have

the same coupling constant, the amplitude of the self-interaction:

pi, ✏
(i) pj , ✏

(j)

pk, ✏
(k)

Figure 1.6. The self-interaction of W .

V = ig(f ij,k[✏(i).✏(j)][✏(k)(pi � pj)] + f jk,i[✏(j).✏(k)][✏(i)(pj � pk)]

+ fki,j[✏(k).✏(i)][✏(j)(pk � pi)]) (1.1.17)
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With the contribution of the self-interaction process, the amplitude of the

⌫⌫̄ ! W+
L W�

L process is

M total = � i

M
g2⌫̄↵/✏

(i)

✓
1� �5

2

◆⇣
T (i)
↵⇢T

(j)
⇢� � T (j)

↵⇢ T
(i)
⇢� � ifki,jT (k)

↵�

⌘
u�

+ g2
✏(i)k(j)

Mk(i)k(j)
⌫̄↵/k

(j)
✓
1� �5

2

◆
T (k)
↵� u�

�
�f jk,i + f ij,k

�
(1.1.18)

As k(i) ! 1, the longitudinal ✏(i) ! k(i)

M
+ O(M

k
). As we see, M total depends

on k(i), and increases with k(i). This is the bad behavior at high energy of the

⌫⌫̄ ! W+
L W�

L process. Now, to prevent such a disaster, it is required M total = 0.

This is equivalent to have two conditions:

f ijk = f jki = fkij

[T i, T j] = if ijkT k. (1.1.19)

In terms of group theory, T is behave as the commutators of a Lie algebra. T i is

the generator of the Lie algebra. f ijk is the structure constant. Three indices i, j, k

are corresponding to three generators of the Lie group. So it is natural to think

of the group SU(2). For this group, the generators can be expressed in terms of

the Pauli matrices ⌧ i.

⌧ 1 =

0

@ 0 1

1 0

1

A , ⌧ 2 =

0

@ 0 � i

i 0

1

A , ⌧ 3 =

0

@ 1 0

0 � 1

1

A (1.1.20)

They follow the algebra:

[⌧ i, ⌧ j] = 2i✏ijk⌧ k

, [
⌧ i

2
,
⌧ j

2
] = i✏ijk

⌧ k

2
, (1.1.21)

here ✏ijk is the totally antisymmetric Levi-Civita symbol. So if T i =
⌧ i

2
, then the

Lie algebra in Eq.(1.1.19) can be realized with f ijk = ✏ijk.

So far, we briefly described the evolution of the theories of the weak interac-

tions. The requirement of unitarity conservation lead ones to expand the theories

8



from Fermi’s four-fermion theory to the one with three vector bosons W±,W 0

which has the algebra of a group SU(2) and a universal coupling g.

1.2 Gauge Theories

1.2.1 Gauge transformations

We can categorize a gauge transformation into two kinds, global and local,

depending on the parameters of the transformation. Let us consider QED as an

example of gauge theories.

A global gauge transformation

Considering the field  (x) and its conjugate under a phase transformation:

 (x)!  0(x) = e�i↵ (x)

 ̄(x)!  ̄0(x) =  ̄(x)ei↵. (1.2.1)

Here, ↵ is a random phase factor which is independent of x. The probability term

 ̄(x) (x) is invariant under the gauge transformation. Also, the kinetic term of

 (x) is invariant:

 ̄(x)�µ@µ (x)! ̄(x)ei↵�µ@µe�i↵ (x)

= ̄(x)ei↵e�i↵�µ@µ (x)

= ̄(x)�µ@µ (x). (1.2.2)

It means that  (x) has a global U(1) symmetry, a group with one parameter.

A local gauge transformation

When the phase in the transformation in Eq:(1.2.1) depends on x

 (x)!  0(x) = e�i↵(x) x

 ̄(x)!  ̄0(x) =  ̄(x)ei↵(x). (1.2.3)

9



We have a local gauge transformation. Then the probability term  ̄(x) (x) is

still invariant under Eq.(1.2.3) transformation because

 ̄(x) (x)!  ̄0(x) 0(x) =  ̄(x)ei↵(x)e�i↵(x) (x) =  ̄(x) (x) (1.2.4)

However the kinetic term is not:

 ̄(x)�µ@µ (x)! ̄(x)ei↵(x)�µ@µ
�
e�i↵(x) (x)

�

=� i ̄(x)�µ (x)@µ↵(x) +  ̄(x)�
µ@µ (x) (1.2.5)

To preserve the invariance of this phase transformation, one needs to introduce a

vector field Aµ(x) with a minimal coupling to the electron field  (x). Eventually,

the field Aµ(x) can be viewed as the connection between di↵erent phase transfor-

mations at di↵erent points x. With the presence of the field Aµ(x), the kinetic

term of  (x) becomes:

 ̄(x)i�µ (@µ � ieAµ(x)) (x) (1.2.6)

Here,

@µ �! Dµ = @µ � ieAµ(x) (1.2.7)

is called the covariant derivative. Under the local gauge transformation Eq.(1.2.3),

the vector field Aµ(x) transforms as:

Aµ(x) �! A0
µ(x) = Aµ(x)�

1

e
@µ↵(x) (1.2.8)

Then the kinetic term in Eq.(1.2.6) transforms as:

 ̄(x)i�µ (@µ � ieAµ(x)) (x) �!� i ̄(x)�µ (x)@µ↵(x) +  ̄(x)�
µ@µ (x)�

� ie ̄(x)�µAµ(x) (x) + i ̄(x)�µ (x)@µ↵(x)

=  ̄(x)i�µ (@µ � ieAµ(x)) (x) (1.2.9)
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So, with the introduction of the vector field Aµ(x) under the transformation in

Eq.(1.2.8), the kinetic term is invariant under the local gauge transformation

Eq.(1.2.3) as well. Eventually, Aµ(x) is the gauge field of QED, so called the

photon field, which carries electromagnetic interactions.

Consider the transformation of the field strength Fµ⌫ and the mass term of the

photon field under the gauge transformations Eq.(1.2.3) and Eq.(1.2.8).

Fµ⌫ = @µA⌫ � @⌫Aµ �!@µA⌫ � @⌫Aµ �
1

e
@µ@⌫↵(x) +

1

e
@⌫@µ↵(x)

= @µA⌫ � @⌫Aµ (1.2.10)

is invariant. Consequently, the kinetic term of the photon field �1
4Fµ⌫F µ⌫ is also

invariant. But the mass term �1
2m

2
�AµAµ is not:

�1

2
m2

�AµA
µ �! �1

2
m2

�

✓
AµA

µ � 1

2
@µ↵A

µ � 1

e
Aµ@

µ↵ +
1

e2
@µ↵@

µ↵

◆
. (1.2.11)

It means that we cannot introduce by hand the mass term for the photon field

without breaking gauge invariance. That is why the photon is naturally massless

in QED.

1.2.2 The Gauge Theories of Weak Interactions

As discussed in section 1.1, unitarity requires us to introduce the vector field
�!
W µ. The simplest model of weak interactions includes:

 L =

0

@  1

 2

1

A

L
�!
W µ =

�
W 1,W 2,W 3

�

W± =
W 1 ⌥ iW 2

p
2

(1.2.12)
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Let us consider the model under a local SU(2)L phase transformation:

U(x) = e�i
�!
T .�!↵ (x)

 L �! U(x) L

 ̄L �!  ̄LU
�1(x). (1.2.13)

Here, �!↵ (x) = (↵1,↵2,↵3) are three parameters of the gauge transformation cor-

responding to three generators
�!
T = (T 1, T 2, T 3) =

�!⌧
2 of the group SU(2)L.

�!⌧

here are Pauli matrices. The kinetic term  ̄Li�µ@µ L is not invariant under this

gauge transformation:

 ̄Li�µ@
µ L �! ̄LU

�1(x)i�µ@
µ(U(x) L)

=  ̄Li�µ@
µ L +  ̄Li�µ[U

�1@µU ] L (1.2.14)

Introducing the covariant derivative:

Dµ = @µ � ig
�!
T .
�!
W µ (1.2.15)

Under the phase transformation in Eq.(1.2.13):

�!
T .
�!
W µ �!

�!
T .
�!
W 0

µ = U
�!
T .
�!
W µU

�1 � i

g
(@µU)U�1 (1.2.16)

Then transformation of the kinetic terms of the fermion field and the gauge fields

are invariant under the gauge transformation in Eqs.1.2.13, 1.2.15:

• For the kinetic term of the fermion field

 ̄Li�µD
µ L �! ̄Li�µ@

µ L +  ̄Li�µ[U
�1@µU ] L+

+g ̄LU
�1�µ

✓
U
�!
T .
�!
W µU

�1 � i

g
(@µU)U�1

◆
U L

=  ̄Li�µD
µ L (1.2.17)
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• For the kinetic term of the gauge boson fields

�1

4
Gi

µ⌫G
iµ⌫ = �1

2
Tr[
�!
T .
�!
Gµ⌫
�!
T .
�!
Gµ⌫ ] (1.2.18)

While under the gauge transformation in Eqs. 1.2.13, 1.2.15,

Tr[
�!
T .
�!
Gµ⌫
�!
T .
�!
Gµ⌫ ] �! Tr[

�!
T .
�!
G 0

µ⌫

�!
T .
�!
Gµ⌫0] =Tr[U

�!
T .
�!
Gµ⌫U

�1U
�!
T .
�!
Gµ⌫U�1]

=Tr[
�!
T .
�!
Gµ⌫

�!
T .
�!
Gµ⌫ ] (1.2.19)

However, the mass term of the vector boson is not invariant under the gauge

transformation in Eqs. 1.2.13, 1.2.15:

�!
W µ.
�!
W µ �! �!W 0

µ.
�!
W µ0 =

✓
W i

µ + ✏ijk↵jW k
µ �

i

g
@µ↵

i

◆

✓
W µi + ✏ijk↵jW µk � i

g
@µ↵i

◆

6= �!W µ.
�!
W µ (1.2.20)

So W remains massless in this theory, which is in contradiction with the short-

range nature of weak interactions implied by experiment. On the other hand,

quarks and leptons must have masses. The fermion mass term is:

mf  ̄ = mf

✓
 ̄

✓
1� �5

2

◆
 +  ̄

✓
1 + �5

2

◆
 

◆

= mf  ̄R L +mf  ̄L R (1.2.21)

Due to the absence of the V+A current, right-handed fermions are singlets under

the SU(2)L. It means that under transformation in Eq.(1.2.3),  R �!  R. So

 ̄L R �!  ̄LU
�1 R

 ̄R L �!  ̄RU L (1.2.22)

Hence, the mass term of fermions is not invariant. Again, new development is a

must.
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1.3 Spontaneous Symmetry Breaking (SSB) and

the Higgs Mechanism

So far, unitary principle and gauge invariance principle have led us from the

4-fermion theory of Fermi to the intermediate vector boson theory. However, the

mass terms of vector bosons and fermions would break gauge invariance explicitly.

The Goldstone theorem about spontaneous symmetry breaking (SSB) and the

Higgs Mechanism are the solutions to this dilemma. We devote this section to

present these two pillars of modern particle physics.

1.3.1 The concept of Spontaneous Symmetry Breaking

The SSB happens in a theory when the Lagrangian is invariant under the sym-

metry but the ground state is not. The spontaneous breakdown of a continuous

global symmetry implies the existence of massless spin-zero particles. The phe-

nomenon of spontaneous symmetry breaking was first introduced in the Ginzburg-

Landau theory (1950), but the study of the connection between the SSB and the

massless spinless particles was investigated by Nambu (1960), Nambu and Jona-

Lasinio (1961), and other authors afterward[1]. Such scalar particles are referred

to as Nambu-Goldstone bosons. We will study a toy model as an illustrative

example of the spontaneous breaking of a global symmetry.

Let us consider a 2-component spin-0 field � which transforms like a vector

under the rotation group O(2).

�!
� =

0

@ �

⇡

1

A (1.3.1)

Under the rotation of O(2),

�!
� �! �!� 0 =

0

@ �0

⇡0

1

A =

0

@ cos ✓ sin ✓

� sin ✓ cos ✓

1

A

0

@ �

⇡

1

A (1.3.2)
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The kinetic term has a form of:

LKin =
1

2
@µ
�!
� .@µ

�!
�

=
1

2
(@µ�)

2 +
1

2
(@µ⇡)

2 (1.3.3)

The potential is

V (
�!
� .
�!
� ) = � 1

2
µ2�!� .

�!
� +

�

4

⇣�!
� .
�!
�
⌘2

= � 1

2
µ2
�
�2 + ⇡2

�
+
�

4

�
�2 + ⇡2

�2
(1.3.4)

Here, � > 0, and µ2 can be negative or positive. The shape of the potential and

then the nature of the ground states depend on the µ2.

• For µ2 < 0, the potential has a parabolic shape

Figure 1.7. µ2 < 0

In this case, there is no spontaneous symmetry breaking.

• For µ2 > 0, the potential has a famous “Mexican hat” shape:

15



Figure 1.8. µ2 > 0

The Lagrangian is

L = LKin � V (
�!
� .
�!
� )

=
1

2
(@µ�)

2 +
1

2
(@µ⇡)

2 +
1

2
µ2
�
�2 + ⇡2

�
� �

4

�
�2 + ⇡2

�2
(1.3.5)

The ground state is found through the minimization conditions:
8
>>>>><

>>>>>:

@V

@�
= � (�µ2 + �(�2 + ⇡2)) = 0

@V

@⇡
= ⇡ (�µ2 + �(�2 + ⇡2)) = 0

) �2
0 + ⇡2

0 = v2 =
µ2

�
, v =

r
µ2

�
(1.3.6)

We have a freedom to choose (�0, ⇡o) to satisfy the condition in Eq.(1.3.6). A

particular solution is when

�0 = < 0|�|0 > = v, ⇡0 = < 0|⇡|0 > = 0. (1.3.7)

We can make a shift:

�0 = � � v )< 0|�0|0 > = < 0|�|0 > �v = 0 (1.3.8)
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The Lagrangian in Eq. (1.3.5) becomes:

L =
1

2
(@µ�

0)2 � 1

2
(2µ2)�02 � �v�0 ��02 + ⇡2

�

� �

4

�
�02 + ⇡2

�2
+

1

4

µ2

�
(1.3.9)

Note that V (�0 = ⇡ = 0) = 1
4
µ2

�
which can be shifted away as we ignore gravity.

There is no mass term for ⇡ which is the massless Nambu-Goldstone boson of the

model. From the quadratic term of �0, we can see m2
�0 = 2µ2 ) m�0 =

p
2µ

1.3.2 The Brout-Englert-Higgs Mechanism

The main idea of the Brout-Englert-Higgs mechanism is that the massless

gauge bosons becomes massive ones by absorbing the Nambu-Goldstone bosons

appearing in the SSB of a local group [2]. In this mechanism, we introduce a

new complex scalar field with non-zero vacuum expectation, so-called the Higgs

field. A complex scalar has two degrees of freedom, real and imaginary. U(1) is

the group of the complex phase transformation. Therefore, this group should be

the gauge group of �. In group theory, O(2) ⇠ U(1). We then apply the same

procedure in the last part with the toy model. We can parameterize � in terms

of two real fields �1, �2:

� =
1p
2
(�1 + i�2)

�† =
1p
2
(�1 � i�2) (1.3.10)

Under the local gauge transformation e�i↵(x):

�(x) �!�0(x) = e�i↵(x)�(x)

@µ �!Dµ = @µ � igAµ

Aµ �!A0
µ = Aµ �

i

g
@µ↵(x) (1.3.11)
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The Lagrangian can be written as

LKin = (Dµ�)
† (Dµ�)� 1

4
Fµ⌫F

µ⌫

V (�) = � 1

2
µ2�†�+

�

4
(�†�)2 (1.3.12)

When µ2 > 0, the potential has the same as in Figure 1.8 . At the minimum,

|�|2 =
1

2

�
�2

1 + �
2
2

�
=

v2

2

) �2
1 + �

2
2 = v2 =

µ2

�
. (1.3.13)

We can redefine � in a polar coordinate system:

�(x) =
1p
2
(v + ⌘(x)) ei⇠(x)/v

⇡ 1p
2
(v + ⌘(x) + i⇠(x) + · · · ) . (1.3.14)

Thus the VEVs of < ⌘ >o=< ⇠ >o= 0. For a small oscillation, we can have a

parameterization such as
8
><

>:

�1(x) = v + ⌘(x)

�2(x) = ⇠(x)

Under the gauge transformation:

�(x) �! �0(x) = e�i⇠(x)/v�(x) =
1p
2
(v + ⌘(x))

Aµ �! Bµ = Aµ �
1

gv
@µ⇠(x). (1.3.15)

Then

(@µ � igAµ)�(x) �! (@µ � igBµ)�
0(x) =

1p
2
(@µ⌘(x)� igBµ(v + ⌘(x)))

|Dµ�(x)|2 �!
1

2
|@µ⌘(x)� igBµ(v + ⌘(x))|2

=
1

2
(@µ⌘(x))

2 +
1

2
g2v2BµB

µ + g2v⌘(x)BµB
µ +

1

2
g2⌘2(x)BµB

µ.

(1.3.16)
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The Lagrangian becomes:

L �! L0 =
1

2
(@µ⌘)

2 +
µ2

2
(v + ⌘)2 � �

4
(v + ⌘)4

+
1

2
g2v2BµB

µ + g2v⌘BµB
µ +

1

2
g2⌘2BµB

µ

�1

4
(@µB⌫ � @⌫Bµ)

2 (1.3.17)

Using the minimization condition v2 = µ2/�, we have
8
><

>:

µ2

2
� �

4
6v2 = �1

2
2µ2

µ2v � �

4
4v3 = 0

We can simplify the Lagrangian:

L0 =
1

2
(@µ⌘)

2 � 1

2
2µ2⌘2 � �v⌘3 + 1

2
g2v2BµB

µ + (g2v⌘ +
1

2
g2⌘2)BµB

µ

� 1

4
(@µB⌫ � @⌫Bµ)

2 (1.3.18)

⇠ disappears in the Lagrangian. Eventually, it is absorbed as the longitudinal

component of Bµ. From the Lagrangian, m⌘ =
p
2µ, and mB = gv. So we have

one massive scalar ⌘, and one massive vector Bµ.

In the next step, we will apply the Higgs mechanism to weak interactions. Let

us introduce a complex scalar doublet:

� =

0

@ �1

�2

1

A , (1.3.19)

here �1, �2 are complex scalar fields. So there are four degrees of freedom. The

potential has the form of:

V (�) = �µ2

2
(�†�) +

�

4
(�†�)2 (1.3.20)

For weak interactions,

Dµ� =

✓
@µ � ig

�!⌧
2

�!
W µ

◆
�

Gi
µ⌫ = @µW

i
⌫ � @⌫W i

µ + g✏ijkW j
µW

k
⌫ (1.3.21)
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Choose a vacuum for the scalar:

< � > =
1p
2

0

@ 0

v

1

A . (1.3.22)

Then make a shift:

�0 = �� < � > ) < �0 > = 0 (1.3.23)

Apply the gauge transformation as in Eq. (1.3.14). As seen in the last part, in a

small oscillation, the shift in Eq. (1.3.23) is equivalent to

� �! �0 = e
�i

�!⌧ .
�!
⇠

v � =

0

B@
0

v + ⌘p
2

1

CA . (1.3.24)

Under this gauge transformation U = e
�i

�!⌧ .
�!
⇠

v :
�!⌧
2
.
�!
A µ �!

�!⌧
2
.
�!
B µ = U

�!⌧
2
.
�!
A µU

�1 � i

g
[@µU ]U�1

Dµ� �! (Dµ�)
0 =

✓
@µ � ig

�!⌧
2
.
�!
B µ

◆
�0

Gi
µ⌫ �! Gi0

µ⌫ = @µB
i
⌫ � @⌫Bi

µ + g✏ijkBj
µB

k
⌫ . (1.3.25)

Then we have the Lagrangian:

L = (Dµ�)
0†(Dµ�)0 +

µ2

2
(v + ⌘)2 � �

4
(v + ⌘)4 � 1

4
Gi0

µ⌫G
i0µ⌫ (1.3.26)

The mass term of gauge bosons comes from the part of the kinetic term:

g2

8
(0, v).

⇣�!⌧ .�!B µ
�!⌧ .�!B µ

⌘
.

0

@ 0

v

1

A =
1

2

⇣gv
2

⌘2�!
B µ.
�!
B µ (1.3.27)

In this parameterization,
�!
⇠ s are the Nambu-Goldstone bosons; ⌘ is the Higgs field.

From the Lagrangian, m⌘ =
p
2µ. Therefore, through the Higgs mechanism, the

Nambu-Goldstone is absorbed into the longitudinal component of the gauge bosons

and which become massive. In the next section, we investigate the Standard Model

as a gauge theory.
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1.4 The Standard Model of Electroweak Inter-

actions

The electroweak model (EW) is a unified theory to describe all electromagnetic

and weak phenomena by one single Lagrangian. However, the biggest caveat is

the requirement for the masses of W/Z vector bosons. In the EW model, all force

carriers are hypothesized to be massless. This hypothesis is correct in case of the

photon because electromagnetic interactions are long-range forces. On the other

hand, experiments indicate weak interactions to be short-range. Therefore, the

force carriers of weak interactions W/Z should be massive instead. The crisis

was solved by introducing the idea of the Spontaneous Symmetry Breaking (SSB)

through the Brout-Englert-Higgs (BEH) mechanism, commonly referred as the

Higgs mechanism, [2] under which the photon remains massless and the W/Z

bosons acquire their masses by “eating” Nambu-Goldstone bosons along with the

existence of the Higgs field.

It must be clarified that the Standard Model nowadays is referred to the unified

theory of strong, electrodynamic, and weak interactions. However, the scope of

this thesis is to study the model of right-handed neutrinos at electroweak scale. So

we limit ourselves in the unified theory of electrodynamic and weak interactions.

Then we refer the standard model of electroweak interactions as the Standard

Model.

1.4.1 The Gauge Group of the Standard Model

The Standard Model is the unified theory of electromagnetic and weak inter-

actions, so the gauge group GSM should be the combination of SU(2)L and U(1).

After the spontaneous symmetry breaking, GSM �! U(1)em, with electric charge

Q is the operator of U(1)em.
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Considering the leptons which are the left-handed doublets under SU(2)L:

lL =

0

@ ⌫e

e�

1

A

L

. (1.4.1)

We know that the electric charge of neutrinos and electrons are 0, �1, respectively.

It means that

Q(⌫eL) = 0; Q(e�L) = �1. (1.4.2)

Also, ⌫eL, e
�
L are the two members of the SU(2)L doublet. Thus they should have

weak charges of

T3L(⌫eL) =
1

2
; T3L(e

�
L) = �1

2
. (1.4.3)

If Q, T3L satisfy the formula

Q = T3L +
Y

2
, (1.4.4)

then Y = �1 for both ⌫eL and e�L . Eq. (1.4.4) is Gell-mann - Nishinjima formula.

It means that Y commutes with T i
L. So the electric charge Q can be seen as

a linear combination of the neutral SU(2)L generator T3L and the hyper-charge

operator Y
2 of the group U(1). Then we call U(1)Y due to this matter. We have

[Y, T i
L] = 0 (1.4.5)

The gauge group of the Standard Model is:

GSM = SU(2)L ⇥ U(1)Y (1.4.6)

In the Standard Model, e�R, ⌫eR are both singlets under SU(2)L due to the lack of

V+A interactions. Applying Eq.(1.4.4) formula then

Y

2
(e�R) = Q(e�R)� T3L(e

�
R) = �1� 0 = �1

Y

2
(⌫R) = Q(⌫R)� T3L(⌫R) = 0 (1.4.7)
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It means that ⌫R has zero quantum numbers under both SU(2)L and U(1)Y . In

other word, the right-handed neutrino has no interaction with the gauge fields of

both groups. The consequence of the sterile nature of the right-handed neutrinos

in the Standard Model will be discussed in details in the next chapter.

1.4.2 The Standard Model as a Gauge Theory

Under the gauge group of SU(2)L ⇥ U(1)Y , the covariant derivative is

@µ �! Dµ = @µ � ig
�!
T
�!
W µ � ig0

Y

2
Bµ. (1.4.8)

Here
�!
W µ, Bµ are the gauge fields of the groups SU(2)L, U(1)Y , respectively.

When the covariant derivative acts on di↵erent fields, the operators
�!
T , Y

2 generate

the corresponding eigenvalues to the fields. Under the gauge group GSM of the

Standard Model, quarks and leptons transform as:

lL =

0

@ ⌫eL

eL

1

A ⇠ (2,�1); eR ⇠ (1,�2); ⌫R ⇠ (1, 0)

qL =

0

@ uL

dL

1

A ⇠ (2,
1

3
); uR ⇠ (1,

4

3
); dR ⇠ (1,�2

3
) (1.4.9)

Then we have the covariant derivatives for these fermionic fields:

DµlL =

✓
@µ � ig

�!
T .
�!
W µ + ig0

1

2
Bµ

◆
lL

DµqL =

✓
@µ � ig

�!
T .
�!
W µ � ig0

1

6
Bµ

◆
qL

Dµ⌫R = @µ⌫R

DµeR = (@µ + ig0Bµ) eR

DµuR =

✓
@µ � ig0

2

3
Bµ

◆
uR

DµdR =

✓
@µ + ig0

1

3
Bµ

◆
dR. (1.4.10)
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So the Lagrangian for fermions is:

LFermions = l̄Li�
µDµlL + ēRi�

µDµeR + ⌫̄Ri�
µDµ⌫R

+ q̄Li�
µDµqL + ūRi�

µDµuR + d̄Ri�
µDµdR (1.4.11)

The Lagrangian for the gauge sector:

LGauge = �1

4
Gi

µ⌫G
iµ⌫ � 1

4
Bµ⌫B

µ⌫

Gi
µ⌫ = @µW

i
⌫ � @⌫W i

µ + g"ijkW j
µW

k
⌫

Bµ⌫ = @µB⌫ � @⌫Bµ (1.4.12)

Here, Gi
µ⌫ , and Bµ⌫ are the field strength tensors. "ijk is the structure constant of

the non-Abelian group SU(2).

From the Gell-Mann–Nishijima formula Eq.(1.4.4), the gauge field associated

with the electric charge Q must be the combination of W 3
µ and Bµ. The field is

actually the photon field Aµ. When SU(2)L⇥U(1)Y �! U(1)em, both SU(2)L and

U(1)Y have to be broken spontaneously. There must exist an appropriate scalar

field responsible for that. To break SU(2)L and U(1)Y altogether, then it must

have the SU(2)L and U(1)Y quantum numbers. On the other hand, W±, W 3 shall

acquire their masses through this procedure. We need three Nambu-Goldstone

bosons. Essentially, the scalar has to have more than three degrees of freedom.

The simplest choice is a complex doublet, �.

� =

0

@ �+

�0

1

A ⇠ (2, 1) (1.4.13)

To avoid a charged vacuum, the VEV of the Higgs field is chosen as < �+ >= 0

and < �0 >= v/
p
2. The Lagrangian for the Higgs field is

LHiggs =
1

2
(Dµ�D

µ)†�� V (�2)

Dµ� = (@µ � ig
�!
T .
�!
W µ � ig0

YH

2
Bµ)�

V (�†�) = �1

2
µ2(�†�)2 +

�

4
(�†�)2 (1.4.14)
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? If µ2 > 0, the potential will have the parabolic shape as in Fig 1.7. The vacuum

will be unique and symmetric, then the spontaneous symmetry breaking cannot

happen.

? While if µ2 < 0, the ground state occurs at �2 = �1
2µ

2/�. The potential V (�2)

has the famous “Mexican hat” shape as in Figure 1.8. It means that the theory

has an infinite number of vacua along the circles < � >2= µ2/�. If, for some

reason, one vacuum is chosen, then the symmetry of the ground state is broken

spontaneously.

SU(2)L ⇥ U(1)Y ! U(1)em (1.4.15)

It is convenient to represent � in terms of four real scalar fields H, ⇣1, ⇣2, and ⇣3

� =

0

@ �+

�0

1

A = exp

✓
i

v

X
⇣iTi

◆0

@ 0

1p
2
(v +H)

1

A . (1.4.16)

Then all these fields have zero V EV :

< ⇣i > = < H > = 0. (1.4.17)

In unitary gauge, ⇣i are three Nambu-Goldstone bosons which will be absorbed

by W±/Z. H is the physical Higgs field. Let us consider the EW model under

the unitary transformation

U = exp

✓
� i

v

X
⇣iTi

◆
(1.4.18)
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The transformation of the component fields as following:

� �! �0 = U� =

0

@ 0

1p
2
(v +H)

1

A ;

lL �! l0L = UlL; eR ! e0R = UeR;

Bµ �! B0
µ = UBµ;

�!
T
�!
Wµ �!

�!
T
�!
Wµ

0 = U
�!
T
�!
WµU

�1 � i

g
(@µU)U�1;

Dµ� �! (Dµ�)
0 = (@µ � ig

�!
T .
�!
W 0

µ � ig0
YH

2
B0

µ)

0

@ 0

1p
2
(v +H)

1

A (1.4.19)

Note that:

�!
T .
�!
W 0

µ =
1

2
(⌧1W

0
1µ + ⌧2W

0
2µ + ⌧3W

0
3µ)

=
1p
2
(⌧+W

+0
µ + ⌧�W

0†
µ ) +

1

2
⌧3W

0
3µ, (1.4.20)

with the definition ⌧± = 1
2(⌧1 ± i⌧2) and W 0

µ = 1p
2
(W 0

1µ � iW 0
2µ).

The kinetic part of the scalar fields:

(Dµ�)
0†(Dµ�) =

1

4
g2(v +H)2W 0†

µ W
µ0 +

1

2
[@µH@

µH +
1

4
(v +H)2(gW 0

3µ � g0B0
µ)

2]

=
1

4
g2v2W 0†

µ W
µ0 +

1

8
v2(gW 0

3µ � g0B0
µ)

2+

+
1

2
@µH@

µH +
1

4
(2vH +H2)[g2W 0†

µ W
µ0 +

1

2
(gW 0

3µ � g0B0
µ)

2.

(1.4.21)

So the mass of the charged vector boson MW = 1
2gv. While the third component

W 0
3µ and B0

µ can mix together through the mass mixing matrix:

M =
v2

4

0

@ g2 � gg0

�gg0 g02

1

A (1.4.22)

After diagonalizing, there exist two mass eigenstates:

Zµ = cos ✓WW 30
µ � sin ✓WB0

µ,

Aµ = sin ✓WW 30
µ + cos ✓WB0

µ; (1.4.23)
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here

cos ✓W =
gp

g2 + g02
; sin ✓W =

g0

g2 + g02
. (1.4.24)

The eigenvalues of the mass matrix correspond to the masses �, Z are:

M2
� = 0; M2

Z =
1

4
(g2 + g02)v2. (1.4.25)

It is realized that

M2
W

M2
Z

=
g2

g2 + g02
= cos2 ✓W . (1.4.26)

Consequently, MW = MZcos✓W . This is the first prediction of the Standard Model

of Electroweak interactions. It shows the correlation between three quantities

mW , mZ , and ✓W , and predicts the third one if the other two could be measured.

Moreover, it leads to an important parameter of the precision measurements of

the Standard Model:

⇢ =
M2

W

M2
Z cos2 ✓W

= 1. (1.4.27)

The ⇢�parameter represents the ratio of the relative strength of the neutral current

to the charged current in weak interactions.

In the inverse representation,

W 0
3µ = sin ✓WAµ + cos ✓WZµ,

B0
µ = cos ✓WAµ � sin ✓WZµ. (1.4.28)

Then,

igT3W
30
µ + ig0

Y

2
B0

µ = i[gT3(cos ✓WZµ + sin ✓WAµ) + g0
Y

2
(� sin ✓WZµ + cos ✓WAµ)]

= i
p

g2 + g02(T3 � sin2 ✓WQ)Zµ + ig sin ✓WQAµ. (1.4.29)

In the interaction of lL, eR with the photon Aµ, we have:

 ̄Li(�i�µAµg sin✓WQ) L =  ̄L�
µ L(eQ)Aµ. (1.4.30)
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It leads to another prediction

e = g sin✓W . (1.4.31)

While looking into the interaction of leptons and charge gauge bosons W± in

the low energy approximation, it is expressed as:

g2

2
J+
µ

1

q2 �m2
W

J�µ ⇠ � g2

2m2
W

J+
µ J

�µ = �4GFp
2
J+
µ J

�µ. (1.4.32)

So, there exists a relationship between the Fermi constant GF and the mass of W

boson:

GFp
2

=
g2

8m2
W

(1.4.33)

1.4.3 Fermion Masses

Besides giving masses to the W/Z, the Higgs field is also responsible for gen-

erating the masses of fermions via the Yukawa interaction.

• For leptons, the Yukawa interaction term has a form of

LY uk = gY l̄L�eR + h.c, (1.4.34)

which gives the mass term of leptons when � develops VEV

gY (⌫̄L ēL)

0

@ 0

vp
2

1

A eR + h.c.

) me = gY
vp
2
. (1.4.35)

• For quarks, it needs to introduce the adjunct representation of the Higgs

field �̃ = i⌧2�?. The VEV of �̃:

< �̃ > =

0

@
vp
2

0

1

A . (1.4.36)

28



Then the Yukawa Lagrangian for quarks is

LY uk = guq̄L�̃uR + gdq̄L�dR + h.c.

) mu = gu
vp
2
, md = gd

vp
2
. (1.4.37)

All the couplings gY , gu, gd are free parameters determined from experiments.

The Standard Model can not give any prediction about the values of these pa-

rameters. In this description of the Standard Model, only one family of fermions

is used to illustrate the SM structure. When taking into account three families of

leptons and quarks, one obtains the mixing among leptons and quarks themselves.

In general,

⇧ The mass matrix of the charged leptons is:

ml =
vp
2

0

BBB@

gee geµ ge⌧

gµe gµµ gµ⌧

g⌧e g⌧µ g⌧⌧

1

CCCA
(1.4.38)

All gY s are independent complex parameters. The mass eigenstates are achieved

after diagonalizing ml matrix.

⇧ As similarly for quarks:

mu =
vp
2

0

BBB@

guu guc gut

gcu gcc gct

gtu gtc gtt

1

CCCA
; md =

vp
2

0

BBB@

gdd gds gdb

gsd gss gsb

gbd gbs gbb

1

CCCA
(1.4.39)

1.4.4 Summary

To sum up, the Lagrangian of the Standard Model can be written as:

LSM = LFermions + LGauge + LHiggs + LY ukawa, (1.4.40)

with the expressions of partial Lagrangian shown separately in Eqs: (1.4.11),

(1.4.12), (1.4.14), while

LY ukawa = gY l̄L�eR + guq̄L�̃uR + gdq̄L�dR + h.c. (1.4.41)
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Chapter 2

Neutrino masses: Facts, Origins,

And Mechanisms

The history of neutrinos started with the proposal of W. Pauli to save the

energy conservation law in the �-decay process.

M(A,Z)! D(A,Z + 1) + e� (2.0.1)

Experiments had indicated that the energy spectrum of �-decay process was

continuous rather than discrete as predicted by two-body decay. Moreover, if there

were only two particles in the final states, then it was di�cult to explain in terms of

the angular momentum conservation. The puzzles were solved by Pauli’s particle,

which is a neutral and spin 1
2 called “neutron”. To distinguish to the neutron,

Fermi named it “neutrino” which means neutral and very small. In Fermi theory

of 4-fermion interactions, �-decay can be presented as

-31-



n

p

e�

⌫̄

Figure 2.1. Fermi 4-fermion interaction model to describe �-decay

As discussed in the previous section, the Standard Model consists of three

generations of leptons. One also has three corresponding neutrinos, ⌫e, ⌫µ, ⌫⌧ . In

the framework of the Standard Model, these neutrinos are massless. However, we

shall discuss the evidence for the non-zero masses of neutrinos, the di↵erent types

of neutrino masses, and a mechanism to generate neutrinos masses.

2.1 Neutrino Oscillations

Over the last couple decades, neutrino oscillations were observed in di↵erent

experiments using solar-neutrinos, reactor neutrinos, atmospheric neutrinos, and

accelerator neutrinos [3]. These results implied the non-zero �m2 of the neutrino

masses. In this section we present a brief theoretical background of neutrino

oscillations.

2.1.1 Mass & Flavor Eigenstates

To understand neutrino oscillations, we discuss the concepts of flavor and mass

eigenstates of neutrinos. Lets denote the gauge eigenstates by

l0L = (e0L, µ
0
L, ⌧

0
L), ⌫0L = (⌫0eL, ⌫

0
µL, ⌫

0
⌧L), (2.1.1)
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and the mass eigenstates by

lL = (eL, µL, ⌧L), ⌫L = (⌫1L, ⌫2L, ⌫3L). (2.1.2)

The two representations relate to each other through mixing matrices Ul, U⌫ for

the leptons and the neutrinos, respectively.

l0L = UllL; ⌫0L = U⌫⌫L. (2.1.3)

Let us consider the charged current interaction:

Lc = gl̄0L�µ⌫
0
LW

µ� + h.c. (2.1.4)

Then in the mass eigenstate representation:

Lc = gl̄L�µU
�1
l U⌫⌫LW

µ� + h.c. (2.1.5)

Define

(⌫eL, ⌫µL, ⌫⌧L) = U l⌫L, (2.1.6)

here U lepton = U�1
l U⌫ . The charged current interaction can be expressed as:

Lc = g(ēL, µ̄L, ⌧̄L)�⌫

0

BBB@

⌫eL

⌫µL

⌫⌧L

1

CCCA
W µ� + h.c. (2.1.7)

2.1.2 Neutrino Oscillations in Vacuum

Generally, quantum oscillation is the phenomenon where a particle in a reaction

is not identical with the one that was produced some time before. Assuming that

a neutrino with flavor ↵ is produced at t = 0.

|⌫↵(0) > =
X

i

U l
↵i|⌫i(0) > . (2.1.8)
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The probability of ⌫↵ ! ⌫� after traveling a distance L is

P⌫↵!⌫� = | < ⌫↵|⌫� > |2

=
X

i,j

U↵i
U?
�iU

?
↵jU�je

�i
m2

i�m2
j

2E L (2.1.9)

Here, Uab are the elements of the mixing matrix of leptons, so-called UPMNS in the

names of Pontocorve, Maki, Nakagawa, and Sakara. In general, UPMNS depends

on the mixing between three families of leptons and a parameter responsible for

CP violation, �CP . One possible parametrization of UPMNS is:

UPMNS =

0

BBB@

c12c13 s12c13 s13e�i�CP

�s12c23 � c12s13s23ei�CP c12c23 � s12s13s23ei�CP c13s23

s12s23 � c12s13c23ei�CP � c12s23 � s12s13c23ei�CP c13c23

1

CCCA
,(2.1.10)

where cij = cos ✓ij, sij = sin ✓ij, and ✓ij = [0, ⇡/2].

Putting the speed of light c and the Planck constant ~ into the formula, we

have the transition probability of ⌫↵ ! ⌫� [4]:

P⌫↵!⌫� = �↵� � 4
X

i<j

Re[U↵iU
?
�iU

?
↵JU�j] sin

2(Xij)

+ 2
X

i<j

Im[U↵iU
?
�iU

?
↵JU�j] sin(2Xij), (2.1.11)

here Xij = 1.27
�m2

ji(eV )2

4E(GeV )
L(km), E is the energy of the neutrino source, L is the

distance from the source.

For example, in the case of two flavors, ⌫e, ⌫µ, the probability for ⌫µ to be

converted into ⌫e is

P (⌫µ ! ⌫e) = sin2 2✓ sin2

✓
1.27

�m2
21(eV )2

4E(GeV )
L(km)

◆
, (2.1.12)

Therefore, neutrino oscillations require the non-zero mixing between mass

eigenstates and non-zero in mass di↵erence as indicated in Eq. (2.1.12). In other

words, the existence of neutrino oscillations proves that at least two of the three

neutrino flavors have to have non-zero masses.
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2.1.3 Experimental Results

Neutrino oscillations indicate that two out three neutrino flavors must have

non-zero and non-degenerate masses. Nevertheless, the oscillations do not imply

the order of mass of these flavors, because the probability of ⌫µ ! ⌫e depends on

the sin2 (�m2
21...). Generally, the mass spectrum of neutrinos can be classified

into two orders

• Normal Hierarchy (NH): m1 < m2 < m3

• Inverted Hierarchy (IH): m3 < m1 < m2

Up to date, the global fit of neutrino oscillations is given in Table 2.1 [5]:

parameter best fit ±1�

�m2
21[10

�5eV 2] 7.56+0.26
�0.22

|�m2
31|[10�3eV 2] (NH) 2.43+0.05

�0.07

|�m2
31|[10�3eV 2] (IH) 2.38+0.06

�0.06

sin2✓12 0.308± 0.017

sin2✓23(NH) 0.437+0.033
�0.023

sin2✓23(IH) 0.455+0.039
�0.031

sin2✓13(NH) 0.02340.0020�0.0019

sin2✓13(IH) 0.02400.0019�0.0020

�/⇡ (NH) 1.39+0.38
�0.27

�/⇡ (IN) 1.31+0.29
�0.33

Table 2.1. The parameters of neutrino oscillations.

As the first solid evidence for the non-zero, tiny mass of neutrinos, the phe-

nomenon of neutrino oscillations is one of the most important topics of neutrino
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physics. Other important topics have been widely investigated such as the e↵ect

of matter on neutrino oscillations, the oscillations of solar neutrinos, etc. However

in this thesis, we just present the neutrino oscillations in the vacuum to show the

necessity of building a model to explain the non-zero mass of neutrinos.

2.2 Neutrinos Mass

As discussed in the last section, neutrino oscillations imply that neutrinos have

non-zero masses. Unlike charged leptons and quarks, neutrinos can have two types

of masses, Dirac mass and Majorana mass. We start out by introducing three

generations of right-handed neutrinos corresponding to three families of leptons.

These right-handed neutrinos are singlets under the GSM group.

2.2.1 Dirac mass

The Dirac mass of neutrinos comes from the Lagrangian:

LD = g⌫e l̄eL�̃⌫eR + h.c. (2.2.1)

Here we use one family for simplicity again. When �̃ = i⌧2�⇤ acquires VEV,

< �̃ > =

0

@
vp
2

0

1

A, the Lagrangian contains the terms:

g⌫e
vp
2
⌫̄eL⌫eR + h.c. (2.2.2)

So mD
⌫e = g⌫e

vp
2
, here v = 246 GeV . In the most recent results from the Planck

satellite, the upper limit of the neutrinos mass is m⌫ < 0.23 eV [6]. If the mass of

neutrinos comes only from the Dirac type, the coupling g⌫ is ⇠ O(10�11). There

is no principle to prevent such a small coupling, but it seems an unnaturally small

scale. One alternative way to achieve such a small mass is to generate it through

a dynamical mechanism either by a symmetry or through new concepts such as

extra dimensions.
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2.2.2 Majorana mass

Unlike charged leptons, neutrinos are their anti-neutrinos due to their neutral

nature. They then can have Majorana mass in the form of ⌫TL�2⌫L or ⌫TR�2⌫R.

⇧ In the Standard Model, ⌫TL�2⌫L comes from the bilinear lTL�2lL, which has

hypercharge Y = �1. It needs to couple to a scalar with the hypercharge +1 in

order to preserve the gauge invariance. The appropriate choice is a triplet Higgs
�!
� = (�++, �+, �0). Then the Majorana mass term comes from:

LM = ig�l
T
L�2
�!⌧ .�!� lL. (2.2.3)

Here,

�!⌧ .�!� =

0

@ �+/
p
2 �++

�0 ��+/
p
2

1

A . (2.2.4)

Then

LM = g�

✓
�eTL�2

�+

p
2
⌫L + ⌫TL�2�

0⌫L � eTL�2�
++eL � ⌫TL�2

�+

p
2
eL

◆
. (2.2.5)

With the choice of VEV < � > = (0, 0, v�), then the Majorana mass of neutrinos

ismM
⌫ = g�v�. Again, the smallness of neutrinos mass requires v� to be relatively

small. This leads to a well-known Majoron problem [7].

⇧ On the other hand, ⌫TR�2⌫R is a singlet under the SM gauge group. The

simplest choice for the extended scalar is a singlet �s.

2.3 The Seesaw Mechanism

2.3.1 The Mechanism

The more elegant way to generate the mass of neutrinos is the Seesaw Mech-

anism [8]. Once we add a right-handed neutrino ⌫R per family of fermions, the

leptonic sector is given by:
0

@ ⌫

e

1

A

L

, eR, ⌫R (2.3.1)
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The Lagrangian is

LI = gD l̄L�2�
?⌫R +

MR

2
⌫TRC⌫R + h.c. (2.3.2)

Introducing Majorana spinors:

⌫M = ⌫L + C⌫̄TL , NM = ⌫R + C⌫̄TR . (2.3.3)

Then the Lagrangian becomes:

LI =
1

2
mD

�
⌫̄MNM + N̄M⌫M

�
+

ME

2
N̄MNM , (2.3.4)

where mD = gDv and v =< �0 > is the VEV of the neutral component of �. One

has the mass matrix:

⌫M

NM

0

@ 0 mD

mD MR

1

A (2.3.5)

In the limit MR � mD, the eigenvalues of the mass matrix are:

m⌫ ⇡
m2

D

MR

,

mN ⇡MR, (2.3.6)

and the two eigenstates are:

⌫ ⇡ ⌫M +
mD

MR

NM

N ⇡ NM �
mD

MR

⌫M (2.3.7)

The constraint of the neutrino mass is m⌫  0.23 eV , mD is typically at the elec-

troweak scale ⇤EW , then MR ⇡ O(1016 GeV ). The seesaw here is between the

scale of MR and electroweak scale. This is the original seesaw model. The re-

quirement of such heavy right-handed neutrinos makes this class of seesaw models

impossible to be tested at the LHC.
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2.3.2 The Left-Right Symmetric Model

One alternative possibility based on the seesaw mechanism is the left-right

symmetric extension of the Standard Model in which Parity is a fundamental

symmetry [9]. In order to break it spontaneously, one has to enlarge the gauge

group. Omitting the SU(3)C for the purpose of simplicity, the gauge group of the

minimal Left-Right model, in short LR, is

GLR = SU(2)L ⇥ SU(2)R ⇥ U(1)B�L. (2.3.8)

The electric charge is calculated by:

Q = T3L + T3R +
B � L

2
(2.3.9)

All left-handed quarks and leptons have a right-handed symmetric version. The

left-handed fermions are doublets under SU(2)L and singlets under SU(2)R, and

vice versa.

qL =

0

@ u

d

1

A

L

(2, 1, 1/3)
P ! qR =

0

@ u

d

1

A

R

(1, 2, 1/3)

lL =

0

@ ⌫

e

1

A

L

(2, 1,�1) P ! lR =

0

@ ⌫

e

1

A

R

(2, 1,�1) (2.3.10)

So the right-handed neutrinos exist naturally. We also see that ⌫R belongs to a

doublet instead of singlet as seen in the seesaw mechanism. Again, we just use one

generation here. Similarly in the gauge sector, the LR symmetry requires WR, ZR

along with WL, ZL. To generate the neutrino mass, one needs 2 scalar triplets:

�L(3, 1, 2) , �R(1, 3, 2) (2.3.11)

The mass of the light neutrinos can be achieved by applying the seesaw mecha-

nism. The LR symmetric model can be probed at the hadron colliders through the
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same sigh di-lepton processes: dū! WR ! l1NR ! l1l2W ?
R ! l1l2qq̄ as proposed

in [10]. In the most recent result from CMS, there is nothing to be found in the

search for the heavy neutrinos and WR in the Left-Right symmetric model [11].

It sets a lower limit on the mass of the right-handed W boson MR � 3 TeV .

2.3.3 Summary of The Chapter

The experimental results of neutrino oscillations indicate the non-zero, tiny

mass of neutrinos. Though the small mass of neutrinos could be realized in the

framework of the Standard Model in an ad-hoc way, it would be more attractive to

explain the neutrino mass by introducing the physics beyond the Standard Model.

The key answer would be lying in the nature of the mass of neutrinos. Is it just

the Dirac type or the mixture of the Dirac and Majorana types? If it turns out

the Dirac mass is the only source of neutrino mass, then the Standard Model

could explain it with the small Yukawa coupling. And the mass of neutrinos does

not give any clue about new physics. Even though we still have to look for the

new symmetry underlying the smallness of the Yukawa coupling in the neutrinos

sector.

On the other hand, the Majorana nature of neutrino mass is obviously the sign

of the physics beyond the Standard Model. The lepton flavor violating processes

such as double � decay or like sign di-lepton are the direct evidence of the Majorana

mass of neutrinos. In this case, the seesaw mechanism would be a very elegant

framework for generating the small mass of neutrinos. However, the requirement

of a very high mass scale make these kinds of models impossible to detect at

the LHC, or near future machines. The Left-Right symmetric extension of the

Standard Model would make the seesaw mechanism more predictive as it ties

the high mass scale with the breaking scale of the right-handed gauge sector.

Unfortunately, the most recent result from CMS sets the lower limit of WR up to

3 TeV.
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One may ask whether we could build a model so that the mass of the light

neutrinos arises naturally through the Seesaw Mechanism, and the new particle

content has a large enough production rate in order to be detected at current

collider energy levels? The answer is well addressed in the Model of Right-handed

neutrinos at the Electroweak scale, in short EW⌫R , and its extension.
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Chapter 3

The Model of Right-Handed

Neutrinos at ElectroWeak Scale

3.1 Motivations

So far, the non-zero mass of neutrinos strongly indicates Physics Beyond the

Standard Model. An elegant way to explain the small mass (< eV ) of neutrinos is

through the seesaw mechanism discussed in the last chapter. The loophole in this

class of models is the testability at the current running hadron colliders such as

the LHC. In these models, there must exist a very high mass scale O(1014 GeV ),

at least, to make the see-saw work. Therefore, it is almost impossible to test these

models. One interesting alternative is the model of Left-Right Symmetry which

extends the Standard Model in both the particle content and the gauge structure.

There are also two scales of symmetry breaking. The left-handed gauge sector

is spontaneously broken at the electroweak scale while the right-handed breaking

scale is only constrained in the lower bound by the experiments. Recent work

of the CMS experiment on the search for heavy neutrinos and W bosons with

right-handed couplings at the LHC put the lower bound of MWR
� 3.0 TeV at a

95% of confidence level. So the Left-Right symmetric model is also facing a tough

path ahead.
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The problem of these extensions of the Standard Model lies in the inert nature

of the right-handed neutrinos because they are singlets under the SM gauge group.

So one may ask if we can construct a model in which:

• The gauge group is still the same as the gauge group of the Standard Model

• The right-handed neutrinos are the one component of the doublets under

the gauge group instead being singlets as in the Standard Model.

Then, in this case, the right-handed neutrinos can couple to the gauge vector

bosons directly. Consequently, they can be produced and detected at hadron

colliders, such as the LHC. The idea of the existence of the mirror symmetry in

the Standard Model proposed by Lee-Yang would be a great starting point [12].

They proposed the existence of the heavy particles with exactly opposite chirality

of the SM particles. However, these models were under the tight constraints of

the precision measurements of the Standard Model, particularly the S parameter.

One deeper motivation to build a model containing additional mirror fermions

is to study the electroweak phase transition which is non-perturbative. The most

popular framework to study non-perturbative phenomena is through lattice regu-

larization. To put a chiral gauge theory such the Standard Model on the lattice, it

is required to have an equal numbers of left-handed and right-handed fermions. As

shown in chapter 1, the Standard Model does not have this feature. Nevertheless,

Montvay has shown that a gauge-invariant formulation of the Standard Model on

the lattice is possible if one introduces mirror fermions [13]

Recently, the extension of the SM in the mirror symmetric direction has been

renovated by the idea of extending the Higgs sector to avoid the conflict with the

electroweak precision measurements. This is the model of Right-handed Neutrinos

at Electroweak scale, in short EW⌫R proposed by Professor Pham Quang Hung

in 2007 [14].
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3.2 The Model

In this section, we describe the construction of the EW⌫R model [14].

3.2.1 The Fermion Sector

The original purpose of building the model is to generate the mass of neutrinos.

So let start out with the mass term of the neutrino in one generation. In the

Standard Model, the right-handed neutrinos are sterile singlets under the SM

SU(2) group. In the EW⌫R model, we assume the existence of right-handed

charged leptons eMR with the opposite chirality to the SM charge leptons, then we

can group the right-handed neutrinos into SU(2) doublets. For one family, we

have

lMR =

0

@ ⌫R

eMR

1

A (3.2.1)

The subscript M stands for mirror fermions. In this case, we have a mirror

lepton SU(2) doublet exists along with the SM SU(2) doublet. Therefore, we

will name the gauge group of weak interactions as SU(2)W for better suitable

representation. Using the same logic, we also assume the existence of a charged

left-handed SU(2)W singlet mirror lepton eML as the mirror counterpart of the

singlet eR.

It must be emphasized that the mirror particles in the EW⌫R model are com-

pletely di↵erent than the mirror objects in the other models, because the mirror

particles in this model have the same quantum numbers as the SM particles except

the opposite chirality.

With the new mirror lepton doublet, the Dirac mass of neutrinos can be ex-

tracted from the bilinear l̄LlMR , which is 2 ⇥ 2 = 3 + 1 in terms of the group

structure. Thus one needs to introduce a singlet scalar field �S which can couple

to the bilinear. In addition, the EW⌫R model still contains the SM Higgs dou-
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blet �. The lepton mass terms in the model can be realized through the Yukawa

interactions as

LS = gSl l̄L�Sl
M
R + h.c.

= gSl(⌫̄L⌫R + ēLe
M
R )�S + h.c.

LY 1 = gl l̄L�eR + h.c.

LY 2 = gMl l̄MR �e
M
L + h.c. (3.2.2)

Once �S,� develop their VEVs

< �S > = vS,

< � > =

0

B@
0
v2p
2

1

CA (3.2.3)

Then from Eqs.(3.2.2, 3.2.3), the mass of the Dirac neutrino and leptons are

mD
⌫ = gSLvS, ml = glv2/

p
2, mlM = gMl v2/

p
2. (3.2.4)

The mass matrix for the charged SM and mirror leptons is

Ml =

0

@ ml mD
⌫

mD
⌫ mlM

1

A . (3.2.5)

After diagonalizing this mass matrix, the eigenvalues corresponding to the masses

of the charged lepton and its mirror counterpart are given by

eml = ml �
(mD

⌫ )
2

mlM �ml

,

emlM = mlM +
(mD

⌫ )
2

mlM �ml

. (3.2.6)

Assume that mlM � ml, and the Dirac mass of neutrino mD
⌫ ⌧ mlM , then the

mass mixing in Eq. (3.2.5) is negligible. We can have eml ⇡ ml, emlM ⇡ mlM .

45



The Dirac mass of neutrino just depends on the coupling gSL and its VEV vS.

From the µ2e conversion work, gSL should be less than 10�3 [15]. While the vS can

be very small, because it is basically unconstrained by experiments. Therefore,

one can make mD
⌫ to be at the oder of eV .

As seen in the last chapter, neutrinos can have a Majorana mass due to their

neutral charge property. In this model, the bilinear lM,T
R �2lMR will generate the

Majorana mass of neutrinos. Under the group SU(2)W ⇥ U(1)Y , the bilinear

transforms as (1 + 3, Y/2 = �1). We only can use a +1 charged scalar triplet to

couple to the bilinear because the charge scalar singlet would break the charge

conservation. One assumes the the existence of a scalar triplet �!� (3, Y/2 = +1) =

(�0,�+,�++) in an adjoint representation

e� =
1p
2
�!⌧ �!� =

0

@
1p
2
�+ �++

�0 � 1p
2
�+

1

A (3.2.7)

With the proper VEV:

< e� > =

0

@ 0 0

vM 0

1

A (3.2.8)

We can have a gauge invariant Yukawa coupling in the form of

LM = gM lM,T
R �2⌧2e�lMR . (3.2.9)

After the scalar triplet gets VEV, the right-handed neutrino acquires a Majorana

mass

MR = gMvM (3.2.10)

If the right-handed neutrino is lighter than MZ/2, then the Z boson could decay

into two right-handed neutrinos that contribute to the value of the width of the Z

boson. The precise measurement of Z-width puts a strict constraint on the number
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of light neutrinos to be three flavors of the SM neutrinos. In fact, in this model,

we impose MR > MZ/2, so that the right-handed neutrinos cannot contribute to

the Z-width.

To prevent the left-handed neutrino from acquiring a Majorana mass, we im-

pose a global symmetry U(1)M under which

lMR , eML �! ei✓M lMR , eML ,

e� �! e�2i✓M e�,

�S �! e�i✓M�S. (3.2.11)

All other fields are singlets under this U(1)M group. Consequently, the mass terms

such as gLlTL�2⌧2e�lL, l̄LlMR e� are forbidden. The left-handed neutrino does not have

Majorana mass at tree level. However, it happens at the loop level:

ML = �
1

16⇡2

mD 2
⌫

MR

ln
MR

M�S

. (3.2.12)

Here � is the quartic coupling of �S; M�S
is the mass of �S. The Majorana mass

matrix is

MM =

0

@ ML mD
⌫

mD
⌫ MR

1

A . (3.2.13)

Here mD
⌫ , MR, ML are given in Eq. (3.2.4, 3.2.10, 3.2.12), respectively. Diago-

nalizing the Majorana mass matrix give us two eigenvalues:

m⌫ = ML �
(mD

⌫ )
2

MR

⇡ �g2Sl
gM

v2S
vM

(1� ✏),

mN = MR, (3.2.14)

with ✏ < 10�2. Knowing that vM is at order of electroweak scale ⇤EW , the

requirement of the mass of the light neutrino m⌫ < 2.3 eV [6] is equivalent with

vS ⇡ O(105 eV ). In the EW⌫R model, the seesaw happens between two scales
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keV and ⇤EW . This is the crucial di↵erence between this model with other models

based on the seesaw mechanism which need to a very high scales at least at the

order of O(1014 GeV ).

In the quark sector, the anomaly cancellation requires the introduction of mir-

ror quarks as well. For each family,

• SU(2)W quark doublets:

SM : qL =

0

@ uL

dL

1

A (2,
1

3
) ; Mirror : qMR =

0

@ uM
R

dMR

1

A (2,
1

3
) (3.2.15)

for the SM left-handed quark doublet and for the right-handed mirror quark

doublet respectively.

• SU(2)W quark singlets:

SM : uR (1,
4

3
) , dR (1,�2

3
) ; Mirror : uM

L (1,
4

3
) , dML (1,�2

3
) (3.2.16)

for the right-handed SM quark singlets and left-handed mirror quark singlets

respectively.

In the EW⌫R model, the anomaly cancellation happens within the quark and

lepton sectors themselves. We also have the masses of the quarks and the mirror

quarks:

emq = mq �
(mD

µ )
2

mqM �mq

gSq
gSl
⇡ mq,

emqM = mqM +
(mD

µ )
2

mqM �mq

gSq
gSl
⇡ mqM , (3.2.17)

with mq = gqv2/
p
2, mqM = gMq v2/

p
2.

3.2.2 The Scalar Sector

So far, in the EW⌫R model, we need at least one complex scalar triplet �!� as

shown in Eq. (3.2.7) and a singlet �S to generate the mass of the light neutrino
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together with the complex doublet � of the Standard Model. It is well-known that

the scalar triplet can break custodial symmetry at tree level explicitly. Generally,

the contribution of a new Higgs representation to the ⇢ parameter is given by

⇢ =

P
i[T (T + 1)� T 2

3 ]iv
2
i cT,Y

2
P

i T
2
3iv

2
i

, (3.2.18)

where cT,Y = 1 for a complex multiplet and cT,Y = 1/2 for a real multiplet [16].

Any complex doublet contributes an amount of 1 to the ⇢ parameter. While a

triplet contribute an amount 1/2. The ⇢ parameter of a mixture of a triplet and a

doublet would be di↵erent to 1, and depends on the ratio of VEVs of the triplet and

the doublet. ⇢ can be closed to 1 if the VEV of the triplet is very small compare

to that of the doublet. However, in the case of the EW⌫R model, we expect the

VEV of the triplet is at the order of ⇤EW . It necessitates the introduction of a real

scalar triplet ⇠(3, Y/2 = 0) with a proper choice of VEV so that one can ensure the

⇢ = 1 constraint to be valid. We will show in details in the next few parts. The

two triplets ⇠,�!� form a (3,3) representation under the global SU(2)L ⇥ SU(2)R

symmetry as follows [17, 18, 19, 20]

� =

0

BBB@

�0 ⇠+ �++

�� ⇠0 �+

��� ⇠� �0⇤

1

CCCA
. (3.2.19)

Similarly, � and its adjoint �̃ = ı⌧2�⇤ can be grouped into a (2, 2) representation

� =

0

@ �0⇤ �+

�� �0

1

A . (3.2.20)

The kinetic part of the Lagrangian for the Higgs sector is

LKH =
1

2
Tr[(Dµ�)

†(Dµ�)] +
1

2
Tr[(Dµ�)

†(Dµ�)] + |@µ�S|2. (3.2.21)
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Here, the derivatives of the scalars are expressed as

Dµ� = @µ�+ ig
�!
W
�!⌧
2
�� ig0�B

⌧3
2

Dµ� = @µ�+ ig
�!
W
�!
t

2
�� ig0�B

t3
2

(3.2.22)

The most general scalar potential for � and � that preserves global SU(2)L ⇥

SU(2)R is given by [17, 20]:

V (�,�) = �1
⇣
Tr�†�� v22

⌘2
+ �2

⇣
Tr�†�� 3v2M

⌘2

+ �3
⇣
Tr�†�� v22 + Tr�†�� 3v2M

⌘2

+ �4
⇣
(Tr�†�) (Tr�†�)� 2 (Tr�† ⌧

a

2
�
⌧ b

2
) (Tr�†T a�T b)

⌘

+ �5
⇣
3 Tr�†��†�� (Tr�†�)2

⌘
(3.2.23)

Here, �i are the coupling constants of the self-coupling of the Higgs fields. In

order to have a positive semi-definite potential, the following conditions of these

coupling constants must be satisfied:
8
>>>>><

>>>>>:

�1 + �2 + 2�3 > 0

�1�2 + �1�3 + �2�3 > 0

�4 > 0, �5 > 0

3.2.3 The SSB of the EW⌫R Model

A proper choice of the VEVs of �, � is given by

h�i =

0

BBB@

vM 0 0

0 vM 0

0 0 vM

1

CCCA
, (3.2.24)

and

h�i =

0

@ v2/
p
2 0

0 v2/
p
2

1

A . (3.2.25)
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When �, � develop their VEVs, then the global symmetry SU(2)L⇥SU(2)R �!

SU(2)C . At the same time, the local gauge group of the electroweak interactions is

broken spontaneously as SU(2)W ⇥ U(1)Y �! U(1)em. The gauge vector bosons

W/Z acquire their masses from the longitudinal components of the N-G bosons.

One obtains

MW = g v/2,

MZ = MW/ cos ✓W , (3.2.26)

with v =
p

v22 + 8 v2M ⇡ 246GeV and, at tree level:

⇢ =
MW

MZ cos ✓W
= 1. (3.2.27)

The custodial symmetry is preserved at tree level.

One crucial point is to find the ranges of the VEVs, v2, vM , of the scalar

doublet and triplets in the EW⌫R model. They are obviously bounded by the

value of v = 246 GeV . Moreover, vM appears on the mass of the right-handed

neutrino MR = gMvM , and in the Yukawa coupling constants. We will have some

constraints on the ranges of vM , v2 in the next chapter.

3.2.4 The Mass Spectrum of the Scalars

After the spontaneous breaking of SU(2)L⇥U(1)Y , besides the three Nambu-

Goldstone bosons which are absorbed by W and Z, there are ten physical scalars

grouped into the multiplets of the group SU(2)D. To present these fields, we

introduce subsidiary fields

�0 ⌘ 1p
2

⇣
v2 + �0r + ı̇�0ı̇

⌘
,

�0 ⌘ vM +
1p
2

⇣
�0r + ı̇�0ı̇

⌘
;

 ± ⌘ 1p
2

⇣
�± + ⇠±

⌘
,

⇣± ⌘ 1p
2

⇣
�± � ⇠±

⌘
. (3.2.28)
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The first two fields are the mixing of the neutral components of the complex

scalar triplet �!� and the scalar doublet �. While the last ones are the mixing

of the charged components of two triplet scalars. There is also the mixing angle

between the doublet and the triplet:

sin ✓H ⌘ sH =
2
p
2vM
v

,

cos ✓H ⌘ cH =
v2
v
. (3.2.29)

We have three N-G bosons expressed as:

G±
3 = cH�

± + sH 
±,

G0
3 = ı̇

�
�cH�0ı̇ + sH�

0ı̇
�
. (3.2.30)

In the scalar sector, we have 13 degrees of freedom from one complex scalar dou-

blet, one complex scalar triplet and one real scalar triplet. Three of them are the

N-G bosons listed above. The remaining ten degrees of freedom correspond to ten

physical Higgs fields. Under the custodial group SU(2)C , they are classified into:

• A fivetet: H±±
5 , H±

5 , H
0
5

• A triplet: H±
3 , H

0
3

• Two singlets: H0
1 , H

00
1 .

Where,

H++
5 = �++, H+

5 = ⇣+, H+
3 = cH 

+ � sH�
+,

H0
5 =

1p
6

⇣
2⇠0 �

p
2�0r

⌘
, H0

3 = ı̇
⇣
cH�

0ı̇ + sH�
0ı̇
⌘
,

H0
1 = �0r, H00

1 =
1p
3

⇣p
2�0r + ⇠0

⌘
, (3.2.31)

with H��
5 = (H++

5 )⇤, H�
5 = �(H+

5 )
⇤, H�

3 = �(H+
3 )

⇤, and H0
3 = �(H0

3 )
⇤.

52



As discussed in [17], the potential in Eq. (5.3.12) breaks the group U(1)M

explicitly due to the �4 interaction. Therefore the model does not have the Nambu-

Goldston boson associated with this symmetry breaking.

3.3 Summary of The EW⌫R Model

• With the extension in both the lepton and quark sectors, the model is

anomaly free within these sectors. The mirror particles contribute to the

triangle loops at the same amount but in the opposite sign with the con-

tribution of the SM counterparts. Eventually, the triangle loops are trivial

among the leptons and quarks individually.

• The biggest di↵erence between the EW⌫R model in comparison with other

seesaw models is the upper bound in the energy scale. By introducing the

scalar singlet �S, the lower bound only depends on the coupling and the

VEV of the singlet which are basically not tightly constrained. We then

have the seesaw of the keV and MeV scale as seen in Eq. (3.2.14). The

upper limit of the EW⌫R model is bounded by the electroweak scale ⇤EW .

• Though it is not the priority of building the model, the EW⌫R model can

be merged into the higher symmetric group E6 of a unified theory. In these

representations, the SM fermions and their mirror counterparts belong to

27L and 27c
L of E6, respectively. The Dirac mass term in Eq. (3.2.4) is

extracted from the term 27c,T
L �227L�S(1), where �S(1) is an E6 singlet.

The Majorana mass term in Eq. (3.2.10) comes from the term 27T
L�227L.

More details can be found in [21].

• The biggest advantage of the EW⌫R model is the accessibility at the current

and near future high energy colliders, such as the LHC and the ILC. The

right-handed neutrinos in the model belong to the SU(2)W doublets, so they
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couple to the gauge bosons directly. As the result, their production cross-

section and decay rate are at the electroweak order.

• In terms of the cosmological consequence, one might suspect the contribution

of the right-handed neutrinos to the total energy density. However, in the

EW⌫R model, ⌫R �! ⌫L+�S. ⌫L is the remnant of these processes, and only

its mass contributes to the total energy density. Moreover, the nucleosyn-

thesis is supposed to happen at T ⇡ MeV . By that time, all right-handed

neutrinos would have decayed into ⌫L. The number of the light neutrinos

is still limited to 3 families of the SM neutrinos. Thus the right-handed

neutrinos do not a↵ect the big bang nucleosynthesis.
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Chapter 4

Electroweak Precision

Measurements

Over a couple of decades, experimental results in High Energy Physics have

been making a great progress on the electroweak precision measurements of the

Standard Model. Especially the Z pole, the W mass, and low energy data can

be used to search for and set limits on any deviation from the SM. Satisfying

the electroweak precision measurements is a crucial test of any BSM model. We

devote this chapter to investigate the EW⌫R model under these constraints.

4.1 Oblique Parameters

Among several ways to constrain the e↵ect of New Physics on the Standard

Model, the oblique parameters, S, T, U , are the most common set of observables

[22, 23]. By definition, S, T, U contain the electroweak contributions of the new

particles into the self-energy 2-point function of the SM vector bosons at the loop

levels.

• S measures the momentum dependence of vacuum polarization.

↵S ⌘ 4e2[⇧0
33(0)� ⇧0

3Q(0)] (4.1.1)
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• T measures the custodial isospin symmetry violation.

↵T ⌘ e2

s2W c2WM2
Z

[⇧11(0)� ⇧33(0)] (4.1.2)

T parameter relates to the custodial ⇢ parameter, which is defined as

⇢ ⇡ 1 + ↵T (4.1.3)

• U parameter is less important than S and T in constraining New Physics,

and is usually small compared to S and T . In terms of the self-energy 2-point

functions,

↵T ⌘ 4e2[⇧0
11(0)� ⇧0

33(0)] (4.1.4)

In these definitions, sW = sin ✓W , cW = cos ✓W ; ✓W is the weak mixing angle. The

functions ⇧11, ⇧33 are the vacuum polarizations of the isospin currents, and ⇧3Q

is the vacuum polarization of the third isospin and the electromagnetic current.

While the ⇧0 is defined as

⇧0(0) ⌘ ⇧(q2)� ⇧(0)
q2

(4.1.5)

Generally, these functions are evaluated at q2 = M2
Z . We just calculate the con-

tribution of New Physics (NP) in the EW⌫R model on S and T , because U is

generally much smaller than the two. In terms of the self-energy of the W,Z and

� bosons and the Z� mixing [22], S and T can be expressed as

↵̂(MZ)

4ŝ2W ĉ2W
S ⌘ ⇧ZZ(M2

Z)� ⇧ZZ(0)

M2
Z

�

ĉ2W � ŝ2W
ĉW ŝW

⇧Z�(M2
Z)

M2
Z

� ⇧��(M2
Z)

M2
Z

↵̂(MZ)T ⌘
⇧WW (0)

M2
W

� ⇧ZZ(0)

M2
Z

(4.1.6)

Note that the running constants, ↵̂, ŝW , ĉW are evaluated at q2 = M2
Z in the

minimal subtraction scheme (MS) of the renormalization procedure. Moreover,
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at one loop level, these parameters can be decomposed into the contributions of

New Physics (NP) and of the Standard Model. In the framework of the EW⌫R

model, we can present the e↵ect of the NP in terms of eS, eT which are defined as

eS = SEW⌫R � SSM

eT = TEW⌫R � T SM (4.1.7)

We consider the contributions of the scalars and the fermions individually. There-

fore we separate eS, eT into

eS = eSscalar + eSfermion (4.1.8)

eT = eTscalar + eTfermion (4.1.9)

The contributions of NP of the EW⌫R model in the scalar and the fermion sectors

can be expressed explicitly by

eSscalar = SEW⌫R
scalar � SSM

scalar

eSfermion = SEW⌫R
fermion � SSM

fermion

eTscalar = TEW⌫R
scalar � T SM

scalar

eTfermion = TEW⌫R
fermion � T SM

fermion (4.1.10)

4.2 The Oblique Parameters of the EW⌫R Model

First, we will give an overview about the contributions of the new scalar and

fermion sectors of the model to the oblique parameters separately. Generally,

the introduction of a heavy chiral doublet gives a positive contribution to the

S parameter. Also, a heavy non-degenerate multiplet of fermions contributes

positively to T . In the EW⌫R model, the existence of the new mirror fermions

and right-handed neutrinos at the electroweak scale could potentially ruin the

constraint in the S, T parameters. However, in this model, there also exists the

scalar triplet which can provide a negative contribution to S and T in a certain
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parameter space. As pointed out in [24], there is a cancellation of the contributions

of the new scalars and the new fermion in the EW⌫R model to S, T , then these

parameters remain in the allowed range as with the condition U = 0[23] 1

S =� 0.02± 0.14

T = 0.06± 0.14 (4.2.1)

We will present the contributions of New Physics to the S, T parameters at 1 loop

level of the new scalars and fermions in the EW⌫R model separately in the next

section [25].

4.3 The Contribution of Mirror Fermions to S, T

In the EW⌫R model, there exist six mirror quarks, three mirror charged leptons,

and three right-handed neutrinos as listed in the section (3.2). Basically, we have

six new chiral doublets from these particles. There are four types of diagrams

contributing to eS, eT as seen in Eq. (4.1.6).

�

fM
L

fM
L

� W+

fM
1R

fM
2R

W+ Z

fM
L

fM
L

� Z

fM
L

fM
L

Z

Figure 4.1. The fermionic contributions to the self-energy 2-point function of
gauge vector bosons

We can decompose eSfermion, eTfermion into the contributions of the mirror quarks

and mirror leptons as

eSfermion = eSlepton + eSquark

eTfermion = eTlepton + eTquark (4.3.1)

1These constraints were from the data at the time when our analysis was conducted in 2013.
In the most updated results, S = 0.00±�0.08, T = 0.05± 0.07.
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Using the definition in Eq. (4.1.7), we find the contribution of New Physics in the

fermion sector in the EW⌫R model to be

• eSlepton,

eSlepton = SEW⌫R
lepton � SSM

lepton

=
(NC)lepton

6⇡

3X

i=1

(
� 2 Ylepton x⌫i + 2

✓
�4Ylepton

2
+ 3

◆
xei�

� Ylepton ln

✓
x⌫i

xei

◆
+ (1� x⌫i)

Ylepton

2
G(x⌫i)

+

✓
3

2
� Ylepton

2

◆
xei �

Ylepton

2

�
G(xei)

)
(4.3.2)

• eTlepton,

eTlepton = TEW⌫R
lepton � T SM

lepton

=
(NC)lepton
4⇡s2WM2

W

3X

i=1

"
m2

⌫i

⇣
B1(0;m

2
⌫i,m

2
⌫i)� B1(0;m

2
⌫i,m

2
ei)
⌘

+m2
ei

⇣
B1(0;m

2
ei,m

2
ei)� B1(0;m

2
ei,m

2
⌫i)
⌘#

=
(NC)lepton
8⇡s2WM2

W

3X

i=1

F(m2
⌫i,m

2
ei) (4.3.3)
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• eSquark,

eSquark = SEW⌫R
quark � SSM

quark

=
(NC)quark

6⇡

3X

i=1

(
2

✓
4
Yquark

2
+ 3

◆
xui

+ 2

✓
�4Yquark

2
+ 3

◆
xdi � Yquark ln

✓
xui

xdi

◆

+

✓
3

2
+ Yquark

◆
xui +

Yquark

2

�
G(xui)

+

✓
3

2
� Yquark

◆
xdi �

Yquark

2

�
G(xdi)

)
(4.3.4)

• eTquark,

eTquark = TEW⌫R
quark � T SM

quark

=
(NC)quark
4⇡s2WM2

W

3X

i=1

"
m2

ui

⇣
B1(0;m

2
ui,m

2
ui)� B1(0;m

2
ui,m

2
di)
⌘

+m2
di

⇣
B1(0;m

2
di,m

2
di)� B1(0;m

2
di,m

2
ui)
⌘#

=
(NC)quark
8⇡s2WM2

W

3X

i=1

F(m2
ui,m

2
di), (4.3.5)

Here, all the B1(q2,m2
1,m

2
2), F (m2

1,m
2
2), G(x) functions are written explicitly in

Appendix (A.2). The summation here is taken over three families of the mirror

fermions. The color number (NC)quark = 3 for three colors of the mirror quarks,

(NC)lepton = 1 for the mirror leptons. For the hypercharge, Ylepton = �1 for the

mirror leptons, and Yquark = �1/3 for the mirror quarks. The scalar variable

xui,di,⌫i,ei = (mui,di,⌫i,ei/MZ)2.

In this thesis, we have not considered the mixing between the mirror fermions.

We can justify this argument because all the mirror quarks and mirror leptons in
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the EW⌫R model are at the order of ⇤EW , few hundred GeV . Eventually, their

masses are relatively close to each other. The mixing matrices, therefore, would be

very similar to the diagonal matrix among both the mirror quarks and the mirror

leptons. The e↵ect of mixing between generations is not important in the context

of the electroweak precision measurements.

4.4 The Contribution of the Scalars to S, T

In the EW⌫R model, the mass spectrum in the scalar sector consists of a

scalar quintet, H±±
5 , H±

5 , H0
5 , a scalar triplet, H±

3 , H0
3 , and two scalar singlets,

H0
1 , H00

1 under the custodial group SU(2)D. In Feynman gauge, the Nambu-

Goldstone bosons G±
3 , G

0
3 also contribute to the oblique parameters. All of these

new particles appear in the scalar loops of the self-energy diagram of the gauge

bosons. For the case of the photon, the Feynman diagrams are

�

Si

Sj �
�

Si

Vj
� �

Si

�

Figure 4.2. The contribution to the self-energy diagrams of the gauge bosons

Here Si presents the scalars and N-G bosons of the EW⌫R model. There are

the same kind of diagrams for W,Z and the mixing Z � �. In terms of one-point

and two-point functions, the contribution of New Physics of the scalar sector of

the EW⌫R model to the oblique parameters can be expressed as

• For eS:
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eSscalar = SEW⌫R
scalar � SSM

scalar

=
1

M2
Z⇡

(
4

3
s2H

h
B22(M

2
Z ;M

2
Z ,m

2
H0

5
)�M2

Z B0(M
2
Z ;M

2
Z ,m

2
H0

5
)
i

+ 2 s2H

h
B22(M

2
Z ;M

2
Z ,m

2
H+

5
)� M2

W B0(M
2
Z ;M

2
Z ,m

2
H+

5
)
i

+ c2H
⇥
B22(M

2
Z ;M

2
Z ,m

2
H1
)�M2

Z B0(M
2
Z ;M

2
Z ,m

2
H1
)
⇤

+
8

3
s2H

h
B22(M

2
Z ;M

2
Z ,m

2
H0

1
)�M2

Z B0(M
2
Z ;M

2
Z ,m

2
H0

1
)
i

+
4

3
c2H B22(M

2
Z ;m

2
H0

5
,m2

H0
3
) + 2 c2H B22(M

2
Z ;m

2
H+

5
,m2

H+
3
)

+ s2H B22(M
2
Z ;m

2
H0

3
,m2

H1
) +

8

3
c2H B22(M

2
Z ;m

2
H0

3
,m2

H0
1
)

� 4 B22(M
2
Z ;m

2
H++

5
,m2

H++
5

)� B22(M
2
Z ;m

2
H+

5
,m2
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5
)� B22(M

2
Z ;m

2
H+

3
,m2

H+
3
)

�
⇥
B22(M

2
Z ;M

2
Z ,m

2
H)�M2

Z B0(M
2
Z ;M

2
Z ,m

2
H)
⇤
)
, (4.4.1)
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• For eT :

eTscalar = TEW⌫R
scalar � T SM

scalar

=
1

4⇡s2WM2
W

(
1

2
F(m2

H++
5

,m2
H0

5
) +

3

4
F(m2
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5
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5
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1

4
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3
,m2

H0
3
)

+
c2H
2
F(m2
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5

,m2
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3
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c2H
4
F(m2
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5
,m2

H0
3
) +

c2H
12

F(m2
H0

5
,m2

H+
3
)

� c2H
2
F(m2

H+
5
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3
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3
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)� s2H

4
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+
s2H
4

h
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3
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H1
)� F(m2
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3
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i

+
2

3
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h
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3
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1
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3
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1
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i

+
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W ,m2
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5
)� s2H

4
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W ,m2
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5
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5
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5
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W ,m2
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5
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. (4.4.2)

Here, all the B1(q2,m2
1,m

2
2), F (m2

1,m
2
2), G(x) functions are written explicitly in

Appendix (A.2). In the next section, we will analyze numerically the contribution

of New Physics in both the scalar and fermionic sectors of the EW⌫R model to

the oblique parameters.

4.5 Numerical Analysis

In this section, we first present the contributions of New Physics of the EW⌫R

model in the scalar and fermionic sectors separately to the oblique parameters in

the whole parameter space. We investigate the dependence of S and T on the

mass splittings in a mirror fermion family and in the scalar multiplets. Finally,

we apply the electroweak precision measurements to the total S and T to find the

allowed region of the model.
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4.5.1 The Parameter Space

In addition to the SM parameters, the EW⌫R model contains twenty indepen-

dent parameters including the masses of six mirror quarks, three mirror charged

lepton, three right-handed neutrinos, seven scalars, and one mixing angle. In the

scalar sector, we have a quintet H0,±,±±
5 , a triplet H0,±

3 , and two singlets H0
1 , H

00
1 .

For the purpose of finding the allowed region satisfying the electroweak precision

measurements, we scan them from MZ to the unitary bound ⇡ 650 GeV . It is

the same for the scanned range of the masses of the mirror quarks and the mirror

charged leptons, MZ  mq̃  650 GeV . The mixing angle ✓H presents the mixing

between the doublet � and the triplet �̃ after the spontaneous symmetry breaking

of the gauge group. As discussed in [20], 0.1  sin✓H  0.89.

For the right-handed neutrinos, their masses have the form of MR = gMvM .

Here vM is the VEV of the triplet scalar �̃, gM is the Yukawa coupling of the

scalar triplet with the mirror fermions. While the mass of the Standard Model

particles, such as the top quark, are produced through the VEV of the doublet �,

v2, in the form of mf = gfv2. To ensure that the model is a perturbative theory,

we require the coupling constant to satisfy the constraint ↵f = g2f/(4⇡)  1. With

the mass of top quark known to be 173 GeV , the perturbative requirement is

equivalent to v2 � 68 GeV . As we know, after spontaneous symmetry breaking,

v22 + 8v2M = v2 = (246 GeV )2. This means that vM  84 GeV . To avoid conflict

with the Z-width measurement, we require MR = gMvM � MZ/2. Also the

perturbative requirement gives gM 
p
4⇡. Combining the two requirements, we

have vM � 13 GeV , v2  243 GeV . Finally, we have the upper limit on the mass of

right-handed neutrinos is MR  300 GeV . Note that if we relax the perturbative

condition gM  O(
p
4⇡), then the upper limit of MR can be higher.

In the numerical calculation, we generate randomly the parameters in the

chosen ranges and do the numerical integrations in the formulae of eS, eT of the
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scalars and the mirror fermions as expressed in Eqs. (4.3.2, 4.3.3, 4.3.4, 4.3.5,

4.4.1, 4.4.2).

4.5.2 The Unconstrained S, T

In this section, we present the eS, eT of the scalar and the fermionic sectors in

the whole parameter space.

• The scatter plot below presents the contribution of New Physics to the oblique

parameters of the mirror fermions.

MFS~
-1 -0.5 0 0.5 1 1.5 2

M
F

T~

-5

0
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35

40

Figure 4.3. The contribution of the mirror fermions.

In general, the new chiral doublets produce positive contributions to the oblique

parameters. As shown in Fig. 4.3, eTMF can be very positively large depending

on the mass splitting between the member of each family. To compare with the

electroweak precision measurements, we include the experimental 1, 2 � contours
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Figure 4.4. The contribution of the mirror fermions is always above the
2 � � constraint. Here the EW precision measurements constraints are eS =
�0.02± 0.14, eT = 0.06± 0.14 [23]

Eventually, if there were just mirror fermions in the model, it was impossible

to find a solution in which eS, eT satisfy the electroweak precision constraints as

seen in the Fig. 4.4.

• With all the masses of the scalar varied from MZ/2 to 650 GeV , we have the

contributions of the scalar sector to the oblique parameters in Fig. 4.5.
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Figure 4.5. The contribution of the scalars.

As we see, there is a certain region of parameter space of the model where S̃S

and T̃S can be very negative. It can be clearly seen when the EW precision contours

are added in the Fig. 4.6. Here,we just plot in the region of �2  S̃S, T̃S  2 for

the purpose of illustration.
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Figure 4.6. The contribution of the scalars with the EW precision measurement
constraints.

In conclusion, the mirror fermions in the EW⌫R model make positive contribu-

tions to both S and T as expected for any extra chiral doublet. On the other hand,

the new scalars in the model eventually contribute negatively to these parameters

in a certain parameter space. We expect a cancellation between two sectors in

the oblique parameters to ensure that the total S and T satisfy the electroweak

precision measurement constraints.

4.5.3 The Constrained S and T

To apply the constraints from the electroweak precision measurements, we

combine the contributions of the mirror fermions and the new scalars as expressed

in Eqs. (4.1.8, 4.1.9). The final formulas of eS and eT contain non-analytical
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integrals. A C++ program was written to calculate these integrals numerically.

We found the allowed region of the EW⌫R model in which the total contribution

of the NP satisfies the experimental constraints as shown in Fig. 4.7.
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Figure 4.7. The total eT vs eS with the 1 and 2 � experimental contours.

In Fig. 4.7, there are 100 points within the 1� region among 3000 points within

the 2� region. Here, the number of points is a representative quantity to prove the

cancellation between the contributions of the mirror fermions and the new scalars

in the EW⌫R model. The more time allocated to the computational calculation,

the more points in the 1 and 2 � regions we achieve. It indicates that there is

a region of the parameter space where the EW⌫R model is consistent with the

electroweak precision measurements.

To explore the cancellation between the scalars and the mirror fermions in the
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model, we investigate the correlation of the contributions to S, T separately in the

allowed region.

MFT~
-1 0 1 2 3 4 5

ST~
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Figure 4.8. eTS vs eTMF under the 1 and 2 � experimental constraints.
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Figure 4.9. eSS vs eSMF under the 1 and 2 � experimental constraints.

From Fig. 4.8 and Fig. 4.9, it is clear to see the cancellation between the

contributions to eS and eT of the scalar and the mirror fermions. The positive

eTMF is canceled by the negative eTS so that the total eT satisfies the 1 and 2 �

constraints. The more negative the eTS and eSS is, the more positive of eTMF and

eSMF can be.

Lastly, we also investigate the dependence of eT and eS on the mixing angle in

the scalar sector.
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Figure 4.10. eT vs sin ✓H under the 1 and 2 � experimental constraints.
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Figure 4.11. eS vs sin ✓H under the 1 and 2 � experimental constraints.

From Fig. 4.10 and Fig. 4.11, the model is consistent with the electroweak

precision measurements in the whole range of the mixing angle. It implies that

the contributions of New Physics of the model to eT , eS can satisfy the electroweak

precision measurements at any ratio of the VEVs of the scalar doublet � and the

scalar triplet �.

4.5.4 The Dependence of eTS and eSS On the Mass Splittings

To understand the canceling mechanism between the contributions to the

oblique parameter of the scalars and the mirror fermions, it is important to in-

vestigate the dependence of the eSS, eTS on the mass splitting between the singly-

charged and the neutral scalars in the triplet H3 and the quintet H5. In this

case, the masses of the singly-charged scalars, H+
3 , H+

5 , are varied from MZ to
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650 GeV . The other parameters, sin ✓H ,mH0,++
5

,mH0
3
,mH0

1
,mH00

1
are fixed.

• For the small mixing angle sin ✓H = 0.1.
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Figure 4.12. The dependence of eTS , eSS on X = 1�
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Figure 4.13. The dependence of eTS , eSS on X = 1�
mH+

3

mH0
3

and Y = 1�
mH+

5

mH0
5

at mH++
5

= 500 GeV

• For the large mixing angle sin ✓H = 0.89.
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Figure 4.15. The dependence of eTS , eSS on X = 1�
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5

= 500 GeV for eSS and mH++
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? Remarks

• In this analysis, the masses of the two singlet H0
1 , H

00
1 are chosen arbitrarily

at 100, 600, 650 GeV without losing the generality. We still see the influence
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of these singlets on eTS and eSS at the di↵erent ranges of their masses. The

pseudo-scalar H0
3 is chosen at mass mH0

3
= 126 GeV for illustration purpose.

In the next chapter, we present a complete analysis about incorporating the

discovered SM-like Higgs boson into the EW⌫R model.

• In both cases of the mixing angle sin ✓H = 0.1, 0.89, as seen in Figs. 4.12,

4.13, 4.14, 4.15, eSS tends to be more negative when the mass of doubly-

charged scalar H++
5 increases. At the same time, the mass splitting of

H+
5 , H

0
5 must be larger to ensure that eTS is negative enough to cancel the

positive contribution of the mirror fermions.

• At the same mass of H++
5 , eTS and eSS tend to be more negative when the

mixing angle ✓H increasing as seen in Figs. 4.12, 4.14.

• For the small mixing angle case, sin ✓H = 0.1 in Figs. 4.12, 4.13, eSS decreases

as the mass splittings between H+
3 , H

0
3 and between H+

5 , H
0
5 become similar.

• For the large mixing angle case, sin ✓H = 0.89 in Figs. 4.14, 4.15, eSS de-

creases as H+
5 , H

0
5 become more degenerate, while H+

3 becomes heavier than

H0
3 . This is the di↵erent behavior in comparing with the small mixing angle

case.

These observations are very useful in the search for the signals of the new scalars

in the EW⌫R model. The constraints of the electroweak precision measurements

restrict the mass splitting in the scalar sector which indicates the decay products

of the scalars of the model at high energy colliders.

4.6 Summary of The Chapter

The study of physics at electroweak scale is well established. Any new physics

is constrained tightly through so-called oblique parameters, S and T defined in Eq.
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(4.1.6). These parameters basically tell us how much contribution of new physics

to the experimental data is allowed. This is one of the most important tests for

any Beyond the Standard Model phenomena. Indeed, many models fail to satisfy

the electroweak precision measurements data or are constrained to a very small

parameter space.

On the contrary, we have shown that the model of right-handed neutrinos at

electroweak scale (EW⌫R ) well satisfies the precision measurements constraints

with a sizable parameter space. In general, including any new chiral doublet has

a consequence of contributing positively in the oblique parameters, especially the

S parameter. As shown in Figs. 4.3, 4.4, the additional mirror quarks and leptons

can have a hugely positive contribution to the oblique parameters. Eventually,

there would be no allowed region of the parameter space if the EW⌫R model just

contained the mirror fermions. However, the model also has the new scalars which

can o↵set the positive contribution of the mirror fermions. The original purpose

of introducing the scalar triplets is to generate the mass of right-handed neutrinos

at electroweak scale and to preserve the custodial symmetry at the tree level. As

pointed out in [24], these scalar triplets generally contribute negatively to the S

parameter so that the total contribution of new physics of the EW⌫R model to

the oblique parameters satisfies the electroweak precision measurements. We here

have provided a detailed calculation to prove that statement.

The contribution of new physics in the scalar sector of the EW⌫R model has

been presented in Figs. 4.5, 4.6. It is clear to see that the eS, eT of the scalar sector

has a large part in the negative region. As expected, the sum of the contributions

of the mirror fermions and the new scalars satisfies the experimental constraints

of the electroweak precision measurements at the 1 and 2 � contours in Fig. 4.7.

In more details, the correlations between the two contributions to the total eS and

eT have been shown in Figs. 4.9, 4.8 to illustrate how the cancellation works in

77



the EW⌫R model. In short, the negative regions of the eSS and eTS cancel out the

positive regions of eSMF and eTMF .

We have shown the wide range of the parameter space where the EW⌫R model

satisfies the electroweak precision constraints. As an illustrative example, we have

presented the dependence of eS and eT on the mixing angle in the scalar sector

✓H . In Figs. 4.10, 4.11, it is clear that the model satisfies the constraints in the

whole range of sin ✓H . We have also shown how the mass splittings, in particular

in the scalar sector, a↵ect the values of eS and eT , in Figs. 4.12, 4.13, 4.14, 4.15.

The contribution to eS, eT of the scalar sector correlates with the contribution of

the fermionic sector as shown in Figs.4.9, 4.8. As the result, the mass splittings

among the scalars decide how much the mass splittings between mirror fermions

could be. The study about theses mass splittings would be very important for the

search for the signals of the EW⌫R model at hadron colliders.

As for now, we can conclude that the model of right-handed neutrinos at

electroweak scale passes the first test of the experimental results. The next step

would be to study the model in light of the 125 GeV Standard Model-like Higgs

boson discovery.
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Chapter 5

The Extended EW⌫R Model

5.1 The EW⌫R Model in the Light of 125 GeV

Higgs Discovery

5.1.1 The 125 GeV Higgs Boson

After the Higgs discovery [26], one needs to find the candidate for the 125 GeV

SM-like Higgs boson of the EW⌫R model. What are the characteristics of the

125 GeV SM-like Higgs boson?

• It is a resonance raising above the background in the major decay channels

at the LHC such as, WW ⇤, ZZ⇤, ��, ⌧+⌧�, bb̄.

• The new particle decays into two photons, so it disfavors spin one nature

based on the Landau-Yang theorem.

• The decays to pairs vector bosons indicate that the new particle is electrically

neutral.

• Its existence is determined through the signal strength calculated by

µ =
�.Br(H ! XX)data
�.Br(HSM ! XX)

(5.1.1)

-79-



In the newest result, the signal strength of the 125 GeV SM-like Higgs boson

is [27]

Parameter value
0 0.5 1 1.5 2 2.5 3 3.5 4

bbµ

ττµ

WWµ

ZZµ

γγµ

 Run 1LHC
 PreliminaryCMS  and ATLAS ATLAS

CMS
ATLAS+CMS

σ 1±

Figure 5.1. The measured signal strength of the 125 GeV SM-like Higgs boson
at the LHC

• Spin-Parity analysis shows that the new boson is favor to be a CP-even

spin-zero state by more than 3� [28].

5.1.2 The 125 GeV Higgs Boson Candidate of The Original

EW⌫R Model

In the original EW⌫R model, the mass spectrum of the scalar sector consists

four neutral spin-zero states, H0
1 , H00

1 , H0
3 , H0

5 . Among those, H0
3 , H0

5 have the

CP-odd nature. Thus that they cannot be the candidate for the 125 GeV Higgs

boson due to the exclusion from the spin-parity analysis of ATLAS and CMS [28].
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While H0
1 , H

00
1 are the CP-even states of the model. H00

1 is purely made from the

scalar triplets �!� , ⇠. Then it does not couple to the SM fermions. As the result,

H00
1 cannot be the candidate neither. It leaves H0

1 to be the only potential choice.

At the LHC, the Higgs boson is produced mainly through gluon fusion which is

the triangle loop with the heavy quarks inside. In the minimal EW⌫R model, there

are six mirror quarks with the masses in the same order of magnitude with the

mass of top quark. The CP-even state H0
1 couples to both the mirror quarks and

the SM quarks in a form of gH0
1 qq̄ = �ı

mqg

2mW cH
. Therefore, there is an approximate

factor of 49
c2H

coming from the ratio of the production cross-section of H0
1 and

that of HSM in the signal strength of the H0
1 . The factor of 49 is because of

the contribution of 6 mirror quarks and 1 top quark into the gluon fusion of H0
1

((6 + 1)2). While cH < 1 as always. As the result, there is a huge enhancement

in the production cross-section which cannot be compensated by the ratio of the

branching ratio in any case. It means that the signal strength of H0
1 is always

higher than the ATLAS/CMS measurements which are very close to 1.

5.2 The Extension

As stated in the last section, the most plausible candidate for the 125 GeV

Higgs boson is ruled out due to the large enhancement in the production cross-

section via gluon fusion. The reason is that the H0
1 couples to the mirror quarks

and the SM quarks in the same way, gH0
1 qq̄ = �ı mqg

2mW cH
. To avoid that scenario,

we want to expand the original EW⌫R model so that the mirror fermions and the

SM fermions have a di↵erent way to couple to the scalars.

The natural way is to expand the scalar sector by adding one more complex

scalar doublet, called �2M , because the new scalar doublet preserves the custodial

symmetry at tree level [29]. We then have two complex scalar doublets, �2, �2M ,

in the extended version of the EW⌫R model, which will be called as the EW⌫R
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model from now on. Then we name the original EW⌫R as the minimal model in

the sense that the scalar spectrum in the original version is the minimal choice for

generating the mass of neutrinos. Among these two doublets, �2 only couples to

the Standard Model fermions, while �2M only couples to the mirror fermions. To

prevent the cross coupling, we also impose a global symmetry U(1)SM ⇥ U(1)MF

such that

U(1)SM : �2 ! eı↵SM �2

(qSML , lSML ) ! eı↵SM (qSML , lSML ) , (5.2.1)

U(1)MF : �2M ! eı↵MF �2M

(qMR , lMR ) ! eı↵MF (qMR , lMR ) , (5.2.2)

�S ! e�ı(↵MF�↵SM ) �S , (5.2.3)

�̃ ! e�2ı↵MF �̃ . (5.2.4)

All other fields such as SU(2) singlet right-handed SM fermions, left-handed mirror

fermions are singlets under the U(1)SM ⇥ U(1)MF group.

Under this global symmetry, the Yukawa couplings such as gY f̄L�2MfR and

gY f̄M
R �2fM

L are forbidden at tree level. Only the Yukawa interactions of the type

gY f̄L�2fR and gY f̄M
R �2MfM

L are allowed. The Yukawa couplings of the physical

scalars to SM and mirror fermions will involve in the mixing angles.

5.3 The Spontaneous Symmetry Breaking

Having added one more complex scalar doublet, the scalar sector of the EW⌫R

model now consists two Y = 1 scalar doublets and a Y = 0 scalar triplet (⇠) and
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a Y = 3 scalar triplet (�!� ) besides the scalar singlet �S. In the presentations of

the global SU(2)L ⇥ SU(2)R, these doublets and triplets have the form of

�2 =

0

@ �0,⇤
2 �+

2

��
2 �0

2

1

A , (5.3.1)

�2M =

0

@ �0,⇤
2M �+

2M

��
2M �0

2M

1

A , (5.3.2)

and

� =

0

BBB@

�0 ⇠+ �++

�� ⇠0 �+

��� ⇠� �0⇤

1

CCCA
. (5.3.3)

Then the kinetic part of the Lagrangian of the Higgs sector is:

LKH =
1

2
Tr[(Dµ�2)

†(Dµ�2)] +
1

2
Tr[(Dµ�2M)†(Dµ�2M)]+

+
1

2
Tr[(Dµ�)

†(Dµ�)] + |@µ�S|2. (5.3.4)

Here, the derivatives of the scalars are expressed as

Dµ� = @µ�2 + ig
�!
W
�!⌧
2
�2 � ig0�B

⌧3
2
,

Dµ�2M = @µ�2M + ig
�!
W
�!⌧
2
�2M � ig0�2MB

⌧3
2
,

Dµ� = @µ�+ ig
�!
W
�!
t

2
�� ig0�B

t3
2
. (5.3.5)
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In the most general case, the SU(2)L ⇥ SU(2)R invariant potential of �2,�2M ,�

has the form of

V (�2,�2M ,�) = �1
h
Tr�†

2�2 � v22

i2
+ �2

h
Tr�†

2M�2M � v22M

i2
+ �3

h
Tr�†�� 3v2M

i2

+ �4
h
Tr�†

2�2 � v22 + Tr�†
2M�2M � v22M + Tr�†�� 3v2M

i2

+ �5
h
(Tr�†

2�2) (Tr�
†�)� 2 (Tr�†

2

⌧a

2
�2
⌧ b

2
) (Tr�†T a�T b)

i

+ �6
h
(Tr�†

2M�2M) (Tr�†�)� 2 (Tr�†
2M

⌧a

2
�2M

⌧ b

2
) (Tr�†T a�T b)

i

+ �7
h
(Tr�†

2�2) (Tr�
†
2M�2M) � (Tr�†

2�2M) (Tr�†
2M�2)

i

+ �8
h
3 Tr�†��†�� (Tr�†�)2

i
(5.3.6)

The potential in Eq. (5.3.6) is invariant under the transformation � ! �� as

in the minimal EW⌫R model. Moreover, it is also invariant under the global

symmetry U(1)SM ⇥U(1)MF . To ensure that the spontaneous symmetry breaking

happens, one needs to impose a condition �5 = �6 = �7 .The proper vacuum

alignments are chosen as

h�2i =

0

@ v2/
p
2 0

0 v2/
p
2

1

A , (5.3.7)

h�2Mi =

0

@ v2M/
p
2 0

0 v2M/
p
2

1

A , (5.3.8)

and

h�i =

0

BBB@

vM 0 0

0 vM 0

0 0 vM

1

CCCA
, (5.3.9)

Here, v2, v2M , vM are the VEVs of the real part of the neutral component of

�2,�2M ,�, respectively. They satisfy the identity:

v22 + v22M + 8 v2M = v2 , (5.3.10)
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where v ⇡ 246 GeV. We define

s2 =
v2
v
; s2M =

v2M
v

; sM =
2
p
2 vM
v

. (5.3.11)

Once these field acquire their VEVs, SU(2)L⇥U(1)Y ! U(1)em spontaneously.

The gauge bosons get their masses MW = g v/2 and MZ = MW/ cos ✓W , now

v =
p
v22 + v22M + 8 v2M ⇡ 246GeV. We still have ⇢ = MZ cos ✓W/MW = 1. At the

same time, the global SU(2)L ⇥ SU(2)R ! SU(2)D. The potential becomes

V (�2,�2M ,�) =�1
h
Tr�†

2�2 � v22

i2
+ �2

h
Tr�†

2M�2M � v22M

i2
+ �3

h
Tr�†�� 3v2M

i2

+ �4
h
Tr�†

2�2 � v22 + Tr�†
2M�2M � v22M + Tr�†�� 3v2M

i2

+ �5
h
(Tr�†

2�2) (Tr�
†�)� 2 (Tr�†

2

⌧a

2
�2
⌧ b

2
) (Tr�†T a�T b)+

+ (Tr�†
2M�2M) (Tr�†�)�

� 2 (Tr�†
2M

⌧a

2
�2M

⌧ b

2
) (Tr�†T a�T b) + (Tr�†

2�2) (Tr�
†
2M�2M)

� (Tr�†
2�2M) (Tr�†

2M�2)
i
+ �8

h
3 Tr�†��†�� (Tr�†�)2

i

(5.3.12)

With the presence of �2,�2M ,�, the scalar sector in the EW⌫R model con-

tains 17 degrees of freedom. After spontaneous symmetry breaking, besides three

Nambu-Goldstone bosons G±,0
3 eaten by three vector bosons W/Z, the physical

Higgs fields are grouped into 14 mass eigenstates. Under the custodial SU(2)D,

we can classify these 14 states into
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five-plet (quintet) ! H±±
5 , H±

5 , H
0
5 ;

triplet ! H±
3 , H

0
3 ;

triplet ! H±
3M , H0

3M ;

three singlets ! H0
1 , H

0
1M , H00

1 (5.3.13)

To present these N-G bosons and physical states explicitly, we follow the steps in

the minimal EW⌫R model. Firstly, we define mixing angles and auxiliary fields.

v =
q

v22 + v22M + 8v2M

s2 =
v2
v
, s2M =

v2M
v

, sM =
2
p
2 vM
v

,

c2 =

p
v22M + 8v2M

v
, c2M =

p
v22 + 8v2M

v
,

cM =

p
v22 + v22M

v
. (5.3.14)

Thus,

s22 + c22 = s22M + c22M = s2M + c2M = 1 . (5.3.15)

�0
2 ⌘

1p
2

⇣
v2 + �0r

2 + ı�0ı
2

⌘
,

�0
2M ⌘ 1p

2

⇣
v2M + �0r

2M + ı�0ı
2M

⌘
,

�0 ⌘ vM +
1p
2

⇣
�0r + ı�0ı

⌘
; (5.3.16)

 ± ⌘ 1p
2

⇣
�± + ⇠±

⌘
, ⇣± ⌘ 1p

2

⇣
�± � ⇠±

⌘
(5.3.17)
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Then three Nambu-Goldstone bosons are

G±
3 = s2�

±
2 + s2M�

±
2M + sM 

±,

G0
3 = ı

⇣
� s2�

0ı
2 � s2M�

0ı
2M + sM�

0ı
⌘
. (5.3.18)

While the physical Higgs fields can be expressed as

H++
5 = �++, H+

5 = ⇣+, H0
5 =

1p
6

⇣
2⇠0 �

p
2�0r

⌘
,

H+
3 = �s2sM

cM
�+
2 �

s2MsM
cM

�+
2M + cM 

+,

H0
3 = ı

✓
s2sM
cM

�0i
2 +

s2MsM
cM

�0i
2M + cM�

0i

◆
,

H+
3M = �s2M

cM
�+
2 +

s2
cM

�+
2M ,

H0
3M = ı

✓
�s2M

cM
�0i
2 +

s2
cM

�0i
2M

◆
,

H0
1 = �0r

2 , H0
1M = �0r

2M ,

H00
1 =

1p
3

⇣p
2�0r + ⇠0

⌘
(5.3.19)

with phase conventions H��
5 = (H++

5 )⇤, H�
5 = �(H+

5 )
⇤, H�

3 = �(H+
3 )

⇤, H�
3M =

�(H+
3M)⇤, H0

3 = �(H0
3 )

⇤ and H0
3 = �(H0

3 )
⇤. The masses of these physical scalars

can be obtained according to Eq. (5.3.12). Since the potential preserves the

SU(2)D custodial symmetry, members of the physical scalar multiplets have de-

generate masses. These masses are

m2
5 = 3(�5c

2
M + �8s

2
M)v2 ,

m2
3 = �5v

2 , m2
3M = �5(1 + c2M)v2 , (5.3.20)
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In general, the H0
1 , H

0
1M and H00

1 can mix through the mass-squared matrix

M2
singlets = v2

0

BBB@

8s22(�1 + �4) 8s2s2M�4 2
p
6s2sM�4

8s2s2M�4 8s22M(�2 + �4) 2
p
6s2MsM�4

2
p
6s2sM�4 2

p
6s2MsM�4 3s2M(�3 + �4)

1

CCCA
.(5.3.21)

Hence, the mass eigenstates of the mixing of the H0
1 , H

0
1M and H00

1 can be achieved

through
0

BBB@

eH
eH 0

eH 00

1

CCCA
=

0

BBB@

a1,1 a1,1M a1,10

a1M,1 a1M,1M a1M,10

a10,1 a10,1M a10,10

1

CCCA

0

BBB@

H0
1

H0
1M

H00
1

1

CCCA
. (5.3.22)

By convention, the eH, eH 0, eH 00 have their masses in increasing order. The lightest

one, eH plays the role of the candidate for the 125 GeV SM-like Higgs boson in

the EW⌫R model. Note that, the mixing will disappear if �4 = 0. Due to the

complexity of the parameter space of the Msinglets, we have to diagonalize the

mass matrix in Eq. (5.3.21) numerically.

5.4 The 125 GeV Higgs Boson Candidate

At the current stage, the measured signal strength of the 125 GeV Higgs boson

at the LHC is very close to the prediction of the Standard Model as we can see in

Fig. 5.1. It is required of any BSM model to have a scalar with the mass in the

region of 125 GeV and the signal strength to agree with the measurement from

the LHC. Finding the 125 GeV Higgs boson candidate of the EW⌫R model is a

two-step procedure.

• Diagonalize the mass matrix in Eq. (5.3.21) numerically to find the solutions

that have the lowest eigenvalue of 125 GeV which is corresponding to the

mass of eH. Note that, in our work, we allow the mass of eH to vary in the

region of 125.7 ± 1.0 GeV which covers well the mass of 125 GeV SM-like

Higgs boson measured at the LHC most recently [27].
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• With the parameter space taken from the first step, we calculate the signal

strength of the 125 GeV Higgs boson in the model and find all the cases which

satisfy the signal strength of the 125 GeV SM-like Higgs boson measured at

ATLAS/CMS. Because this steps was done before the combined result of

ATLAS and CMS, so we just considered the value of the measured signal

strength of CMS [30, 31, 32, 33] as the reference for our numerical calculation.

5.4.1 The Decay The 125 GeV Higgs Boson Candidate

We devote this section to present the key characteristics of the candidate of

the EW⌫R model for the 125 GeV Higgs boson. The candidate here is eH which is

the lightest state of the three CP-even states, H0
1 , H

0
1M , H00

1 .

As shown in Eq. (5.3.19), H0
1 is made from the real part of the neutral com-

ponent of the scalar doublet �2 which only couples to the SM fermions. One may

say that this �2 and then H0
1 behave like the Standard Model scalar doublet. On

the other hand, H0
1M is constructed from the real part of the neutral component

of the newly added scalar doublet �2M which only couples to the mirror fermions.

Then H0
1M only couples to the mirror fermions. While H00

1 comes purely from the

scalar triplets �, thus it does not couple to both the SM fermions and the mirror

fermions.

Analytically, the lightest mixing state of these three singlets can be expressed

as in Eq. (5.3.22):

eH = a1,1H
0
1 + a1,1MH0

1M + a1,10H
00
1 (5.4.1)

As the result, the decay property of the eH depends on the decay modes of the H0
1 ,

H0
1M and H00

1 and the mixing matrix between these three singlets. We consider all

the kinematically allowed channels among W+W�, ZZ, ��, gg, bb̄, ⌧ ⌧̄ . The decay

of the SM Higgs is calculated up to the next-leading order in QCD [34]. In general,

the decay of a neutral CP-even Higgs can be calculated by simply rescaling the
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corresponding decay modes of the SM Higgs.

• The eH ! gg channel.

In the Standard Model, the decay H0
SM ! gg goes mostly through the triangle

loop of the top quark because it is the heaviest one among the SM quarks. The

partial width of this process is given by

�SM(H0
SM ! gg) =

↵2
S g2m3

H0
SM

128⇡3M2
W

�����
X

i

1

2 vH0/v
F1/2(⌧i)

�����

2

, (5.4.2)

where, for a loop of quark having mass mi, ⌧i = 4m2
i / m2

H0
SM

[16], and the

common function F1/2(⌧) is given by

F1/2(⌧) = �2 ⌧ [1 + (1� ⌧)f(⌧)] . (5.4.3)

f(⌧) =
⇥
sin�1

�
1/
p
⌧
�⇤2

, if ⌧ � 1,

=
1

4
[Log (⌘+/⌘�) � ı⇡]2 , if ⌧ < 1; (5.4.4)

here,

⌘± ⌘ (1±
p
1� ⌧) . (5.4.5)

While in the EW⌫R model, besides top quark, 6 mirror quarks also have their

contributions to the loop. By rescaling, we have

�EW⌫R( eH ! gg) = �SM(H0
SM ! gg) ⇥ 1

��F1/2(⌧top)
��2

⇥

�����
a1,1
s2

F1/2(⌧top) +
a1,1M
s2M

X

i

F1/2(⌧MFi
)

�����

2

. (5.4.6)

P
i is taken over all the mirror quarks; a1,1, a1,1M are the mixing coe�cients of

H0
1 , H

0
1M in eH, respectively. Note that H00

1 does not couple to both the SM and

the mirror quarks. �SM is calculated up to the next-leading order in QCD [34].

• The eH ! �� channel.
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Generally, H0 ! �� at the loop level through the loops of both fermions,

vector bosons, and additional scalars. For a general BSM Lagrangian such as

Lint =
�mf

vH0
 ̄ H0 + g MW �W W+

µ W µ�H0 +
g �S
MW

S+S�H0 , (5.4.7)

where vH0 is the vacuum expectation value of H0, v = 2MW/g ⇠
pP

all H0’s v
2
H0 ,

 is a fermion of mass mf , S± is a charged BSM scalar. The partial decay width

of H0 ! �� is given by [16]:

� (H0 ! ��) =
↵2 g2

1024 ⇡3

m3
H0

M2
W

�����
X

i

Nci Q
2
i Fs(⌧i)

�����

2

. (5.4.8)

Here,
P

i is performed over all the particles of spin-s; s = spin-0, spin-1/2, and

spin-1 are the spins; Qi is the electric charge in the unit of e. The common function

Fs(⌧i) is given by

F1(⌧) = �W ⌧ [3 + (4� 3 ⌧)f(⌧)] ,

F1/2(⌧) = �2 ⌧ [1 + (1� ⌧)f(⌧)] ,

F0(⌧) = 2 �S [1� ⌧f(⌧)] , (5.4.9)

with ⌧ = 4 m2
i /m

2
H0 and f(⌧) is given by Eq (5.4.4).

In calculating �EW⌫R( eH ! ��), we define the amplitude of H0 ! �� as

A(H0 ! ��) =

s
↵2 g2

1024 ⇡3

m3
H0

M2
W

 
X

i

Nci Q
2
i Fs(⌧i)

!
. (5.4.10)

From Eq. (5.3.22), we have

�EW⌫R( eH ! ��) =
���a1,1 AEW⌫R(H0

1 ! ��) + a1,1M AEW⌫R(H0
1M ! ��)

+ a1,10 AEW⌫R(H00
1 ! ��)

���
2

, (5.4.11)

where a1,1, a1,1M , a1,10 are the mixing coe�cients of H0
1 , H

0
1M and H00

1 in eH mass

eigenstate, respectively. These are the elements in the first row of the mixing

matrix {ai,j} in Eq (5.3.22).
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The W±, G±
3 loops and the scalar loops of H±

3 , H
±
3M , H±

5 and H±±
5 contribute

to AEW⌫R(H0
1 ! ��), AEW⌫R(H0

1M ! ��) as well as AEW⌫R(H00
1 ! ��). The

SM fermion loops contribute only to AEW⌫R(H0
1 ! ��), while the charged mirror

fermion loops contribute only to AEW⌫R(H0
1M ! ��). No fermion loop contributes

to AEW⌫R(H00
1 ! ��).

• The eH ! WW/ZZ channels.

H0
1 , H

0
1M , H00

1 all couple toW/Z with the coupling coe�cients of s2, s2M , 2
p
2p
3
sM

defined in Eq. (5.3.11), respectively. By rescaling, we have

�EW⌫R( eH ! WW, ZZ) = �SM(H0
SM ! WW, ZZ)

|a1,1 s2 + a1,1M s2M + a1,10
2
p
2p
3

sM |2 (5.4.12)

• The eH ! ff̄ channels.

At the mass of 125 GeV, eH only decays into the light SM fermions at tree

level, such as eH ! ⌧ ⌧̄ , bb̄. Among H0
1 , H

0
1M , H00

1 , only H0
1 couples to these light

SM fermions. Hence, for eH with the mass of 125 GeV, we have

�EW⌫R( eH ! f f̄) = �SM(H0 ! f f̄)⇥
����
a1,1
s2

����
2

(5.4.13)

• The total width of eH.

In conclusion, the total width of eH is calculated by simply adding all of these

partial widths:

� eH = � eH!bb̄ + � eH!⌧ ⌧̄ + � eH!cc̄ + � eH!W+W�

+ � eH!ZZ + � eH!gg + � eH!�� . (5.4.14)

5.4.2 The Signal Strength of The 125 GeV Higgs Boson

Candidate

At the LHC, the discovery of the 125 GeV Higgs boson is realized through its

signal strength in 6 channels, W+W�, ZZ, ��, gg, bb̄, ⌧ ⌧̄ , which is defined in Eq.
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(5.6.2). In this definition, the product of the production cross section through

the initial state and the branching ratio of the Higgs boson in each channel is

calculated by [34]

�.BR(ii! H ! XX) = �ii ⇥ BR(H ! XX), (5.4.15)

where �ii is the production cross section through the initial state ii. While the

branching ratio of the decay mode H ! XX is

BR(H ! XX) =
�(H ! XX)

�H

, (5.4.16)

here �(H ! XX) is the partial width of the decay channel; �H is the total width

of the Higgs. The observed data is presented in terms of the signal strength given

by

µdata =
�.BR(H ! XX)data
�.BR(HSM ! XX)

(5.4.17)

Hence, we define the signal strength of the 125 GeV Higgs boson candidate in the

EW⌫R model as

µEW⌫R =
�.BR( eH ! XX)

�.BR(HSM ! XX)
(5.4.18)

Then we compare µEW⌫R with µdata in each decay channel. In principle, the 125

GeV Higgs particle is produced through four processes: gluon fusion, vector boson

fusion, WH/ZH Higgs associated production, ttH associated Higgs production.

At the LHC, the production of the 125 GeV Higgs particle is dominated by the

gluon fusion process. Hence, we just compare the µEW⌫R with µdata in the gluon

fusion production mode. We calculate the signal strength at a given mass of Higgs

particle as

µEW⌫R =
�EW⌫R (gg ! eH)⇥ BR( eH ! XX)

�SM(gg ! HSM)⇥ BR(HSM ! XX)
(5.4.19)
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By using the e↵ective coupling method, the ratio of the production cross section

is
�EW⌫R (gg ! eH)

�SM(gg ! HSM)
=
�EW⌫R ( eH ! gg)

�SM(HSM ! gg)
. (5.4.20)

From Eq. (5.4.6), we have

�EW⌫R (gg ! eH)

�SM(gg ! HSM)
=

1
��F1/2(⌧top)

��2

�����
a1,1
s2

F1/2(⌧top) +
a1,1M
s2M

X

i

F1/2(⌧MFi
)

�����

2

.

(5.4.21)

The branching ratios of the HSM ! W+W�, ZZ, ��, gg, bb̄, ⌧ ⌧̄ decay processes

are calculated by the Higgs Working Group up to next-to-leading order of QCD

[34]. While the branching ratios of the corresponding channels of eH are calculated

by

BR( eH ! XX) =
�( eH ! XX)

� eH
, (5.4.22)

where XX = W+W�, ZZ, ��, gg, bb̄, ⌧ ⌧̄ . The partial widths and the total width

of eH are given by Eqs. (5.4.6, 5.4.11, 5.4.12, 5.4.13). From Eqs. (5.4.12, 5.4.13),

one has

�EW⌫R( eH ! W+W�)

�SM(H0
SM ! W+W�)

=
�EW⌫R( eH ! ZZ)

�SM(H0
SM ! ZZ)

,

�EW⌫R( eH ! bb̄)

�SM(H0
SM ! bb̄)

=
�EW⌫R( eH ! ⌧ ⌧̄)

�SM(H0
SM ! ⌧ ⌧̄)

. (5.4.23)

Consequently, the signal strengths of eH ! W+W� and eH ! ZZ are equal.

Similarly, the signal strengths of eH ! bb̄ and eH ! ⌧ ⌧̄ are the same.

5.4.3 The parameter space

In this section, we discuss the limit of the parameter space in the analysis about

the signal strength of the 125 GeV SM-like Higgs boson candidate of the EW⌫R

model. In numerical calculation, the parameter space consists twelve masses of

the right-handed neutrinos and charged mirror fermions, ten masses of the new
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scalars, three mixing angles in the scalar sector, and six coupling constants in the

scalar potential.

• The limit of the masses of the right-handed neutrinos.

As discussed in the part 4.5.1, the right-handed neutrino masses must satisfy

the condition: MR � MZ/2 to avoid the e↵ect on the Z-width. The upper limit

is set at 300 GeV based on the perturbative limit of the theory. However, this

constraint can be relaxed so that the MR can be higher 300 GeV .

• The limit of the masses of the charged mirror fermions.

The lower limit of the masses of the charged mirror leptons is 102 GeV based

on the search for heavy charged leptons and quarks at LEP3 [23]. Note that in this

search, LEP3 was looking for the heavy charged fermions in the sequential decay

processes such as Q0 ! bZ ! bll̄, bqq̄, etc. However, the decay of the charged

mirror fermions of the EW⌫R model is very di↵erent. They only couple to the

Standard Model counterparts through the scalar singlet �S as seen in the section

3.2. The charged mirror fermions decay into the SM fermions through processes

such as qM ! q�S, lM ! l�S. �S turns out to be a missing energy in these

decay processes. Therefore, the signal of these processes di↵er from the sequential

processes in the search of LEP3 because of the appearance of the displaced vertices.

Moreover, the length of the decay of qM ! q�S, lM ! l�S depends on the

Yukawa coupling of �S f̄fM . If the decay length is beyond few centimeters, then

the displaced vertices appear inside of the silicon vertex detector. Hence, the

constraint from the LEP3 searches does not directly apply on the charged mirror

fermions in the model.

• The limit of the mass of the scalars, the Yukawa couplings, and the VEVs.

The lower limit of the mass of the scalars is MZ as the same as in the part

4.5.1. We also impose the perturbative constraint of the theory by requiring ↵f =

g2f/4⇡  O(1) for the Yukawa couplings of the mirror fermions and �i/4⇡  O(1)
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in the scalar sector. Three mixing angles in the scalar sector, s2, s2M , sM , depend

on the VEVs of the scalar fields �2,�2M , �̃, respectively. They are tied up by

the identity v22 + v22M + 8v2M = (246 GeV )2. Besides, these VEVs also appear in

the masses of the mirror fermions. Therefore, they are also constrained by the

perturbative constraint of the theory.

For instance, if we put the constraint g2f/4⇡  1.5 on the Yukawa couplings

of the mirror charged fermions, the upper limit of their masses can be mMF 

715 GeV . While we limit �i  5.2⇡ for the scalar coupling. Thus the allowed

ranges of the VEVs of the scalar fields and so for the mixing angles in the scalar

sector are given by Table 5.1
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Table 5.1. Allowed ranges of VEVs and parameters defined in Eq. (5.3.11). All
values are given in GeV .

69 . v2 . 241 0.28 . s2 . 0.98

33 . v2M . 233 0.13 . s2M . 0.95

13 . vM . 83 0.15 . sM . 0.95

5.5 The Dual Nature of the 125 GeV SM-like

Candidate of The EW⌫R Model

The first step in the numerical calculation is to diagonalize the mass matrix in

Eq. (5.3.21) in the limit of the parameter space listed in the section 5.4.3. Under

the requirement of the lightest mass eigenstate of 125.7 ± 1.0GeV , four million

combinations were found. This lightest one, eH, is the candidate for the 125 GeV

SM-like Higgs boson of the EW⌫R model.

The next step is to calculate the signal strengths of eH ! W+W�, ZZ, ��, gg,

bb̄, ⌧ ⌧̄ as Eq. (5.4.19). We varied 0  �5  15 , with the step of ��5 ⇠ 1.07.

To reduce the calculating time, we fixed several parameters

�8 = �1 , mH+
3
= 600 GeV , mH+

3M
= 700 GeV ,

mH+
5

= 200 GeV , mH++
5

= 320 GeV , mqM3
= 120 GeV ,

mqM1
= mqM2

= mlM = 102 GeV . (5.5.1)

When we carried out this analysis, the signal strength measurements of the 125

GeV SM-like Higgs boson from the reports of ATLAS and CMS neither agreed

within 1� nor published the combined result. Therefore, we compared the predic-
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tion of the signal strength of the eH at 125 GeV in the EW⌫R model to the results

of CMS without any prejudice.

As the result, we got 1501 out of 4 million combinations found in the first step

which produce the signal strength of eH ! W+W�, ZZ, ��, gg, bb̄, ⌧ ⌧̄ within

1� constraints from the CMS measurements. Among these 1501 combinations,

there are two distinguishable scenarios depending on how much the H0
1 , which is

made from the Standard Model like doublet �2, contributes to eH. We call the

two scenarios as Dr.Jekyll and Mr.Hyde literally.

In the case of Dr.Jekyll, H0
1 is the dominant component of the mixing state

eH. This is the case where eH is very like the Standard Model Higgs boson. While

in the Mr.Hyde case, H0
1 is the sub-dominant component of eH which means eH is

very di↵erent with the Standard Model Higgs boson. Again, both of these cases

have the signal strength satisfying the constraint from CMS measurements. This

is the unique characteristic of the EW⌫R model. Here we present several cases to

illustrate our results in the Figure 5.2.
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SMσ / σBest fit 
0 0.5 1 1.5 2 2.5

 = 125.7 GeVHm
CMS preliminary

 = 125.7 GeV0
1H~

m
 "Dr. Jekyll" Ex. 1RνEW

 = 125.8 GeV0
1H~

m
 "Mr. Hyde" Ex. 1RνEW

 = 125.7 GeV0
1H~

m
 "Dr. Jekyll" Ex. 2RνEW

 = 125.2 GeV0
1H~

m
 "Mr. Hyde" Ex. 2RνEW

 = 125.6 GeV0
1H~

m
 "Mr. Hyde" Ex. 3RνEW

 0.29± = 1.00 µCMS: 
 ZZ               →H 

 0.21± = 0.83 µCMS: 
            -W+ W→H 

 0.24± = 1.13 µCMS: 
   γγ →H 

 0.27± = 0.91 µCMS: 
   ττ →H 

 0.49± = 0.93 µCMS: 
               b b→H 

 WW / ZZ→ 0
1H~

f f → 0
1H~

γγ → 0
1H~

Figure 5.2. Figure shows the predictions of µ( eH ! bb̄, ⌧ ⌧̄ , ��, W+W�, ZZ)
in the EW⌫R model for Examples 1 and 2 in Dr. Jekyll and Examples 1, 2 and
3 in Mr. Hyde scenarios, in comparison with corresponding best fit values by
CMS [30, 31, 32, 33].
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As defined in Eqs. (5.1.1, 5.4.19), the signal strength is the product of the

production cross section and the branching ratio of the Higgs boson normalized

by the same product of the SM. Looking for the candidate of the 125 GeV SM-like

Higgs boson is to find all the cases when eH has the production cross section times

the branching ratio satisfying the 1� constraint of CMS. The likely scenario is

when both the production cross section and the branching ratio of eH are similar

to those of the Standard Model Higgs boson. Interestingly, there is also a di↵erent

scenario in which both the production cross section and the branching ratio of eH

are very di↵erent with the predictions of the Standard Model, but their product,

the signal strength, is still in agreement with the experimental measurements. We

present these scenarios in details in next section.

5.5.1 The SM-like H0
1 is The Dominant Component of eH

In the case of Dr.Jekyll as illustrated by two examples Ex. 1 and Ex. 2, eH is

dominant by the SM-like H0
1 . In fact, while scanning the parameter space to have

the signal strength of eH in agreement with the CMS’s results, the coe�cient of

H0
1 in Eq. (5.4.1) s2 � 0.9 to satisfy the constraint.

In Example 1, the set of parameters is : �1 = �0.077, �2 = 14.06, �3 =

15.4, �4 = 0.1175, �5 = 15, �8 = �1 and mH+
5
= 500 GeV, mH++

5
= 540 GeV.

Fixing these along with s2 = 0.92, s2M = 0.16, sM ⇡ 0.36, the mixing matrix is

given by:
0

BBB@

eH
eH 0

eH 00

1

CCCA
=

0

BBB@

0.998 �0.0518 �0.0329

0.0514 0.999 �0.0140

0.0336 0.0123 0.999

1

CCCA

0

BBB@

H0
1

H0
1M

H00
1

1

CCCA
. (5.5.2)

We can see that eH ⇠ H0
1 , eH 0 ⇠ H0

1M , eH 00 ⇠ H00
1 . The corresponding eigenvalues

are m eH = 125.7 GeV, m eH0 = 420 GeV, m eH00 = 601 GeV. We vary a1,1M - the (1,2)

element of the 3 ⇥ 3 matrix between (-0.0515, -0.05295), the the signal strength

of eH still satisfy CMS constraints.
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Similarly, in Example 2, the corresponding parameter set is �1 = 0.0329, �2 =

14.2, �3 = 15.4, �4 = 0.0056, �5 = 15, �8 = �1, and mH+
5
= 590 GeV, mH++

5
=

600 GeV. Then the mass eigenstates are determined by

0

BBB@

eH
eH 0

eH 00

1

CCCA
=

0

BBB@

0.99999... �2.49⇥ 10�3 �1.60⇥ 10�3

2.49⇥ 10�3 0.99999... �5.30⇥ 10�4

1.60⇥ 10�3 5.26⇥ 10�4 0.99999..

1

CCCA

0

BBB@

H0
1

H0
1M

H00
1

1

CCCA
. (5.5.3)

Still, we have eH ⇠ H0
1 , eH 0 ⇠ H0

1M , eH 00 ⇠ H00
1 and m eH = 125.7 GeV, m eH0 =

420 GeV, m eH00 = 599 GeV. The allowed range for a1,1M - the (1,2) element of the

3⇥ 3 matrix is (�1.20,�3.40)⇥ 10�3.

In this class of examples, eH behaves just like the Standard Model Higgs boson

in terms of coupling to other particles. Therefore, we could expect that the pro-

duction cross section and the branching ratio of eH ! bb̄, ⌧ ⌧̄ , ��, W+W�, ZZ

are similar to those of the Standard Model Higgs boson. For example, in Example

2, one list explicit the partial widths, the branching ratios, and the ggF production

cross-sections of the individual decay channels of eH and HSM in the Table. 5.2
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Table 5.2. In the ggF production mode of the Higgs boson, partial widths and
branching ratios for various channels in SM (for mHSM

= 125.7 GeV) with
total width = 4.17E-3 GeV , and the EW⌫R model for Dr. Jekyll Example 2
scenario: a1,1M = �0.0025, where m eH = 125.7 GeV, total width = 4.45E-3

GeV and eH ⇠ H0
1 . All the partial widths are given in GeV .

SM EW⌫R
µ

�H!gg � BR � eH!gg � BR

/ �gg!H / �gg!H

eH ! W+W� 3.55E-04 9.42E-04 2.26E-01 3.46E-04 7.63E-04 1.72E-01 0.74

eH ! ZZ 3.55E-04 1.17E-04 2.81E-02 3.46E-04 9.49E-05 2.13E-02 0.74

eH ! bb̄ 3.55E-04 2.36E-03 5.66E-01 3.46E-04 2.79E-03 6.26E-01 1.07

eH ! ⌧ ⌧̄ 3.55E-04 2.59E-04 6.21E-02 3.46E-04 3.06E-04 6.87E-02 1.07

eH ! �� 3.55E-04 9.51E-06 2.28E-03 3.46E-04 1.26E-05 2.82E-03 1.21

? Remarks

• In Fig. 5.2, the signal strengths of the eH ! �� channel of both Examples 1

and 2 are in a wide range. This happens because of the contribution of the

charged scalars to the loop in the decay of eH ! ��. Particularly, we vary

the mass of H+
5 , H

++
5 in the range of 400 � 700 GeV . It means that there

is always a set of parameters so that the signal strength of eH ! �� satisfies

the 1� experimental constraint.

• We allow the mixing parameter a1,1M varying in the range of (�0.0515,�0.05295)

in Example 1 and (�1.20 � �3.4) ⇥ 10�3 in Example 2. As the result, we

have two bands of the signal strength of eH ! �� in each example.
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• The signal strengths of eH ! W+W�/ZZ are the same as indicated in Eq.

(5.4.23). Similarly, the signal strengths of eH ! bb̄/⌧ ⌧̄ are same as well.

According to Eq. (5.4.12), µ( eH ! WW/ZZ) / |a1,1 s2 + a1,1M s2M +

a1,10
2
p
2p
3
sM |2. While µ( eH ! bb̄/⌧ ⌧̄) /

����
a1,1
s2

����
2

in Eq. (5.4.13). We can see

that µ( eH ! WW/ZZ) and µ( eH ! bb̄/⌧ ⌧̄) depend on s2 in the opposite

direction. As illustrated in Fig. 5.2, µ( eH ! bb̄/⌧ ⌧̄) is greater the central

value of the experimental result, while µ( eH ! WW/ZZ) is smaller than the

central value of the corresponding experimental result.

• Finally, in Table 5.2, the detailed values of the ggF production cross section

and the branching ratios of eH ! bb̄, ⌧ ⌧̄ , ��, W+W�, ZZ are very close

to these of the Standard Model Higgs boson. Naturally, the signal strengths

of eH decay in these channels are in the 1� experimental constraint of CMS.

5.5.2 The SM-like H0
1 is The Sub-dominant Component of

eH
One very special characteristic of the EW⌫R is the existence of the cases in

which the structure of the 125 GeV SM-like candidate is very di↵erent with the

SM Higgs boson but still has the signal strengths satisfying the experimental

constraints as illustrated in the examples named EW⌫R “MrHyde” Examples

1,2,3 in Fig. 5.2. It happens when the SM-like singlet H0
1 has a small contribution

to the mixing state eH = a1,1H0
1 + a1,1MH0

1M + a1,10H00
1 .

For instance, in Mr.Hyde Ex. 1, the parameters are s2 = 0.900, s2M = 0.270,

sM = 0.341, �1 = �0.481, �2 = 6.00, �3 = 1.46, �4 = 2.99, �5 = 2, �8 = �1.

The eigenstates are given by
0

BBB@

eH
eH 0

eH 00

1

CCCA
=

0

BBB@

0.300 �0.094 �0.949

0.334 �0.921 �0.197

0.893 0.376 0.246

1

CCCA

0

BBB@

H0
1

H0
1M

H00
1

1

CCCA
. (5.5.4)

103



Thus, one has eH ⇠ H00
1 , eH 0 ⇠ H0

1M , eH 00 ⇠ H0
1 ; m eH = 125.8 GeV, m eH0 = 416 GeV,

m eH00 = 1100 GeV, MR . 105 GeV. The dominant component of eH is H00
1 which

does not couple to neither the SM fermions nor the mirror fermions.

In Mr.Hyde Ex. 2, s2 = 0.514, s2M = 0.841, sM = 0.168, �1 = 6.15, �2 =

7.68, �3 = 8.84, �4 = �2.131502, �5 = 5, �8 = �1. The eigenstates are given by

0

BBB@

eH
eH 0

eH 00

1

CCCA
=

0

BBB@

0.188 0.091 0.978

�0.941 �0.268 0.207

�0.281 0.959 �0.035

1

CCCA

0

BBB@

H0
1

H0
1M

H00
1

1

CCCA
. (5.5.5)

We still have eH ⇠ H00
1 , eH 0 ⇠ H0

1 , eH 00 ⇠ H0
1M ; m eH = 125.2 GeV, m eH0 = 633 GeV,

m eH00 = 1427 GeV, MR . 52.0 GeV.

In Mr.Hyde Ex. 3, another the parameters are s2 = 0.401, s2M = 0.900,

sM = 0.151, �1 = 4.76, �2 = 3.41, �3 = 7.71, �4 = �1.29, �5 = 4, �8 = �1,
0

BBB@

eH
eH 0

eH 00

1

CCCA
=

0

BBB@

0.187 0.115 0.976

0.922 0.321 �0.215

0.338 �0.940 0.046

1

CCCA

0

BBB@

H0
1

H0
1M

H00
1

1

CCCA
, (5.5.6)

with eH ⇠ H00
1 , eH 0 ⇠ H0

1 , eH 00 ⇠ H0
1M ; m eH = 125.6 GeV, m eH0 = 454 GeV,

m eH00 = 959 GeV, MR . 46.4 GeV. The detailed values of the ggF production

cross section and the branching ratios are given in Table 5.3.
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Table 5.3. Partial width of H ! gg as the measure of the production cross
section, partial widths and branching ratios for various channels in SM (for
mHSM

= 125.6 GeV and total width 4.15E-03 GeV ), eH ⇠ H00
1 (with m eH =

125.6 GeV and total width 1.34E-03 GeV ). All the partial widths are given in
GeV .

SM EW⌫R
µ

�H!gg � BR � eH!gg � BR

/ �gg!H / �gg!H

eH ! W+W� 3.54E-04 9.30E-04 2.24E-01 5.75E-04 1.64E-04 1.23E-01 0.89

eH ! ZZ 3.54E-04 1.16E-04 2.79E-02 5.75E-04 2.04E-05 1.53E-02 0.89

eH ! bb̄ 3.54E-04 2.35E-03 5.67E-01 5.75E-04 5.07E-04 3.79E-01 1.06

eH ! ⌧ ⌧̄ 3.54E-04 2.58E-04 6.22E-02 5.75E-04 5.42E-05 4.06E-02 1.06

eH ! �� 3.54E-04 9.46E-06 2.28E-03 5.75E-04 2.04E-06 1.53E-03 1.09

? Remarks

• In all three examples when the SM-like singlet H0
1 is the sub-dominant com-

ponent of the eH, H0
1M is the sub-dominant component as well. It should be

the case because H0
1M couples to the mirror fermions including six mirror

quarks. All the mirror quarks in the EW⌫R model are in the same mass

order with top quark. They have significant contributions to the fermion

loop in the gluon fusion which is the main production channel of the 125

GeV SM-like Higgs boson candidate. Therefore, the component of H0
1M in

the eH should be small so that the ggF production cross section does not

overly enhance.
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• As illustrated in Table 5.3, the ggF production cross section of eH is almost

twice as much as the ggF production of the SM Higgs boson. On the other

hand, the branching ratios of eH ! bb̄, ⌧ ⌧̄ , ��, W+W�, ZZ are about

half of these of the SM Higgs boson in each channel. Eventually, the signal

strengths of eH decays in these channels are within the 1� constraints from

CMS as seen in Fig. 5.2.

• The scanning procedure shows that Mr.Hyde scenario appears when the

Yukawa couplings are smaller than in Dr.Jekyll scenario at the same mass

of the mirror fermions. The signal strengths of eH in the case of Mr.Hyde

satisfy the CMS constraints even when |�i/4⇡| < 1. In this case, the eH does

not need to be in the strongly coupled regime.

5.6 The Other Heavy States

In this model, besides the two CP-even spin-zero states eH 0, eH 00 from the mixing

matrix in Eq. (5.3.22), we also have three CP-odd spin-zero states H0
3 , H

0
3M , H0

5 .

In this section, we discuss the predicted signal strengths of these spin-zero states

except H0
5 , because it does not couple to both the SM and mirror fermions

5.6.1 The heavy CP-even states

For the heavy CP-even states, eH 0, eH 00, the procedure of calculating their signal

strengths is the same with eH in the section 5.4. The only di↵erence here is the

appearance of the decay into the heavy fermions such as top quark and mirror

quarks when these channels are kinematically allowed. Therefore, the total width
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of eH 0, eH 00 is given by

� eH0, eH00 =
3X

i=1

� eH0, eH00!qMi q̄Mi
+

3X

j=1

⇥ � eH0, eH00!lMj l̄Mj

+ � eH0, eH00!tt̄ + � eH0, eH00!bb̄

+ � eH0, eH00!⌧ ⌧̄ + � eH0, eH00!cc̄ + � eH0, eH00!W+W�

+ � eH0, eH00!ZZ + � eH0, eH00!gg + � eH0, eH00!�� . (5.6.1)

In both five examples in Fig. 5.2, the next heavy state is eH 0. Here, we present

the signal strength of eH 0 ! W+W� of four examples in comparing with the data

of CMS up to 600 GeV in Fig. 5.3.
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Figure 5.3. Predicted signal strength of eH 0 ! W+W� in 4 example scenarios
(blue and purple squares). The results of the search for SM-like Higgs boson up
to 600 GeV with the 1� (green band) and 2� (yellow band) limits on the SM
background (dotted curve) and CMS data (solid black curve) are also displayed.
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In Mr.Hyde Ex. 2, eH 0 has the mass of 633 GeV so that it is not included in

Fig. 5.3. The mass here is just a particular example of eH 0. Among four examples,

the signal strength of eH 0 in Dr.Jekyll Ex. 1, Ex. 2, and Mr.Hyde Ex. 1 is within

the 1� SM background. It means that the CMS data is not sensitive enough to

confirm or rule out eH 0 in these examples.

One should note that the CMS data with the 1, 2� bands here is with the Stan-

dard Model background. In the EW⌫R model, the additional processes produced

by the mirror fermions and the new scalars also contribute to the background.

The background in the decay channel eH 0 ! W+W� is expectedly larger than the

SM background in the figure. Therefore, the signal strength of eH 0 in Mr.Hyde

Ex. 3 is most likely within the background if we include the background from the

EW⌫R model. It also means that Ex. 3 is not excluded by the data.

Moreover, in the high mass region, eH 0 is allowed to decay into the mirror

fermions and new scalars of the EW⌫R model. The total width of eH 0 then can

be large relatively to its mass. In this case, the signal of eH 0 does not appear as

a narrow resonance above the background as the SM Higgs boson. ATLAS and

CMS have constrained the upper limit on �⇥BR(H ! ��) with the assumption

in which the width of the Higgs boson H is less than 10% of its mass [35, 36].

Therefore, these upper limits do not apply to eH 0 absolutely.

5.6.2 The CP-odd Heavy States

In addition to three CP-even spin-zero states eH, eH 0, eH 00, the EW⌫R model also

contains CP-odd spin-zero states - H0
3 , H

0
3M . In this section, we show possibilities

to probe the signal of the neutral pseudo-scalars in various decay channels at the

LHC. To do so, we will investigate the product of production cross section and

the branching ratio, a.k.a the absolute signal strength, in the H0
3,3M ! ��, ⌧⌧

channels. We will also calculate the signal strengths (µ) for H0
3 , H

0
3M and the SM

Higgs boson HSM in other channels.
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µ =
�(gg ! H0

3,3M)Br(H0
3,3M ! XX)

�(gg ! HSM)Br(HSM ! XX)
(5.6.2)

In this extension of the EW⌫R model, the degenerate masses of two SU(2)D

custodial triplets are related by

m2
H3

m2
H3M

=
1

1 + c2M
(5.6.3)

We assume that the neutral states H0
3 and H0

3M obey this relationship, and use

two cases of sM = 0.168; 0.36 for illustrative purpose.

5.6.2.1 Ratio of Production Cross Sections

At the LHC, H0
3 , H0

3M are expected to be produced mainly through gluon-

gluon fusion, similar to HSM . By using an e↵ective coupling approximation, we

have

R =
�(gg ! H0

3,3M)

�(gg ! HSM)
⇡
�(H0

3,3M ! gg)

�(HSM ! gg)
. (5.6.4)

H0
3,3M do not couple directly to the gauge bosons W, Z, �. And triplet couplings,

such as H0
3,3MH+

3,3MH�
3,3M , H0

3,3MH+
5 H

�
5 , H0

3,3MH++
5 H��

5 , are forbidden by CP

conservation, see A.1. Therefore, only fermion loops involving the top quark and

the mirror quarks contribute to the gluonic decay of H0
3 and H0

3M [38]:

�
�
H0

3,3M ! gg
�
=

GF↵2
s

16
p
2⇡3

m3
H0

3,3M

�����
X

Q

g
H0

3,3M

Q F
H0

3,3M

Q (⌧f )

�����

2

, (5.6.5)

F
H0

3,3M

Q (⌧f ) = ⌧ff(⌧f ) , (5.6.6)

⌧t = 4m2
f/m

2
H0

3,3M
, (5.6.7)

where g
H0

3,3M

Q are the couplings of H0
3 and H0

3M to the top quark and mirror quarks,

listed in Table 1.
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Here,
P
Q

is summed over the top quark and the mirror quarks. However, the

contributions from the mirror quarks can be suppressed due to the fact that the

mirror-up quarks and the mirror-down quarks couple to H0
3,3M with opposite signs.

In this work, we particularly consider degenerate mirror fermion doublets, meaning

muM = mdM , for simplicity. As a result, the contributions from the mirror quarks

cancel out. Thus only the top-quark loop appears in the production cross section

of H0
3 , H

0
3M . The ratios of production cross section are given by

RH0
3
= ⌧ 2t

|tan ✓Mf(⌧t)|2

|⌧t + (⌧t � 1)f(⌧t)|2
(5.6.8)

for H0
3 , and

RH0
3M

= ⌧ 2t
|s2Mf(⌧t)|2

|s2(⌧t + (⌧t � 1)f(⌧t))|2
(5.6.9)

for H0
3M .

5.6.2.2 The �� Channel

Similar to the gluonic decay, only fermion loops contribute to the partial width

of H0
3,3M ! ��, given by [38]

�
�
H0

3,3M ! ��
�
=

g2 ↵2 m3
H0

3,3M

256 ⇡ m2
W

�����
X

i

Nci e
2
i gi F

H0
3,3M

i

�����

2

. (5.6.10)

Here, i = top quark, six mirror quarks, and three charged mirror leptons. The

total widths of H0
3,3M are calculated by summing over all the partial widths.

�H3,3M = �(H0
3,3M ! ��) + �(H0

3,3M ! gg)

+�(H0
3,3M ! W+W�) + �(H0

3,3M ! ZZ)

+�(H0
3,3M ! ⌧ ⌧̄) + �(H0

3,3M ! tt̄)

+�(H0
3,3M ! cc̄) + �(H0

3,3M ! bb̄)

+
6X

i=1

�(H0
3,3M ! qMi q̄Mi )

+
3X

j=1

�(H0
3,3M ! lMj l̄Mj ) (5.6.11)
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The branching ratio of H0
3,3M ! �� is

Br(H0
3,3M ! ��) =

�(H0
3,3M ! ��)

�H0
3,3M

(5.6.12)

The product of production cross section and the branching ratio in the decay

channels H0
3,3M ! �� is given by

� ⇥ BR(H0
3,3M ! ��) = R⇥ �(gg ! HSM)⇥ Br(H0

3,3M ! ��) (5.6.13)

At any particular mass, RH0
3,3M

and Br(H0
3,3M ! ��) are calculated directly, while

�(gg ! HSM) is taken from the handbook of Higgs cross section at 8 TeV [34].

To be consistent with the previous analysis, we also provide two scenarios which

correspond to the dual nature of the 125-GeV Higgs boson. We consider up- and

down- members of mirror quark doublets to have degenerate masses. The first two

generations of mirror quarks and all charged mirror leptons have the same mass,

mqM1
= mqM2

= mlM = 102 GeV. The heaviest mirror quark generation has a mass

mqM3
= 120 GeV. Masses of all right-handed neutrinos are at MR = 50 GeV.

Again, these numbers here are for illustrative purpose.

• In the case of Dr. Jekyll, as eH ⇠ H0
1 , the mixing angles are s2 = 0.92, s2M =

0.16, sM = 0.36, which corresponds to the first example in the section 5.5.1.

In Figure 5.4, we present the dependence of the production cross section

times branching ratio of H3,3M on mass. Moreover, the next heavy CP-even

state is H̃ 0 with the mass of m eH0 = 420 GeV in this case. So we incorporate

the production cross section times branching ratio of eH 0 ! �� also.
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Figure 5.4. The production cross section times branching ratio in �� channel
of H0

3 and H0
3M . mH0

3
= 130� 850 GeV, mH0

3M
= 177� 870 GeV

• In the other case when H0
1 is sub-dominant in eH or Mr. Hyde, a set of

parameters is chosen as s2 = 0.514, s2M = 0.841, sM = 0.168 corresponding

to Example 2 in the section 5.5.2. In this scenario, all the heavy CP-even

states are above 600GeV. Therefore, we just present the dependence of the

production cross section times branching ratio of H3,3M ! �� in Figure 5.5.
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Figure 5.5. The production cross section times branching ratio in �� channel
of H0

3 and H0
3M . mH0

3
= 130� 750 GeV, mH0

3M
= 182� 870 GeV

? Remarks:

• In Figs. 5.4, 5.5, the production cross section of q+ q̄ ! H0
3,3M is calculated

based on the gluon fusion production of HSM at the same mass based on

Eq. (5.6.13) at 8 TeV LHC.

• Below fermionic thresholds, 2mqM1,2
and 2mlM , the � ⇥ BR of H0

3,3M can

be larger than what is measured by ATLAS and CMS for heavy SM-like

scalar. To be conservative, we can exclude mH0
3
. 150 GeV and mH0

3M
.

205 GeV (Fig. 5.4) and . 210 GeV (Fig. 5.5). However, in the other sets of

parameters, the � ⇥BR could be well below the upper limit set by ATLAS

and CMS.
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• As mH0
3
increases, more mirror fermionic decay channels are kinematically

allowed. On the other hand, the production cross section decreases. The

branching ratios of H0
3,3M ! �� therefore decrease rapidly beyond the

thresholds, 2mqM1,2
, 2mqM3

, 2mlM , 2mt. As a result, the � ⇥ BR in both

the in both cases are below the experimental upper limits.

• At the same mass, the �⇥BR of CP-odd spin-zero states are generally larger

than those of CP-even scalars. Consequently, it is easier to detect CP-odd

spin-0 states than the CP-even ones.

5.6.2.3 The ⌧ ⌧̄ Channel

ATLAS [39] and CMS [40] also reported their new results in ⌧ ⌧̄ channel. Al-

though, the main aim of their reports is to look for MSSM neutral boson, they

provide a model-independent limit on the production cross section times branch-

ing ratio of a general spin-zero state. Therefore, in this part, we investigate the

signal strength of the decay H0
3,3M ! ⌧ ⌧̄ with two sets of parameters considered

in the previous section.

• In the Dr. Jekyll case.
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Figure 5.6. The production cross section times branching ratio in ⌧ ⌧̄ channel
of H0

3 and H0
3M . mH0

3
= 130� 440 GeV, mH0

3M
= 177� 601 GeV

• In the Mr.Hyde case.
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Figure 5.7. The production cross section times branching ratio in ⌧ ⌧̄ channel
of H0

3 and H0
3M . mH0

3
= 130� 440 GeV, mH0

3M
= 182� 618 GeV

? Remarks:

• In both cases, the � ⇥ BR can exceed the upper limit from ATLAS and

CMS before the thresholds of 2 times the mass of the lightest mirror fermions,

which is 204 GeV. It happens because, unlike SM Higgs, the decay processes

such as H0
3,3M ! WW/ZZ occur only at the loop level, and their partial

widths are relatively small. It means that the decay of H0
3,3M ! ⌧ ⌧̄ is

sizable comparing to the other channels. Consequently, the branching ratios

of H0
3,3M ! ⌧ ⌧̄ are not as small as in the Standard Model. Hence, the �⇥BR

for this channel is one order above the upper limits set by ATLAS and CMS.
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However, we already excluded this mass region of this particular parameter

set based on the diphoton analysis in the last section.

• After passing the first threshold, the � ⇥ BR of both H0
3,3M ! ⌧ ⌧̄ decrease

rapidly, because the total widths �H0
3,3M

are dominated by the fermionic

decays. Then they reach another peak at 2mt. Over the entire region after

the first threshold, the � ⇥ BR for both H0
3,3M are below the limits.

5.6.2.4 The WW/ZZ Channels

In this model, the pseudo-scalars H0
3,3M do not couple directly to W± and

Z. Decay processes H0
3,3M ! WW/ZZ occur only at loop levels. One would

expect these processes will be highly suppressed. To prove that, we calculate the

signal strengths (µ) for H0
3 ! WW/ZZ and HSM ! WW/ZZ. µ is defined in

Eq. (5.6.2).

µV V =
�(gg ! H0

3 )Br(H0
3 ! V V )

�(gg ! HSM)Br(HSM ! V V )

= RH0
3

Br(H0
3 ! V V )

Br(HSM ! V V )
, (5.6.14)

where V = W,Z. Once again, Br(HSM ! V V ) is taken from [34], while the ratio

of production cross sections RH0
3
in Eq. (5.6.8) and Br(H0

3 ! V V ) are calculated

directly. At one loop order, the partial decay width for these processes are [41]

• H0
3 ! WW

�(H0
3 ! WW ) =

32g6(m2
H0

3
� 4m2

W )3/2

214⇡5m2
W

|AWW |2 (5.6.15)

AWW = m2
t tMAW

t �m2
bt

2
MAW

b +
m2

lMp
2
AW

lM +
M2

Rp
2cM

AW
⌫R

; (5.6.16)

• H0
3 ! ZZ

�(H0
3 ! ZZ) =

32g6(m2
H0

3
� 4m2

Z)
3/2

215⇡5m2
W

|AZZ |2 (5.6.17)
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AZZ = m2
t tMAZ

t �m2
btMAZ

b +
m2

lMp
2
AZ

lM . (5.6.18)

AW/Z
f are amplitudes with the top and the bottom quarks, the mirror charged

leptons, and the right-handed neutrinos in the loops. They have specific forms

given in Appendix A.3.
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Figure 5.8. Ratio of strength signal in WW/ZZ channel of H0
3 comparing to

HSM

One can realize that all the contributions of the mirror quark are cancelled

out in the Eqs. (5.6.16), (5.6.18) due to the opposite sign in the coupling of

up- and down-mirror quarks. Also, we consider the case of the degenerate mass

among mirror quarks in a family. As seen in Figure. 5.8, the signal strengths of

H0
3 in vector boson channels are highly suppressed in comparison to HSM in the

WW/ZZ decay channels.
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5.7 Summary of The Chapter

The discovery of the 125 GeV SM-like Higgs boson is an important test of the

EW⌫R model together with the electroweak precision constraints. The 125 GeV

resonance is consistent with the Standard Model prediction in terms of the signal

strength which is defined as the product of the production and branching ratio

as in Eq. 5.4.19. Nevertheless, it is insu�cient to conclude whether the newly

discovered resonance is the definite SM Higgs boson or just an impostor because

the lack of the explicit measurements of decay widths of the 125 GeV resonance.

The EW⌫R model was originally built to explain the nature of the neutrino

mass by renovating the idea of mirror fermions and the Georgi-Machacek scalar

potential. In the model, the right-handed neutrinos belong to SU(2)W doublets

with their masses at the order of few hundred GeVs. The discovery of the 125

GeV SM-like Higgs boson led us to extend the minimal EW⌫R model in the scalar

sector by adding one more complex doublet. After considering the mixing between

three SU(2) singlets H0
1 , H

0
1M , H00

1 we have three mass eigenstates eH, eH 0, eH 00 with

the increasing order in their masses.

We scanned the parameter space to look for the candidate of the 125 GeV

SM-like Higgs boson under two condition: 1) The lightest mixing state, eH, has

the mass in the region of 125 GeV; 2) The signal strength of eH satisfies the 1�

constraints from the experimental results of CMS. We found many combinations

of the parameter space satisfying these two conditions. These combinations can

be classified into two scenarios, Dr.Jekyll and Mr.Hyde, where the natures of the

125 GeV Higgs boson candidate are very di↵erent but they still have the signal

strengths to be consistent with the experimental results.

In the case of Dr.Jekyll, the 125 GeV Higgs boson candidate is dominated

by the SM-like component H0
1 . Naturally, the production cross section and the

branching ratios of the Higgs boson candidate to are similar to the SM predic-
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tions. The signal strengths of the candidate satisfy the experimental constraints.

On the other hand, the SM-like component is the sub-dominant in the case of

Mr.Hyde so that the production cross section and the branching ratios are very

di↵erent from the SM predictions. As we pointed out in three examples, the signal

strengths of the candidate are still consistent with the experimental constraints

if the component H0
1M is also small in this case. This is the dual nature of the

125 GeV SM-like Higgs boson candidate of the EW⌫R model. We illustrate this

special property of the model through 5 examples in Fig. 5.2.

We also investigated the signal strengths of the two heavier CP-even states

eH 0, eH 00 and two CP-odd spin-zero states H0
3 , H

0
3M in the main decay modes which

have the upper limits from ATLAS/CMS measurements. So far, the existing

experimental results can not confirm or rule out the existence of the CP-even

states eH 0, eH 00. While the two CP-odd scalars H0
3 , H

0
3M have a stronger signal

generally except in the WW/ZZ channels in which H0
3 , H

0
3M ! WW/ZZ at the

loop level. Thus, we have several excluded regions of the parameter space based

on the upper limit set by ATLAS/CMS. Again, the exclusion just applies for the

particular parameter space in this thesis.
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Chapter 6

Conclusions

The Standard Model is the triumph and the tool for studying the physics of

elementary particles. The discovery of the 125 GeV SM-like Higgs boson is al-

most the last cornerstone for the unification of electromagnetic, weak and strong

interactions [26]. Nearly all elementary phenomena are described by a single La-

grangian. Nevertheless, the non-zero mass of neutrinos indicates Physics beyond

the Standard Model.

It is crucial to extend the Standard Model in order to generate the neutrino

mass naturally. In neutrino model building, the seesaw mechanism is the most

attractive idea. In this class of models, high scale sterile right-handed neutrinos

are added to the fermion spectrum. However, the inert nature of the additional

right-handed neutrinos makes this class of models to be impossible to test at

current high energy colliders such as the LHC. One interesting alternative is the

Left-Right symmetric extension of the Standard Model in which the SM is mapped

to the right chirality in both fermion, scalar, and gauge boson sectors. Though the

signal of the LR model can be probed at the LHC in principle, the newest search

pushes the lower limit of the right-handed gauge boson WR to be more than 3.2

TeV.

The EW⌫R model and its extension renovated the concept of mirror fermions
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proposed by Lee and Yang to incorporate the right-handed neutrinos into the SM

doublets. By introducing the additional scalars singlets and triplets, one generates

the small mass of the neutrino by seesawing between two energy scales: keV and

GeV . The right-handed neutrinos in these models are non-sterile and have mass

proportional to the electroweak scale. Thus, they are accessible at current and

near future high energy colliders such as the LHC and ILC.

Having additional chiral doublets usually violates the electroweak precision

data. However, the additional scalars in the EW⌫R model, particularly the triplets,

compensate for the contributions of the new fermions so that the model satisfies the

electroweak precision constraints with a large parameter space. These constraints

also indicate the mass splitting inside the fermion families and the scalar multiplets

resulting in the signal of the new particles of the EW⌫R model at hadron colliders.

In the extension of the EW⌫R model, we incorporate the newly discovered

125 GeV SM-like Higgs boson successfully with a minimal extension in the scalar

sector. More interestingly, the 125 GeV Higgs boson can have two very di↵erent

natures either SM-like or SM-unlike which both give the signal strengths consistent

with the experimental measurements from the LHC. Besides, the study of the

heavy scalars and the mirror fermions of the model would be very promising in

the new phase of the LHC.

Originating from an ultimate goal to generate the tiny neutrino mass, the

EW⌫R model has been proved to pass all the important tests of a Beyond Stan-

dard Model: The electroweak precision tests and the 125 GeV boson. The more

investigation we did, the more self-consistence of the model we found. In the next

few years, the LHC will further test the consistency of the EW sector of the SM

and could reveal any new physics at the TeV scale in detail. This model of fertile

right-handed neutrinos at electroweak scale would provide answers to known and

unknown mysteries.
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Appendices

A.1 The couplings in the Extended EW⌫R Model

We present all the couplings of the scalars of the model.

Table 1. Yukawa couplings of the scalars with SM quarks and mirror-quarks in
the EW⌫R model.

SM Quarks Mirror Quarks

gH0
1qq

�ı mq g

2 MW s2
....(q = t, b) gH0

1M qM qM �ı
mM

q g

2 MW s2M

gH0
3 tt

ı
mt g sM
2 MW cM

�5 gH0
3u

M
i uM

i
�ı

muM
i
g sM

2 MW cM
�5

gH0
3M tt �ımt g s2M

2 MW s2
�5 gH0

3MuM
i uM

i
�ı

muM
i
g s2

2 MW s2M
�5

gH0
3M bb ı

mb g s2M
2 MW s2

�5 g
H0

3MdMi d
M
i

ı
mdMi

g s2

2 MW s2M
�5
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Table 2. Yukawa couplings of the scalars with SM quarks and mirror-quarks in
the EW⌫R model. (con’t)

gH�
3M tb

ı
g s2M

2
p
2 MW s2 cM

⇥
mt(1 +

�5)�mb(1� �5)
⇤ g

H�
3MuM

i d
M
i

ı
g s2

2
p
2 MW s2M cM

⇥
muM

i
(1�

�5)�mdMi
(1 + �5)

⇤

gH0
1 ll

�ı ml g

2 MW s2
....(l =

⌧, µ, e)
g
H0

1M lM l
M �ı mM

l g

2 MW s2M

gH0
3 ll

�ı ml g sM
2 MW cM

�5 g
H0

3 l
M
i l

M
i

ı
mlMi

g sM

2 MW cM
�5

gH�
3 ⌫Ll

�ı g ml sM
2
p
2 MW cM

(1� �5) g
H�

3 ⌫Ril
M
i

�ı
g mlMi

sM

2
p
2 MW cM

(1 + �5)

gH0
3M ll ı

ml g s2M
2 MW s2

�5 g
H0

3M lMi l
M
i

ı
mlMi

g s2

2 MW s2M
�5

gH�
3M⌫Ll

�ı g ml s2M
2
p
2 MW s2 cM

(1� �5) g
H�

3M⌫Ril
M
i

�ı
g mlMi

s2

2
p
2 MW s2M cM

(1 + �5)
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Table 3. Triple couplings of the scalars with one gauge boson. Here we use
common factor: ıg(p � p0)µ, where p(p0) is the incoming momentum of the
scalars.

gH0
5H

�
5 W+

�
p
3

2 gH++
5 H��

5 Z

�(1� 2s2W )

cW

gH+
5 H��

5 W+

� 1p
2 gH+

5 H�
5 Z

(1� 2s2W )

2cW

gH0
3H

�
3 W+

�1

2
s2M gH+

3 H�
3 Z

(1� 2s2W )

2cW

gH0
3MH�

3MW+

1

2 gH+
3MH�

3MZ

(1� 2s2W )

2cW

gH+
3 H��

5 W+

� 1p
2
cM

gH+
3 H�

5 Z

� 1

2cW
cM

gH0
3H

�
5 W+

�1

2
cM gH0

3H
0
5Z

1p
3

cM
cW

gH0
5H

�
3 W+

� 1

2
p
3
cM gG+

3 G�
3 Z

(1� 2s2W )

2cW

gG0
3G

�
3 W+

�1

2
gG0

3H
0
5Z

1p
3

sM
cW

gG+
3 H��

5 W+

� 1p
2
sM

gG+
3 H�

5 Z

� 1

2cW
sM

gG+
3 H��

5 W+

� 1p
2
sM gH0

1G
0
3Z

s2
cW

gG0
3H

�
5 W+

�1

2
sM gH0

1MG0
3Z

s2M
cW
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Table 4. Triple couplings of the scalars with one gauge boson. Here we use
common factor: ıg(p � p0)µ, where p(p0) is the incoming momentum of the
scalars.

gH0
5G

�
3 W+

1

2
p
3
sM gH00

1 G0
3Z

r
2

3

sM
cW

gH0
5G

�
3 W+

1

2
p
3
sM gH0

1H
0
3Z

� s2sM
2cMcW

gH0
1G

�
3 W+

1

2
s2 gH0

1MH0
3Z

�s2MsM
2cMcW

gH0
1MG�

3 W+

1

2
s2M gH00

1 H0
3Z

r
2

3

cM
cW

gH00
1 G�

3 W+

r
2

3
sM gH+

5 H�
5 � sW

gH0
1H

�
3 W+

�s2sM
2cM gH++

5 H��
5 �

�2sW

gH0
1MH�

3 W+

�s2MsM
2cM

gH+
3 H�

3 � sW

gH00
1 H�

3 W+

r
2

3
cM gH+

3MH�
3M�

sW

gH0
1H

�
3MW+

� s2M
2cM

gG+
3 G�

3 � sW

gH0
1MH�

3MW+

s2
2cM gH0

1H
0
3MZ

s2M
2cM

gH0
1MH0

3MZ

� s2
2cM
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Table 5. Triple couplings of the scalars with two gauge bosons. Here we use
common factor: ıgMW gµ⌫ .

gH0
5W

+W�

sMp
3 gH0

5ZZ

� 2p
3

sM
c2W

gH++
5 W�W�

p
2sM

gH+
5 W�Z

�sM
cW

gH0
1W

+W�

s2
gH0

1ZZ

s2
c2W

gH0
1MW+W�

s2M
gH0

1MZZ

s2M
c2W

gH00
1 W+W�

2
p
2p
3
sM

gH00
1 ZZ

2
p
2p
3

sM
c2W
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Table 6. Quartic couplings of the scalars with the gauge bosons. Common
factor: ıg2gµ⌫ .

gH0
5H

0
5W

+W�
5

3
gH0

5H
0
5ZZ

2

3c2W

gH+
5 H�

5 W+W� �3

2
gH+

5 H�
5 ZZ

�(c4W + s4W )

c2W

gH++
5 H��

5 W+W� 1 gH++
5 H��

5 ZZ
2
(1� 2s2W )2

c2W

gH0
3H

0
3W

+W� �(1 + c2M)

2
gH0

3H
0
3ZZ � 1

2c2W
(1 + 3c2M)

gH+
3 H�

3 W+W� �(1
2
+ c2M) gH+

3 H�
3 ZZ

�

s2M
2

(1� s2W )2

c2W
+ c2M

(c4W + s4W )

c2W

�

gH0
3MH0

3MW+W� �1

2
gH0

3MH0
3MZZ

1

2c2W

gH+
3MH�

3MW+W� �1

2
gH+

3MH�
3MZZ

�(1� 2s2W )2

2c2W

gG0
3G

0
3W

+W� �(1 + s2M)

2
gG0

3G
0
3ZZ � 1

2c2W
(1 + 3s2M)

gG+
3 G�

3 W+W� �(1
2
+ s2M) gG+

3 G�
3 ZZ

�

c2M
2

(1� s2W )2

c2W
+ s2M

(c4W + s4W )

c2W

�

gH0
1H

0
1W

+W�
1

2
gH0

1H
0
1ZZ

1

2c2W

gH0
1MH0

1MW+W�
1

2
gH0

1MH0
1MZZ

1

2c2W

gH00
1 H00

1 W+W�
4

3
gH00

1 H00
1 ZZ

4

3c2W
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Table 7. Quartic couplings of the scalars and gauge bosons. Common factor:
ıg2gµ⌫ .

gH+
5 H�

5 �� �2s2W gH+
5 H�

5 Z� �sW
cW

(1� 2s2W )

gH++
5 H��

5 �� 8s2W gH++
5 H��

5 Z� 4
sW
cW

(1� 2s2W )

gH+
3 H�

3 �� �2s2W gH+
3 H�

3 Z� �sW
cW

(1� 2s2W )

gH+
3MH�

3M�� �2s2W gH+
3MH�

3MZ� �sW
cW

(1� 2s2W )

gG+
3 G�

3 �� �2s2W gG+
3 G�

3 Z� �sW
cW

(1� 2s2W )

gH00
1 H0

5W
+W�

p
2

3
gH00

1 H0
5ZZ �2

p
2

3c2W

gH+
3 H�

5 W+W� �cM
2

gH+
3 H�

5 ZZ
cM

(1� 2s2W )

c2W

gH0
3G

0
3W

+W� �cMsM
2

gH0
3G

0
3ZZ �3

2

cMsM
c2W

gH+
3 G�

3 W+W� �cMsM gH+
3 G�

3 ZZ
�cMsM

2c2W

gH+
5 G�

3 W+W� �sM
2

gH+
5 G�

3 ZZ
sM

(1� 2s2W )

c2W

gH+
3 H�

5 Z� cM
sW
cW
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A.2 Loop Functions

To express the contributions of scalars and fermions into the oblique param-

eters, eS, eT , at one loop level, it is convenient to use so-called one-point and two-

point functions [43]. Basically, they are the coe�cients in the zeroth order of the

expansion of the self-energy diagrams of the gauge vector bosons ⇧µ⌫ . In general,

these self-energy diagrams can be expressed as

⇧µ⌫ = ⇧0 gµ⌫ + ⇧2 qµq⌫ (A.2.1)

For the purpose of calculating the oblique parameters, we can ignore the second

order of the expansion. So in this thesis, ⇧µ⌫ = ⇧0 gµ⌫ . The loop diagrams

involving one or two scalars or fermions appear in the form of the t’Hooft-Veltman

integrals. They are expressed as [43] One-point integral:

Z
d4k

(2⇡)4
1

(k2 �m2)
⌘ ı̇

16⇡2
A0(m

2) (A.2.2)

Two-point integrals:

Z
d4k

(2⇡)4
1

(k2 �m2
1)((k + q)2 �m2

2)

⌘ ı̇

16⇡2
B0(q

2;m2
1,m

2
2), (A.2.3)

Z
d4k

(2⇡)4
kµk⌫

(k2 �m2
1)((k + q)2 �m2

2)

⌘ ı̇

16⇡2
gµ⌫B22(q

2;m2
1,m

2
2) (A.2.4)
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In the dimensional regularization, these integrals can be simplified to

A0(m
2) = m2

⇣
�+ 1� ln(m2)

⌘
(A.2.5)

B0(q
2;m2

1,m
2
2) = ��

Z 1

0

dx ln(X � ı̇✏) (A.2.6)

B22(q
2;m2

1,m
2
2) =

1

4
(�+ 1)

⇣
m2

1 +m2
2 �

q2

3

⌘

� 1

2

Z 1

0

dx X ln(X � ı̇✏) (A.2.7)

where

X ⌘ m2
1x +m2

2(1� x)� q2x(1� x), (A.2.8)

� ⌘ 2

4� d
+ ln(4⇡)� �. (A.2.9)

in d space-time dimensions with � = 0.577216..., the Euler’s constant [45]. The

integrals in eqns. (A.2.6), (A.2.7) can be calculated numerically up to desired

accuracy. Note that these equations involve the logarithm of a dimensionful quan-

tity, X and the scale of this logarithm is hidden in the 2/(4� d) term in � (refer

to section 7.5 of [45]). We also have [46]

B0(0;m
2
1,m

2
2) =

A0(m2
1)� A0(m2

2)

m2
1 �m2

2

, (A.2.10)

4B22(0;m
2
1,m

2
2) = F(m2

1,m
2
2) + A0(m

2
1) + A0(m

2
2), (A.2.11)

where

F(m2
1,m

2
2) =

m12 +m2
2

2
� m2

1m
2
2

m2
1 �m2

2

ln

✓
m2

1

m2
2

◆
,

if m1 6= m2,

= 0 if m1 = m2. (A.2.12)

Note that

F(m2
1,m

2
2) = F(m2

2,m
2
1) . (A.2.13)
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So then

B22(q
2;m2

1,m
2
2) = B22(q

2;m2
2,m

2
1)

B0(q
2;m2

1,m
2
2) = B0(q

2;m2
2,m

2
1). (A.2.14)

While evaluating the fermion loops which contribute to the oblique parameters

following two-point loop integrals are useful (refer section 21.3 of [45]):

B1(q
2;m2

1,m
2
2) =

Z 1

0

dx (1� x) ln
⇣X � ı̇✏

M2

⌘
, (A.2.15)

B2(q
2;m2

1,m
2
2) =

Z 1

0

dx x(1� x) ln
⇣X � ı̇✏

M2

⌘
, (A.2.16)

where X is as defined in eqn. (A.2.8). The logarithms in these integrals involve a

mass scale M . All the terms, which depend on this scale cancel while evaluating

the final expressions for oblique parameters. For m1 = m2 = m and q2 = M2
Z ,

B1(M
2
Z ;m

2,m2) = �1� G(x)

4
+ ln

⇣m2

M2

⌘
, (A.2.17)

B2(M
2
Z ;m

2,m2) =
1

18

"
� 3

2
G(x)

�
2 x+ 1

�

+

 
� 12 x� 5 + 3 ln

⇣m2

M2

⌘!#
, (A.2.18)

where

G(x) = �4
p
4x� 1 Arctan

⇣ 1p
4x� 1

⌘
. (A.2.19)

While deriving eTfermion in eqn.(4.1.9) we need to evaluate integrals in eqn. (A.2.15)

for q = 0 and m1 6= m2. One of the integrals, which appear in this calculation is

Z 1

0

dx
�
m2

1x+m2
2(1� x)

�
ln
⇣m2

1x+m2
2(1� x)

M2

⌘

=

�
m4

2 �m4
1

�
+ 2 m4

1 ln
⇣

m2
1

M2

⌘
� 2 m4

2 ln
⇣

m2
1

M2

⌘

4
�
m2

1 �m2
2

� . (A.2.20)
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Using the loop integrals and functions defined and enlisted in this appendix

we can derive the expressions for the oblique parameters, which are suitable for

the numerical analysis

A.3 Amplitude of H0
3 ! WW/ZZ

The processes such as H0
3 ! WW/ZZ in this model only take place at loop

level. At 1 loop, the Feynman diagrams are:

H0
3

t, uM , ⌫R

W�

t, uM , ⌫R

W+

b, dM , eR
H0

3

b, dM , eR

W+

b, dM , eR

W�

t, uM , ⌫R

Figure 1. Feynman diagram of H0
3 ! W+W�. We have three generations of

mirror quarks and three generations of mirror leptons

H0
3

f

Z

f

Z

f

Figure 2. Feynman diagram of H0
3 ! ZZ. Here, f = uM1 , dM1 , uM2 , dM2 , uM3 , dM3 ,

and three charged mirror leptons lM

With the couplings in Table 1, the amplitude can be expressed as [41]

A(H0
3 ! V V ) = m2

utMAV
u �m2

dtMAV
d (A.3.1)

Here, u, d represent t, b; ui
M , diM ; ⌫jR, ljM . Two intermediate functions AV

u , A
V
d

are expressed in terms of loop functions, C, F [44]:
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• H0
3 ! W+W�

AW
u =

1

2
[C(m2

W ;m2
u,m

2
d) + F (m2

W ;m2
u,m

2
d)]

AW
d =

1

2
[C(m2

W ;m2
d,m

2
u) + F (m2

W ;m2
d,m

2
u)]

(A.3.2)

• H0
3 ! ZZ

AZ
f = [

(T3 �Q sin2 ✓W )2

cos2 ✓W
+ (

Q sin2 ✓W
cos ✓W

)2]C(m2
Z ;m

2
f )

+[
(T3 �Q sin2 ✓W )2

cos2 ✓W
� (

Q sin2 ✓W
cos ✓W

)2]F (m2
Z ;m

2
f )

(A.3.3)

C, F are generally defined in terms of the ’t Hooft-Veltman scalar loop integrals

[44]. However, in this case we have top quark and heavy mirror fermions, which

allows us to use asymptotic forms in the high-mass limit:

C(m2
V ;m

2
u,m

2
d) =

1Z

0

dx

xZ

0

dy
1

D
,

F (m2
V ;m

2
u,m

2
d) = �

1Z

0

dx

xZ

0

dy
1

D
, (A.3.4)

where

D = m2
H0

3
(1� x)(1� y) +m2

V (1� x)

+m2
V y(x� y)�m2

u(1� y)�m2
dy . (A.3.5)
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