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Abstract

In today’s context, the term ‘Smart Object’ is used to refer to any object that incorporates

computing and communication in some capacity to enhance the functionality and/or interac-

tion experience for the end user. People interacting with objects have different personalities

and preferences, and therefore different requirements from the same objects. Therefore,

personalization of a Smart Object’s behavior will soon become an important function. Often

when people interact with objects that are shared with other people, they need to re-configure

the objects to suit their personal requirements. For example, while showering, people prefer

different water temperatures, and therefore have to set the hot and cold water mixer to their

preferred configuration every time they shower.

In the current state of the art, if the Smart Objects need to adapt themselves to the person

using them, they perform an explicit identification process for the user. However as Smart

Objects are expected to permeate every aspect of people’s daily lives, this approach will not

be scalable. In order for objects to perform personalized functions, they must solve what we

refer to as the Implicit Object User Identification (IOUI) problem: understanding who is

actually using a given object, and being able to validate their identity without expecting the

user to explicitly participate in an identification process.

In this dissertation, we explore the use of wearable devices in performing IOUI. There are

two main reasons why wearable devices are an attractive technological solution that can assist

Smart Objects in solving this problem: a) wearables adoption is growing at a rapid pace, and

b) they are embedded with sensors that can monitor the location context and hand motion of
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the wearer. However, while sensors in wearables are great for making approximate measures

of a person’s activities, the imprecision of their sensing systems makes them challenging for

use in applications such as IOUI, which require high precision and accuracy.

In this work, we explore the following hypothesis: Despite the coarse granularity of its

location sensing, and imprecision in sensing the trajectory of hand’s motion, data from sensors

in wearable devices, when augmented with data from Smart Objects, can be used to identify

users interacting with Smart Objects. We explore different levels of information shared by

the Wearable device with a Smart Object, and explore how each level of data abstraction

affects the user identification accuracy.
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Chapter 1

Introduction

1.1 What are Smart Objects?

The quality of human life has been greatly improved by the functionality provided by different

objects1 that serve in multitude of roles, such as security, communication, entertainment,

cleaning, cooking, storage, computation etc. Leaps in technological capabilities have trans-

formed the designs of objects over time. The improvements in manufacturing techniques and

factory line production, enabled the mass production of objects with mechanically moving

parts. The availability of electricity and water, further enabled these objects to be operated

in a semi-autonomous fashion. Another transformation was brought about by the advent

of embedded computing, which then allowed these devices to be programmed to operate

in different modes. The current revolution in communication techniques is allowing these

objects to communicate with each other, and learn different contexts about their environment.

This allows them to function with greater autonomy and improves the type of functionality

that they offer to end users.

In today’s context, the term ‘Smart Object’ is used to refer to any object that incorporates

computing and communication in some capacity to enhance the functionality and/or interac-

1In this dissertation, we use the term ‘object’ to refer to devices, gadgets, and other entities that people
can physically interact with, to fulfill certain tasks and activities.

1
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tion experience of the end user. One definition [4] states that The concept smart for a smart

physical object simply means that it is active, digital, networked, can operate to some extent

autonomously, is reconfigurable and has local control of the resources it needs such as energy,

data storage, etc. Another definition [5] states that The combination of the Internet and

emerging technologies such as nearfield communications, real-time localization, and embedded

sensors lets us transform everyday objects into Smart Objects that can understand and react

to their environment.

1.2 What is the State of the Art in Smart Objects?

Smart Objects are not just a technological vision for the future. They have arrived, and in

fact, have already started pervading the commercial market. Some examples of objects that

are currently available commercially and have ‘smartness’ embedded in them are:

• TVs have Ethernet ports, or WiFi capability which allow them to stay connected to

the Internet. These TVs run a specific type of an operating system which allows them

to run apps that can stream different content [6] directly from the Internet. They allow

for the interface to be customized so that a user can customize their favorite apps,

games, live TV channels to be viewed on the home screen.

• Thermostats are equipped with WiFi capability. This allows them to be controlled

remotely via smartphones. They can also use motion sensors in the home to detect if a

home is occupied, or if the occupants are sleeping, in order to reduce the heating/cooling

of the home, and save energy [7]. Some thermostats can even learn the occupancy

patterns of the home, and predictively control the HVAC [8].

• Water Heaters can operate in multiple modes, including an occupant behavior learning

mode in which the system intelligently reacts to a homeowner’s hot water usage patterns,

in order to reduce stand-by heat loss [9]. Other modes such as vacation mode reduces
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the standby heat loss when occupants are away and the normal mode in which the water

heater operates like a static water heater. These are also connected to the Internet,

allowing people to control temperature settings remotely from their smartphones.

• Speakers connected to WiFi can not only access music content, but also access

unlimited computing via the cloud [10]. This boosted computational power makes

them capable of voice interaction, music playback, making to-do lists, setting alarms,

streaming podcasts, playing audiobooks, and providing weather, traffic and other real

time information.

• Automobile technology is currently a very swiftly progressing area, with car companies

either being in the development or testing phases of autonomous vehicles. Vehicles

are already able to park autonomously, change lanes and maintain a constant speed

set by the driver. Cars now also feature an attention monitoring system that watches

the driver’s steering patterns to determine if they are paying sufficient attention while

driving [11]. Other cars have sensors that can detect lane markings and keep the car

centered within the lane. Radars mounted on the car can detect when other obstacles

or vehicles get too close to the car [12]. Automatic lighting control can change the

luminosity of headlights by gradually increasing or lowering the light distribution based

on the distance of approaching traffic. They also enable parental controls to limit the

highest speed at which the car can operate.

• Eyewear can now act as fitness trackers using sensors that are embedded into the

frame including a gyroscope, accelerometer and magnetometer. The techonology is

used to monitor steps, distance, calories burned and active time [13]. Other glasses

pack in a small heads up display enabling cyclists to glance at a host of useful data in

real time including speed, cadence, heart rate. and power zones [14]. Other glasses use

bio-sensing technology to detect changes in a wearer’s eye and body movements to track

and alert on safety, health and fitness [15]. They can track fatigue and alert drivers
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who may be about to nod off. EOG electrodes built into the frames and in the nose

pads can detect blinks and eye movement in eight directions, and the accelerometer

and gyroscope sensors along the earpiece monitor body axis and walking pattern to

improve posture.

• Clothing augmented with sensors can be used for monitoring heart rate, breathing and

movement [16]. The realtime data can be used to provide insights on a range of sporty

metrics including intensity and recovery, calories burned, fatigue level and sleep quality.

Some workout clothes are woven with micro-EMG sensors that detect which muscles

are working and transfer this workout data to a smartphone via Bluetooth [17]. Muscle

effort, heart rate and breathing are all tracked and the app provides insights to help

exercise correctly and avoid injury. Socks augmented with textile pressure sensors can

measure the pressure placed on the foot during running [18]. Infant socks outfitted with

pulse oximetry technology can monitor heart rate to make sure the baby is breathing

and sleep has been uninterrupted [19].

• Locks with Bluetooth and WiFi connectivity allow them to be remotely locked or

unlocked using a smartphone [20]. Some other locks allow people to unlock them using

voice commands given to a smartphone’s digital assistant [21]. Some smart locks also

come equipped with touchscreen or other physical interfaces, which allow them to be

operated even without the smartphone [22].

• Electrical Sockets have access to power lines which makes it easy for them to

constantly remain connected to WiFi. People can remotely turn the sockets on or off

from their smartphones [23]. These can also be easily programmed to operate on a

schedule. Some of them can also track how they are being used, in order to provide

a detailed energy usage feedback [24]. These can also be connected to the personal

digital assistants, and therefore be controlled using voice commands [25].
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• Lights can also be controlled remotely using smartphones. People can choose to turn

them on/off, dim them, or even change their color [26]. Some lights can even connect

to other Smart Objects, such as cars, or locks [27]. One can program the lights to turn

on when the smart door lock opens, to turn off when the connected car drives away,

and to flash when the security camera detects movement outside.

These are only a few examples of Smart Objects that are available in the market. There

are many others which are much better known, such as fitness trackers, smart watches,

smartphones, laptops, etc., and therefore these are not discussed in this section. To summarize,

most of the body-worn Smart Objects focus on tracking a person’s motion and health. While

some objects help people remotely control them from smartphones (locks, TV, lights), others

allow people to perform certain tasks more easily (vehicles).

1.3 What is Implicit Object User Identification?

Identification is the process of answering the question “Who are you?”. In the information

security world, this is analogous to entering a username. Authentication is the process of

ensuring that the identity presented is actually true, and answering the question, “How can

you prove that its you?”. Typically, systems use a password for this, which is based on

some information which a secret between the user and the system. Entering a username and

password is an explicit method of identifying and authenticating a user.

In order for objects to perform personalized or contextual functions, they must solve what

we refer as the Implicit Object User Identification problem: understanding who is actually

using a given object, and being able to validate their identity without expecting people to

explicitly participate in an identification procedure.
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1.4 How can User Identity Transform Smart Objects?

To support personalized Smart Object behavior, it is important to obtain the identity of

the object’s user, especially for objects that are shared between people. This is because

people have different personalities and preferences, and therefore require different outputs

from objects. Therefore when people interact with objects, they often need to re-configure it

to suit their needs. For example, while showering, people prefer different temperatures, and

need to set the hot and cold water mixer to their preferred configuration every time they

take a shower. In addition to configuring objects to their preferences, people also use objects

to track their health - such as measure their blood pressure using a portable automatic blood

pressure instrument. However, they need to keep track of their own measurements.

The ability to infer user identity is not only transformative for Smart Objects’ design

in terms of convenience and ease of use, but it can also create new functionality that was

previously not possible.

Let us take a look at some examples of how objects could potentially use the user identity

information.

• TV - People in the same household may like to watch different content on TV. If a

TV could know the person using the remote, it could show their preferred content on

the home screen, making it easier and faster for them to navigate to their regularly

watched shows. Also, a TV could learn the viewing preferences of different individuals,

and use that information to suggest new content to them. Additionally, there may be

children in the household, and some content could be restricted for them. A TV could

automatically set parental controls, when it detects that a user who is designated as a

child is using the remote.

• Touch Lamp - Touch lamps can begin to learn people’s preference for lighting levels

as they start to associate user ID with the level of brightness that they set the lamps.

After a lamp has sufficient data about a user, the next time that the person touches the
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lamp, it can start with their preferred level of lighting, which can be further adjusted if

the user wants to.

• Car - People have different heights, which makes them adjust the mirror positions, and

the car seat’s distance from the steering wheel, every time they use a shared vehicle.

If a car could detect the person unlocking the door it could customize the seat and

mirror positions based on the driver’s identity. It could further adjust the height of

the car seat and the angle of reclining based on the person’s preference. In addition to

customization, the car could also monitor the person’s driving habits. This can be used

in providing timely feedback to a driver to ensure they correct their driving behavior

and prevent accidents. Insurance companies could further incentivize their customers

by allowing drivers to share their personal driving information with them for discounts

to their policies.

• Lock - The obvious use case for door locks is to unlock the door if the user is authorized

to enter. The user’s experience will be just like people opening any regular lockless

door: they will simply walk up to a door, and open it without engaging in any explicit

identification step. This may seem like a trivial convenience for opening the main

door in a home, because only one door needs to be opened. But in many commercial

buildings, employees have to scan their ID through multiple doors in order to get

access to a secure room. In this case, the convenience offered by this implicit security

mechanism will definitely seem more obvious.

• Whiteboard - Whiteboards can currently use stylus-based markers, and electronically

change ink color on boards with screens. If they could identify the user writing on the

whiteboard, they could automatically annotate the sections of the board written by

them. The board could also automatically save the notes and share with the users

participating in writing the notes. It can allow also users to automatically pull up

previously written notes and display them on the board.
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1.5 Why is Implicit User Identification Challenging?

User identification is not a new problem, and different solutions have been proposed. An

obvious solution to this problem seems to be the use of biometric sensing, such as facial

scanning, retina scan, fingerprinting etc. In the current state of art, each of these solutions

are either a) not implicit (for example, finger needs to placed on a specific sensor), or b)

robust to different situations (such as different lighting conditions). Another obvious solution

seems to be the use of proximity sensing techniques on devices typically carried by users, such

as smartphones. Unless all devices are instrumented with beaconing devices, the resolution

of location provided by infrastructure-based indoor positioning systems is almost room-size.

This coarse granularity can cause confusion when there are multiple users detected in the

proximity of the object when it is used. Other techniques try to learn the specific ways in

which a person interacts with an object. When the object is used, it observes how it is being

used to identify the individual. This technique may be used for monitoring applications

where object usage needs to be attributed to the user post-facto. But for cases where the

user’s identity needs to be established for the user to actually interact with the object, this

method fails.

1.6 What Are Wearables, and Why Are They a Promis-

ing Solution?

Wearables are a special class of Smart Objects. Any device that is designed to be worn on the

human body is referred to as a ‘Wearable’ device. These devices are not just regular gadgets

that are worn on the body, such as headphones. These devices are usually augmented with

sensing systems, and have wireless connectivity such as BlueTooth and WiFi. While most

Wearables are wrist worn, there are many devices that can be clipped to the body, or hung

around the neck. Wearables are also being integrated to jewelry. Implantables are a group
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of Wearables that are surgically attached somewhere under a person’s skin, for e.g. insulin

pumps, or contraception. In the context of this dissertation, we use the term ‘Wearables’ to

refer to wrist worn devices such as as smartwatches and fitness trackers.

There are two main reasons why wearable devices are an attractive technological solution

that can assist Smart Objects in performing implicit user identification: a. these devices are

becoming very popular, and b. they are embedded with sensors that can monitor location

context and hand motion of their wearer.

According to a recent survey, as many as 20% Americans are known to own a Wearable

device, and the adoption rate is at par with tablets. Some of the reasons why Wearables

have been popular is that these have started providing people with a perspective about their

habits that were previously unknown or un-quantified to them. Wearables have become

especially good at quantifying ambulation and sleep. Another reason why they are popular

is that it provides people with a simplified interface to access important information from

smartphones.

Wearable are also promising in that they pack a lot of sensing power. These sensing system

allow Wearables to monitor biological parameters of the wearer, as well as sense other context

about them. Research has shown that the biometric information sensed by these devices

can be used to authenticate the user wearing the device. This can be used to authenticate

that the wearer of the device is the actual owner of the device. Additionally, Wearables are

typically embedded with wireless communication capabilities such as Bluetooth and WiFi.

These radios also allow the devices to be located indoors using existing wireless infrastructure

in buildings. They also have IMU sensor, which is a combination of accelerometer, gyroscope

and magnetometer. The IMU sensor can help sense the motion of the person.

While Wearables are an exciting technological design that is finding an increasing ac-

ceptance from the consumers, they are currently not integrated completely with the lives

of its users. While physical health is only one measurable attributes, the Wearables can be

used to sense many other aspects of a person’s daily life, such as the high level activities
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that they perform, the energy that they use, etc. In this dissertation, we explore the idea

that Wearables can be used in conjunction with Smart Objects to provide a much richer

set of functionality to the end user. For Wearables to be most valuable to the consumer,

it needs to create a simplified user experience and an easier means to achieve goals. The

integration of Wearables and Smart Objects can provide a simplified means to personalize a

user’s experience with objects on a daily basis.

1.7 What are the Main Challenges in Using Wearables?

Wearables are getting good at measuring certain aspects of people’s health and ambulation.

They can record heart rate, body fat composition, perspiration, health, temperature and

muscle activity by just touching the skin, as well as movement, distance and speed using

GPS, and IMU sensors - accelerometers, gyroscopes and magnetometers. However, it is

well known that Wearables suffer from imprecision. There are basically two main causes for

inaccuracies in their measurements - 1. imprecision caused due to the location of the device,

and 2. imprecision caused due to the sensors in the device.

Consumers seem to prefer placing the Wearable devices on the wrist. Since ambulation

takes place due to motion in the legs, the motion transferred to the arms, which is sensed by

these devices is often not accurate. Also, since people move their arms around a lot - while

talking, working with objects, etc., it can result in erroneous measurements.

The errors caused by the sensors is arguably a bigger problem. The component in the

devices that takes the measurement is an accelerometer, which records movement in three

dimensions: up and down, side to side, and forward and backward. However, it records the

rate of speed of motion. This means, to get the distance that a person has moved, one needs

to temporally double integrate the acceleration value. Any offset error in the acceleration

will cause the velocity calculation error to rise linearly with time. A position calculation will

have errors rising quadratically with time. Gyroscopes, or gyros, measure angular velocity, or
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speed of rotation around an axis. The gyro bias shows itself after integration as an angular

drift, increasing rise linearly over time. Magnetometer measures magnetic field. Earth’s

magnetic field is relatively small, so measuring it is a pretty delicate process. Magnetic

sensors are subject to cross-axis misalignment and temperature-varying scale factors and

biases. In addition, the local magnetic field around the magnetometer can be distorted by

magnetic and ferrous metal objects.

The sensors in a wearable device that can help locate the position of a person within a

space, are the wireless communication components. Wearables are usually equipped with

Bluetooth, or WiFi radio, and some have both. While Bluetooth based localization requires

additional augmentation of the indoor environment, WiFi leverages the existing infrastructure

of access points within a space. The technique of Wi-Fi based indoor localization of a device

consists in determining the position of client devices with respect to access points using either

received signal strength indication (RSSI), fingerprinting, angle of arrival (AoA), or time of

flight (ToF) based techniques. The main limitation is that the WiFi based techniques have a

coarse granularity of tracking.

There are inaccuracies in the other sensors used for measuring a person’s vital signs.

However, we are skipping those details as they are not relevant to the topic in this dissertation.

To summarize, while sensors in Wearables are great for approximate measures of a person’s

activities, the errors caused due to imprecision of sensors makes them challenging for use in

applications that require precision, such as object user identification and authentication.

1.8 Thesis Statement

This dissertation investigates the following hypothesis:

Despite the coarse granularity of its location sensing, and imprecision in sensing hand motion

trajectory, data from sensors in wearable devices, when augmented with data from objects,

can be used to identify and authenticate users interacting with Smart Objects.
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1.9 How can Wearables and Smart Objects Interact to

Identify and Authenticate Users?

As discussed in Section 1.4, Smart Objects can provide more personalized, and even new

functionalities if they know the identity of the user interacting with them. To this effect,

we expect the number of Smart Objects in our daily lives to be so pervasive, that explicit

identification will no longer remain a practical solution. Therefore, it is important to design

implicit user identification solution.

The consequence of hundreds of Smart Objects surrounding us is that there are several

different considerations in the design of the solution. One consideration is that the amount

of information a Wearable reveals about itself makes it vulnerable for side channel attacks.

Another consideration is that the more the Wearable needs to communicate with each Smart

Object, the more energy it consumes. This becomes a serious limitation when a Wearable

starts to interact with hundreds of Smart Objects on a daily basis.

In this dissertation, we explore different levels of information shared by a Wearable

device with a Smart Object, and explore how that level of data abstraction affects the user

identification accuracy. In the first level on interaction, Wearables only reveal their location

to the object. The object uses its own location information to figure out the user close enough

to use it. However, this information is not sufficient if there are multiple people near the

object. In the second level of interaction, the object queries the users nearby to see which of

them had a hand motion that most closely resembles the gesture required to interact with the

object. Finally, which the information from the first two levels of interaction can be spoofed,

by a malicious user, when applications need to authenticate a user, we investigate a third

level of interaction in which the Wearable. In this level of interaction, the object request the

raw data from the wearable, and correlates its own sensor data with that of the Wearable at

a millisecond level.

We make two main assumptions about the system. First, we assume there exists a



1.9 How can Wearables and Smart Objects Interact to Identify and Authenticate Users?13

Figure 1.1: First level of interaction - Is to figure potential object users based on proximity.
Sometimes only one user may be detected. In this case, the lone user is identified as the
object user. This level of interaction is insufficient if there are multiple users.

framework that allows Smart Objects to communicate with Wearables using Bluetooth or

WiFi. Second, we assume that objects have some sense of their own location. For example, if

the object is within a building, it may know the WiFi fingerprint at its position. If its outside

a building, it may know GPS coordinates at its location. We also assume that Wearables

have a similar sense of location.

When an object senses its being used, it needs to first identify the set of candidate users

who are close enough to physically access it. It broadcasts a message querying the devices

that are in proximity of the object to respond with the identity of their user. If there is

only one user detected near the object when its used, then clearly the user is also the object

user. The main challenge is when there are multiple users detected in vicinity of the object.

However, if there is a history of past object usage by the users, one could use heuristics

to make an intelligent guess as to who might be more likely to use the object. We explore
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Figure 1.2: Second level of interaction - Is to query the devices nearby for how well their motion
data matches the gesture required to interact with the object. This can help disambiguate
cases when multiple users are detected near the object. However, this method is vulnerable to
being spoofed, as devices may maliciously respond with a higher matching score. Therefore
this method cannot be used for sensitive and privacy critical applications.

some heuristics in an in-situ experiment, where we asked five pairs of participants to live in

an instrumented home. Although level one currently looks like a query response but could

actually be just BLE beacon advertisements from the watch that are passively received by

the object. A benefit of this level is that it can be only a one way protocol, i.e. it takes no

setup at all, including Bluetooth pairing.

Even though we explore the use of heuristics with location context for cases where multiple

people are detected near an object, this method is not robust across different situations. If

the object does not have the history of usage of every user it has to choose from, or if certain

objects are used equally or randomly by individuals (e.g. lights), then the use of heuristics

does not help in guessing who used the object. At this point, the object initiates the next

level of interaction with the Wearable.
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Figure 1.3: Third level of interaction - Is reserved for applications where it is important to
validate that a user is the actual object user. In this stage, the identified user is queried for
their raw sensor data, which is analyzed and correlated with the object’s sensor data at a
millisec level accuracy

Once the Object has a list of candidate users, who could have used in, by virtue of being

in proximity to the Object, it queries the candidates again. This time, it asks the devices to

match the motion of their wearer’s hand to the motion required to interact with the objects.

The device that returns the highest matching score is the Object user. In this work, our

hypothesis is that objects have unique hallmarks that are imprinted in the hand gestures

of its users. By detecting the presence of an objects hallmark in the wrist sensor data, we

can identify who used the object. Although it would be very helpful to sense the path of the

hand’s motion when it moves, the IMU sensor in the Wearables do not sense displacement.

Therefore, we characterize the motion of the hand in terms of statistical features about the

hand’s linear acceleration, orientation, and angle of the hand w.r.t. gravity. We evaluate

this concept with a smart home application: recognizing who is using an object or appliance
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in a multi-person home by combining smart meter data and Wearables. We conduct three

different studies with 10 participants: 1) a study with scripted object use 2) a study with

high-level tasked activities and unscripted object use, and 3) a 5-day in-situ study.

Level two of interaction preserves the privacy of the user by not sharing raw IMU data,

and is also energy efficient because raw IMU data does not need to be transferred wirelessly.

However, one of the main concerns which this approach is that for applications concerning

security, privacy or confidentiality of information, this method may not be sufficient. A device

can be spoofed to send a higher gesture matching score to get identified as the object user.

Therefore, for applications where identity of a user has to be validated, the object initiates a

third level of interaction with the Wearable that has been identified as the object user.

In this case, the object asks the Wearable to return the raw IMU sensor data from a time

window that extend from before the Object was used to just after it was used. The object

computes certain features of the raw data, as well as, correlates it with its own IMU data to

authenticate the object user. Level three is more privacy invasive and less energy efficient

but allows the object to make authentication decisions, rather than relying on the user. We

evaluate this approach with Smartphones, where we intend to authenticate the owner of

the phone, vs. other phone users. Offline analyses of our approach using a 13 participant

feasibility study, show very promising results. We also developed and tested a prototype with

10 other participants to validate the true acceptance rate of the system. We also conducted a

10 participant adversarial study to determine the false acceptance rate of the system.

1.10 Contributions

The contributions of this dissertation are the following:

1. To evaluate the first level of interaction, using location, we conducted a study with

5 groups of 2 participants each, who lived together for 7-12 days in a test home. We

instrumented 39 different fixtures including light fixtures, water fixtures (for e.g. sinks,
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showers, and toilets), and electrical appliances (for e.g. the oven, stove, and fridge).

Coordinate-level tracking was deployed for 15 of those 39 fixtures.

2. We evaluated different heuristics to learn past object usage behavior in order to perform

user identification when multiple people are in proximity of an object. While only

70% of object usage was unambiguous (i.e. only a single person was in the room), we

found that user identification could be performed with 87% average accuracy using our

heuristics.

3. To evaluate the efficacy of using IMU based features for user identification, we perform

multiple studies where participants wore smartwatch on their wrist and used different

objects. For this evaluation, we instrumented 16 objects in a home, including as lights,

water fixtures, and major appliances. Some of the research questions we intended to

answer with these studies are: whether IMU based object usage features are unique and

identifiable, if these features are person-independent, and how performing real world

tasks affected the user identification accuracy.

4. We performed a scripted study in which 10 study participants performed specific object

usage. Our results show that we can classify object hallmark with 95% accuracy when

the objects are used in isolation.

5. We asked 5 groups of two individuals (the same 10 participants) to complete a list of

80 real-world tasks within two hours. Despite the high frequency of object usage, we

were able to identify the correct individual in 85% of the total 986 object usage events.

6. To evaluate a more realistic scenario in which people spend a large fraction of the day

resting or still, we collected 30 hours of in-situ data from a single participant who lived

in the test home for 5 days. We used this data to emulate a multi-person home and the

results show that our approach can correctly identify the object user in 90% of the total
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3378 object usage events in a 2-person scenario and 84% accuracy for 22587 objects in

a 3-person scenario.

7. For the user authentication study, we designed algorithms for determining smartphone

usage using IMU sensor on phone and a smartwatch paired

8. We conducted a study (with 5000 touch samples spanning 13 individuals) and analysis

of features differentiating click vs. other activities

9. We also conducted a prototype use-case study with 10 individuals and analysis of the

learnability of the approach

10. We conducted an adversarial analysis with 10 individuals evaluating the false acceptance

rate of the approach

1.11 Limitations

There are many limitations in our evaluations:

1. In the study for location based user identification, the population of users recruited

for the study were not representative of all possible types of multi-person households,

such as those with grandparents. kids or pets living together as well. We were limited

by the number of bedrooms in the house. Recruiting participants who were willing to

leave their homes, and live somewhere else for 2 weeks was also a big challenge.

2. We were able collect data from each participant for only 7-12 days. This further limited

our ability to test more complex heuristics which would include richer features that

encapsulate more about people’s behavior in using objects.

3. In the studies pertaining to user identification using gestures, we assume that all home

occupants who use objects, wear smart wrist devices on their dominant hand.
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4. The system might also identify object users incorrectly if a person uses the un-

instrumented or non-dominant hand to operate an object.

5. While our approach was tested to work accurately with objects having fixed locations in

a home, we have to come up with newer ways to learn the gestures required to operate

non-fixed appliances such as hand blenders and hair dryers.

6. In the studies pertaining to user authentication, it would be interesting to evaluate our

approach with a larger set of users.

7. It would also be interesting to actually implement a prototype that could actively learn

how the owner uses a phone, and use that to authenticate them.

8. Our proposed approach currently does not work in a particular hand position, when

the wearable device is worn on the hand that is neither used to hold the phone or touch

the phone. Our proposed approach also does not work in the scenario where a phone

user is holding the phone in the hand wearing the Wearable, and someone else touches

the screen.

1.12 Thesis Outline

The rest of the dissertation is organized as follows:

• Chapter 2 describes some basic applications related to contextual applications using

identity, and well as the definitions of terminology which are used in the rest of the

dissertation.

• Chapter 3 presents the state-of-the-art in technologies related to the user identification

and authentication.

• Chapter 4 describes the evaluation of our user identification based work that uses

location.



Chapter 1 Introduction 20

• Chapter 5 describes the evaluation of our user identification based work that uses IMU

based gesture matching.

• Chapter 6 describes the the evaluation of our user authentication based work that uses

raw sensor data.

• Chapter 7 concludes the thesis by summarizing the contributions and describing the

future work.



Chapter 2

Background

In this section, we describe some of the key applications and contexts that are relevant to

this thesis.

2.1 Indoor Positioning System

An indoor positioning system (IPS) is a system that can locate objects or people inside

buildings, and is typically achieved using radio waves, ultrasonic, or infrared.

In order to develop smart building systems that respond to its occupants and physical

environment, the physical location of objects and people indoors, becomes key information.

Sensing position gives an application a wider perspective of the user in the context of the

environment, including how they interact with objects and other people. Locating people

outdoors is mostly a solved problem, indoor position can be expressed on a spectrum of

granularity, depending on the requirement of the application. The ability to position people

and objects indoors is crucial for identifying potential object users that are in proximity to

an object when it is used.

IPS can roughly be divided into two main thrusts: exact location and presence detection.

Finding the exact location of an individual or object implies an inherent knowledge of the

layout or floor plan of the indoor space.

21
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Location information on humans is easily obtained from video data. Often motion

detection algorithms, such as detecting the change in pixels of a video over time or performing

background subtraction, are used to identify people in video data. By understanding where

the camera is in the environment and what its viewing range covers, the exact location of

a person can be inferred. One of the main problems with this approach is occlusion- when

one person blocks the view of another, and applications mistakenly detect only the one

occupant. Approaches to counteract this often include using multiple cameras monitoring

the same space from different angles [28]. Video-based localization can also detect when

a person approaches an object in the environment by identifying and tracking that object.

By using targeted microphones, audio information can also be used to localize people in an

environment as they speak or otherwise make noise. Additionally, audio and video sensing

systems can be combined to increase the accuracy of the detected location [29].

Wearables are very useful in locating the position of people indoors and outdoors. This is

because wearable have systems that can transmit and receive information wirelessly, which can

be used to locate the device, and therefore its wearer. While wireless based technologies, such

as, WiFi, Bluetooth, Infrared, Ultrasound etc. are more commonly explored, other methods

such as Pedestrian Dead Reckoning uses inertial sensors in wearable devices. Another way to

locate indoors is to determine proximity of people to objects that have a fixed location. This

is done typically using RFID and magnetic beaconing methods. While there are methods to

track a person indoors using Wi-Fi fingerprinting, and other radio based methods, there are

new techniques that automatically learn the characteristics of an indoor floorplan, and can

determine where the person is located [30]. The key intuition behind the fusion approach is

that certain locations of indoor environment pose a distinct signature for the various sensors

on a smartphone. For example, an elevator has a unique accelerometer pattern, corridors

may have a distinct set of visible WiFi AP and signal strengths etc.

Some examples of current technologies can be found in [31], which includes systems that

sense from the environment, both with and without carried devices. An example of this is
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the SmartFloor, where the entire floor of a space is covered with pressure sensors to perform

localization anywhere in that space [32]. However, the large install cost makes this and similar

solutions too expensive for practical use. Other systems look at a more limited understanding

of location, such as the Doorjamb system which localizes a person to a room by monitoring

only the doorways in a home with ultrasound sensors to detect when a person moves from

room to room [33].

2.2 Activities of Daily Living

An important consequence of being able to implicitly identify object users, is the ability to

track their activities. That is because objects are highly indicative of the type of activity that

a person is doing. Monitoring the activities of the elderly is important to ensure that they

are able to function well independently, and it can also help track changes to their cognitive

functionality. Apart from ambulation related activities, the activities that are particularly of

interest are the Activities of Daily Living.

Activities of Daily Living or ADLs are activities that people routinely perform without

assistance. Some examples of basic ADLs are bathing, eating, continence, dressing, toileting,

transferring etc. A person’s ability to perform some or most of these ADLs determines the

level of care that they need in order to lead a normal life. The assessment that evaluates a

person’s ability to perform ADLs is referred to as the functional behavioral assessment, and

this is typically performed for elderly. There is a high emphasis to support the concept of

aging-in-place, where the elderly are encouraged to live in their homes for as long as possible.

However, aging-in-place needs adequate supervision and support to ensure the safety of the

elderly in their residence. The safety of an elderly person in a home is highly correlated to

their ability to perform ADLs. Many elderly people experience problems in ADLs because

of illnesses or health-related disabilities. For example, people suffering from heart failure

or lung infections may lack the physical stamina to manage household tasks like cleaning,
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Figure 2.1: While more number of sensors can detect a richer set of ADLs, it is more practical
in terms of cost and maintenance to have systems that can infer ADLs from fewer sensing
points (figure from [1])

cooking, and laundry on their own. A functional assessment can identify if an elderly person

needs outside help, such as home care, moving to an assisted living facility, etc.

The two main subcategories of ADLs are Basic ADLs, such as ‘Dressing’ which refer

to the ability of a person to live within a home, and Instrumental ADLs such as ‘Driving’,

which refer to a person’s ability to live within a community. However, within these sub

categories, each clinical scale has its own set of labels, some of which may specify activities

very specifically such as ‘brushing teeth’, and others just refer to broad categories, such as

‘grooming’. The instruments of functional assessment intend to track the ability to perform

certain basic and instrumental ADLs.

Changes in functional abilities of an elderly person are usually the manifestation of the

changes in the cognitive and physical abilities of the elderly, such as changes in how well the

elderly are able to perform tasks such as meal preparation, grooming, ease of transferring
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between bed and chair etc. Since these tasks are performed in a routine manner by the

individuals on a regular basis, they may not notice the changes in their own abilities. Therefore

it becomes important to monitor the functional status of an individual.

2.3 Wearable Devices

The terms ‘Wearable Devices’, ‘Wearable Technology’ and ‘Wearables’ are all synonymous.

Wearable devices are a category of technology that include all gadgets that are meant to be

worn on the body as part of the clothing or other accessories. Wearable devices come with

computing power comparable to smartphones. Typically, wearable devices are optimized to

perform certain sensor based tasks, such as tracking sleep. These devices offer an unique

opportunity to sense its user at a physical level unlike that offered by smartphones or laptops.

Generally, wearable technology will have some form of communications capability and

will allow the wearer access to information in real time. Data-input capabilities are also a

feature of such devices, as is local storage. Examples of wearable devices include watches,

glasses, contact lenses, e-textiles and smart fabrics, headbands, beanies and caps, jewelry

such as rings, bracelets, and hearing aid-like devices that are designed to look like earrings.

There are also more invasive versions of the concept as in the case of implanted devices such

as micro-chips or even smart tattoos.

One of the most common uses of wearable devices is in health and fitness tracking. The

goal of the fitness devices is to monitor certain aspects of the person’s health or activities

throughout the day. Wearables technology also promises great potential in gaming and

entertainment. Augmented reality and wearable technology can combine to create a much

more realistic and immersive environment in real time.
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Figure 2.2: Wearable devices come in many different form factors, although currently wrist
worn devices such as smartwatches and fitness trackers are leading in the Wearables market

2.4 Inertial Measurement Unit

One of the key motion sensing systems used in Wearables is an IMU sensor. An Inertial

Measurement Unit or IMU is a sensor that integrates three different sensors that can measure

acceleration, angular velocity and magnetic forces. The accelerometer in the IMU is used to

sense both static (e.g. gravity) and dynamic (e.g. sudden starts/stops) acceleration. Because

they are affected by the acceleration of gravity, an accelerometer can tell how a device is

oriented with respect to the Earth’s surface. An accelerometer can also be used to sense

motion. Finally, an accelerometer can also be used to sense if a device is in a state of free

fall. Gyroscopes measure angular velocity, how fast something is spinning about an axis.

Unlike accelerometers, gyros are not affected by gravity, so they make a great complement

to each other. In an IMU gyroscopes are used alongside accelerometers for applications

like motion-capture and vehicle navigation. IMUs also contain magnetometers, which can

measure the magnetic force along a certain axis. This allows better performance for dynamic

orientation calculation in attitude and heading reference systems which base on IMUs.
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Figure 2.3: In the PowerHouse, the game player manages a simulated domestic environment
with seven characters. The meters in the lower pane displays a specific characters mental
and physical state. In the upper right corner are the money and power meters that show the
accumulated points and how much energy is being consumed.

2.5 Personal Energy Feedback

Although not directly researchers developed a prototype game to influence a set of target

activities in the home using several persuasive techniques [34]. Employing the format of

a reality TV show (docu soap), the game informs implicitly and explicitly about various

energy-efficient actions. Figure 3.2 shows a screenshot of this game. Another game based

approach used a virtual energy pet [35]. With the use of a pet avatar, learners were encouraged

to use home energy conservatively in a playful and engaging way. The aim is not simply to

teach learners how to reduce energy use, but to engage them in adopting appropriate energy

conservation measures. An empirical study was conducted to examine if the system could

promote learners’ an understanding of energy conservation. The results demonstrated that

the system significantly promoted learners’ self-awareness, learning motivation, as well as
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willingness to conserve energy.

Energy usage feedback in residential buildings is considered an effective means to induce

energy saving behavior in home residents [36]. The concept of energy usage at home

disaggregated at fixture level, has been incorporated in many eco-feedback systems, such as the

Aware-Cord [37], which displays fixture level ambient energy usage, and WattBot [38] which

is a mobile phone based fixture and room level home energy feedback system. Researchers

developed a prototype to promote water conservation in the shower [39]. The prototype

consists of a flow meter, a microcontroller, and LEDs. The LEDs visualize an imaginary

water level that would rise with the continuous water flow, if the drain was closed. One LED

lights up for every five liters.

Another study compared the effect of numerical and abstract water usage feedback [40].

Sensors first logged baseline water usage without visualization. Then, two display styles,

ambient and numeric, were deployed in random order, each showing individual and average

water consumption. Quantitative data along with participants feedback contrast the effec-

tiveness of numeric displays against abstract visualization in this very important domain of

water conservation and public health.
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Related Work

This chapter presents the state of the art in technologies related to the problem of implicit

object user identification and authentication. In Section 3.1, we discuss technologies that

can be used to perform indoor localization. In Section 3.2, we discuss some of the existing

technologies that can be used to perform object user identification. In Section 2.5, we discuss

some of the work that has in been done in disaggregating energy used by electrical objects,

which is an application of object user identification. And finally, in Section 3.3 we discuss

user authentication techniques proposed for smart objects.

3.1 Indoor Positioning System

Classic work in this area includes the Cricket [41] and Active Bat systems [42]. The Cricket

location support system leverages a group of ultrasonic beacons installed throughout the

building. Applications running on mobile and static nodes learn their physical location by

using listeners that hear and analyze information from these beacons. This system enables

room-size granularity in terms of location accuracy. Cricket uses a combination of RF and

ultrasound to provide a location-support service to users and applications. For every beacon,

RF advertisements with location information are broadcasted at the same time as ultrasonic

pulse. The listeners receive these RF and ultrasonic signals, correlate them to each other,

29
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and infer the space they are currently in. The active bat based system works in the reverse

manner. Receivers are installed throughout the ceilings of buildings, while RF transmitters

are attached to objects that we want to track. Multilateration based techniques are then

applied to determine the location of the objects.

The DOLPHIN system consists of distributed wireless sensor nodes which are capable of

sending and receiving RF and ultrasonic signals [43]. These nodes are attached to various

indoor objects. Using a distributed positioning algorithm in the nodes, DOLPHIN enables

autonomous positioning of the objects with minimal manual configuration. Another proposed

positioning system called COMPASS, was based on 802.11-compliant network infrastructure

and digital compasses [44]. On the mobile device, COMPASS samples the signal strength

values of different access points in its communication range and utilizes the orientation of

the user to preselect a subset of the training data. The remaining training data is used by a

probabilistic positioning algorithm to determine the position of the user.

SpotFi is a technique that only uses information that is already exposed by WiFi chips [45].

First, SpotFi incorporates super-resolution algorithms that can accurately compute the angle

of arrival (AoA) of multi-path components even when the access point (AP) has only three

antennas. Second, it incorporates novel filtering and estimation techniques to identify AoA

of direct path between the localization target and AP by assigning values for each path

depending on how likely the particular path is the direct path.

Horus is an RF-based location determination system that uses the signal strength observed

for frames transmitted by the access points to infer the user location [46]. The Horus system

identifies different causes for the wireless channel variations and addresses them to achieve its

high accuracy. It uses location-clustering techniques to reduce the computational requirements

of the algorithm.

WiFi based distance estimation uses received signal strength indicator (RSSI) is easily

affected by the temporal and spatial variance due to the multi-path effect, which contributes

to most of the estimation errors in current systems. Researchers explore the frequency
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diversity of the subcarriers in OFDM systems and propose a novel approach called FILA [47],

which leverages the channel state information (CSI) to alleviate multi-path effect at the

receiver

While most WiFi fingerprinting based localization techniques require a training set of

signal strength readings labeled against a ground truth location map, Ferris et. al propose

a novel technique for solving the WiFi SLAM problem using the Gaussian Process Latent

Variable Model (GPLVM) to determine the latent-space locations of unlabeled signal strength

data [48]. They demonstrate that GPLVM, in combination with an appropriate motion

dynamics model, can be used to reconstruct a topological connectivity graph from a signal

strength sequence which, in combination with the learned Gaussian Process signal strength

model, can be used to perform efficient localization.

A research prototype, CUPID, utilizes physical layer (PHY) information to extract the

signal strength and the angle of only the direct path, thereby avoiding the effect of multipath

reflections [49]. This was based on the observation that natural human mobility, when

combined with PHY layer information, can help in accurately estimating the angle and

distance of a mobile device from an wireless access point (AP).

Researchers proposed UnLoc, an unsupervised indoor localization scheme that certain

locations in an indoor environment present identifiable signatures on one or more sensing

dimensions [30]. They speculate that these kind of signatures naturally exist in the environ-

ment, and can be envisioned as internal landmarks of a building. Mobile devices that “sense”

these landmarks can recalibrate their locations, while dead-reckoning schemes can track them

between landmarks.

Another calibration free technique was proposed by Chintalapudi et. al [50]. The mobile

devices record Received Signal Strength (RSS) measurements corresponding to APs in their

view at various (unknown) locations and report these to a localization server. Occasionally, a

mobile device also obtains and reports a location fix, for e.g. by obtaining a GPS lock at the

entrance or near a window. The key intuition is that all of the observations reported to the
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server, even the many from unknown locations, are constrained by the physics of wireless

propagation. They model these constraints and then use a genetic algorithm to solve them.

Zee is another system that uses crowdsourcing of location-annotated WiFi measurements in

indoor spaces, using the mobile phones carried by users [51]. A key attribute of crowdsourcing

with Zee is that it does not require any active user intervention in terms of location input,

placement of the phone, or other aspect. Zee employs a set of techniques to resolve ambiguity

in location during crowdsourcing, using inertial and WiFi measurements, and a map of the

indoor space as the inputs. The data thus gathered can help train existing WiFi-based

localization algorithms.

Yang et al investigated sensors integrated in modern mobile phones and leveraged user

motions to construct the radio map of a floor plan [52]. In their proposed approach, the

calibration of fingerprints is crowdsourced and automatic.

Another technique used algorithms for reliable detection of steps and heading directions,

and accurate estimation and personalization of step length [53]. Their indoor localization

system was comprised of several modules, the step detector, step length estimator, heading

estimator, particle filter, and a personalization module for adapting a step model to an

individual user.

Ravi et al proposed that a smart phone be worn by the user as a pendant and images

periodically captured and transmitted over GPRS to a web server [54]. The web server

returns the location of the user by comparing the received images with images stored in a

database. As opposed to earlier solutions for indoor localization, this approach did not have

any infrastructure requirements. However, it did have the cost of building an image database.

Some other researchers propose an audio based technique for determining a mobile phone’s

indoor location even when Wi-Fi infrastructure is unavailable or sparse [55]. Their technique

was based on ambient sound fingerprint called the Acoustic Background Spectrum (ABS).

They hypothesized that ABS would serve well as a room fingerprint because it is compact,

easily computable, robust to transient sounds, and distinctive. An experiment conducted
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involving 33 rooms, yielded 69% correct fingerprint matches meaning that, in the majority of

observations, the fingerprint was closer to a previous visit fingerprint than to any fingerprints

from the other 32 rooms.

Another audio based technique uses off-the-shelf audio speakers (already in place) to

provide fine-grained indoor position data to modern mobile devices like smartphones and

tablets [56]. The mobile devices can localize themselves by applying a Time-Difference-

of-Arrival (TDOA) pseudo-ranging technique. The main contribution of their work was a

modulation mechanism that sends data utilizing ultrasonic frequencies in such a manner that

is imperceptible to humans.

3.2 Object User Identification

One of the applications for performing object user identification is to be able to attribute

energy usage to every person.

Hay et al explored breaking down electricity consumption for occupants of a commercial

building working at different shifts in the day [57]. They used access logs to infer the

occupancy of the building, and explored the usage of different policies to allocate shared

resource usage. The static apportionment policy divides the entire energy consumption

equally among all the people who have desks allocated in the building, regardless of how

much they use the building. Dynamic occupants policy divides a building’s instantaneous

power consumption only amongst the current occupants of the building. These policies had

to share the electricity equally between building occupants because the location information

of the employees was only at the building level, and therefore the ambiguity of object user’s

identity extended to everyone in the building who could have access to the object.

Hay et al present their concept of a personal energy meter (PEM) which can record and

apportion an individual’s energy usage [58]. Their concept not only includes a person’s energy

footprint inside a home, but also the energy footprint outside of home - such as that of
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Figure 3.1: Energy-unaware behavior uses twice as much energy as the minimum that can be
achieved (figure from [2])

transportation. To pursue this concept, Hsu et. al conducted a study with a mobile application

that provides estimations of personal electricity consumption in a research laboratory [59].

In this study, metadata about each appliance owned by a user such as computer, printer and

phone was stored in a central repository, and the energy consumption for these appliances

tracked using their proposed system architecture. The total energy consumed everyday by

all these devices is apportioned and displayed on the user’s smartphone. They propose that

this method gives users the alternative to operate specific appliances which are more energy

efficient. Here the assumption is that personal objects are only used by their owner, and
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therefore by default the object user’s identity is set to be their owner.

Cheng et al use coordinate level tracking in a study and apportion energy usage for

users in an office building [60]. To determine which person is using an appliance, they use

a proximity detection system where users carry a magnetic beaconing system which are

detected by special receivers near appliances. The disaggregation policy is simple - assign the

energy used to the nearest person detected.

Lee et al propose tracking people’s movements in the rooms of a house to disaggregate

electrical energy [61]. They use people’s most frequent movements in the rooms of a home to

identify individual bedrooms, and assign all electrical usage in those rooms to the person. In

a shared space, they use room location tracking to identify the possible person present in

the room while an electrical appliance is being used. If multiple people are present in the

room when an electrical fixture is used, they simply split the energy usage equally between

all people present in the room.

3.3 Object User Authentication

SilentSense is a technique that leverages the user touch behavior biometrics and integrated

sensors to capture the micro-movement of the device caused by users screen-touch actions [62].

By tracking the fine-detailed touch actions of the user, they build a touch-based biometrics

model of the owner, and then verify whether the current user is the owner or guest/attacker.

Fiberio [63] proposes a rear-projected multitouch table that identifies users biometrically

based on their fingerprints during each touch interaction using a large fiber optic plate that

diffuses light on transmission, thereby allowing it to act as projection surface. This work

was challenging as the surface had to fulfill two contradicting requirements with respect to

the screen material. On the one hand, the screen had to reveal fingerprints, i.e., produce

contrast between the ridges and valleys of the fingerprint. On the other hand, to be used as a

display, the screen had to allow the rear-projection to produce a visible image, which requires
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the screen material to be diffuse. Unfortunately, specular and diffuse are contradictory

requirements for such a surface. Fiberio used a 3mm thick, 4233dpi fiber optic plate which

(1) diffuses light on transmission, and (2) the correct illumination setup, the fiber optic plate

creates a specific type of specular reflection.

Capacitive fingerprinting [64] proposes a novel sensing approach based on Swept Frequency

Capacitive Sensing, which measures the impedance of a user to the environment across a

range of AC frequencies. Different people have different impedance profiles, based on which

they can be identified. Different impedance profiles can be attributed to the fact that every

human body has varying levels of bone density, muscle mass, blood volume and a plethora

of other biological and anatomical factors. Also, users wear different shoes and naturally

assume different postures, which alters how a user is grounded. As the signal flows through

the body, the signal amplitude and phase change differently at different frequencies. These

changes can be measured in real time and used to build a frequency-to-impedance profile

The use of a trusted smart glove [65] was proposed where individual fingers and parts

of a glove are tagged with fiduciary tags. Fiduciary tags are 2x2 reflective markers with a

unique 8-bit identification pattern encoded. A tag-aware surface, such as Microsoft Surface,

tracks the location and orientation of these tags, while identifying the wearer of the glove.

The glove allows multiple aspects of the hand’s posture, finger position, and gestures to be

recognized in order to make interactions with objects more intuitive.

PhoneTouch [3] is a technique which uses phones to interact on a touch surface. The

phone is used to select targets on the touch surface, and then it can be used to move the

target on the screen, by dragging the phone along the screen. PhoneTouch is based on

separate detection of phone touch events to identify multi-user interaction on a surface, which

determines location of the touch, and by the phone, which contributes device identity. The

device-level observations are merged based on correlation in time. The main system design

involves all the devices independently detecting the touch events. Every time that a device

detects an event, it transmits that information to a server. The individual surface and phone
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Figure 3.2: In PhoneTouch [3], surface and phones detect touch events independently. The
device-level observations are communicated over a wireless network, correlated in time, and
combined to associate a touch with both surface position and phone identity

events are matched based on their time-stamps, in order to determine PhoneTouch events.

YouTouch [66] proposes the use of a commodity RGB + depth camera in front of the

wall, to track users on a common collaborative surface and correlate them with touch

events. Whenever the user’s ID is occluded from the camera, and the tracker loses the

user’s ID, they propose re-identifying the person by means of a color histograms of body

parts and skeleton-based biometric measurements. The re-identification component of their

work is most challenging, as re-identification can be hindered by factors such as varying

lighting conditions, camera color calibration and the need to work with low-resolution images

containing significant clutter. They use person descriptors which consist of anthropometric

features (human biometric measurements such as height calculated from the skeleton data)

and color features (histograms of person-specific image regions such as the torso).

Some proposed methods attempt to use the phone’s app usage and calling behavior to

authenticate users [67, 68]. For example, [68] look at the movement a person performs,
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from the moment they press ‘start’ (to initiate a call), until they take the phone to the ear.

They treat this movement as a biometric feature, and demonstrate that there are differences

between different users, so that the movement can effectively be used for identification. In

this way, they hypothesize that as soon as a call is answered (or placed), the phone can

promptly evaluate if the user is authorized to perform this action, and block the system in

case of unauthorized users.

Another thrust in implicit authentication attempts to use gait based features to authenti-

cate users as they are walking [69, 70]. [70] normalize the accelerometer data from the phone

carried by the person and then process it using correlation, frequency domain methods and

data distribution statistics. Correlation is used because of the assumption that the shape of

the signal during gait is unique for every person. Frequency domain based methods are used

because of the assumption that there is a characteristic distribution of frequency components

for each person in the walking signal. Data distribution statistics is used because of the

assumption that characteristics of the signal shape affect on the data distribution.



Chapter 4

Level 1 - Using Location to Identify

Object Users

4.1 Introduction

Location in an indoor space is a fundamental context around which many other concepts

revolve: activities, furniture, heating, lighting, and noise. Therefore location is closely tied to

the type of objects - furniture, devices, lights etc., that may be present at different parts of a

building. Information about the location of objects and building residents can be used to

perform object user identification based on the intuition that when an object is used, the

person closest to the object must be the object user.

When an object senses its being used, it needs to first identify the set of candidate users

who are close enough to physically access it. It broadcasts a message querying the devices

that are in proximity of the object to respond with the identity of their user. If there is

only one user detected near the object when its used, then clearly the user is also the object

user. The main challenge is when there are multiple users detected in vicinity of the object.

However, if there is a history of past object usage by the users, one could use heuristics to

make an intelligent guess as to who might be more likely to use the object.

39
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Figure 4.1: Energy disaggregation (of one of the participant groups): Per-person per-fixture
disaggregation makes it evident that Person B consumes most of the electrical and water
fixture energy in the house except for TV and Dryer, which are used only by Person A

To determine the location of people within buildings, because of the lack of reliable GPS

signals inside a building, researchers have explored the use of WiFi beacons, magnetometer,

vision, or ultrasound etc. Most technology can locate people with a room size granularity

within the space. Since wearable devices have WiFi and/or Bluetooth radio, they can be

used to locate their wearer with a room level granularity as well.

One of the key applications where location has been used to perform object user identifi-

cation, is energy disaggregation at individual level. It is believed a system that disaggregates

a home’s total energy usage at a per-person, per-object level, will allow individuals to discover

and reduce the energy footprint of their object usage behavior in homes [58].
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Figure 4.2: Sensors Deployed: (a) All major electrical and water fixtures in the test home
were instrumented, including lights (with light sensor), refrigerator (with reed switch on
door), toaster (with power meter), and stove (with reed switch inside knob). (b) Sensors
included power meters for plugs, in-line water flow meters, door open/close sensors, and fiber
optic light pipes attached to light sensors. (c) Onset’s data loggers, such as 4-channel pulse
data logger were used

In this work, with sufficient object usage history we demonstrate that we can perform

object user identification based on coarse-grained room-level location tracking – even when

two people are present in the room where an object is used. Many WiFi fingerprinting based,

cellphone, and emerging Bluetooth Low Energy (BLE) systems, such as the Apple’s iBeacon

system can already achieve room-level location tracking. Our results offer promise that

wearables based coarse-grained location systems can be used to perform user identification,

even if fine-grained coordinate level indoor location tracking remains impractical and expensive

in the current state of the art.

Our basic approach to user identification is to first find unambiguous object usages, where

an object is used and only one person is detected in the same room. These unambiguous

cases are then used to learn object usage patterns that can help disambiguate cases where

two or more people are in the room. The patterns can be general trends (e.g. Person A does

all the cooking) or can be similar to object-use fingerprints [71] (e.g Person A likes long, hot

showers) and can even include multi-object fingerprints (e.g. Person A uses the sink often

while cooking).



Chapter 4 Level 1 - Using Location to Identify Object Users 42

Recent advances in sensing technology have been able to disaggregate the coarse-grained

aggregate energy consumption in homes, to an object level; it is possible to discover which

objects are present in the home [72], recognize when they are used [73, 74], and discern how

much energy or water was consumed during each use [75, 76]. However, unless every object

is instrumented with an RFID tag [77] or a biometric sensor [78], the objects themselves can

not detect who is using them. By using location information along with the knowledge that

a particular object has been used, we can identify the person using the object.

In this work, we also apply the user identity information to electrical and water object

usage data to demonstrate a few case studies of how the disaggregated information can be

useful in monitoring energy usage and object usage habits of home residents.

To test our approach, we performed a study with 5 groups of 2 participants each, who

lived together for 7-12 days in a test home. We equipped the test home with an RFID-based

tracking system that tracked the location of each participant with three different granularities:

house-level (home vs. not home), room-level (kitchen vs. bathroom), and coordinate-level (at

the oven vs. at the fridge). We also instrumented 39 different objects including light fixtures,

water fixtures (for e.g. sinks, showers, and toilets), and electrical appliances (for e.g. the

oven, stove, and fridge). Coordinate-level tracking was deployed for 15 of those 39 fixtures.

Participants were required to wear RFID ankle bracelets [79] for up to 12 days, and were

otherwise asked to follow their normal daily routines.

While only 70% of object usage was unambiguous (i.e. only a single person was in the

room), we found that object user identification could be performed with 87% accuracy on

average by using our learning algorithms. In comparison, user identification based on house-

level tracking achieved only 12% accuracy due to objects being used when multiple people

are home at the same time. Coordinate-level tracking achieved user identification accuracy of

97%. In 3% of cases, two people were standing immediately next to the object when it was

used. Thus, user identification performed with room-level tracking had comparable accuracy

as coordinate-level tracking, but at potentially much lower cost.
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4.2 Related Work

Hay et al explored using building level location information for breaking down electricity

consumption for occupants of a commercial building working at different shifts in the day [57].

They used access logs to infer the occupancy of the building, and explored the usage of

different policies to allocate shared resource usage since the building level location information

was too vague to be used to pinpoint the exact object user. The static apportionment policy

divides the entire energy consumption equally among all the people who have desks allocated

in the building, regardless of how much they use the building. Dynamic occupants policy

divides a building’s instantaneous power consumption amongst only the current occupants

of the building. For this, they estimated the number of people in the building using the

entry and exit access logs of the building. But this approach penalizes the people who

are present in the building at odd hours, such as early morning, as the entire building’s

energy load including the static energy consumption is divided only between a few people.

They envisioned a personal load policy in which they hope to track a person’s individual

withdrawal from the energy bank in terms of the energy consumed by switching on the

lights and computer monitors when they enter the building. Keeping in mind that they used

building level occupancy data, in our evaluation we compare this level of granularity with

the room level and coordinate level tracking systems.

While these general policies might work for a commercial buildings where a large percentage

of the building’s energy consuming systems, such as the heating and ventilation system are

equally shared by its occupants, homes are different. In homes, individuals are in control

of the all fixtures and appliances that contribute to the total home energy consumption.

Therefore, the need for discerning who is using a fixture becomes very relevant in homes. In

this direction, Hay et al. present their concept of a personal energy meter (PEM) which can

record and apportion an individual’s energy usage [58]. Their concept not only includes a

person’s energy footprint inside a home, but also the energy footprint outside of home - such

as that of transportation. Discovering who uses which electrical/water fixture becomes an
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essential step toward apportioning total energy between occupants.

Hsu et. al conducted a study with a mobile application that provides estimations of

personal electricity consumption in a research laboratory [59]. In this study, metadata about

each appliance owned by a user such as computer, printer and phone was stored in a central

repository, and the energy consumption for these appliances tracked using their proposed

system architecture. The total energy consumed everyday by all these devices is apportioned

and displayed on the user’s smartphone. They propose that this method gives users the

alternative to operate specific appliances which are more energy efficient. Here the assumption

is that the owner of the object is also the object user. This approach does not apply to devices

which are commonly shared between home occupants, in which case such an assumption does

not apply.

Cheng et. al use coordinate level tracking in a study and apportion energy usage for

users in an office building [60]. To determine which person is using an appliance, they use

a proximity detection system where users carry a magnetic beaconing system which are

detected by special receivers near appliances. The disaggregation policy is simple - assign the

energy used to the nearest person detected. We recognize that coordinate level localization is

very accurate in determining the individual who used an appliance. However, it is also an

expensive technique which requires carrying specialized wearables at home, in the current

state of the art. We explore the idea that we can use a more coarse-grained room level

localization system and achieve comparable results. Room location tracking in homes can

be done much cheaper by utilizing the existing technology infrastructure at homes, such as

WiFi fingerprinting.

Lee et al. propose tracking people’s movements in the rooms of a house to disaggregate

electrical energy [61]. They use people’s most frequent movements in the rooms of a home to

identify individual bedrooms, and assign all electrical usage in those rooms to the person. In a

shared space, they use room location tracking to identify possible person present in the room

while an electrical appliance is being used. If multiple people are present in the room when an
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electrical fixture is used, they simply split the energy usage equally between all people present

in the room. Our work differs from this study, in that, even in the presence of multiple people

in a room, we attempt to guess the exact individual who is actually responsible for a fixture

event. This does not imply that all of them are using the appliance. In our study we observed

that people spent up to 60% of their time together in the same room. The energy used when

people are in the same Dividing all the energy usage equally masks individual contributions

to energy usage and makes it harder for individuals to recognize energy impact of their

individual fixture usage. We explore learning based policies of fixture usage assignment that

intend to use history of appliance usage to make an intelligent guess about which individual

might be using the appliance.

4.3 Approach

We aim to compare the performance of room level granularity of location tracking systems

(wearables) with coordinate level and home level granularity, to identify the people using

electrical and water objects in a home. We fuse location information of individuals with

electrical and water object usage events, to assign object events to residents within a home.

The main challenge is disambiguating who used a object. This occurs when two people are

detected within the same proximity of a object at the time of its use. We test the use of

different heuristics to learn past object usage behavior in order to disambiguate such events.

4.3.1 Step 1 - Object Usage Detection

In the scope of this paper, we assume that we have prior knowledge about a object’s presence,

identity and location within a home. All the object sensors in the house, report object

usage status at a second’s granularity. For every electrical object sensor i in the system

that produces a time series Ei = ei1, e
i
2, e

i
3, ......, e

i
t, we apply DBSCAN algorithm [80] to

find clusters of object usage events. For each of the sensor data streams generated by a
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sensor i, DBSCAN produces a series of events evi. Let EV i be the ordered set of all events

evi = (tistart, t
i
end,m

i), where tistart and tiend are the start and end timestamps of the electrical

object usage event, and mi is the total electrical energy (watts) consumed in the event.

Figure 4.3: Sensor layout: the first floor of our test home had at least one instrumented light
object, water object, or electrical appliance in every room. All doorways were instrumented
with an RF Doormat.

For each water object sensor i, we have two streams of sensors reporting hot water volume

(whi) and cold water volume (wci) at the object at a second’s granularity. Therefore every wa-

ter object sensor i generates a time series W i = (whi
1, wc

i
1), (wh

i
2, wc

i
2), (wh

i
3, wc

i
3), .., (wh

i
t, wc

i
t).

We apply DBSCAN on W i to generate water object usage events wvi. Let WV i be the

ordered set of all events wvi = (tistart, t
i
end,m

i), where tistart and tiend are the start and end

timestamps of the water object event end, and mi is the total water (liters) consumed in the
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event.

For appliances such as fridge and freezer which do not register an immediate change in

appliance power, sensors on the appliance report back appliance door open events ai. Let

Ai be the ordered set of all door open events ai = (tis, t
i
e, 0), where tistart is the timestamp of

opening the appliance door, and tiend is the timestamp of closing the appliance door. F is the

set of all object usage events, i.e., {EV,WV,A} ∈ F .

4.3.2 Step 2 - Location Tracking

In terms of tracking residents in homes, we compare three granularities of location inferring

systems: 1. House occupancy level, 2. Room location level, and 3. Coordinate level. In

order to have one system that could track people at all three levels of granularity, we used

RFID based tracking systems. RFID anklets were worn by participants at home, and RFID

detection zones created at pertinent locations, were used to perform these three levels of

location in homes. We used a RFID tracking system, evaluated in prior work [79], to obtain

highly accurate location information for our studies.

House Level Tracking

Tracking individuals at a house level implies detecting when the individuals are at home or

away. This level of tracking is at a very coarse granularity, and is one of the most inexpensive

level of tracking. The object user identification accuracy using this level of tracking depends

on how often individuals stay at home alone. This is an inaccurate tracking mechanism when

all the individuals within a home have similar hours of stay.

Let HouseOccupancy be the set of all home occupancy sessions (ti, tj, pX), where a person

pX occupies the house from time ti to tj. To detect home occupancy sessions of people,

we track their movements across the entry doorways of the house. For each entry doorway

edi, there are two RFID zones (rf i
Exterior, rf

i
Interior) on either sides of the doorway: rf i

Exterior

lies on the outer part of the house, and rf i
Interior lies on the inner part of the house. We
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know a person pX enters a house at time ti, when we observe a doorway crossing dci =

(pX , ed
i, rf i

Exterior, rf
i
Interior, t

i), where rf i
Exterior detects pX first, followed by rf i

Interior, at time

ti. We know that pX was present in the house from ti to tj , when pX is detected at a doorway

crossing dcj = (pjX , ed
j, rf j

Interior, rf
j
Exterior, t

j), where rf j
Interior detects pX first, followed by

rf j
Exterior, such that tj ¿ ti. More details of the algorithm to detect a doorway crossing can

be found in [79].

Room Location Tracking

Room location tracking goes one step beyond what house level tracking does. In this level of

tracking we have precise knowledge of when a person occupies individual rooms in a house.

Room location is a very important level of tracking in homes, because a ‘room’ is a logical

unit of space within a house which encompasses certain categories of activities which people

perform within that space. These activities define the type of appliances and objects present

and used in the room.

Let RoomOccupancy be the set of all room occupancy sessions (piX , r
i
x, t

i
enter, t

i
exit), where

rix is the room occupied by the person piX from time tienter to tiexit. To sense when people

occupy rooms in a house, we detect them as they walk across the indoors doorways, to move in

and out of rooms. For each doorway idi, between rooms rix and riy, there are two RFID zones

(rf i
x, rf

i
y) on either sides of the doorway. RFID zone rf i

x lies on rix’s side of the doorway., and

rf i
y lies on riy’s side of the doorway. We know a person pX walks across a doorway idi into the

room riy from room rix, when a doorway crossing event dci = (pX , id
i, rf i

x, rf
i
y, t

i) is generated

in the doorway. Here rf i
x is the first RFID zone that detects the person, rf i

y is the second

RFID zone that detects the person, and ti is the time when pX is detected at doorway. To

detect how long a person stays in the room ry, we look for the subsequent doorway crossing

event made by the same person out of the room (pX , id
i+1, rf i+1

y , rf i+1
z , ti+1). Based on these

two doorway crossing events, we can infer that person pX was in room ry from ti to ti+1.
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Coordinate Level Tracking

Coordinate level tracking can locate a person at a precise spot with sub meter level accuracy

within a house. Given this ability, we can locate a person in the spot right next to where

the object is used. Although this may seem as ‘the most ideal level’ of tracking, it is still

prone to errors. Sometimes two people may stand very close next to each other while one

person using a object, and may even share the use of the object, for e.g. two people may

cook together. In such cases, co-locating people with objects even within sub-meter range

would result in ambiguous object assignment.

To track people at a coordinate level, as they stand next to objects, we created RFID

detection zones (rz1, rz2, rz3, ..., rzn), with sub-meter radius. Each object i associated with

a coordinate specific RFID zone rzi. Each RFID zone i, produces a stream of RFID

tags reads rzi = (ri1, r
i
2, r

i
3, ..., r

i
n) when a person wearing RFID anklets stands near the

corresponding objects. We use DBSCAN to cluster these tag reads into coordinate detection

events cdi = (rzi, pi, tisteppedOn, t
i
steppedOff) ∈ CoordinateEvents, where rzi is the the RFID

zone where a person was detected standing, pi is the person identified at rzi, tisteppedOn and

tisteppedOff are the timestamps when pi was first and last detected at rzi in this cluster of

RFID tag reads.

4.3.3 Step 3 - Object User Identification

House Level

For all events f i = (tistart, t
i
end,m

i) ∈ F , we detect which individuals are present in the

house. If ∃(pj, tjenter, t
j
exit) ∈ HouseOccupancy, such that tjexit > tistart > tjenter, then person

pj was present in the house when the object was used. If only one person is detected in

the house when a object event f i takes place, the object usage is assigned to that person.

objectAssignment is the set of all object assignments (f i, pi). If there are multiple people in
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the house when a object f i is used, then it is declared an ambiguous object event, and added

to the set AmbiguousEvents.

Room Level

For all object usage events f i = (tistart, t
i
end,m

i) ∈ F that takes place in a room rf i , we

detect which individuals are present in the room. If ∃(rj
f i , p

j
y, t

j
enter, t

j
exit) ∈ RoomOccupancy,

such that tjexit > tistart > tjenter, then person pj was present in the room when the object was

used. If only one person pi is detected in the room rf i , when a object event f i takes place,

the object usage is assigned to the same person. objectAssignment is the set of all object

assignments (f i, pi). If there are multiple people in the room rf i , when a object f i is used,

then it is declared an ambiguous object event, and added to the set AmbiguousEvents.

Coordinate Level

For all object usage events f i= (tistart, t
i
end,m

i) ∈ F , we detect which individuals are present

at the associated RFID zone rzf i . If ∃(rzi, pi, tisteppedOn, t
i
steppedOff) ∈ CoordinateEvents,

such that tisteppedOff > tistart > tisteppedOn, then we know person pi was located right next to

the object when it was used. If only one person pi is detected at the RFID zone rzf i , when a

object is used f i, the object usage is assigned to the same person. objectAssignment is the

set of all object assignments (f i, pi). If there are multiple people standing at the RFID zone

rzf i , when a object f i is used, then it is declared an ambiguous object event, and added to

the set AmbiguousEvents.

4.3.4 Step 4 - Applying Heuristics

For all object events f i ∈ AmbiguousEvents, we apply different heuristics to make an

intelligent guess as to who might have used a object.
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Naive heuristic

This is a simple heuristic, which does not require any preconditions to operate. Given a

set of multiple people (p1, p2, .., pn) detected in the same proximity, where a object event f i

takes place, this heuristic randomly assigns the object usage to any one of the people present

nearby.

Naive(f i) = RandomSelection(p1, p2, .., pn).

Blame ‘X’ Myopic heuristic

This heuristic keeps a short term memory (a day) of all the unambiguous object usage

assignments made for each person. (f i, pix) ∈ ShortTermMemory. When a object is used,

this heuristic refers to ShortTermMemory for the person px who has used this object

most on that day. If there are no records for the object f i in ShortTermMemory, i.e.,

!∃(f i, pix) ∈ ShortTermMemory, then we use Naive(f i) to make the object assignment.

LastPersonXmin heuristic

If an unambiguous object assignment is made to a person within a certain time frame of

an ambiguous object usage, this heuristic assigns the ambiguous object usage to the same

person. To assign an ambiguous object usage f i at time tf i , this heuristic searches for

any instance of an unambiguous object assignment in objectAssignments within a time

window from tf i −Xminutes to tf i + Xminutes. If ∃(f j, pjx), such that f j = (tjstart, t
j
end,m

j) and

tf i −Xminutes > tjstart > tf i + Xminutes, then the ambiguous object usage f i is assigned to pjx.

Blame ‘X’ Hyperopic heuristic This heuristic keeps a long term memory of all the

unambiguous object usage assignments made for each person. (f i, pix) ∈ LongTermMemory.

When a object is used, this heuristic refers to LongTermMemory for the person px who has

used this object most to date.

If there are no records for the object f i in LongTermMemory, i.e., !∃(f i, pix) ∈ LongTermMemory,

then we use Naive(f i) to make the object assignment.
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Figure 4.4: Case study of Lights energy: (a) Aggregate energy analysis reveals that person B
uses light energy comparable to person A, but wastes three times more energy than A, (b)
Energy disaggregated per person, per room indicates that Lights energy in dining room and
hallway are mostly wasted, (c) Energy disaggregated per person, per object in the kitchen
shows that the stove and banquet lights are used more efficiently

4.4 Case Studies

In this section, we take a look at some case studies demonstrating the potential for developing

energy feedback applications that leverage user identification to encourage people to save

energy.

4.4.1 Lights Energy Analysis

Personalized light usage feedback can reveal a lot of potential for savings. Quite often, lights

once switched on, remain on even when when rooms are unoccupied. We can detect exactly

which person forgets to switch the light off when they leave the room. Figure 4.4 shows

the breakdown lights energy usage and wastage by individuals from one of our studies. To

discover wastage, for every minute that a light object is on, we detect who is present in the

room. If one or more persons are present in the room, then its energy is assigned to the set

of people present in the room. If the room is empty, and the light is on, then it is labeled as

wastage. This wastage is attributed to the last person who left the room without switching

off the light. In this case study, we observe that 50% of the total lights energy in the house is

wasted by the individuals. Although person A and B use lights in the rooms almost equally,
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Figure 4.5: Person A showers more frequently than B. However A’s total shower water usage
(916 L) is lower than B’s (1327 L). This is because B tends to take longer showers compared
to A

person B wastes about 35% of the total lights energy, which is three times more than what

A wastes. A room level breakdown further reveals that person B usually leaves the lights on

in some rooms such as the dining room and hallway without ever using the lights in those

rooms.

A wastes more light in the living room than B. Most of the light usage and wastage takes

place in the kitchen. A further analysis of individual light objects in the kitchen reveals

that certain lights objects are used more efficiently than others. For e.g., there is hardly any

wastage detected for stove light and banquet light. However, most of the light energy of sink

spotlight and counter light is wasted by B.

4.4.2 Habit Monitoring

A ‘per person per object’ assignment can be helpful in learning individual habits and

preferences of people in a house. In Figure 4.5, we can detect non-obvious trends in shower

water usage. Although person A showers 1.2 times more than person B, B uses 1.4 times
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Figure 4.6: User identification can be used to track hygiene habits, for e.g. how many times
do people wash their hands after using the toilet flush

more shower water than A. We can also monitor if people are following hygienic habits. In

Figure 4.6, we can see that for 65% of the toilet flushes made by participant 7, there were no

sink events detected within 45 seconds of the toilet being flushed.

4.5 Experimental Setup

To evaluate our hypothesis for performing a ’per person per day’ disaggregation, we used a

living lab model for data collection. We instrumented lights, appliances and water objects

with sensors in a residential house and rotated five sets of two participants each, who lived in

the same house for 7-12 days each. Compared to controlled experiments, this approach gave

us in-situ data of the participants, who lived their lives normally in the house.

4.5.1 Participants

Five sets of two participants were recruited to live in the house for 12 days each. Each set

had only two participants living in the house at the same time for two reasons - some of the
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participants were married/dating, and for others we were limited by the number of bedrooms

in the house. While most participants lived in the house for 12 days, one participant in study

set 2 had to leave the study for work obligations after 7 days. Although the participants in

study sets 3 and 4 lived in the house for 12 days each, we lost 5 days data in set 3, and 2

days data in set 4 due to a network failure in the living lab.

4.5.2 Sensing Infrastructure

Lights

We used light on/off sensing HOBO UX90-002M data loggers [81] to sense the lights in the

house. These loggers are installed right next to the light bulbs, and have a programmable

threshold for light intensity to detect when a light is on. We used off-the-shelf optical fiber

pipe attachments (as shown in Figure 4.2 b.) with the light sensors to filter out external light

and to make sure the sensor received light only from the object being sensed.

Appliances

We used different sensing methods for different types of appliances. Appliances with hinged

doors such as fridge, dishwasher, washing machine etc. were instrumented with state sensing

HOBO UX90-001 data loggers [82]. A rare earth magnet was attached to the door of the

appliance, and the reed sensor was attached on the fixed part of the appliance. We also used

the magnetic reed switches to instrument the stove, by fixing rare earth magnets inside the

stove knobs, and reed switches next to the knob from inside the frame of the stove. Small

appliances plugged to wall receptacles such as electric kettle, toaster etc. were instrumented

with CSV A-8 current sensor [83] to sense when these appliances were powered on and off

(as shown in Figure 4.2 a.) Major power consuming appliances such as microwave, oven,

dryer etc. had individual power lines connecting to the circuit board, which was monitored

using a TED Energy Monitor [84]. This monitored the power consumption on all circuits

and reported data to a central repository via ethernet.
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Water Fixtures

We instrumented all the water fixtures in the house such as sink faucets, toilet flush tanks,

and showers, and obtained water flow information for each object at a second’s granularity.

To do so we installed in-line water flow sensors FTB4700 and FTB4707 [85] just before the

outlet valve of each object. The data from these sensors were logged using UX120-017M

4-channel pulse data logger [86].

Location Sensing

The ability to conduct this study relied mainly on being able to sense the locations of residents

in the house at different granularity levels. Each participant in this study wore a pair of

RFID anklets with unique RFID tag numbers. We tracked the location of the participants in

the house by tracking the RFID anklets worn by them using under the floor RFID antennas.

We tracked participants in the house at three levels -

1. Coordinate Level - We created binary-state RFID detection spots near many of the objects

in kitchen and bathroom. This ensured that we detected a person only when they stood at a

given RFID detection spot in the house.

2. Room Location Level - In this level of tracking, we sensed the room locations of the

participants by detecting their RFID anklets as they crossed the doorways, using the RF-

Doormat room location sensing system proposed in [79]. This sensing system uses proximity

based RF threshold systems: two RF thresholds placed on either sides of a doorway, determined

if a person crosses a door to change his/her room location.

3. House Occupancy Level - In this level of tracking, we sense when people are present at

house or away, by monitoring their movement into or out of the house at the entry doorways

of the house using the RF Doormats.
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Figure 4.7: Evaluation results: House level tracking has an average object assignment accuracy
of 12%. Room location level tracking alone has 70% accuracy. Heuristics augmented room
location tracking has an average accuracy of 87%. Coordinate based tracking has an average
of 97% accuracy across all groups

4.6 Results

To evaluate our hypothesis, we used object events obtained from ‘monitored’ appliances which

have coordinate level tracking systems installed near them. These include toilet, bathroom

sink, hair dryer, fridge, freezer, microwave, oven, toaster, coffee maker, electric kettle, coffee

grinder, kitchen sink faucet, stove, range hood light, and dishwasher. Post study analysis

revealed that none of the participant groups had used the coffee maker or the coffee grinder,

and therefore these got excluded from evaluation. To test the object assignment of different

tracking systems - house, room, coordinate and heuristics augmented house and room level

tracking, we used the metric ‘object assignment accuracy ’: percentage of object usage events

assigned to the right person. To evaluate coordinate tracking, we used the number of events

logged by the sensors on monitored objects as the ground truth. A video recording system

would have been ideal for getting ground truth. However, privacy concerns of ‘being watched’
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Group 1 P1 P2 Ambiguous Total #
P1 91 1 47 139
P2 14 256 126 396

Group 2 P1 P2 Ambiguous Total #
P1 248 0 34 282
P2 1 58 26 85

Group 3 P1 P2 Ambiguous Total #
P1 64 0 0 64
P2 0 65 0 65

Group 4 P1 P2 Ambiguous Total #
P1 62 1 56 119
P2 5 60 78 143

Group 5 P1 P2 Ambiguous Total #
P1 196 11 90 297
P2 13 230 134 377

Table 4.1: Analysis of room location based object assignment: The confusion matrix represents
the object assignments for individuals when the room is singly occupied. Ambiguous object
usage (when multiple people are present in same room) is the main reason why room location
tracking has lower object assignment accuracy than coordinate system. Group 4 has 0
ambiguous events, and therefore 100% room location based object assignment accuracy

inside rooms, and specially the bathroom, were the main reasons why we did not use cameras.

For evaluating object assignment accuracy of all other tracking systems, we used the data

from coordinate tracking system as the ground truth.

To get object assignments for coordinate tracking system, we incrementally searched for

a person detected by the coordinate tracking system near the object starting from 5 secs

to 15 seconds of the event timestamp. This flexibility in the search time window is to deal

with the time sync differences between the different logging systems. If a single person is

found standing near the object used, then the event is assigned to the same person. An

event remains unassigned (ambiguous) if two people are detected within the search timeframe

of the event. As can be seen from Figure 4.7, coordinate tracking system has an average

accuracy of 97% across all groups of participants. The 3% of ambiguous object assignments
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Figure 4.8: Heuristics analysis: (a) House Level Tracking - Heuristics achieve about 75%
accuracy in groups 2 and 3, which have 23% and 40% accuracy without any heuristic. In
group 1, 4 & 5, heuristics obtain 50% accuracy indicating that none of them worked better
than random assignment. (b) Room Location Tracking Heuristics achieve over 85% accuracy
in groups 1, 2 and 3 due to a high number of unambiguous object assignments. In group 4,
heuristics achieve 72 % accuracy because of a small percent (45%) of unambiguous object
assignments

could have been caused by several reasons, such as one person operating the object as the

other person walks by, or two people jointly operating a object, such as sharing a stove while

cooking a meal together.

In the room location tracking system, if a single person is detected in the room when a

monitored object is used, it is assigned to the same person. A object event remains unassigned

if multiple people are present in the same room at the time it is used. The room location

system achieves an average object assignment accuracy of 71.60%. It achieves 100% accuracy

in group 3, where there are no ambiguous events detected. Errors in detecting people entering

a room, or exiting the room, may lead to mistakes in assigning the object to the right person.

As can be seen in Table 4.1, these cases are few and limited to 2% of the total monitored

object usage. Adding heuristics to room location tracking, improves the average object

assignment accuracy to 87%.

In the house level tracking system, if a single person is detected in the house during object

usage, the system assigns it to the same person. If multiple people are present in the house

when a object is used, the event is unassigned. House level’s object assignment accuracy is
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Group 1 BlameX Hyperopic P1 P2 Total #
P1 91 48 139
P2 21 375 396

Group 2 BlameX Hyperopic P1 P2 Total #
P1 282 0 282
P2 26 59 85

Group 4 BlameX Hyperopic P1 P2 Total #
P1 85 34 119
P2 35 108 143

Group 5 BlameX Myopic P1 P2 Total #
P1 246 51 297
P2 113 264 377

Table 4.2: Improved room-location based object assignments: The use of simple heuristics
with room location tracking resulted in object assignment accuracy of 87% in group 1 and
92% in group 2. This is comparable to 96% and 98% accuracy achieved respectively in
coordinate level tracking system

0% for groups 1, 4 and 5 - which means both participants in these groups were present in the

house every time a monitored object was used. The object assignment accuracy is higher

for groups 2 and 3 at 20% and 40% respectively. For these study groups, the corresponding

room location system’s accuracy is also higher at 92% and 100%. Later in our exit interviews

we came to know that in group 3, one participant had left town for two days. As a result,

the house was singly occupied for 30% of the study, resulting in a higher object assignment

accuracy at the house level.

House level tracking system when augmented with heuristics, has an average of 60%

accuracy. This is a significant improvement over the average of 12.5% in unassisted house

level tracking. In fact, group 4’s heuristic assisted house level accuracy is higher than that of

unassisted room location based system. Group 2 achieves 76% accuracy which is comparable

to the 83% achieved by the unassisted room location tracking system. Groups 1, 4 and 5

achieve an accuracy of 50% which is what we expect if we were to randomly assign all objects

usages between any two people. Details of heuristics assisted house level tracking will be



4.6 Results 61

Figure 4.9: object level breakdown of event assignment accuracy, for different heuristics for
all groups, shows potential for developing complex heuristics which are sensitive to typical
usage pattern of individual objects

discussed later in this section.

Analysis of Heuristics

In Figure 4.8, we compare the performance of all heuristics for house level and room

location tracking systems. All heuristics except for Naive, refer to unambiguous usage of

objects at different timeframes to determine object assignment in ambiguous cases. In the

case of house level tracking, all heuristics in study groups 1, 4 and 5, have object assignment

accuracies of 50%. This is expected since all heuristics other than Naive, depend on a

history/database of unambiguous object assignments, which is 0% for these groups. In the

absence of any unambiguous history, they all resort to the Naive heuristic to make the object

assignment determination. Group 2 has 22% unambiguous object assignments, therefore

enabling the heuristics to use the history to learn object usage behavior. Hyperopic heuristic,

which uses long term history to disambiguate works best for this group. This implies that

these participants typically follow a consistent pattern of object usage over time. In the case

of group 3, we have 40% unambiguous object assignments, however Hyperopic performs even

worse than Naive. This might indicate that the unambiguous object assignments were made

during a time when another person was not present. Therefore the history of appliance usage
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could be skewed and a short sighted heuristic such as LastPerson5 min has higher accuracy.

In heuristics assisted room location tracking, Hyperopic heuristic performs the best in

three of the five study groups. In group 1, Myopic and Hyperopic perform better than Naive,

whereas the LastPerson heuristics are at par with Naive. In groups 2 and 5 all heuristics are

comparable to Naive, with Hyperopic performing slightly better than Naive. The problem

with Hyperopic is that the most dominant user is assigned all the ambiguous object usages,

even those made by the minority user. Looking at the confusion matrix for group 2 in

Table 4.1 and Table 4.2, we observe that P2 is the dominant user of all objects, and gets

assigned all ambiguous object events (even those of P1). This indicates the need for insightful

heuristics which even consider assigning ambiguous object events to a minority user. In

group 3, the unassisted room location system achieves 100% object assignment accuracy,

indicating that there were no ambiguous events at this tracking level. Therefore, all heuristics

performed at par with the unassisted room location system. In group 4, Myopic heuristic

performs better than the other heuristics. This indicates that in this group, the dynamics of

who uses a object varied over time.

Analysis of Heuristics for Individual objects

One possible way to improve object assignment accuracy, is to apply different heuristics for

different objects. In Figure 4.9, we show a detailed breakdown of event assignment accuracy

per object for all heuristics across all studies. While BlameX Hyperopic achieved the highest

accuracy across most groups of participants, we can clearly see that for many appliances

other heuristics worked better. And this seems intuitive for general purpose appliances such

as fridge and freezer. Here historical data gives little information in predicting future object

usage, for e.g. predicting who would feel thirsty and open the fridge for a glass of juice.

This suggests that complex heuristics will be better at performing event assignments. In

future work, we want to develop systems that can apply a medley of different heuristics for

individual objects, based on object usage patterns.
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4.7 Discussion

In this work, we investigated the hypothesis that we can perform object user identification

based on coarse-grained room-level location tracking even when two people are in the same

room when a fixture is used. We compare the user identification accuracy at three different

granularities of tracking - at the house level, room location level and coordinate level. While

we recognize that coordinate tracking is the best level of tracking required to assign fixture

usage to individuals, we can achieve comparable results using a more coarse grained room

location level tracking system. We observe that room-location tracking alone cannot assign

fixture usage when multiple people are present in the same room, and has a 70% average user

identification accuracy. However, the use of fixture usage history based heuristics, improve

the average accuracy to 87%. These heuristics look at short term and long-term usage history

of a fixture to determine which person should be assigned the fixture event. In three sets of

participants, a long term usage history based heuristic ’BlameX Hyperopic’ had 89% user

identification accuracy. These results are indicative of the potential that simple heuristics

have in overcoming the limitations of a room location tracking system.

Anecdotal data in Figure 4.9 reveals that when it comes to applying heuristics to objects,

there’s more to it than meets the eye. Any single heuristic does not perform the best

assignment for all appliances. This is because different appliances in multi-person household

are ‘shared’ by residents in different ways. For example, one person may cook for everyone

in the household, and in this case a stove’s usage can be better disambiguated by a long

term history based heuristics. The fridge on the other hand, may be used by everyone in the

house, with no obvious bias by any one individual, and therefore a random or naive approach

in disambiguating fridge usage might be the best approach.

Trying to develop a heuristic with a comparable accuracy to coordinate tracking based

system is challenging: this is a modeling problem to understand how people use objects when

there are other people present in the same room. Since this modeling would require more

longer study periods than two weeks, in ongoing work we are generating more extensive data
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sets. Our goal for future work is to test whether the system can learn personal ‘signatures’ of

every object’s usage by individuals to improve user identification when multiple people are in

the room simultaneously.

4.8 Limitations

We recognize that our study sets of two people are not representative of all possible types of

multi-person households, such as those with grandparents, children or pets living together

as well. We were limited by the number of bedrooms in the house. Recruiting participants

who were willing to leave their homes, and live somewhere else for 2 weeks was also a big

challenge. We were a bit concerned about whether participants would behave naturally while

living in another house (Hawthorne effect). However, in the exit surveys, all the participants

said that their lifestyle in the living lab was very similar to what they had at their own

residence, except that some participants did not have certain appliances at their own homes.

A participant said, “Yes, it is indicative of use at home, except for the fact that we do not

have a dishwasher or laundry appliances. We probably used the washer and dryer more

frequently than we normally would due to the fact that it was a rare opportunity to do all

our laundry for free :)”. The time of study for one participant set coincided with a month

long winter break at the university, where the participants said that they were at home

longer than the usual work week - “no deviation from use in own house except maybe hours

of occupancy since this was winter break period”. We believe the participants would have

also had longer hours of home occupancy at their own homes during the winter break, and

therefore we do not consider this a serious deviation from natural behavior. Participants also

said that the RFID based location tracking system did not distract their behavior - “RFID

receivers beneath the floor did not bother us at all - it’s easy to forget they are there”.
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4.9 Conclusion

In this work, we aim to evaluate object user identification accuracy for individuals living in a

home and using common household objects. We use the fusion of information from location

tracking system and object usage to demonstrate, that object user identification in a home

using a coarse grained room level location tracking system can perform with 87% accuracy,

even when multiple people are present in the same room where the fixture is used. We apply

heuristics that learn how people use objects in unambiguous assignments (when only one

person was present in the room), and make an informed guess to assign ambiguous object

usage to individuals. While we recognize that user identification can also be performed using

coordinate level tracking, we believe that a coarse granularity of tracking would have lower

cost implications.



Chapter 5

Level 2 - Using Gesture Matching to

Identify Object User

5.1 Introduction

The biggest drawback of location-based object user identification is that it does not work

when multiple users are detected in proximity to the object. The heuristics we explored are

after all a guess, albeit a learned one. If the object does not have the history of usage of every

user it has to choose from, or if certain objects are used equally or randomly by individuals

(e.g. lights), then the use of heuristics does not help in guessing who used the object. At this

point, the object initiates the next level of interaction with the Wearable. This time, it asks

the devices to match the motion of their wearer’s hand to the motion required to interact

with the objects, or in other words it initiates gesture recognition for the object.

Gesture recognition is a popularly known concept in the computing community. The

term ‘gesture’ can be used to refer to any motion of the hand or the body, or some other

form of non-verbal communication that is typically intended as a means to express certain

messages. Gesture recognition is the use of sensing technology to interpret the human body

or hand motion using mathematical algorithms. Understanding gestures is important because

66
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Figure 5.1: When an object is used, the object user is identified as the person making a hand
movement containing the object hallmark. The hand is monitored using wearable devices
having IMU sensors, such as fitness trackers

they can be used to create more natural object interactions and detect a person’s activity.

Typically a gesture represents the trajectory of motion undertaken by the part of body being

tracked.

Traditionally, camera-based systems have been successful in tracking a predetermined

set of gestures made by a person. However, the same is not true for wearable based gesture

sensing. The main sensor that is used to sense motion in wearables devices in the IMU sensor.

This sensor has an accelerometer, gyroscope and magnetometer, which measure acceleration,

angular velocity and orientation respectively.

Objects that have embedded sensors can recognize the object user based on the unique

way in which an object is touched [71] or held [?], which is referred to as ‘Object Use

Fingerprinting’. Most of the solutions rely on instrumenting objects with additional sensors.

Therefore, until every object in the world is fully instrumented, there is not likely to be a
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“silver bullet” that solves this problem for all object types.

In this work, we present an object user identification approach that contrasts the approach

used in Object Use Fingerprinting. Instead of using an object’s sensors to detect the unique

fingerprint of its user, we use the potential users’ wrist motion sensors to detect the unique

fingerprint of the object used. Since objects have a unique combination of interface, orientation

and location within a space, we hypothesize that object usage hand gestures are unique

object hallmarks. We explore the idea that the use of an object imprints a unique and

identifiable hallmark in the hand movement of its user. By searching the sensed hand gestures

of potential object users for the object hallmark, we can identify who used the object. Smart

wrist wearable devices such as fitness bands and smart watches, often contain accelerometers,

gyroscopes, and magnetometers, referred to as Inertial Measurement Unit, which can sense

these object hallmarks. Increasing adoption of commercial wrist wearables has made sensing

a person’s hand movements, a more practical approach than instrumenting every object in a

space with sensors.

However, recognizing object-use gestures such as the opening of fridge door, is non-trivial

because people often perform similar actions throughout the day. To reduce false positives,

we only scan the hand movement for a specific object hallmark, at the time of the object’s

use. The person who makes the hand gesture that most closely resembles the object hallmark

is identified as the object user. We leverage existing research in IMU signal processing to

implement a simple yet novel technique to identify an object user. Our approach complements

existing approaches by recognizing object users under the following conditions: 1) object use

can be detected 2) a specific hand gesture is required to use the object, and 3) only a small

number of people could possibly have used the object.

To test our hypothesis, we use the concept of apportionment in a home - where the

identity of an object user is important from the perspective of attributing the object’s energy

usage to the user. We instrument 16 objects in a home, including lights, water fixtures, and

major appliances. We perform a series of three feasibility studies with decreasing levels of
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constraints, ending with a single person in-situ study. Some of the research questions we

intend to answer with these studies are: whether object hallmarks are unique and identifiable,

if object hallmarks are person-independent, and how real world tasks affect the object user

identification accuracy.

First, we performed a scripted study in which 10 study participants performed specific

object usage. Our results show that we can classify object hallmark with 95% accuracy when

the objects are used in isolation. Then, we asked 5 groups of two individuals (the same

10 participants) to complete a list of 80 real-world tasks within two hours. This resulted

in a large number of fixture usages in quick succession, which could change the nature of

the gestures and also creates a challenge for the system since both participants were always

moving. Despite the high frequency of object usage, we were able to identify the correct

individual in 85% of the total 986 object usage events. To evaluate a more realistic scenario

in which people spend a large fraction of the day resting or still, we collected 30 hours of

in-situ data from a single participant who lived in the test home for 5 days. We used this

data to emulate a multi-person home and the results show that our approach can correctly

identify the object user in 90% of the total 3378 object usage events in a 2-person scenario

and 84% accuracy for 22587 objects in a 3-person scenario.

5.2 Related Work

Object Use Fingerprint research shows that it is possible to recognize an individual based on

how they touch objects by equipping them with pressure sensors or other smart surfaces [71].

Another case of Fingerprinting was demonstrated with a button. A pressure-sensitive button

was built containing an Force Sensitive Resistor sensor. Springs provide return force and

push resistance. The work explored the hypothesis that different users have different button

pressing habits. User recognition via button pressing is particularly suitable in one-off

interactions, where users are not engaged for long and where, at the extreme, the interaction



Chapter 5 Level 2 - Using Gesture Matching to Identify Object User 70

itself can be reduced to one button press. Our work explored the inverse of this hypothesis.

We explored the idea that the use of an object imprints a unique and identifiable hallmark in

the hand movement of its user.

Chang et. al use accelerometers embedded in a television remote control or mobile device to

identify household members, based on the unique way each person uses the remote [?, ?]. They

show that accelerometers, touch screens and software keyboards, can be used to differentiate

different test subjects based on the unique interaction characteristics of each subject. These

approaches work well when an object contains the sensors required to uniquely differentiate

object users but does not extend as easily to other objects such as home appliances, light

switches, or water fixtures.

Other proposed methods recognize an object user in a house by instrumenting all objects

or fixtures with RFID tags[?, 77]. A specialized wrist device consisting of an accelerometer

and/or a RFID reader on it is worn by the occupants. The RFID reader tells us which person

is touching an object, and the accelerometer characterizes how the object is being used.

5.3 Approach

5.3.1 Sensing Object Hallmarks

Since objects have a unique combination of interface, orientation and location within a space,

the hand gestures for using them in terms of the hand’s acceleration signature, tilt and

compass direction are also unique hallmarks. In order to sense these three parameters of

a hand’s motion, we use the nine-axis Inertial Measurement Unit (IMU) sensor of a wrist

wearable device. The triaxial accelerometer in an IMU reports values composed of linear

acceleration of the hand, as well as acceleration due to earth’s gravity. The tilt of a hand can

be inferred by measuring the amount of gravity acting upon each of the three axes. In order

to separate gravity and linear acceleration, we apply a low pass filter on the accelerometer

values. As illustrated in Figure 5.2, if we have a acceleration vector accx,y,z(t1,t2)
, and a gravity
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vector grax,y,z(t1,t2)
, then linear acceleration vector linAx,y,z

(t1,t2)
can be obtained by

linAx,y,z
(t1,t2)

= accx,y,z(t1,t2)
- grax,y,z(t1,t2)

Data from accelerometer, gyroscope and magnetometer can be merged to infer the 3-D

compass direction of the hand. In our work, we used pre-processed direction information

available from Android Wear API [?].

Let the sensor data between time t1 and t2 from the wearable, be represented as

sen(t1,t2) = ( accx,y,z(t1,t2)
, grax,y,z(t1,t2)

, orientx,y,z(t1,t2)
)

where, accx,y,z(t1,t2)
is the accelerometer data along x, y and z axes between time t1 and t2,

grax,y,z(t1,t2)
is the gravity data along x, y and z axes between time t1 and t2, and orientx,y,z(t1,t2)

is

the hand’s 3-D compass direction along the planes xy, yz and xz.

5.3.2 System Requirements

Our main hypothesis of using object hallmarks to detect object user, depends on the ability to

sense a hand movement in terms of linear acceleration, and two types of orientation - tilt with

respect to gravity, and orientation in a 3-D fixed world reference. While linear acceleration

and tilt w.r.t. gravity can be obtained by an accelerometer alone, orientation in 3-D space

requires more sensors. Android Wear merges accelerometer, gyroscope and magnetometer

(together referred to as an Inertial Measurement Unit or IMU) data to establish a 3-D fixed

world orientation system, and compute the hand’s orientation in it [?]. Our system can be

used with any wrist worn device having a nine-axis IMU and a processor that can support

sampling three sensors at 33Hz each. We don’t expect this sampling rate to be a bottleneck, as

most commercial wearables are capable of higher sampling rates. Most commercial wearables

such as, fitness trackers and smart watches have Bluetooth or BLE or WiFi that lets them

communicate raw data to a more resourced device such as a laptop or a smartphone. To

determine if a person is in the same space as the objects, we expect the smartphone to have

GPS or cell-tower based location information.
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Figure 5.2: Total acceleration across the x, y and z axis is decomposed into gravity and linear
acceleration along the three axes. The gravity component indicates how a hand is oriented,
and the linear acceleration defines the movement of the hand

5.3.3 Overview of Object User Identification

To perform object user identification, our approach co-relates the timestamp of the object

usage to the hand gestures made by the possible users of the object at the same time. The

main insight behind this approach is based on the observation that object usage gestures are

unique and repeatable hallmarks. Therefore when an object is used, the person making a

hand gesture containing the object hallmark, can be uniquely identified.

In the rest of this section, we discuss how preliminary filtering is performed to determine

the subset of possible object users, from the set of people in physical proximity to the object.

We also discuss the method to identify the object user from the set of possible object users,

by detecting the object hallmark in their hand gestures.

1. Creating Reference Dataset : A dataset of object hallmarks of each possible object user

is recorded for reference.

2. Determining Possible Object Users: A set of possible object users are identified by

determining people whose hands were moving at the time of an object usage.

3. Identifying Object User : If more than one person is active during an object usage, we
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process the sensor data further to determine which person made a hand movement that most

closely resembles the object gesture in the training dataset.

1. Creating Reference Dataset

Every person has their own ‘fingerprint’ of operating an object [71]. Conversely, the object

hallmarks imprinted in the hand gesture of every person will be different as well. In the

current version of the system, we reference object hallmarks of every person for all monitored

objects from a pre-recorded dataset to perform object user identification.

The data collection for creating the reference dataset, is a one-time activity undertaken

by every possible object user. In this stage, all potential object users are expected to record

a reference object hallmark for each monitored object. To simplify the process of collecting

and annotating object gesture, we follow a ‘no-motion rule’ before and after every object

usage. In this, the object user is expected to rest the hand for five seconds before and after

using the object. This ensures that the data recorded by the wearable sensor around the

time-of-use of every object, only contains a single and clean object hallmark.

trainingOpx is the reference dataset for person px for each monitored object oi in the set of

all monitored objects O.

trainingOpx = (hallmarko1
px , hallmarko2

px , .., hallmarkon
px )

2. Determining Possible Object Users

When an object is used, there may be multiple people present in its physical proximity. We

use the following criteria to determine potential object users for an object usage: at the

time the object is used, a significant hand movement must have been made by the person.

This step is based on the observation that people are resting or inactive most of the time [?].

By filtering out the inactive people, we are left with a subset of fewer candidates for the

object’s user. To determine significant hand movement, we extract sensor data from the

smart watch around the time that the object is used. Then we separate the linear acceleration

components from the total acceleration using a low pass filter. Finally, we calculate if the

linear acceleration is significant enough to label the person as a potential object user.



Chapter 5 Level 2 - Using Gesture Matching to Identify Object User 74

Figure 5.3: Segmentation: Linear acceleration across x, y and z axis are filtered and combined
using Root Sum Square (RSS). Peak detection is performed on RSS to determine bursts
of acceleration. Sensor data of a fixed window size around each peak is used for feature
extraction

Let e(oi,t) be a object usage event, where oi is a monitored object, and t is the timestamp

when the object is used, as reported by the object monitoring system. Next, the system

extracts the sensor data from the wearables of the individuals in the house. If there is perfect

time synchronization between the wearables and the object monitoring system, then we could

simply extract the sensor data captured at time t. However, different systems are often not

perfectly time-synched. Also, there may be some delay in detecting object usage due to

an inherent signal processing methodology of the object monitoring system. Therefore, the

sensor data must be processed for a larger time window around the reported object usage

time.

Let the uncertainty in the time difference between the wearable and the object monitoring

system be represented by td. Larger the time difference uncertainty between the systems,

larger will be the time window of sensor data that will be extracted from the wearable.

Therefore when a object usage event e(f,t) takes place, we extract sensor data sen(t−td,t+td)

from the wearable.

Having extracted the linear acceleration for all the people at home, we now determine the

people who are active between the time t− td to t+ td. To determine if a person is at rest at
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Figure 5.4: Experimental Setup: (L-R) The fridge, freezer and microwave face the same
direction, and have doors that open the same way. The dishwasher door is hinged at the
bottom. The bathroom hot and cold faucets pull out from left to right, and right to left
respectively. The kitchen sink hot and cold faucets both turn in counter-clockwise direction.
Light switches for kitchen and living room are right next to each other. The x, y, and z axis
of a LG android smart watch are annotated

the time that an object is used, we measure the standard deviation of the linear acceleration,

and see if it exceeds a certain threshold value:

stdDev(linAx,y,z
(t−td,t+td)) > THRESHOLD

If there is only one person active in the duration that the object is used, we identify the

same person as the object user. However, if multiple people are active, we further process

their sensor data to make this determination.

3. Identifying Object User

To identify the object user from the set of possible object users, we search for the object’s

hallmark in their sensor data. The person performing a gesture that most closely matches

the object hallmark is identified as the object user. To do so, we first segment the sensor

data using a fixed windows around peaks of linear acceleration. We then perform feature

extraction for each data segment, and then compute its distance to the person’s reference

object hallmark, recorded earlier.

Segmentation of the sensor data is based on the the observation that every time a hand

interacts with an interface, there is a small pause (a few milliseconds) before and after the

interface is used. This results in a peak in the acceleration. Therefore, to segment the data,

we detect the peaks of acceleration, and characterize them by performing feature extraction.
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To detect the peaks, we first smooth the linear acceleration along the three axes using

Exponential Moving Average filter, and merge them using Root Sum Square (RSS). We then

detect local maxima in the RSS vector.

RSS(t1,t2) =
√

(linAx
(t1,t2)

)2 + (linAy
(t1,t2)

)2 + (linAz
(t1,t2)

)2

The peak detection on the RSS vector returns the timestamp pk (precision in milliseconds)

of each peak, such that

pk ∈ peaksRSS = detectPeaks(RSS(t−td,t+td)), such that t− td < pk < t + td

Figure 5.3 shows the linear acceleration data of a person opening a microwave door. To

open the door, a person places the hand on the door and pauses slightly before pulling the

door. When the door opens, he holds his hand firmly to stop the door, resulting in an equal

and opposite force. This gesture shows up as adjacent peaks of equal magnitude in the RSS

vector.

To perform feature extraction, we process sensor values from a window of fixed size (ws)

around each of the peaks pk in peaksRSS. Features of each peak of sensor data featurespk,

is characterized by standard parameters - mean, median, standard deviation, 25th percentile

and 75th percentile of (sen(pk−ws,pk+ws))

For each peak pk ∈ peaksRSS in the sensor data of a potential object user px, we

determine the distance distpk of the peak’s features featurespk, to the object oi’s hallmark

hallmarkoi
px in the reference dataset trainingOpx .

distpk = distance function(featurespk, hallmarkoi
px), where distance function is a euclidean

distance function. Further, for each potential object user, we select a candidate object usage

hand gesture as the peak pk with least distpk to the object hallmark. From the set of

candidate hand gestures from all potential object users, the individual having a hand gesture

with the smallest value of distp or, the best resemblance to the object hallmark, is identified

as the object user.
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5.4 Experimental Setup

To test our hypothesis, we used systems that could monitor the use of objects in homes, and

smart wrist devices to sense hand gestures. We instrumented 16 major appliances, light and

water fixtures in a two-bedroom apartment. The relative locations of all objects are shown in

Figure 5.5.

In the absence of any commercially available Non Intrusive Load Monitoring systems at

the time this study was conducted, we placed direct sensors on all objects to monitor their

usage. We used magnetic reed sensors on appliances with hinged doors, such as Fridge (F),

Microwave (M), Freezer(Fr) and Dishwasher(D) (Figure 5.4). We also used magnetic reed

sensors to instrument the bathroom hot (BH) and cold (BC) faucets, as well as the kitchen

hot (KH) and cold (KC) faucets. The reed sensors were plugged into HOBO UX90-001 data

loggers [82]. We used light on/off sensing HOBO UX90-002M data loggers [81] to sense the

Lights(L) in the house. These loggers are installed right next to the light bulbs, and have a

programmable threshold for light intensity to detect when a light is on.

To sense the hand gestures, we used LG G watch [?], which runs on Android Wear platform.

We wrote an app for the watch which collected IMU based sensor data (accelerometer, gravity

and orientation vector) at 33 Hz and transmitted it to its paired smartphone. The smartphone

had a listener app which logged the received data on the phone. For each sensor data sample,

the app recorded the timestamp, the sensor type, and the set of raw sensor values along x, y

and z axes. The app assigned a sequence number to each received sample as well to detect

packet loss. The sequence number helped us detect a 30 second (3̃000 data points) data loss

during one of our trials.

We invited 10 participants (7 F, 3 M) to use the objects of the instrumented home. They

participated in two different studies - a 40 minute individual scripted study, and a 2 hour

real world task based study performed in five groups of two people each. We also collected

in-situ data for 30 hours (6 hours every day, for five days) from a single participant who lived

in this house.
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Figure 5.5: Object Layout: All the major appliances, light and water fixtures of a two-
bedroom apartment were instrumented for the study. Quite often, two objects with similar
interfaces are co-located, such as the kitchen sink hot and cold faucets

5.4.1 Study Design

To evaluate the feasibility and inform the parameters of our approach, we structured the

experiments into three different studies:

• Scripted Study

• Real World Task based Study

• In-situ Study

Scripted Study

The main premise of our approach relies on the ability to detect and differentiate between

hallmarks of different objects. Therefore, to ensure feasibility of our approach, we first
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evaluated our approach in a scripted study. In this study the participants were instructed

exactly which objects to use in a predetermined, scripted order. The aim of this study was

to answer the following questions:

1. Do people use objects using gestures that are distinguishable and learnable?

2. Is it possible to learn the object hallmarks in a person-independent manner?

3. Can we differentiate between hallmarks of objects with the same interface? For e.g. the

fridge and the freezer doors have similar handles.

The procedure of this study required each participant to follow a script that made them

operate each of the 16 objects in the house in a fixed order. The participants were free to

operate each object in a manner they liked. All the objects in the home were labeled for easy

reference. To discourage participants from mechanically using the objects in the same way,

we designed the script to have consecutive object usages in different rooms. They were asked

to perform the entire object usage script ten times, therefore logging 160 object usages each.

In order to obtain clean gesture data for this study, the participants were instructed to

pause for 5 seconds before and after using each object. This made annotation of gesture data

extremely easy, and we could automate the process. Every time that an object was used, a

+/- 5 seconds segment of sensor data from the object usage timestamp was extracted. The

only gesture in this time window was the one used for operating the object. Root sum square

based peak detection was used to automatically detect the gesture and annotate it. The

processed sensor data was presented to the researcher who now simply had to validate the

annotated gesture. This saved us a lot of time as opposed to using a camera based annotation

system, which requires more manual effort for annotation. For ground truth on object usage

timestamps, an observer manually noted the start and end time for every repetition of the

script.

Real World Task based Study

To determine the accuracy of our object user identification approach, we conducted a two

hour study in a home environment, with pairs of individuals operating objects for performing
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real world tasks.

Real life object usage is very noisy, making the sensing of hand movements challenging.

In a real life scenario, we can imagine that people do not rest their hands before and after

using an object. In fact, object usages are preceded and succeeded by different hand actions.

People also vary the force with which they use objects at different times. A object usage

could comprise of a complex combination of actions, such as open door, close door and push

buttons in case of a microwave. Also, the object monitoring system and the wearable can

have non-synced time stamps.

To encapsulate aspects of real life situations and interaction between multiple people when

they share the same set of objects between them, we wanted to ensure that the following

conditions were present in the study:

- Possible simultaneous usage of similar objects (such as fridge and microwave)

- No simultaneous usage of same object

- Performing actions before and/or after an object usage (such as opening the kitchen faucet,

washing hands, and closing the kitchen faucet)

Therefore, to evaluate our approach in the presence of noise, we designed this study to

mimic the real world object usage. We organized the 10 participants into 5 groups of two

individuals each. Pairs of participants were each given an identical list of tasks that involved

using objects similar to real life scenarios. Some examples of tasks given to them are, take out

food from the fridge, wash face in the bathroom sink, take a cup of water from the kitchen

sink and heat it in the microwave, wash dishes in the kitchen sink. The participants were

free to decide how, in which order and when they wanted to perform each of the tasks in the

list, within the two hour limit. The list contained sufficient number of tasks to ensure that

each participant interacted with objects at least 80-90 times, within the two hours.

For ground truth, we had an observer making real time entries about the object usage

of each individual, using a logging tool that was time-synced with the sensor loggers. To

perform object user identification for the tasked study, we used the annotated gestures from
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the scripted study for the reference dataset. Since, the script was repeated ten times, we

obtained ten reference object hallmarks for each object in the home.

We aimed to answer the following questions with this study:

1. How accurately can we identify the object user in objects used for real world tasks?

2. How much reference data is required to be able to identify individuals accurately?

3. How does the time uncertainty between the object usage reporting system and the watch

affect the accuracy of recognizing the correct individual?

Additionally, we wanted to use this study to perform sensitivity analysis for the technical

aspects in our approach:

4. How large should the window size be around each peak of the root sum square of linear

acceleration?

5. How does an increase in the time difference uncertainty between object monitoring system

and the wearable affect the identification accuracy?

On an average, ∼200 object events were performed within 2 hours by each group. To

put this into perspective, we compare this frequency to the object usage frequency from an

in situ dataset from one of our previous studies [?]. The dataset contained object usage

timestamps of 5 groups of 2 individuals, who lived in an instrumented home for 10-12 days.

As can be seen in Figure 5.6, this actually resulted in a high frequency of object usage in

our study, with about 50% of the object usages happening within 5 seconds of each other.

Whereas, according to the previous dataset, only 15-20% of the object usages happened

within 5 seconds of each other.

The actual number of object usages varied with each participant, because the interpretation

of generic tasks was left at the discretion of the participants. Across all the five studies,

the total number of object usages was 986. Per participant, the minimum number of object

usages made was 82, maximum was 108, and median was 98.

In-Situ Study

Although the task based study encapsulated a lot of noise from real life scenarios, we
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Figure 5.6: CDF of time differences between object usage: 50% of the object usage in the
tasked study happened within 5 seconds of each other

wanted to understand how well our approach worked in presence of noise introduced in an

uninstructed, in-situ object usage in a home. Although we wanted to collect data from a

home with multiple residents, we were limited by the fact that in a real home setting, it

is extremely difficult to collect ground truth on who is using an object without the use of

privacy invasive technology, such as cameras.

Therefore, we collected in-situ data from a single-resident home and used this to simulate

multiple person (2, 3, 4 and 5) home settings. We asked a participant to live in the

instrumented house for five days, and wear the smartwatch for 6 hours every day - three

hours in the morning, before leaving for work, and three hours in the evening, after coming

home from work. The participant was given no specific instructions on what objects to use or

what activities to perform in the home. We collected 10 datasets of 3 hours each, consisting
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Figure 5.7: Gesture classification: Confusion Matrix of 10-fold cross validation in scripted
study show (a) 95% accuracy for a person dependent gesture model, (b) 88% accuracy for
person independent gesture model

of 515 in-situ object usages in total. The main research question that we aimed to answer

using this study was:

1. How does the system perform in the presence of more than two individuals in a home?

To simulate multi-person scenarios, we treated each dataset’s sensor data as the data of

another person. Since there was only one person living in the house, we knew for every object

usage in the dataset, who the object user was.

5.5 Results

We first discuss the results of the feasibility study for determining if object gestures are

differentiable and learnable hallmarks. Then we analyze the object user identification accuracy

using our rule based approach in the real world task based study and in the in-situ study.

Finally, we perform sensitivity analysis to determine the technical parameters of our approach.

Feasibility Study
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Figure 5.8: Classifying between objects with similar interfaces: Different features are evaluated
to determine how gestures are differentiated between sets of co-located and similar objects

We used the annotated gesture data from the scripted study to validate the feasibility

of using object gestures as hallmarks for object user identification. The metric used in this

section is Classification Accuracy, which is defined as the sum of correct classifications divided

by the total number of classifications. The annotated gesture dataset has an object ID

for every object gesture, and the mean, median, standard deviation, 25th percentile data

point and 75th percentile data point of the three axes of linear acceleration, gravity and

orientation as the feature set. For each of the 10 participants’ data, we performed 10-fold cross

validation on the object gestures, using Nearest Neighbor method. As shown in Figure 5.7(a),

the per-person based classifier achieved 95% classification accuracy using the 15 features

calculated on the annotated sensor data. This suggests that gestures used to operate objects

can be differentiated. This also suggests that for a given object, the gestures required to

operate the object are consistent for the same person.

The main reason why we care about being able to identify the gestures used for different

objects, is so that when multiple objects are used simultaneously by different individuals in a

home, we can determine which individual used which object. For example, if person A uses

the fridge while another person uses the bathroom sink, the ability to tell apart the different

objects hallmarks is crucial to the identification of the correct individuals using each object.

To determine if object hallmarks are person dependent or not, we created test cases,

where we trained using annotated gesture data, from 9 people and tested on the 10th person.
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As shown in Figure 5.7(b), on an average, this method was able to differentiate between

gestures with 88% accuracy. In Figure 5.7(b), the precision and recall for kitchen hot and

cold faucets (KC and KH) was quite low, with one getting classified as the other, quite often.

This was also true for the fridge and freezer, and the bathroom hot and cold faucets. The

dishwasher, microwave and lights performed the best in the person-independent classification.

Given that certain object hallmarks performed well in the person independent analysis, while

others performed poorly, it is hard to conclude whether object hallmarks can be learned in a

person independent manner.

Figure 5.7(a) showed that a person’s gestures for co-located and similar objects are

differentiable as hallmarks. We further analyze how each of the three IMU sensor’s features:

Linear Acceleration (LA), Gravity (G) and Orientation (O), and their combinations contribute

to the classification between the following sets of similar objects:

1. Fridge vs. Freezer vs. Microwave (F/Fr/M): All three of these objects have doors that

open the same way, and the appliances are co-located and placed against the same wall in

the kitchen.

2. Bathroom Hot Faucet vs. Cold Faucet (BH/BC): Both the faucets, are co-located on the

same sink, and have handles for operating them. However, the hot faucet is turned right to

left, and the cold faucet is turned left to right, to open them.

3. Kitchen Hot Faucet vs. Cold Faucet (KH/KC): Both the hot and cold faucets in the

kitchen, have knobs that are turned counter clockwise for the faucets to be opened.

The accuracy of using different features in classifying between sets of similar objects are

shown in Figure 5.8. Results show that orientation (O) features are the most accurate and

linear acceleration features are the worst for differentiating between F/Fr/M. This is because

all three objects have similar interface - handle that needs to be pulled outward in the same

way. Thereby resulting in similar linear acceleration signatures.

In differentiating between bathroom hot and cold faucets, the Linear Acceleration,Gravity

(LA,G) feature set performs the best. Since the hot faucet handle moves from left to right,
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Figure 5.9: Different sensing features are evaluated to determine person identification accuracy.
Linear Acceleration (L) based features do not perform as well as the orientation features
(Gravity (G) and 3-D orientation (O))

while the cold faucet handle moves from right to left, we believe that linear acceleration

signatures are sufficiently different between these two objects. In classifying kitchen hot and

cold faucets, the gravity features creates the most confusion between the two objects. The

kitchen hot and cold faucets are both knobs that turn counter clockwise to open. Therefore

the hand is tilted the same way to open/close both the objects. In this case, This is further

confirmed by the observation that the feature set Linear Acceleration,Orientation (LA,O)

performs the best in classifying these objects.

Identifying the Fixture User

Given that the feasibility studies show that it is possible to have distinct and repeatable

hallmarks for objects in a home, we now want to evaluate our main hypothesis, that is - if

we have an object usage event, and a set of people living in a home, how accurately can we

identify the object user. For evaluating our hypothesis, we use data from the real world task

based study and the in-situ study. The metric used in this section is Identification Accuracy
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Figure 5.10: An average accuracy of 80% is achieved with just a single training example for
each object gesture. More training examples bring incremental improvements in the accuracy

which is defined as the number of correct object user identified divided by the total number

of object usages.

The tasked study had pairs of participants using objects in a home. We simulated two

person scenarios from the in-situ data, by treating each of the ten 3-hour datasets as a

separate person’s dataset and performing object user identification on every combination of

two datasets. This resulted in 90 test cases of 3 hours each, which was then evaluated using

our approach.

Since our approach uses features from the three sensors in an IMU (accelerometer, gravity

and orientation), we varied the sensor features in the distance function to study which features

performed the best in terms of identification accuracy. In Figure 5.9, we can see that our

approach achieves 90% accuracy in the in-situ study based simulations using only orientation

parameters in the distance function. We achieve 85% accuracy for the tasked study, using

gravity and orientation parameters in the distance function. The linear acceleration features

in the distance function, perform the worst for both the in-situ and the tasked study. This
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may be explained in part that there might be variations in the force with which a person

uses the same object at different times. In general, the orientation features achieve higher

accuracy. This is possibly because the hand’s orientation, in terms of the gravity and the

compass direction in space, remains relatively constant, as the hand is constrained to face a

certain way to use an object.

An important factor in our approach is the amount of training data required for the system

to identify object users accurately, when an object is used. An ideal gesture recognition

system should be able to learn the most frequently occurring distinct gesture as hallmark

for each object in an unsupervised manner. However, this is a hard problem, because object

usage in real world is noisy and it is hard to separate the signal from the noise. Therefore,

we assume that every individual in the home needs to use the objects in the home at least

once in a training mode, before being able to use the system.

Figure 5.10 shows our system’s identification accuracy on varying the number of training

examples used. With just one set of training data for all the objects in the home, our system

can identify the correct person 80% of the time in the tasked study. With additional training

data, the identification accuracy improves incrementally. This is possibly because the training

data was used from the scripted study which probably did not include all possible variations

of people’s object usage gestures.

One of the limitations of the tasked study was that it was conducted with sets of only two

participants at a time in the test home. This was partly because of the smaller size of the

home, and the fact that having three or more people using objects simultaneously around

the home would be harder to track for ground truth. We were interested to know how the

system would perform in the presence of more individuals in a home. Therefore, we used

simulations from the data collected from the in-situ study to create scenarios with 2, 3, 4

and 5 people using objects at the same time. The number of object events for 2, 3, 4 and 5

people simulations were 3378, 22587, 167196, and 673857 respectively. The average person

identification accuracy was comparable for 2 and 3 people scenarios, and measured at 90%
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Figure 5.11: Highest accuracy is obtained when a sensor data size of +/- 4 seconds around
the object usage timestamp, is selected. The likelihood of an overlapping event from another
person increases with a larger temporal range of sensor data. Accuracy is low for smaller
sensor data size because the object monitoring hardware had a 1-3 seconds difference with
the time on the watch

and 84%. For the 4 person scenario, the average accuracy came down to 65% and was similar

for the five person scenario at 63.8%.

Sensitivity Analysis

In this section, we discuss how varying the technical parameters such as temporal range

of sensor data, and the window size around each peak in the segmentation section affects the

accuracy of the system. The metric used in this section is Identification Accuracy which is

defined as the number of correct object user identification divided by the total number of

object usages.

In our approach, we assume that there exists an system which records and reports every

time that an object is used in a home. To know how robust our system is to the differences

in time stamps between object monitoring and the wearable, it is important to how this

time difference affects identification accuracy. Researchers have explored many systems for

performing Non Intrusive Load Monitoring of appliances in a home. These systems are often
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Figure 5.12: Accuracy was highest with a frame size of 1 second around each peak of the
Linear Acceleration RSS. This may be due to the fact that time taken by people to physically
interact with objects in the home is usually small

not very accurate in terms of the reported time of object event. In such a scenario, we

evaluate how well our system can perform with increasing uncertainties about the actual time

of event. If the uncertainty is larger, we need to extract a bigger portion of sensor data from

the wearables of all the occupants. The problem with this is, if there are multiple people

actively using objects in a home at the same time, the chances of identifying the wrong

person increases.

According to Figure 5.11, extracting sensor data of window size +/-1, +/-2 and +/-

3 seconds gives low accuracy because the direct sensors and the wearables had a known

timestamp uncertainty of +/-3 seconds. Therefore, collecting data using a +/- 4 seconds

window resulted in the highest identification accuracy. It is the largest window size that

encapsulates the time difference between the two systems, as well as small enough to not

have overlapping object usage event by another individual.

Once we extract sensor data from the smart watch, we perform feature extraction on
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sensor data segments of a fixed window size around peaks of linear acceleration. In order to

identify the optimal window size of sensor data to be used for feature extraction, we varied

the window size starting from 0.33 seconds (10 samples) to 7 seconds (240 samples). We

observed that the highest accuracy is obtained when a frame size of 1 second (30 samples)

is selected around each peak, to be be processed for feature extraction. This maybe an

indication that most of interfaces of the objects present in our test homes typically required

only a short interaction time.

5.6 Discussion

In this work, we investigated the hypothesis that we can accurately identify object users in

a home by mining the IMU data from the wearables of home occupants. Despite a large

number of simultaneous object usages by the participants (50% of object usages were less

than 5 seconds apart) in our task-based study, we were able to identify the correct individual

with high accuracy. Based on our prior observations of how infrequently people actually use

objects in homes (Figure 5.6), we expect accuracy of our approach to increase much more in

real life.

Our system shows promise because it can start identifying individuals very accurately

with only one training example per object. So a person would simply have to install an app

on the wearable, use every object in the house just once to create a reference dataset, and the

system would be ready to work. Since wearables are readily available in marketplaces, one of

the biggest barriers to success of our approach at this point, is the commercial availability of

object monitoring systems such as NILM.

Our approach is not restricted to objects within homes only. Our approach is general

enough to be applied to other scenarios where there are physical interfaces, and we want

to know who is using the interface, given a fixed set of people, all wearing smart wrist
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devices. For example, this approach can be used to detect who is currently writing on a

smart whiteboard in a conference room.

5.7 Limitations

While our system shows promise, it has certain limitations too. For this approach to work, it

assumes that all home occupants who use objects, wear smart wrist devices on their dominant

hand. The system might identify an object user incorrectly, if the actual user is not wearing

a smart wrist device. The system might also identify object users incorrectly if a person uses

the un-instrumented or non-dominant hand to operate an object. Our main argument to

this problem is that people mostly tend to use appliances using their dominant hand, and

therefore wearing the wearable device on the dominant hand should be able to work for most

objects. Finally, we concede that while our approach is expected to work accurately with

objects having fixed locations in a home, we have to come up with newer ways to learn the

gestures required to operate non-fixed appliances such as hand blenders and hair dryers.

5.8 Conclusion

In conclusion, we present our work on performing object user identification, in which we

detected the presence of object hallmarks in the wearable wrist sensor to determine the

person who interacted with the object. We evaluated this concept with a smart home

application: recognizing who is using an object or appliance in a multi-person home by

combining smart meter data and wearables. Unlike other systems, our approach does not

mandate the instrumentation of any object with special sensors in the homes and can be

very well integrated with NILM systems. Our results show that our approach can correctly

identify the object user in 90% of the total 3378 object usage events in a 2-person scenario

and 84% accuracy for 22587 objects in a 3-person scenario.



Chapter 6

Level 3 - Using Raw Sensor Data to

Authenticate Object User

I

6.1 Introduction

One of the main concerns for the gesture based object user identification approach is that

for applications concerning security, privacy or confidentiality of information, these methods

may not be sufficient. A device can be spoofed to send a higher gesture matching score to

get identified as the object user. Therefore, for applications where identity of a user has to

be validated, the object initiates a third level of interaction with the Wearable that has been

identified as the object user. In this case, the object asks the Wearable to return the raw

IMU sensor data from a time window that extend from before the object was used to just

after it was used. The object computer certain features of the raw data, as well as, correlates

it with its own IMU data to authenticate the object user. We evaluated this approach with

Smartphones, where we intend to authenticate the owner of the phone, vs. other phone users.

According to a recent survey [87], existing authentication procedures are considered

cumbersome by as many as 30% of smartphone users who leave their phones unlocked.

93
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Figure 6.1: The third level of interaction correlates motion and orientation of the phone and
the wearable to authenticate smartphone user. Features from the sensor data are extracted
separately before and after the time when the touch event is initiated

As a result, smartphone manufacturers have developed different types of authentication

mechanisms [88] such as patterns, pin, facial recognition etc.

Most of the commercially available authentication mechanisms fall under one of two

categories:

1. Easy to use - for e.g., using presence of a nearby bluetooth device to unlock. In this, easier

the unlocking mechanism, higher the security risk.

2. One-time secure unlock - for e.g. patterns or pin. In this, once the device is unlocked, it is

not locked until the user shuts the screen off. Sharing phone with friends, for e.g., can allow

them access all the data on the phone. In fact sharing a photo with a person nearby, while

making sure they cannot swipe and access other photo, is a commonly recognized problem.
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Apps such as Focus [89] have been created that allows the user to restrict a friend’s access to

a predetermined set of photos.

In this work, we propose a different type of approach - one that not only offers ease of

use, but can also continuously guarantee the security of the phone’s usage by making sure

that every touch interaction on the phone belong to the phone’s owner. We propose to do so

using a paired wearable device being worn by the owner. The intuition behind our system is

that a wearable is usually present on the body of the phone owner, and its sensors can be

used to determine if the owner is actually interacting with the phone.

Using a wearable device to authenticate a phone may appear trivial, and the solution

simple, but there are many challenges that need to be addressed to design a robust solution.

An example of an obvious wearables based method is the use of Received Signal Strength

Indicator, a value that indicates the level of proximity of the wearable to the phone. If the

phone is detected to be close enough to the owner then it is unlocked. However, a major

caveat of this method is that proximity of the phone does not guarantee possession of the

phone. A phone could be close proximity of its owner (for example, on a coffee table), and

yet be accessible for use by others in the same location (other guests in the living room).

Another, obvious wearables based authentication appears to be the use of temporal

correlation the touch event in the phone with a motion event on the wearable device.

Temporally co-occurring motion and touch event does not imply that the device is in the

possession of its owner, as the owner could be performing some other activity resulting in a

motion at the same time that another person uses the phone.

In this work, we hypothesize that it is possible to correlate the motion and orientation

of the wearable and the phone, in order to authenticate the user, while ensuring a low false

acceptance rate. We evaluate the performance of a set of phone and wearable IMU sensor

features through three different user studies. We first perform a feasibility study with 13

participants who use the phone in different hand positions (Figure 6.2), where we test the

performance of different classifiers, as well as, how well the system works when trained with a
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Figure 6.2: Our approach works in different hand positions - the wearable may be worn in
the same hand as holding the phone, on the hand touching the phone, and the hand holding
and touching the phone. The only position in which our approach doesn’t work is if the
non-wearable hand holds as well as touches the phone

person’s data, and when trained on other persons’ data. We then created a proof-of-concept

system, and evaluated its performance with 10 participants using 9 sets of phone interactions

tasks. The system was not trained on any of their data previously to test if the users naturally

learned how to interact with the system. We also conducted an adversarial study with 10

users. In this study, we gave the phone to an adversary who tried to use the phone as the

actual phone user was engaged in performing other activities. A prototype of this concept

was recently demonstrated [90] at UbiComp’16 Demo Session, where many visitors who were

initially skeptical about the performance of this system were convinced that it worked when

they tried to use the phone as an owner, as well as adversary.

The main contributions of this work:

1. Algorithms for determining smartphone usage using IMU sensor on phone and a smart-

watch paired

2. A study (with 5000 touch samples spanning 13 individuals) and analysis of features

differentiating click vs. other activities
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3. A prototype use-case study with 10 individuals and analysis of the learnability of the

approach

4. An adversarial analysis with 10 individuals evaluating the false acceptance rate of the

approach

6.2 Related Work

Commercial smartphone manufacturers have included a wide range of device unlocking

mechanisms [88]. Some of these are - patterns, pin code, facial recognition, etc. Some LG

devices even have a unique knock code to unlock the device. Android has released a new

SmartLock feature [91] that does not lock the phone when it is within range of another

bluetooth device, e.g. a smart watch. While this is convenient, any other person in the same

location can also unlock the phone.

There have been many research prototypes that aim to implicitly authenticate users on

smart objects. Fiberio [63] proposes a rear-projected multitouch table that identifies users

biometrically based on their fingerprints during each touch interaction using a large fiber

optic plate that diffuses light on transmission, thereby allowing it to act as projection surface.

Capacitive fingerprinting [64] proposes a novel sensing approach based on Swept Frequency

Capacitive Sensing, which measures the impedance of a user to the environment across a

range of AC frequencies. Different people have different impedance profiles since they have

different bone densities and muscle mass yields.

The use of a trusted smart glove [65] was proposed where individual fingers are tagged

separately. A tag-aware surface tracks the location and orientation of these tags, while

identifying the wearer of the glove. Phone touch [3] is a technique which is based on

separate detection of phone touch events to identify multi-user interaction on a surface, which

determines location of the touch, and by the phone, which contributes device identity. The
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device-level observations are merged based on correlation in time. YouTouch [66] proposes

the use of a commodity RGB + depth camera in front of the wall, to track users on a

common collaborative surface and correlate them with touch events. Whenever the user’s

ID is occluded from the camera, they propose re-identifying the person by means of a color

histograms of body parts and skeleton-based biometric measurements.

Specifically, when applied to smartphone authentication, many research prototypes attempt

to use different touch or behavioral biometrics based methods.

SilentSense [62] proposes a framework to authenticate users implicitly using the user

touch behavior biometrics and the micro-movement of the device caused by user’s screen-

touch actions. A touch-based biometrics model of the owner is developed by extracting

some principle features, and then used to verify whether the current user is the owner or

guest/attacker. Another work proposes [92] to authenticate users mainly based on how

they input, using distinguishing features such as finger velocity, device acceleration, and

stroke time. Some other work has also been done to authenticate a user using their tapping

behavior [93, 94, 95]. It is however interesting to note that a mimicry attack based study [96]

has demonstrated that touch based implicit authentication fails against shoulder surfing and

offline training attacks.

Some proposed methods attempt to use the phone’s app usage and calling behavior to

authenticate users [67, 68]. However, this methodology takes a significant amount to time to

establish authentication, and therefore although it an implicit based, it cannot be used to

continuously authenticate users on smartphones.

Another thrust in implicit authentication attempts to use gait based features to authenti-

cate users as they are walking [69, 70]. However since the gaits of people are different on

different types of surfaces such as grass, road, snow, wet surface, and slippery surface, these

techniques have low true acceptance rates.

In a work that is closely related to ours, researchers [97] propose authenticating a user by

initiating a challenge-response protocol on-screen, requiring the user to perform a particular
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sequence of gestures. While interacting with this control, the server is continuously reading

IMU sensor data from connected wrist devices. It compares this sensor data with the touch

data transmitted by the client device and then calculates the correlation between them to

determine if the user is authenticated. This approach differs from ours in that it requires the

user to explicitly engage with the system for authentication.

6.3 Approach

Our approach is based on mainly the following three observations. When people wearing

a wearable device, use a phone, both the devices are present on the hand of the same

person, and therefore subject to similar patterns of linear acceleration. These devices also

register similar angular velocity patterns as the person’s hand makes small adjustments while

interacting with the phone. Furthermore, as human hands are constrained to face a similar

direction during phone usage, these devices are also coupled tightly in terms of their absolute

orientations. As a consequence, when a person with a wearable device also uses a phone, we

expect strong correlation in the IMU features of a phone and the wearable. Therefore, if we

measure appropriate IMU features of the two devices, it should be possible to authenticate

the owner of the phone.

IMU sensor is a set of three individual sensors - accelerometer, gyroscope and magne-

tometer, that allow it to capture different aspects of a device’s motion and position in space.

Since we want to ensure minimal delay in authentication process, in this paper, we focus

on time-domain IMU features. The delay introduced due to a continuous authentication

procedure such as ours, is perhaps more noticeable than a traditional one-time unlock scheme,

and therefore it needs to be minimal so that the end user does not feel interference with their

ability to interact with the device.

While it is important to explore the correlation of the smartphone’s IMU data with that

of the watch, we want to make sure that the smartphone’s IMU data is not correlated to a
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smartwatch’s IMU when the user is performing other tasks - such as walking, cleaning dishes.

This would prevent a malicious user with physical access to the phone from being able to

interact with it while the owner of the phone is unaware, and performing other activities.

6.3.1 System: Hardware and Sensor

In this paper, we explore the idea of implicitly authenticating every touch on a smartphone

using a wearable device. Our approach relies on time-domain IMU features on both the

wearable and the phone. Specifically, we are looking at linear acceleration, angular rotation,

and orientation in the world coordinate system. While angular rotation is directly obtained

from the gyroscope sensor in the IMU, linear acceleration and orientation are derived using

sensor fusion.

We use a Shimmer [98], which is a IMU device that calculates quaternions using IMU

sensor fusion algorithms. Using the quaternions, we calculate the gravity acting on the

device’s frame of reference, and therefore calculate linear acceleration by subtracting gravity

from absolute acceleration. We also use the quaternions to calculate the device’s absolute

orientation, expressed in terms of Euler Angles. For the smartphone, we use a Nexus 6

(Android). Android API offers multiple software sensors, which allowed us to directly obtain

the phone’s linear acceleration and orientation.

We sampled the IMU sensor on both devices at 100 Hz. This sampling frequency is

required in order to respond to every touch within time bounds of a person’s visual perception.

We don’t expect this to remain a static sampling frequency. In fact, when the devices are not

being used, they can be sampled at a much lower frequency in order to conserve battery. In

the current state of work, we set up the wearable (Shimmer) to continuously transmit all the

raw data to the phone, where each sample was marked with the received timestamp. The

received timestamp removed the need to synchronize the clocks of the two devices, and also

included the latency in the Bluetooth communication.
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Figure 6.3: Wearable’s linear acceleration patterns: A snapshot of 10 seconds compares the
acceleration signatures of touch interactions as well as other activities. The touch signal
consists of 8 phone touches which can be observed by the 8 peaks in the signal

6.3.2 Features used in Authenticating User

To authenticate a person on the smartphone, our approach co-relates the IMU data from

the paired wearable and the phone. Every time that a touch is sensed on the smartphone

screen, the system initiates the authentication method. The authentication method takes into

account the IMU data from both the devices from a time period before the touch (beforeT ),

and waits for some time to get the data after the touch (afterT ).

It then calculates individual features for the data obtained from before and after the

touch, and uses a rule based classifier to disambiguate whether to permit the touch.
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In this approach, we want to correlate not only the IMU data during and just after the

touch is initiated, but also before. This is because of the observation that when a person

is about to use the phone, they typically hold the phone for some time while locating the

region of the screen where they want to touch. We hypothesize that this results in a certain

amount of correlation between the phone and the wearable even before the touch.

The following sensor data is used for feature extraction - Root Mean Square of Linear

Acceleration (Acc), Root Mean Square of Angular Velocity (Gyro), Yaw (Y aw), Pitch

(Pitch), and Roll (Roll). This data is obtained for both the wearable (W ) and the phone

(P ). Therefore, every time a touch is initiated, the data streams obtained are:

- Linear Acceleration before touch - AccPbeforeT , Acc
W
beforeT

- Angular Velocity before touch - GyroPbeforeT , GyroWbeforeT

- Yaw before touch - Y awP
beforeT , Y awW

beforeT

- Roll before touch - RollPbeforeT , RollWbeforeT

- Pitch 500ms before touch - PitchP
beforeT , P itchW

beforeT

- Linear Acceleration 120ms after touch - AccPafterT , Acc
W
afterT

- Angular Velocity 120ms after touch - GyroPafterT , GyroWafterT

- Yaw 120ms after touch - Y awP
afterT , Y awW

afterT

- Roll 120ms after touch - RollPafterT , RollWafterT

- Pitch 120ms after touch - PitchP
afterT , P itchW

afterT

Different features are computed on this data to encapsulate different intuitions about the

data.

1. Wearable signal characterization - The most fundamental insight is that the motion

signature of the wearable device is different from motion signature during other activities (as

can be seen in Figure 6.3). To characterize the raw signal, we compute the following features

on the following data streams:

1. Maximum value of raw signal:
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AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT , Y awW
beforeT , Y awW

afterT , RollWbeforeT , RollWafterT ,

PitchW
beforeT , PitchW

afterT

2. Minimum value of raw signal:

AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT , Y awW
beforeT , Y awW

afterT , RollWbeforeT , RollWafterT ,

PitchW
beforeT , PitchW

afterT

3. 25th, 50th and 75th percentile value of raw signal:

AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT , Y awW
beforeT , Y awW

afterT , RollWbeforeT , RollWafterT ,

PitchW
beforeT , PitchW

afterT , AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT , Y awW
beforeT , Y awW

afterT ,

RollWbeforeT , RollWafterT , PitchW
beforeT , PitchW

afterT , AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT ,

Y awW
beforeT , Y awW

afterT , RollWbeforeT , RollWafterT , PitchW
beforeT , PitchW

afterT

4. Average of raw signal:

AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT

5. Standard deviation of raw signal:

AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT , Y awW
beforeT , Y awW

afterT , RollWbeforeT , RollWafterT ,

PitchW
beforeT , PitchW

afterT

The wearable’s linear acceleration and angular velocity also registers peaks, which are

points where the motion abruptly changes direction. The number of peaks within a time frame

indicates the number of times the motion changes direction. The average height of the peaks

indicate the magnitude of the motion that is changing, and the prominence characterizes the

relative height of the peak with respect to the lowest contour line. We characterize some of

the peaks observed in the signal of the following data:

6. Number of peaks in raw signal:

AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT

7. Average height of peaks in raw signal:

AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT

8. Average prominence of peaks in raw signal:

AccWbeforeT , AccWafterT , GyroWbeforeT , GyroWafterT ,
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In addition to characterizing the wearable’s motion and orientation, we also correlate the

IMU sensor data of the wearable and the phone. We correlate the signals in place, as well as

by shifting the two signals. This is to account for the latency in the wearable data that may

cause similar events to register at slightly different times on the phone. We shift one of the

signals from -50 ms to 50 ms, and calculate the maximum correlation resulting between the

two signals. The correlation features are computed on the following data:

9. Correlation in raw signal:

AccWbeforeT and AccPbeforeT , AccWafterT and AccPafterT , GyroWbeforeT and GyroPbeforeT , GyroWafterT

and GyroPafterT , AccWbeforeT and GyroWbeforeT , AccWafterT and GyroWafterT

10. Max correlation in shifted raw signal:

AccWafterT and AccPafterT , GyroWafterT and GyroPafterT , AccWafterT and GyroWafterT

Finally, the difference in the orientations of the wearable and the phone is computed,

before and after the touch event.

11. Difference in orientations of devices:

Y awW
beforeT and Y awP

beforeT , Y awW
afterT and Y awP

afterT , RollWbeforeT and RollPbeforeT , RollWafterT

and RollPafterT , PitchW
beforeT and PitchP

beforeT , PitchW
afterT and PitchP

afterT

6.3.3 Prototype

We created a proof-of-concept of our approach using an Android app. The app had a set

of multiple choice questions, and text for people to scroll and read. The app was built on

top of an existing app that received Shimmer’s IMU data continuously on an Android phone

and logged it. When a person touches one of the UI components in the app, such as the

radio button, if the system authenticates the touch, then the UI components react the touch

normally, otherwise, the UI responds with a deselected component to indicate that the touch

was not validated.
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6.4 Feasibility Study

To evaluate the feasibility and inform the selection of classifier for our approach, we conducted

a 13 person study.

6.4.1 Procedure

Our approach is mainly evaluated on its the ability to validate every touch event with the

IMU sensor data that is generated when the wearable device is used to either hold the phone

or interact with the phone. The touch event should not be validated by the IMU sensor data

generated when the phone’s owner is engaged in other activities.

The aim of this study was to answer the following questions:

1. What is the performance of different classifiers in differentiating between valid and non

valid touch events?

2. How well does the system perform when it is trained on a user’s touch data?

3. How well does the system perform when it is not trained on a user’s touch data?

4. What is the effect of the amount of training data on the accuracy of a system, w.r.t. a

new user?

To evaluate the features in differentiating between these validating and non-validating

features, we collected data of valid use of phone by 13 participants, as well as IMU sensor data

from five activities (cooking, typing, walking, household chores, sleeping) being performed

in-situ for an hour each by a participant. The acceleration patterns can be seen in Figure 6.3.

To collect valid IMU sensor data, we asked participants to wear the wearable device, and

use an app developed by us. The task given to the participants was to answer a few multiple

choice questions, and scroll through some text. The participants were asked to repeat this

task six times. Each time, the participant changed the hand positions of the devices. The

participants used the devices in different combinations of - a. which hand holds the phone, b.

which wears the smartwatch, and, c. which hand is used to interact with the phone. The
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combinations for the hand holding the phone (Hp), the hand wearing the watch (Hw), and

the hand touching the phone screen (Ht) are expressed in tuples of (Hp, Hw, Ht), where the

hand H can be Left(L) or Right(R). For eg., LLL means. the phone is held in the left hand,

watch worn on the left hand, and the left hand is used to interact with the phone. There are

eight combinations - LLL, RRR, LLR, RRL, RLL, LRR, LRL and RLR. In our evaluation,

we included six of the eight combinations. Our approach cannot detect phone usage in

configurations LRL and RLR, as the watch is worn on a non-moving hand, that cannot detect

phone usage. Overall, this study resulted in 5000 touches across all participants.

For each touch, we compute the features discussed earlier, and generate a valid touch

dataset. To compute the negative examples, we use the phone’s IMU data and correlate it

with IMU sensor data obtained from the insitu activities (such as cooking, walking etc.) in

order to generate an invalid touch dataset. We then evaluate the ability of the classifiers in

differentiate between the touches in the valid and invalid datasets.

6.4.2 Analysis

We trained different different classifiers on the dataset containing the valid and invalid touch

features, and evaluated them using 10-fold cross validation. Each classifier was evaluated

on two metrics - True Acceptance Rate (TAR), and False Acceptance Rate (FAR). True

Acceptance Rate is defined as the ratio of the number of true acceptances divided by the

number of identification attempts. False Acceptance Rate is defined as the ratio of the

number of false acceptances divided by the number of identification attempts. Ideally, an

authentication system should have a high TAR and a low FAR.

The first question that we aimed to answer was, how well can we classify and differentiate

between the validated touch features and the invalid touch features. We tested several

popularly used Machine Learning algorithms in Weka. Since the dataset contained unbalanced

classes, we first balanced the classes using SpreadSubsample [99], which randomly samples

and reduces the majority class to match the size of the minority class. The dataset was
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Figure 6.4: Classifier evaluation: Random Forest and Boosted JRip classifiers have the highest
true acceptance rate, as well as the lowest false acceptance rates, making them better suited
for an authentication system. While Random Forest slightly outperforms the Boosted JRip
classfier, we use the latter in our Android based prototype, for faster response time

evaluated using 10-fold cross validation. The classifiers that we tested were - Random Forest,

J48, JRip, BayesNet, 1Bk, Ada1 Boosted JRip, REPTree, and SMO. The results can be seen

in Figure 6.4. In terms of TAR, Random Forest and Boosted JRip perform the best with 97%

and 96% accuracy in identifying true touch features. These two classifiers also have the lowest

FAR at 4% and 4.5%. While Random Forest performs slightly better than Boosted JRip, we

selected the Boosted JRip classifier for developing our proof-of-concept system. This was

because Weka outputs the classifier model generated by Random Forest as a file that needs

to be executed with a Random Forest classifier JAR. In contrast, boosted JRip output a set
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Figure 6.5: Per participant analysis: Training per participant performs with an average
f-score value of 96.4%, while leave-one-out (LOO) method performs with an average f-score
value of 92.3%. LOO indicates that learning valid touch features from other participants may
be suboptimal for some participants such as P2, P4, P8 and P12

of rules for classification. These rules can be easily imported to Java code, and incorporated

directly in the Android App’s code. In a time critical application such as authentication,

having a classifier directly embedded in code is much faster than having to invoke a jar to

classify data. We continue to use a boosted JRip for the rest of the analysis in this paper.

We performed sensitivity analysis of the look back time window from the time of touch

(beforeT ), and varied it from 300 ms to 1.5 seconds. We also varied the look ahead window

from the time of touch (afterT ), from 120 ms to 240 ms. Although, there didn’t appear

to be a significant difference in varying these time windows, the results indicated a slightly
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higher accuracy at a 600 ms look back time, and 120 ms look ahead time. We used these

values in generating in the feature extraction stage.

The next question that we wanted to answer was how well does the classifier perform when

trained on individual participants. For this analysis, we created 13 different datasets, one for

each participant. Each dataset contained valid IMU features from a single participant, and

the invalid IMU features from the insitu data of other activities. The classes were balanced

using SpreadSubsample. We used a boosted JRip classifier and measured the classifier’s

performance in terms of F-Score using 10-fold cross validation. F-Score is defined as the

harmonic mean of precision and recall of a classifier’s output. As can be seen in the Figure 6.5,

the classifier achieved an average of 95% accuracy per participant. For participants P2,

P6, P7, P10 and P13, it actually performs at 97% accuracy or higher. The worst f-score is

obtained for P12, at 94%.

While the previous analysis established that it was indeed possible for a classifier to learn

every individuals valid touch IMU data features, an important question in an authentication

system such as ours is, how well does training the system on a population translate in terms

of performance to a person completely new to the system. This is important because it is a

measure of how well the system will work out-of-the-box for a new user. For this analysis,

we performed a leave-out-out validation study. In this for every participant, we created a

test dataset using the participant’s valid touch IMU features, and a training dataset using

the valid touch IMU features from all other participants, and invalid touch features from the

other insitu activities. Figure 6.5 shows the results of the Leave-One-Out analysis. For 5 out

of the 13 participants, the classifier performed with an f-score of more than 98%. For four

of the participants, the f-score was greater than 90%. However for four of the participants-

P2, P4, P8, and P12, the classifier performed poorly with an f-score ranging from 75%-86%.

Therefore, while the system was able to account for the way 9 out of 13 participants used the

phones, it wasn’t able to do so as accurately for 4 participants. However, our earlier analysis

did indicate that when we trained the system on these participants’ individual data, it was
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Figure 6.6: Sensitivity analysis of training data: When the number of samples in the training
dataset is varied from 12 to 120, we can observe that for some participants such as P7,
classifier is able to achieve very high accuracy with very few samples. The classifier achieves
an average of 95% accuracy after training on an average of 84 samples for all participants

able to achieve an average of 95% f-score. This indicates that when the system is installed

on a new user’s phone, while there may be a learning phase required for some users, the

system would eventually adapt to the person’s individual style of interacting with the phone.

If we compare the LOO and the per-person analysis in Figure 6.5, we make an interesting

observation - the LOO classifier performs much better than the personalized classifier, for

some participants - P5, P6, P7, P9, and P13. This indicates that personalized classifier

sometimes over-trained, which the LOO was able to mitigate with a wider variety of phone

usage styles incorporated due to data obtained from a larger population.
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Figure 6.7: Prototype interaction accuracy: The maximum TAR per session indicates that
even though initially some users may initially not be able to interact easily on a system that
is not trained on them, eventually most of them intuitively figure out a good way to interact
with the phone. The adversarial case shows the low false acceptance rate of the system

Since, the system may need to train on an individual’s style of using the phone, we

performed a sensitivity analysis of the effect of training data on the accuracy of the system.

For every iteration we removed 12 data samples from the person’s set of valid touch samples

and added it to the training dataset. The remaining touch data samples were used to create

a testing dataset. We varied the number of valid touch IMU data samples from 12 to 120.

The classifier was evaluated using f-score, which is the harmonic mean of precision and recall.

The results of the sensitivity analysis can be seen in Figure 6.6. On an average, with just 12

samples, the classifier was able perform with a 77% f-score, while with 84 touch samples, the
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Figure 6.8: Per Session Accuracy: Validation accuracy improves with every session of tasks
indicating the participant starts to figure out how to use the system

classifier was able to perform with more than 95% accuracy.

6.5 Prototype Interaction Study

One of the main take-away messages from our feasibility study was that our approach works

well when the system trains for the individual using the phone. The leave-one-out analysis

revealed that there were users for whom the system does not perform accurately when it

didn’t train on them. Given this result, we anticipated that when a user encounters a system

that is not trained for them, they might learn to adapt to the system instead.
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6.5.1 Procedure

Having conducted offline analysis, we decided to actually build a prototype based on the

classifier resulting from the previous study. We decided to test this system with users that

the classifier was not trained on.

The aim of this study was to answer the following questions:

1. What is the true acceptance rate of the system, when it is used by people that the system

is untrained for?

2. What is the perception of the users for a non-personalized system in terms of their ability

to get the system to respond, the noticeability of the device’s lag in response to their touch,

and how acceptable is the lag to them?

3. Do users learn to adapt to the system intuitively, based on the system’s authentication

response to their touches?

To observe the users’ interactions with a non-personalized authentication system, we

implemented the Boosted JRip classifier trained on the data from the 13 participants from

the feasibility study, in our Android app. The participants were asked to perform touch

interactions in our app.

While we had asked our participants to use each of the six hand configurations explicitly

in our feasibility study, in this study we let the participants wear the wearable on their

non-dominant hand (where people usually prefer wearing a watch), and let them hold the

phone as they liked. The app’s basic design remained the same - multiple choice questions,

where every touch on the radio button or the ‘Submit’ button was validated using our

pre-trained classifier. Each participant had to answer a set of MCQ as a task, and they had

to perform a total of 9 sessions of tasks. At the end of each session, we asked the participant

to give the phone back to the researcher, and then use their experience interacting with the

smartphone to respond to a questionnaire. The questionnaire had three statements:

1. I was able to get the device to respond to my touches.

2. The lag in the device’s response to my touches is noticeable to me.
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Figure 6.9: Device Response: For the baseline case, almost all participants felt they were
able to get the device to respond to their touches. Once the authentication system kicked
in, there was a temporary dip in their response, although eventually it settled higher at an
average perception of ‘Agree’

3. The lag in the device’s response to my touches is acceptable to me.

The participants were asked to mark their responses to the statements on a five-point

Likert scale:

Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree

After responding to the survey, they were handed the phone back by the researcher, and

they started to work on a new session of task. Out of the nine sessions of task, the first session

did not have the authentication system active. Therefore, all touches made by the user in

the first session were authenticated by default. We considered this session as the baseline,

and compared the participants’ responses to the first session to the responses received in the
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Figure 6.10: Noticeability of device’s lag in response: The baseline response was ‘Disagree’,
which is a result of Android’s inherent system delay. When the authentication system kicked
in, the average response increased to ‘Agree’, though it eventually settled to ’Neutral’ by the
end of the task sessions

other eight sessions. However, none of the participants were informed of this difference. The

participants were informed that in every task, the system would try to authenticate every

touch made by them. Their objective was to try to get the device to respond to their touches.

If the phone did not seem to respond to their touch, they were free to change how they

interacted with the phone to make it work for them. We were interested to see if they were

able to retain an idea of the configuration that worked for them, intuitively over different

sessions, when they picked up the phone from the researcher and started a new task.
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Figure 6.11: Acceptability of device’s lag in response: The baseline response was ‘Agree’.
Once the authentication system kicked in, it dropped to slightly below ‘Neutral’, and improved
and fell a couple time before settling at ‘Neutral’ by the end of the task sessions

6.5.2 Analysis

In the prototype interaction study, since each participant was wearing the wearable device while

using the phone, all touches made by them should ideally have been validated. Therefore, we

evaluate the performance of the prototype using True Acceptance Rate, the ratio of validated

touch events over all touch events. Figure 6.7 shows the performance of the prototype in

validating the touches made by the participants. While reviewing these results, it is important

to keep in mind that this classifier is untrained on any of the users that were interacting

with it in this study. On an average, 74% of touches made by the participants across all
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sessions were accepted by the system. This can be attributed to the fact that when the

participants started interacting with the system, they would not know how to get the system

to respond to them. Figure 6.7 also shows the max accuracy obtained across all sessions by

the participants. On an average, the maximum TAR across all participants was 88%, which

confirmed our speculation that eventually the participants started to figure out how to get

the system to respond to them.

We also analyzed the True Acceptance Rate of the system per session for each participant.

The results can be seen in Figure 6.6. The aggregate performance for each session across all

participants demonstrates the improvement in the TAR over the sessions. In the first session,

the average performance across all participants was approx. 59%, while by the last session,

the average performance improved to 82%. While this result is very encouraging, we would

like to highlight three participants - P3, P7 and P10. Each of these participants, in one of

the middle order sessions seem to have been able to improve their device responses. However,

they did not seem to be able to replicate what worked for them, and eventually ended up

staying almost at par with their performance in the first session.

We also asked the participants to mark their responses on a survey questionnaire at the

end of each session. There were a total of nine sessions, of which the first one did not invoke

the authentication system, and is considered the baseline for the responses. The participants

were not informed about the differences in the sessions. The responses to the first survey

question by each participant is shown in Figure 6.9. The average response to the question

about their ability to get the device to respond to them in the baseline session seems to be

‘Strongly Agree’. This can be attributed to the fact that the authentication system was not

active in this session, and therefore all touches made by the participant were accepted by the

system. In the second session, which is when the authentication kicked in, the participants

started to face difficulties in getting the phone to respond to their touches. Corresponding to

the second session, we observe a dip the average response from ‘Strongly Agree’ to ‘Neutral’.

Over the remaining sessions, this response improves and ends on ‘Agree’ by the ninth session.
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Figure 6.12: Median number of touches that were allowed, before the system displays a
strong password screen upon detecting k number of consecutive invalid touches. The average
number of touches across all participants for the values of k from 1 to 5 are 1.1, 1.4, 1.8, 2
and 2.55

Figure 6.10 shows the participants’ responses to the second question of the survey. This

question asked them to rate if they could notice a lag in the device’s response to their

touches. In the baseline session, the average response to this question is close to ‘Disagree’.

Its interesting to note that this response is not ‘Strongly Disagree’ for the baseline, which

implies that the participants were able to notice the lag in Android’s default response to

touches. The biggest change in this response can be observed at the second session, which is

when the authentication system starts working, and the average response reaches ‘Agree’.

However, this response starts dropping and ends at ‘Neutral’ by the ninth session. Similarly,
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Figure 6.13: Maximum number of touches that were allowed, before the system displays a
strong password screen upon detecting ‘k’ number of consecutive invalid touches. The average
number of maximum touches the adversaries were able to achieve for the values of k from 1
to 5 are 5.7, 11.8, 12.4, 13.5 and 15.3

as can be seen in Figure 6.11, the acceptability of the device’s lag starts at ‘Agree’ at the

baseline sessions (and not ‘Strongly agree’), and while it drops off at the second session to a

point mid-way between ‘Neutral’ and ‘Disagree’, it settles back at ‘Neutral’ by the end of

ninth session.

6.6 Adversarial Study

We earlier looked at an offline analysis of a false acceptance rate in the feasibility study, where

we observed the ability of the classifier to differentiate between valid touch IMU features
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and IMU features of other in-situ activities. We decided to put the system through a more

rigorous test in active adversarial situations.

6.6.1 Procedure

The adversarial study was conducted with teams of two participants, where one participant

acted as the adversary trying to gain access to the phone, while the other participant was the

actual phone user, who was engaged in performing other activities. In this study, we recruited

the participants who had previously participated in the Prototype Interaction study to act as

adversaries, as we expected them to have gained some insight about how the authentication

system might work.

In this study, the actual phone owners (wearing the wearable device), was asked to perform

three different tasks - walk around the room, make notes on a white board and flip through

the pages of a book. The total study was conducted for 15 minutes, and each task was

performed for 5 minutes. Other than these broad instructions, the phone owners were not

instructed on how they specifically executed each task. While the phone owner was engaged

in performing these tasks, the adversary was given the smartphone, and asked to try to get

the device to respond to their touches. They were given full freedom to move around as they

liked, mimic the phone owners and do whatever they wanted to in order to get the phone to

respond to them.

6.6.2 Analysis

The system’s performance in terms of its resistance to the invalid touch events is measured

by False Acceptance Rate, ratio of invalid touch events that are authenticated by the system

to the total number of invalid touch events. The FAR for each participant as an adversary

are reported in Figure 6.7 to contrast against the True Acceptance Rate of the participant

in the Prototype Interaction Study. The average FAR across all participants is 13.8%. It

is interesting to observe the participants (P6 and P9), who were able to get the device to
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respond to them with the highest TAR in the prototype interaction study, were also the ones

least able to hack the system, receiving the lowest FAR in the adversarial study. Opposite

is true for P10, whose TAR in the previous study was the lowest, while the FAR in the

adversarial study was the highest.

We further analyzed the output of the adversarial study to test if introducing a strong

authentication mechanism, such as a password, after a certain number of consecutive invalid

touch events would be helpful in limiting the amount of information that an adversary could

have access to. We varied the number of consecutive invalid touches (k) required to trigger

a password from 1 to 5. The result of this analysis can be seen in Figure ??. Figure 6.12

shows the median number of touches that the adversary is able to get validated before the

password is asked. The average number of touches across all participants for the values of k

from 1 to 5 are 1.1, 1.4, 1.8, 2 and 2.55. While this number is encouraging, we also analyzed

the worst case scenario - the maximum number of touches each of these adversaries were able

to authenticate before the system would display the password screen in Figure 6.13. The

average number of maximum touches the adversaries were able to achieve for the values of

k from 1 to 5 are 5.7, 11.8, 12.4, 13.5 and 15.3. These numbers indicate that there is still

room for improvement because in the worst case with 5-15 clicks the adversary can easily

gain access to emails, and other personal data on the phone.

6.7 Limitations

While encouraging, our evaluation is limited in some ways. We recruited a total of 23 different

users across the three different studies that we conducted. It would be interesting to evaluate

our approach with a much larger user base. Also at this point, we demonstrated through

offline analysis that our system was able to learn its user’s pattern of interacting with a phone,

and was able to achieve 95% accuracy after training on 84 samples across all participants.

We also demonstrated that on an average the participants are able to learn how to use a
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system that is not trained on them. The final system would incorporate a more symbiotic

relationship between the phone and the user, where both would be learning at the same time,

and therefore in such a scenario, we speculate the user should be able to get the device to

respond accurately much faster. One of the main limitations that made it hard for us to

build such a system was Android’s security mechanisms that restrict apps from gaining access

to all touch events in the phone. An ideal study would involve us actually building a lock

screen app that would be monitoring all touches and validating them using an active learning

classifier. Our system would clearly benefit from having an longitudinal study evaluating the

insitu performance. Our proposed approach currently does not work in a particular hand

position, when the wearable device is worn on the hand that is neither used to hold the

phone or touch the phone. Our proposed approach also does not work in the scenario where

a phone user is holding the phone in the hand wearing the wearable device, and someone

else touches the screen. Future work in this area includes testing out approach in many

other scenarios (such as walking, train), and even more rigorous adversarial attacks. With

further efforts in this direction, we hope that the use of wearable device in implicitly and

continuously validating every touch on smartphone would become a practical approach that

can ensure security of a person’s private data without being cumbersome to use.

6.8 Conclusion

We have proposed a new approach for implicitly and continuously authenticating a smartphone

owner using a paired wearable device worn by the owner. Current security mechanisms are

not only weak, in that once a device it authenticated, it remains such until the screen is

switched off, but are also viewed as cumbersome by many smartphone users. The aim of this

paper has been to discover a set of features that can be used to validate every touch made on

the phone using data from the IMU sensors of the phone and the wearable device.

Using data from a 13-participant study, we evaluate the feasibility of our approach.
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Classifiers such as Random Forest and Boosted JRip performed with a high True Acceptance

Rate of 96% and a low False Acceptance Rate of 4%. We observed that training per participant

gives a high average f-score of 96.4%, while leave-one-out method performs with an average

f-score of 92.3%. We created a prototype of our approach to test how it works with users it

has not been trained for. While the average TAR across all participants was 74%, the best

TAR of the system across all sessions was 88%. We also conducted an adversarial study in

which we evaluated the system’s False Acceptance Rate when the phone’s owner was engaged

in other activities, while the adversary tried to interact with the phone. The average FAR

across all participants was 13.8%. If we introduce a strong authentication mechanism upon

detecting a certain number (k) of consecutive invalid touches, the median number of valid

touches an adversary would be able to make before being blocked by the system, for the

values of k from 1 to 5, are 1.1, 1.4, 1.8, 2 and 2.55.

Future work in this area includes validating these results in a longitudinal study, where

the system is able to perform active learning based on the individual phone owner’s touches.

With further effort in this area, we hope that wearable devices will become a practical

approach that users can rely on for providing providing security without having to engage in

any explicit and cumbersome process.



Chapter 7

Conclusion

7.1 Summary

The main focus of this dissertation was to investigate how different levels of data shared

by the Wearable with the Smart Object can be used for performing implicit object user

identification and authentication. Specifically, we looked at three different levels of data

sharing and interaction. In the first level of interaction, when an object is used, it searches

for the identity of the users closest to it. If only one user is detected, then the same user

must have used the object. However, when there are multiple users detected, the first level of

interaction is not sufficient. We looked at how heuristics based on past object usage can be

used to make a learned guess about the most probable object user. If the object does not

have the history of usage of every user it has to choose from, or if certain objects are used

equally or randomly by individuals (e.g. lights), then the use of heuristics does not help in

guessing who used the object. At this point, the object initiates the next level of interaction

with the Wearable. At this level of interaction, the object queries the devices nearby to

respond with how well their motion data matches the gesture required to interact with the

object. However, this method is vulnerable to being spoofed, as devices may maliciously

respond with a higher matching score. Therefore this method cannot be used for sensitive
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and privacy critical applications. The third level of interaction is used for applications where

it is important to validate that a user is the actual object user. In this stage, the identified

user is queried for their raw sensor data, which is analyzed and correlated with the object’s

sensor data at a millisecond level accuracy.

7.2 Contributions

Some of the main contributions of this dissertation are:

1. Evaluated the use of room level granularity of location tracking in performing object

user identification and compared it to more precise coordinate level tracking. Results

show that user identification accuracy of heuristics augmented room level tracking

granularity is comparable to coordinate level tracking.

2. Evaluated the use of potential users’ wrist motion sensors to detect the unique fingerprint

of the object used in three different studies - feasibility study which was conducted

in controlled experiments, real world task emulation study with pairs of participants,

as well as a simulated study in which in-situ hand gesture data was used to emulate

multiple potential object users.

3. Evaluated a set of features that can be used to validate touches made on a smart phone

using data from the IMU sensors of the phone and the wearable device. Offline analyses

of our approach using a 13 participant feasibility study, show promising results. We

also developed and tested a prototype with 10 other participants to validate the true

acceptance rate of the system. We also conducted a 10 participant adversarial study to

determine the false acceptance rate of the system.
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7.3 Limitations

While the results of our work are promising, there are some known limitations in our

evaluation:

1. We evaluate the first level of interaction, which uses location information, only with

objects in a home environment with pairs of residents. A more generic evaluation would

look at the accuracy of this approach in different environments, and larger number of

potential object users.

2. We evaluate the next level of interaction, which uses a matching score to detect which

potential object user’s hand motion best matches the gesture required to interact with

the object in a constrained conditions: there were only sets of two potential object

users to select from, and the objects had a fixed location and position in the home

environment. A more robust evaluation would involve evaluating this approach with

larger sets of potential object users, as well as with mobile objects.

3. Our user authentication work, which was the third level of interaction, was evaluated

in a Smartphone authentication use case. To evaluate how generalizable the approach

is, we need to evaluate this approach with other objects as well.

7.4 Future Research Directions

The limitations of our work set the tone for future work in this area. We need to be able

to make our approach more generic, require less training, and be robust to a large set of

potential object users. This is a much harder problem, because currently the features used for

gesture recognition rely on a database of training samples from every potential object user.

Using features that are independent across users will help reduce the training requirement of

this approach. Its also interesting to explore the authentication work in domains of other

objects, specially objects that are fixed, such as a whiteboard. We want to explore fixed
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objects, because their motion data would be much more weakly co-related with the wearable

device, than a mobile object, such as a smartphone.
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