

A Dissertation

Presented to

the Faculty of the School of Engineering and Applied Science

at the

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy, Computer Science

by

Process State Capture and Recovery

in High-Performance Heterogeneous Distributed

Computing Systems

Adam John Ferrari

© Copyright by

All Rights Reserved

Adam John Ferrari

January 1998

iv

Abstract
Process Introspection is a fundamentally new solution to the process state capture and recov-

ery problem suitable for use in high-performance heterogeneous distributed systems. A process

state capture and recovery mechanism for such an environment has the primary requirement that it

must be platform-independent: process checkpoints produced on a computer system of one archi-

tecture or operating system platform must be recoverable on a computer system of a different

architecture or operating system platform. The central feature of the Process Introspection

approach is automatic transformation of program code to incorporate state capture and recovery

functionality. This program modification is performed at a platform-independent intermediate

level of code representation, and preserves the original program semantics. The attractive proper-

ties of this approach include portability, ease of use, and flexibility with respect to basic perfor-

mance trade-offs and application-specific requirements. Our solution is novel in its true platform

and run-time system independence—no system support or non-portable code is required by our

core mechanisms. Experimental results obtained using a prototype implementation of the Process

Introspection system indicate this mechanism can be applied to computationally demanding scien-

tific applications automatically, resulting in very low run-time overhead (typically below 10%)

and efficient state capture and recovery service.

v

Acknowledgments
I would like to thank my committee for their guidance, insight, and thoughtful reading of this

dissertation. Special thanks to my advisor, Andrew Grimshaw, for believing in this project and for

helping me reach this goal. Thanks to Mentat/Legion folks past and present for listening to ideas,

coming to practice talks, and for putting up with me at meetings. Thank you to Mike Lewis for a

combination of meticulous editing for language, insightful technical criticism, and willingness to

read all of the possibly excessive number of pages located beyond this one. Thanks also to Vaidy

Sunderam, who first taught me how to do research.

Greatest thanks to Michele Ierardi for understanding about the hundred and one late nights,

for encouraging when things were bad, for cheering when things were good, and for liking nerds

(well, at least one). Thanks to my parents for always encouraging me to be an individual, and for

buying me the Atari 800 on which I hacked my first hundred thousand lines or so. Finally, thanks

to Clio for understanding more than most people.

vi

Contents
Abstract iv

Acknowledgments v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation. 1

1.1.1 High Performance Heterogeneous Distributed Computing 1

1.1.2 Process State Capture and Recovery . 2

1.2 The Heterogeneous Process State Capture Problem. 4

1.3 Design Goals. 6

1.4 Solution Overview . 9

1.5 Organization . 11

2 Background and Related Work 12

2.1 High Performance Heterogeneous Distributed Systems. 12

2.2 The Need for Process State Capture and Recovery 15

2.2.1 Load Balancing and Load Sharing. 15

2.2.2 Fault Tolerance . 16

2.3 Process State Capture and Recovery . 17

2.3.1 Homogeneous Systems . 17

2.3.1.1 Kernel Level Mechanisms . 17

2.3.1.2 User Level Mechanisms . 18

2.3.2 Heterogeneous Systems . 19

3 Process Introspection 23

3.1 System Model . 23

3.2 Process Model. 25

3.3 Process Introspection . 29

3.3.1 State Capture Transformations . 30

3.3.2 State Recovery Transformations . 32

vii

3.3.3 Optimizations. 34

3.4 External State . 35

4 Correctness Discussion 37

4.1 Heterogeneous Process State Capture Correctness. 38

4.1.1 General Definition . 38

4.1.2 Restricted Definition . 40

4.2 Process Introspection Correctness . 44

4.2.1 Restrictions . 47

4.3 Correctness Examples. 49

4.3.1 Loop Reordering . 49

4.3.2 Inline Subroutines . 51

4.3.3 Code Motion . 53

5 Library Implementation 56

5.1 System Implementation Overview . 56

5.2 Library Overview . 58

5.3 Library Implementation . 60

5.3.1 Buffer Module . 60

5.3.2 Type Description Table . 62

5.3.3 Typed Input/Output Module . 63

5.3.4 Global Variable Table . 65

5.3.5 Heap Allocation Module . 66

5.3.6 Pointer Description . 67

5.3.6.1 Pointer Offset Translation. 70

5.3.6.2 Pointer Resolution Ordering . 71

5.3.7 Stack Management. 72

5.3.8 Code Location Table . 73

5.3.9 Event Module. 74

5.3.10 Checkpoint Coordinator. 74

5.4 System Service Wrappers . 76

viii

6 The APrIL Source Code Translator 79

6.1 Intermediate Representation . 79

6.2 APrIL Transformations. 80

6.2.1 Poll Points . 81

6.2.1.1 Poll Point Placement Policies 83

6.2.2 Function Prologues . 86

6.2.3 Function Epilogues . 88

6.2.4 Module Initialization . 89

6.2.5 Heap Allocation Transformations . 91

6.2.6 Marshalling Functions . 93

6.3 Pre-processing. 94

6.3.1 Variable Declaration Motion . 94

6.3.2 Function Call Motion. 95

6.3.3 Function Call Separation . 97

7 Applications and Performance Results 99

7.1 Performance Metrics. 99

7.1.1 Performance Overhead . 99

7.1.2 State Capture and Recovery Costs. 101

7.2 Experimental Setup. 103

7.3 Basic Numerical Applications . 104

7.4 NAS Benchmark Kernels . 111

7.5 Environmental Simulation . 116

7.6 Biological Sequence Comparison. 120

7.7 Performance Discussion . 125

8 Extensions 127

8.1 Additional Programming Languages . 127

8.1.1 Fortran . 130

8.1.2 C++ . 135

8.2 Supporting Threads. 141

ix

9 Conclusions and Future Directions 150

9.1 Contributions . 150

9.2 Future Work . 151

Appendix A: Performance Data 155

A.1 Basic Numerical Applications . 156

A.2 NAS Benchmarks. 166

A.3 Environmental Simulation . 174

A.4 Biological Sequence Comparison . 176

x

List of Figures
Figure 1.1 Heterogeneous process state capture and recovery. 5

Figure 3.1 A metasystem. 24

Figure 3.2 The program model. . 26

Figure 3.3 Program execution on the IR virtual machine. 29

Figure 3.4 Creation of an introspective program.. 30

Figure 4.1 Equivalent continuous executions of a program. 40

Figure 4.2 Consistency points. 43

Figure 4.3 Axpy loop. 49

Figure 4.4 Axpy loop, transformed. 50

Figure 4.5 Axpy invocation, transformed. . 51

Figure 4.6 Code motion. 53

Figure 4.7 Transformed code motion example. 54

Figure 4.8 Transformed example, code motion applied. . 55

Figure 5.1 Using the Process Introspection system. 58

Figure 5.2 PIL modules and dependencies. . 60

Figure 5.3 PIL buffer usage example.. 62

Figure 5.4 Type registration examples. . 63

Figure 5.5 Typed I/O interface. . 64

Figure 5.6 User defined marshalling function registration. . 64

Figure 5.7 Global variable registration. . 65

Figure 5.8 PIL heap management example. 67

Figure 5.9 Pointer description interface.. 68

Figure 5.10 Pointer description. 69

Figure 5.11 Pointer offset translation algorithm. 71

Figure 5.11 Local variable registration example. 72

Figure 5.12 Explicit stack save/restore interface examples. 73

Figure 5.13 Function pointer registration. . 74

Figure 5.14 Process Introspection file interface usage. . 76

Figure 6.1 An optional poll point.. 82

xi

Figure 6.2 A mandatory poll point.. 83

Figure 6.3 A function prologue. transformation . 88

Figure 6.4 A function epilogue. . 89

Figure 6.5 Heap management expression grammar.. 91

Figure 6.6 Type allocation heuristic examples. . 92

Figure 6.7 Function call motion, if statement example. 96

Figure 6.8 Function call motion, for loop example.. 96

Figure 6.9 Function call separation example. 98

Figure 8.1 Alternate language support using the existing implementation. 128

Figure 8.2 Alternate language support using a universal IR. 129

Figure 8.3 Alternate language support using source-to-source translation. 130

Figure 8.4 An optional poll point in Fortran. 130

Figure 8.5 A mandatory poll point in Fortran. 131

Figure 8.6 A function prologue transformation in Fortran. 132

Figure 8.7 Registration of variables in common blocks. . 135

Figure 8.8 C++ constructor/destructor transformations.. 137

Figure 8.9 Wrapper new operator registration. . 138

Figure 8.10 A template function. . 139

Figure 8.11 Overloaded type number functions. . 139

Figure 8.12 C++ exception handling example.. 141

Figure 8.13 A simple threads interface. . 143

Figure 8.14 Wrapper semaphore record.. 147

Figure 8.15 Wrapper semaphore P operation. . 147

Figure 8.16 Wrapper semaphore V operation. 148

xii

List of Tables
Table 7.1 Test platforms. . 103

Table 7.2 Basic applications, average Onorm. 105

Table 7.3 Basic applications, optimizer effectiveness. 106

Table 7.4 Basic applications, average Oopt. . 107

Table 7.5 Basic applications, per-platform average Oopt. 108

Table 7.6 Basic applications, poll point counts. 108

Table 7.7 Basic applications, average poll point intervals on x86. 109

Table 7.8 Basic applications, time to checkpoint/restart on x86. 110

Table 7.9 NAS benchmarks, average Onorm.. 112

Table 7.10 NAS benchmarks, optimizer effectiveness. 113

Table 7.11 NAS benchmarks, average Oopt. 113

Table 7.12 NAS benchmarks, poll point counts. . 115

Table 7.13 NAS benchmarks, average poll point intervals on x86. 115

Table 7.14 NAS benchmarks, time to checkpoint/restart on x86. 116

Table 7.15 LAI, overhead and optimizer effectiveness. 117

Table 7.16 LAI, poll point counts and average poll point intervals. 120

Table 7.17 LAI, checkpoint/restart costs. 120

Table 7.18 FASTA, overhead and optimizer effectiveness. 122

Table 7.19 Smith-Waterman, overhead and optimizer effectiveness. 122

Table 7.20 FASTA, poll point counts and average poll point intervals. 123

Table 7.21 Smith-Waterman, poll point counts and average poll point intervals. . . 123

Table 7.22 FASTA, time to checkpoint/restart. 124

Table 7.23 Smith-Waterman, time to checkpoint/restart. 124

Table 7.24 Performance with and without marshalling functions. 125

Table A.1 Matrix multiply, execution times (seconds). 156

Table A.2 Matrix multiply, overhead and optimizer effectiveness. 156

Table A.3 Matrix multiply, poll point counts. . 157

Table A.4 Matrix multiply, average poll point interval (milliseconds). 157

Table A.5 Matrix multiply, time to checkpoint/restart (milliseconds). 157

xiii

Table A.6 Gauss-Seidel, execution times (seconds). 158

Table A.7 Gauss-Seidel, overhead and optimizer effectiveness. 158

Table A.8 Gauss-Seidel, poll point counts. . 159

Table A.9 Gauss-Seidel, average poll point interval (milliseconds). 159

Table A.10 Gauss-Seidel, time to checkpoint/restart (milliseconds).. 159

Table A.11 Quicksort, execution times (seconds). 160

Table A.12 Quicksort, overhead and optimizer effectiveness. 160

Table A.13 Quicksort, poll point counts. 161

Table A.14 Quicksort, average poll point interval (milliseconds).. 161

Table A.15 Quicksort, time to checkpoint/restart (milliseconds). 161

Table A.16 Gaussian elimination, execution times (seconds). 162

Table A.17 Gaussian elimination, overhead and optimizer effectiveness. 162

Table A.18 Gaussian elimination, poll point counts. 163

Table A.19 Gaussian elimination, average poll point interval (milliseconds).. 163

Table A.20 Gaussian elimination, time to checkpoint/restart (milliseconds). 163

Table A.21 Conjugate gradient, execution times (seconds). 164

Table A.22 Conjugate gradient, overhead and optimizer effectiveness. 164

Table A.23 Conjugate gradient, poll point counts. 165

Table A.24 Conjugate gradient, average poll point interval (milliseconds). 165

Table A.25 Conjugate gradient, time to checkpoint/restart (milliseconds). 165

Table A.26 NAS IS, execution times (seconds). . 166

Table A.27 NAS IS, overhead and optimizer effectiveness. 166

Table A.28 NAS IS, poll point counts. 167

Table A.29 NAS IS, average poll point interval (milliseconds). 167

Table A.30 NAS IS, time to checkpoint/restart (milliseconds). 167

Table A.31 NAS EP, execution times (seconds). 168

Table A.32 NAS EP, overhead and optimizer effectiveness. 168

Table A.33 NAS EP, poll point counts. . 169

Table A.34 NAS EP, average poll point interval (milliseconds).. 169

Table A.35 NAS EP, time to checkpoint/restart (milliseconds). 169

Table A.36 NAS MG, execution times (seconds). 170

xiv

Table A.37 NAS MG, overhead and optimizer effectiveness. 170

Table A.38 NAS MG, poll point counts. . 171

Table A.39 NAS MG, average poll point interval (milliseconds). 171

Table A.40 NAS MG, time to checkpoint/restart (milliseconds). 171

Table A.41 NAS CG, execution times (seconds). . 172

Table A.42 NAS CG, overhead and optimizer effectiveness. 172

Table A.43 NAS CG, poll point counts. 173

Table A.44 NAS CG, average poll point interval (milliseconds). 173

Table A.45 NAS CG, time to checkpoint/restart (milliseconds). 173

Table A.46 LAI, execution times (seconds). . 174

Table A.47 LAI, overhead and optimizer effectiveness. . 174

Table A.48 LAI, poll point counts. 175

Table A.49 LAI, average poll point interval (milliseconds). 175

Table A.50 LAI, time to checkpoint/restart (milliseconds). 175

Table A.51 FASTA, execution times (seconds). . 176

Table A.52 FASTA, overhead and optimizer effectiveness. 176

Table A.53 FASTA, poll point counts. 177

Table A.54 FASTA, average poll point interval (milliseconds). 177

Table A.55 FASTA, time to checkpoint/restart (milliseconds). 177

Table A.56 Smith-Waterman, execution times (seconds). 178

Table A.57 Smith-Waterman, overhead and optimizer effectiveness. 178

Table A.58 Smith-Waterman, poll point counts. . 179

Table A.59 Smith-Waterman, average poll point interval (milliseconds). 179

Table A.60 Smith-Waterman, time to checkpoint/restart (milliseconds). 179

1

Chapter 1
Introduction
 This dissertation describes the design, implementation, and empirical analysis of a fundamen-

tally new approach to the problem of capturing the dynamic state of a process in a platform-inde-

pendent form, and then later recovering that process state in a semantics-preserving manner,

possibly on a different type of host computer system. This new approach, called Process Introspec-

tion, centers on the semantics-preserving, typically automatic transformation of programs to incor-

porate autonomous state capture and recovery functionality. The attractive properties of Process

Introspection include portability, ease of use by the programmer, flexibility with respect to basic

performance trade-offs, and applicability in a variety of systems contexts and for a wide range of

applications with distinct requirements. Our solution is novel in its true platform and run-time-sys-

tem independence—our core process state capture and recovery mechanisms require no system

support or non-portable code. Furthermore, Process Introspection is the first heterogeneous pro-

cess state capture and recovery mechanism to have demonstrably low impact on performance.

1.1 Motivation

1.1.1 High Performance Heterogeneous Distributed Computing

Recent developments in software systems and the growing availability of higher-performance

computing and networking hardware have made commonplace the use of networks of worksta-

tions, personal computers, and supercomputers as virtual, distributed-memory parallel machines,

or metasystems, for solving computationally demanding problems [1, 34, 38, 41]. The combina-

tion of heterogeneous architectures and operating system platforms within a high-performance dis-

tributed metasystem gives rise to a number of problems not present in homogenous distributed

systems and parallel computers. The complexity of varying architectural features such as data rep-

2

resentation and instruction sets, and varying operating system features such as process manage-

ment, communication, and file system interfaces must be masked from the application

programmer. Heterogeneity also complicates existing problems in parallel and distributed systems.

For example, task placement may depend on processor speed and type, the set of operating system

services that are available on nodes, and network interconnection bandwidth and latency, among

other factors.

Despite the added complexity and challenges involved in heterogeneous distributed comput-

ing, the promise of increased performance afforded by a larger hardware base, along with the abil-

ity to further improve performance by mapping sub-tasks of a computation to the most appropriate

available hardware (called superconcurrency by Freund and Cornwell [32]) makes heterogeneous

computing a promising area of research.

1.1.2 Process State Capture and Recovery

Early experiences with metacomputing systems and applications have demonstrated the need

for a process state capture and recovery mechanism—a mechanism to automatically checkpoint

the state of a running program in some stable form and then later restart the program from the point

of capture, possibly on a different host. A substantial body of research has already demonstrated

the utility and desirability of such a mechanism in homogeneous environments. For example, pro-

cess migration policies supporting load sharing and/or fault tolerance can be based on a process

state capture facility (e.g. Condor [54]). Process state capture and recovery is also the basis of a

large class of backward error recovery schemes documented in the fault tolerance literature [24].

Beyond failure resilience, the ability to “roll back” a computation afforded by a process state cap-

ture and recovery mechanism can be used to implement the semantics of certain programming

environments. For example, systems such as Time Warp [43] and Hope [19] rely on process state

capture and recovery to provide semantic guarantees such as the causal ordering of message deliv-

3

ery to a process.

Well-documented uses for a process state capture and recovery mechanism such as load shar-

ing and fault tolerance address issues of increasing importance in metacomputing environments.

The inherent variety of processor capabilities and the often unpredictable loads in such systems

due to resource sharing and varying quality-of-service policies make the migration of computa-

tionally demanding processes an imperative. Similarly, the growing scale of metasystems and the

applications that run on them has increased the likelihood that one or more components of a pro-

gram will be subject to node failure, thus strengthening the argument for increased employment of

fault tolerance techniques. However, beyond these existing uses for process state capture and

recovery, the availability of a such a mechanism in the metasystem context also opens up new pos-

sibilities. For example, a metasystem such as Legion [38] could use process state capture and

recovery for improved resource management; if the number of active entities in the system became

greater than could be efficiently supported, the system could temporarily preempt the execution of

some jobs by checkpointing and terminating their processes, then later restarting them when the

system load became lighter1. Another possible application is platform-independent debugging

using checkpoints and message logs to replay a process from a given point in execution, or stati-

cally examining the state of a process as captured in a checkpoint. The increasing importance of

existing uses of process state capture and recovery, together with the new possibilities introduced

by metasystems, has made the design of a such a mechanism a key research issue in

metacomputing [74].

Whereas a number of distributed systems running on homogeneous processors exhibit some

ability to capture and restore the state of a running process, this feature is absent from most exist-

ing heterogeneous computing systems; because of the additional inherent complexity introduced

by heterogeneity, few designs for such a facility have been developed to date. In homogeneous

1. This is similar to a uniprocessor system swapping out a process to decrease the page fault rate.

4

systems, process state capture and recovery mechanisms can simply and directly manipulate the

state of a process without semantic analysis of that state. For example, the state of a Unix process

is simply the contents of its address space, plus its process control block (register values, file

descriptor table, etc.). These entities are already conveniently available to the Unix kernel, making

the internal state of a Unix process straightforward to capture. As long as the process is restarted

on the same kind of Unix system and processor on which the checkpoint was produced, the con-

tents of the address space need not be interpreted by the kernel to restore the process. Unfortu-

nately, the address space and kernel process control information would be meaningless if used to

restart the process on a differing Unix implementation or architecture. Differences in data repre-

sentation, instruction sets, address space sizes (e.g. 32-bit vs. 64-bit addressing), and address space

layout make the raw process state incompatible across different platforms.

In a heterogeneous environment, the state of a process cannot be captured using the naive

approach that suffices in the homogeneous case. To mask the varying features of a migrating pro-

cess’s environment in a heterogeneous system, a state capture mechanism must examine and cap-

ture the logical internal structure and meaning of the process’s address space contents as well as

any external operating system specific information such as file system or intra-process communi-

cation state. This prospect is somewhat daunting—the logical point in execution, the call stack (or

call stacks, if threads are supported), complex data structures, the logical structure and contents of

heap allocated memory, and all other process state must be analyzed and captured in a platform-

independent format, masking data format differences, addressing differences, instruction set dif-

ferences, and so on.

1.2 The Heterogeneous Process State Capture Problem

In this dissertation we describe the design and implementation of an effective, general, and

portable solution to the heterogeneous process state capture and recovery problem. Before doing

5

so, we must more precisely delineate this problem.

A mechanism solving the heterogeneous process state capture and recovery problem must

provide the ability to generate a checkpoint for an active process—a complete description of that

process’s state and point in execution. The mechanism must also support the later use of that

checkpoint to restart a process with equivalent state and at an equivalent point in execution, possi-

bly on a different type of computer from the one on which the original the checkpoint was created.

Figure 1.1 depicts the basic operation of a heterogeneous state capture and recovery mechanism.

The possibility of cross-platform restarts leads to the most fundamental solution constraint: the

mechanism should generate platform-independent checkpoints—i.e. checkpoints produced on a

computer system of any architecture and operating system should be recoverable on a system of

any other architecture and operating system.

As stated thus far, we wish to design a mechanism to capture the state of a running program

on one type of computer, and restart that program from an equivalent point in execution on a dif-

ferent type of computer. This general problem statement permits a wide range of possible solu-

tions. For example, one straightforward approach is to use an interpreted language, as in mobile

 Figure 1.1: Heterogeneous process state capture and recovery.

process

step 1
step 2

program:
 step 1
 step 2
 step 3
 step 4

restarted
process

step 3
step 4

checkpoint

state
capture

state
recovery

restart nodesource node

6

agent systems such as Sumatra [1] and Ara [67,68]. In these designs, the interpreter acts as a vir-

tual machine that can artificially homogenize a system composed of heterogeneous elements.

Whereas these solutions are appropriate for typical agent-based applications such as informa-

tion retrieval, in this work we wish to address the requirements of a different application domain:

computationally demanding scientific applications—programs for which the requirement of an

interpretive execution environment would lead to unacceptable performance degradation. The tar-

get application domain for our mechanism includes, but is not limited to, computationally demand-

ing sequential applications and high-performance distributed memory parallelized scientific

programs exhibiting medium to coarse granularity.

Given this target application set, the intended environment for our solution is a high-perfor-

mance distributed system consisting of a variety of node computing systems: a metasystem. The

nodes may be of differing processor types, architectures, and configurations, and may run operat-

ing systems of differing types, capabilities, and versions. Processes, as defined by local operating

systems, run on the nodes, typically executing in native code form due to performance consider-

ations. Systems that experience node failures and that exhibit load imbalance among the nodes, for

example due to resource sharing, are of primary interest.

1.3 Design Goals

Based on our statement of the heterogeneous process state capture and recovery problem, and

on our target environment and application area, we state the following design goals for our solu-

tion:

• Ease of Use—When possible, the mechanism should be fully automatic, requiring little or no

effort on the part of the application programmer. Such full automation should be possible for

programs expressed in a platform-independent manner, i.e. programs that do not rely on spe-

cific hardware or software features of certain computer systems (e.g. we would not expect to

7

migrate a program running in an embedded system controlling a robot to a general-purpose

workstation automatically without special programmer effort to implement an emulation of the

program’s robot environment on the workstation). A large subset of problems of interest in

high-performance computing can be solved using platform-independent programs—evidence

of this fact includes the large number of scientific numerical applications that are implemented

in Fortran and that are basically portable across standard Fortran implementations.

In some cases, certain modules of a program will inherently rely on platform-specific

functionality. For example, many programs rely on the file system interface of the environ-

ment in which they execute. In other cases, certain program modules will not be best

expressed using a platform-independent specification. For example, given the well-known

observation that most programs spend 90% of their execution time in less than 10% of their

program text, it is often desirable to implement certain critical sections of a program in care-

fully hand-optimized assembly language. Since certain modules will need to be expressed

using platform-dependent specifications, a convenient user interface should be provided for

incorporating state capture and recovery support into architecture-dependent modules in a

manner that is interoperable with automatically supported modules. This interface should give

the programmer flexibility to customize and tune a module’s state capture and recovery mech-

anism when appropriate; at the same time, it should be easy to use.

• Efficiency—Ideally, we would like a heterogeneous state capture and recovery mechanism to

perform with comparable costs to a checkpoint mechanism designed for a homogeneous sys-

tem. For example, on a Unix system, the checkpoint of a running process should not take sig-

nificantly longer than producing a core dump of the process. Similarly, the checkpoint of a

Unix process should be comparable in size to a core dump of the process. Naturally, heteroge-

neity will add some cost, but as a goal the heterogeneous mechanism should remain compara-

ble to the base-case costs of a homogeneous mechanism.

8

In addition to providing efficient state capture and recovery, the mechanism should intro-

duce low run-time execution speed overhead (ideally, no overhead should be introduced). In

particular, if checkpoints are not performed during a certain period of execution, a process

with state capture and recovery service available to it should not run significantly slower than

an optimized version of the code without this service available over the same period. This goal

might be stated simply as, “Don’t pay if you don’t play.” Because Process Introspection is

based on the modification of application programs, this design goal is especially important in

our solution. Whereas our mechanism will definitely introduce a certain amount of overhead,

the degree to which this introduced overhead can be controlled is of particular interest. As a

design goal, we wish to achieve a net introduced overhead of less than 10%.

• Responsiveness—The state capture mechanism should provide low checkpoint-request

delay—i.e. the time between a when checkpoint is scheduled or requested and when the

checkpoint begins to be produced should be significantly less than the time required to pro-

duce the checkpoint. This precludes techniques such as waiting for the program to reach a

known, simple, consistent state (e.g. waiting for a complex call stack to finish and return to the

main function, checkpointing, then proceeding with the next iteration).

• Generality—The mechanism should be appropriate for use with a wide variety of programs

that are written in a variety of languages, and that solve a wide range of problems. This pre-

cludes special purpose toolkits appropriate only for problems of a certain structure such as

Dome [7], which provides automatic state capture and recovery for array data types suitable

for use in data-parallel applications. Furthermore, the mechanism should be adaptable to a

variety of different heterogeneous environments (e.g., a PVM environment [34], a Condor-like

system [54], etc.).

9

1.4 Solution Overview

The Process Introspection solution to the heterogeneous process state capture and recovery

problem is based on the premise that programs can be modified to incorporate their own check-

point and restart functionality. Put simply, programs are modified to be both self-describing and

self-recovering. Furthermore, for program modules that are expressed in a platform-independent

form, the code modifications required to support Process Introspection are performed automati-

cally by a compiler.

The most basic Process Introspection program modifications enable a process to capture the

state of any data structure in its address space automatically and in a platform-independent form,

and to recover data structures stored in this platform-independent form. These modifications

involve the addition of code to maintain a record of the size and type of all memory regions used

by the process. Furthermore, a mechanism based on these memory-region descriptions is added to

the process to allow the automatic production of a logical, platform-independent description of any

data region, and conversely to allow the automatic recovery (i.e. re-allocation and re-initialization)

of any memory region based on its logical description. This level of program modification

addresses issues such as data-format and address space structure differences, but does not address

the capture and recovery of a process’s point in execution.

The capture and recovery of a process’s execution environments (i.e. call stacks and threads)

are supported through a specialized use of subroutine call and return mechanisms. The subroutine

return mechanism is used to traverse a process’s invocation stacks during state capture, and the

subroutine call mechanism is used to artificially reconstruct the stacks during state recovery. The

code modifications performed in order to support this specialized use of subroutine call and return

mechanisms involve the introduction of poll points and subroutine prologues.

 Poll points are introduced points in execution at which the process determines if a checkpoint

should be produced (analogous to Bus Stops in Heterogeneous Emerald [82]). At a poll point, if

10

the process determines that a checkpoint should be produced, code is executed to save the state of

the current active subroutine and to return immediately to the calling subroutine. Poll points are

placed throughout the program in a manner that ensures that after any subroutine return during a

state capture operation, a poll point is encountered immediately. At this next poll point, the state of

the calling subroutine is saved, the calling subroutine immediately returns to its caller, and the pro-

cess is repeated until the base subroutine activation is reached.

 Similarly, to effect restarts, the process employs subroutine prologues. When a process state

recovery is initiated, the base subroutine is activated and executes an added prologue that restores

its local state. This prologue then jumps to the appropriate location in the subroutine, which will be

a call to the next subroutine in the checkpointed stack. When activated, this subroutine recovers its

state, jumps to the appropriate location in the code, and the process repeats itself until the stack is

completely restored.

This method of process state capture and recovery uses only common features of high-level

procedural languages, and certainly could be employed directly by a programmer. The problem

with applying such a strategy by hand is that it is a complex, error-prone task, and furthermore it is

a task neither directly related to the actual problem the programmer is trying to solve nor within

the area of expertise of our expected user community of domain scientists. Hand coding would

thus likely lead to increased development and debugging time. Fortunately, as will be discussed in

Chapter 6, for many programs these modifications can be performed automatically by a source

code translator.

The thesis of this dissertation is that Process Introspection is an effective, correct, efficient

solution to the heterogeneous process state capture and recovery problem. The general strategy of

Process Introspection, discussed at a high level in this section, and in greater detail in Chapter 3,

can be used as the basis for a useful, automatic, portable, and efficient implementation of a hetero-

geneous process state capture and recovery mechanism. This mechanism can be applied to non-

11

trivial, high-performance applications, for which it can provide efficient state capture and recovery

service while introducing very low performance overhead, typically less than a 10% slowdown

over standard, optimized native-code executables.

1.5 Organization

The rest of this dissertation is structured as follows to support this thesis: In Chapter 2 we dis-

cuss background and related work. In Chapter 3 we describe the Process Introspection model and

fundamental algorithms in detail. In Chapter 4 we discuss the correctness of the proposed process

state capture and recovery algorithms. In Chapter 5, we discuss the implementation of a run-time

library to support the application of the Process Introspection methodology. In Chapter 6, we

describe the implementation of a source code translation tool that automatically applies the Pro-

cess Introspection methodology to platform-independent programs written in ANSI C. In Chapter

7, we describe application performance experiments using the prototype system implementation.

In Chapter 8, we discuss the design of extensions to the current system implementation, including

support for additional programming languages, and support for programming constructs such as

threads. Finally, in Chapter 9, we present conclusions and discuss future work on this research.

12

Chapter 2
Background and Related Work
 Before discussing Process Introspection in greater detail, we first examine background and

related work in the area of process state capture and recovery in heterogeneous computing envi-

ronments. We begin by examining general background work in high performance heterogeneous

computing. We then examine motivating applications for a process state capture and recovery

mechanism. Finally, we examine past and current research directly related to the process state cap-

ture and recovery problem, concentrating on systems and designs that support heterogeneity.

2.1 High Performance Heterogeneous Distributed Systems

Over the past decade, the use of heterogeneous collections of computing systems intercon-

nected by one or more networks as a single logical computational resource has grown. This tech-

nique, referred to variously as network heterogeneous computing[25], mixed-machine

heterogeneous computing[74], or metacomputing[38, 75] is a promising area of research for a

variety of reasons. For example, in a metacomputing environment, tasks can be moved to the com-

puting resources best suited for their needs during different phases of computation, an idea termed

superconcurrency in Freund and Cornwell [32]. Furthermore, metacomputing promises to enable

the use of unprecedented amounts of computational power for individual applications. The evolu-

tion of computing technology and economics over time results in heterogeneity among the avail-

able resources. Even within a single institution, the set of resources available to a user is almost

always heterogeneous. Metacomputing allows individual applications to harness the aggregate

power of these inherently heterogeneous collections of resources.

The hardware makeup of a metacomputing system can vary widely, ranging from local area

networks such as Ethernet or FDDI connecting personal computers, to high performance networks

13

such as ATM or Myrinet connecting high-end workstations and MPPs. The key distinguishing fea-

ture of a metacomputing environment is software. Metacomputing software is responsible for pro-

viding a unified programming and resource management interface to a complex heterogeneous

collection of hardware resources. Although numerous software systems that support some form of

network heterogeneous computing have been documented and/or are available [88], the majority

of use has thus far been based on a small set of popular, simple packages such as Parallel Virtual

Machine (PVM) [81, 34], and the Message Passing Interface (MPI) [41].

PVM provides the programmer with a library interface that supports an explicit message-

passing, distributed memory MIMD programming model. Library routines are provided to create

new tasks, marshal vectors of basic data types into buffers, and pass message buffers between

tasks asynchronously. In addition to the library programming interface, the PVM software system

provides tools for specifying and managing a virtual machine on which applications will execute.

Similar to PVM, the Message Passing Interface supports an explicit message passing, MIMD

programming model through a library interface. In its most recent version (MPI-2 [61]), MPI adds

to the PVM level of functionality features such as a uniform parallel I/O interface, collective com-

munication operations (library calls that specify communication patterns between more than two

tasks, e.g. all-to-all), and one sided communication (or remote memory access, the ability of one

task to asynchronously read or write another task’s address space).

Whereas MPI, PVM, and the large class of systems that is essentially isomorphic to these [88]

provide essentially identical message-passing based programming models, a few network hetero-

geneous systems have supported alternative, higher-level models. For example, Linda [13] pro-

vides a shared tuple space into which tasks can read and write data in order to cooperate with one

another. Mentat [37] supports a C++-based programming model in which the basic units of com-

putation and scheduling are active objects that communicate via asynchronous methods. In Men-

tat, arguments to methods are passed according to their data-dependence graph, thereby

14

minimizing communication. Furthermore, processes do not block for method results until those

results are needed, a policy that increases concurrency. This model of computation is known as

macro-dataflow.

MPI, PVM, and other first-generation metacomputing systems provide a relatively low-level

programming and resource management interface, and thus have been employed most successfully

in simple, small-scale environments. Recently, a number of projects have begun to examine the

issues involved in larger-scale metacomputing. One such project, Globus [31], provides support

for a number of pre-existing parallel computing interfaces (such as MPI) in a metacomputing envi-

ronment with enhanced resource management tools, security features, and a wide-area-aware com-

munication system, Nexus [29]. Similar “collection and integration of separate services”

architectures are employed in a number other metacomputing systems such as the Berkeley NOW

project [2], MOL [71], and I-Soft [30]. An alternative approach to metacomputing employed by

the Legion project [39, 40] is based on distributed active objects. In Legion, all system and appli-

cation software components are active objects with logically disjoint address spaces [52]. These

objects interact via non-blocking, data-driven method invocations, in a manner based on the under-

lying concepts of Mentat. A primary advantage of the Legion object-based approach is the flexibil-

ity to modify or replace both system and application components using a single underlying object

model, programming interface, and tool set. Systems such as Legion and Globus promise to

increase both the scale and availability of metacomputing, and further increase the need for

research in metacomputing issues.

Although metasystems software is not yet mature, early results on heterogeneous network

computing testbeds have been promising. For example, a detailed performance study of the NAS

benchmark suite [5] using PVM on the HEAT testbed [51] was presented by White, Alund, and

Sunderam [93]. Their results showed that relatively small clusters of workstations could provide

performance within an order of magnitude of a 1-node Cray Y-MP. The Legion group has reported

15

performance results obtained on a wider area, more significantly heterogeneous campus-wide

testbed [40]. Using a biological sequencing application [66], they found that a 64 node heteroge-

neous network of workstations was able to perform as well as a 32-node Intel Paragon. These

experiences are just two examples of the growing documented evidence of the excellent results

achievable through metacomputing [60].

Applications experiences have lead metacomputing practitioners to a number of general

observations about heterogeneous computing. First, although metacomputing can be beneficial for

both computationally intensive jobs and short-running interactive jobs (e.g. through remote execu-

tion and load sharing), a key to the effective use of metacomputing environments is the manage-

ment of large, computationally expensive, possibly parallel applications [3]. Secondly, effective

parallel programs in a heterogeneous environment will almost always exhibit coarse granularity,

that is, a high amount of computation performed for each byte of information communicated

between tasks [93].

2.2 The Need for Process State Capture and Recovery

Whereas the ability to capture and restore the state of a process has been available for some

time in a variety of homogeneous distributed systems [4, 20, 54, 64, 70, 86], this feature has been

absent in most metacomputing environments. This is due primarily to the difficulty of implement-

ing such a feature, not due to a lack of need for such a mechanism.

2.2.1 Load Balancing and Load Sharing

It has long been recognized that adaptive load sharing as enabled by a process state capture

and recovery mechanism is an effective means of increasing performance (e.g. throughput,

response time, etc.) in a distributed system [22, 63, 73]. Systems such as NOW [1] and

Condor [54] rely on the ability to capture the state of a process on one node and resume that pro-

16

cess on a different node to achieve more equitable distributions of work among the nodes in a

metasystem. A performance study performed on the Berkeley NOW system [3] determined that

not only was adaptive load sharing effective at increasing the performance of both parallel and

sequential applications in a shared environment, but the reduction of impact on interactive users by

parallel jobs afforded by load sharing was critical to the social acceptance of parallel computing in

a shared network system.

The issue of adaptive load sharing is likely more critical in metasystems as compared to

homogeneous distributed systems. Metasystems suffer an increased likelihood of load-imbalance,

even when used in a dedicated mode for parallel applications, due to the varying performance of

heterogeneous nodes. Added to this is the shared nature of many metasystems, where interactive

users and long-running parallel applications must compete for resources.

2.2.2 Fault Tolerance

The ability to capture and later recover the full state of a process is the basis of a large class of

backward error recovery techniques for fault tolerance [24]. For example, systems such as Fail-

safe PVM [50] rely on this ability. The use of process checkpointing for rollback-recovery proto-

cols typically relies on the ability either to synchronize the checkpoints of cooperating tasks (for

example, using the checkpoint coordination algorithms of Chandy and Lamport [18] or

Mattern [59]), or to propagate the rollback of related tasks to reach a consistent state [89]. How-

ever, the development of such coordination and propagation schemes is orthogonal to the hetero-

geneity of the computing nodes involved, and thus we can concentrate on the issue of process state

capture and recovery confident that existing higher-level application checkpoint/restart techniques

will remain applicable in heterogeneous environments. This observation is important—the need

for fault tolerance in metasystems is significant and is growing with the scale of those systems. In,

For example, the Legion group has reported observed fault rates as poor as one node failure per

17

hour on a 64-node campus-wide metasystem testbed [40].

2.3 Process State Capture and Recovery

Thus far, we have examined background work in metacomputing systems, and motivated the

need for a process state capture mechanism in such environments. We now focus on directly

related work—designs and implementations of systems that support process state capture and

recovery. Before considering mechanisms intended for use in heterogeneous systems, it is worth

examining the existing mechanisms designed for use in homogeneous environments.

2.3.1 Homogeneous Systems

2.3.1.1 Kernel Level Mechanisms

Process state capture mechanisms to support activities such as process migration and check-

point/restart have been the subject of a great deal of research, both in terms of mechanisms and

policies [62, 64, 76]. Most homogeneous state capture mechanisms are implemented inside operat-

ing systems at the kernel level due to efficiency concerns and because a process’s external state is

more readily available at that level. For example, systems such as Charlotte [4], Sprite [20],

DEMOS/MP [70], and the V-System [86] utilize kernel-level state capture and recovery mecha-

nisms to support process migration.

Although these and other kernel-level homogeneous state capture mechanisms differ in cer-

tain performance-related respects, they share a common basic approach to capturing the state of a

process. The state of the process is commonly defined to consist of [26]:

• virtual memory—code, stack, and data segments of the process’s address space

• open files—file descriptors, file pointers, I/O buffers, etc.

• communication buffers—connection information, message buffer contents, etc.

• processor state—current condition codes, program counter, stack pointer, general pur-

pose registers, etc.

18

• environment data—process identifier, user name, etc.

All of these parts of the process state are accessible at the kernel level, and thus state capture

involves marshalling or communicating this information in a well-defined format. For example,

capturing a process’s virtual memory might involve saving the page table of the process along with

the contents of any valid pages. Of course, the implementation of state capture operations varies

widely depending on the intended use and context. For example, during process migration, an

effort is often made to transfer the minimal state needed to restart the process at its destination

first, and to transfer remaining state subsequently to reduce migration latency [95]. Alternatively,

for the purposes of checkpointing, incremental schemes for saving a process’s memory, such as

periodically capturing only dirty pages, may improve time/space performance [69].

Beyond the obvious issue of heterogeneity, kernel-level state capture schemes have a number

of undesirable features in metasystem contexts. First, as the number of different architecture and

operating system platforms grows, the issue of mechanism portability becomes important in addi-

tion to efficiency concerns. Furthermore, in metasystem approaches, it is typically infeasible to

mandate replacement of the operating system on all participating nodes. These issues, along with

the requirement of support for heterogeneity, strongly suggest the use of user-level state capture

mechanisms.

2.3.1.2 User Level Mechanisms

A number of systems to date have provided some form of homogeneous process state capture

implemented at the user level (i.e. without direct, special kernel support) [14, 55, 54, 69]. For

example, Condor [55] performs process state capture and recovery in homogeneous environments

by using a slightly modified core dump of the process to capture and recover memory and proces-

sor state. Needed operating system specific information associated with the process is maintained

at the user level by tracking the parameters and return values of all system calls via wrapper rou-

tines. An alternative approach described by Plank et. al. [69] links programs with a special library

19

that contains code to capture a process’s internal state. In this design, processor state is captured

using the Unix setjmp system call.

 Although these approaches are typically somewhat less efficient than kernel level implemen-

tations, user-space designs are generally more portable (e.g. Condor and libchckpt [69] are highly

portable among Unix-based platform). A common argument against user-level state capture

schemes is the difficulty involved in capturing and recovering a process’s external and kernel-level

state. For example, some user-level approaches such as Condor and Mandelberg/Sunderam [57]

restrict certain forms of intra-process communication mechanisms. However, this argument

against user-level state capture mechanisms is largely unfounded, as demonstrated systems such as

MIST/MPVM [15, 16], Fail-safe PVM [50], and Hector [72]. These systems provide a location-

independent communication layer that renders process migrations transparent to message passing

operations performed at the application level. Similar user-level wrappers are possible for other

services that involve external state such as file systems.

2.3.2 Heterogeneous Systems

Thus far, we have only considered systems that perform state capture and recovery in homo-

geneous environments. However, the idea of capturing the state of a running process on one kind

of computer system and then later restarting an equivalent process on a different type of computer

system has also been the subject of a significant amount of prior work. Perhaps the most general

coverage of this topic is presented by von Bank, Shub, and Sebesta [90], who developed the idea

that a procedural computation can be modeled as progression through a sequence of compatible

well-defined states: points in execution at which the state of a process can be used to fully describe

the equivalent state of any other implementation of the process. In our model, these compatible

well-defined states occur when poll points are encountered. Related implementation work done by

this group integrated a limited form of heterogeneous process migration into the V system [21].

20

This implementation relied on the operating system to examine and translate the memory state of

the process based on type information embedded in the process’s program text. The design suf-

fered certain limitations, particularly the requirement that data structures reside at identical

addresses in all versions of a process. In truly heterogeneous systems, this restriction could not be

observed in general, and thus mobility between some nodes would be impossible.

A novel approach to the heterogeneous state capture/restore problem was proposed by The-

imer and Hayes [87]. In their proposed solution, the state of a process is examined and captured

using compiler-generated symbol mapping information. Instead of being captured in a data-only

format that must be used in conjunction with a separate executable (a feature common in the other

systems presented in this section, as well as our own), the process state is instead captured in the

form of an intermediate code program. This program is constructed to re-initialize the full equiva-

lent state of the captured process and to proceed from its logical point of state capture. The actual

process migration then entails compiling this program on the destination machine. Such a mecha-

nism would have the desirable property of requiring very little external support at the restart host

(beyond the ability to recompile the intermediate code program)—essentially, the process effects

its own restart. Our approach extends this desirable feature of autonomy to include state capture as

well as state restore.

A more recent and fully implemented approach to the heterogeneous state capture problem

was presented by Steensgaard and Jul [82], who developed an extension of the thread- and object-

mobility capability of the heterogeneous Emerald distributed system to allow native code migra-

tion among heterogeneous hosts (previous implementations supported native code mobility for

homogeneous hosts, plus heterogeneous mobility for interpreted byte-code programs). In their

implementation, native code threads can migrate at well-defined points during execution, called

Bus Stops, at which time control is transferred to the Emerald run-time system, and a complete

description of the running code is constructed by the system using compiler-generated mapping

21

information (the same principle as used for symbolic debugging). This approach has the attractive

property that modifications to the generated code are not required; the compiler is simply responsi-

ble for generating the extra mapping information required by the run-time system. This approach

differs from ours in exactly this respect—whereas we require modification of programs to incorpo-

rate state capture and recovery mechanisms, we do not require support from any external agents.

This affords us the desirable attribute of generality—our tool can be integrated into existing dis-

tributed systems without requiring modification to those systems or to our basic process state cap-

ture mechanism, and Process Introspection does not require extensive run-time system support.

Our current implementation requires only that the system interface be accessible from C code, and

that it be possible to construct a wrapper interface for system services that maintain external state

for processes.

A similar approach to that of heterogeneous Emerald, called Tui [77], has been proposed by

Smith and Hutchinson. This approach also involves the use of compiler-generated state mapping

information in the form of the symbol table typically used by symbolic debuggers. The Tui imple-

mentation has the additional desirable feature of supporting programs written in C, as opposed to

the Emerald approach which mandates the use of the less common Emerald language. Again, this

approach differs from Process Introspection in being external-agent-based—special programs are

required to capture and restore the state of a running process.

The growing interest in the area of mobile agents has resulted in a number of state-capture

and recovery mechanisms to support migration in mobile agent languages. For example, the

Sumatra [1] language supports the capture and recovery of Java threads in a heterogeneous envi-

ronment. State capture and recovery in Sumatra is implemented by a set of modifications to the

Java Virtual Machine [35] bytecode interpreter. A more flexible approach is supported by the Ara

system [67, 68]. As opposed to Sumatra, which mandates used of the Java language, Ara supports

mobile agents in an extensible set of interpreted languages, currently including interpreted C and

22

Tcl [65]. To support state capture of a running agent, the interpreters used in the system must be

able to capture their own full state (i.e. including the state of the program being interpreted). A pri-

mary drawback of these and other mobile agent systems such as TACOMA [44,45], Agent

Tcl [36], and Telescript [92] is the use of interpreted execution for agents. In our intended applica-

tion domain, this model fails to meet the performance requirements of most users.

One system that overcomes this limitation is Extended Facile [48], an agent programming

system based on the Facile functional programming language. In Extended Facile, agents are first-

class functions that may be transferred to remote nodes for execution. The code for agent functions

in Extended Facile can be transferred in a higher-level, platform-independent representation, as

native-code executable instructions, or as a mixture of the two. The memory state of the function

(i.e. its free variables and parameters) are marshalled and transferred by the system using a mecha-

nism based on the underlying continuation-based compilation model of the language. The state of

the agent is conveniently available in its continuation, and thus can be marshalled by the system in

straightforward fashion. This continuation-based approach to capturing the state of native-code

executable processes is clearly different from that of the stack-based approach of Process Intro-

spection. In principle, both approaches are general, and could offer good performance. In practice,

a limitation of the continuation-based approach is the relative scarcity of compilers that employ a

continuation-passing model. Especially for performance-oriented languages such as C and Fortran,

compilers generally employ the model that best matches the language and underlying processors,

namely a stack based model. Compilers for functional languages such as Facile, ML, and Scheme

more commonly use a continuation-based compilation model, but rarely offer performance compa-

rable to lower level languages due to features such as first-class code and polymorphism. In prac-

tice, such languages are rarely used for high performance applications. Thus, given practical

considerations, Process Introspection is a preferable approach in the context of high performance

computing.

23

Chapter 3
Process Introspection
 In this chapter, we describe in detail the Process Introspection solution to the heterogeneous

process state capture and recovery problem. The key element of Process Introspection is the

semantics-preserving modification of programs to incorporate state capture and recovery function-

ality, giving processes the ability to capture and recover their own state autonomously. This is an

approach that is fundamentally different from existing solutions to the process state capture prob-

lem, which typically are based on an external agent (e.g. the operating system) examining and cap-

turing the state of a process.

Before describing Process Introspection, we first discuss the system model (in Section 3.1)

and the process model (in Section 3.2) on which Process Introspection is based. In Section 3.3 we

describe in detail the capture of a process’s internal state using Process Introspection. Finally, in

Section 3.4 we address the issue of capturing a process’s external state—the state of its interactions

with other processes and its environment.

3.1 System Model

The system of interest is a heterogeneous network computing system, or metasystem. The

system consists of a set of nodes connected by a set of networks, as depicted in Figure 3.1. Nodes

in the system consist of at least a CPU and some local memory, and possibly other resources such

as stable storage devices. For example, nodes might be personal computers, workstations, or MPP

nodes. The networks connecting the nodes could be any medium that supports message-passing

based cooperation. For example, the nodes might be connected by LANs, WANS, MPP intercon-

nects, or shared memory. The nodes of the system might span a variety of architecture types and

capabilities, and may run different base operating systems. We assume that the complete system is

24

programmed through, and managed by, an intermediate layer of software—the metasystem soft-

ware. This software is responsible for providing the communication and task control mechanisms,

and may provide other services, such as task placement support, a uniform file system, and so on.

Applications that run in the system are programmed in a high-level language1 and are decom-

posed into tasks, parts of the program that will execute independently, possibly concurrently, and

possibly on different nodes in the system. The high-level language defining each task is trans-

formed into a procedural intermediate representation of that task, which in turn is compiled to exe-

cutable forms for all types of nodes in the system on which instances of the task may run. The

intermediate representation of a task defines a task class, instances of which can be created or

located by the metasystem software. The compiled executables associated with a task class are

1. In practice, our implementation of Process Introspection (described in Chapter 5 and Chapter 6) does not
strictly prohibit modules coded at a lower level, for example critical inner loops implemented in assembly
language. The assumption of a unified programming model simplifies our description of the Process Intro-
spection algorithms and facilitates our correctness discussion in Chapter 4.

Mobile Resource

Personal Computer

Workstation

Network

Supercomputer

M P P

 Figure 3.1: A metasystem.

25

functionally equivalent task implementations. Within a task class, implementations may vary in

performance, resource requirements, etc., but are assumed to compute equally valid results given

the same input1. When a request is made to the metasystem software to create a task of a given

class, the metasystem software selects a node on which to execute that task, selects the appropriate

implementation of the task class for that node, and starts a process (as defined by the node’s under-

lying operating system) on the node using the selected implementation. Thus, a process as viewed

by the system is an executing task implementation, the meaning of which is defined by its task

class.

3.2 Process Model

Before formally defining the Process Introspection mechanisms, we must develop a more pre-

cise definition of a process. Our basic process model is a standard, procedural, stack based model

of computation. In this section we define this model more formally in order to provide a founda-

tion for the description of the Process Introspection algorithms, and as a basis for the Process

Introspection correctness discussion that will be covered in Chapter 4.

The fundamental meaning of a process is defined by its intermediate representation (IR) pro-

gram (i.e. its task class), a platform-independent procedural representation of the process’s code

that may (or may not) be the result of front-end high-level language translation. A running process

consists of a low-level program implementation (e.g. a binary executable containing object code

for a given machine) and a set of dynamic program state elements that are manipulated by the pro-

gram. As described in Section 3.1, many low-level implementations of the program might exist

(e.g. for different computing platforms, with different levels and types of debugging information

or optimizations), but exactly one version of the intermediate representation of the program exists

1. We do not specify that task implementations of a given task class produce identical outputs given the same
input to accommodate issues such as varying floating-point representations and the possibility of non-
deterministic tasks.

26

and defines the meaning of the process, as depicted in Figure 3.2.

The intermediate representation of the program, which we will call P, consists of a set of sub-

programs, S, and a set of static state elements (i.e. global variables), G:

Each static state element, gi, is a named, addressable, global data block that will be available

throughout the lifetime of the program, and each subprogram, sx, consists of a sequence of instruc-

tions, Cx, and a set of local variables, Lx—automatically allocated state elements available to an

activation of the subprogram throughout its lifetime:

The meaning of the program is defined in terms of its execution on an intermediate represen-

tation virtual machine (IR-VM). When the program is instantiated as a process, the IR-VM begins

executing the program at the first instruction in a special subprogram, s1. The IR-VM executes the

instructions in s1, continuing in sequence until the last instruction of s1 is executed or a subpro-

gram termination instruction is encountered, at which point execution stops. The state of the IR-

VM includes the IR program, a set of active state elements available to the running program, and

 Figure 3.2: The program model.

High-level
Source
Code

Front End

Intermediate
Code

Low-Level
Implementation

1

Low-Level
Implementation

N

Low-Level
Implementation

2

P S G,{ } s1 s2 … sn, , ,{ } g1 g2 … gm, , ,{ },{ }= =

sx Cx Lx,{ } ci ci 1+ … cj, , ,() l x 1, l x 2, … l x k,, , ,{ },{ }==

27

control flow state. The control flow state consists of a stack of subprogram activations, each of

which records the identity of, the code location within, and the local state element activations asso-

ciated with an individual subprogram activation.

The active state element set, A, consists of a set of statically allocated state elements, a set of

dynamically allocated state elements, and a stack of automatically allocated data elements associ-

ated with the active subprograms. Statically allocated data elements are valid throughout the life-

time of the program. Dynamically allocated data elements can be created and deleted explicitly

using special dynamic memory management instructions, and are active only after creation and

before deletion. Automatically allocated data elements are the local state elements associated with

a subprogram, and are automatically created and deleted on subprogram entry and exit. Note, state

elements are defined at the level of the intermediate representation of the program, and may or

may not map directly to the memory regions utilized by low-level implementations of the pro-

gram.

The instructions contained in the programs fall into five categories:

• State Modification instructions alter the value of active state elements based on combinations

of other state element values and/or constant values, without requiring any subprograms to be

executed. For example, an instruction of this form might set one state element equal to the sum

of three other state elements. State modification instructions are required to operate exclu-

sively on active state elements—i.e. static state elements, dynamically allocated state elements

that have been created but not yet deleted, and automatically allocated state elements associ-

ated with a subprogram that has been activated but has not yet terminated.

• Branching instructions alter the control flow of the program based on a boolean combination

of active state elements and constant values. Based on the test, control flow can be directed to

any other instruction in the same active subprogram.

• Subprogram Activation and Deactivation instructions activate and deactivate a given subpro-

28

gram. On activation, the automatic variables for the specified subprogram are instantiated on

an activation stack and are added to the active state element set, the return code location in the

calling subprogram call is saved, and control flow shifts to the first instruction in newly acti-

vated subprogram (a conventional stack based execution model). Subprogram deactivation

instructions terminate the currently active subprogram and return control flow to the call site

from which the subprogram was activated. All automatically allocated local variables associ-

ated with the deactivating subprogram are deallocated.

• Dynamic Memory Management instructions create and delete dynamically allocated state ele-

ments. A dynamic allocation instruction creates a new state element with a given size and adds

it to the active state element set. The state element will be valid until it is discarded by a

dynamic deletion instruction.

• Input/Output instructions read or write the value of a state element from or to the program’s

environment, respectively.

This set of instruction kinds is general enough to allow our intermediate representation to serve as

a target for any high-level programming language. The execution of each instruction by the IR-

VM alters the IR-VM state in one atomic action, as depicted in Figure 3.3. Note, we have not spec-

ified any syntax or the precise semantics of our instructions—instead, we have defined the general

attributes that the intermediate representation must exhibit. This level of specification is sufficient

to describe Process Introspection and to discuss its correctness without unnecessarily limiting the

possible implementations of the model.

Given the intermediate-code representation that defines the meaning of the program, low-

level program implementations are created. Any number of low-level implementations might be

built, e.g. for different computing platforms and with different levels and types of debugging infor-

mation or optimizations (see Figure 3.2), but each low level implementation must emulate the exe-

cution of the IR-VM, providing equally valid output given the same input. Low-level

29

implementations are expected to be primarily native-code executables that might be optimized to

take advantage of certain properties that are not externally observable in the intermediate pro-

gram—the intermediate representation defines the meaning of the program, but does not dictate

the actual memory layout or instruction stream used by any implementation of the program. As

long as the implementation preserves the meaning of the program for all inputs (i.e., as long as the

output is produced as specified by the intermediate representation), the implementation is correct.

This leaves open the possibility of optimization for specific hardware features, exploitation of par-

allelism where possible, and so on.

3.3 Process Introspection

The Process Introspection checkpoint mechanism is based on the idea that the intermediate

representation of the program can be modified to allow it to describe in complete detail certain

intermediate states of its computation. In other words, the process is given the ability to periodi-

cally output the values of all active state elements (at the universal intermediate-representation

level) along with a representation of the call stack that could be used to recover the logical location

in control flow (i.e. to re-activate all active subprograms and return to the instruction at which the

 Figure 3.3: Program execution on the IR virtual machine.

IR-VM
State 1

IR-VM
State 2

IR-VM
State n

Instruction ...

IR Virtual Machine
State

Active State
Element Set

Control Flow
Information

30

checkpoint was created). This ability requires two specific modifications to the intermediate repre-

sentation of the program: State capture transformations, and state recovery transformations.

3.3.1 State Capture Transformations

The following four transformations are applied to the program in order to allow it to capture

its internal state at special points in execution called poll points:

• A static state element (i.e. global variable) is added called CheckpointStatus. This

variable is used by the program to indicate if a checkpoint has been requested or is in

the process of being constructed. CheckpointStatus is initialized to indicate that no

checkpoint has been requested, and that no checkpoint is in progress. The act of

requesting a checkpoint from the process is thus equivalent to setting the value of

CheckpointStatus. This might be accomplished within the process, providing a user-

directed style of checkpointing [21], or might occur via an interrupt from the process’s

environment, or via shared memory with the process’s environment. The later two

forms permit a standard, externally requested process state capture.

• A new subroutine called schkpt is added to the program. schkpt contains instructions to

output the values of all global variables and all active dynamically-allocated state ele-

 Figure 3.4: Creation of an introspective program.

Source
Code Front End

Intermediate
Code

Transformed
Intermediate

Code
Process Introspect ion

Low-Leve l
Implementat ion

1

Low-Leve l
Implementat ion

N

Low-Level
Implementat ion

2

31

ments.

• For schkpt to be able to output all of the dynamically-allocated state elements, the pro-

gram must maintain a table that reflects the current complete set of active dynami-

cally-allocated state elements. This requires that instructions be added after each

dynamic allocation and deletion instruction to maintain an up-to-date list of dynami-

cally allocated state elements.

• After each subprogram activation instruction, an instruction is added to poll for a

checkpoint request (i.e. examine the value of CheckpointStatus). If a checkpoint has

been requested, instructions are executed to save the local subprogram activation. The

program first writes all of the automatically-allocated state elements associated with

the current subprogram to the checkpoint. Next, a marker indicating the logical loca-

tion in control flow (i.e. the instruction location of the previous subprogram activation

instruction) is output. If the current activation is the initial call to s1 for the program, a

call to schkpt is also executed. Finally, a subprogram termination instruction is exe-

cuted to cause an immediate return to the current subroutine’s caller, which will exe-

cute similar instructions to save its activation, and so on down the stack. This inserted

code is a mandatory poll point: a point at which the program must check for a check-

point request. In practice, more frequent polls for checkpoint requests might be desir-

able. In this case, poll points as described above can be inserted between any two

instructions in the original intermediate-code program. These poll points are called

optional poll points.

The above modifications to the program give it the ability to periodically poll for checkpoint

requests. If a checkpoint is requested, the program outputs the values of the complete set of state

elements along with the information necessary to reconstruct the program’s control flow state (i.e.

the subprogram activation stack and the current instruction location). Note, we have assumed that

32

the state of the program can be output in a universally readable format—i.e. for any state element

in the process, we can describe its complete range of potential values in a format readable on any

other type of computer system. In theory, this issue is not problematic, but in practice data repre-

sentations differ among computer platforms, program variables can contain memory addresses (i.e.

pointers), and thus storage of program state in a universally interpretable format is a significant

design issue. We will defer discussion of this topic until Chapter 5, where we describe the imple-

mentation of a set of software mechanisms that support platform-independent capture and recov-

ery of memory regions containing arbitrary data types.

3.3.2 State Recovery Transformations

For the checkpoint information constructed by the mechanism described above to be useful,

the program must also incorporate a restart mechanism. Our approach makes the following

changes to the intermediate representation of the program:

• The range of values possible for the CheckpointStatus variable is expanded so that it

can be used to indicate whether a restart is in progress or not. CheckpointStatus is ini-

tialized by input from the program’s environment at the beginning of the base subrou-

tine for the program to determine if a restart has been requested. In the event that a

restart is requested at this point, the process can assume that its checkpoint is available

to be read from a well-known location (e.g. from a given file or over a network con-

nection).

• A new subprogram called srestart is added to the program. srestart contains instructions

to read the values of all static state elements from the checkpoint and re-instantiate

(i.e. re-allocate) the set of active dynamically-allocated state elements stored in the

checkpoint.

• A prologue of instructions is added to each subprogram. This prologue checks the

33

value of CheckpointStatus. If CheckpointStatus is set to indicate a restart, the prologue

reads the values of all automatically-allocated state elements associated with the sub-

routine from the checkpoint. If the subprogram is the initial activation of s1, an

instruction to call srestart is also executed. Finally, the logical control flow location in

the current subprogram activation is read from the checkpoint, and a branch to the

associated code location is performed. This location may itself be another subprogram

activation instruction, in which case the next subprogram in the stack is called and

restores its activation, and so on up the stack. The location may also be an optional

poll point, in which case the restart is complete; CheckpointStatus is cleared, and exe-

cution continues normally.

With these additions, the program can restore an intermediate state as produced by its own check-

point mechanism. In particular, since the checkpoint and restart mechanisms are specified at the

level of the universal intermediate representation, different implementations of the program can

read and write one another’s checkpoints, again assuming that the state elements and control flow

information can be stored in a universally recognizable format that masks architectural issues such

as data representation (cf. Sun XDR [79]).

Of course, this claim is far from obvious, especially given that low-level implementations of

the program may be optimized arbitrarily (with the constraint that they preserve the meaning of the

program). For example, what if a poll point initiated a checkpoint in the middle of a loop that was

ordered differently in different implementations? Might the state captured by one implementation

be inconsistent with any legal state of some other implementation?

In fact, in Chapter 4 we show that all semantics-preserving implementations of the trans-

formed intermediate code step through the same sequence of poll points in the same order, and

would produce equivalent state images at corresponding points. Furthermore, we show that given a

captured state, any implementation can resume from the corresponding point in execution. These

34

properties are consequences of the fact that the state capture and restore mechanisms are specified

completely in terms of the intermediate representation, and all low-level implementations must

preserve the meaning of the intermediate code. In practice, the state capture and recovery mecha-

nism as implemented in the intermediate code results in dependencies at poll points that cause cer-

tain optimizations across poll-points to be prohibited. We will examine the issue of correctness in

detail in Chapter 4.

3.3.3 Optimizations

A side-effect of the described checkpoint mechanism is the deallocation of all memory on the

call stack during the state capture, implying that the program must perform some of the work of a

restart to recover the stack if it is to continue execution after producing the checkpoint. We note an

important optimization to the above mechanism: in the process of writing the state elements asso-

ciated with each stack frame to the checkpoint, the program should also save these values in mem-

ory (e.g. in a specially-allocated dynamic state element). This permits the implementation of a

quick stack recovery after the checkpoint is produced. Because the checkpoint mechanism is non-

destructive to other state elements (i.e. global variables and dynamically-allocated memory

blocks), this optimization permits the process to proceed without unreasonable delay after a check-

point.

A further optimization to the described code modification scheme is also possible. In the def-

inition of mandatory poll points, we stated that poll points must be placed immediately following

every subroutine call statement. In fact, if knowledge is available that all possible call chains

resulting from a given subroutine call would contain no poll points, the mandatory poll point fol-

lowing that call site can safely be omitted. For example, consider a call to a very simple function

that calls no other functions and contains no poll points. Upon return from this function, we know

that a capture of the stack could not yet have been initiated. Even if a checkpoint had been

35

requested while the function was executing, we can safely continue normal execution after the call

returns before beginning to service the request.

3.4 External State

We have described a model through which the complete internal state of a process can be

captured. In any realistic system, the full state of a process will consist not only of its internal state,

but also of its relationships to external services. For example, a process may be communicating

with any number of other processes that store its network address. While producing a checkpoint,

a process may be the destination of any number of messages that are in transit in the network sys-

tem. The process may own locks to certain resources such as databases or hardware devices. The

external state of the process can be large and complex to capture in a checkpoint. Nonetheless, any

process state capture and recovery mechanism must take such external state into consideration if it

is to have any real application. In our model, the capture of external state occurs in one of two gen-

eral ways.

Case 1, System Support—In some cases, it is desirable or convenient for the process’s environ-

ment (either the operating system or metasystem software) to provide some system support for

checkpointing with respect to external state. For example, the MIST [18] system provides system

support for checkpointing sets of processes communicating via the PVM interface, and the

CoCheck system [84] provides similar functionality for MPI programs. These systems provide the

ability to capture network state external to individual processes, allowing the process state capture

mechanism to focus on internal state.

Case 2, Wrapper Modules—In some environments, system support is neither available nor con-

venient to implement. In these cases it is desirable to embed the ability to checkpoint external state

in the process itself. For example, a process may not have direct access to its file table (which is

typically stored in kernel memory), but if it used wrapper routines to access all file operations, the

36

wrapper library could maintain an accurate internal record of the process’s file usage. Similarly, if

wrapper routines were used for network communication, the process could use a protocol with its

peers to determine external network state (for example, messages in transit at the time of the

checkpoint). Using wrapper routines to capture a process’s external state is a technique that has

been demonstrated to be effective in projects such as Condor [54] and other such load-sharing

tools used in homogeneous systems.

37

Chapter 4
Correctness Discussion
 The Process Introspection mechanism modifies programs to allow them to checkpoint and

restart at certain well defined poll points during execution. A program is given the ability to

describe in complete detail certain intermediate states of its computation, and to restart from those

states. Since a primary goal of this mechanism is to support restarts across different architecture

and operating system platforms, and in particular to do so for optimized, native binary code exe-

cutable programs, the correctness of the mechanism must be examined carefully. Given some

forms of code optimization on different platforms, the intermediate states of a computation on one

machine may not be consistent with the intermediate states of the computation on a different

machine. It would seem possible that a checkpoint taken on one platform might not contain

enough information to reconstruct an equivalent program state on a different platform.

In this chapter, we examine the correctness of the Process Introspection mechanism as devel-

oped in Chapter 3. In Section 4.1, we first discuss what correctness means in the context of the het-

erogeneous process state capture and recovery problem. In Section 4.2, we apply the developed

definition of correctness to the Process Introspection mechanism, and discuss the underlying rea-

sons why technique is correct. Finally, in Section 4.3, we provide illustrative examples of the cor-

rectness of Process Introspection in the presence of certain code optimizations. It should be noted

that the discussion to follow does not constitute a formal proof of correctness, but rather a defini-

tion of state capture and recovery correctness, and a discussion of the features of Process Intro-

spection that allow it to meet this definition. A fully formal proof of correctness is beyond the

scope of this work.

38

4.1 Heterogeneous Process State Capture Correctness

4.1.1 General Definition

Before examining the correctness of the Process Introspection mechanism, we must first

define what it means for any heterogeneous process state capture and recovery mechanism to be

correct. Intuitively, a heterogeneous (or homogeneous) process state capture mechanism can be

considered correct if it does not affect the behavior of a program. Thus, to define process state cap-

ture and recovery correctness precisely, we first define program correctness.

Program Correctness—Our definition of program correctness is based on the principles of axi-

omatic semantics. We assume that a program is specified in the form of a set of preconditions, the

IR code for the program, and a set of postconditions. Preconditions and postconditions are

expressed in the form of logical assertions about IR program state, input, and output. We further

assume that axioms and inference rules are provided for all of the IR language instruction types, so

that given a postcondition and an IR instruction, we can determine the weakest precondition for

the instruction. We define a program execution to be correct if starting from the postcondition,

final program state, and output, we can work backwards through the IR program using the rules of

axiomatic semantics and eventually derive the precondition. For our purposes, a key attribute of

this definition of program correctness is that two program executions (for example, as might be

performed by two different low-level implementations of the IR program) may produce different

outputs and yet still both be considered correct. For example, consider a program that produces a

solution vector as output. Suppose that the postconditions for the program specify that the magni-

tude of this vector must be less than some constant ε. Given the same input, different executions of

the program might produce slightly different result vectors. However, if both output vectors have

the required property of magnitude less than ε, these different executions would both be correct

under our definition despite the difference in their output. If two executions of a program given the

same input both meet our definition of correctness, we define these executions to produce equally

39

valid (although possibly not identical) output.

Given this definition of program correctness, we define the correctness of a process state cap-

ture and recovery mechanism in terms of its ability to preserve program correctness. That is, when

presented with the same input, a program should produce equally valid output irrespective of the

number of times it is checkpointed and restarted during the course of execution. Of course, this

does not imply anything about the correctness of the program being checkpointed and restarted—

incorrect programs will be just as incorrect after being checkpointed and restarted. The correctness

of a state capture and recovery mechanism is fundamentally rooted in its preservation of a pro-

gram’s semantics, whatever they may be.

To more precisely specify the correctness of a state capture and recovery mechanism, we

introduce the concept of a piecewise continuous execution of a program. Consider the execution of

a program as a sequence of steps during which some sequence of inputs is accepted and some

sequence of outputs is produced, as in Figure 4.1(a). An execution of the program without inter-

ruption due to state capture or recovery can be considered a continuous execution of the program.

Alternatively, a complete execution of the program interrupted by state captures and recoveries,

but where no part of the program is repeated or omitted, and identical inputs are provided at the

appropriate points in execution, can be called a piecewise continuous execution of the program, as

in Figure 4.1(b). For any state capture and recovery mechanism, we require that any piecewise

continuous execution of a program produce equally valid outputs given the same inputs as a legal

continuous execution of the program.

The correctness of a heterogeneous state capture and recovery mechanism is based on the

ability of any of a number of different implementations of a program to be restarted from a check-

point created from any of the other given implementations while preserving the validity of output

produced by the program when given the same input. Note, we do not require a heterogeneous

piecewise continuous execution to produce the exact same output given the same input as any sin-

40

gle-platform continuous execution. Issues such as varying rounding and discretization error might

result in a piecewise continuous execution producing outputs different from any continuous execu-

tion on a single platform with the same input, although the outputs might be equally valid given

the specification of the program. Based on the notion of correctness for a heterogeneous process

state capture and recovery mechanism, and on the idea of piecewise continuous execution, we state

a general correctness condition for heterogeneous state capture and recovery mechanisms:

General Correctness Condition—Given a task class and a set of task implementations associated

with that task class, any piecewise continuous execution of the task with any assignment of task

implementations to the execution segments must produce output that is equally valid to a legal

continuous execution of the task given the same input (although the output need not be the same as

that produced by a continuous execution of any single task implementation).

4.1.2 Restricted Definition

The correctness condition given in Section 4.1.1 is very general. In fact, we can state a more

(a) Continuous execution

(b) Piecewise continuous execution

step 1 step 3step 2

Input2Input1

Output2Output1

captured
state 1

captured
state 2

 Figure 4.1: Equivalent continuous executions of a program.

step 1 step 3step 2

Input 2Input 1

Output 2Output 1

time

41

restrictive correctness criterion that will be easier to demonstrate for the Process Introspection

mechanism, and that is fully sufficient. This correctness criterion will be based on the restriction

that low level implementations of a program contain certain points of consistency with the inter-

mediate representation of the program, and that checkpoints and restarts occur only at these points

of consistency. Although technically not all heterogeneous process state capture and recovery

mechanisms need to observe this restriction, the observance of this restriction makes correctness

more readily demonstrable.

Assume that we restrict the state capture mechanism to operate only at certain points during

the execution of any implementation. Assume also that we restrict these points to correspond to

well defined points in the execution of the intermediate code representation of the program if it

were run on an IR-VM. More carefully stated, the checkpoint mechanism will be restricted to

operate at certain points during the execution of a low-level implementation (i.e. a native code

binary) where the state of this running implementation can be used to fully describe a state of the

intermediate representation program executing on the IR-VM (an IR-VM state). Specifically, the

state of the implementation at these points will be used by the state capture mechanism to identify

those state elements that would be active in the IR-VM and to determine their values. Furthermore,

the implementation’s state will be used to determine the point in control flow of the IR-VM—i.e.

the current active subroutine, the next instruction to be executed, and the subprogram activation

stack. The resulting checkpoint will then contain a complete description of the state of the interme-

diate representation of the program executing on the IR-VM.

As a natural consequence of this restriction on state captures, we also restrict state recovery to

occur at these same well defined consistency points. In other words, a checkpoint (i.e. a full

description of the state of the intermediate representation program) will need to be used by the

state recovery mechanism to re-initialize a low-level implementation to return it to a consistency

point. This will require that these execution states of any low-level implementation be fully restor-

42

able based only on the information contained within an IR-VM state. For example, if some tempo-

rary storage not corresponding to any state element in the IR program were used by the low-level

implementation (e.g. a common subexpression computed before the consistency point were

reached), the state recovery mechanism would be responsible for restoring this storage based

exclusively on the IR-VM state description.

Based on the above simplifying restrictions on the operation of a heterogeneous process state

capture and recovery mechanism, we can develop more specific criteria for correctness that will be

possible to demonstrate for the Process Introspection mechanism. We now outline these criteria:

Criterion 1—Checkpoint Correspondence. We define an IR-VM state of an executing IR

program to be the set of active state elements and their values along with a control flow state con-

sisting of a subprogram activation stack defining the code location in each active subprogram. The

execution of each IR instruction by the IR-VM transitions the running program to a new IR-VM

state. Thus, an execution of the intermediate program can be described as a sequence of IR-VM

states, . We designate a certain possibly non-contiguous subsequence of

these IR-VM states as the sequence of consistency IR-VM states for the program, as in Figure 4.2.

The consistency IR-VM states will be the points during execution at which the state capture and

recovery mechanism will be permitted to operate. We say that a low-level implementation of the

program reaches a given consistency IR-VM state ISk if its execution up to a given point is indis-

tinguishable from the execution of the intermediate code program up to that IR-VM state, and if its

state at that point can be used by the state capture mechanism to fully describe ISk. Criterion 1, the

checkpoint correspondence criterion, requires that every low level implementation of the program

reach each IR-VM state in the sequence defined by the execution of the intermediate code pro-

gram on the IR-VM. This criterion simply requires that each low level implementation have the

same set of points of consistency with the intermediate code program in the same order. In other

words, each one will potentially be the basis of the exact same set of checkpoints.

E IS1 IS2 … ISn, , ,()=

43

Criterion 2—Restart Correctness. The second criterion ensures the ability to recover state

correctly. Assume that we are given a checkpoint created by any low-level implementation at a

given consistency IR-VM state, ISk. Criterion 2 requires that if the state recovery mechanism uses

this checkpoint to restart any low-level implementation of the program, and if the program is then

presented with the remainder of its input required after the checkpoint was taken, the program will

correctly reach . If demonstrated to hold for all k, this criterion is sufficiently powerful to

imply that the program will run correctly to completion after being restarted. Once the program

reaches from ISk, it is indistinguishable from a program restarted directly at , and

therefore will proceed correctly on to , and so on. By induction, the program will run to

completion correctly from a restart if criterion 2 is satisfied.

If a state capture and recovery mechanism meets the above two criteria, then it will naturally

satisfy the general correctness condition stated in Section 4.1.1. Due to the restriction that state

capture and recovery must occur only at consistency points, elements of any piecewise execution

of a program will consist of periods of execution bounded by two consistency points in the pro-

gram. Thus, if the above the two correctness criteria hold, program meaning will be preserved

across consistency points, and any piecewise continuous execution of the program will produce

valid outputs.

It is important to note an important underlying assumption upon which the above restricted

correctness criteria are based. In requiring that all low-level executables reach the same consis-

 Figure 4.2: Consistency points.

IR-VM
State 2

IR-VM
State 3

IR-VM
State n

...IR-VM
State 1

Consistency
Point 1

Consistency
Point 2

ISk 1+

ISk 1+ ISk 1+

ISk 2+

44

tency points in the same order, we have assumed that program control flow is both deterministic

and platform independent. In a nondeterministic program, one execution might pass through any

number states never encountered by another execution of the program. This would preclude the

requirement that all task implementations reach the same consistency points. Furthermore, if con-

trol flow is platform-dependent, for example if it is sensitive differences in rounding error, preci-

sion, discretization error, etc., versions of the program on different platforms might proceed

through arbitrarily different states. For programs that exhibit either nondeterminism or platform-

dependent control flow, the criteria presented in Section 4.1.2 are too restrictive. Thus, in discuss-

ing the correctness of Process Introspection, we will first assume that programs are both determin-

istic and exhibit control flow that is not dependent on differences in the available platforms (e.g.

data representation differences). We later address the issue of these somewhat restrictive assump-

tions separately.

4.2 Process Introspection Correctness

We can demonstrate the correctness of the Process Introspection mechanism by showing that

introspective programs satisfy the correctness criteria described in section 4.1.2. First, we must

define the set of consistency IR-VM states in the transformed intermediate representation of an

introspective program. Next, we must argue that criterion 1 is satisfied—i.e. that all implementa-

tions of the transformed intermediate representation pass through the same consistency IR-VM

states in the same order that the intermediate code would. Finally, we must argue that criterion 2 is

satisfied—i.e. that any implementation of the transformed intermediate representation when

started from the checkpoint for a given consistency state ISk will correctly reach state .

Defining the consistency IR-VM states for the transformed intermediate code is trivial—these

are simply the states of the intermediate code just before each poll point introduced into the code is

reached. Recall, at each poll point in the transformed code (i.e. when any IR-VM state is reached

ISk 1+

45

whose next instruction is a poll point), the program examines the value of a variable to determine

if a checkpoint should be written. Furthermore, the IR-VM states just before each poll point is exe-

cuted are the only states during execution for which the process will produce a checkpoint. Being

the only points in the code at which checkpoints can be written, IR-VM states just before each poll

point are thus also the states that restarts are limited to recover. Given these attributes of the IR-

VM states at poll points, they naturally satisfy the definition of consistency IR-VM states.

Next, we must demonstrate that any valid low-level implementation of the transformed inter-

mediate code will reach each consistency IR-VM state in the order prescribed by the execution

sequence the intermediate code would follow if executed on a virtual machine as described in

Chapter 3 (i.e. criterion 1). In fact, the observance of criterion 1 is a fundamental requirement of

any correct low-level implementation of the intermediate code because we have introduced new

potential inputs and outputs for the intermediate representation of the program.

Consider the first poll point encountered by a transformed program. At this poll point, the

transformed intermediate program specifies that the value of a variable set by some input from the

environment be examined by the program. The implementation can make no assumption about

what the value of this variable will be—it may be cleared, or may have been set to request a check-

point. If the value indicates a checkpoint request, the program as transformed is defined to output

the values of all state elements as they would be valued in the intermediate program. To correctly

emulate the IR-VM execution of the program, any low-level implementation must be prepared to

accept this synchronous checkpoint request, and must produce a process state description as output

(containing all of the state elements active in the intermediate program) exactly as the intermediate

program would have. We can be certain that all correct low-level implementations of the interme-

diate program will reach IS1 and produce an identical checkpoint describing all of the intermediate

program’s state elements if so directed, precisely because this is part of the input/output specifica-

tion of the transformed IR program. After IS1 is passed, the intermediate code specifies that when

46

IS2 is reached, a similar process is observed, and again any correct implementation must be pre-

pared to accept input and produce the complete values of state elements as output if directed. We

can argue similarly for ISk+1 having reached ISk, and thus by induction, we know that any correct

implementation will reach each consistency IR-VM state in the appropriate order. Furthermore,

given the nature of the state capture output statements added to the code at each poll point, we

have the added required attribute of the checkpoint mechanism that it correctly obtain a compete

consistent description of ISk when it captures that state.

Given that all implementations correctly reach all consistency IR-VM states in the specified

order, we must further show that if a low level implementation is restarted to some consistency IR-

VM state ISk, that it will correctly reach ISk+1 (criterion 2). Again, the observance of this criterion

follows as a result of the low level implementation’s requirement to produce the same output given

the same input that the intermediate representation would have produced if executed on the IR-

VM. Recall, at the beginning of execution of a transformed introspective program, the program

accepts input to determine if a restart should be accepted. When a restart is requested, the program

sets a special variable to indicate that a restart is in progress, reads in the values of all active state

elements in the intermediate program and restores the state of control flow. In other words, all of

the information in ISk is read by the program and integrated into the program’s state. Now, con-

sider the state of the intermediate code executing on an intermediate representation virtual

machine at ISk. On one hand, the program can reach this state through normal (i.e. non-restart)

flow of execution. On the other hand, the intermediate program can reach this state by performing

a restart—i.e. accepting input from the environment. In the intermediate code, these (identical)

states are both reachable given certain inputs from the environment. However, both have the same

effect—the program continues normal execution to ISk+1 and beyond. Since this is the specified

behavior of the intermediate code, it must be respected by any low level implementation. That is,

any low level implementation of the transformed intermediate code must be able to accept input of

47

the state ISk, restore to the state ISk, and proceed to state ISk+1, since that is the specified input/out-

put behavior of the transformed intermediate code.

4.2.1 Restrictions

The above discussion of the reasons why programs transformed to support Process Introspec-

tion observe the correctness criteria presented in Section 4.1.2 was based on the assumptions of

deterministic execution and platform independent control flow. In practice, either or both of these

restrictions may fail to hold for programs of interest. Thus, we now address the ability of Process

Introspection to correctly handle programs that violate these assumptions.

The issue of nondeterminism can be addressed by extensions to the above model and discus-

sion. Assuming that we extend the model of computation described in Section 3.2 to incorporate

nondeterminism, a process would consist of a set of possible IR-VM state progressions instead of a

single sequence of IR-VM states. In implementing the nondeterministic IR program, each low-

level executable would need to allow the emulation of any of these state progressions. Thus, we

could again mark certain states (in the multiple possible state progressions) as consistency states,

and require the restricted correctness criteria of Section 4.1.2 with the modification that they hold

for any arbitrary legal IR-VM state progression specified by the program. As in the deterministic

case, Process Introspection transformed programs will observe the correctness criteria due to intro-

duced input and output dependencies. For a given possible IR-VM state progression (i.e. for a

given set of outcomes of the nondeterministic events in the program), the transformed programs

will encounter the same poll points in the same order, and will have the ability to recover program

state at each poll point.

The second important assumption on which the correctness discussion of this chapter is based

is platform-independent control flow. For example, we have assumed that low-level program

implementations do not exhibit different control flow behavior due to varying data formats (e.g.

48

floating-point representation). This may at first appear to be a significant limitation. For example,

given different floating-point representations, the same iterative algorithm might converge in a dif-

ferent number of iterations. Given different numbers of bits in the representation of an integer, a

counter might overflow in one low-level executable version of a program, but not in another. In

general, program control flow may vary arbitrarily depending on data representation and other

architectural features. However, given the discussion in this chapter, platform-independent control

flow is a fundamental requirement for correct state capture and recovery through Process Intro-

spection. In practice, this constrains the operation and applicability of the state capture and recov-

ery mechanism. For example, if an environment contains some nodes that support 64-bit integers

and others that support 32-bit integers, programs that wish to migrate between nodes arbitrarily

must restrict the range of integer values they use to the 32-bit range. Alternatively, programs could

use the full 64-bit integer range but would then need to be restricted to execution only on 64-bit

platforms.

Given the fundamental requirement of platform-independent control flow, and the target

application domain of high-performance scientific computing, an immediate concern is control-

flow dependence on floating-point representation and algorithms. While integer representation

only leads to the issue of different representable ranges, floating-point representation and algo-

rithms lead to basic issues such as range, precision, and rounding error, and related issues such as

discretization error, catastrophic cancellation, and convergence error. In general, there are many

ways in which floating-point representation can affect program control flow, and it is often diffi-

cult to analyze the precise dependency of control flow on floating-point representation issues. For-

tunately, differences in floating-point representation are becoming rare in practice due to the wide-

spread adoption of the ANSI/IEEE Standard 754-1985. This standard dictates both floating-point

representation and how basic algorithms such as rounding should be performed. Even given iden-

tical representations, programs can still contain platform dependencies due to floating-point arith-

49

metic, for example due to order of expression evaluation. However, floating-point standardization

significantly reduces the number of ways in which programs can exhibit platform-dependent con-

trol flow.

4.3 Correctness Examples

Whereas the above discussion describes the underlying reasons why Process Introspection is

correct, it is illustrative to consider the effects of Process Introspection on certain code optimiza-

tions, and the reasons that Process Introspection operates correctly in their presence. In this sec-

tion, we examine three such examples.

4.3.1 Loop Reordering

In our model, the code transformations to support state capture and recovery are applied to IR

programs before any low-level executable implementations are produced. Since code optimiza-

tions are applied after the state capture and recovery transformations, the application of some

back-end optimizations may be hindered by Process Introspection. A simple example of this effect

is loop reordering. Consider the code fragment that performs an axpy operation depicted in Fig-

ure 4.3(a). On certain machine architectures, executing the loop in reverse order as in Figure 4.3(b)

might improve performance.

Although this transformation of the code is completely legal (i.e. it produces the same results with

axpy(float a, x[N], y[N]) {

int i;

for(i=0; i<N; i++)

y[i] = a*x[i] + y[i];

}

(b) Reordered

axpy(float a, x[N], y[N]) {

int i;

for(i=(N-1); i>=0; i--)

y[i] = a*x[i] + y[i];

}

 Figure 4.3: Axpy loop.

(a) Original

50

no observable difference except performance), such an optimization would be disabled in the pres-

ence of the Process Introspection transformations if a poll point were placed within the loop. Con-

sider the transformed pseudocode in Figure 4.4.

First, notice that in this transformed code, during any iteration of the loop the value of

CheckptStatus can indicate that a checkpoint has been requested. If a checkpoint has been

requested, the code produces as output the values of the variables i , a, x , and y. For a low-level

implementation to meet this added requirement of the code, the implementation must be able to

produce the values of i , a, x , and y during any iteration, and as specified by the loop ordering of

Figure 4.4. The likely result of this added requirement is that the loop of Figure 4.4 will not be

transformed to use the ordering of Figure 4.3(b).

Another result of the transformations on the code is that alternate paths into the loop have

been added. The prologue added to the code fragment determines if a restart has been requested. If

it has, the values of i , a, x , and y are read from input, and the flow of execution branches directly

axpy(float a, x[N], y[N]) {

int i;

if(CheckptStatus==Restart) {

input values of i, a, x, and y

goto poll_point1;

}

for(i=0; i<N; i++) {

y[i] = a*x[i] + y[i];

poll_point1:

if(CheckptStatus==Checkpoint) {

output values of i, a, x, and y

return;

}

}

}

 Figure 4.4: Axpy loop, transformed.

51

to the poll point in the loop. If the loop were reordered as in Figure 4.3(b), the effect of this jump

into the loop would not produce the desired effect—the elements from 0 to i would have the

axpy operation applied instead of the elements from i to N-1 as specified by the code in Figure

4.4. Again, to preserve the meaning of the program, the loop reordering optimization would likely

be disabled.

It should be noted that this discussion does not imply that loop reordering is always disabled

by Process Introspection transformations. In this example, had the poll points been placed outside

the loop (i.e. before and/or after, but not in the loop body), the loop could have been reordered as

in Figure 4.3(b). This leads us to the fundamental observation that the policy for placing optional

poll points used in Process Introspection transformations can have serious impact on the optimiza-

tions that will be applicable to the transformed code. The above discussion could just as easily

have been applied to many other common code optimizations such as loop unrolling, vectoriza-

tion, and so on.

4.3.2 Inline Subroutines

In Section 4.3.1 we discussed why Process Introspection transformations can inhibit the

application of certain code optimizations. In this section, we consider an example of an optimiza-

tion that is not affected by Process Introspection transformations, and that does not affect the cor-

rectness of Process Introspection: function inlining. Assume that the example function of Figure

4.3(a) is instrumented as in Figure 4.4. Furthermore, assume that the function is invoked at some

point in a program, causing the placement of a mandatory poll point, as in Figure 4.5.

poll_point2:

axpy(A, X, Y);

if(CheckptStatus==CheckptInProgress) {

output A, X, Y, etc.

return;

}

 Figure 4.5: Axpy invocation, transformed.

52

In one low-level implementation of the program fragment depicted in Figure 4.5, the invoca-

tion of the axpy function might compile to an actual function invocation. In this case, the actual

call stack (or at least this part of it) would match that of the IR virtual machine. In a different

implementation, the invocation of axpy might be inlined to improve performance—i.e., in place

of the invocation to axpy in Figure 4.5, the function body of Figure 4.4 would be inserted (with the

appropriate variable substitutions). In this case, during the axpy invocation, the call stack of the

implementation would not match that of the IR-VM. Despite this invocation stack mismatch, the

correctness criteria are still observed. Recall, the correctness criteria did not require that control

flow/invocation stack information match the IR-VM state at consistency points, only that a correct

description of the IR-VM state could be generated based on the implementation.

Consider the operation of both implementations (inlined and non-inlined) if a checkpoint is

requested when the program is executing the axpy loop and reaches poll_point1 . In the non-

inlined case, the local variables are saved, the axpy function returns, the caller saves its local vari-

ables, and so on. In the inlined case, the output is identical—only the internal control flow is dif-

ferent. When the poll point is encountered, the “local” variables for the axpy routine will be

output, and the function immediately returns. The return in this case will translate into a jump to

the statement immediately following the axpy invocation. Since this statement is another poll

point, the remaining local variables of the caller are output, and the function returns. The state

descriptions produced in each case are identical.

Furthermore, each implementation can recover equivalent states based on the resulting check-

point. In each case, the stack is recovered up to the point at which the invoking function containing

the code in Figure 4.5 is restored. When this function’s stack information is recovered, its local

variables are restored, and the flow of execution branches to the code location poll_point2 . In

the non-inlined case, the axpy routine is invoked, and it in turn recovers its state and continues

execution. In the inlined case, the inlined function recovers its “local” state and jumps into the

53

axpy loop. In both cases, the exact same checkpoint data is input, the appropriate state is recov-

ered, and the process resumes execution correctly.

This leads to the general observation that, whereas the Process Introspection transformations

seriously affect the application of some optimizations, others such as function inlining and con-

stant hoisting are unaffected by Process Introspection.

4.3.3 Code Motion

The examples discussed thus far have been relatively straightforward. In the case of loop

reordering, certain poll point placements could almost certainly inhibit the application of the opti-

mization. In the case of function inlining, the optimization was unaffected by the Process Intro-

spection transformations. In many cases, the interaction between optimizations and the Process

Introspection transformation is more complicated. We now consider an example of an optimization

that is still desirable and applicable after the Process Introspection transformations, but the appli-

cation of which is complicated: code motion. Consider the code fragment in Figure 4.6(a). This

loop represents an opportunity for loop invariant code motion. Assuming that the loop body does

not alter a, b, or c , the transformed code fragment presented in Figure 4.6(b) could result in

improved performance, saving the redundant evaluation of the expression (a+b+c) on each itera-

example() {

int i, a, b, c;

for(i=0; i<(a+b+c); i++) {

loop body

}

}

 Figure 4.6: Code motion.

example() {

int i, a, b, c;

int temp;

temp = a+b+c;

for(i=0; i<temp; i++) {

loop body

}

}

(a) Original code (b) Code motion applied

54

tion of the loop.

Now consider the transformation of the code in Figure 4.6(a) to support Process Introspec-

tion, as in Figure 4.7. If we naively apply the code motion optimization depicted in Figure 4.6(b)

to this transformed version of the code, the resulting program would be incorrect. If the function

were called during normal execution, the value of temp would be computed as expected and the

loop would execute correctly. If, however, the function were entered during a state recovery opera-

tion, the initialization of temp would be skipped, and the loop would have an undefined termina-

tion condition.

This discussion does not imply that code motion could not still be correctly applied to the

Process Introspection transformed code, but the application of this optimization would need to

take into account the new path into the loop block. This could be handled by an additional initial-

ization of temp in the restart prologue, as depicted in Figure 4.8. Although many optimizers are

probably not sophisticated enough to perform this extra step in order to take advantage of the code

example() {

int i, a, b, c;

if(CheckptStatus==Restart) {

input i, a, b, and c

goto poll_point;

}

for(i=0; i<(a+b+c); i++) {

loop body

poll_point:

if(CheckptStatus==Checkpoint) {

output values of i, a, b, and c

return;

}

}

 Figure 4.7: Transformed code motion example.

55

motion optimization in this case, all back end compilers must preserve the meaning of the trans-

formed version of the program as depicted in Figure 4.7, and thus the correctness of Process Intro-

spection is assured.

Our examples of the interactions between the Process Introspection transformations and

back-end compiler optimizations have focussed on the issue of correctness. We have observed that

the meaning of the Process Introspection transformations is specified fully at the common IR level

of program representation before optimizations have been applied, and thus the meaning of these

transformations must be preserved by back-end compilers. The practical manifestation of this rule

is that certain optimizations will not be performed by back-end compilers because of the Process

Introspection transformations. This leads to an important practical observation: the application of

Process Introspection, especially the placement of poll points, must be performed with care to

avoid serious performance impact. In Chapter 7, we discuss an empirical study of the effects of

Process Introspection on optimized programs. In practice, we have found that it is possible to

apply Process Introspection effectively without losing the benefits of optimizing compilers.

Additional
initialization

of temp

example() {

int i, a, b, c;

int temp;

if(CheckptStatus==Restart) {

input i, a, b, and c

temp = a+b+c;

goto poll_point;

}

temp = a+b+c;

for(i=0; i<(a+b+c); i++) {

loop body

poll_point:

...

}

}

 Figure 4.8: Transformed example, code motion applied.

56

Chapter 5
Library Implementation
 In preceding chapters we have described Process Introspection on an abstract level, leaving

many detailed design and implementation issues open. In this chapter and in Chapter 6, we

describe a full working implementation of a Process Introspection system. This chapter describes a

library interface and implementation that supports the application of Process Introspection trans-

formations to programs written the C programming language [46]. This run-time library can be

employed by a programmer in order to apply the Process Introspection transformations by hand, or

can serve as a target interface for a compiler that applies these transformations automatically. The

implementation of such a compiler is described in Chapter 6.

5.1 System Implementation Overview

We have constructed a prototype implementation of a Process Introspection system consisting

of a run-time support library, the Process Introspection Library (PIL), which provides an interface

for writing program modules supporting state capture and recovery, and a source code translator

called APrIL (Automatic application of the Process Introspection Library) which can automati-

cally apply the Process Introspection transformations to architecture-independent modules written

in ANSI C. The implementation runs on a variety of workstation and PC platforms, including Sun

workstations running Solaris or SunOS 4.x, SGI workstations running IRIX 5.x and 6.x, IBM RS/

6000 workstations running AIX, DEC Alpha workstations running Digital Unix or Linux, and PC

compatibles running Linux or Microsoft Windows 95/ NT.

Usage of the system generally takes one of two forms. In the case of modules that have archi-

tecture dependencies (for example, modules that are wrappers around external services such as the

file system), the modifications to support Process Introspection must be hand coded (as in the case

57

of Module 1 in Figure 5.1). For such cases, the PIL interface provides basic services such as data-

format-independent access to checkpoint data. The job of the programmer in these cases is to

adhere to the model as described above (e.g. by polling for checkpoint requests periodically), and

to provide a platform-independent mechanism for saving the data associated with the module. For

example, in coding a file interface module with state capture and recovery capabilities, the pro-

grammer would need to design a mechanism for recording the state of all open files in use by the

process. If the module provided integer file descriptors to users, it might save a table indicating the

associated file name and file pointer for each descriptor. On restart, the module would need to use

the local file system interface to re-open the files associated with the descriptors, and to seek to the

appropriate locations.

The expected use of the system is more automatic than this. In the case of platform-indepen-

dent modules, the programmer writes the module code in ANSI C, and uses the interfaces of other

introspective modules. For example, instead of using the Unix file system interface, the program-

mer might use the file interface mentioned above. The code for the architecture-independent mod-

ule is then automatically transformed to incorporate state capture and recovery mechanisms by

applying the APrIL source code translator, which also uses the PIL as a run-time interface. This

usage mode, which corresponds to the case of Module 2 in Figure 5.1, requires no extra work on

the part of the programmer to apply Process Introspection.

In this chapter, we discuss the implementation of the Process Introspection Library; the

implementation of the APrIL compiler is covered in Chapter 6. The Process Introspection Library

(PIL) is a central element of both usage modes for the system. In the case of hand-coded modules,

the PIL provides the API for coding a module’s state capture and recovery capability. In the case of

compiler-transformed modules, the PIL provides the needed run-time support. The primary job of

the Process Introspection Library is to provide an easy-to-use mechanism for describing, saving,

and restoring data values. In addition, the library provides an event-based mechanism for coordi-

58

nating the activities of modules at checkpoint and restart time.

5.2 Library Overview

In applying the Process Introspection transformations, we have thus far assumed that a mech-

anism is available for saving and recovering the values of data regions in a process’s address space

in a platform-independent format. In practice, such a mechanism is not readily available. The Pro-

cess Introspection Library, or PIL, provides mechanisms to capture and recover general ANSI C

data structures in a platform-independent manner, allowing the Process Introspection transforma-

tions to be more easily applied to programs coded in C. The library comprises the following mod-

ules:

• Buffer Module—The buffer module abstracts the checkpoint storage medium from the pro-

gram (e.g. whether the checkpoint is to be written to a disk file, over a network, etc.), and pro-

vides platform-independent I/O for the basic types defined by the C language.

• Type Description Table—This table supports the registration of type descriptions, and provides

information (such as size and alignment values) for registered types. The table has a set of pre-

Modu le 1
-

Source Code

Module 1 '
-

Modi f ied
Source, Uses
PIL Interface

Modu le 2 '
-

T rans fo rmed
Source, Uses
PIL Interface

H a n d C o d e d
Process In t rospect ion

Modu le 2
-

ANSI C
Source

Automat ica l l y App l ied
Process In t rospect ion

Modu le n '
-

T rans fo rmed

Modu le n

Process In t rospect ion

B a c k - e n d
compi la t ion, l ink ing

Process
Introspect ion

Library

APrIL
Introspect ive

Executable

 Figure 5.1: Using the Process Introspection system.

59

defined basic types, and supports composition of types into vectors and records.

• Typed I/O—This module permits general typed I/O of data regions in the process’s address

space. Using a registered type table description of the data region, and the PIL buffer mecha-

nism, the typed I/O routines can read or write any data region in the process’s address space.

• Global Variable Management—This module supports the registration of global variables at

process startup time. These globals will be captured automatically at checkpoint time and

recovered at restart time.

• Heap Allocation—Heap allocation wrapper routines allow the library to keep track of the

types and sizes of all dynamically allocated data structures in the process. These data struc-

tures are saved automatically at checkpoint time and are recovered at restart time.

• Pointer Description—This module generates platform-independent, logical descriptions of

pointers in order to support the typed I/O module (which may be required to read and write

data structures containing memory addresses).

• Stack Management—This module provides routines for reading and writing stack allocated

data structures from and to the checkpoint. Routines are also provided to register the addresses

of certain local variables in order to support the pointer description module.

• Code Location Table—This table allows the registration of function pointers in order to sup-

port the operation of the pointer description module.

• Events—The events module provides a mechanism for the combination of separate trans-

formed, introspective modules. This module allows handler functions to be registered by mod-

ules to be called at key points in execution, such as at process startup, on checkpoint, and on

restart.

• Coordinator—The coordinator provides a generic interface for requesting checkpoints and

restarts. In practice, the coordinator is a replaceable module that determines how the rest of the

library interacts with the process’s environment. For example, the coordinator encapsulates the

60

external checkpoint request mechanism and the checkpoint location mechanism.

The PIL’s modular structure and inter-module dependencies are depicted in Figure 5.2. We now

describe the PIL module interfaces and implementation details in greater depth.

5.3 Library Implementation

5.3.1 Buffer Module

The PIL buffer module provides the basic storage abstraction for the Process Introspection

Library. This module encapsulates the medium used to store and retrieve a process’s checkpoint

data, which may reside on stable storage, may be retrieved from over a network, may be in mem-

ory, and so on. Buffer implementations provide operations for writing and reading raw sequences

of bytes to and from the abstracted storage. Based on these low-level operations, storage routines

for platform-independent input and output of higher-level data types can be layered. The current

library provides implementations for on-disk buffers and in-memory buffers.

Layered on the basic buffer interface, the PIL provides routines for reading and writing typed

 Figure 5.2: PIL modules and dependencies.

Buffers

Type I/O

Pointer Description

Global Variable
Management

Stack Management
Code Location

Table

Heap Allocation

Type Description
Table

Coordinator Events

61

data from and to a buffer in an architecture-independent format. This interface is responsible for

masking differences in byte ordering, floating-point representation, size, and so on. When a PIL

buffer is created at checkpoint time, it is tagged automatically to indicate the supported PIL data

format that the process will use to store data (i.e. the native data format for the architecture on

which the process is running). Later, when the buffer is used to restart the process, the data it con-

tains is converted from the stored data format to the restarting processor’s data format automati-

cally as it is read by the restarting process, a protocol known as receiver-makes-right [96].

Given this receiver-makes-right approach, the library must contain routines to translate the set

of basic data types from every available format to every other available format. This O(n2) require-

ment (where n is the number of different data formats) may initially appear unnecessarily costly;

why not instead use a single universal data format for checkpoints (such as Sun XDR [79]), and

require conversion routines only between native formats and the universal format (reducing the

complexity to O(n) conversion routines for n formats)? In fact, the receiver-makes-right protocol

makes sense in light of the very small number of data formats actually in use by current computer

systems. By not requiring data format conversion on checkpoint, the cost of format conversions is

avoided for the frequent case in which a checkpoint is restarted on a computer with similar data

formats to the one on which it was created. Furthermore, the size and complexity of the library can

be reduced by a simple conditional compilation optimization: a version of the library compiled for

a given platform need only include the routines to translate between other data formats and the

native data format, reducing the actual number of routines in any one version of the library to O(n).

An example of PIL buffer usage is depicted in Figure 5.3. It is worth noting that separate rou-

tines are provided for reading and writing scalar and vector values. The scalar interface supports a

pass-by-value interface, allowing scalar variables to be written to the checkpoint without inhibit-

ing the allocation of those variables to registers by back-end compilers.

62

5.3.2 Type Description Table

The PIL buffer interface provides mechanisms for reading and writing memory regions con-

taining scalars or vectors of the basic C data types. In general, memory regions may contain user-

defined structured data types. To checkpoint or restore such memory regions, the PIL must have a

description of the regions’ data storage layout. The PIL provides an interface to a table that maps

integer type identifiers to logical type descriptions, and that allows the creation of new type

descriptions based on the composition of existing ones. The PIL type description table is not

unlike a type table that might be found in a compiler, except that it is available and dynamically

configurable at run-time. The interface provides pre-defined type identifiers for the basic types

supported by ANSI C, and supports an interface for describing vectors and records based on exist-

ing types. In order for the PIL to capture or recover a memory region, the memory layout of that

region should be capable of being described as a basic data type supported by the type table, a lin-

ear vector of some number of elements of a type described by an entry in the type table, or a struc-

ture containing a list of elements, each of which is described by an entry in the type table.

When transforming a program to utilize the PIL for Process Introspection, all required types

must be registered by the program on process startup. An example of two basic type registrations

using the type table interface is provided in Figure 5.4. In this example, the type descriptor t1 is

initialized to describe a type consisting of an array of 100 double precision floating-point values.

PIL_Buffer *buf;

float x[N];

buf = PIL_FileBufferCreate(“Checkpoint.data”);

PIL_BufferPutInt(buf, N);

PIL_BufferPutFloats(buf, x, N);

 Figure 5.3: PIL buffer usage example.

63

The second type descriptor, t2 , is initialized to describe a structure type. The structure type is then

defined to include two elements: an integer and an element of type t1 (an array of 100 doubles).

The internal implementations of the type registration routines generate and save internal type

descriptions. For arrays, the type table index of the array elements and the number of array ele-

ments are recorded. For structures, a list of elements is generated, with each list node containing

the type table index and the offset of the field. In addition to this basic descriptive information, the

generated type table entry includes size and alignment information for the type. This information

is generated for all data formats supported by the library (based on the basic data type sizes and

alignment rules for those formats) in order to support the receiver-makes-right protocol for user-

defined data types.

5.3.3 Typed Input/Output Module

Based on the mechanisms for platform-independent I/O of basic data types provided by the

PIL buffer module, and on the ability to describe user defined types provided by the type descrip-

tion table, the PIL typed I/O module supports platform-independent input and output of memory

regions containing user defined data types. As depicted in Figure 5.5, usage of the typed I/O inter-

face is straightforward. The routines take parameters indicating the PIL buffer to read or write, the

type table index of the data elements contained in the memory region being captured or recovered,

a pointer to the memory region, and a count of the data items contiguously stored in the region.

The internal operation of these functions can proceed in one of two modes: automatic or user-

int t1, t2;

t1 = PIL_RegisterArrayType(PIL_Double, 100);

t2 = PIL_RegisterStructureType();

PIL_AddStructureField(t2, PIL_Int);

PIL_AddStructureField(t2, t1);

 Figure 5.4: Type registration examples.

64

defined marshalling. In automatic mode, the memory region is stored or retrieved based on the

type description found in the type table. For example, in the case of a structure, each field listed for

the structure in the type table is input or output using a recursive application of the appropriate

typed I/O function, the recursion reaching a base case in the event that the parameter type table

index corresponds to a basic data type.

User-defined marshalling mode is an alternative to automatic mode that requires additional

programming effort on the part of the library user, but can offer better performance. To employ

user-defined marshalling mode, the library user writes input and output functions for a desired data

type, and registers these functions with the PIL, specifying the type table index with which they

should be associated (see Figure 5.6). The user defined marshalling functions export an interface

similar to the generic typed I/O routines, but do not require a type table index since they are

assumed to operate on a single, known type. User defined marshalling functions can improve per-

void PIL_WriteTypedArray(PIL_Buffer *buf, int type_table_index,

void *ptr, int count);

void PIL_ReadTypedArray(PIL_Buffer *buf, int type_table_index,

void *ptr, int count);

 Figure 5.5: Typed I/O interface.

struct user_struct { (structure contents) };

. . .

user_struct_index = PIL_RegisterStructureType();

. . .

void input_user_struct(PIL_Buffer *, void *, int);

void output_user_struct(PIL_Buffer *, void *, int);

PIL_RegisterMarshallingFunctions(user_struct_index,

input_user_struct, output_user_struct);

 Figure 5.6: User defined marshalling function registration.

65

formance by avoiding the need to interpret type descriptions at run-time to perform marshalling.

Furthermore, in coding the user defined marshalling functions, a user can take advantage of

semantic information not available in the type table. For example, a large matrix might offer better

run-time performance if stored using a standard dense-matrix format while the process is active,

but might be more efficiently checkpointed and recovered using a sparse matrix format.

If user defined marshalling functions are defined for a data type, the typed I/O routines defer

to these; otherwise, automatic mode is employed. In either case, the typed I/O module allows any

memory region whose contents are described in the type description table to be stored in and

recovered from PIL buffers.

5.3.4 Global Variable Table

The PIL provides an automated mechanism for saving and restoring the values of global vari-

ables at checkpoint and restart times, respectively. This mechanism requires that the memory

addresses, type table indices, and vector sizes of all globally-addressable memory blocks be regis-

tered with the PIL in a global variable table at process startup time. An example of global variable

registration is depicted in Figure 5.7. In this example, an integer scalar, N, and a vector of 100 dou-

ble precision floats, X, are registered with the global variable table. Note, the registered memory

regions are also permitted to contain user defined types, and thus global variable registration

would generally follow type table initialization at process startup time.

Each global variable registered in the PIL is assigned a unique identification number. When

the process performs a state capture using the Process Introspection mechanism, the data contained

PIL_RegisterGlobal(&N, PIL_Int, 1);

PIL_RegisterGlobal(X, PIL_Double, 100);

 Figure 5.7: Global variable registration.

66

in each registered global memory region is saved along with the region’s associated identification

number using the typed I/O interface. When the process is restarted and must recover its state, the

global variable registration is repeated, and the values of all global regions are recovered, again

using the typed I/O interface. The restarting process may execute on a different platform, in which

case the actual addresses of the registered global regions may have changed, but this issue is

masked by the use of the unique identification numbers to match checkpointed data with the

appropriate global memory region.

5.3.5 Heap Allocation Module

Similar to the case with globals, the PIL provides a mechanism for allocating memory blocks

from the heap that will be automatically checkpointed and restored. The heap allocation module

exports heap wrapper routines that perform typed memory allocation and deallocation. These

wrapper routines maintain a table of the addresses, type table indices, and vector sizes of all active

dynamically-allocated memory blocks. Allocation routines corresponding semantically to the stan-

dard C library routines malloc , calloc (which clears the allocated memory region), and

realloc (which re-sizes an allocated memory region) are provided by the library, in addition to

a free wrapper routine.

An example of PIL heap wrapper usage is depicted in Figure 5.8. Note that the PIL allocation

routines require a parameter specifying the type being allocated, allowing the library to later cor-

rectly store and retrieve the allocated memory region using the typed I/O routines. It is also worth

noting that the routines allocate a region sized based on number of data items rather than on num-

ber of bytes (as with C malloc). The size of the returned block is computed by the routines based

on the type table entry for the allocated type.

As with global variables, dynamically allocated memory blocks are assigned unique identifi-

cation numbers by the PIL heap management routines. When the process state is captured, the data

67

contained in each heap memory block is saved along with its identification number and a memory

block description consisting of a type table index and number of elements corresponding to the

memory layout of the region. When the process is restarted, each heap block is re-allocated based

on the saved memory block description (if necessary—in the case that the process has not stopped

or migrated, the memory block may still be available), and its contained data is recovered from the

checkpoint. As in the case of global variables, the addresses of dynamically allocated memory

regions may change after a state capture and recovery of the process. In Section 5.3.6 we examine

how memory relocation is automatically masked from user code by the PIL.

5.3.6 Pointer Description

Thus far, we have only considered the case of memory regions containing simple numerical

data types that can be transformed between different data formats in a straightforward manner, and

have ignored the issue of pointers. Memory addresses (i.e. pointers) contained within memory

blocks are inherently platform-dependent—i.e., even if the appropriate data format conversion is

performed to allow the process on a different platform to interpret the same address value, the

address will almost certainly have different meaning in the new address space. Furthermore, the

operation of the PIL at state recovery time can move the location of memory regions (e.g. heap

allocated blocks), and thus a mechanism for masking this from user code is required.

float *x;

struct user_struct *s; /* Registered in type table as */

 /* “user_struct_index” */

x = (float *)PIL_Malloc(PIL_Float, 100);

s = (struct user_struct *)PIL_Calloc(user_struct_index,1);

PIL_Free(x);

 Figure 5.8: PIL heap management example.

68

When captured in a checkpoint, pointers must be described using a logical format in place of

the physical address. Similarly, at restore time, logical pointer descriptions saved in a checkpoint

must be used to determine the physical memory address values that should be restored into all

memory blocks. To address these requirements, the PIL supports a pointer description mechanism

based on the assignment of unique identification numbers to every memory block of interest in the

program. A logical pointer description is a tuple containing a memory block type, a memory block

identification number, and an offset into the memory block. The pointer analysis module provides

an interface for generating logical descriptions of memory locations and for resolving these logical

descriptions into actual memory addresses, as depicted in Figure 5.9.

The implementation of pointer description is based on simple case analysis; a pointer is

allowed to be one of exactly five types:

• A reference into a heap allocated memory block

• A reference into a global memory block

• A reference into a local (stack) memory block

• A pointer to some code entry point (i.e. a function pointer)

• A special value that has meaning in the program (such as NULL in C)

To determine the appropriate case, the pointer description routine searches for the address it must

describe in the global variable table, in the heap allocation table, in a local variable table (to be

described in Section 5.3.7) and in the code location table (to be described in Section 5.3.8). Based

on the table in which the memory block to which the pointer refers is found, and the pointer’s off-

set into that memory block, a pointer description is generated, as in Figure 5.10. We note an impor-

PIL_PointerDescription *PIL_DescribePointer(void *addr);

void PIL_ResolvePointer(PIL_PointerDescription *d, void **ptr);

 Figure 5.9: Pointer description interface.

69

tant optimization to the search process described here; since it is typical for the different types of

memory regions (i.e. global, stack, heap, code text) to reside in different regions of a process’s

address space, the search process described above can be pruned significantly by maintaining

upper and lower memory address boundaries for the memory regions registered in each table. For

example, the global variable table keeps track of the beginning of the registered memory region

with the lowest starting address, and the end of the registered memory region with the highest

starting address. Thus, when a search is performed during a pointer description operation, it can

quickly be determined if the pointer can possibly refer to a registered global memory region.

Pointer resolution, the mapping of logical pointer descriptions to actual memory addresses, is

required when process state is recovered. Given a pointer description, the pointer resolution opera-

tion looks up the appropriate memory block in the indicated table. For example, if the pointer

description block generated in Figure 5.10 were resolved, memory block 7 would be found in the

heap allocation table. The only remaining step, given the appropriate base address for the referred-

to memory block is the addition of the pointer offset. Of course, since the process may be restarted

on a platform with a different data format, the offset may need to be transformed. Again, this pro-

tocol is a receiver-makes-right strategy, which improves performance when the restart data format

is compatible with the checkpoint data format—in this case, we may directly add the offset and

return the resulting address.

heap-allocated
block #7

offset=64 bytes

pointer "x"

PIL_DescribePointer(x)

(type=heap, id=7, offset=64)

 Figure 5.10: Pointer description.

70

5.3.6.1 Pointer Offset Translation

Pointer offset translation is based on the layout of the memory region into which the pointer

points. The fundamental assumption of the translation algorithm is that a pointer offset into a

memory region when added to the base address of that region should point to the beginning of a

data element whose type is registered in the type description table. For example, an address might

point to the beginning of an array of structures, or might point to the beginning of one of the struc-

tures in the array, or might point to the beginning of a field inside one of the structures in the array,

and so on. Given this assumption, the algorithm operates by finding the largest data structure

inside the memory region in question, the beginning of which the offset would have pointed to in

the checkpoint process’s address space. Once this structure is found, its offset into the correspond-

ing memory region in the restart process’s address is computed, which is the resulting translated

offset.

The details of the pointer offset translation algorithm are presented in Figure 5.11. Steps 1 and

2 of the algorithm cover the base cases where the checkpoint and restart data formats match, or the

offset is zero, respectively. In either of these cases, the offset need not be transformed. Step 3 is

performed if the highest level memory layout of the region into which the pointer refers is an array.

In this case, the algorithm determines the element of the array into which the offsets refers, sets

 be the local offset of that array element, and lets be the checkpoint process’s offset

into that array element. Similarly, step 4 is performed if the highest level memory layout of the

region is a structure type. In this case, the algorithm determines the structure field into which the

offset points, sets to the local data format offset of that field, and sets to the checkpoint

process’s offset into that structure field. After either step 3 or 4 is performed, the algorithm is

applied recursively to transform the remaining offset, , into the appropriate array element or

structure field. This transformed offset remainder, , is then added to to determine the final

transformed offset.

otemp onew

otemp onew

onew

oδ otemp

71

5.3.6.2 Pointer Resolution Ordering

In our discussion of pointer resolution thus far, we have assumed that the memory referred to

by a logical pointer was allocated and resident in memory. During a process restart, this assump-

tion will not hold if a pointer resolution is attempted before the referred-to memory region (e.g. a

heap allocated block) is reallocated. This problem is an artifact of the fact that the PIL does not

perform all memory reallocation before memory reinitialization (i.e. reading the data from the

checkpoint into memory) is started. Instead, as the PIL reallocates each memory block, it attempts

to reinitialize that block. In the case of numerical data this is safe, but for pointers, this aggressive

reinitialization strategy can lead to resolution failures. To address this issue, the PIL maintains a

1. If d same as local data format, then let , stop.
2. If , then let , stop.
3. If t is an array type, then:

Let be the element type of the array
Let be the size of in data format d
Let
Let be the size of in the local data format
Let , let

4. If t is a structure type, then:
Find structure element in type t, where:

 is the field offset of structure element in data format d, and
 is the size of structure element in data format d, and

Let be the type of structure element
Let be the field offset of structure element in the local data format
Let , let

5. Let be the result of applying this algorithm recursively with , ,
and d unchanged.

6. Let , stop.

otrans o←
o 0= otrans 0←

telt
sd telt
e o sd⁄←
sl telt
otemp e sl⋅()← onew o e sd⋅()–()←

i
fi d, i
gi d, i
fi d, o≤ fi d, gi d,+()<

telt i
fi l, i

otemp fi l,← onew o fi d,–()←
oδ t telt= o onew=

otrans otemp oδ+()←

Input:
t, type description defining the layout of a memory region
o, offset into the memory region, as captured in a checkpoint
d, data format of the checkpoint process

Output:
, translation of o for the data format of the restart processotrans

 Figure 5.11: Pointer offset translation algorithm.

72

list of unresolved pointers during a restart. Each element on the list contains a description of a

memory region containing an unresolved pointer, and the logical pointer description needed to

later resolve it. The PIL provides a routine that iterates over the unresolved pointer list, resolving

those unresolved pointers for which the referred-to memory region was subsequently reallocated.

This operation is invoked automatically at the end of a restart, but may be invoked safely at any

time.

5.3.7 Stack Management

Since pointers may refer to stack allocated memory regions, the addresses and types of certain

local variables need to be registered with the PIL to support pointer description. An example that

uses the PIL interface to register stack allocated memory blocks is depicted in Figure 5.11. Not all

local variables need be registered with the PIL, only those that might be referred to by pointers

(e.g. those whose addresses are used in an expression). The registration of local variables is per-

formed only to support pointer description, not to provide an automatic save and restore mecha-

nism, as with global and heap allocated blocks. As described in the Process Introspection model

(Chapter 3), local variables are saved explicitly at poll points encountered after a checkpoint

request, and are restored in subroutine prologues during a restart.

To support the explicit checkpoint and recovery of local variables, the PIL provides an inter-

int n;

double x[100];

PIL_RegisterLocal(&n, PIL_Int, 1);

PIL_RegisterLocal(x, PIL_Double, 100);

. . .

PIL_UnRegisterLocal(&n);

PIL_UnRegisterLocal(x);

 Figure 5.11: Local variable registration example.

73

face layered on the PIL buffer mechanism and the typed I/O module. During a checkpoint, each

subroutine on the stack initializes an in-memory PIL buffer into which it writes its local state, thus

supporting the restart optimization described in Section 3.3.3. This process is depicted in Figure

5.12(a). Similarly, during a restart, each call frame advances to the next element in a list of in-

memory stack frame PIL buffers and then reads its local state, as depicted in Figure 5.12(b). The

transfer of in-memory PIL buffers containing stack data to and from the actual checkpoint buffer is

performed automatically by the PIL.

5.3.8 Code Location Table

Since pointers can refer to function entry points, the PIL must maintain a table that maps

function pointers to logical identifiers to support pointer description. All subroutine entry points

(and other addressable code locations) in a program that may be referred to by a pointer must be

assigned a logical identification number via the PIL code location table interface, as depicted in

Figure 5.13.

if (PIL_CheckptStatus==PIL_StatusCheckpointNow) {

PIL_InitStackFrame(804); /* Specify required size */

PIL_SaveStackInt(n);

PIL_SaveStackDoubles(x, 100);

. . .

}

if (PIL_CheckptStatus==PIL_StatusRestartNow) {

PIL_NextStackFrame(); /* Move to next buffer */

PIL_RestoreStackInt(n);

PIL_RestoreStackDoubles(x, 100);

. . .

}

(a) Saving local variables at a poll point

(b) Restoring local variables in a subroutine prologue

 Figure 5.12: Explicit stack save/restore interface examples.

74

5.3.9 Event Module

The event module provides the primary mechanism for separate modules to interoperate with

respect to state capture and recovery, and for modules to customize their checkpoint and restart

behavior. The event module allows a program module to register function callbacks that will be

invoked automatically by the system on process startup, process checkpoint, and process restart.

The most common use of the event mechanism is the declaration of a process startup event handler

by a module that must register type descriptions, global variables, and so on.

To understand the importance of this mechanism for customizing a module’s state capture and

recovery behavior, consider the case of a file interface wrapper module. Besides the normal activi-

ties of saving and restoring the data in memory blocks (as is done by every module, and which is

typically automated using the PIL), the file module must perform extra actions. On a restart, for

example, it must use the local file interface to re-open the files that were in use at the checkpoint. It

would also likely be responsible for maintaining the file version differences associated with each

checkpoint. These extra activities would be coded in the form of event handlers that would be exe-

cuted in response to checkpoint and restart events.

5.3.10 Checkpoint Coordinator

Thus far, we have not discussed the issue of how checkpoints or restarts are requested from a

process, how the checkpoint data is located and wrapped in a PIL buffer, and how the automatic

int (*f)();

PIL_RegisterFunctionPointer(rand);

f = rand; /* Had to register rand so the pointer */
/* f can be described by the PIL */

 Figure 5.13: Function pointer registration.

75

checkpoint and restart services provided by the PIL are performed (e.g. global variable recovery,

heap reallocation and recovery, etc.). These issues are encapsulated by a replaceable checkpoint

coordinator module. The coordinator might initiate checkpoints internally based on a scheduling

algorithm, might accept checkpoint requests via messages received over a network, and so on. To

allow the PIL to adapt to different environments, the operation of the coordinator is left intention-

ally loosely defined.

Although it is a replaceable module, the coordinator must interact with the rest of the library

and with user code in a well defined manner. This interaction is defined by the coordinator inter-

face:

• To initiate a checkpoint, the coordinator sets the value of a special global variable,

PIL_ChckptStatus to the value PIL_StatusCheckpointNow . Similarly, to

request a restart, the coordinator sets the value of PIL_ChckptStatus to

PIL_StatusRestartNow at process startup.

• When the user code completes a checkpoint (using the Process Introspection mecha-

nism described in Chapter 3), it should invoke the coordinator function

PIL_DoneCheckpoint() , which in turn will automatically save the registered

global and heap allocated memory regions, and transfer the in-memory stack frame

buffers to the checkpoint.

• Before initiating a restart, the coordinator automatically recovers the state of all global

and heap allocated memory regions, and transfers the PIL buffers containing the user

stack frames into an in-memory list.

Within this general framework, the coordinator’s operation can be customized to a range of envi-

ronments. The default Unix implementation coordinator included with the PIL accepts checkpoint

requests via a signal, the handler for which sets the PIL_ChckptStatus to indicate the check-

point request. The checkpoint is stored in a file whose location is determined from a Unix environ-

76

ment variable. Restarts are initiated at process startup time based on the contents of the indicated

checkpoint file. If the file indicated by the checkpoint environment variable is found to be non-

empty, the restart is initiated automatically.

5.4 System Service Wrappers

In Section 5.3, we discussed the implementation of the core state capture and recovery mech-

anisms provided by the PIL. These mechanisms provide automation of the capture and recovery of

internal process state, but do not address the issue of external state—the status of the process’s

interactions with external system services. As described in Section 3.4, external state capture and

recovery can be supported via system interface wrapper modules. As an example of system service

wrappers to support state capture and recovery, we have implemented an auxiliary file interface

library layered on the PIL.

The Process Introspection File (PI-File) library provides an interface corresponding to the C

standard I/O interface, except that the identifiers in the PI-File interface are prefixed with the

string “PI_ ”. An example of the interface usage is depicted in Figure 5.14. A replacement

“stdio.h ” header file is provided with the library to allow existing code implemented using the

C standard I/O interface to use the PI-File interface automatically through a set of macro defini-

tions.

The operation of the PI-File library provides automatic capture and recovery of a process’s

open files, file pointers, and standard I/O buffers. The library does not capture and recover actual

PI_File *f;

f = PI_fopen(“data”, “w+”);

PI_fprintf(f, “%d, %f\n”, i, x[i]);

 Figure 5.14: Process Introspection file interface usage.

77

file contents of open files, although this policy would be a straightforward modification to the PI-

File implementation. The current PI-File implementation would be suitable for an environment

where processes utilize state capture and recovery to support migration, but would not be safe for

backwards error recovery in general, since the effects of file updates would not be rolled back

automatically, and thus restarting processes could be presented with inconsistent file states.

Despite these limitations, the PI-File library implementation is a good example of how system ser-

vices can be wrapped in a module to support state capture and recovery.

The implementation of the PI-File library is layered on the services provided by the PIL, and

on the C standard I/O interface. The PI-File library maintains a list of open file descriptions, which

is updated by the PI_fopen() and PI_fclose() routines. Each open file description con-

tains a pointer to an associated C standard I/O FILE structure, and a record of the file name and

flags with which the file was open (e.g. read, write, append, etc.). When PI-File operations are per-

formed on an open file, the associated C standard I/O operation is performed on the corresponding

C standard I/O FILE structure.

The automatic checkpoint and recovery of the PI-File interface is based on two fundamental

PIL features: heap allocation and events. First, the PI-File file records (i.e. PI_FILE structures)

used by the library are allocated using the PIL heap allocation routines. This provides automatic

reallocation of the PI-File open file list, but more importantly, it supports the correct capture and

restoration of PI_FILE pointers in the user code. Recall, any pointers captured and recovered

using the PIL interface must refer to a memory block registered in one of the PIL tables. Use of the

PIL heap allocation routines for the PI-File open file list ensures that this rule is observed.

Reallocation of the open file list is only part of the problem of capturing and recovering the

open file state. When the process is restarted, it must reopen any files that were open at checkpoint

time and restore the process’s file pointers. To accomplish this, the PI-File library uses the PIL

event mechanism. The PI-File library registers event handlers to be called on checkpoint and on

78

restart. The checkpoint handler determines and saves the file pointer associated with each open file

(using the standard I/O ftell() routine), and flushes the standard I/O buffers associated with

any open files. The restart event handler iterates over the open file list, reopens the files with the

appropriate flags, and restores file pointers (using the standard I/O fseek() routine). From the

perspective of the user application, the result of this combination of event handler activities is the

automatic capture and recovery of a process’s open file state.

79

Chapter 6
The APrIL Source Code Translator
 The programming interface provided by the PIL automates several aspects of Process Intro-

spection, such as platform-independent I/O, but is still relatively low-level. At this level of auto-

mation, the programmer is still required to perform code modifications such as poll-point

placement and prologue generation manually in order to employ Process Introspection. Fortu-

nately, for platform-independent programs this process can be automated by a source code transla-

tor. Using the Sage++ toolkit [11], we have implemented this idea in the APrIL compiler. In this

chapter, we examine the design of the APrIL compiler, and the fundamental specific transforma-

tions it employs.

6.1 Intermediate Representation

The model described in Chapter 3 required that the input to the translator be in a common

intermediate representation. An intermediate representation for Process Introspection should bal-

ance the following goals:

• Platform-independence.

• High-level language independence.

• A base of reusable existing tool support (e.g. front-ends for various languages, back-

ends for various platforms, optimizers, etc.).

For our prototype design of APrIL, the intermediate code we selected is ANSI C. APrIL

transforms input ANSI C code, producing as output new ANSI C code that has been modified as

described in Chapter 3, and that utilizes the PIL as a run-time interface. The resulting C code can

then be compiled using any ANSI C compiler. C meets the first requirement, architecture-indepen-

dence, if certain platform-dependent features (e.g. the “asm” directive) and inherently platform-

80

dependent programming-practices (e.g. relying on the representation of basic data types) are disal-

lowed. Although seemingly counter-intuitive, ANSI C also meets the second requirement of high-

level language independence. For example, source-to-source tools exist to translate C++, Fortran,

and Pascal (among others) to ANSI C. Finally, source-to-source translation based on ANSI C

meets the third goal of a rich existing tool set. Optimizing back-end compilers are widely avail-

able. Front-end source-to-source translation tool-kits are also available; for example, the Sage++

library [11] (which was used to implement APrIL) provides an object-oriented interface to parsing,

manipulating, and transforming C++ (and thus C) using a set of C++ object classes. It should be

noted that the use of C as the intermediate representation is not fundamental to the APrIL design.

If a different intermediate representation were used, equivalent transformations to those which will

be described in this chapter could be performed to implement the automatic checkpoint code, as

will be discussed in greater depth in Chapter 8.

6.2 APrIL Transformations

In this section, we present the fundamental set of transformations performed by the APrIL

compiler. Throughout this section, we make certain assumptions about the input code that simplify

both the description and the implementation of the transformations in question. These assumptions

are:

• All local variables are declared in the outermost scope of the function.

• All function calls appear only in simple C expression statements (e.g. not within the

conditional of a loop or “if ” statement, etc.).1

• At most one function call appears in any statement (e.g. an expression such as

f(x)+g(y) is illegal).

1. We adopt the definition of expression statement as given by Kernighan and Ritchie in The C Programming
Language [46] in the grammar for the C language presented in Appendix A. See the expression-statement
production.

81

• In an expression statement containing a function call, the function call must be guar-

anteed to be evaluated before any other subexpressions with side-effects. For example,

the actual parameters to all function calls (which are evaluated before the function is

invoked) must be side-effect free expressions.

• No “union ” data structures are declared.

For the remainder of Section 6.2 we will assume that the above restrictions hold for the input code.

In fact, although the design and implementation of the transformations described in this section are

based on these assumptions, the APrIL compiler as a whole performs a pre-processing step on gen-

eral C input code to transform it to satisfy these assumptions (except the “union ” restriction).

Thus, the actual input code for APrIL need not observe these restrictions, which would be a

severely limiting and unnecessary hindrance to the usability of the tool. We will examine the

implementation of the APrIL pre-processor in Section 6.3.

6.2.1 Poll Points

One of the most fundamental transformations performed by APrIL is the insertion of poll

points. In accordance with the model described in Chapter 3, APrIL inserts poll points throughout

the code it transforms. Recall that poll points are the points at which the program checks for a

checkpoint request, and if required captures the state of the current call frame. Using the PIL as an

interface, polling for checkpoint requests simply involves examining the value of a global variable

(PIL_ChkptStatus) that is set to indicate that a checkpoint request has been received. Imme-

diately following a poll point, code is inserted which will be executed when a checkpoint is in

progress. This code records the location in the frame at which the checkpoint is produced, and

branches to a function epilogue that saves the actual parameters and local variables in the frame

(described in greater detail in Section 6.2.3). As described in the model, APrIL generates two

kinds of poll points: optional and mandatory (function call site) poll points.

82

Optional poll points can be inserted in the transformed code between any two statements, and

are marked by APrIL using a C label inserted to allow a restarting process to jump to the poll point

at which a given stack frame was checkpointed. Of course, since labels are not a first class data

type in C, the checkpointing process must save some other data value to record the poll point loca-

tion at which a stack frame checkpoint was generated. Using the PIL interface, this value is simply

an integer that will map one-to-one to poll points within a given function. An example of an

optional poll point is depicted in Figure 6.1.

Mandatory poll points expand on the design of optional poll points. In accordance with the

Process Introspection model, APrIL inserts mandatory poll points after every function call state-

ment in the code1—recall, these mandatory poll points are required to implement the stack capture

operation based on the native function return mechanism as described in Chapter 3. When a func-

tion returns in APrIL transformed code, the return may be due to the normal completion of the

function, or it may be a return being performed in the context of checkpointing the stack. Manda-

tory poll points must catch and implement this latter case. Mandatory poll points as implemented

by APrIL utilize two labeled code locations: one before the call site (to handle the case that the

checkpoint was begun in a higher call frame), and one after the call site (in the event that the

1. Recall that we have assumed that function calls appear in the input code only in simple C expression state-
ments. In fact, function calls in C are just another type of expression, and can thus appear anywhere a valid
expression can (e.g. a function call might be a parameter to another function call, which might be part of
the conditional for an “if ” statement, and so on). To perform the transformations as described in the
model, APrIL extracts functions from complex expressions and statements, and reduces them to simple C
expression statements containing a single function call. Details of this transformation are covered in Sec-
tion 6.3.

_PIL_PollPt_1:

if(PIL_ChkptStatus&PIL_ChkptNow) {

PIL_PushCodeLocation(1);

PIL_ChkptStatus|=PIL_ChkptInProgress;

goto _PIL_save_frame_;

}

 Figure 6.1: An optional poll point.

83

checkpoint is initiated immediately following a normal function return). A bit in the

PIL_ChkptStatus variable is set as soon as any poll point has been encountered after a check-

point request, and thus the mandatory poll point code can simply test this bit’s value to differenti-

ate between the two cases. If the checkpoint is already in progress when the mandatory poll point

is encountered (i.e. the checkpoint was begun in a higher call frame), the poll point marks the loca-

tion immediately preceding the function call as the point at which the restarting process should

resume in the function. This will later allow the stack to be recovered using the native function call

mechanism. If the checkpoint is not in progress when the mandatory poll point is encountered, the

checkpoint request must have been received after the last poll point in the previous function invo-

cation was passed. Thus, the previous function call must have completed normally, and the restart

code location selected is the statement immediately following the function call. An example of a

mandatory poll point is depicted in Figure 6.2.

6.2.1.1 Poll Point Placement Policies

The placement of poll points in the code is a critical performance issue for APrIL. If poll

points are placed so that they occur too frequently, the introduced overhead and impact on back-

_PIL_PollPt_2:

i = function(A,X,100);

_PIL_PollPt_3:

if(PIL_ChkptStatus&PIL_ChkptNow) {

if(PIL_ChkptStatus&PIL_ChkptInProgress)

 PIL_PushCodeLocation(2);

else {

 PIL_PushCodeLocation(3);

 PIL_ChkptStatus|=PIL_ChkptInProgress;

}

goto _PIL_save_frame_;

}

 Figure 6.2: A mandatory poll point.

84

end compiler optimizations may be large. On the other hand, if poll points are placed too infre-

quently, a request for a checkpoint sent to the process may suffer a large delay before being ser-

viced. Clearly, a balanced approach based on the user’s tolerance of introduced overhead and

checkpoint-request wait time is required. If the user only expects to checkpoint infrequently (e.g.

once every minute), but demands little introduced overhead, then very sparse, conservative poll-

point placement should be selected. Alternatively, if checkpoint-request wait times must be very

low (for example, if the checkpoint will be used for code migration to effect load sharing), then

more frequent, aggressive placement is appropriate. Unfortunately, the problem of statically exam-

ining code and determining the introduced overhead and resulting checkpoint request wait time

based on a given poll-point-placement strategy is difficult, if not impossible. The current APrIL

solution is based on the hypothesis that a set of relatively simple heuristic placement strategies can

achieve a low degree of performance perturbation, and can at the same time provide low check-

point request wait time on average. In Chapter 7, we present the results of a detailed performance

study that substantiates this claim. Here, we present the details of the APrIL poll point placement

heuristics.

The goal of the poll point placement policy is to select some set of statements in the input pro-

gram, immediately following which poll points will be generated. In principle, every executable

statement in the input program is a valid candidate—a trivial policy to implement could select

every statement as a poll point, but would certainly result in high run-time overhead. The APrIL

poll point placement heuristics narrow the selection process by only considering locations in the

input program that are the last statement in the body of a loop1. This pruning of the possible search

space is based on two observations: First, it is unlikely that a single basic block of code will exe-

cute for a significant portion of the program’s execution time, unless the block is within a fre-

1. In general, loops can be identified by a compiler based on the dataflow graph for the input program.
Although loop identification could be applied in the context of the poll point placement heuristics devel-
oped here, the current implementation of APrIL utilizes the simpler approach of identifying loops based on
language constructs. In C, these consist of “for ”, “ while ”, and “do-while ”.

85

quently executed loop or function call. Thus, it seems unlikely that placing poll points in the

middle of a basic block will offer improved checkpoint responsiveness, and could add overhead

and hinder optimizations. Second, the primary mechanisms for induction in procedural program-

ming are iteration (i.e. loops) and subroutine invocation (e.g. recursion). Since subroutine invoca-

tion already causes periodic polling due to mandatory poll point placement, it seems likely that the

addition of optional poll points into loops could provide more complete periodic polling coverage

over the lifetime of a program and thus lead to lower on-average checkpoint request wait times.

The narrowing of optional poll point placement to loops simplifies the design of a poll point

placement policy, but the naive policy of placing a poll point at the end of every loop could lead to

poor performance. Recall from Chapter 4 that careless placement of poll points can prevent the

application of many back-end optimizations, including those performed on loops. To further

restrict the placement of poll points, the APrIL heuristic policies classify loops based on the fol-

lowing factors:

• Nouter, the outer nesting factor of a loop. This value is defined to be the number of

loops that contain the loop in question. If the loop appears in the outermost scope of its

containing function, Nouter is defined to be zero. If a loop is contained in one or more

other loop bodies, the maximal Nouter value of which is n, the loop is defined to have

.

• Ninner, the inner nesting factor of the loop. A loop that contains no loops in its body is

defined to have Ninner equal to zero. If a loop contains any other loops in its body, its

Ninner value is defined to be one greater than the maximal Ninner of the loops it con-

tains.

• Nbody, the number of statements contained in the loop’s body.

Based on these values, we define the following loop classifications for convenience in describing

our placement heuristics:

Nouter n 1+=

86

• A nested loop is defined to be a loop for which .

• An outermost loop is defined to be a loop for which .

• An innermost loop is defined to be a loop for which and .

Based on these classifications, the APrIL poll point placement heuristic supports options to select

the loops into which poll points should be placed. The following selection criteria are imple-

mented:

• Policy=1—optional poll points placed in each nested loop.

• Policy=2—optional poll points placed in complex outermost loops, i.e. outer loops for

which for some constant .

• Policy=4—optional poll points placed in each outermost loop.

• Policy=8—optional poll points placed in complex innermost loops, i.e. innermost

loops for which for some constant .

• Policy=16—optional poll points placed in each innermost loop.

Any combination of these policies can be selected by adding their policy numbers. For example,

selecting Policy=12 would cause poll points to be placed in all outermost and complex innermost

loops. Note, the base policies are not mutually exclusive—for example, Policy=4 will always

select a superset of the points selected by Policy=2. In all, there are 18 unique combinations of pol-

icies including a special policy, Policy=0, that specifies that only mandatory poll points should be

placed. All of the policies except Policy=0 implement the mandatory poll point optimization

described in Section 3.3.3 (we omit this optimization for Policy=0 to avoid potentially factoring all

poll points out of a program). We will examine the performance trade-offs associated with differ-

ent policy combinations in Chapter 7.

6.2.2 Function Prologues

Whereas poll points give a program the ability to capture the stack and execution state using

Ninner 0>

Nouter 0=

Ninner 0= Nouter 0>

Nbody Cout≥ Cout

Nbody Cin≥ Cin

87

the normal function return mechanism, function prologues as described in Chapter 3 must be

added to all functions transformed by APrIL to support stack and execution state recovery using

the normal subroutine call mechanism.

At the beginning of each function that it transforms, APrIL places a check to determine if a

restart is in progress. Similar to the implementation of poll points, this check examines the value of

the PIL_ChkptStatus variable exported by the PIL. To implement the case where the function

is called during a process restart, APrIL generates code to restore the values of all local variables

and actual parameters using the PIL stack management interface. After the local variables are

recovered, the PIL reads the integer value corresponding to the poll point at which the checkpoint

of this stack frame was generated. Based on this poll point number, APrIL uses a case statement to

jump to the appropriate code location (i.e. poll point-related label statement) in the function. If the

target of the jump is not the first label associated with a mandatory poll point, the prologue also

clears the value of the PIL_ChkptStatus variable by calling the PIL function

PIL_DoneRestart() , indicating that the restoring function is the last one on the call stack,

and normal execution will resume after the jump to the poll point. If the target of the jump is the

first label associated with a mandatory poll point, the jump will immediately be followed by a call

to the next function on the stack that needs to be restored, thus allowing the normal function call

mechanism to be used to recover the stack and execution state. Figure 6.3 illustrates an APrIL

function prologue transformation. The function heading given in Figure 6.3(a) is transformed to

include the prologue depicted in Figure 6.3(b).

Note that in addition to performing the restart-related activities described above, the prologue

is also responsible for registering with the PIL the addresses of any local variables or parameters

that may be referred to by pointers in the function. This additional action is required to support

pointer description and resolution (as described in Section 5.3.6). For example, the function in Fig-

ure 6.3 has an array X whose address is used at some point in the function, and thus a call to regis-

88

ter the address, size, and type of this array is generated.

6.2.3 Function Epilogues

In the model described in Chapter 3, the code executed at each poll point during a checkpoint

operation is responsible for capturing the state of all local variables and actual parameters in a call

frame. In order to produce more compact transformed programs, APrIL unifies the code to capture

the state of a call frame into one code segment: the function epilogue. As described in Section

6.2.1, poll points generated by APrIL include code to jump to a function epilogue in the event that

a checkpoint is in progress. The job of the function epilogue is to save all of the local variables and

actual parameters for the function using the PIL stack management interface. APrIL generates an

void example(double *A) {

int i;

double X[100];

PIL_RegisterLocal(X,PIL_Double,100);

if(PIL_ChkptStatus&PIL_RestoreNow) {

int PIL_code_loc;

A = PIL_RestoreStackPointer();

i = PIL_RestoreStackInt();

PIL_RestoreStackDoubles(X,100);

PIL_code_loc = PIL_PopCodeLocation();

switch(PIL_code_loc) {

case 1: PIL_DoneRestart(); goto _PIL_PollPt_1;

case 2: goto _PIL_PollPt_2;

case 3: PIL_DoneRestart(); goto _PIL_PollPt_3;

}

}

void example(double *A) {

int i;

double X[100];

 Figure 6.3: A function prologue.

(a) The original function heading

(b) The transformed function heading

89

epilogue for each function it transforms that contains any poll points (if the function never polls for

checkpoint requests, it will never need to save its state) placed beyond the function’s last return

statement1; the epilogue is accessible only by goto , and is not executed during the normal pro-

gression of the program. The function epilogue for the example function from Figure 6.3 is

depicted in Figure 6.4.

We note that this design for saving the local state associated with a function call assumes that

all local variables must be visible from the outermost scope of the function. To ensure this, APrIL

moves the declaration of locals declared in inner scopes to the head of the function during its pre-

processing phase, renaming where appropriate to avoid name clashes.

6.2.4 Module Initialization

The three types of transformations discussed thus far are primarily aimed at implementing the

checkpoint and restoration of function call stacks. In general, to use the PIL interface correctly

during these activities, APrIL must generate code to register any types defined by the program

with the type description table. For example, a stack save operation may be required to capture the

state of a variable of a user defined structure type. Furthermore, to support the automatic check-

point and recovery of global variables, APrIL must register all globals defined in the program with

1. In the case of void -returning (or other, perhaps erroneous) functions that do not end with a return state-
ment, APrIL generates a return to ensure that APrIL state capture code is never accidentally executed
during normal execution.

return; /* End of code for normal function execution */

_PIL_save_frame_:

PIL_InitStackFrame(PIL_LogicalPointerSize + sizeof(int));

PIL_SaveStackPointer(A);

PIL_SaveStackInt(i);

PIL_SaveStackDoubles(X,100);

return;

 Figure 6.4: A function epilogue.

90

the global variable table. APrIL generates code to perform both type table and global variable reg-

istrations in an added initialization function, which we will call APrIL_Init() 1. This initializa-

tion function is registered as an event handler for the process startup event exported by the PIL.

The first activity performed in APrIL_Init() is the registration of user defined types.

Recall, the PIL type description interface assigns an integer identifier to all registered types. When

registering global variables, allocating memory from the heap, or performing a checkpoint, the

transformed code may need to make use of these integer type identifiers. In order to make the type

identifiers associated with user defined types globally accessible, APrIL introduces a global inte-

ger variable corresponding to each type2. For each user defined structure type, APrIL declares this

type identifier in the global scope, and inside APrIL_Init() registers a type description of the

structure by iterating over its fields. Internally, APrIL maintains a mapping between data types and

type identifier variables to support other transformations such as function prologue and epilogue

generation.

 Note that if an application consists of multiple source code files, redundant type descriptions

may be generated in the separately compiled files. For example, more than one program file might

include the same header file, which may in turn define a structure type. In each file, a different glo-

bal type identifier variable will be introduced, and in each file’s initialization file, the type will be

registered in the type table. However, this redundant type registration is functionally harmless, and

does not introduce significant runtime overhead (we examine the performance of applications rely-

ing on separate compilation in Chapter 7).

After the type registrations generated in APrIL_Init() , APrIL emits global variable regis-

trations. For each global variable defined in the input code, APrIL generates an appropriate call to

1. The actual name of the generated routine is a quasi-unique string based on the input file name and size in
order to support separate compilation. Many transformed files may be later linked together, in which case
each of their initialization routines will be invoked.

2. Again, to support separate compilation, the introduced variable names are quasi-unique strings based on
the type description and the name and size of the file in which the type is declared.

91

the PIL global registration function.

6.2.5 Heap Allocation Transformations

As described in Section 5.3.5, the ability of the PIL to perform pointer description correctly

and to provide automatic capture and recovery of heap allocated memory blocks is predicated on

the use of the PIL heap management interface. To support existing C code, and the use of the more

familiar standard C library heap management interface, APrIL attempts to transform calls to stan-

dard C heap routines into PIL heap routines. The primary difficulty involved in this transformation

is the requirement that APrIL determine the type of the memory block allocated by each heap allo-

cation call—the standard C dynamic memory allocation interface is untyped, but the PIL interface

is based on typed allocation.

The APrIL heap allocation transformations are based on the identification of all expressions

in the program deemed to be heap management expressions—basically, expressions containing

calls to the C standard library routines malloc() , calloc() , realloc() , or free() . A

grammar that describes heap allocation expressions as defined by APrIL is presented in Figure 6.5.

The transformation of free expressions is straightforward—the invocation of free() is

changed to an invocation to PIL_Free() , with the parameter unchanged. The transformation of

allocation expressions is more difficult, since the PIL allocation routines require a type table index

<heap-management-expr>:: <alloc-assign> | <free-expr>
<free-expr> :: free (<expr>)
<alloc-assign> :: <expr> = <alloc-expr>
<alloc-expr> :: <cast-alloc-expr> | <uncast-alloc-expr>
<cast-alloc-expr> :: (<type>) <uncast-alloc-expr>
<uncast-alloc-expr> :: malloc (<expr>)

| calloc (<expr> , <expr>)
| realloc (<expr>, <expr>, <expr>)

<expr> produces a valid C expression
<type> produces a valid C type name

 Figure 6.5: Heap management expression grammar.

92

indicating the type of memory allocated. To determine the memory type allocated by an allocation

expression, APrIL performs the following heuristic. If the result of the allocation expression is

type cast (i.e. if the allocation expression matches the cast-alloc-expr production in Figure 6.5),

and the cast type is a pointer type, the allocated memory is assumed to be of the type referred to by

the cast type, as in Figure 6.6(a). If the heap allocation fails to match this pattern, APrIL next

attempts to infer the type based on the left-hand side of the heap allocation assignment1. If the type

of the left-hand side of the heap allocation assignment is a pointer type, the allocated memory is

assumed to be of the type referred to by this type, as in Figure 6.6(b). If the heap allocation expres-

sion fails to match the grammar defined in Figure 6.5, or if the type allocated cannot be determined

using the described heuristic, as in Figure 6.6(c), APrIL compilation fails with an appropriate error

message to the user.

It is important to note that this heuristic for determining the type of memory allocated by a

heap allocation expression can fail for certain memory allocation schemes without notification at

1. Recall, we have assumed for these transformations that function calls, including heap allocation calls,
appear only in C expression statements. For example, a heap allocation call could not appear in a return
statement, which is classified as a jump statement. Given this assumption, it is fair to further assume that
the result of any heap allocation instruction will appear on the right hand side of an assignment so that the
allocated memory can later be utilized by the program.

int *x;

x = (int *)calloc(sizeof(int), 100);

double *y;

y = malloc(sizeof(double) * 10);

Allocated type is int

Allocated type is double

(a) Type allocated based on cast of result

(b) Type allocated based on type of assignment target

 Figure 6.6: Type allocation heuristic examples.

int z;

z = malloc(100); Cannot guess allocated type

(c) Allocation type heuristic failure

93

compile time. For example, consider a program written to make use of a wrapper function that is

called throughout the program in place of malloc() . This wrapper function might keep track of

the amount of memory allocated by the program to debug a memory leak, and then call on mal-

loc() to perform actual memory allocation. The result of this call to malloc() in the wrapper

function might be assigned to a temporary variable and returned as a pointer to type char , which

in turn would be cast to the appropriate allocated type at the wrapper function call site. In this sce-

nario, the type of memory actually allocated by the call to malloc() in the wrapper function

cannot be guessed statically, as it will vary at run time. Despite this, assuming the allocation

expression matches one of the acceptable patterns, APrIL will incorrectly identify the type of

memory allocated to be of type char . Although the transformed program will still operate cor-

rectly until it is checkpointed and restarted, a restart of the process on a different platform will

result in incorrect program state being restored. Given the current implementation, programmers

have the options of (a) being aware of this weakness in the heuristic and coding their memory allo-

cation scheme appropriately, or (b) calling on the PIL heap management interface directly instead

of relying on the APrIL heap transformation heuristics, which in all cases will provide the safest

interaction with the system.

6.2.6 Marshalling Functions

As described in Section 5.3.3, the PIL supports the registration of user defined marshalling

functions for data types, a mechanism that can offer improved typed I/O performance. As a com-

pile-time option, APrIL can generate and register marshalling functions for all user defined struc-

ture types.

To generate marshalling functions, APrIL iterates over the structure types defined in the input

program. For each of these types, APrIL generates two new functions: a pack routine to output

memory regions containing the type to a PIL buffer, and an unpack routine to input values of the

94

type from a PIL buffer. The definitions of these routines contain calls to the appropriate typed I/O

functions for each field in the structure. In the case of fields of basic data types, the PIL buffer

interface is called on directly.

6.3 Pre-processing

As described at the beginning of Section 6.2, the fundamental APrIL transformations operate

under a set of simplifying assumptions. The restrictions that these assumptions place on the allow-

able input code would seriously detract from the usability of APrIL for real applications—most

existing C programs would almost certainly be disallowed. To avoid these restrictions, APrIL con-

tains a pre-processor module that performs a set of semantics-preserving transformations on the

input code to enforce the assumptions made by the later transformations, allowing a more general

set of input programs. In this section, we examine the fundamental transformations performed by

the pre-processor. It should be noted that these transformations are not directly related to state cap-

ture or recovery. However, in practice, the pre-processor transformations are critical for automati-

cally factoring non-trivial programs into a subset of ANSI C that is simple enough to serve as the

intermediate representation for Process Introspection transformations.

6.3.1 Variable Declaration Motion

To support the APrIL function epilogue strategy for capturing the state of a function invoca-

tion, all local variable declarations are assumed to appear in the outermost scope of their function

definition. In general, local variable declarations can appear at the beginning of any compound

statement in C (i.e. any list of statements enclosed by the “{” and “}” tokens). To allow this feature

of C, and still meet the assumptions of the APrIL transformations, the APrIL pre-processor moves

the declarations of all local variables that do not appear in their containing function’s outermost

scope. To avoid name clashes with other variables visible in the function’s scope, APrIL renames

95

moved variables. After the variable is renamed, all references to the replaced variable name in its

previous inner scope are located and transformed to refer to the new identifier.

6.3.2 Function Call Motion

One of the assumptions made by the APrIL mandatory poll point placement transformation is

that function calls appear only in C expression statements—statements containing a valid C

expression followed by a semicolon. This precludes function calls from appearing in locations

such as iteration statements (e.g. while , for loops), selection statements (e.g. if , case state-

ments), and so on. In general, functions can appear in any valid C expression, which in turn can

appear in a number of contexts that are not expression statements.

To support general C input code, the APrIL pre-processor moves function calls that are found

in unacceptable locations. The implementation of this transformation scans the statements of the

input program, locating statements that contain one or more expressions containing any function

calls, and which are not C expression statements. When such a statement is found, it is transformed

by moving the evaluation of any function-calling expressions out of the statement and into intro-

duced expression statements, in which they are assigned to introduced temporary variables. In the

transformed statement, the temporary variables are used in place of the corresponding moved

expressions.

The details of this transformation depend on whether the statement in question is an iteration

statement (i.e. a loop construct). The simpler case is that of non-iteration statements, as depicted in

Figure 6.7, in which the transformation of an if statement is depicted. In this transformation, the

expression that contains a function call is assigned to a temporary variable in an introduced expres-

sion statement immediately preceding the transformed statement. In the original if statement, the

new temporary variable is used in place of the moved expression. The same transformation is used

for other non-iteration statement types, such as return and switch .

96

The transformation of iteration statements (i.e. for , while , and do-while) is somewhat

more complicated. Each type of iteration statement contains a conditional expression that must be

evaluated to test for termination before each iteration is performed. This expression must be evalu-

ated and its result must be assigned to a temporary variable in three types of locations: (1) before

the iteration statement is reached, (2) at the end of the loop body (i.e. before the next iteration is

performed), and (3) before any continue statement for the loop is executed. In addition to the

conditional test, for loops contain an initialization expression that must be assigned to a tempo-

rary variable before the for statement is reached, and an increment expression that must be exe-

cuted before the conditional test for each loop iteration. An example of the function call motion

transformation on a for loop is presented in Figure 6.8. Similar transformations are implemented

for while and do -while statements.

if (<expr>) {

. . .

}

tmp = <expr>; if (tmp) {

. . .

}

(a) Original code. Assume
that expr contains one or
more function calls.

 Figure 6.7: Function call motion, if statement example.

(b) Transformed code

for(<expr1>; <expr2>; <expr3>)
{

. . .

continue;

. . .

}

<expr1>; tmp1 = <expr2>;

for(; tmp1;) {

. . .

<expr3>; tmp1 = <expr2>;

continue;

. . .

<expr3>; tmp1 = <expr2>;

}

 Figure 6.8: Function call motion, for loop example.

(a) Original code. Assume that
expr1 , expr2 , and expr3 each
contain function calls.

(b) Transformed code

97

6.3.3 Function Call Separation

After the transformations described in Section 6.3.2 have been performed, all function calls

will appear exclusively in C expression statements, but in general, each expression statement may

contain any number of function calls. However, recall that one of the assumptions made due to the

implementation of APrIL mandatory poll points is that at most one function call can appear in any

single C expression statement. To meet this requirement, the APrIL pre-processor separates C

expression statements containing multiple function calls into a sequence of C expression state-

ments, each containing at most one function call.

The separation of function calls within a C expression statement is performed using a recur-

sive algorithm. When the transformation is applied to a given expression statement, it factors that

expression into new expression statements to evaluate constituent subexpressions. Each of the sub-

expressions may in turn contain multiple function calls, in which case the transformation is applied

recursively to its expression statement. The actual separation of individual expressions depends on

their expression variety. For example, for binary operations, the left hand side is assigned to a tem-

porary variable in an introduced preceding expression statement, and the transformed binary oper-

ation consists of the temporary variable on the left hand side, and retains its original right hand

side.

An example of the recursive application of the APrIL function call separation transformation

algorithm is presented in Figure 6.9. The highest level expression variety in the original expression

statement depicted in Figure 6.9(a) is an assignment operation. The function separation algorithm

is applied to this statement, and introduces a new expression statement assigning the right hand

side of the assignment to a temporary variable, depicted in Figure 6.9(b). This introduced expres-

sion statement is an addition operation, which must itself be subject to function call separation, the

result of which is depicted in Figure 6.9(c). Note, each of the three resulting statements may still

contain multiple function calls, in which case the recursion would continue. When the algorithm is

98

applied to an expression containing zero or one function calls, the recursion halts.

<expr1> = <expr2> + <expr3>;

tmp2 = <expr2>;

tmp1 = tmp2 + <expr3>;

<expr1> = tmp1;

tmp1 = <expr2> + <expr3>;

<expr1> = tmp1;

(a) Original code. Assume expr1 , expr2 ,
and expr3 each contain function calls.

(b) Transformation applied to
the outermost expression, an
assignment.

(c) Transformation applied to
a contained expression, an
addition operation.

 Figure 6.9: Function call separation example.

99

Chapter 7
Applications and Performance Results
 The Process Introspection system described in Chapter 5 and Chapter 6 has been imple-

mented and has been tested on a set of significant applications. In this chapter, we discuss the

results of detailed performance study conducted on the system using these applications.

7.1 Performance Metrics

A fundamental question regarding the performance of any system is which metrics will pro-

vide an accurate picture of the costs and benefits associated with services provided by the system.

In this section we describe the reasoning behind the set of performance metrics used to evaluate

the overhead and efficiency of the Process Introspection system.

7.1.1 Performance Overhead

For the Process Introspection system, the impact on basic performance caused by the system

(i.e. the amount that it slows down an application when process state capture and recovery activi-

ties are not taking place) is of primary interest. Ideally, users should not have to pay anything for a

service when that service is not in use, but the nature of the Process Introspection mechanism

implies some level of overhead for applications even when state capture and recovery services are

not in use. Activities such as type and global variable registration and the execution of poll points

can add significant run-time overhead to the process, regardless of the frequency with which the

state capture facility is used. Two metrics of interest with respect to performance overhead are:

• Introduced overhead—The Process Introspection transformations add extra instructions to a

program. For example, periodically the program must poll for checkpoint requests. During

heap allocation, a record of the allocated block must be added to the heap allocation table. We

can examine the introduced overhead by comparing the execution time of an application with

100

and without the Process Introspection transformations applied. In the case of the transformed

program execution, no checkpoints are requested and no restarts are performed. The slow-

down of the transformed code provides a measure of the overhead introduced by Process

Introspection. For a given program, we define to be the execution time of the non-trans-

formed version of the program compiled without optimizations. The execution time of that

program transformed using a poll point placement policy p, and compiled without optimiza-

tions will be called . The overhead introduced by the Process Introspection transfor-

mations, expressed in terms of percentage of the non-transformed program’s execution time is

defined to be:

(7.1)

• Impact on optimizations—As was described in Chapter 4, the Process Introspection transfor-

mations can have significant impact on compiler optimizations. In order to measure the impact

of the transformations on the effectiveness of compiler optimizations, we can examine the per-

formance of an application compiled with and without the Process Introspection transforma-

tion, in each case with back end optimizations applied. As above, we can define the overhead

introduced by Process Introspection on an optimized version of the program. Let the execution

time of the non-transformed, optimized code be . The execution time of the program trans-

formed using poll point placement policy p, and compiled with optimization is . The

overhead introduced by the Process Introspection transformations into the optimized program,

expressed in terms of percentage of the non-transformed optimized program’s execution time

is defined to be:

(7.2)

In some senses, this metric is the most important measurement of the impact of Process Intro-

spection, as it defines how much slower an end-user application will actually run. On the other

tnorm

ttrans p,

Onorm p, ttrans p, tnorm–() tnorm⁄=

topt

ttopt p,

Oopt p, ttopt p, topt–() topt⁄=

101

hand, this measure fails to capture the impact of Process Introspection on optimizations. Given

that an application runs a given amount slower, how much of this slowdown is due to extra

work introduced by Process Introspection, and how much is is due to hindrance of the opti-

mizer? We can quantify the impact on the optimizer in terms of the fraction of obtainable

speedup achieved. The speedup obtained by the optimizer on the program without Process

Introspection transformations is defined to be:

(7.3)

Similarly, the speedup the optimizer achieves for the transformed version of the program is:

(7.4)

Thus, the fraction of the “available” speedup achieved by the optimizer on the transformed

code, which we call the effectiveness of the optimizer is:

(7.5)

Ideally, we would like and , and thus . In practice, we expect that

some overhead is unavoidable. However, we have stated as a design goal that be no more

than 10%.

As a hypothetical example, consider a program for which and . We

transform the program using APrIL with poll point placement policy 3, and find that

, and . In this case, the introduced overhead associated with Process

Introspection , or 10%. The impact on the effectiveness of program optimiza-

tions, , is 0.79—i.e. the optimizer is only about 79% as effective as it could have been in the

absence of Process Introspection. The total overhead on the optimized program is ,

or 40%.

7.1.2 State Capture and Recovery Costs

A second equally important class of performance metrics measures the performance of the

Sntrans tnorm topt⁄=

Strans p, ttrans p, ttopt p,⁄=

Ep Strans p, Snorm⁄=

Onorm p, 0≈ Ep 1≈ Oopt 0≈

Oopt

tnorm 10= topt 5=

ttrans 3, 11= ttopt 3, 7=

Onorm 3, 0.1=

Ep

Oopt 3, 0.4=

102

state capture and recovery mechanism itself. Two key metrics in this class are:

• Checkpoint request wait time—If a checkpoint is requested from a process, we would ideally

like that process to begin constructing a checkpoint immediately. In the Process Introspection

mechanism, we must wait until a poll point is reached in order to start constructing a check-

point, and so checkpoint requests will suffer a certain wait time before being serviced. We can

obtain a measure of this wait time by measuring the average time between poll points for a

given program transformed using a given poll point placement policy. Assuming a uniform

distribution of probability of checkpoint requests arriving over time, checkpoint requests will

be forced on average to wait half the average interval between poll points. We can obtain an

estimate of the average interval between poll points by counting the number of poll points

encountered during a program’s execution. Given a poll point count for an execution of a

program transformed with poll point placement policy p, and assuming that the optimized ver-

sion of the program will be executed, the average poll point interval for the program is given

by:

(7.6)

• State capture and recovery costs, both time and space—Ideally, we would like the time

required to construct a checkpoint or to perform a restart to be as small as possible, and we

would like the resulting checkpoint to be as small as possible. In practice, the time to perform

a state capture or recovery using Process Introspection is largely dictated by the size and com-

plexity of the process state in question and by the performance characteristics of the medium

to which the process state is written or from which it is read. Besides raw performance mea-

surements (i.e. time to perform state capture and recovery, size of captured state), a perfor-

mance metric of interest with respect to Process Introspection state capture is the overhead

introduced into the state recovery mechanism due to heterogeneous restarts. Recall, Process

Introspection as implemented employs a receiver-makes-right data conversion strategy. Thus,

np

Ip topt p, np⁄=

103

whereas the time to perform a state capture will not vary in heterogeneous environments, the

time to perform state recovery will generally be greater if a restart is performed on a node with

a data type incompatible with that of the checkpoint process. The percentage of overhead

introduced by heterogeneous restarts is thus an important performance characteristic of our

implementation.

7.2 Experimental Setup

Our performance experiments were run on a heterogeneous set of computer systems, and

using a heterogeneous set of back end compilers. Besides being necessary to perform heteroge-

neous restart experiments, a mixture of processor types is important to evaluate the sensitivity of

the Process Introspection transformations to different underlying architectural features. For exam-

ple, the impact of the poll points inserted by the APrIL compiler might be greater on a processor

that predicts “branch not taken” at poll point conditional branches—the common case at a poll

point is to take the branch, bypassing the code required to service a checkpoint request. A hetero-

geneous set of optimizing back-end compilers is important to evaluate the impact of the Process

Introspection transformations on optimizations for different optimizer implementations. The set of

test platforms used for the experiments described in this section is listed in Table 7.1. In the

remainder of this section, we refer to these systems by their name as listed in the left-most column

of Table 7.1.

Table 7.1: Test platforms.

Name Processor Processor Memory Operating Compiler
type speed system

alpha DEC alpha 500 Mhz 128 MB Linux 2.0 GNU gcc 2.7.2

x86 Intel Pentium 200 Mhz 64 MB Linux 2.0 GNU gcc 2.7.2

rs/6000 PowerPC 601 80 Mhz 128 MB AIX 4.2 xlc 3.1

mips MIPS R4000 100 Mhz 64MB IRIX 6.2 SGI cc

sparc Sparc20 50 Mhz 512 MB SunOS 5.5.1 Sun cc 3.0

104

7.3 Basic Numerical Applications

Initially, to examine the performance characteristics of our prototype implementation, we

applied the system to a set of basic numerical applications. The programs in this basic test suite

average approximately 120 lines of code each, and do not rely on separate compilation (i.e. each

program is contained in a single source file). The individual programs in the set are:

• mm (Matrix Multiply)—Computes the product of two dense, square matrices of 256x256 dou-

ble precision floating-point numbers using the standard O(n3) algorithm.

• gs (Gauss-Seidel)—Solves the sparse linear system of 104 equations resulting from the dis-

cretization of a two dimensional Poisson equation with Dirichlet boundary conditions. The

algorithm used is a standard Gauss-Seidel five point stencil iteration applied to a 80x80 grid of

solution elements until the change in the two-norm of the solution is less than 10-2.

• qs (Quicksort)—Applies a standard quicksort algorithm to an array of 221 integers.

• ge (Gaussian Elimination)—Performs Gaussian elimination with partial pivoting on a dense

512x512 matrix, followed by a back-substitution phase to obtain the solution vector.

• cg (Conjugate-Gradient)—Applies a basic conjugate-gradient iteration (no preconditioning) to

the same linear system solved by the Gauss-Seidel test, using the same convergence criterion

as that example, with the solution discretized onto a 200x200 grid.

Each of these programs was transformed using a range of poll point policies, and was com-

piled for each of the test platforms with and without optimizations. We measured the mean execu-

tion time over 16 trials for each version of the programs on each of the test platforms, and based on

these observations, we computed values of Onorm,p, Oopt,p, and Ep for each policy on each platform

(based on Equation 7.1, Equation 7.2, and Equation 7.5, respectively). The full details of the

results of these experiments are presented in Appendix A. We now examine salient general results

from the study.

In Table 7.2 we present the average Onorm,p observed over all test platforms for each program.

105

Recall from Section 6.2.1.1, higher numbered poll point placement policies generally involve

more aggressive placement of optional poll points, and thus we observe that higher numbered pol-

icies generally introduce a greater percentage of overhead. For example, policy 0 which places

only mandatory poll points always introduces very low overhead, whereas policy 21 which places

a poll point as the last statement of each loop body generally introduces an unacceptably high

degree of overhead. Intermediate policies generally perform well, introducing less than 10% over-

head, but note that their effect is application dependent. Since these heuristic policies base their

placement on simple loop body classifications (see Section 6.2.1.1), the overhead associated with

these policies is highly dependent on loop granularity. For example, the quicksort program exe-

cutes more iterations of finer grain loops than does the gaussian elimination example. Thus, all but

policy 0 introduce a significant amount of overhead into the quicksort example.

Thus far, we have only considered overhead introduced into non-optimized versions of the

programs. In practice, the performance of optimized code is of greater interest in high-perfor-

mance computing settings. In Table 7.3 we present the average optimizer effectiveness (Ep as

defined by Equation 7.5) over all test platforms for each application. Recall, this metric indicates

the speedup achieved by the optimizer for a transformed version of a program compared to the

speedup achieved for a non-transformed version of the program. As expected, the effectiveness of

Table 7.2: Basic applications, average Onorm.

mm gs qs ge cg
Onorm,0 2.3% 0.7% 3.2% 4.0% 4.2%

Onorm,1 2.4% 2.1% 9.4% 4.3% 3.0%

Onorm,2 3.0% 1.7% 9.0% 3.6% 4.6%

Onorm,3 4.1% 2.4% 9.6% 4.1% 3.0%

Onorm,4 2.2% 10.6% 9.6% 3.2% 19.6%

Onorm,5 4.1% 10.3% 10.3% 3.3% 19.9%

Onorm,11 6.4% 1.8% 11.0% 4.4% 3.4%

Onorm,13 7.0% 10.4% 11.8% 3.9% 19.5%

Onorm,21 12.6% 15.9% 29.1% 14.1% 22.2%

106

the optimizer is determined largely by the aggressiveness of the poll point placement policy. For

example, a conservative placement policy such as 1, which places optional poll points only in

outer nested loops, has little measurable effect on the optimizer performance, whereas an aggres-

sive placement policy such as 21 reduces the achieved speedup by up to 20%. As in the case of

introduced overhead, the compiler effectiveness is application dependent. For example, the quick-

sort program suffers serious reductions in speedup for all but the most conservative placement pol-

icy, whereas the conjugate gradient example achieves nearly no reduced speedup for any of the

placement policies. It is worth noting that in some cases, is observed. This observation

simply indicates that slightly better speedup was achieved for the transformed code than was

achieved for the non-transformed code. Since the transformations introduce additional code that is

also subject to optimizations, and more generally since the transformations change the instruction

sequence manipulated by the optimizer, this is not an implausible result. These points indicate

cases where the optimizer was able to achieve good speedup and reduce the overhead of the trans-

formations, and should not be confused with the relatively unlikely possibility of observing a

speedup due to the Process Introspection transformations.

The metrics discussed thus far indicate the amount of overhead introduced by the Process

Introspection transformations and the effectiveness of optimizations in the presence of these trans-

formations. However, the most important raw performance metric is slowdown of the optimized

Ep 1>

Table 7.3: Basic applications, optimizer effectiveness.

mm gs qs ge cg
E0 1.01 0.99 0.95 1.03 1.00

E1 1.00 1.00 0.89 1.03 0.98

E2 1.00 0.99 0.88 1.02 0.99

E3 0.98 0.99 0.89 1.01 0.99

E4 0.97 0.96 0.89 1.01 0.97

E5 0.98 0.95 0.88 0.99 0.97

E11 1.00 0.99 0.89 1.03 0.99

E13 1.03 0.95 0.90 1.02 0.96

E21 0.83 0.80 0.84 0.86 0.97

107

version of a program—put simply, how much slower will a program execute due to both the intro-

duced overhead and the impedance of optimizations. In Table 7.4, we present the average over all

test platforms of the overhead introduced into optimized versions of the programs, as defined by

Equation 7.2. In this table, points of good performance indicate cases where both the introduced

overhead was low, and the speedup achieved by the optimizer was not seriously reduced. As would

be expected, since both overhead and optimizer effectiveness were functions of the placement pol-

icies aggressiveness, so is the overhead introduced into optimized programs. For example, policy 0

combines low overhead with low impact on optimizations, and thus generally performs quite well.

Policy 21 combines high overhead with serious impact on optimizations, which results in unac-

ceptably high net overheads around 50%. As in previous cases, the net overhead is also application

dependent. For example, policy 4 achieves relatively low overhead for the matrix multiply exam-

ple, but has somewhat less desirable impact on the gauss-seidel example.

Table 7.4 presents overheads averaged over all platforms, providing insight into the average

impact that each poll point placement policy will introduce into each program. The degree to

which this overhead depends on the platform is also of interest, as different architecture and com-

piler pairs may result in different levels of overhead for the same transformed code. In Table 7.5

we present the net overhead introduced into optimized versions of the programs (defined by Equa-

Table 7.4: Basic applications, average Oopt.

mm gs qs ge cg
Oopt,0 1.7% 1.5% 8.4% 1.1% 4.1%

Oopt,1 2.2% 2.5% 24.1% 1.0% 5.3%

Oopt,2 2.8% 3.3% 25.7% 1.1% 5.8%

Oopt,3 6.5% 3.2% 24.2% 3.5% 4.3%

Oopt,4 5.5% 15.0% 25.0% 2.2% 23.5%

Oopt,5 7.0% 16.2% 27.2% 5.3% 22.9%

Oopt,11 6.5% 2.9% 25.6% 1.2% 4.3%

Oopt,13 3.7% 16.1% 25.7% 2.2% 23.7%

Oopt,21 54.8% 47.8% 57.1% 40.3% 26.0%

108

tion 7.2) averaged over all applications for each test platform. We do in fact find that the intro-

duced overhead is dependent on the platform. For example, while the rs/6000 generally suffers

high overhead for all but the most sparse poll point placement policy, the x86 platform generally

results in low introduced overhead.

Table 7.4 indicates that for all test applications, one or more poll point placement strategies

introduce low overhead into the program’s normal execution. However, low overhead is generally

only obtainable with less aggressive poll point placement strategies. This leads to the fundamental

question of whether those strategies that introduce low overhead can also provide acceptably small

poll point intervals. In Table 7.6 we show the poll point counts for each of the applications, run

with each poll point placement strategy. These counts were obtained using versions of the pro-

grams instrumented to increment a counter at each poll point1.

alpha x86 rs/6000 mips sparc
Oopt,0 1.7% 1.7% 8.7% 3.9% 0.8%

Oopt,1 6.2% 3.0% 14.8% 8.7% 2.4%

Oopt,2 6.2% 3.1% 14.9% 11.4% 3.1%

Oopt,3 6.6% 3.1% 14.9% 11.5% 5.6%

Oopt,4 9.5% 8.3% 17.0% 23.8% 12.6%

Oopt,5 11.2% 8.1% 17.1% 27.1% 15.1%

Oopt,11 8.2% 2.6% 15.0% 11.4% 3.1%

Oopt,13 10.9% 8.0% 17.5% 23.1% 12.0%

Oopt,21 20.6% 12.5% 44.7% 91.4% 56.8%

Table 7.5: Basic applications, per-platform average Oopt.

Table 7.6: Basic applications, poll point counts.

Policy mm gs qs ge cg

0 1 11685 18874363 7 2223

1 65793 461596 32129457 132868 54530

2 65535 473838 32129457 2052 54802

3 131329 473838 32129457 132868 54802

4 65793 38786389 34226609 3076 56204979

5 131329 38786389 34226609 133892 56204979

11 131329 473838 32129457 132868 54802

13 131329 38786389 34226609 133892 56204979

21 16908545 74335201 95791100 45528068 66946875

109

Based on the poll point counts for each program, we can calculate the average poll point inter-

val for each using Equation 7.6. These results are presented for the x86 architecture in Table 7.7.

In most cases the intervals in Table 7.7 are quite low—10’s of microseconds or less (recall,

performing state capture will typically involve communicating the process state over a network or

writing it to stable storage—either of these will require orders of magnitude more time than this).

However, in some cases—for example, policy 0 on the matrix multiply and Gaussian elimination

examples—the average interval is quite high (or, equivalently, the number of poll points encoun-

tered is very low). In these examples, the characteristics of the application were a poor match with

the placement heuristic selected. In both cases, the “mandatory poll points only” heuristic was

applied, but the programs performed subroutine invocations very infrequently. Although these ver-

sions of the programs suffered almost no introduced overhead, the resulting poll-point intervals are

unacceptably high. Despite the existence of points in Table 7.7 at which poll point placement

resulted in poor performance, it is important to recognize that for each application, there is at least

one poll point placement policy for which both very low overhead is introduced and for which the

poll point interval is very low. This result is important—in all cases, we found that there was at

1. An interesting note not related to performance: the correctness arguments discussed in Chapter 4 predict
that all low-level versions of the program (i.e. for each platform, compiled with and without optimization)
must encounter the same number of poll points during execution. We verified this result exhaustively for all
applications, over all platforms, with and without optimization.

Table 7.7: Basic applications, average poll point intervals on x86.
(times in milliseconds)

Policy mm gs qs ge cg

0 3.7 sec. 0.42966 0.00026 1.2 sec. 5.16433

1 0.05548 0.01090 0.00016 0.06219 0.21060

2 0.05606 0.01063 0.00016 4.02885 0.20898

3 0.02803 0.01057 0.00017 0.06234 0.20863

4 0.05580 0.00015 0.00016 2.68878 0.00023

5 0.02769 0.00015 0.00016 0.06175 0.00022

11 0.02763 0.01058 0.00016 0.06215 0.20783

13 0.02786 0.00015 0.00015 0.06173 0.00023

21 0.00022 0.00008 0.00006 0.00018 0.00019

110

least one poll-point policy that could be selected to achieve both low overhead and low poll point

intervals, and thus Process Introspection could be applied effectively. Furthermore, we found that

in all cases, relatively conservative placement was acceptable—either mandatory-only placement

or placement in only a few coarse grained, outer loops appeared to be sufficient.

Our final performance measurements for this application set characterize the costs of actual

state capture and recovery for the test applications. In Table 7.8 we present for each application the

captured state sizes, the time to perform state capture on the x86 platform, and the time to perform

state recovery on the x86 platform using checkpoints generated on each of the available platforms.

 First, it should be noted that as expected, state capture and recovery performance are a func-

tion of the process state size. For example, the time to capture and recover the state of the Gaussian

elimination program is roughly twice the time to capture and recover the state of the conjugate gra-

dient program, and there is approximately a factor of two difference in their state sizes.

A primary question addressed by these measurements is the price of heterogeneous state

recovery. As expected, heterogeneous state recovery (for example, in this case recovering from the

mips platform which uses big endian byte ordering, as opposed to recovering from the alpha plat-

form which uses the x86-compatible little endian ordering) does add overhead. In fact, the over-

head is significant, roughly 40% in some cases. Note, besides this result being important for

making placement or migration decisions, this result substantiates our intuitive claim that receiver-

Table 7.8: Basic applications, time to checkpoint/restart on x86.
(sizes in bytes, times in milliseconds)

mm gs qs ge cg
Chckpt size 1573018 102613 8388716 2118390 1280353

t chckpt 47.31 4.05 303.72 115.54 46.57

t restart 99.84 6.13 570.50 167.34 84.60

t restart,alpha 97.82 6.11 560.69 167.69 84.60

t restart,rs/6000 131.70 7.51 748.07 191.12 117.61

t restart,mips 130.62 7.41 751.45 191.79 113.15

t restart,sparc 131.65 7.57 748.84 188.44 115.48

111

makes-right data coercion can improve performance. If we had used XDR, for example, all of the

produced checkpoints would have used big-endian ordering, and thus all would have performed

approximately as well as the incompatible recovery operations listed in Table 7.8.

7.4 NAS Benchmark Kernels

As a second, more substantial set of applications, we applied the Process Introspection to a

subset of the NAS benchmark kernels, described in [5]. The four kernels that we used average

approximately 370 lines of code each, and like the programs described in Section 7.3, do not rely

on separate compilation. The kernels selected were chosen due to the availability of versions pro-

grammed in ANSI C, as required by the APrIL compiler:

• nas-is—Performs 10 iterations in which 2n random integer keys in the range [0, 2m) are ranked

using a linear bucket sort. Results are reported for and .

• nas-ep—Executes 2n iterations of a loop in which a pair of values, (x, y), is selected from the

range [-1,1]. For each pair, if the inequality is satisfied, independent Gauss-

ian deviates X and Y with mean zero and variance one are generated by the following:

After all such pairs are generated, the number of pairs lying in unit width square annuli cen-

tered at the origin (within 10 units per dimension) are tabulated and output along with and

 over all X and Y. Results are reported for n = 21.

• nas-mg—Executes four iterations of the V-cycle multigrid algorithm to obtain an approximate

solution, u, to the discrete Poisson problem on an grid with periodic

boundary conditions. Results are reported for n = 64.

• nas-cg—Estimates the largest eigenvalue of a symmetric positive definite sparse matrix, A,

with a random pattern of non-zero elements. The basic algorithm employed is:

n 21= m 11=

t x
2

y
2

+ 1≤=

X x
2 tlog–()

t
---------------------= and Y y

2 tlog–()
t

---------------------=

ΣX

ΣY

∇2 u⋅ v= n n n××

112

x = [1, 1,..., 1]T

do i = 1, n

Solve the system Az = x and return using a conjugate gradient method

Output i, , and

od

This process results in the computation of the eigenvalue estimate, , and the residual, , on

each iteration. Results are reported for a matrix size of 1400x1400, with 120000 non-zero

entries, over 15 iterations (i.e.).

We performed the same set of experiments with the NAS benchmark kernels as were per-

formed with the basic applications described in Section 7.3. The first set of experiments character-

ize introduced overhead, optimizer effectiveness, and net resulting overhead introduced into the

optimized versions of the programs. The results of these experiments, averaged over all platforms,

are presented in Table 7.9, Table 7.10, and Table 7.11, respectively.

r

ζ λ 1 x
T
z()⁄+=

r ζ

x z z⁄=

ζ r

n 15=

Table 7.9: NAS benchmarks, average Onorm.

nas-is nas-ep nas-mg nas-cg
Onorm,0 7.5% 6.2% 3.1% 0.6%

Onorm,1 7.4% 6.4% 2.7% 2.4%

Onorm,2 8.8% 4.2% 1.2% 0.3%

Onorm,3 8.9% 4.9% 2.7% 1.3%

Onorm,4 15.1% 8.8% 1.9% 2.9%

Onorm,5 15.2% 7.0% 3.6% 3.0%

Onorm,11 8.8% 5.3% 1.8% 10.0%

Onorm,13 14.9% 8.3% 2.4% 11.6%

Onorm,21 14.7% 7.9% 3.2% 12.9%

113

The results of these experiments are similar to those presented in Section 7.3. Once again we

find that more aggressive poll point placement generally leads to higher introduced overhead,

decreased optimizer effectiveness, and thus greater slowdown of the transformed optimized code.

Furthermore, we again find that in all cases, one or more placement policies achieve net overheads

of less than 10%. However, there are some seemingly counterintuitive points worth noting in these

results. Note that for the nas-ep and nas-mg programs, policy 0 (which we intuitively expect to be

the least aggressive policy) introduces more overhead than other higher numbered cases. This

seemingly unexpected result is explained by the characteristics of the transformed code. Recall

from Section 6.2.1.1, all poll point placement policies employ the mandatory poll point optimiza-

Table 7.10: NAS benchmarks, optimizer effectiveness.

nas-is nas-ep nas-mg nas-cg
E0 1.06 0.95 0.96 0.99

E1 1.06 0.99 0.99 1.00

E2 1.02 0.95 0.97 0.98

E3 1.02 0.95 0.98 0.97

E4 0.98 1.00 0.98 1.00

E5 0.98 1.00 0.98 0.98

E11 0.99 0.96 0.93 0.87

E13 0.97 1.01 0.97 0.87

E21 0.98 1.01 0.92 0.86

Table 7.11: NAS benchmarks, average Oopt.

nas-is nas-ep nas-mg nas-cg
Oopt,0 1.5% 12.7% 6.9% 2.0%

Oopt,1 1.6% 8.4% 4.0% 2.0%

Oopt,2 7.1% 9.6% 4.7% 2.8%

Oopt,3 7.0% 10.4% 5.1% 4.1%

Oopt,4 18.7% 9.1% 4.6% 2.8%

Oopt,5 18.4% 8.0% 6.1% 5.4%

Oopt,11 10.3% 10.5% 9.6% 28.5%

Oopt,13 18.9% 7.9% 5.3% 30.5%

Oopt,21 18.4% 7.6% 12.3% 34.2%

114

tion described in Section 3.3.3, except policy 0. These programs each contain a number of simple

subroutines into which many of the policies would not introduce poll points. Thus, for many of the

policies, unnecessary mandatory poll points are eliminated, but for policy 0 these poll points are

retained. Thus, we have the result that policy 0 as implemented may introduce more poll points

than higher numbered policies.

This result is highlighted in Table 7.12, which lists the measured poll point counts for each of

the benchmarks—note the poll point counts for policy 0 compared to policy 1 for the nas-ep and

nas-mg kernels. We can also note that similar relationships hold for other policies—although

higher numbered policies generally introduce less poll points, careful examination of their defini-

tions confirms that for programs with certain structures the inverse relationship can also hold.

Based on the poll point counts presented in Table 7.12, we can compute the average poll point

intervals for the NAS benchmarks using Equation 7.6. These results are presented for the x86

architecture in Table 7.13. Note, as in the case of the applications presented in Section 7.3, the

intervals are generally quite small, but points of relatively poor performance do exist. For exam-

ple, consider policy 2 applied to the nas-mg kernel. However, as in the case of Section 7.3, for each

application studied, one or more poll point placement policies results in both low introduced over-

head and small poll point intervals. Furthermore, we find that these results confirm the observation

that relatively conservative poll point placement generally performs well. For example, in all

cases, policy 1 results in less than 10% net overhead, and at the same time results in poll point

intervals below 0.01 milliseconds.

115

The results of state capture and recovery experiments performed on the NAS benchmarks are

presented in Table 7.14. These results are similar to those observed for the applications discussed

in Section 7.3. Again, we find that state capture and recovery costs are primarily a function of state

size, and that state recovery across incompatible data formats introduces significant overhead. An

interesting point of note in these experiments is the wide range of state sizes. Each of the programs

is computationally demanding, but their state sizes range from hundreds of bytes to tens of mega-

bytes.

Table 7.12: NAS benchmarks, poll point counts.

Policy nas-is nas-ep nas-mg nas-cg

0 8388628 12582925 3858096 52976

1 8388628 4194311 136955 615785

2 10485859 4194312 2951 283908

3 10485859 4194312 137575 842502

4 73441369 4194332 11763 4767261

5 73441369 4194332 137575 4778455

11 10485859 4194312 1111343 31599790

13 73441369 4194332 1111343 35535743

21 73441369 4194332 7277331 36164967

Table 7.13: NAS benchmarks, average poll point intervals on x86.
(times in milliseconds)

Policy nas-is nas-ep nas-mg nas-cg

0 0.00277 0.00172 0.00127 0.10782

1 0.00277 0.00507 0.03580 0.00945

2 0.00230 0.00507 1.65059 0.02015

3 0.00230 0.00507 0.03534 0.00694

4 0.00034 0.00514 0.41795 0.00124

5 0.00034 0.00514 0.03542 0.00124

11 0.00232 0.00505 0.00443 0.00019

13 0.00034 0.00510 0.00443 0.00017

21 0.00034 0.00510 0.00068 0.00017

116

7.5 Environmental Simulation

Although the programs discussed thus far resemble components commonly found in scien-

tific codes, they do not capture the full complexity of a complete application. Production scientific

applications are typically much larger than the examples examined thus far, they rely on compila-

tion features such as separately built modules, they make use of more complex data structures, and

they utilize run-time features such as file I/O. To demonstrate the ability of the Process Introspec-

tion system to handle full-scale applications, and to examine the performance of the system in this

more demanding context, we applied the system to real, non-trivial scientific programs in produc-

tion use. In this section and Section 7.6 we describe our experiences and performance results

obtained with these applications.

The first full-scale application to which we applied the Process Introspection system was a

program implementing a global carbon productivity and geographic plant distribution model

described by Woodward, Smith, and Emanuel [94]. This program, lai, computes the leaf area index

for a specified set of geographic locations. The leaf area index for a given region is defined to be

the amount of leaf surface area per ground surface area over that region. This metric provides a

measure of the geographic distribution of plant life, which can in turn be included in climate mod-

Table 7.14: NAS benchmarks, time to checkpoint/restart on x86.
(sizes in bytes, times in milliseconds)

nas-is nas-ep nas-mg nas-cg
Chckpt size 16785727 314 7025076 960511

t chckpt 535.34 0.76 550.67 22.57

t restart 1054.31 0.60 516.67 63.97

t restart,alpha 1055.67 0.63 523.03 63.87

t restart,rs/6000 1529.84 0.61 602.51 84.98

t restart,mips 1534.34 0.61 601.02 86.07

t restart,sparc 1569.59 0.61 596.77 84.75

117

eling simulations. Since vegetation has a significant effect on the environmental systems that con-

trol the climate, the computation of the geographic distribution of plant life is an important part of

predicting future climactic changes due to influences such as fossil fuel emissions.

The model employed by lai simulates plant systems on various levels of resolution and in var-

ious time scales based on input climactic data for the region in question. At the lowest level of res-

olution, the cell-level biochemical processes associated with photosynthesis are simulated. Higher

levels simulate leaves, complete plants, and finally the entire vegetation canopy. Input data for

each simulated region includes temperature, day length, wind, precipitation, and soil chemistry.

In terms of program structure, lai is significantly more complex than the examples presented

in Section 7.3 and Section 7.4. The program is approximately 4000 lines of C code, and relies on

separate compilation of 22 source files. In addition to this larger size, lai makes use of more com-

plex data structures than the previous examples, and relies on file I/O for input of climactic data

and output of simulation results.

We ran performance experiments on lai using a sample data set of seventeen 2500 km2 geo-

graphic regions. As in the case of the applications discussed thus far, we first examined introduced

overhead and compiler effectiveness. These results are summarized in Table 7.15. We found that

the performance overhead introduced by Process Introspection into lai is significant. Although the

optimizer effectiveness for this application was high, all of the poll-point placement policies

applied resulted in very frequent placements, and as a result we measured in all cases.Oopt 10%>

Policy O norm E O opt

0 13.4% 1.00 13.0%
1 12.9% 0.98 15.0%
2 13.2% 0.99 14.3%
3 12.9% 0.99 14.6%
4 12.9% 0.98 15.4%
5 12.6% 0.97 15.8%
11 12.8% 0.97 16.6%
13 13.3% 0.96 18.3%
21 13.1% 0.96 18.2%

Table 7.15: LAI, overhead and optimizer effectiveness.

118

 We have already observed that relatively conservative policies generally lead to good perfor-

mance. In this case, it appears that all of the implemented placement policies are too aggressive. It

might be observed that one obvious way to achieve potentially more conservative placement

would be to apply policy 0 (the mandatory-only placement policy), but with the addition of the

mandatory poll point elimination optimization described in Section 3.3.3. To investigate this possi-

bility, we implemented this new policy in APrIL, numbering the policy -1 (as it can certainly result

in no more placements than policy 0). Unfortunately, when we applied this policy to lai we found

that it resulted in the same poll point placement decisions as made by policy 1. The loop structure

of this application results in no optional poll point placements being performed by policy 1, which

reduces policy 1 to mandatory placements only plus the mandatory poll point elimination optimi-

zation—i.e. policy -1. Thus, our attempt to improve the performance of lai by implementing a

more conservative poll point policy was not successful.

In lai, we have an application for which it appears that the current implementation results in a

level of performance overhead that, while not terrible, is slightly greater than would generally be

considered acceptable. This leads naturally to the question: why? What attributes of the applica-

tion and/or the current compiler implementation result in high overhead, and where (if anywhere)

is there room for improvement? An examination of the lai source code structure with respect to the

implemented placement strategies sheds light on the problem. The code for this application is

structured to make use of many small functions, the definitions of which are spread among a num-

ber of different source files. Furthermore, the APrIL mandatory poll point placement elimination

optimization must necessarily be conservative—if a function is not defined in the current source

file being translated, APrIL must assume that the function can initiate state capture operations, and

thus mandatory poll point placements at calls to the function are required to preserve correctness.

This combination of factors results in unnecessary poll point placements at the call sites of simple

functions that will never initiate state capture operations. In lai, a large number of these unneces-

119

sary placements are performed. This leads to a general observation: a program divided into many

fine-grained subroutines and defined in many separately compiled source files can result in rela-

tively high overhead under the current implementation.

This observation initiates a further question—can this bad interaction be avoided? One imme-

diate possibility is obvious: the programmer could restructure the code to use larger subroutines, or

could combine the subroutines into fewer source files. Either restructuring strategy avoids the

undesirable interaction with the APrIL poll point placement heuristics. However, this solution is

undesirable since it defeats our goal of automation—the programmer should not be required to

structure applications differently to utilize a state capture and recovery mechanism effectively. A

better solution would be to incorporate the notion of a “project” into APrIL—a collection of sepa-

rately compiled but related program modules. For each program module, APrIL could store infor-

mation about the poll point counts in each contained function (for example, APrIL might write out

an auxiliary file listing this information for each source module). This would allow the mandatory

poll point elimination optimization described in Section 3.3.3 to be applied across source modules

and could effectively reduce the performance overhead observed for this application. This exten-

sion to APrIL is the subject of future work on the system. Note, separate compilation alone was not

sufficient to cause increased overhead—usage of many small subroutines was also necessary. In

Section 7.6 we examine full-scale applications that utilize separate compilation but that achieve

low introduced overhead comparable to that observed for the smaller applications discussed in

Section 7.3 and Section 7.4.

Given the interaction between this application and our poll point placement heuristics, we

expect that the observed poll point counts for lai would be high, and thus the average poll point

intervals would be very small. In Table 7.16 we present the poll point counts and sample poll point

intervals for lai. The results confirm intuition—lai performs with very low poll point intervals

(less than 10 microseconds) for all placement policies.

120

Our final set of experiments with lai measured the state capture and recovery times for this

program. In Table 7.17 we present sample results. During execution, this application keeps in

memory only the state associated with one data point. The state for other geographic locations (e.g.

climactic data, output leaf area indices, etc.) are maintained in files. This attribute causes lai to

have a relatively small state size, and thus state capture and recovery costs are very low.

7.6 Biological Sequence Comparison

The second set of full-scale applications examined for this performance study consisted of

two biological sequence comparison programs. Using modern techniques, biochemists can deter-

Table 7.16: LAI, poll point counts and average poll point intervals.
(times in milliseconds)

Polic y Poll x86 sparc
Points

0 77428159 0.000364 0.000587

1 73884216 0.000381 0.000650

2 75624427 0.000374 0.000600

3 75624427 0.000374 0.000603

4 75637639 0.000374 0.000626

5 75637639 0.000374 0.000632

11 75686477 0.000367 0.000651

13 75699689 0.000385 0.000644

21 75699689 0.000385 0.000649

Table 7.17: LAI, checkpoint/restart costs.
(times in milliseconds)

alpha x86 rs/6000 mips sparc

Chckpt size 6782 bytes

t chckpt 1.96 2.07 22.77 11.54 6.77

t restart,alpha 2.93 3.64 8.03 12.43 8.53

t restart,x86 2.94 3.66 8.01 12.34 8.71

t restart,rs/6000 2.93 3.73 7.82 12.49 7.99

t restart,mips 2.93 3.70 7.82 12.39 8.01

t restart,sparc 2.93 3.68 7.86 12.12 8.28

121

mine the sequence of a protein significantly more easily than they can determine a protein’s func-

tion. By comparing a sequence to other proteins with known functions, biochemists can gain

insight into the possible function of the protein. Comparison of sequences is essentially a string

distance problem where DNA and protein molecules are represented by strings of nucleotides and

amino acids, respectively. A typical query involves comparing a new sequence with unknown

function to a library of published sequences. For each comparison a score is generated. When the

full library comparison is complete, the results are presented in non-increasing order.

For this performance study, we examined two sequence comparison programs: sw (smith-

waterman [78], and fa (fasta) [66]. The sw version of the program performs a rigorous, quadratic

linear programing algorithm. The fa version employs a heuristic that maintains a lookup table con-

taining regions of high densities of identity resulting in execution speeds between 20 and 100

times as fast as the rigorous sw version. The sw version is approximately 6500 lines of C code, and

the fa version is approximately 9000 lines. Each version is divided into 14 separately compiled

modules, 12 of which are shared between the versions as they implement functionality that is com-

mon to both. The programs utilize file I/O to access a protein library and query sequence. Both

versions make use of complex nested data structures, pointers (including function pointers), and

other advanced language features that must be handled correctly by APrIL.

We ran our standard set of performance experiments on sw using a sample library containing

500 sequences. For the faster fa version, we increased the library size to 3000 sequences. As for

previous applications, our initial experiments characterize the introduced overhead and optimizer

effectiveness. The results for fa are listed in Table 7.18, and the results for sw are listed inTable

7.19. The results for fa again confirm our observation that conservative poll point placement is

generally most effective. For this application, policies 0 and 1 result in acceptable levels of net

overhead, whereas more aggressive policies both impede optimizations and introduce significant

additional overhead, a combination that leads with certainty to high net overhead. The results for

122

sw are somewhat less sensitive to placement aggressiveness, although the most aggressive place-

ment policies seriously degrade performance.

As always, introduced overhead is only half of the story. Without small average poll point

intervals, low overhead is meaningless. In Table 7.20 and Table 7.21 we list the poll point counts

and sample average poll point intervals for fa and sw, respectively. In general, most poll point

placement policies achieve small poll point intervals, with the exception of the most conservative

policies applied to sw. Again, we note the result that for both applications, relatively conservative

poll point policies exist that provide introduced overhead below 10% and very low poll point inter-

vals. For example, policy 1 achieves good performance with fa, whereas a slightly more aggres-

sive policy such as 2 or 3 leads to better performance for sw.

Table 7.18: FASTA, overhead and optimizer effectiveness.

Policy O norm E O opt

0 3.1% 0.94 9.5%
1 4.1% 0.96 9.0%
2 13.1% 0.90 26.9%
3 17.1% 0.93 26.3%
4 16.0% 0.89 31.7%
5 14.7% 0.86 34.4%
11 14.4% 0.88 30.9%
13 17.9% 0.88 34.9%
21 19.1% 0.89 34.7%

Table 7.19: Smith-Waterman, overhead and optimizer effectiveness.

Policy O norm E O opt

0 1.2% 0.96 5.1%
1 1.6% 0.95 7.4%
2 1.2% 0.94 7.5%
3 1.3% 0.94 7.8%
4 1.8% 0.94 8.5%
5 2.5% 0.95 7.9%
11 9.2% 0.87 27.3%
13 9.8% 0.86 30.9%
21 10.2% 0.88 28.8%

123

Our final set of experiments measured the performance of state capture for these applications.

In Table 7.22 and Table 7.23 we present the state capture and recovery costs for fa and sw, respec-

tively. We note in these experiments that the state capture and recovery costs are somewhat high,

especially for the fa application which has a larger state size, and especially on the slower test plat-

forms. This is not entirely surprising given that out prototype implementation of the PIL is not

highly optimized, and these applications have very complex states. However, it would be desirable

to achieve better performance than this, and the current implementation provides a mechanism for

improving state capture and recovery costs.

Table 7.20: FASTA, poll point counts and average poll point intervals.
(times in milliseconds)

Polic y Poll x86 sparc
Points

0 266559 0.006671 0.020547
1 1360568 0.001327 0.003895
2 10230798 0.000181 0.000590
3 10366695 0.000178 0.000554
4 11091474 0.000171 0.000536
5 11218210 0.000168 0.000557

11 11973635 0.000156 0.000494
13 12825150 0.000148 0.000486
21 13365830 0.000143 0.000463

Table 7.21: Smith-Waterman, poll point counts and average poll point intervals.
(times in milliseconds)

Polic y Poll x86 sparc
Points

0 212198 0.108863 0.271430
1 378530 0.063050 0.152779
2 692001 0.034477 0.083227
3 699047 0.034127 0.084283
4 1762417 0.013545 0.033745
5 1769429 0.013487 0.033298

11 103436444 0.000241 0.000629
13 104506826 0.000237 0.000642
21 104531290 0.000238 0.000626

124

In Section 5.3.3 we described a PIL mechanism that allowed user-coded marshalling func-

tions to be registered for use with structured data types in place of the automatic mechanism based

on the type description table maintained by the PIL. Furthermore, in Section 6.2.6 we described

how APrIL supports the automatic generation of these marshalling functions. Thus far we have

reported performance for programs transformed without this APrIL compile-time option enabled.

To investigate the effect of APrIL-generated marshalling functions, we ran state capture and recov-

ery experiments with fa and sw transformed with and without marshalling functions. The results of

these experiments are presented in Table 7.24.

We found that a 12%-15% reduction in state capture and recovery costs was possible using

this compile time option. The cost of this reduction was a growth in the executable size by approx-

imately 15%, although some of this growth could be avoided with an improved implementation.

Table 7.22: FASTA, time to checkpoint/restart.
(sizes in bytes, times in milliseconds)

alpha x86 rs/6000 mips sparc

Chckpt size 2801497 2761417 2761417 2761417 2761417
t chckpt 416.75 777.18 3251.88 4210.58 3197.86
t restart,alpha 621.38 847.75 4393.22 6506.65 3317.85
t restart,x86 619.59 826.49 2537.36 3742.57 2929.55
t restart,rs/6000 675.25 859.25 2456.70 3783.78 2727.21
t restart,mips 671.57 853.96 2439.23 3619.18 2762.01
t restart,sparc 674.99 853.77 2448.74 3649.23 2651.87

Table 7.23: Smith-Waterman, time to checkpoint/restart.
(sizes in bytes, times in milliseconds)

alpha x86 rs/6000 mips sparc

Chckpt size 1197083 1157003 1157003 1157003 1157003
t chckpt 162.60 283.02 1085.98 1529.52 916.34
t restart,alpha 200.13 331.16 2792.45 5490.56 2449.60
t restart,x86 204.59 320.06 1001.76 1893.06 1047.10
t restart,rs/6000 239.56 331.24 959.66 1789.38 1002.62
t restart,mips 243.59 328.83 954.17 1728.45 947.75
t restart,sparc 242.13 329.58 969.83 1686.68 972.11

125

Again, due to separate compilation, APrIL generates redundant marshalling functions. With an

improved “project” style grouping facility, APrIL could avoid redundant marshalling function gen-

eration and could achieve equal performance gains with significantly less code growth.

7.7 Performance Discussion

In this chapter we have examined the details of a performance study of the Process Introspec-

tion system. At this point, it is worth summarizing the main results of this study.

Perhaps the single most important result of our experiments is that Process Introspection, as

described in this dissertation, and as realized in our prototype implementation, can achieve low

introduced overhead and small average poll point intervals when applied automatically by the

APrIL compiler. This result was achieved using straightforward poll point placement heuristics

that are simple to implement and that can be applied efficiently. It should be highlighted that this

result was not an obvious one given the general design of Process Introspection as described in

Chapter 3. Poll point placement clearly results in the fundamental performance trade-off between

introduced overhead and state capture request wait time, both of which we desire to be as small as

possible. But does any point of acceptable trade off between the two exist for real programs? Fur-

thermore, if acceptable placements that result in reasonable performance in both dimensions do

exist, can these placements be performed automatically by a compiler? The performance study

described in this chapter answers both of these questions in the affirmative. Process Introspection

Table 7.24: Performance with and without marshalling functions.
(times in milliseconds)

FASTA Smith-Waterman
without with without with

t chckpt 777.18 655.87 283.02 236.86
t restart,alpha 847.75 735.70 331.16 286.18
t restart,x86 826.49 715.05 320.06 272.31
t restart,rs/6000 859.25 745.00 331.24 284.08
t restart,mips 853.96 736.60 328.83 281.43
t restart,sparc 853.77 736.65 329.58 283.51

126

can be applied both automatically and efficiently.

Beyond this most fundamental result, we have characterized a number of performance

attributes of Process Introspection in general, and of the current system implementation. First, we

have learned that conservative poll point placement strategies perform well in general. Relatively

sparse placements almost always lead to low introduced overhead, and rarely result in long on-

average poll point intervals. This result does not imply that the placement of optional poll points is

not valuable. In almost all of the test application sets we found cases where using only mandatory

poll points resulted in very long poll point intervals. This result is not surprising—it is not uncom-

mon for scientific programs to execute long-running loops with no subroutine invocations. Given

this behavior, optional poll point placement is almost certainly desirable. Given this, we found that

placement of optional poll points in only a few large outer loops was best. Again, this result is not

surprising given the known possibility that Process Introspection can hinder optimizations as dis-

cussed in Section 4.3.

Not all of the results of the study were positive. In Section 7.5 we discussed a limitation of the

system to handle certain program structures efficiently. For the application discussed in this sec-

tion, it appears that the program structure puts a lower bound on the number of poll points that the

current APrIL implementation must place that is greater than the number of poll points that would

lead to a reasonable level of performance/overhead trade-off. To address this problem, we plan to

improve the APrIL mandatory poll point elimination optimization to operate in a cross-module

mode. We hypothesize that this enhancement will improve APrIL’s ability to handle applications

with the described problematic structure.

127

Chapter 8
Extensions
 Although the Process Introspection model described in Chapter 3 is very general, and could

be applied to a wide range of programming languages, the implementation of the system presented

in Chapter 5 and Chapter 6 is specific to single-threaded ANSI C programs. In this chapter we

examine the implementation issues involved in extending the system to a wider range of program-

ming environments. In Section 8.1 we discuss the extension of the system to handle additional pro-

gramming languages, and in Section 8.2 we examine the issues involved in supporting multi-

threaded execution.

8.1 Additional Programming Languages

The current implementation of the Process Introspection system is applicable to programs

written in only one programming language: ANSI C. In practice, we would like a system to sup-

port programs written in a variety of programming languages. In this section, we examine the

issues involve in supporting an additional procedural language, Fortran 771, and a language with

object-oriented features, C++. Within the spectrum of programming languages, Fortran and C++

are relatively similar to the currently implemented language, C. However, examining the issues

involved in Process Introspection implementations for these relatively simple cases provides

insight into the larger issue of multi-language support. Furthermore, the vast majority of language

usage in high-performance computing is restricted to C, C++, and Fortran, and thus examining

support for these languages is valuable from a practical standpoint.

A first, most obvious approach to supporting additional languages is to retain the existing sys-

tem implementation without modification, and translate programs written in other programming

1. Subsequently, we refer to Fortran 77 simply as Fortran. Support for the additional features introduced in
Fortran 90, vendor specific Fortran implementations, and other later Fortran dialects are not covered.

128

languages into C. This design is depicted in Figure 8.2. C is a fully general programming language,

and could be used as a target for front ends for a variety of other languages. In particular, some

form of support for translation to C exists for both C++ and Fortran, in addition to other languages

such as Java and Pascal. This strategy leads to a number of potential problems. First, the C code

generated by alternate language front ends may not be acceptable input for APrIL. For example,

f2c , the de-facto standard Fortran to C translator [27], makes use of union data structures (which

are not currently supported by APrIL) in some of its transformations. Furthermore, the translated

code may make use of libraries that would also need to be modified to include state capture and

recovery capabilities. For example, f2c relies on a library of functions implementing the intrinsic

operations provided by Fortran. Some of these, for example the I/O operations, would need to be

modified to interoperate with the PIL. Finally, the performance of the transformed code may be

somewhat degraded. For example, information needed to perform certain optimizations on Fortran

code may be lost in a C translation. Despite these drawbacks, this approach is attractive for its sim-

plicity, and has been demonstrated using simple Fortran codes transformed by f2c .

An alternative to using the existing implementation which is based on C as an intermediate

representation would be to employ an alternative intermediate representation. All supported lan-

FORTRAN

C++

ANSI C Transformed
ANSI C

cfront

f2c

APrIL

 Figure 8.1: Alternate language support using the existing implementation.

129

guages would be transformed to this universal IR, which would be transformed using the Process

Introspection model described in Chapter 3. This design is depicted in Figure 8.2. Although it is

attractive for its generality, this scheme makes the least use of existing tools, requiring front ends

for all supported languages, as well as a back-end optimizing compiler for the IR on all target plat-

forms.

A third design alternative, and the one which we will explore in greater depth in the remain-

der of this section, is to use source-to-source transformation techniques for all supported languages

analogous to those currently employed by APrIL for C, as depicted in Figure 8.3. This third

approach requires a version of APrIL specialized for each supported language, but avoids some of

the negative performance impact of the first design alternative, and utilizes existing back-end com-

piler technology unlike the second.

Assuming direct source-to-source transformation is employed, we must customize the APrIL

transformations to utilize the features available in each input language. Although the transforma-

tions will correspond generally to those employed for C, the details must take into account various

FORTRAN

C++

ANSI C

Transformed
Universal

IR

C++ front end

FORTRAN fr
ont e

nd

C front end

Universal
IR

APrIL-IR

 Figure 8.2: Alternate language support using a universal IR.

130

language constructs and features. In Section 8.1.1 and Section 8.1.2 we examine the implementa-

tion of the APrIL transformations for Fortran and C++, respectively.

8.1.1 Fortran

In most respects, the source-to-source transformations that must be applied to Fortran by an

APrIL compiler are only syntactically different from their analogues in C. For example, in Figure

8.4 we depict an optional poll point in Fortran, and in Figure 8.5 we depict a mandatory poll

point1. These correspond exactly to their C counterparts, except that they are expressed using For-

tran syntax.

1. We assume a Fortran interface to the PIL. Identifiers in this interface begin with the prefix PL.

FORTRAN

C++

ANSI C Transformed
ANSI C

APrIL-C

Transformed
FORTRAN

Transformed
C++

APrIL-F

APrIL-C++

 Figure 8.3: Alternate language support using source-to-source translation.

10 CONTINUE

IF (PLSTAT .EQ. PLCHCK) THEN Check for checkpoint request.

CALL PLPUCL(10) Remember the code location.

PLSTAT = PLCINP Mark checkpoint in progress.

GO TO 100 Jump to the subroutine epilogue.

END IF

 Figure 8.4: An optional poll point in Fortran.

131

In some cases, the transformations must take into account differences in the languages’ basic

mechanisms. For example, C parameters are passed by value, but Fortran parameters are passed by

reference. This difference in language features affects the implementation of function prologues

and epilogues. Given the call-by-value parameter passing semantics of C, the function prologues

and epilogues in APrIL-transformed C code are responsible for restoring and saving actual param-

eter values. In Fortran, function and subroutine prologues and epilogues can safely ignore parame-

ters, since they will be restored and saved in calling function or subroutine invocations. For

example, Figure 8.6 depicts a Fortran subroutine prologue transformation. Note that when the

local subroutine activation state is recovered, the values of parameters are not read from the check-

point. This minor modification aside, the prologue transformation (and similarly, the epilogue

transformation) is only syntactically different from its C counterpart.

In addition to the fundamental APrIL transformations, a Fortran version of APrIL must also

perform similar pre-processing transformations to ensure that function calls appear only in simple

expression statements, and that each expression statement contains only one function call. For

example, a function call might appear in an expression that is a parameter to a write statement.

This function call would need to be moved above the write statement, its result would be assigned

to a temporary variable, and this temporary variable would be used in place of the function call in

20 CONTINUE

CALL PROC Subroutine call requires a poll point.

21 CONTINUE

IF (PLSTAT .EQ. PLCINP) THEN Check for checkpoint in progress.

CALL PLPUCL(20) Save restore location before call.

GO TO 100 Jump to the subroutine epilogue.

ELSE IF (PLSTAT .EQ. PLCHCK) THEN Check for checkpoint request.

CALL PLPUCL(21) Save restore location after call.

PLSTAT = PLCINP Mark checkpoint in progress.

GO TO 100 Jump to the subroutine epilogue.

END IF

 Figure 8.5: A mandatory poll point in Fortran.

132

the write statement. Similarly, if an assignment statement contained two function calls on its right

hand side, the assignment would need to be split into two statements, one calling the first function

and assigning its result to a temporary variable, and a second using the temporary variable in place

of the moved function call. The implementation of these pre-processing transformations would be

essentially the same as those for C, as described in Section 6.3.

Some language features in Fortran require additional transformations to be performed by

APrIL. A good example of this is the Fortran ENTRY statement, which provides alternate entry

points into a function or subroutine. Since calls to alternate entry points are essentially the same as

normal subroutine invocations, these points would need to be marked as mandatory poll points.

Furthermore, since these entry points could be called in the process of recovering the stack, each

SUBROUTINE SUM(X, TOTAL)

INTEGER X(100)

INTEGER TOTAL, I

INTEGER PLLOC Location to jump to on restore.

IF (PLSTAT .EQ. PLREST) THEN Check for restart in progress.

CALL PLSRIN(I) Recover the value of local I .

CALL PLPOCL(PLLOC) Recover the restore location.

IF (PLLOC .EQ. 20) THEN

GO TO 20 Jump to appropriate code location.

ELSE IF (PLLOC .EQ. 21) THEN

CALL PLDONR Mark restart as done.

GO TO 21 Jump to appropriate code location.

END IF

END IF

SUBROUTINE SUM(X, TOTAL)

INTEGER X(100)

INTEGER TOTAL, I

 Figure 8.6: A function prologue transformation in Fortran.

(a) Original subroutine heading

(b) The transformed subroutine heading

133

entry point in a subroutine would need to be followed by a copy of the subroutine prologue (note,

this is safe due to the restriction that ENTRY statement appear outside any DO loops or IF blocks).

As with standard prologues, these prologues would not be executed during normal program flow.

An additional transformation requirement is introduced by the Fortran ASSIGN statement,

which allows the assignment of a code label (i.e. line number) to an integer variable. The first

requirement that this introduces is that the addresses of all statements, the locations of which are

assigned to variables, be registered in the PIL code location table. This allows code locations to be

described using the standard PIL pointer description mechanism. However, registering code loca-

tions is only half of the required solution. Since code locations are assigned to normal integer vari-

ables, we must introduce a mechanism for determining when variables contain code locations, and

when they should be treated as normal integers. A simple solution that addresses this issue can be

based on maintaining a list of code-location-containing variables. After each ASSIGN statement in

the code, the target variable is added to the list. When variables that might ever be the target of an

ASSIGN statement are the target of a normal assignment, they are removed from this list. Thus, at

any point in execution, this code-location-containing variable list will have an up-to-date record of

all integer variables that actually contain code addresses instead of normal integer values. At

checkpoint time, a list of logical pointers to the variables on the list is saved, and the values of

these variables are saved as logical pointer descriptions. During recovery, if a variable is found on

the code location list, it is restored using pointer resolution.

A further issue that must be addressed in the source-to-source transformation of Fortran pro-

grams is the use of COMMON blocks. Variables included in common blocks are similar to global

variables in C, and thus can be registered with the PIL using an analogous technique to that used

for C globals. Recall, for transformed C code, an initialization routine is introduced which is exe-

cuted before the main program begins, and which registers the locations and sizes of global blocks.

As depicted in Figure 8.7, we can use a similar technique for Fortran. An initialization routine con-

134

taining COMMON statements to make all common blocks available to it. Inside the routine, vari-

ables within the common block are registered using an interface similar to the PIL interface

introduced in Section 5.3.4.

However, use of common blocks and the Fortran EQUIVALENCE statement introduces

potential problems for Process Introspection. Like the C union construct, these mechanisms allow

variables, possibly of different types, to occupy the same regions of memory. For example, to save

space, an EQUIVALENCE statement might indicate that a real array and an integer array overlap in

memory. As long as the arrays are not needed at the same time during the execution of the pro-

gram, this type of memory optimization is safe. However, the overlap of memory regions of differ-

ent types is problematic for the PIL. For example, if a memory region in a common block were

registered with the PIL as containing integers, but during a state capture operation actually con-

tained real values, a restart of the process on a different platform might restore the memory region

incorrectly. One possible way to address this issue would be to disallow the overlay of incompati-

ble types. If complete source were available, static checking could be performed by APrIL to

ensure that only like data types were overlaid. If separate compilation were required, run-time

checks could indicate mismatched memory overlays.

A final issue that must be addressed is I/O. Unlike in C, I/O is part of the Fortran language. In

the current APrIL implementation, the issue of I/O is not addressed by the compiler, but is instead

handled automatically by wrapper library routines. In Fortran, this approach is not possible, and

some support is required from the APrIL compiler. This support would involve transforming

READ and WRITE statements into calls into a PIL-interoperable I/O library, much like that

described in Section 5.4.

135

8.1.2 C++

Since C++ is a superset of C, the set of transformations that would be required to support

source-to-source Process Introspection compilation for C++ is a superset of those performed by

APrIL as described in Chapter 6. The main difficulty in extending the existing set of transforma-

tions to apply to C++ programs is the complex set of language features provided by C++, and the

interactions between these features.

The primary difference between C and C++ is the introduction of classes in C++. In some

respects, classes do not affect the way APrIL works. Assuming data hiding directives (i.e. pri-

vate and protected specifiers) are enforced and then removed, class instances can be treated

much like C struct variables. Furthermore, member functions can be transformed in the same

way as static functions, and their invocations can be transformed into mandatory poll points in the

standard way. The primary difficulties introduced by classes involve constructors, destructors, and

SUBROUTINE ONE

DIMENSION X(10)

COMMON /A/ X

. . .

SUBROUTINE TWO

COMMON /B/ I, J

. . .

SUBROUTINE PLINIT Initialization event handler.

DIMENSION X(10)

COMMON /A/ X Make all common blocks available.

COMMON /B/ I, J

CALL PLGREL(X, 10) Register an array of reals.

CALL PLGINT(I, 1) Register a scalar integer.

CALL PLGINT(J, 1) Register a scalar integer.

 Figure 8.7: Registration of variables in common blocks.

136

the new operator.

Class constructors and destructors are special methods whose invocation is guaranteed at cer-

tain specific times during program execution. For example, a constructor is invoked on an object

when that object enters scope (i.e. when execution reaches the object’s point of declaration) or is

dynamically allocated from the heap. Conversely, destructors are automatically invoked on objects

when they leave scope or are returned to the heap. These semantic guarantees have problematic

interactions with the APrIL transformations as implemented. First, in order to utilize function epi-

logues, APrIL moves all variable declarations to the beginning of a function. This transformation

could alter the point in control flow at which constructors were invoked, and could thus change the

meaning of the program. Furthermore, the guarantee of automatic constructor invocation would

interact incorrectly with the state recovery operation. Constructors are normal functions, and

would be transformed to include poll points and so on (e.g., it would be fair to assume that a

checkpoint might be initiated during the execution of a long-running constructor). However, since

stack reconstruction relies on the exact functions that were active during checkpoint construction

being invoked in the appropriate order, if constructors were automatically invoked as stack frames

were entered, the stack could not be correctly recovered. Destructors cause a similar problematic

interaction with the stack capture operation. Destructors can initiate or participate in stack save

operations, and thus if they were automatically invoked as functions returned during the stack cap-

ture, an incorrect representation of the stack would be produced.

A simple solution to the problems introduced by constructors and destructors can be based on

the transformation of these automatically invoked methods into normal, explicitly invoked meth-

ods, as depicted in Figure 8.8. As a natural compliment to this transformation, explicit invocations

of the introduced methods would need to be generated in all locations where the automatic meth-

ods would have been executed. For example, if an object instance were declared in a given scope,

the appropriate explicit constructor invocation would need to be placed at the entry to the scope,

137

and explicit calls to the destructor would need to be placed at all exits from the scope (e.g. a

break statement from a loop, etc.). Also, explicit calls to constructors would need to be placed

after each new operation, and before each delete operation.

A further complexity introduced by classes in C++ is dynamic memory allocation operations.

Unlike C, in which an untyped library interface is used for memory allocation (e.g. malloc), C++

provides type-specific, language-level memory allocation operators (i.e. new operators). Since the

C++ new operator not only allocates memory, but also initializes data internal to allocated objects

(e.g. virtual function lookup tables for dynamic binding), it cannot be trivially replaced by calls to

C heap allocation library routines. In conflict with this, the existing PIL implementation only pro-

vides a wrapper interface for standard C memory allocation routines. Furthermore, the automatic

capture and recovery of heap-allocated memory blocks by the PIL is predicated on the use of these

routines, and pointer description and resolution relies on the list of heap allocated memory block

descriptions maintained by these routines.

A solution that could bridge the gap between the required use of the new operator by C++

class ex {

int data;

public:

ex(int);

~ex();

};

void f()

{

ex e(1);

. . .

}

class ex {

int data;

public:

void ctor(int);

void dtor();

};

void f()

{

ex e;

e.ctor(1);

. . .

e.dtor();

}

(a) Before transformation (b) After transformation

 Figure 8.8: C++ constructor/destructor transformations.

138

programs, and the required use of wrapper routines by the PIL could be based on the generation of

new wrapper routines by APrIL—introduced functions to return the result of a call to the new

operator. The addresses of these routines could be registered with the PIL, and when allocation of

a memory region of a given type was required, a call to a PIL allocation routine could be used.

This routine could maintain a list of memory block descriptions in the same way that

PIL_Malloc does (see Section 5.3.5), but could call the registered new wrapper routines to per-

form actual memory allocation instead of calling on malloc . Furthermore, the wrapper routines

could be used internally by the PIL heap allocation module at restart time when all heap-allocated

memory blocks must be re-allocated. Again, calls to the appropriate new wrapper could be used in

place of calls to malloc . An example of the transformations associated with this scheme is

depicted in Figure 8.9. Note, the determination of the type allocated is greatly simplified by C++

as compared to the heuristic approach described in Section 6.2.5 for C. The allocated type is

always the class specified to the new operator.

class ex2 : public ex1 {

. . .

};

void f() {

ex1 *e = new ex2;

}

int PIL_ex2;

class ex2 : public ex1 { . . . };

ex2 *new_ex2() {

return new ex2;

}

PIL_Init() {

PIL_ex2 = PIL_RegisterClass();

PIL_RegisterNew(PIL_ex2, new_ex2);

}

void f() {

ex1 *e = PIL_New(PIL_ex2, 1);

}

(a) Original code

(b) Transformed code uses wrapped new

 Figure 8.9: Wrapper new operator registration.

139

The use of templates in C++ introduces the need for additional APrIL transformations. Con-

sider the example template function depicted in Figure 8.10. When the prologue and epilogue are

generated for this function, explicit PIL typed I/O invocations to recover and save the value of the

local variable ret must be included. As described in Section 5.3.3, the PIL typed I/O interface

requires the PIL type description number of the type in question to be provided. In a template envi-

ronment, this type number cannot be specified by referring to a specific global variable as is typi-

cally done in APrIL generated code, since the type in question will vary with different template

instantiations. A solution to this problem can be based on the C++ function overloading mecha-

nism. Overloaded functions can be generated to accept a dummy argument of a certain type, and

return the type number for that type, as depicted in Figure 8.11. In place of the type number for the

local variable in question, a call to the overloaded type number function is performed, thus allow-

ing the templated code to obtain the correct type number in all instantiations. Note, as depicted in

Figure 8.11, these functions can be inlined and thus would add no run-time overhead compared to

the explicit use of global variables containing type numbers.

Templates lead to a further possible complication for APrIL transformations. Note, in Figure

template <class T>

T vectorSum(T *x, int n) {

T ret = 0;

int i;

for(i=0;i<n;i++) ret+=x[i];

return ret;

}

 Figure 8.10: A template function.

inline int PIL_GetTypeNum(ex1 x) { return PIL_ex1; }

inline int PIL_GetTypeNum(ex2 x) { return PIL_ex2; }

 Figure 8.11: Overloaded type number functions.

140

8.10 the operator “+=” of the template parameter class is invoked. In some cases, this might be a

user-defined overloaded operator. In other cases, this might be a pre-defined operator of a basic

C++ type. Outside of a templated scope, use of overloaded operators is an easily detectable alter-

native syntax for function invocation. As such, it can be treated by APrIL in the same way that

function invocation is, providing targets for mandatory poll points, and affecting the operation of

the pre-processor. However, in a templated scope, APrIL cannot discern between basic operators

and user-defined operators. To be safe, APrIL must assume that all operators invoked on template

parameter classes are overloaded operators. In the worst case, this assumption may lead to unnec-

essary mandatory poll point placement, and thus decreased performance, but in all cases will pre-

serve the correctness of the code with respect to the Process Introspection transformations.

A final issue that we will discuss is the C++ exception mechanism. At any time during execu-

tion, C++ code can throw an exception consisting of a normal C++ object. When an exception is

thrown, function activations are terminated from the top of the activation stack down, until one is

found that has declared itself ready to “catch” the exception. Catching the exception consists of

executing a catch statement that accepts as a parameter an object of the type (or of a type derived

from the type) that was thrown. Upon receiving the thrown object, the program can perform arbi-

trary exception handling actions. An example of C++ exception handling is depicted in Figure

8.12.The syntactic rules imposed by the C++ catch statement are problematic for the APrIL

transformations. The primary difficulty is that the object that is caught must be declared within the

catch statement, but C++ goto statements (used during stack recovery) cannot cross object dec-

larations. Outside the context of exception handling code, we can address this issued by moving

variable declarations to the beginning of the function, using explicit constructors and destructors

when necessary as described above. In a catch statement, however, we cannot perform this trans-

formation. The result of this limitation of C++ is that, although a complete stack capture could be

initiated from within exception handling code (i.e. from within code executed in a catch state-

141

ment after an exception has been thrown), the stack could not be recovered to such a state using

only the goto mechanism.

A simple solution to this exception handling problem could be to disallow the initiation of

state capture operations from within exception handling code. An implementation of this restric-

tion could be constructed by maintaining a global variable indicating when exception handling is

in progress. When a catch block is entered, the variable would be set. When the block was

exited, the variable would be cleared. At all poll points, besides checking for a checkpoint request

(i.e. examining the value of the PIL_CheckptStatus variable), the “exception in progress”

variable could be checked. If exception handling were in progress, the state capture operation

could be deferred. Note, this solution could cause long checkpoint request wait times in the pres-

ence of long-running exception handlers.

8.2 Supporting Threads

In Section 8.1 we considered design issues associated with supporting additional program-

class ex {

public:

int errno;

ex(int e) { errno=e; }

};

void throwIt() {

throw ex(1);

}

main(){

try {

throwIt();

}

catch (ex e) {

. . .

}

 Figure 8.12: C++ exception handling example.

142

ming languages. Another dimension in which the current Process Introspection implementation

can be expanded is to support additional programming paradigms. In this section we examine the

design of extensions to the Process Introspection Library to support one such additional paradigm:

programming with multiple threads of control. Multi-threaded programming is an increasingly

common approach to writing applications that can take advantage of multiprocessor workstations,

and for expressing the possibility of computation and I/O overlap for increased performance.

A design to support multiple threads is a natural extension of the currently implemented sin-

gle threaded model. In the same way that a single thread captures and restores its stack and execu-

tion environment using the native subroutine return and call mechanisms, multiple threads can

concurrently capture their individual stacks. A checkpointing process in a multithreaded environ-

ment must record a description of the set of active threads at the time of state capture—for exam-

ple, the number of threads that was running, the starting function for each thread, and the stack

data associated with each thread. Furthermore, state capture and recovery must address the issue of

synchronization mechanisms. For example, if a lock were in use at the time of state capture, the

checkpoint would have to record the identity of the thread that held the lock (if any) and the list of

threads that were blocked waiting for the lock (if any). At restart time, the status of these threads

with respect to the lock would need to be recovered.

The design we will present assumes that a low-level library interface for programming with

threads is provided. Based on this low-level library, we will construct a higher-level threads library

that interoperates with the PIL to support the capture and recovery of multithreaded processes. For

simplicity, we will assume a minimal low-level thread library interface, which is depicted in Fig-

ure 8.13. This interface supports simple thread control operations—creation, termination, identity,

and synchronization based on counting semaphores. Clearly, a richer interface could be assumed,

such as the POSIX threads specification, which includes additional synchronization constructs,

mechanisms for controlling thread scheduling, and so on. However, the basic threads interface we

143

have assumed simplifies the description of a design to support state capture and recovery without

sacrificing adequate coverage of the salient issues. Note, in our low-level threads interface descrip-

tion, we have begged questions such as whether the implementation will reside in user or kernel

space (or some combination), and whether the implementation will support true concurrency on

multiprocessors. These and other related issues are orthogonal to the design we will present.

In our design, we will provide wrapper functions for each of the operations depicted in Figure

8.13—each wrapper routine will support the same interface as its lower-level counterpart, but will

maintain extra state and interact with the PIL in order to support the capture and recovery of multi-

ple threads of control.

The first issue we must address is the capture and recovery of a description of the set of active

threads in the process. To achieve this, the wrapper threads library maintains a list of active

threads. Each element on the list contains a unique integer thread identifier assigned by the wrap-

per thread_create operation, the integer identifier of the thread specified by the low-level

library, and a pointer to the starting function of the thread. Two identifiers are recorded for the

thread to provide invariant thread identity across checkpoints and restarts. When the process is

restarted, the low-level thread_create will be used to resume all threads. When this occurs,

restarted threads may be assigned new thread identifiers. The wrapper routines thus maintain a

second, invariant wrapper-level identifier for each thread that is preserved at restart time.

Given this active threads list, we can now specify the operation of the thread control opera-

int thread_create(void (*start_func)()); Create new thread, return thread id.

int thread_curr(); Return the id of calling thread.

void thread_exit(); Terminate the calling thread.

int semaphore_create(int start_value); Create a semaphore, return id.

void semaphore_p(int sem_id); Semaphore decrement.

void semaphore_v(int sem_id); Semaphore increment.

 Figure 8.13: A simple threads interface.

144

tions in the interface. The wrapper-level thread creation routine first calls the low-level

thread_create operation to start the new thread. A record is then added to the active thread

list containing a unique identifier generated for the thread, the identifier assigned to the thread by

the low-level thread_create , and the specified starting function for the thread. The wrapper

thread_create returns the wrapper-level unique identifier it generated for the thread. The

wrapper current thread identity (thread_curr) operation must map between the low-level iden-

tity of the calling thread and its wrapper-level identity. To do so, it can call the low-level

thread_curr operation, find the record on the active thread list that contains the resulting iden-

tifier, and return the wrapper-level unique identifier found in that record. Using the same tech-

nique, the thread_exit operation looks up the calling thread on the active threads list, and

removes the located record.

To capture and recover the state of the active threads set, the wrapper library registers event

handlers with the PIL to be executed at checkpoint and restart time, respectively. The checkpoint

handler writes the active threads list to the checkpoint, saving the wrapper-level unique identifier

and a logical pointer description of the starting location for each thread. The low level thread iden-

tifier need not be saved since it will be overwritten at restart time. Note, the checkpoint handler

only captures a description of the thread set, not the actual thread stacks and execution states—the

threads will capture their own stack states using the normal Process Introspection mechanism. The

restart handler reads the active threads list from the checkpoint, recovering the wrapper-level

unique identifier and starting function pointer for each thread on the list. To resume the actual exe-

cution of the threads, the handler iterates over the records in the list, calling the low-level

thread_create for each, and in each case saves the low-level thread identifier for the record.

Again, the restart handler does not restore the thread stacks, but instead only starts the threads run-

ning again, after which they use the normal Process Introspection mechanism to recover their stack

state.

145

As described above, the threads in this design are expected to capture and recover their stack

state using the standard Process Introspection model introduced in Chapter 3. The construction or

recovery of thread stack descriptions can proceed concurrently for multiple threads, but introduces

new requirements into the PIL stack management implementation (described in Section 5.3.7).

Recall, the PIL stack management interface provides routines for writing and reading stack data to

and from in-memory PIL buffers. The possibility of multiple threads introduces the requirement

that the stack management routines maintain different buffers for each thread, preventing data

associated with different stacks from being interleaved. A simple solution to address this require-

ment is to maintain a list of thread identifier/stack buffer pairs. When any stack management rou-

tine is invoked, it can use the thread_curr routine to determine the identity of the calling

thread, and can read or write the specified stack data from or to the appropriate buffer in the list.

Furthermore, since the stack management module automatically transfers in-memory stack frame

buffers to and from the checkpoint at state capture and recovery times, this module must also save

and recover the association between stack buffers and threads. The thread identifier/stack buffer

association list could also serve this purpose.

In addition to the basic issue of preserving the association between stack data and its owner

thread, the possibility of multiple threads of control introduces the need for synchronization at

checkpoint and restart time. For example, suppose that two threads are executing in a process

when a checkpoint request is received. Assume that one thread quickly reaches a poll point while

the second thread continues normal execution. If the first thread begins to produce a checkpoint

while the second thread continues to alter the state of the process, an inconsistent checkpoint could

be produced. A similar problem can occur at restart time. Suppose two threads are recovering their

stack state. Assume also that one thread quickly reaches the top of its call stack and resumes nor-

mal execution, while the second thread continues to recover its stack. While the first thread is exe-

cuting normally and modifying the process’s state, the second thread may be recovering data that

146

overwrites (i.e. rolls back) the first thread’s recent updates. The result would be an inconsistent

process restart.

To address the need for checkpoint and restart synchronization, we can introduce a barrier

operation based on the low-level semaphore mechanism. If n threads are executing in the process,

the barrier operation blocks the first n-1 calling threads, and when the nth call on the barrier is per-

formed, all threads resume. At each poll point, if a checkpoint has been requested but is not yet in

progress, the threads perform a barrier operation. This has the effect of causing all threads to sus-

pend normal execution before any threads begin producing a stack description. Similarly, at restart

time, when each thread reaches its last stack frame (a point in recovery at which the transformed

code already performs a PIL_DoneRestart), a barrier operation is performed. This has the

effect of ensuring that all threads have fully recovered their stack state before any threads continue

normal execution.

We have now described a design for the automatic checkpoint and recovery of multithreaded

programs, but have not yet addressed the issue of synchronization constructs. Recall, in our simple

threads interface we provided counting semaphores. Thus, in addition to the basic thread control

operations that we have already described, semaphore operations must also be available at the

wrapper level. Furthermore, the state of all semaphores must be captured and recovered at check-

point and restart time, respectively.

To perform state capture and recovery in the presence of synchronization operations, the

wrapper semaphore functions maintain a list of semaphores in use within the process. Each record

on the list records the wrapper-level identification number for the semaphore, the value of the

semaphore, and the identifiers of two low-level semaphores that will be used to implement this

wrapper semaphore. One of the low level semaphores will be used to synchronize access to the

data in the semaphore description record, and one will be used to block calling threads inside

semaphore_p operations when necessary. A wrapper-level semaphore description record is

147

depicted in Figure 8.14. The wrapper semaphore creation routine simply allocates a new record of

this type, initializes the unique identifier and value fields, and uses the low-level

semaphore_create operation to initialize the data-access protection semaphore (mutex) to 1,

and the queue semaphore (blocked_queue) to 0.

The operation of the wrapper semaphore_p operation, depicted in Figure 8.15 has two

modes of operation. In the basic mode, the function is called when a restart is not in progress, in

which case the value of the semaphore is decremented, and the process is blocked if necessary. In

struct PIL_Semphore {

int id; Unique identifier for this semaphore.

int value; Current value of the semaphore.

int mutex; Low-level semaphore protecting this record’s data.

int blocked_queue; Low-level semaphore on which to block P operations.

};

 Figure 8.14: Wrapper semaphore record.

void PIL_Semaphore_p(int sem_id) {

PIL_semaphore *sem;

sem = lookup_sem(sem_list, sem_id); Look up the semaphore record.

if(!PIL_ChkptStatus&PIL_RestoreNow) { If a restart is not in progress, then

semaphore_p(sem->mutex); protect the record data,

sem->value--; decrement the semaphore value,

if(sem->value > 0) { and check if this call should block.

semaphore_v(sem->mutex);

return;

}

semaphore_v(sem->mutex);

}

semaphore_p(sem->blocked_queue); Block the calling thread.

if(PIL_ChkptStatus&PIL_ChkptNow) { Check for checkpoint request.

PIL_Barrier();

PIL_ChkptStatus|=PIL_ChkptInProgress;

}

}

 Figure 8.15: Wrapper semaphore P operation.

148

the absence of checkpoint/restart activity, this mode of operation in conjunction with the wrapper

semaphore_v operation depicted in Figure 8.16 provides standard counting semaphore seman-

tics.

These semaphore wrapper routines must also support state capture and recovery when threads

are blocked on semaphore_p calls. For example, suppose a checkpoint request arrives while a

thread is blocked, and all other threads reach poll points before calling the semaphore_v opera-

tions that are necessary to allow the thread to continue normal execution. Without extra support,

the result would be deadlock when the other threads attempted to perform a barrier synchroniza-

tion at the poll points. To address this issue, we must add extra functionality to the wrapper module

checkpoint and restart handler to capture and recover the state of all semaphores.

To save the state of a process’s semaphores, the checkpoint handler introduced above would

iterate over the semaphore list, saving the unique identifier and value of each semaphore. The val-

ues of the low-level semaphores need not be saved, as they will be overwritten at restart time. In

addition to saving these values, the checkpoint event handler also un-blocks all threads that are

blocked in semaphore_p operations. This is achieved by calling semaphore_v on each sema-

phore’s blocked_queue low-level semaphore and incrementing that semaphore’s value field

until it is non-negative. Note in the wrapper semaphore_p operation depicted in Figure 8.15,

after the call blocks it polls for a checkpoint request. Thus, when the event handler releases the

thread, it immediately encounters a poll point to which the thread will be restored. Note also in

void PIL_Semaphore_v(int sem_id) {

PIL_semaphore *sem;

sem = lookup_sem(sem_list, sem_id); Look up the semaphore record.

semaphore_p(sem->mutex);

if(sem->value < 0) If threads are blocked,

semaphore_v(sem->blocked_queue); then wake one up.

sem->value++; Increment the semaphore value.

}

 Figure 8.16: Wrapper semaphore V operation.

149

Figure 8.15, when the wrapper semaphore_p operation is entered during a state recovery, the

thread simply re-blocks itself on the wrapper semaphore’s blocked_queue . Thus, with support

added to the checkpoint event handler to wake up blocked threads to service a checkpoint request,

and support added to the restart handler to recover and re-initialize the active semaphore list, the

standard Process Introspection mechanism can be used to recover the state of thread synchroniza-

tion primitives.

150

Chapter 9
Conclusions and Future Directions
 In this dissertation we have presented Process Introspection, a novel design and implementa-

tion of a heterogeneous process state capture and recovery mechanism based on the modification

of programs to render them self-describing and self-recovering. In this chapter we review the fun-

damental contributions associated with this work. Research thus far on Process Introspection

raises as many directions for further inquiry as it answers existing questions. Thus, in Section 9.2

we examine possible directions for future work related to Process Introspection.

9.1 Contributions

First and foremost, in this dissertation we have described a new technique for capturing and

restoring the state of a process in a heterogeneous environment. We have described this mecha-

nism on an abstract, general level, and have defined and demonstrated its correctness on that level.

Furthermore, we have implemented a complete working prototype of the described mechanism,

including a C compiler and run-time support libraries, and we have demonstrated this implementa-

tion on representative benchmarks and on real, non-trivial, production applications.

Our experiments using the prototype implementation of the system have produced encourag-

ing results. At the most basic level, our experiences prove that Process Introspection as described

in this dissertation can be applied automatically and correctly to significant applications. Further-

more, we find that relatively straightforward automatic poll point placement policies can achieve

acceptable levels of incurred overhead while at the same time providing good performance in

terms of average checkpoint-request wait time. This result is important—it is the fundamental rea-

son that Process Introspection can be supported by tools that are not unduly complex, yet allow

automatic application of this state capture and recovery mechanism without programmer interven-

151

tion or significant introduced cost.

Beyond good performance, our system provides additional attractive features. The core inter-

nal state capture mechanism described is highly portable, requiring no special run-time system

support or non-portable code (e.g. assembly language routines). Support of an additional platform

type requires no modification to APrIL, and at most addition of support for an additional data for-

mat in the PIL. Furthermore, our mechanism is general—besides being independent of any spe-

cific system support, it does not dictate any particular programming style, data structuring

techniques, or other artificial limitations on the programs that can be supported.

9.2 Future Work

Integration—The current Process Introspection implementation is basically a stand-alone pack-

age for sequential tasks; state capture and recovery is directed explicitly by an interactive user. A

first obvious area for future work is integration into existing distributed systems. We plan to adapt

the system for use in the Legion [52] wide-area, object-oriented distributed system, and are also

investigating integration into a PVM [34] or MPI [41] system. Adaptability to various system

environments is supported explicitly by our PIL API, which provides a medium for APrIL-trans-

formed modules and hand-coded system-interface wrapper modules to interoperate.

Extensions—In Chapter 8 we described designs for extensions to the current Process Introspec-

tion system to support additional programming languages and multithreaded programming. Imple-

mentation of these designs will be the subject of future work to address questions relating to the

performance, portability, and complexity of these extensions. For example, we have found that

poll point placement using the described heuristic policies generally offers points of acceptable

performance/overhead trade-off. Would the same result hold for APrIL-transformed programs

compiled by optimizing Fortran compilers, or would different heuristic policies be required? Sup-

porting threads also leads to new questions, such as what are the performance penalties associated

152

with state capture synchronization among threads? In a situation in which all threads are encoun-

tering poll points with approximately equal frequencies, we do not expect that the expense of a

barrier at state capture time would introduce significant cost. However, implementation and empir-

ical study could determine if this intuitive argument is correct.

Performance Enhancements—In Chapter 7, we identified a number of possible avenues for

improving the current APrIL implementation, especially with respect to performance of applica-

tions consisting of separately compiled modules. The addition of a “project” abstraction that

would allow cross-module application of the APrIL mandatory poll point elimination optimization

and would reduce the generation of redundant type and global registration code is the subject of

future work. Quantifying the benefits of this enhancement will further delineate the performance

obtainable through automatic application of Process Introspection.

Poll Point Placement Policy Selection—The performance study in Chapter 7 demonstrated that

for a given application, one or more poll point placement policies supported by APrIL can gener-

ally provide good performance and low introduced overhead. However, the policies that offer good

performance vary among applications, as do users’ desire to trade off performance overhead for

state capture request wait-time, or vice-versa. This leads to a policy selection problem—presented

with a new application to compile, which poll point policy should a programmer choose? Our per-

formance study has provided strong evidence that selecting from among a very small number of

relatively conservative policies is sufficient, but the user is still left with the selection. In future

work, we will investigate automating the policy selection process and/or enhancing APrIL to

determine appropriate placements dynamically based on higher-level user specifications (e.g. a

user might invoke APrIL specifying, “no more than n% overhead, no greater than x ms. between

poll points”). A possible approach to this problem might be based on program profiling. Given

information about a program’s run-time characteristics (as opposed to just working from source

code), a policy would have more information on which to base placement decisions. For example,

153

currently, placement into loops is based on static characteristics such as the number of statements

in the loop body. Run-time statistics such as the actual time spent on average in a loop’s body, and

the number of times a loop’s body was executed could provide a stronger basis for placement

selection.

State Capture Optimizations—Depending on the intended use of a process state capture and

recovery mechanism, various optimizations to the state capture operation are possible. For exam-

ple, if state capture is used for checkpointing, it is sometimes desirable to support incremental

checkpoints. When state capture is performed, only the changed elements of the state are recorded,

thus saving space and capture time. In homogeneous systems it is natural to perform this optimiza-

tion on a page basis, writing only those pages that have become dirty since the last checkpoint. In

Process Introspection, a similar optimization can be performed on a state element basis. Memory

regions registered with the PIL could be written to the checkpoint only if they had been modified

since the last state capture operation. This scheme is straightforward to implement in modern oper-

ating systems, which typically support a mechanism for causing a signal to be delivered to a pro-

cess when certain marked memory regions are accessed. A similar state capture enhancement is

sometimes employed for the purposes of low-latency process migration. In these schemes, only the

most immediately needed data is transferred to a migrated process so that it can begin execution as

quickly as possible after arriving at its target site. The rest of the process state can be transferred

later as necessary. A similar technique is possible with Process Introspection. The PIL could be

modified to first transfer the minimal data needed to reinstantiate the process’s stack and reallocate

the process’s memory regions. The data associated with top-most stack frames could then be trans-

ferred, followed by the data for lower stack frames and other memory regions as needed. The

detailed design and implementation of these important state capture optimizations will be the sub-

ject of future work.

In addition to the enhancements and extensions we have described, Process Introspection

154

introduces the possibility of a great deal of additional research in using the system. For example,

the use of Process Introspection to develop a truly heterogeneous batch queuing system (e.g. heter-

ogeneous Condor) is one possibility. The development of load balancing policies for heteroge-

neous PVM networks using Process Introspection is another. Use of Process Introspection as a tool

for building higher-level heterogeneous systems will undoubtedly provide insight into added fea-

tures or improvements in the design. Beyond system development, the application of Process

Introspection to additional applications will also provide important feedback into the design

refinement process, and will help characterize further the performance of the system.

155

Appendix A

Performance Data
 This appendix contains the full results of the performance study discussed in Chapter 7. The

tables presented in this appendix fall into the following categories:

• Execution times—Presents execution times for a given program, compiled with and without

Process Introspection transformations, and with and without compiler optimizations. Each

entry contains the mean and standard deviation of 16 runs performed on each of five test plat-

forms. Times are reported in seconds, and were measured using the C gettimeofday

library routine.

• Overhead and optimizer effectiveness—For each poll point placement policy examined, p, pre-

sents the overhead for the non-optimized program, Onorm,p, the optimizer effectiveness E, and

the overhead for the optimized program, Oopt,p, as defined in Section 7.1.1. Speedups due to

optimizations, Sntrans and Strans,p as defined in Section 7.1.1, are also presented.

• Poll point counts—For each poll point placement policy examined, the number of poll points

encountered in a complete execution of the program is presented. These were obtained using

versions of the applications transformed by APrIL to increment a counter at each poll point.

• Average poll point interval—For each poll point placement policy and each test platform, the

average interval between poll point encounters computed using Equation 7.6 as defined in

Section 7.1.1 is reported. Times are presented in milliseconds.

• Time to checkpoint/restart—For each test platform, the time to create a checkpoint and the

times to perform restarts from checkpoints created on each of the test platforms are presented.

Times are presented in milliseconds, and were measured using the gettimeofday C library

routine. A special version of the PIL was used to mark the time that the checkpoint or restart

was begun and finished. All data disk I/O was performed using a local disk.

156

A.1 Basic Numerical Applications

A.1.1 Matrix Multiply

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 5.26 0.17 4.56 0.17 18.18 0.09 13.14 0.12 24.77 0.29
No trans, opt. 4.21 0.06 3.51 0.04 9.34 0.04 4.84 0.04 14.05 0.08

0 5.48 0.20 4.81 0.10 18.17 0.08 13.22 0.21 25.06 0.26
0, optimized 4.23 0.14 3.70 0.18 9.40 0.07 4.92 0.07 14.09 0.08

1 5.50 0.12 4.70 0.13 18.19 0.09 13.39 0.10 25.34 0.58
1, optimized 4.29 0.12 3.65 0.12 9.40 0.05 5.05 0.05 14.06 0.10

2 5.46 0.09 4.67 0.15 18.26 0.20 13.69 0.62 25.73 0.95
2, optimized 4.41 0.11 3.67 0.10 9.42 0.03 5.02 0.26 14.00 0.07

3 5.53 0.11 4.66 0.13 18.23 0.18 14.54 0.24 25.27 0.57
3, optimized 4.65 0.26 3.68 0.10 9.43 0.04 5.61 0.10 14.07 0.08

4 5.39 0.13 4.78 0.16 18.22 0.19 13.50 0.37 24.86 0.10
4, optimized 4.57 0.18 3.67 0.10 9.41 0.04 5.51 0.12 14.00 0.06

5 5.84 0.16 4.87 0.08 18.18 0.04 13.42 0.08 24.87 0.16
5, optimized 4.82 0.15 3.64 0.07 9.44 0.04 5.59 0.07 14.05 0.05

11 6.15 0.16 4.88 0.05 18.21 0.20 13.86 0.55 25.29 0.45
1, optimized 4.69 0.16 3.63 0.06 9.44 0.04 5.65 0.25 14.00 0.04

13 6.12 0.12 4.90 0.04 18.21 0.20 14.53 0.10 24.92 0.29
13, optimized 4.56 0.37 3.66 0.08 9.44 0.05 5.11 0.11 13.96 0.06

21 6.76 0.14 4.87 0.06 18.33 0.34 15.93 0.29 26.17 0.11
21, optimized 5.08 0.16 3.72 0.02 9.43 0.05 13.98 0.14 22.10 0.04

Table A.1: Matrix multiply, execution times (seconds).

Table A.2: Matrix multiply, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 1.25 1.30 1.95 2.71 1.76

Onorm,0 Oopt,0 4.2% 0.5% 5.6% 5.4% 0.0% 0.6% 0.6% 1.6% 1.2% 0.3%

Strans,0 E0 1.30 1.04 1.30 1.00 1.93 0.99 2.69 0.99 1.78 1.01

Onorm,1 Oopt,1 4.7% 2.0% 3.2% 4.0% 0.1% 0.6% 1.9% 4.3% 2.3% 0.1%

Strans,1 E1 1.28 1.03 1.29 0.99 1.93 0.99 2.65 0.98 1.80 1.02

Onorm,2 Oopt,2 3.9% 4.8% 2.6% 4.7% 0.5% 0.9% 4.2% 3.8% 3.9% -0.4%

Strans,2 E2 1.24 0.99 1.27 0.98 1.94 1.00 2.72 1.00 1.84 1.04

Onorm,3 Oopt,3 5.2% 10.5% 2.3% 4.9% 0.3% 1.0% 10.7% 15.8% 2.0% 0.2%

Strans,3 E3 1.19 0.95 1.27 0.98 1.93 0.99 2.59 0.96 1.80 1.02

Onorm,4 Oopt,4 2.5% 8.7% 5.0% 4.6% 0.3% 0.8% 2.7% 13.7% 0.3% -0.3%

Strans,4 E4 1.18 0.94 1.30 1.00 1.94 0.99 2.45 0.90 1.77 1.01

Onorm,5 Oopt,5 11.1% 14.7% 6.9% 3.6% 0.0% 1.0% 2.1% 15.4% 0.4% 0.0%

Strans,5 E5 1.21 0.97 1.34 1.03 1.93 0.99 2.40 0.89 1.77 1.00

Onorm,11 Oopt,11 16.9% 11.5% 7.1% 3.4% 0.2% 1.1% 5.5% 16.7% 2.1% -0.3%

Strans,11 E11 1.31 1.05 1.34 1.04 1.93 0.99 2.45 0.90 1.81 1.02

Onorm,13 Oopt,13 16.4% 8.4% 7.5% 4.2% 0.2% 1.1% 10.6% 5.6% 0.6% -0.7%

Strans,13 E13 1.34 1.07 1.34 1.03 1.93 0.99 2.84 1.05 1.79 1.01

Onorm,21 Oopt,21 28.6% 20.8% 6.8% 6.0% 0.8% 1.0% 21.2% 188.8% 5.6% 57.3%

Strans,21 E21 1.33 1.06 1.31 1.01 1.94 1.00 1.14 0.42 1.18 0.67

157

Table A.3: Matrix multiply, poll point counts.

Policy Poll
Points

0 1
1 65793
2 65535
3 131329
4 65793
5 131329
11 131329
13 131329
21 16908545

Placement alpha x86 rs/6000 mips sparc
Policy

0 4225.1000 3699.0000 9396.6000 4920.4000 14088.2000
1 0.0652 0.0555 0.1429 0.0767 0.2137
2 0.0673 0.0561 0.1438 0.0766 0.2136
3 0.0354 0.0280 0.0718 0.0427 0.1072
4 0.0695 0.0558 0.1431 0.0837 0.2129
5 0.0367 0.0277 0.0719 0.0425 0.1070

11 0.0357 0.0276 0.0719 0.0430 0.1066
13 0.0347 0.0279 0.0719 0.0389 0.1063
21 0.0003 0.0002 0.0006 0.0008 0.0013

Table A.4: Matrix multiply, average poll point interval (milliseconds).

Table A.5: Matrix multiply, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 1573018 1573018 1573018 1573018 1573018
t chckpt 32.59 0.84 47.31 1.87 324.55 6.80 95.40 1.12 253.90 8.89
t restart,sparc 104.05 1.77 131.65 0.47 176.77 0.96 110.31 1.04 259.51 9.30
t restart,mips 101.69 2.04 130.62 2.57 176.75 1.49 111.34 2.51 261.18 12.07
t restart,x86 54.24 1.11 99.84 3.59 258.50 2.82 177.79 6.53 346.44 2.99
t restart,rs/6000 101.93 1.61 131.70 1.13 177.28 1.82 112.66 2.45 258.87 2.80
t restart,alpha 55.30 1.19 97.82 2.19 268.43 24.69 179.64 6.38 346.87 2.11

158

A.1.2 Gauss-Seidel

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 12.37 0.64 10.35 0.05 44.78 0.19 40.97 1.06 65.16 0.54
No trans, opt. 4.83 0.07 5.00 0.04 21.43 0.21 26.00 0.60 23.80 0.26

0 12.60 0.19 10.40 0.03 45.40 0.26 41.01 1.14 65.11 0.74
0, optimized 4.84 0.05 5.02 0.02 22.97 0.16 25.72 0.22 23.92 0.27

1 12.88 0.44 10.61 0.68 45.51 0.32 41.69 1.47 65.40 1.04
1, optimized 4.92 0.04 5.03 0.05 23.20 0.17 26.44 0.45 23.79 0.38

2 12.72 0.16 10.40 0.05 45.54 0.26 42.35 1.37 65.18 0.48
2, optimized 4.91 0.04 5.04 0.05 23.23 0.22 26.00 0.66 25.15 1.37

3 12.88 0.20 10.41 0.07 45.52 0.26 43.22 2.01 65.17 0.53
3, optimized 4.94 0.03 5.01 0.06 23.22 0.23 26.48 1.89 24.65 0.81

4 13.29 0.19 10.90 0.07 48.86 0.29 51.57 1.70 68.46 0.47
4, optimized 5.26 0.04 5.77 0.04 24.02 0.20 30.95 0.87 28.53 0.25

5 13.35 0.73 10.86 0.03 48.99 0.24 50.73 1.77 68.71 1.28
5, optimized 5.33 0.04 5.78 0.05 24.00 0.17 32.00 1.19 28.55 0.19

11 12.85 0.40 10.41 0.07 45.56 0.33 42.04 1.68 65.35 0.90
1, optimized 5.17 0.31 5.01 0.03 23.19 0.20 26.11 1.04 23.50 0.43

13 13.33 0.72 10.77 0.05 49.00 0.25 51.19 1.77 69.03 0.95
13, optimized 5.30 0.09 5.74 0.10 24.18 0.56 32.21 1.36 28.38 0.08

21 13.56 0.18 10.87 0.05 52.26 0.18 55.76 1.93 73.02 1.56
21, optimized 5.99 0.21 5.92 0.11 29.20 0.19 44.78 1.69 44.82 0.33

Table A.6: Gauss-Seidel, execution times (seconds).

Table A.7: Gauss-Seidel, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 2.56 2.07 2.09 1.58 2.74

Onorm,0 Oopt,0 1.8% 0.2% 0.5% 0.4% 1.4% 7.2% 0.1% -1.1% -0.1% 0.5%

Strans,0 E0 2.60 1.02 2.07 1.00 1.98 0.95 1.59 1.01 2.72 0.99

Onorm,1 Oopt,1 4.0% 1.7% 2.5% 0.6% 1.6% 8.2% 1.8% 1.7% 0.4% 0.0%

Strans,1 E1 2.62 1.02 2.11 1.02 1.96 0.94 1.58 1.00 2.75 1.00

Onorm,2 Oopt,2 2.8% 1.7% 0.5% 0.8% 1.7% 8.4% 3.4% 0.0% 0.0% 5.7%

Strans,2 E2 2.59 1.01 2.06 1.00 1.96 0.94 1.63 1.03 2.59 0.95

Onorm,3 Oopt,3 4.1% 2.2% 0.6% 0.2% 1.7% 8.4% 5.5% 1.8% 0.0% 3.6%

Strans,3 E3 2.61 1.02 2.08 1.00 1.96 0.94 1.63 1.04 2.64 0.97

Onorm,4 Oopt,4 7.4% 8.7% 5.4% 15.4% 9.1% 12.1% 25.9% 19.0% 5.1% 19.9%

Strans,4 E4 2.53 0.99 1.89 0.91 2.03 0.97 1.67 1.06 2.40 0.88

Onorm,5 Oopt,5 7.8% 10.3% 5.0% 15.7% 9.4% 12.0% 23.8% 23.1% 5.5% 20.0%

Strans,5 E5 2.50 0.98 1.88 0.91 2.04 0.98 1.59 1.01 2.41 0.88

Onorm,11 Oopt,11 3.8% 6.9% 0.6% 0.3% 1.8% 8.2% 2.6% 0.4% 0.3% -1.3%

Strans,11 E11 2.49 0.97 2.08 1.00 1.96 0.94 1.61 1.02 2.78 1.02

Onorm,13 Oopt,13 7.7% 9.6% 4.1% 14.8% 9.4% 12.9% 24.9% 23.9% 5.9% 19.3%

Strans,13 E13 2.52 0.98 1.88 0.91 2.03 0.97 1.59 1.01 2.43 0.89

Onorm,21 Oopt,21 9.6% 24.0% 5.0% 18.4% 16.7% 36.3% 36.1% 72.2% 12.1% 88.3%

Strans,21 E21 2.26 0.88 1.84 0.89 1.79 0.86 1.25 0.79 1.63 0.60

159

Policy Poll
Points

0 11685
1 461596
2 473838
3 473838
4 38786389
5 38786389
11 473838
13 38786389
21 74335201

Table A.8: Gauss-Seidel, poll point counts.

Table A.9: Gauss-Seidel, average poll point interval (milliseconds).

Placement alpha x86 rs/6000 mips sparc
Policy

0 0.41444 0.42966 1.96561 2.20153 2.04732
1 0.01066 0.01090 0.05025 0.05729 0.05153
2 0.01037 0.01063 0.04902 0.05487 0.05307
3 0.01043 0.01057 0.04900 0.05588 0.05203
4 0.00014 0.00015 0.00062 0.00080 0.00074
5 0.00014 0.00015 0.00062 0.00083 0.00074

11 0.01091 0.01058 0.04894 0.05510 0.04959
13 0.00014 0.00015 0.00062 0.00083 0.00073
21 0.00008 0.00008 0.00039 0.00060 0.00060

Table A.10: Gauss-Seidel, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 102613 102613 102613 102613 102613
t chckpt 2.56 0.47 4.05 0.37 27.57 0.70 10.67 0.46 13.25 0.45
t restart,sparc 6.35 0.49 7.57 0.18 14.21 0.14 12.14 0.25 18.00 0.33
t restart,mips 5.98 0.32 7.41 0.18 14.14 0.07 12.38 0.62 18.04 0.31
t restart,x86 3.54 0.47 6.13 0.10 20.05 0.61 16.55 0.79 23.22 0.27
t restart,rs/6000 6.10 0.42 7.51 0.15 14.16 0.11 12.17 0.22 18.37 0.63
t restart,alpha 3.54 0.47 6.11 0.09 19.67 0.16 16.20 0.84 25.21 0.32

160

A.1.3 Quicksort

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 7.42 0.02 8.34 0.02 22.61 0.17 24.86 0.97 32.30 0.31
No trans, opt. 2.26 0.01 4.84 0.09 9.82 0.12 12.42 0.42 14.49 0.15

0 7.48 0.03 8.38 0.05 24.38 0.17 25.56 0.72 33.58 0.31
0, optimized 2.39 0.04 4.94 0.05 11.53 0.04 13.93 0.81 15.18 0.12

1 7.72 0.06 8.61 0.04 26.27 0.16 28.55 0.95 35.12 0.42
1, optimized 2.66 0.04 5.29 0.03 14.48 0.19 16.99 0.47 15.88 0.18

2 7.71 0.04 8.62 0.05 26.34 0.34 27.97 0.87 35.19 0.43
2, optimized 2.67 0.04 5.28 0.03 14.41 0.10 17.96 0.18 15.96 0.10

3 7.70 0.04 8.63 0.06 26.28 0.22 28.58 0.94 35.40 0.43
3, optimized 2.66 0.03 5.30 0.03 14.44 0.19 16.93 0.38 15.98 0.02

4 7.72 0.05 8.71 0.07 26.46 0.17 28.27 0.87 35.23 0.38
4, optimized 2.68 0.02 5.31 0.03 14.61 0.18 17.07 0.11 16.01 0.17

5 7.70 0.02 8.68 0.06 26.47 0.19 28.81 0.98 35.71 0.41
5, optimized 2.69 0.04 5.32 0.04 14.56 0.05 18.30 0.59 16.15 0.26

11 8.19 0.05 8.60 0.03 26.21 0.04 28.07 0.86 36.30 0.25
1, optimized 2.73 0.26 5.30 0.02 14.44 0.17 17.07 0.51 16.42 0.21

13 8.18 0.04 8.67 0.03 26.50 0.25 28.72 0.98 36.17 0.67
13, optimized 2.77 0.30 5.29 0.02 14.62 0.18 17.04 0.11 16.01 0.29

21 8.38 0.03 8.96 0.05 36.06 0.16 34.32 1.78 41.17 1.70
21, optimized 3.13 0.05 6.03 0.02 17.14 0.06 26.50 0.63 19.53 0.16

Table A.11: Quicksort, execution times (seconds).

Table A.12: Quicksort, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 3.28 1.72 2.30 2.00 2.23

Onorm,0 Oopt,0 0.8% 5.6% 0.5% 2.0% 7.8% 17.4% 2.8% 12.1% 4.0% 4.8%

Strans,0 E0 3.13 0.95 1.70 0.99 2.11 0.92 1.84 0.92 2.21 0.99

Onorm,1 Oopt,1 4.1% 17.6% 3.3% 9.2% 16.2% 47.5% 14.9% 36.7% 8.7% 9.6%

Strans,1 E1 2.90 0.88 1.63 0.95 1.81 0.79 1.68 0.84 2.21 0.99

Onorm,2 Oopt,2 3.9% 17.9% 3.3% 9.1% 16.5% 46.8% 12.5% 44.5% 8.9% 10.2%

Strans,2 E2 2.89 0.88 1.63 0.95 1.83 0.79 1.56 0.78 2.21 0.99

Onorm,3 Oopt,3 3.8% 17.8% 3.5% 9.5% 16.2% 47.2% 15.0% 36.3% 9.6% 10.3%

Strans,3 E3 2.89 0.88 1.63 0.95 1.82 0.79 1.69 0.84 2.22 0.99

Onorm,4 Oopt,4 4.0% 18.6% 4.4% 9.7% 17.0% 48.9% 13.7% 37.4% 9.1% 10.6%

Strans,4 E4 2.88 0.88 1.64 0.95 1.81 0.79 1.66 0.83 2.20 0.99

Onorm,5 Oopt,5 3.8% 18.9% 4.1% 9.9% 17.1% 48.3% 15.9% 47.3% 10.5% 11.5%

Strans,5 E5 2.86 0.87 1.63 0.95 1.82 0.79 1.57 0.79 2.21 0.99

Onorm,11 Oopt,11 10.4% 20.7% 3.1% 9.3% 15.9% 47.1% 12.9% 37.4% 12.4% 13.3%

Strans,11 E11 3.00 0.91 1.62 0.94 1.82 0.79 1.64 0.82 2.21 0.99

Onorm,13 Oopt,13 10.3% 22.6% 4.0% 9.2% 17.2% 48.9% 15.6% 37.2% 12.0% 10.5%

Strans,13 E13 2.95 0.90 1.64 0.95 1.81 0.79 1.69 0.84 2.26 1.01

Onorm,21 Oopt,21 13.0% 38.3% 7.4% 24.5% 59.5% 74.7% 38.1% 113.3% 27.5% 34.9%

Strans,21 E21 2.68 0.82 1.48 0.86 2.10 0.91 1.30 0.65 2.11 0.95

161

Policy Poll
Points

0 18874363
1 32129457
2 32129457
3 32129457
4 34226609
5 34226609
11 32129457
13 34226609
21 95791100

Table A.13: Quicksort, poll point counts.

Table A.14: Quicksort, average poll point interval (milliseconds).

Placement alpha x86 rs/6000 mips sparc
Policy

0 0.000127 0.000262 0.000611 0.000738 0.000804
1 0.000083 0.000165 0.000451 0.000529 0.000494
2 0.000083 0.000164 0.000449 0.000559 0.000497
3 0.000083 0.000165 0.000450 0.000527 0.000497
4 0.000078 0.000155 0.000427 0.000499 0.000468
5 0.000079 0.000155 0.000425 0.000535 0.000472

11 0.000085 0.000165 0.000450 0.000531 0.000511
13 0.000081 0.000155 0.000427 0.000498 0.000468
21 0.000033 0.000063 0.000179 0.000277 0.000204

Table A.15: Quicksort, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 8388716 8388716 8388716 8388716 8388716
t chckpt 161.19 2.32 303.72 2.11 2064 25.99 614.66 4.50 1771.56 15.35
t restart,sparc 587.41 11.64 748.84 3.80 1041 86.63 602.10 4.35 1308.46 6.41
t restart,mips 589.36 10.83 751.45 10.66 1116 115.68 608.42 6.75 1420.06 57.84
t restart,x86 305.57 4.02 570.50 15.10 1516 76.38 1039.50 15.33 2125.57 13.13
t restart,rs/6000 583.08 4.46 748.07 12.71 1011 6.14 605.35 5.89 1473.02 17.30
t restart,alpha 309.00 10.09 560.69 9.74 1457 23.49 1041.41 9.04 2047.77 116.80

162

A.1.4 Gaussian Elimination

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 12.30 0.05 14.69 0.01 30.48 0.18 31.38 1.12 51.76 0.51
No trans, opt. 5.12 0.04 8.23 0.03 8.99 0.04 28.79 1.06 17.91 0.26

0 12.39 0.04 16.43 0.05 30.55 0.19 33.29 0.95 52.29 0.76
0, optimized 5.17 0.04 8.23 0.05 9.14 0.18 30.04 1.07 17.68 0.65

1 12.36 0.05 16.42 0.04 30.60 0.19 33.79 0.59 52.29 0.62
1, optimized 5.13 0.04 8.26 0.03 9.09 0.05 29.02 1.06 18.41 0.88

2 12.32 0.04 16.47 0.02 30.58 0.17 32.92 0.59 51.96 0.40
2, optimized 5.14 0.05 8.27 0.04 9.13 0.17 29.76 1.06 17.90 0.78

3 12.37 0.05 16.43 0.05 30.65 0.23 33.61 1.09 51.98 0.36
3, optimized 5.14 0.06 8.28 0.05 9.11 0.03 29.34 1.04 20.25 0.81

4 12.36 0.03 16.49 0.04 30.63 0.20 31.95 0.23 52.23 0.61
4, optimized 5.19 0.05 8.27 0.03 9.08 0.06 29.47 0.95 18.91 1.56

5 12.38 0.07 16.44 0.04 30.61 0.25 31.99 0.30 52.69 1.03
5, optimized 5.19 0.04 8.27 0.04 9.17 0.18 30.05 0.85 21.21 1.05

11 12.32 0.05 16.44 0.03 30.59 0.18 33.38 1.22 53.54 1.37
1, optimized 5.21 0.04 8.26 0.02 9.14 0.06 28.33 0.61 18.56 2.00

13 12.37 0.16 16.44 0.05 30.63 0.29 32.03 0.56 54.08 1.52
13, optimized 5.21 0.04 8.27 0.04 9.17 0.18 29.80 1.00 18.49 1.92

21 13.08 0.06 16.82 0.02 34.33 0.17 39.70 1.30 57.16 1.60
21, optimized 5.79 0.03 8.37 0.03 16.98 0.06 36.33 0.77 30.77 1.85

Table A.16: Gaussian elimination, execution times (seconds).

Table A.17: Gaussian elimination, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 2.40 1.79 3.39 1.09 2.89

Onorm,0 Oopt,0 0.7% 1.0% 11.8% 0.1% 0.2% 1.7% 6.1% 4.3% 1.0% -1.3%

Strans,0 E0 2.40 1.00 2.00 1.12 3.34 0.99 1.11 1.02 2.96 1.02

Onorm,1 Oopt,1 0.5% 0.2% 11.8% 0.4% 0.4% 1.0% 7.7% 0.8% 1.0% 2.8%

Strans,1 E1 2.41 1.00 1.99 1.11 3.37 0.99 1.16 1.07 2.84 0.98

Onorm,2 Oopt,2 0.1% 0.4% 12.1% 0.5% 0.3% 1.5% 4.9% 3.4% 0.4% 0.0%

Strans,2 E2 2.40 1.00 1.99 1.12 3.35 0.99 1.11 1.01 2.90 1.00

Onorm,3 Oopt,3 0.5% 0.5% 11.8% 0.7% 0.6% 1.3% 7.1% 1.9% 0.4% 13.0%

Strans,3 E3 2.41 1.00 1.98 1.11 3.37 0.99 1.15 1.05 2.57 0.89

Onorm,4 Oopt,4 0.4% 1.4% 12.2% 0.5% 0.5% 1.0% 1.8% 2.4% 0.9% 5.6%

Strans,4 E4 2.38 0.99 1.99 1.12 3.37 1.00 1.08 0.99 2.76 0.96

Onorm,5 Oopt,5 0.6% 1.4% 11.9% 0.5% 0.4% 1.9% 1.9% 4.4% 1.8% 18.4%

Strans,5 E5 2.39 0.99 1.99 1.11 3.34 0.99 1.06 0.98 2.48 0.86

Onorm,11 Oopt,11 0.1% 1.8% 11.9% 0.4% 0.4% 1.6% 6.4% -1.6% 3.4% 3.6%

Strans,11 E11 2.36 0.98 1.99 1.11 3.35 0.99 1.18 1.08 2.89 1.00

Onorm,13 Oopt,13 0.5% 1.8% 11.9% 0.5% 0.5% 2.0% 2.1% 3.5% 4.5% 3.3%

Strans,13 E13 2.37 0.99 1.99 1.11 3.34 0.99 1.07 0.99 2.92 1.01

Onorm,21 Oopt,21 6.3% 13.1% 14.5% 1.7% 12.6% 88.8% 26.5% 26.2% 10.4% 71.8%

Strans,21 E21 2.26 0.94 2.01 1.13 2.02 0.60 1.09 1.00 1.86 0.64

163

Policy Poll
Points

0 7
1 132868
2 2052
3 132868
4 3076
5 133892
11 132868
13 133892
21 45528068

Table A.18: Gaussian elimination, poll point counts.

Placement alpha x86 rs/6000 mips sparc
Policy

0 738.1286 1176.1143 1305.9000 4291.3429 2525.0429
1 0.0386 0.0622 0.0684 0.2184 0.1385
2 2.5049 4.0288 4.4477 14.5026 8.7243
3 0.0387 0.0623 0.0685 0.2208 0.1524
4 1.6866 2.6888 2.9519 9.5801 6.1485
5 0.0387 0.0617 0.0685 0.2244 0.1584

11 0.0392 0.0622 0.0688 0.2133 0.1397
13 0.0389 0.0617 0.0685 0.2226 0.1381
21 0.0001 0.0002 0.0004 0.0008 0.0007

Table A.19: Gaussian elimination, average poll point interval (milliseconds).

Table A.20: Gaussian elimination, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 102613 102613 102613 102613 102613
t chckpt 2.56 0.47 4.05 0.37 27.57 0.70 10.67 0.46 13.25 0.45
t restart,sparc 6.35 0.49 7.57 0.18 14.21 0.14 12.14 0.25 18.00 0.33
t restart,mips 5.98 0.32 7.41 0.18 14.14 0.07 12.38 0.62 18.04 0.31
t restart,x86 3.54 0.47 6.13 0.10 20.05 0.61 16.55 0.79 23.22 0.27
t restart,rs/6000 6.10 0.42 7.51 0.15 14.16 0.11 12.17 0.22 18.37 0.63
t restart,alpha 3.54 0.47 6.11 0.09 19.67 0.16 16.20 0.84 25.21 0.32

164

A.1.5 Conjugate Gradient

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 14.62 0.06 15.04 0.07 35.64 0.19 28.57 0.32 40.13 0.54
No trans, opt. 6.82 0.22 11.41 0.04 17.32 0.16 22.28 0.25 19.68 0.16

0 14.97 0.22 15.44 0.04 38.57 0.23 30.81 1.25 40.16 0.51
0, optimized 6.90 0.07 11.48 0.07 20.20 0.13 22.82 0.31 19.63 0.21

1 15.02 0.31 15.47 0.06 38.70 0.37 28.75 0.12 40.25 0.47
1, optimized 7.46 0.12 11.48 0.07 20.19 0.03 22.30 0.14 19.62 0.16

2 14.79 0.22 15.49 0.03 38.59 0.24 31.22 1.31 40.61 0.83
2, optimized 7.24 0.23 11.45 0.07 20.26 0.23 23.46 0.70 19.73 0.30

3 14.83 0.35 15.49 0.06 38.60 0.22 29.13 0.89 40.15 0.48
3, optimized 6.96 0.14 11.43 0.06 20.25 0.21 22.65 0.75 19.82 0.16

4 15.86 0.28 16.02 0.04 43.92 0.18 42.73 2.08 44.23 0.44
4, optimized 7.52 0.20 12.69 0.08 21.19 0.19 32.66 0.55 25.05 0.23

5 15.61 0.27 16.07 0.08 43.95 0.26 43.04 2.06 44.85 0.62
5, optimized 7.54 0.21 12.64 0.08 21.20 0.19 32.37 0.26 24.69 0.37

11 14.87 0.27 15.49 0.05 38.59 0.27 29.52 1.19 40.33 0.45
1, optimized 6.84 0.09 11.39 0.10 20.29 0.19 23.16 0.54 19.71 0.23

13 15.60 0.15 16.00 0.07 43.99 0.26 42.48 1.99 45.11 0.79
13, optimized 7.64 0.32 12.68 0.06 21.22 0.17 32.36 0.36 25.10 0.21

21 15.82 0.19 16.01 0.09 45.28 0.25 44.52 2.10 45.61 0.67
21, optimized 7.30 0.25 12.76 0.10 21.30 0.18 34.81 0.67 25.98 0.43

Table A.21: Conjugate gradient, execution times (seconds).

Table A.22: Conjugate gradient, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 2.14 1.32 2.06 1.28 2.04

Onorm,0 Oopt,0 2.4% 1.2% 2.7% 0.6% 8.2% 16.6% 7.8% 2.4% 0.1% -0.3%

Strans,0 E0 2.17 1.01 1.34 1.02 1.91 0.93 1.35 1.05 2.05 1.00

Onorm,1 Oopt,1 2.7% 9.4% 2.9% 0.6% 8.6% 16.5% 0.6% 0.1% 0.3% -0.3%

Strans,1 E1 2.01 0.94 1.35 1.02 1.92 0.93 1.29 1.01 2.05 1.01

Onorm,2 Oopt,2 1.2% 6.2% 3.0% 0.3% 8.3% 17.0% 9.3% 5.3% 1.2% 0.3%

Strans,2 E2 2.04 0.95 1.35 1.03 1.90 0.93 1.33 1.04 2.06 1.01

Onorm,3 Oopt,3 1.5% 2.2% 3.0% 0.2% 8.3% 16.9% 2.0% 1.7% 0.1% 0.7%

Strans,3 E3 2.13 0.99 1.35 1.03 1.91 0.93 1.29 1.00 2.03 0.99

Onorm,4 Oopt,4 8.5% 10.4% 6.5% 11.2% 23.2% 22.3% 49.6% 46.6% 10.2% 27.3%

Strans,4 E4 2.11 0.98 1.26 0.96 2.07 1.01 1.31 1.02 1.77 0.87

Onorm,5 Oopt,5 6.8% 10.6% 6.9% 10.8% 23.3% 22.4% 50.6% 45.3% 11.8% 25.4%

Strans,5 E5 2.07 0.97 1.27 0.97 2.07 1.01 1.33 1.04 1.82 0.89

Onorm,11 Oopt,11 1.8% 0.3% 3.0% -0.2% 8.3% 17.1% 3.3% 4.0% 0.5% 0.1%

Strans,11 E11 2.18 1.01 1.36 1.03 1.90 0.92 1.27 0.99 2.05 1.00

Onorm,13 Oopt,13 6.7% 12.1% 6.4% 11.1% 23.4% 22.5% 48.7% 45.3% 12.4% 27.5%

Strans,13 E13 2.04 0.95 1.26 0.96 2.07 1.01 1.31 1.02 1.80 0.88

Onorm,21 Oopt,21 8.2% 7.0% 6.5% 11.8% 27.0% 23.0% 55.8% 56.2% 13.6% 32.0%

Strans,21 E21 2.17 1.01 1.25 0.95 2.13 1.03 1.28 1.00 1.76 0.86

165

Policy Poll
Points

0 2223
1 54530
2 54802
3 54802
4 56204979
5 56204979
11 54802
13 56204979
21 66946875

Table A.23: Conjugate gradient, poll point counts.

Table A.24: Conjugate gradient, average poll point interval (milliseconds).

Placement alpha x86 rs/6000 mips sparc
Policy

0 3.10387 5.16433 9.08511 10.26415 8.83198
1 0.13681 0.21060 0.37019 0.40895 0.35980
2 0.13212 0.20898 0.36977 0.42802 0.36011
3 0.12709 0.20863 0.36947 0.41339 0.36164
4 0.00013 0.00023 0.00038 0.00058 0.00045
5 0.00013 0.00022 0.00038 0.00058 0.00044

11 0.12474 0.20783 0.37018 0.42261 0.35963
13 0.00014 0.00023 0.00038 0.00058 0.00045
21 0.00011 0.00019 0.00032 0.00052 0.00039

Table A.25: Conjugate gradient, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 1280353 1280353 1280353 1280353 1280353
t chckpt 26.98 0.47 46.57 1.84 275.97 5.74 87.82 3.47 222.12 5.29
t restart,sparc 82.52 1.38 115.48 4.22 162.07 1.75 101.80 1.07 216.95 11.96
t restart,mips 83.01 1.54 113.15 1.01 161.02 1.69 101.58 2.66 228.44 3.69
t restart,x86 43.34 1.09 84.60 1.79 227.60 1.19 153.00 4.46 286.75 11.67
t restart,rs/6000 82.40 1.46 117.61 7.63 161.04 0.98 100.88 0.52 228.95 3.68
t restart,alpha 44.80 1.98 84.60 1.15 227.91 2.45 150.34 1.18 298.82 10.49

166

A.2 NAS Benchmarks

A.2.1 NAS IS Kernel

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 17.56 0.04 26.79 0.04 68.17 0.29 112.59 0.99 85.40 2.24
No trans, opt. 7.36 0.03 23.05 0.01 49.04 0.26 105.07 2.97 54.01 0.95

0 17.57 0.04 35.94 0.03 69.18 0.36 113.06 3.30 86.68 2.03
0, optimized 7.43 0.04 23.27 0.01 50.42 0.28 107.71 3.45 54.14 1.32

1 17.68 0.29 35.95 0.01 69.17 0.28 113.22 3.79 85.31 1.71
1, optimized 7.47 0.05 23.27 0.01 50.30 0.27 107.70 3.27 54.36 0.92

2 18.03 0.03 35.10 0.03 70.55 0.27 116.98 4.48 87.93 2.02
2, optimized 7.98 0.07 24.16 0.01 52.67 0.22 109.99 3.35 59.41 1.35

3 18.04 0.07 35.11 0.06 70.47 0.28 116.33 3.34 88.79 1.81
3, optimized 7.99 0.04 24.17 0.01 52.68 0.27 109.96 3.45 59.18 1.22

4 19.40 0.07 35.28 0.02 78.34 0.36 122.38 1.86 93.52 1.32
4, optimized 9.25 0.03 24.89 0.02 64.68 0.28 123.97 5.02 59.23 3.04

5 19.38 0.07 35.28 0.02 78.36 0.42 122.78 2.43 93.78 1.94
5, optimized 9.24 0.05 24.90 0.04 64.97 0.96 123.32 3.57 58.49 3.02

11 18.08 0.11 35.10 0.02 70.52 0.30 116.31 3.45 88.34 2.73
1, optimized 8.00 0.05 24.33 0.01 52.70 0.26 109.77 3.30 67.65 0.46

13 19.44 0.06 35.28 0.02 78.32 0.33 123.46 3.83 91.68 2.07
13, optimized 9.27 0.04 25.05 0.02 64.71 0.28 123.36 3.66 59.65 3.27

21 19.44 0.07 35.26 0.02 78.24 0.26 123.95 3.60 90.80 1.95
21, optimized 9.28 0.06 25.06 0.01 64.71 0.30 123.22 3.71 58.21 3.16

Table A.26: NAS IS, execution times (seconds).

Table A.27: NAS IS, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 2.39 1.16 1.39 1.07 1.58

Onorm,0 Oopt,0 0.1% 1.0% 34.2% 1.0% 1.5% 2.8% 0.4% 2.5% 1.5% 0.2%

Strans,0 E0 2.37 0.99 1.54 1.33 1.37 0.99 1.05 0.98 1.60 1.01

Onorm,1 Oopt,1 0.7% 1.5% 34.2% 1.0% 1.5% 2.6% 0.6% 2.5% -0.1% 0.6%

Strans,1 E1 2.37 0.99 1.54 1.33 1.38 0.99 1.05 0.98 1.57 0.99

Onorm,2 Oopt,2 2.7% 8.6% 31.0% 4.8% 3.5% 7.4% 3.9% 4.7% 3.0% 10.0%

Strans,2 E2 2.26 0.95 1.45 1.25 1.34 0.96 1.06 0.99 1.48 0.94

Onorm,3 Oopt,3 2.8% 8.6% 31.1% 4.8% 3.4% 7.4% 3.3% 4.7% 4.0% 9.6%

Strans,3 E3 2.26 0.95 1.45 1.25 1.34 0.96 1.06 0.99 1.50 0.95

Onorm,4 Oopt,4 10.5% 25.7% 31.7% 8.0% 14.9% 31.9% 8.7% 18.0% 9.5% 9.7%

Strans,4 E4 2.10 0.88 1.42 1.22 1.21 0.87 0.99 0.92 1.58 1.00

Onorm,5 Oopt,5 10.4% 25.6% 31.7% 8.0% 14.9% 32.5% 9.1% 17.4% 9.8% 8.3%

Strans,5 E5 2.10 0.88 1.42 1.22 1.21 0.87 1.00 0.93 1.60 1.01

Onorm,11 Oopt,11 3.0% 8.8% 31.0% 5.5% 3.4% 7.5% 3.3% 4.5% 3.4% 25.3%

Strans,11 E11 2.26 0.95 1.44 1.24 1.34 0.96 1.06 0.99 1.31 0.83

Onorm,13 Oopt,13 10.7% 26.0% 31.7% 8.7% 14.9% 32.0% 9.7% 17.4% 7.4% 10.4%

Strans,13 E13 2.10 0.88 1.41 1.21 1.21 0.87 1.00 0.93 1.54 0.97

Onorm,21 Oopt,21 10.7% 26.1% 31.6% 8.7% 14.8% 32.0% 10.1% 17.3% 6.3% 7.8%

Strans,21 E21 2.10 0.88 1.41 1.21 1.21 0.87 1.01 0.94 1.56 0.99

167

Policy Poll
Points

0 8388628
1 8388628
2 10485859
3 10485859
4 73441369
5 73441369
11 10485859
13 73441369
21 73441369

Table A.28: NAS IS, poll point counts.

Table A.29: NAS IS, average poll point interval (milliseconds).

Placement alpha x86 rs/6000 mips sparc
Policy

0 0.00089 0.00277 0.00601 0.01284 0.00645
1 0.00089 0.00277 0.00600 0.01284 0.00648
2 0.00076 0.00230 0.00502 0.01049 0.00567
3 0.00076 0.00230 0.00502 0.01049 0.00564
4 0.00013 0.00034 0.00088 0.00169 0.00081
5 0.00013 0.00034 0.00088 0.00168 0.00080

11 0.00076 0.00232 0.00503 0.01047 0.00645
13 0.00013 0.00034 0.00088 0.00168 0.00081
21 0.00013 0.00034 0.00088 0.00168 0.00079

Table A.30: NAS IS, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 16785727 16785727 16785727 16785727 16785727
t chckpt 338.62 9.54 535.34 4.08 4158.10 51.57 1382.68 39.84 3427.75 73.95
t restart,sparc 1274.49 108.85 1569.59 55.12 2126.35 45.55 1283.09 35.21 3339.40 36.40
t restart,mips 1204.10 30.73 1534.34 28.91 2114.61 28.68 1240.38 35.50 3492.24 180.03
t restart,x86 632.74 23.33 1054.31 11.66 3024.34 84.27 2264.12 113.57 4469.25 81.73
t restart,rs/6000 1220.24 80.16 1529.84 18.80 2098.01 63.72 1262.62 45.77 3532.35 174.15
t restart,alpha 624.80 9.20 1055.67 16.57 2956.11 22.49 2222.16 150.47 4454.61 70.38

168

A.2.2 NAS EP Kernel

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 8.12 0.26 20.67 0.02 38.28 0.25 31.84 0.66 45.55 0.50
No trans, opt. 5.91 0.03 17.42 0.04 31.75 0.19 31.90 0.90 38.50 0.45

0 8.87 0.04 21.21 0.02 40.71 0.24 34.47 0.17 47.67 0.61
0, optimized 6.10 0.04 21.62 0.02 34.84 0.19 37.46 0.86 42.04 2.57

1 8.45 0.03 21.73 0.01 39.57 0.27 36.87 0.90 47.24 0.41
1, optimized 6.09 0.04 21.26 0.01 33.45 0.25 33.80 1.05 40.62 2.12

2 8.45 0.05 21.73 0.01 39.52 0.27 33.29 0.38 47.31 0.50
2, optimized 5.98 0.04 21.26 0.01 33.39 0.18 36.70 1.01 40.32 0.65

3 8.45 0.04 21.74 0.01 39.48 0.25 34.43 1.04 47.42 0.51
3, optimized 5.99 0.04 21.26 0.02 33.43 0.26 36.70 0.95 41.68 3.00

4 9.27 0.08 21.74 0.01 39.50 0.21 33.97 0.93 52.39 3.76
4, optimized 5.97 0.02 21.57 0.01 33.45 0.24 33.72 0.84 42.20 1.05

5 9.26 0.09 21.73 0.02 39.53 0.26 33.64 0.90 48.67 2.64
5, optimized 5.97 0.04 21.57 0.01 33.39 0.18 32.70 0.62 41.41 2.32

11 8.45 0.04 21.74 0.02 39.48 0.27 34.49 0.85 48.12 2.21
1, optimized 5.99 0.05 21.20 0.01 33.41 0.19 38.61 2.83 39.83 0.25

13 9.27 0.08 21.75 0.03 39.54 0.23 33.71 1.23 51.61 3.65
13, optimized 5.97 0.04 21.40 0.01 33.41 0.20 33.50 0.96 40.54 0.40

21 9.24 0.05 21.75 0.01 39.54 0.23 34.22 0.98 49.88 3.93
21, optimized 6.07 0.03 21.41 0.01 33.44 0.25 32.70 0.76 40.32 0.24

Table A.31: NAS EP, execution times (seconds).

Table A.32: NAS EP, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 1.37 1.19 1.21 1.00 1.18

Onorm,0 Oopt,0 9.3% 3.2% 2.6% 24.1% 6.4% 9.7% 8.3% 17.4% 4.7% 9.2%

Strans,0 E0 1.45 1.06 0.98 0.83 1.17 0.97 0.92 0.92 1.13 0.96

Onorm,1 Oopt,1 4.0% 3.1% 5.1% 22.1% 3.4% 5.3% 15.8% 6.0% 3.7% 5.5%

Strans,1 E1 1.39 1.01 1.02 0.86 1.18 0.98 1.09 1.09 1.16 0.98

Onorm,2 Oopt,2 4.1% 1.2% 5.1% 22.1% 3.2% 5.2% 4.6% 15.0% 3.9% 4.7%

Strans,2 E2 1.41 1.03 1.02 0.86 1.18 0.98 0.91 0.91 1.17 0.99

Onorm,3 Oopt,3 4.0% 1.4% 5.2% 22.1% 3.1% 5.3% 8.1% 15.0% 4.1% 8.2%

Strans,3 E3 1.41 1.03 1.02 0.86 1.18 0.98 0.94 0.94 1.14 0.96

Onorm,4 Oopt,4 14.2% 1.0% 5.1% 23.9% 3.2% 5.3% 6.7% 5.7% 15.0% 9.6%

Strans,4 E4 1.55 1.13 1.01 0.85 1.18 0.98 1.01 1.01 1.24 1.05

Onorm,5 Oopt,5 14.0% 1.0% 5.1% 23.8% 3.3% 5.1% 5.7% 2.5% 6.9% 7.5%

Strans,5 E5 1.55 1.13 1.01 0.85 1.18 0.98 1.03 1.03 1.18 0.99

Onorm,11 Oopt,11 4.0% 1.3% 5.2% 21.7% 3.1% 5.2% 8.3% 21.0% 5.6% 3.5%

Strans,11 E11 1.41 1.03 1.03 0.86 1.18 0.98 0.89 0.89 1.21 1.02

Onorm,13 Oopt,13 14.1% 1.0% 5.2% 22.9% 3.3% 5.2% 5.9% 5.0% 13.3% 5.3%

Strans,13 E13 1.55 1.13 1.02 0.86 1.18 0.98 1.01 1.01 1.27 1.08

Onorm,21 Oopt,21 13.8% 2.8% 5.2% 22.9% 3.3% 5.3% 7.5% 2.5% 9.5% 4.7%

Strans,21 E21 1.52 1.11 1.02 0.86 1.18 0.98 1.05 1.05 1.24 1.05

169

Policy Poll
Points

0 12582925
1 4194311
2 4194312
3 4194312
4 4194332
5 4194332
11 4194312
13 4194332
21 4194332

Table A.33: NAS EP, poll point counts.

Placement alpha x86 rs/6000 mips sparc
Policy

0 0.0005 0.0017 0.0028 0.0030 0.0033
1 0.0015 0.0051 0.0080 0.0081 0.0097
2 0.0014 0.0051 0.0080 0.0088 0.0096
3 0.0014 0.0051 0.0080 0.0088 0.0099
4 0.0014 0.0051 0.0080 0.0080 0.0101
5 0.0014 0.0051 0.0080 0.0078 0.0099

11 0.0014 0.0051 0.0080 0.0092 0.0095
13 0.0014 0.0051 0.0080 0.0080 0.0097
21 0.0014 0.0051 0.0080 0.0078 0.0096

Table A.34: NAS EP, average poll point interval (milliseconds).

Table A.35: NAS EP, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 314 314 314 314 314
t chckpt 0.37 0.47 0.76 0.10 16.26 6.92 4.24 0.22 2.43 0.03
t restart,sparc 0.73 0.42 0.61 0.02 1.03 0.00 2.53 0.07 2.49 0.10
t restart,mips 0.61 0.47 0.61 0.02 1.04 0.04 2.51 0.06 2.47 0.05
t restart,x86 0.49 0.49 0.60 0.01 1.03 0.00 2.56 0.10 2.45 0.02
t restart,rs/6000 0.61 0.47 0.61 0.03 1.04 0.05 2.55 0.04 2.43 0.02
t restart,alpha 0.49 0.49 0.63 0.01 1.05 0.04 2.57 0.09 2.47 0.03

170

A.2.3 NAS MG Kernel

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 8.29 0.05 10.13 0.05 18.65 0.05 26.08 0.72 38.79 0.75
No trans, opt. 2.87 0.03 4.44 0.05 12.28 0.18 17.46 0.40 16.33 1.22

0 8.34 0.03 10.67 0.06 19.09 0.20 27.20 0.28 39.84 1.47
0, optimized 3.00 0.08 4.91 0.03 12.87 0.07 18.37 0.30 17.90 0.71

1 8.34 0.07 10.72 0.06 18.67 0.17 27.66 0.93 39.03 1.66
1, optimized 2.90 0.06 4.90 0.03 12.34 0.20 17.78 0.21 17.36 0.77

2 8.30 0.07 10.64 0.05 18.66 0.19 26.20 0.53 38.87 0.84
2, optimized 2.90 0.05 4.87 0.05 12.27 0.03 18.90 0.71 17.01 1.42

3 8.42 0.06 10.67 0.06 18.73 0.18 27.75 2.00 38.67 1.59
3, optimized 2.91 0.08 4.86 0.03 12.33 0.19 19.14 0.50 17.09 0.93

4 8.25 0.09 10.64 0.05 18.68 0.17 26.43 0.75 40.17 1.98
4, optimized 2.89 0.06 4.92 0.05 12.27 0.05 18.37 0.14 17.38 1.09

5 8.51 0.33 10.65 0.05 18.67 0.04 28.12 2.27 39.62 1.73
5, optimized 2.90 0.05 4.87 0.03 12.35 0.25 18.11 0.66 18.83 2.35

11 8.31 0.06 10.66 0.04 18.81 0.23 26.74 0.99 38.81 1.86
1, optimized 2.91 0.08 4.93 0.05 12.43 0.21 19.34 0.45 20.14 2.26

13 8.38 0.12 10.64 0.02 18.84 0.22 27.33 1.02 38.81 1.09
13, optimized 2.91 0.07 4.92 0.04 12.38 0.06 18.05 0.28 17.98 1.23

21 8.42 0.07 10.72 0.05 19.43 0.21 25.97 0.85 40.58 2.28
21, optimized 3.05 0.06 4.97 0.03 13.18 0.19 20.58 0.77 19.30 1.14

Table A.36: NAS MG, execution times (seconds).

Table A.37: NAS MG, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 2.89 2.28 1.52 1.49 2.37

Onorm,0 Oopt,0 0.6% 4.6% 5.4% 10.6% 2.4% 4.8% 4.3% 5.2% 2.7% 9.6%

Strans,0 E0 2.78 0.96 2.17 0.95 1.48 0.98 1.48 0.99 2.23 0.94

Onorm,1 Oopt,1 0.6% 1.2% 5.9% 10.4% 0.1% 0.5% 6.1% 1.8% 0.6% 6.3%

Strans,1 E1 2.87 0.99 2.19 0.96 1.51 1.00 1.56 1.04 2.25 0.95

Onorm,2 Oopt,2 0.1% 1.3% 5.1% 9.7% 0.1% -0.1% 0.5% 8.2% 0.2% 4.1%

Strans,2 E2 2.86 0.99 2.18 0.96 1.52 1.00 1.39 0.93 2.28 0.96

Onorm,3 Oopt,3 1.5% 1.6% 5.4% 9.5% 0.4% 0.4% 6.4% 9.6% -0.3% 4.6%

Strans,3 E3 2.89 1.00 2.19 0.96 1.52 1.00 1.45 0.97 2.26 0.95

Onorm,4 Oopt,4 -0.5% 0.7% 5.1% 10.7% 0.2% 0.0% 1.3% 5.2% 3.6% 6.4%

Strans,4 E4 2.86 0.99 2.16 0.95 1.52 1.00 1.44 0.96 2.31 0.97

Onorm,5 Oopt,5 2.6% 1.3% 5.2% 9.7% 0.1% 0.5% 7.8% 3.7% 2.1% 15.3%

Strans,5 E5 2.93 1.01 2.19 0.96 1.51 1.00 1.55 1.04 2.10 0.89

Onorm,11 Oopt,11 0.2% 1.6% 5.3% 11.0% 0.9% 1.3% 2.5% 10.8% 0.0% 23.3%

Strans,11 E11 2.85 0.99 2.16 0.95 1.51 1.00 1.38 0.93 1.93 0.81

Onorm,13 Oopt,13 1.1% 1.5% 5.1% 10.9% 1.0% 0.9% 4.8% 3.4% 0.1% 10.1%

Strans,13 E13 2.88 1.00 2.16 0.95 1.52 1.00 1.51 1.01 2.16 0.91

Onorm,21 Oopt,21 1.5% 6.6% 5.9% 11.8% 4.2% 7.3% -0.4% 17.8% 4.6% 18.1%

Strans,21 E21 2.76 0.95 2.16 0.95 1.47 0.97 1.26 0.84 2.10 0.89

171

Policy Poll
Points

0 3858096
1 136955
2 2951
3 137575
4 11763
5 137575
11 1111343
13 1111343
21 7277331

Table A.38: NAS MG, poll point counts.

Placement alpha x86 rs/6000 mips sparc
Policy

0 0.0008 0.0013 0.0033 0.0048 0.0046
1 0.0212 0.0358 0.0901 0.1298 0.1268
2 0.9840 1.6506 4.1584 6.4047 5.7643
3 0.0212 0.0353 0.0896 0.1391 0.1242
4 0.2454 0.4179 1.0435 1.5619 1.4772
5 0.0211 0.0354 0.0897 0.1317 0.1369

11 0.0026 0.0044 0.0112 0.0174 0.0181
13 0.0026 0.0044 0.0111 0.0162 0.0162
21 0.0004 0.0007 0.0018 0.0028 0.0027

Table A.39: NAS MG, average poll point interval (milliseconds).

Table A.40: NAS MG, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 7025076 7025076 7025076 7025076 7025076
t chckpt 414.82 20.91 550.67 3.59 2760.93 89.96 1326.48 23.53 1267.37 99.21
t restart,sparc 482.88 6.98 596.77 8.04 1009.39 2.28 857.20 6.39 1353.10 55.16
t restart,mips 498.54 22.37 601.02 11.21 1008.50 2.50 860.80 18.94 1368.57 54.65
t restart,x86 302.61 17.40 516.67 4.35 1391.22 4.57 1145.69 43.85 1650.48 53.66
t restart,rs/6000 492.43 8.68 602.51 9.95 1007.98 1.52 872.66 47.61 1328.62 13.56
t restart,alpha 297.61 13.86 523.03 8.76 1410.89 11.00 1239.77 80.45 1672.13 44.36

172

A.2.4 NAS CG Kernel

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 7.46 0.08 10.40 0.08 22.37 0.19 24.16 0.50 33.54 0.86
No trans, opt. 3.35 0.11 5.69 0.03 8.12 0.07 17.11 0.37 15.93 0.75

0 7.50 0.12 10.42 0.06 22.50 0.18 23.76 0.32 34.67 0.63
0, optimized 3.39 0.07 5.71 0.03 8.26 0.03 17.76 0.66 16.37 0.56

1 7.77 0.19 10.44 0.07 22.61 0.19 25.23 0.41 34.24 0.80
1, optimized 3.41 0.15 5.82 0.03 8.14 0.06 17.05 0.12 16.90 0.64

2 7.51 0.10 10.41 0.07 22.62 0.19 23.78 0.16 33.98 0.81
2, optimized 3.44 0.14 5.72 0.03 8.42 0.19 17.12 0.26 17.05 0.52

3 7.53 0.12 10.42 0.05 22.65 0.18 25.06 0.55 33.74 0.45
3, optimized 3.45 0.13 5.85 0.03 8.52 0.05 18.55 0.45 16.21 0.78

4 8.00 0.15 10.48 0.05 22.96 0.22 25.27 1.15 33.38 0.84
4, optimized 3.41 0.08 5.90 0.03 8.42 0.17 17.95 0.13 15.99 0.86

5 7.78 0.13 10.46 0.06 22.96 0.16 25.23 0.46 34.56 1.45
5, optimized 3.45 0.09 5.91 0.06 8.39 0.05 18.20 0.31 17.58 0.85

11 8.33 0.11 10.77 0.06 25.16 0.13 28.29 1.23 35.38 0.67
1, optimized 3.68 0.12 6.01 0.03 12.04 0.13 25.17 1.02 20.96 0.73

13 8.09 0.10 10.81 0.05 25.49 0.12 28.60 0.34 38.05 1.48
13, optimized 3.78 0.12 6.05 0.02 12.34 0.19 24.67 0.22 21.85 2.51

21 8.31 0.40 10.80 0.04 25.53 0.19 28.61 0.45 39.11 3.28
21, optimized 3.78 0.13 6.08 0.06 13.47 0.19 26.72 0.96 20.62 0.77

Table A.41: NAS CG, execution times (seconds).

Table A.42: NAS CG, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 2.23 1.83 2.76 1.41 2.11

Onorm,0 Oopt,0 0.6% 1.1% 0.2% 0.4% 0.6% 1.8% -1.7% 3.8% 3.4% 2.8%

Strans,0 E0 2.21 0.99 1.82 1.00 2.72 0.99 1.34 0.95 2.12 1.01

Onorm,1 Oopt,1 4.2% 1.8% 0.4% 2.3% 1.1% 0.2% 4.4% -0.4% 2.1% 6.1%

Strans,1 E1 2.28 1.02 1.79 0.98 2.78 1.01 1.48 1.05 2.03 0.96

Onorm,2 Oopt,2 0.7% 2.6% 0.1% 0.5% 1.1% 3.7% -1.6% 0.1% 1.3% 7.1%

Strans,2 E2 2.19 0.98 1.82 1.00 2.69 0.97 1.39 0.98 1.99 0.95

Onorm,3 Oopt,3 1.0% 2.8% 0.1% 2.8% 1.2% 4.9% 3.7% 8.4% 0.6% 1.8%

Strans,3 E3 2.19 0.98 1.78 0.97 2.66 0.96 1.35 0.96 2.08 0.99

Onorm,4 Oopt,4 7.2% 1.6% 0.8% 3.6% 2.6% 3.7% 4.6% 4.9% -0.5% 0.4%

Strans,4 E4 2.35 1.06 1.78 0.97 2.73 0.99 1.41 1.00 2.09 0.99

Onorm,5 Oopt,5 4.3% 3.0% 0.6% 3.9% 2.6% 3.4% 4.4% 6.4% 3.0% 10.3%

Strans,5 E5 2.25 1.01 1.77 0.97 2.74 0.99 1.39 0.98 1.97 0.93

Onorm,11 Oopt,11 11.6% 9.9% 3.5% 5.7% 12.5% 48.3% 17.1% 47.1% 5.5% 31.6%

Strans,11 E11 2.26 1.02 1.79 0.98 2.09 0.76 1.12 0.80 1.69 0.80

Onorm,13 Oopt,13 8.5% 12.8% 4.0% 6.3% 13.9% 52.0% 18.4% 44.2% 13.5% 37.2%

Strans,13 E13 2.14 0.96 1.79 0.98 2.07 0.75 1.16 0.82 1.74 0.83

Onorm,21 Oopt,21 11.3% 12.9% 3.8% 6.9% 14.1% 65.9% 18.4% 56.1% 16.6% 29.4%

Strans,21 E21 2.20 0.99 1.78 0.97 1.90 0.69 1.07 0.76 1.90 0.90

173

Policy Poll
Points

0 52976
1 615785
2 283908
3 842502
4 4767261
5 4778455
11 31599790
13 35535743
21 36164967

Table A.43: NAS CG, poll point counts.

Table A.44: NAS CG, average poll point interval (milliseconds).

Placement alpha x86 rs/6000 mips sparc
Policy

0 0.06396 0.10782 0.15596 0.33531 0.30900
1 0.00554 0.00945 0.01321 0.02768 0.02744
2 0.01211 0.02015 0.02966 0.06030 0.06006
3 0.00409 0.00694 0.01011 0.02202 0.01924
4 0.00071 0.00124 0.00177 0.00377 0.00335
5 0.00072 0.00124 0.00176 0.00381 0.00368

11 0.00012 0.00019 0.00038 0.00080 0.00066
13 0.00011 0.00017 0.00035 0.00069 0.00061
21 0.00010 0.00017 0.00037 0.00074 0.00057

Table A.45: NAS CG, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 960511 960511 960511 960511 960511
t chckpt 19.17 0.47 22.57 8.54 215.44 6.02 69.55 1.55 161.33 3.14
t restart,sparc 62.74 2.28 84.75 2.18 132.94 14.27 77.38 4.23 173.50 8.13
t restart,mips 62.38 2.04 86.07 1.10 118.89 0.90 74.92 1.45 153.62 6.69
t restart,x86 33.45 1.60 63.97 1.57 168.49 1.08 119.68 5.60 225.90 9.56
t restart,rs/6000 62.13 1.54 84.98 0.93 118.70 1.11 75.73 1.49 174.79 14.00
t restart,alpha 31.62 1.19 63.87 2.04 167.79 1.75 117.35 4.53 218.83 14.66

174

A.3 Environmental Simulation

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 9.93 0.06 29.60 0.04 73.35 0.36 63.52 1.05 54.40 0.22
No trans, opt. 7.11 0.03 24.93 0.05 57.21 0.14 52.80 1.23 40.43 1.44

0 12.16 0.16 31.62 0.05 80.62 0.18 75.25 1.23 59.38 0.31
0, optimized 8.21 0.08 28.17 0.06 61.52 0.16 61.48 1.72 45.48 1.33

1 11.87 0.03 32.77 0.05 81.32 0.30 72.23 1.63 59.53 0.30
1, optimized 8.51 0.03 28.15 0.06 61.30 0.24 61.45 2.76 48.04 2.20

2 12.14 0.03 32.70 0.06 81.39 0.33 72.94 1.89 58.37 0.31
2, optimized 8.36 0.08 28.29 0.05 61.85 0.26 63.54 1.73 45.40 0.59

3 12.14 0.04 32.69 0.06 81.34 0.28 72.27 1.03 58.29 0.31
3, optimized 8.38 0.08 28.28 0.06 61.89 0.29 63.73 1.99 45.59 1.37

4 11.64 0.11 31.71 0.06 82.34 0.27 75.17 1.16 59.60 0.48
4, optimized 8.41 0.05 28.30 0.05 62.06 0.27 63.29 1.35 47.34 2.91

5 11.69 0.10 31.71 0.05 82.38 0.32 74.84 1.09 58.82 1.27
5, optimized 8.42 0.07 28.28 0.06 62.08 0.24 63.58 1.73 47.79 3.85

11 11.96 0.03 32.69 0.05 81.32 0.31 73.05 0.84 58.26 0.63
1, optimized 8.46 0.06 27.75 0.05 61.84 0.24 64.70 1.50 49.30 2.55

13 11.90 0.24 31.67 0.06 81.34 0.27 74.80 1.50 60.29 0.72
13, optimized 8.63 0.04 29.12 0.05 62.15 0.36 65.44 1.81 48.76 1.22

21 11.83 0.14 31.66 0.05 81.39 0.30 75.50 2.01 59.75 0.83
21, optimized 8.61 0.14 29.14 0.06 62.04 0.28 65.07 2.51 49.14 3.90

Table A.46: LAI, execution times (seconds).

alpha x86 rs/6000 mips sparc
Sntrans 1.40 1.19 1.28 1.20 1.35

Onorm,0 Oopt,0 22.5% 15.4% 6.8% 13.0% 9.9% 7.5% 18.5% 16.4% 9.2% 12.5%

Strans,0 E0 1.48 1.06 1.12 0.95 1.31 1.02 1.22 1.02 1.31 0.97

Onorm,1 Oopt,1 19.6% 19.7% 10.7% 12.9% 10.9% 7.2% 13.7% 16.4% 9.4% 18.8%

Strans,1 E1 1.39 1.00 1.16 0.98 1.33 1.03 1.18 0.98 1.24 0.92

Onorm,2 Oopt,2 22.3% 17.5% 10.5% 13.5% 11.0% 8.1% 14.8% 20.3% 7.3% 12.3%

Strans,2 E2 1.45 1.04 1.16 0.97 1.32 1.03 1.15 0.95 1.29 0.96

Onorm,3 Oopt,3 22.3% 17.8% 10.4% 13.5% 10.9% 8.2% 13.8% 20.7% 7.2% 12.8%

Strans,3 E3 1.45 1.04 1.16 0.97 1.31 1.02 1.13 0.94 1.28 0.95

Onorm,4 Oopt,4 17.2% 18.2% 7.1% 13.5% 12.2% 8.5% 18.3% 19.9% 9.6% 17.1%

Strans,4 E4 1.38 0.99 1.12 0.94 1.33 1.03 1.19 0.99 1.26 0.94

Onorm,5 Oopt,5 17.7% 18.4% 7.1% 13.4% 12.3% 8.5% 17.8% 20.4% 8.1% 18.2%

Strans,5 E5 1.39 0.99 1.12 0.94 1.33 1.03 1.18 0.98 1.23 0.91

Onorm,11 Oopt,11 20.4% 19.0% 10.5% 11.3% 10.9% 8.1% 15.0% 22.5% 7.1% 22.0%

Strans,11 E11 1.41 1.01 1.18 0.99 1.31 1.03 1.13 0.94 1.18 0.88

Onorm,13 Oopt,13 19.9% 21.4% 7.0% 16.8% 10.9% 8.7% 17.7% 23.9% 10.8% 20.6%

Strans,13 E13 1.38 0.99 1.09 0.92 1.31 1.02 1.14 0.95 1.24 0.92

Onorm,21 Oopt,21 19.1% 21.1% 7.0% 16.9% 11.0% 8.4% 18.8% 23.2% 9.8% 21.6%

Strans,21 E21 1.37 0.98 1.09 0.92 1.31 1.02 1.16 0.96 1.22 0.90

Table A.47: LAI, overhead and optimizer effectiveness.

175

Policy Poll
Points

0 77428159
1 73884216
2 75624427
3 75624427
4 75637639
5 75637639
11 75686477
13 75699689
21 75699689

Table A.48: LAI, poll point counts.

Placement alpha x86 rs/6000 mips sparc
Policy

0 0.000106 0.000364 0.000795 0.000794 0.000587
1 0.000115 0.000381 0.000830 0.000832 0.000650
2 0.000110 0.000374 0.000818 0.000840 0.000600
3 0.000111 0.000374 0.000818 0.000843 0.000603
4 0.000111 0.000374 0.000821 0.000837 0.000626
5 0.000111 0.000374 0.000821 0.000841 0.000632

11 0.000112 0.000367 0.000817 0.000855 0.000651
13 0.000114 0.000385 0.000821 0.000864 0.000644
21 0.000114 0.000385 0.000819 0.000860 0.000649

Table A.49: LAI, average poll point interval (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 6782 6782 6782 6782 6782
t chckpt 1.96 0.01 2.07 0.04 22.77 1.48 11.54 0.96 6.77 0.44
t restart,sparc 2.93 0.01 3.68 0.04 7.86 0.11 12.12 0.54 8.28 0.31
t restart,mips 2.93 0.00 3.70 0.03 7.82 0.07 12.39 1.14 8.01 0.42
t restart,x86 2.94 0.01 3.66 0.04 8.01 0.04 12.34 0.36 8.71 0.48
t restart,rs/6000 2.93 0.01 3.73 0.04 7.82 0.08 12.49 0.94 7.99 0.23
t restart,alpha 2.93 0.01 3.64 0.05 8.03 0.15 12.43 0.51 8.53 0.28

Table A.50: LAI, time to checkpoint/restart (milliseconds).

176

A.4 Biological Sequence Comparison

A.4.1 FASTA

Table A.51: FASTA, execution times (seconds).

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 1.74 0.08 2.53 0.09 11.36 0.25 9.23 0.19 9.54 0.05
No trans, opt. 0.80 0.02 1.72 0.05 6.12 0.17 6.15 0.32 4.94 0.12

0 1.84 0.06 2.58 0.04 11.80 0.16 9.53 0.11 9.60 0.15
0, optimized 0.97 0.05 1.78 0.05 6.84 0.03 6.21 0.49 5.48 0.27

1 1.81 0.05 2.61 0.05 11.87 0.03 9.70 0.19 9.88 0.29
1, optimized 0.94 0.02 1.81 0.04 7.03 0.03 6.22 0.19 5.30 0.09

2 2.00 0.06 2.67 0.05 13.36 0.16 10.62 0.34 10.71 0.38
2, optimized 1.10 0.02 1.85 0.04 8.16 0.17 8.24 0.20 6.03 0.28

3 2.30 0.43 2.64 0.06 13.38 0.04 11.27 0.13 10.43 0.29
3, optimized 1.12 0.07 1.85 0.05 8.15 0.05 8.26 0.15 5.74 0.15

4 2.05 0.08 2.66 0.05 13.62 0.16 11.61 0.22 10.63 0.41
4, optimized 1.16 0.05 1.89 0.04 8.42 0.04 8.96 0.34 5.95 0.18

5 2.00 0.01 2.67 0.05 13.63 0.17 11.02 0.30 10.87 0.20
5, optimized 1.18 0.03 1.88 0.05 8.47 0.19 9.22 0.10 6.25 0.76

11 2.02 0.06 2.66 0.06 13.57 0.05 10.84 0.51 10.91 0.17
1, optimized 1.10 0.07 1.86 0.05 8.31 0.03 9.42 0.18 5.92 0.09

13 2.03 0.04 2.69 0.05 13.87 0.16 11.33 0.45 11.60 0.39
13, optimized 1.17 0.06 1.90 0.05 8.64 0.17 9.24 0.12 6.23 0.15

21 2.08 0.05 2.66 0.04 13.96 0.06 12.16 0.35 11.09 0.60
21, optimized 1.16 0.02 1.91 0.05 8.59 0.04 9.38 0.13 6.19 0.18

Table A.52: FASTA, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 2.18 1.47 1.85 1.50 1.93

Onorm,0 Oopt,0 5.8% 21.2% 2.1% 3.1% 3.9% 11.6% 3.2% 1.0% 0.7% 10.9%

Strans,0 E0 1.90 0.87 1.45 0.99 1.73 0.93 1.53 1.02 1.75 0.91

Onorm,1 Oopt,1 4.0% 17.5% 3.1% 4.7% 4.5% 14.7% 5.1% 1.1% 3.6% 7.3%

Strans,1 E1 1.93 0.89 1.45 0.99 1.69 0.91 1.56 1.04 1.86 0.97

Onorm,2 Oopt,2 15.0% 38.0% 5.4% 7.2% 17.6% 33.3% 15.1% 33.9% 12.3% 22.1%

Strans,2 E2 1.82 0.83 1.44 0.98 1.64 0.88 1.29 0.86 1.78 0.92

Onorm,3 Oopt,3 31.9% 40.7% 4.3% 7.0% 17.8% 33.2% 22.0% 34.2% 9.4% 16.2%

Strans,3 E3 2.04 0.94 1.43 0.98 1.64 0.88 1.36 0.91 1.82 0.94

Onorm,4 Oopt,4 17.8% 45.1% 4.9% 9.8% 19.9% 37.6% 25.7% 45.6% 11.5% 20.4%

Strans,4 E4 1.77 0.81 1.40 0.96 1.62 0.87 1.30 0.86 1.79 0.93

Onorm,5 Oopt,5 14.9% 48.1% 5.5% 9.1% 20.0% 38.4% 19.3% 49.9% 13.9% 26.5%

Strans,5 E5 1.69 0.78 1.42 0.97 1.61 0.87 1.19 0.80 1.74 0.90

Onorm,11 Oopt,11 15.8% 38.1% 5.0% 8.0% 19.5% 35.7% 17.4% 53.1% 14.4% 19.9%

Strans,11 E11 1.83 0.84 1.43 0.97 1.63 0.88 1.15 0.77 1.84 0.95

Onorm,13 Oopt,13 16.8% 46.5% 6.1% 10.2% 22.1% 41.1% 22.7% 50.2% 21.7% 26.2%

Strans,13 E13 1.74 0.80 1.41 0.96 1.60 0.86 1.23 0.82 1.86 0.96

Onorm,21 Oopt,21 19.7% 45.1% 5.1% 10.7% 22.9% 40.2% 31.7% 52.4% 16.3% 25.3%

Strans,21 E21 1.80 0.82 1.39 0.95 1.63 0.88 1.30 0.86 1.79 0.93

177

Table A.53: FASTA, poll point counts.

Policy Poll
Points

0 266559
1 1360568
2 10230798
3 10366695
4 11091474
5 11218210
11 11973635
13 12825150
21 13365830

Table A.54: FASTA, average poll point interval (milliseconds).

Placement alpha x86 rs/6000 mips sparc
Policy

0 0.00363 0.00667 0.02565 0.02330 0.02055
1 0.00069 0.00133 0.00516 0.00457 0.00389
2 0.00011 0.00018 0.00080 0.00081 0.00059
3 0.00011 0.00018 0.00079 0.00080 0.00055
4 0.00010 0.00017 0.00076 0.00081 0.00054
5 0.00011 0.00017 0.00076 0.00082 0.00056

11 0.00009 0.00016 0.00069 0.00079 0.00049
13 0.00009 0.00015 0.00067 0.00072 0.00049
21 0.00009 0.00014 0.00064 0.00070 0.00046

Table A.55: FASTA, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 2801497 2761417 2761417 2761417 2761417
t chckpt 416.75 11.77 777.18 22.39 3251.88 24.95 4210.58 93.44 3197.86 166.23
t restart,sparc 674.99 8.59 853.77 4.76 2448.74 34.11 3649.23 91.87 2651.87 107.57
t restart,mips 671.57 6.20 853.96 5.82 2439.23 8.46 3619.18 61.18 2762.01 74.34
t restart,x86 619.59 7.11 826.49 5.07 2537.36 23.53 3742.57 56.60 2929.55 91.80
t restart,rs/6000 675.25 6.26 859.25 6.56 2456.70 36.93 3783.78 133.35 2727.21 89.59
t restart,alpha 621.38 10.46 847.75 12.17 4393.22 27.77 6506.65 285.88 3317.85 213.26

178

A.4.2 Smith-Waterman

Table A.56: Smith-Waterman, execution times (seconds).

Placement alpha x86 rs/6000 mips sparc
Policy mean std dev mean std dev mean std dev mean std dev mean std dev

No trans 22.20 0.06 34.51 0.04 153.25 0.38 121.49 4.22 132.35 1.79
No trans, opt. 7.43 0.02 22.40 0.02 80.33 0.31 58.27 1.85 56.01 2.29

0 22.34 0.25 34.57 0.05 153.36 0.41 126.12 3.42 133.87 3.26
0, optimized 8.44 0.06 23.10 0.03 81.68 0.28 60.64 2.03 57.60 1.09

1 22.44 0.33 34.56 0.02 153.98 1.71 126.83 4.21 134.90 2.75
1, optimized 8.74 0.17 23.87 0.05 81.24 0.33 63.33 2.57 57.83 2.16

2 22.24 0.04 34.57 0.03 153.51 0.31 126.44 4.41 134.03 2.87
2, optimized 8.72 0.08 23.86 0.06 80.89 0.31 64.11 2.79 57.59 2.13

3 22.33 0.85 34.55 0.02 153.50 0.37 125.77 3.67 135.12 3.22
3, optimized 8.72 0.09 23.86 0.06 81.41 0.28 63.32 2.02 58.92 2.18

4 22.35 0.11 34.59 0.03 153.63 0.33 127.09 3.87 136.35 2.30
4, optimized 8.82 0.21 23.87 0.06 81.60 0.35 63.65 2.64 59.47 1.88

5 22.50 0.22 34.57 0.03 154.06 1.56 129.33 11.21 137.36 6.27
5, optimized 8.72 0.17 23.86 0.04 81.54 0.31 63.41 2.19 58.92 2.12

11 24.33 0.16 35.23 0.08 169.72 1.08 137.54 4.32 146.00 3.05
1, optimized 9.52 0.17 24.91 0.08 92.45 0.73 96.68 3.19 65.03 1.94

13 24.52 0.15 35.17 0.02 169.46 0.38 138.50 4.03 148.51 2.45
13, optimized 9.84 0.49 24.81 0.02 92.36 0.32 102.94 10.98 67.12 2.29

21 24.52 0.09 35.27 0.15 169.51 0.42 138.20 4.33 150.82 1.98
21, optimized 9.52 0.12 24.83 0.03 92.33 0.28 100.92 3.43 65.41 2.37

Table A.57: Smith-Waterman, overhead and optimizer effectiveness.

alpha x86 rs/6000 mips sparc
Sntrans 2.99 1.54 1.91 2.09 2.36

Onorm,0 Oopt,0 0.6% 13.6% 0.2% 3.1% 0.1% 1.7% 3.8% 4.1% 1.1% 2.8%

Strans,0 E0 2.65 0.89 1.50 0.97 1.88 0.98 2.08 1.00 2.32 0.98

Onorm,1 Oopt,1 1.1% 17.6% 0.1% 6.5% 0.5% 1.1% 4.4% 8.7% 1.9% 3.2%

Strans,1 E1 2.57 0.86 1.45 0.94 1.90 0.99 2.00 0.96 2.33 0.99

Onorm,2 Oopt,2 0.2% 17.3% 0.2% 6.5% 0.2% 0.7% 4.1% 10.0% 1.3% 2.8%

Strans,2 E2 2.55 0.85 1.45 0.94 1.90 0.99 1.97 0.95 2.33 0.98

Onorm,3 Oopt,3 0.6% 17.3% 0.1% 6.5% 0.2% 1.3% 3.5% 8.7% 2.1% 5.2%

Strans,3 E3 2.56 0.86 1.45 0.94 1.89 0.99 1.99 0.95 2.29 0.97

Onorm,4 Oopt,4 0.6% 18.7% 0.2% 6.6% 0.2% 1.6% 4.6% 9.2% 3.0% 6.2%

Strans,4 E4 2.53 0.85 1.45 0.94 1.88 0.99 2.00 0.96 2.29 0.97

Onorm,5 Oopt,5 1.3% 17.3% 0.2% 6.5% 0.5% 1.5% 6.5% 8.8% 3.8% 5.2%

Strans,5 E5 2.58 0.86 1.45 0.94 1.89 0.99 2.04 0.98 2.33 0.99

Onorm,11 Oopt,11 9.6% 28.1% 2.1% 11.2% 10.7% 15.1% 13.2% 65.9% 10.3% 16.1%

Strans,11 E11 2.56 0.86 1.41 0.92 1.84 0.96 1.42 0.68 2.25 0.95

Onorm,13 Oopt,13 10.4% 32.5% 1.9% 10.8% 10.6% 15.0% 14.0% 76.7% 12.2% 19.8%

Strans,13 E13 2.49 0.83 1.42 0.92 1.83 0.96 1.35 0.65 2.21 0.94

Onorm,21 Oopt,21 10.5% 28.2% 2.2% 10.8% 10.6% 14.9% 13.8% 73.2% 14.0% 16.8%

Strans,21 E21 2.58 0.86 1.42 0.92 1.84 0.96 1.37 0.66 2.31 0.98

179

Table A.58: Smith-Waterman, poll point counts.

Policy Poll
Points

0 212198
1 378530
2 692001
3 699047
4 1762417
5 1769429
11 103436444
13 104506826
21 104531290

Table A.59: Smith-Waterman, average poll point in terval (milliseconds).

Placement alpha x86 rs/6000 mips sparc
Policy

0 0.03978 0.10886 0.38493 0.28577 0.27143
1 0.02308 0.06305 0.21462 0.16730 0.15278
2 0.01260 0.03448 0.11690 0.09265 0.08323
3 0.01247 0.03413 0.11646 0.09059 0.08428
4 0.00500 0.01355 0.04630 0.03612 0.03375
5 0.00493 0.01349 0.04608 0.03584 0.03330

11 0.00009 0.00024 0.00089 0.00093 0.00063
13 0.00009 0.00024 0.00088 0.00099 0.00064
21 0.00009 0.00024 0.00088 0.00097 0.00063

Table A.60: Smith-Waterman, time to checkpoint/restart (milliseconds).

alpha x86 rs/6000 mips sparc
mean std dev mean std dev mean std dev mean std dev mean std dev

Chckpt size 1197083 1157003 1157003 1157003 1157003
t chckpt 162.60 3.64 283.02 19.87 1085.98 23.20 1529.52 343.95 916.34 35.58
t restart,sparc 242.13 7.31 329.58 3.11 969.83 40.76 1686.68 52.13 972.11 41.57
t restart,mips 243.59 9.19 328.83 1.57 954.17 7.17 1728.45 66.34 947.75 40.43
t restart,x86 204.59 10.13 320.06 5.48 1001.76 19.93 1893.06 157.91 1047.10 49.82
t restart,rs/6000 239.56 4.71 331.24 1.42 959.66 26.20 1789.38 58.96 1002.62 18.98
t restart,alpha 200.13 7.97 331.16 2.86 2792.45 24.37 5490.56 242.02 2449.60 98.51

180

References

[1] A. Acharya, M. Ranganathan, J. Saltz, “Sumatra: A Language for Resource-aware Mobile

Programs,” in Vitek, J., Tschudin, C., eds. Mobile Object Systems, Springer-Verlag, 1997.

[2] T.E. Anderson, D.E. Culler, D.A. Patterson, and the NOW team, “A Case for NOW (net-

works of Workstations)” IEEE Micro, vol. 15, no. 1, pp. 54-64, February, 1995.

[3] R.H. Arpaci, A. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson, and D.A. Patterson, “The

Interaction of Parallel and Sequential Workloads on a Network of Workstations,” in Pro-

ceedings of SIGMETRICS '95 , 1995.

[4] Y. Artsy and R. Finkel, “Designing a Process Migration Facility: The Charlotte Experi-

ence,” IEEE Computer, pp. 47-56, September, 1989.

[5] D. Bailey, J. Barton, T. Lasinski, and H. Simon, et. al., “The NAS Parallel Benchmarks,”

Technical Report RNR-94-007, NASA Ames, Moffett Field, California, March 1994.

[6] A. Barak, G. Shai, and R.G. Wheeler, The MOSIX Distributed Operating System: Load

Balancing for Unix, Springer-Verlag, Berlin, 1993.

[7] A. Beguelin, E. Seligman, and M. Starkey, “Dome: Distributed Object Migration Environ-

ment,” Carnegie Mellon University Technical Report CMU-CS-94-153, May 1994.

[8] K.P. Birman, T.A. Joseph, T. Raeuchle, and A. El Abbadi, “Implementing Fault-Tolerant

Distributed Objects,” IEEE Transactions on Software Engineering, vol. 11, no. 6, pp. 502-

508, June 1985.

[9] M. Bishop and M. Valence, “Process Migration for Heterogeneous Distributed Systems,”

Dartmouth College Technical Report PCS-TR95-264, August 21, 1995.

[10] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter, “Distribution and Abstract Types

in Emerald,” IEEE Transactions on Software Engineering, vol. SE-13, no. 1, pp. 65-76,

January, 1987.

[11] F. Bodin, P. Beckman, D. Gannon, J. Gotwals, S. Narayana, S. Srinivas, and B. Winnicka,

“Sage++: An Object-Oriented Toolkit and Class Library for Building Fortran and C++

Restructuring Tools,” OONSKI, 1994.

[12] L. Cardelli, “Oblique: A Language with Distributed Scope,” Technical Report, Digital

Equipment Corporation, May 1995.

[13] N. Carriero, D. Gelernter, T.G. Mattson, and A.H. Sherman, “The Linda Alternative to

Message-passing Systems,” Parallel Computing, vol. 20, pp. 633-655, 1994.

[14] J. Casas, D.L. Clark, R. Konuru, S.W. Otto, R.M. Prouty, J. Walpole, “Adaptive Load

181

Migration Systems for PVM,” in Proceedings of Supercomputing ‘94, pp. 390-399,

November, 1994.

[15] J. Casas, D.L. Clark, R. Konuru, S.W. Otto, R.M. Prouty, J. Walpole, “MPVM: A Migra-

tion Transparent Version of PVM,” Technical Report, Oregon Graduate Institute of Sci-

ence and Technology, Portland, Oregon, February, 1995.

[16] J. Casas, D.L. Clark, P.S. Galbiati, R. Konuru, S.W. Otto, R.M. Prouty, J. Walpole, “MIST:

PVM with Transparent Migration and Checkpointing,” 3rd Annual PVM Users’ Group

Meeting, Pittsburgh, PA, May 7-9, 1995.

[17] H. Cejtin, S. Jagannathan, and R. Kelsey, “Higher-Order Distributed Objects,” ACM

Transactions on Programming Languages and Systems, vol. 17, no. 5, pp. 704-739, Sep-

tember, 1995.

[18] K.M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global States of Dis-

tributed Systems,” ACM Transactions on Computer Systems, vol. 3, no. 1, pp. 63-75, Feb-

ruary, 1985.

[19] C. Cowan, H.L. Lutfiyya, and M.A. Bauer, “Performance Benefits of Optimistic Program-

ming: A Measure of HOPE,” in Proceedings of the 4th IEEE Symposium on High Perfor-

mance Distributed Computing, pp. 197-204, 1995.

[20] F. Douglis and J. Osterhout, “Process Migration in the Sprite Operating System,” in Pro-

ceedings of the 7th International Conference on Distributed Computing, pp. 18-25, 1987.

[21] F.B. Dubach, R.M. Rutherford, and C.M. Shub, “Process-Originated Migration in a Heter-

ogeneous Environment,” Proceedings of the ACM Computer Science Conference, pp.98-

102, February, 1989.

[22] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “Adaptive Load Sharing in Homogeneous

Distributed Systems,” IEEE Transactions on Software Engineering, vol. SE-12, no. 5, pp.

662-675, May 1986.

[23] D.L. Eager, E.D. Lazowska, and J. Zahorjan, “The Limited Performance Benefits from

Migrating Active Processes for Load Sharing”, ACM SIGMETRICS, pp. 662-675, May

1988.

[24] E.N. Elnozahy, D.B. Johnson, Y.M. Wang, “A Survey of Rollback-Recovery Protocols in

Message-Passing Systems,” Technical Report CMU-CS-96-181, Carnegie Mellon Univer-

sity, October, 1996.

[25] M.M. Eshaghian, “An Introduction to Heterogeneous Computing,” in Heterogeneous

Computing, M.M. Eshaghian, ed., Artech House Publishers, pp. 1-16, 1996.

182

[26] M.R. Eskicioglu, “Design Issues of Process Migration Facilities in Distributed Systems,”

IEEE Technical Committee on Operating Systems Newsletter, vol. 4, no. 2, pp. 3-13, Win-

ter, 1989.

[27] S.I. Feldman, D.M. Gay, M.W. Maimone, and N.L. Schryer, “A Fortran-to-C Converter,”

Computing Science Technical Report no. 149, AT&T Bell Laboratories, 1990.

[28] A.J. Ferrari and V.S. Sunderam, “Multiparadigm Distributed Computing with TPVM,”

Journal of Concurrency, Practice and Experience, (to appear).

[29] I. Foster, C. Kesselman, S. Tuecke, “The Nexus Task-parallel Runtime System,” In Pro-

ceedings of the 1st International Workshop on Parallel Processing, 1994.

[30] I. Foster, J. Geisler, W. Nickless, W. Smith, S. Tuecke, “Software Infrastructure for the I-

WAY High-Performance Distributed Computing Experiment,” in Proceedings of the 5th

IEEE Symposium on High Performance Distributed Computing, pp. 562-570, 1996.

[31] I. Foster, C. Kesselman, “Globus: A Metacomputing Infrastructure Toolkit”, International

Journal of Supercomputing Applications (to appear).

[32] R.F. Freund and D. S. Cornwell, “Superconcurrency: A Form of Distributed Heteroge-

neous Supercomputing,” Supercomputing Review, vol. 3, pp. 47-50, October, 1990.

[33] R.F. Freund and H.J. Siegel, “Heterogeneous Procesessing,” IEEE Computer, vol. 26, no.

6, pp. 13-17, June, 1993.

[34] A. Geist, A Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.S. Sunderam, PVM: Par-

allel Virtual Machine, MIT Press, 1994.

[35] J. Gosling and H. McGilton, “The Java Language Environment: a White Paper,” Sun

Microsystems, Mountain View, CA, October, 1995.

[36] R. Gray, G. Cybenko, D. Kotz, and D. Rus, “Agent TCL,” in Cockayne, W., Zypa, M.,

eds. Itinerant Agents: Explanations and Examples with CDROM, Manning Publishing,

1997.

[37] A.S. Grimshaw, “Easy-to-Use Object-Oriented Parallel Processing with Mentat,” IEEE

Computer, vol. 26, no. 5, pp. 39-51, 1993.

[38] A.S. Grimshaw, J.B.Weissman, E.A. West, and E. Loyot, “Meta Systems: An Approach

Combining Parallel Processing and Heterogeneous Distributed Computing Systems,”

Journal of Parallel and Distributed Computing, pp. 257-270, vol. 21, no. 3, June 1994.

[39] A.S. Grimshaw, W.A. Wulf, and the Legion team, “The Legion Vision of a Worldwide

Virtual Computer,” Communications of the ACM, vol. 40, no. 1, January, 1997.

[40] A.S. Grimshaw, A. Nguyen-Tuong, M.J. Lewis, and M. Hyett, “Campus-Wide Comput-

183

ing: Results Using a Legion Prototype at the University of Virginia,” International Jour-

nal of Supercomputing Applications, (to appear).

[41] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the

Message-Passing Interface, MIT Press, 1994.

[42] M. Harchol-Balter and A.B. Downey, “Exploiting Process Lifetime Distributions for

Dynamic Load Balancing,” Technical Report UCB/CSD-95-887, University of California

at Berkely, November, 1995.

[43] D.R. Jefferson, “Virtual Time”, ACM Transaction on Programming Languages and Sys-

tems, vol. 7, no. 3, pp.404-425, July 1985.

[44] D. Johansen, N.P. Sudmann, and R. van Renesse, “Performance issues in TACOMA,” in

Third Workshop on Mobile Object Systems, 11th Europeean Conference on Object-Ori-

ented Programming, Jyvaskyla, Finland, June 9-13, 1997.

[45] D. Johansen, R. van Renesse, and F. Schneider, “An Introduction to the TACOMA Dis-

tributed System, Version 1.0,” Computer Science Technical Report 95-23, University of

Tromsø, Tromsø, Norway, June, 1995.

[46] B.W. Kernighan and D.M. Ritchie, The C Programming Language, Second Edition, Pren-

tice Hall, 1988.

[47] A.A. Khokhar, V.K. Prasanna, M.E. Shaaban, and C. Wang, “Heterogeneous Computing:

Challenges and Opportunities,” IEEE Computer, vol. 26, no. 6, pp. 18-27, June, 1993.

[48] F.C. Knabe, “Language Support for Mobile Agents,” PhD Thesis, School of Computer

Science, Carnegie Mellon University, available as Technical Report CMU-CS-95-223,

December, 1995.

[49] P. Krueger and M. Livny, “A Comparison of Preemptive and Non-Preemptive Load Dis-

tributing,” in Proceedings of the 8th International Conference on Distributed Computing

Systems, pp. 123-130, June, 1988.

[50] J. Leon, A.L. Fisher and P. Steenkiste, “Fail-safe PVM: A Portable Package for Distrib-

uted Programming with Transparent Recovery,” Technical Report CMU-CS-93-124,

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, February

1993.

[51] M.J. Lewis and R.E. Cline, “PVM Communication Performance in a Switched FDDI Het-

erogeneous Distributed Computing Environment,” in Proceedings of the IEEE Workshop

on Advances in Parallel and Distributed Systems, Princeton, N.J., October, 1993.

[52] M.J. Lewis and A.S. Grimshaw, “The Core Legion Object Model,” in Proceedings of

184

IEEE High Performance Distributed Computing 5, pp. 551-561, Syracuse, NY, August 6-

9, 1996.

[53] C.C. Li and W.K. Fuchs, “CATCH: Compiler-assisted Techniques for Checkpointing,” in

Proceedings of the 20th International Symposium on Fault Tolerant Computing, pp. 74-

81, 1990.

[54] M.J. Litzkow, M. Livny, and M.W. Mutka, “Condor—A Hunter of Idle Workstations,” in

Proceedings of the Eighth International Conference on Distributed Computing Systems,

pp. 104-111, 1988.

[55] M.J. Litzkow and M. Solomon, “Supporting Checkpointing and Process Migration Out-

side the UNIX Kernel,” in Proceedings of USENIX, pp. 283-290, January, 1992.

[56] G. Maguire and J. Smith, “Process Migrations: Effects on Scientific Computation,” ACM

SIGPLAN, vol. 23, no. 2, pp. 102-106, March, 1988.

[57] K. Mandelberg and V.S. Sunderam, “Process Migration in Unix Networks,” in Proceed-

ings of the USENIX Winter Conference, pp. 357-363, 1988.

[58] F. Mattern, “Virtual Time and Global States of Distributed Systems,” in Proceedings of the

Workshop on Parallel and Distributed Algorithms, Chateeau de Bonas, France, pp. 215-

226, October, 1988.

[59] F. Mattern, “Efficient Algorithms for Distributed Snapshots and Global Virtual Time

Approximation,” Journal of Parallel and Distributed Computing, vol. 18, pp. 423-434,

1993.

[60] C.R. Mechoso, J.D. Farrara, and J.A. Spahr, “Running a Climate Model in a Heteroge-

neous Distributed Computer Environment,” in Proceedings of the 3rd IEEE Symposium on

High Performance Distributed Computing, pp. 79-84, April, 1994.

[61] Message Passing Interface Forum, “MPI-2: Extensions to the Message Passing Interface,”

July 18, 1997.

[62] D.S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou, “Process Migration,”

TOG RI Technical Report, 1996.

[63] R. Mirchandaney, D. Towsley, and J.A. Stankovic, “Adaptive Load Sharing in Heteroge-

neous Distributed Systems,” Journal of Parallel and Distributed Computing, vol. 9, pp.

331-346, 1990.

[64] M. Nuttall, “Survey of Systems Providing Process or Object Migration,” Imperial College

Research Report DoC 94/10, May, 1994.

[65] J.K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley, 1994.

185

[66] W.R. Pearson and D. Lipman, “Improved Tools for Biological Sequence Analysis,” Proc.

National Acadamy of Science USA, vol. 85, pp. 2444-2448, 1988.

[67] H. Peine, “An introduction to mobile agent programming and the Ara system,” ZRI-

Report 1/97, Department of Computer Science, University of Kaiserslautern, Germany,

1997.

[68] H. Peine and T. Stolpmann, “The Architecture of the Ara Platform for Mobile Agents,” in

Rothermel, K., Popescu-Zeletin, R., eds. Proceedings of the First International Workshop

on Mobile Agents: MA’97, Berlin, Germany, April 7-8, 1997. Lecture Notes in Computer

Science no. 1219, Springer Verlag, 1997.

[69] J.S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent Checkpointing under

Unix,” in Proceedings of USENIX Winter 1995 Technical Conference, New Orleans, LA,

January 16-20, 1995.

[70] M.L. Powell and B.P. Miller, “Process Migration in DEMOS/MP,” in Proceedings of the

Ninth Symposium on Operating Systems Principles in ACM Operating Systems Review,

vol. 17, no. 5, pp. 110-118, 1983.

[71] A. Reinefeld, R. Baraglia, T. Decker, J. Gehring, D. Laforenza, F. Ramme, T. Rvmke, and

J. Simon, “The MOL Project: An Open Extensible Metacomputer,” in Proceedings of the

Heterogenous Computing Workshop, HCW97, IEEE Computer Society Press, pp. 17-31,

1997.

[72] J. Robinson, S.H. Russ, B. Flachs, and B. Heckel, “A Task Migration Implementation for

the Message Passing Interface,” in Proceedings of the Fifth IEEE International Sympo-

sium on High Performance Distributed Systems, Syracuse, NY, August, 1995.

[73] N.G. Shivaratri, P. Krueger, and M. Singhal, “Load Distributing for Locally Distributed

Systems,” IEEE Computer, vol. 25, no. 12, pp. 33-44, December, 1992.

[74] H.J. Siegel, H.G. Dietz, and J.K. Antonio, “Software Support for Heterogeneous Comput-

ing,” in A.B. Tucker, ed., The Computer Science and Engineering Handbook, CRC Press,

pp. 1886-1913, 1997.

[75] L. Smarr and C.E. Catlett, “Metacomputing,” Communications of the ACM, vol. 35, no. 6,

pp. 45-52, 1992.

[76] J.M. Smith, “A Survey of Process Migration Mechanisms,” Operating Systems Review,

vol. 22, no. 3, pp. 28-40, July, 1988.

[77] P. Smith and N.C. Hutchinson, “Heterogeneous Process Migration: The Tui System,”

Technical Report, University of British Columbia, February 28, 1996.

186

[78] T.F. Smith and M.S. Waterman, “Identification of Common Molecular Subsequences,”

Journal of Molecular Biology, vol. 147, pp. 195-197, 1981.

[79] Sun Microsystems, External Data Representation Reference Manual, Sun Microsystems,

January, 1985.

[80] Sun Microsystems, Java Object Serialization Specification, Revision 0.9, 1996.

[81] V.S. Sunderam, “PVM: A framework for parallel distributed computing,” Concurrency:

Practice and Experience, vol. 2, no. 4, pp. 315-339, December, 1990.

[82] B. Steensgaard and E. Jul, “Object and Native Code Thread Mobility Among Heteroge-

neous Computers,” in Proceedings of the Fifteenth ACM Symposium on Operating Sys-

tems Principles, December, 1995.

[83] G. Stellner, “Consistent Checkpoints of PVM Applications,” in Proceedings of the First

European PVM Users Group Meeting, 1994.

[84] G. Stellner, “CoCheck: Checkpointing and Process Migration for MPI,” Technical Report,

Institut für Informatik der Technischen Universität München, 1996.

[85] V. Strumpen and B. Ramkumar, “Portable Checkpointing and Recovery in Heterogeneous

Environments,” Technical Report, Department of Electrical and Computer Engineering,

University of Iowa, 1996.

[86] M.M. Theimer, K.A. Lantz, and D.R. Cheriton, “Preemptable Remote Execution Facilities

for the V-System,” in Proceedings of the Tenth ACM Symposium on Operating System

Principles, December 1985.

[87] M.M. Theimer, and B. Hayes, “Heterogeneous Process Migration by Recompilation,” in

Proceedings of the 11th International. Conference on Distributed Computing Systems,

Arlington, TX, pp. 18-25, May 1991.

[88] L.H. Turcotte, “A Survey of Software Environments for Exploiting Networked Comput-

ing Resources,” Technical Report, Engineering Research Center for Computational Field

Simulation, Mississippi State, MS, June, 1993.

[89] S. Venkatesan and T. Juang, “Efficient Algorithms for Optimistic Crash Recovery,” Dis-

tributed Computing, vol. 8, no. 2, pp. 105-114, 1994.

[90] D.G. von Bank, C.M. Shub, and R.W. Sebesta, “A Unified Model of Pointwise Equiva-

lence of Procedural Computations,” ACM Transactions on Programming Languages and

Systems, vol. 16, no. 6, pp. 1842-1874, November, 1994.

[91] Y. Wang and R.J.T. Morris, “Load Sharing in Distributed Systems,” IEEE Transactions on

Computers, vol. C-94, no. 3, pp. 204-217, March, 1985.

187

[92] J. White, “Mobile Agents White Paper,” General Magic, http://www.genmagic.com/

agents/Whitepaper/whitepaper.html, 1996.

[93] S. White, A. Ålund, and V.S. Sunderam, “Performance of the NAS Parallel Benchmarks

on PVM Based Networks,” Journal of Parallel and Distributed Computing, vol. 26, no. 1,

pp. 61-71, April 1995.

[94] F.I. Woodward, T.M. Smith, and W.R. Emanuel, “A Global Land Primary Productivity and

Phytogeography Model,” Global Biogeochemical Cycles, vol. 9, no. 4, pp. 471-490,

December, 1995.

[95] E.R. Zayas, “Attacking the Process Migration Bottleneck,” in Proceedings of the 22nd

ACM Symposium on Operating Systems Principles, pp. 13-24, 1987.

[96] H. Zhou and A. Geist “Receiver Makes Right Data Conversion in PVM,” in Proceedings

of 14th International Conference on Computers and Communications, pp. 458-464, March

1995.

[97] S. Zhou, J. Wang, X. Zheng, and P. Delisle, “Utopia: A Load-sharing Facility for Large

Heterogeneous Distributed Computing Systems,” Software - Practice and Experience,

vol. 23, no. 2, pp. 1305-1336, December, 1993.

