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Abstract

In recent years, intelligent transportation systems (ITSs) have a significant impact on

human life as ITSs improved transportation safety and mobility. The development of ITSs

lies in many different aspects. In this dissertation, an adaptive based learning algorithm and

optimal control schemes are used in ITS development. The two major areas of focus are the

hybrid electric vehicle (HEV) fuel-saving problem and the traffic signal control optimization

problem, where both vehicle level and traffic system level are considered in the design.

HEVs have been an effective solution for improved vehicle fuel efficiency and reduced

emission pollution. However, the optimization design for HEVs is complicated due to the

presence of nonlinear dynamics and complicated integration of the HEV systems. More-

over, there is a trade-off between fuel optimization and emission reduction. In Chapter 2,

a co-optimization scheme is proposed to optimize fuel efficiency for HEVs. The proposed

optimization scheme uses vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) in-

formation as the basis to optimally tune control parameters for the existing powertrain

control system. Moreover, the speed of catalyst temperature to reach its light-off level in

the exhaust emission system is also considered as an additional optimization constraint to

reduce emission. It has been shown that a further 9.22% fuel savings can be achieved on

average for a Toyota Prius test model.

Traffic signal control is important for intersection safety and efficiency. However, most

traffic signal control methods are designed for individual intersections or corridors. Although

some adaptive control systems have been developed, the methods used are often proprietary

and not published, making it difficult to evaluate their effectiveness. The goals of our

research are to identify the unknown traffic dynamic and then develop some efficient control

schemes to achieve minimal traffic delay time and smooth traffic. To met the above goals, in

Chapter 3 to Chapter 5, three different approaches are developed. In Chapter 3, an adaptive

linear-quadratic regulator (LQR) is designed to minimize both traffic delay and incremental

changes in the control input, which is based on linear system approximation. In Chapter
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4, a traffic signal optimal control scheme with an adaptive on-line learning scheme using

multiple-model neural networks is designed to achieve traffic delay minimization. In this

work, a non-linear neural network model is used to represent the unknown traffic dynamics.

In Chapter 5, the above problem is solved from another aspect, where the goal is to have

the distributions of every intersection follows a target distribution. To this end, a stochastic

traffic signal control algorithm is designed. The above three methods are not only practically

meaningful for traffic signal control design but also have some theoretic contributions to

the field of adaptive learning techniques.
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Chapter 1

Introduction

This chapter gives a brief introduction to the basic concepts used in this dissertation.

First, the research background on HEV fuel optimization, traffic signal control, adaptive

control, system identification, and stochastic control is introduced and the research mo-

tivation is stated. Then, a literature review on these topics is presented. Finally, the

dissertation outline is given.

1.1 Research Backgrounds and Motivations

This section introduces the research background on the transportation system and con-

trol, then addressed the research motivation.

1.1.1 Transportation System

Intelligent Transportation Systems (ITSs) have a great impact on human life as it im-

proves transportation safety effectiveness [3–5]. Developing ITS is a big subject which is

formulated with a set of smaller aspects. In this work, vehicle level and traffic network-level

research are primarily considered. The two main focuses are hybrid electric vehicle (HEV)

system fuel optimization and traffic signal control design for travel delay minimization.

Hybrid Electric Vehicle System. Hybrid electric vehicles (HEVs) have recently ex-

hibited a rising trend in the market because they can achieve higher fuel efficiency than

1
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that of conventional vehicles [6, 7]. The fast development of connected vehicle (CV) tech-

niques has inspired researchers to use traffic information (i.e., vehicle-to-vehicle/vehicle-

to-infrastructure [V2V/V2I] information) to develop advanced fuel efficiency schemes for

HEVs. Moreover, many state of the art fuel optimization schemes for the HEV did not take

the effect on exhaust system into consideration. This has to lead to the urgent need on

developing a fuel optimization scheme for the HEVs which uses V2V/V2I information and

considers exhaust system effects.

Traffic Signal Control. Traffic congestion caused by intersections leads to unnecessary

travel delays, reduced traffic safety, and increased energy consumption and environmental

pollution [8, 9]. To relieve traffic network congestion in large cities, efficient traffic signal

control methods have always been highly demanded, especially with the rapid advances in

communication and computing technologies [10,11]. Traffic signal control includes four pri-

mary components: phase specification (sequence of the phases), signal timing/split control

(relative green duration of each phase), cycle duration, and offset of cycles for coordination

among multiple intersections that are spatially close. Among these components, signal tim-

ing/split control can have the most profound impact on traffic operations [10, 12]; hence,

this study investigated this research topic.

1.1.2 Adaptive Learning Techniques

The transportation system is generally nonlinear and highly integrated. Thus, it is

difficult to directly figure out a dynamic model based on the actual physic model. To

accurately represent different systems (i.e., HEV system and traffic network system), one

needs to develop a system identification scheme to estimates the original system with a well

structured linear or non-linear model. As a result, in this work, we use adaptive control

and system identification techniques to estimate original plants.

Adaptive Control. Adaptive control provides adaptation mechanisms that adjust a con-

troller for a system with parametric, structural, and environmental uncertainties to achieve

desired system performance. Payload variation or component aging causes parametric un-
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certainties. Component failure leads to structural uncertainties, and the external noises are

typical environmental uncertainties. Such uncertainties often appear in automobile engines,

electronic devices, and other industrial processes. Adaptive control has experienced many

successes in new challenging problems and their encouraging solutions.

Unlike other controllers using PID, pole placement, optimal, robust, or nonlinear control

methods, whose designs are based on the certain knowledge of the system parameters,

adaptive controllers do not need such knowledge of the system parameters; they are adapted

to parameter uncertainties by using performance error information on-line [13]. There exist

mainly two types of adaptive control: direct adaptive control and indirect adaptive control.

System Identification. System identification is a methodology for building mathematical

models of dynamic systems using the measurements of the system inputs and outputs. To

identify the system dynamics, one could build a white-box model based on first principles,

e.g., a model for a physical process from the Newton equations. However, in many cases,

such models are overly complicated and possibly even impossible to obtain in a reasonable

time due to the complex nature of many systems and processes. A much more common

approach is, therefore, to start from measurements of the behavior of the system and the

external influences (inputs to the system) and try to determine a mathematical relation

between them without going into the details of what is actually happening inside the system.

This approach is called system identification. Adaptive parameter estimation is a frequently

used system identification algorithm, which is a dynamic estimation procedure that makes

use of updated system signals to produce updated parameter estimates on-line [13].

The definition of system identification can be included in the area of machine learning.

With the fast development of recurrent neural networks and reinforcement learning, solving

the dynamic problem has become a new objective for machine learning.

1.1.3 Optimization and Control

With the system being accurately identified, one needs to develop different advanced

control strategies to achieve the objectives. In this work, our primary control objectives are
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energy consumption minimization and achieve smooth traffic. An optimal control design

can be used to achieve minimal energy consumption. To achieve smooth traffic, the goal is

to have the traffic flow distribution of every intersection follows a given distribution, where

this problem solved using stochastic control.

Optimal Control. Classic control design can satisfy some prescribed performance require-

ments, but the performance can not be not optimized. The modern optimal control theory,

on the other hand, relies on designing techniques to maximize or minimize a performance

index, resulting in a designed system that is optimal in the prescribed sense. Optimal con-

trol is an extension of the calculus of variations and is a mathematical optimization method

for deriving control policies [14,15]. To minimize fuel consumption for HEVs and minimize

traffic delays in a traffic network, using optimal control is a natural approach.

Stochastic Control. Stochastic control has been an important subject in control theory.

Most of the practical systems in control engineering are subjected to random inputs from

either sensor noises, or random disturbances or random parameter changes [16]. Unlike

optimal traffic signal control using a dynamic traffic network model whose objective is

to minimize traffic delay directly, the objective for stochastic traffic control is to achieve

”smooth” traffic. The definition of smooth traffic in terms of stochastic control is to have

every traffic intersection achieve balanced and low wait-time.

1.2 Literature Review

This section presents a brief review of the research on HEV power management and

traffic signal control. Then, a summary of the problems studied in this research is given.

1.2.1 HEV Power Management

Typical power management methods for HEVs are either optimization-based methods or

rule-based methods. In [17–19], novel power management strategies were developed using

dynamic programming-based methods and particle swarm optimization approaches. In
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[20–23], the authors designed some direct optimal control strategies to optimize HEV power

management. In recent studies, many researchers have incorporated traffic information

into the fuel optimization design. In [24], the authors designed a look ahead prediction-

based real-time optimal energy management method to reduce fuel consumption using CV

information. In [25], the authors developed a stochastic optimal energy control strategy

under different traffic scenarios. Because most optimal power management strategies result

in the increase of harmful gas emissions, the trend is to consider the thermal response of

the exhaust system as an additional constraint in the optimization. In [26–29], the authors

considered the thermal response of the exhaust system in their optimal power management

strategy design. In [30], the authors aimed at reducing pollution while considering mainly

the effect of fuel consumption. In [31], the authors analyzed the effect of the thermal

response to a connected HEV system, and they optimized the vehicle speed and power split

of the system.

Rule-based power management methods have been widely used for vehicle power man-

agement, which is built based on ”if-then” rules, making it suitable for fast real-time im-

plementations. For example in [32], the authors developed a rule-based power management

method using a power follower control strategy. In that paper, the Toyota Prius Hybrid

model is studied, which uses a rule-based power management method.

Some research has focused on optimizing rule-based power management. For example,

in [33] and [34], the authors optimized some control parameters using genetic algorithms

for the HEVs to maximize fuel efficiency. In [34], a particle swarm optimization strategy

is described that determines a proper driving torque demand. These two works constitute

useful approaches to optimizing some parameters in the powertrain to save fuel. However,

traffic information is not considered in these methods. To make use of V2I for better power

management, [35], a fuzzy rule-based technique was formulated to maximize fuel efficiency.

While the above methods can achieve optimal fuel efficiency, the effects of such power

management strategies on vehicle emissions have not been explored, and this has become

an outstanding issue for the implementation of the above power management methods to
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vehicles on the market. The exhaust emission system uses a three-way catalyst system to

convert harmful emission gases such as NOx, HC, and CO to N2, H2O, and CO2. The effi-

ciency of these catalyst reactions depends on temperature. Thus, optimizing fuel efficiency

by increasing the engine-off time would significantly increase the emission of harmful gases.

At present, this effect is seldom considered in the optimization problem for HEVs. In [36],

the authors described a rule-based power management strategy, and to that achieves a near-

optimal fuel economy and emission performance with the use of the dynamic programming

(DP) methodology. However, this work primarily aimed at emission reduction instead of

saving fuel, which results in a significant emission reduction at a small loss of fuel economy.

1.2.2 Traffic Signal Control

The early investigation of urban traffic signal control dates back to the 20th century

when traffic lights were first invented. Since then, a variety of signal timing control methods

have been developed. Generally, these methods can be divided into two categories: pre-

timed and traffic-responsive [8]. Pretimed methods adopt constant green time splits based

on historical traffic demands over the considered signalized urban area. One of the rep-

resentative pretimed traffic signal control systems is TRANSYT (TRAffic Network StudY

Tool) [37], which tries to minimize the overall travel time, delays, and the number of stops.

With a fixed green time duration, nevertheless, pretimed control methods may not be able

to handle the dynamics of real-time traffic conditions.

Aiming at addressing the limitation of pretimed control, traffic-responsive methods op-

timize signal timing based on real-time traffic data. The most common traffic-responsive

signal control method is actuated control. It uses sensors (e.g., inductive loop detectors)

located upstream of the stop line to sense the request of green time. The method also pre-

defines minimum and maximum green times and passage time. On the basis of minimum

green time, actuated control extends the green time by the amount of passage time once a

vehicle is detected until the maximum green time is reached [8].

Although actuated control is responsive to traffic dynamics to some extent, it is ide-
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ally suited for isolated intersections in which traffic demands and patterns vary widely

throughout the day [38]. To improve traffic efficiency at a network-wide level, plenty of

emerging traffic signal control methods have been proposed, such as evolutionary algo-

rithms [39, 40], heuristics approaches (e.g., max pressure [41] and self-organizing traffic

light controls (SOTL) [42]), fuzzy logic control [43,44], neural networks control [45,46], re-

inforcement learning based control [47,48], and deep reinforcement learning control [49–52].

To consider multiple evaluation metrics (e.g., traffic throughput, traffic delay, safety, and

energy consumption), multi-objective optimization algorithms have also been applied in

traffic signal controls to optimize the system performances [11, 53, 54]. However, they are

not widely deployed in real-world intersections because of their complex or black-box logics,

high-performance variances, and special hardware requirements [55].

For network-level traffic signal control, SCATS (Sydney Coordinated Adaptive Traffic

System) [56], SCOOT (Split Cycle Offset Optimization Technique) [57], OPAC (Optimiza-

tion Policies for Adaptive Control) [58], and TUC (Traffic-responsive Urban Control) [59,60]

are the most widely used traffic-responsive signal control systems [8,10]. Both SCOOT and

OPAC incorporate a network model that uses real-time traffic data as an input and com-

putes the corresponding traffic network performance indices such as the total number of

vehicle stops. The primary difference between SCOOT and OPAC is that the former uses

heuristic rules whereas the latter uses dynamic programming. For SCOOT, the central con-

trol computer repeatedly runs the network model and determines the effect of incremental

changes of splits, offsets, and cycle lengths at individual intersections. The changes will

be submitted to the local signal controllers if they are predicted to be beneficial in terms

of performance indices. OPAC assumes the phase switching time as a discrete variable

and calculates the optimal switching time with dynamic optimization [8]. TUC adopts

a store-and-forward modeling of the urban network traffic and uses the linear-quadratic

regulator (LQR) theory [61]. The design of TUC results in a multivariable regulator for

traffic-responsive coordinated network-wide signal control [60]. Similar to pretimed control

at isolated intersections, coordinated pretimed signal control at the network level is limited
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because it uses of historical data rather than real-time traffic information. Coordinated ac-

tuated control, on the other hand, although being potentially more efficient than pretimed

control, can also be computationally expensive.

1.2.3 Summary

From the discussion above, one can see that there are many urgent requests for devel-

oping advanced control schemes for the ITS. This motivated our research on using adaptive

learning methods and optimal control to design new controllers to meet transportation

system demands.

In this research, we study and develop some new solutions to the following problems:

Problem 1: Fuel optimization for hybrid electric vehicle systems.

Problem 2: Traffic signal control problem for traffic networks in the urban area.

1.3 Dissertation Outline

The dissertation is organized as follows:

• In Chapter 1, the basic introduction of this research is given, including the research

background and the literature review about the related areas.

• In Chapter 2, the system identification problem and the fuel optimization problem for

hybrid electric vehicles are solved.

• In Chapter 3, the traffic signal control problem for large traffic networks in urban

areas is introduced, and the system identification based LQR controller is designed to

meet the control objectives.

• In Chapter 4, the system identification and control problem for a traffic network with

a non-linear equivalent model is presented. Online-learning based multiple neural

network models are used to represent the nonlinearity of the traffic network system.
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• In Chapter 5, a stochastic control approach toward traffic signal control for a traffic

network system is designed to achieve a smooth traffic flow.

• In Chapter 6, some concluding remarks are given.



Chapter 2

System Identification and Fuel

Optimization for HEV Systems

This chapter develops a parameter co-optimization scheme for HEV powertrain and

exhaust system using V2V/V2I information.

Rule-based power management methods are widely used, but few reports describe ap-

proaches to design optimal rule-based power management schemes using V2V and V2I.

Moreover, the existing methods for powertrain controls for HEVs have not considered the si-

multaneous use of V2V or V2I information and the influence of the exhaust emission systems

on powertrain controls. To address these outstanding issues, a parameter co-optimization

scheme is developed in this chapter for HEV powertrain and exhaust systems using V2V/V2I

information.

The main contributions of this work are listed as follows:

• Formulate the co-optimization problem, the solution to which optimizes fuel consump-

tion using traffic information and emission constraints.

• Build a simplified yet equivalent neural network (NN) model for the optimization

problem based on the first-principles models for powertrain and exhaust system.

• Design an optimal powertrain control parameter tuning strategy to map the optimal

10
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control parameter tuning with future traffic information.

2.1 Hybrid Electric Vehicle System Modeling

In this section, the dynamics of the HEV is first introduced. Then, the first-principles

model based on Matlab/Simulink is validated using actual vehicle driving cycle testing

data obtained from a 2017 Toyota Prius Hybrid vehicle. The model is used to obtain the

equivalent NN model for the proposed co-optimization design in this work.

2.1.1 Dynamic Model of HEV

The Toyota hybrid systems (THS) dynamic model is derived based on previous studies

[62, 63]. The THS uses a planetary gear as the power split device. The planetary gear

system dynamics derived in [62] are summarized as follows:

(Is + IMG1)ω̇MG1 = FS − TMG1 (2.1)

(Ic + Ie)ω̇e = Te − FR− FS (2.2)

(
R2
tire

K
m+ IMG2K + IrK)ω̇r = (TMG2 + FR)K

− Tf −mgfrRtire − 0.5ρACd(
ωr
K

)2R3
tire, (2.3)

where Is, Ir, and Ic are inertia values of the sun gear, ring gear, and carrier gear, respectively;

IMG1 and IMG2, and Ie are the first/secondary motor/generator set inertia, and the engine

inertia; TMG1, TMG2, and Te are the corresponding torques, and ωMG1 and ωe are the

corresponding rotary speeds. In the above equations, F is the internal force on the pinion

gear, S and R are the number of teeth on the sun gear and ring gear, respectively, Rtire is

the tire radius, m is the vehicle mass, K is the final drive ratio, ωr is the rotational speed

of the ring gear, fr is the rolling resistance coefficient, Tf is the brake torque, and 0.5ρACd

is the aerodynamic drag resistance coefficient.

To consider the efficiencies of the motor and generator sets, the battery power is given
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by

Pb = TMG1 ωMG1 η
k
MG1 η

k
i1 + TMG2 ωMG2 η

k
MG2 η

k
i2, (2.4)

where ηMG1 and ηMG2 are the efficiencies of the motor/generator sets, ηi1 and ηi2 are

the corresponding inverter efficiencies. The exponent k = −1 indicates that the battery

is discharging, and k = 1 means the battery is charging. Battery state of charge (SOC)

dynamics are given as follows [62]:

˙SOC = −
Vo −

√
V 2
o − 4PbRb

Cbatt
, (2.5)

where Vo is the open circuit battery voltage, Rb is the battery internal resistance, and Cbatt

is the maximum battery capacity.

Equations (2.1) - (2.5) represent the dynamics of the Toyota hybrid system or the plant

to be controlled, where equations (2.1) - (2.3) are the dynamics of the powertrain mechanic

path, and (2.4) - (2.5) are the dynamics of the powertrain electric path. They will form

the first-principles model together with the controls for the powertrain system. This model

will be used to generate an equivalent NN model for the construction of the proposed

co-optimization algorithm.

2.1.2 First-Principles Model Validation

A Simulink model was built as shown in Fig. 2.1. Equations (2.1) - (2.5) were used to

model the existing control for the powertrain system and the dynamics of the plant to be

controlled. In this figure, in addition to the models given in (2.1) - (2.5), it can be seen

that the closed-loop system for the powertrain has functional blocks for a hybrid controller,

a driver, and a driving cycle built into the Simulink model. In this context, the hybrid

controller consists of several components, such as motor/generator speed controllers, an

engine optimal controller, a battery charging controller, a power management controller.

Fig. 2.2 shows how each controller is integrated inside the hybrid controller. The ”Driver”

function block in Fig. 2.1 is used to generate gas and brake signals to the hybrid controller
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Figure 2.1: Integrated powertrain and exhaust Simulink model [1].

based upon the driving cycle and wheel speed information. Therefore, the Simulink system

in Fig. 2.1 stands for a closed-loop control system for the powertrain operation. The

Simulink model was built based upon [62, 63]. The exhaust system is built based on a

MATLAB package for exhaust systems named ADVISOR, which was developed by the

National Renewable Energy Laboratory (USA) with proper validations.

The main idea of this work is to use the closed-loop system model shown in Fig. 2.1

to establish a co-optimization algorithm that is capable of tuning some of the important

parameters embedded in the hybrid controller using V2V and V2I information, so that the

fuel consumption can be minimized with satisfactory exhaust emission. For this purpose,

this closed-loop Simulink model will be validated first using real driving data.

Driving cycle information. Fig. 2.3 shows the vehicle driving route around the

University of Michigan, from which driving cycle data were collected and used for the vali-

dation of the Simulink model. Data from different driving scenarios (weather, temperature,

and traffic conditions) are used. This driving cycle information is used in the HEV model

validation and the simulation study.

Powertrain model validation. In the validation, we updated multiple mapping func-

tions (including engine torque and engine speed mapping, engine torque and engine fuel con-
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Figure 2.2: Integration of the hybrid controller.

sumption mapping) in the Simulink model using the measurements of the generator speed,

engine speed, motor speed, generator torque, and engine torque in several test drives. Fig.

2.4 gives the powertrain validation results, where the red curves are the measured power-

train state data, and the blue curves are the simulation results generated from the Simulink

model in Fig. 2.1. Based on the figure, one can see that the speed states are well validated,

while the torque states can also indicate satisfactory performance from validation.

Exhaust model validation. To validate the exhaust system model, we measured the

mass flow rate, catalyst temperature, and NOx emission rate. We constructed experiments

to test the NOx emission and used the data for exhaust model validation. Since the NOx

data before the catalyst were not available, we used the ratio between before-catalyst NOx

data from the simulation and the catalyst temperature, and the ratio between the actual

NOx data from the sensor installed in the exhaust pipe of the testing vehicle and the catalyst

temperature to find the light-off temperature. Fig. 2.5 shows the NOx sensor used in this

study. To validate NOx emission, we tuned the scaling parameters in the ADVISOR model.
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Figure 2.3: Driving path for powertrain model validation [1].

It can be seen that validating NOx emission could improve the simulation performance of

HC and CO emission. Fig. 2.6 shows the validation results for the exhaust system, where

one can see that the exhaust catalyst temperature and exhaust air flow rate and engine

on/off status are well validated. However, some differences can be seen between the curves

for NOx emission. One possible reason is that since the NOx sensor is attached at the

end of the exhaust pipe, the NOx emission may have been diluted, which would cause the

measured NOx emission rate to be lower than the simulation results.

2.2 Objective and Problem Statement

In this section, the objective of this work is first introduced. Then the co-optimization

problem is formulated.

2.2.1 Control Objective

The objective of this work is to develop a co-optimization scheme to use V2V and V2I

information to tune some important powertrain control parameters embedded in the hybrid

controller block in Fig. 2.1. The selected control parameters are sensitive to fuel con-

sumption and the co-optimization based tuning strategy is aimed at achieving the following

goals:

• Maximize fuel saving by taking into account future driving conditions obtained from

V2V/V2I information;

• Increase the speed for the catalyst temperature to reach the light-off temperature.
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(a) Validation of motor speed (b) Validation of vehicle speed

(c) Validation of engine torque (d) Validation of generator torque

Figure 2.4: Powertrain validation results [1].

Co-optimization design structure. Fig. 2.7 shows the parameter co-optimization

scheme. The powertrain controller parameters are tuned based on the co-optimization

scheme, which is derived from the V2V/V2I inputs and uses the equivalent NN model as

the HEV system model to formulate the optimal tuning of sensitive control parameters in a

simple way. The optimally tuned controller parameters are used for vehicle control, which

controls the HEV system to generate desired system outputs, such as engine torque/speed

and catalyst temperature. For this purpose, the selection of key parameters embedded in

the hybrid controller function block will be described first.
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(a) a photo of the NOx sensor (b) NOx sensor connection

Figure 2.5: NOx sensor

2.2.2 Parameter Selection

For the powertrain model with hybrid controller in Fig. 2.2, there are many control

parameters involved. Based on our tests, the tuning of those parameters may affect fuel

consumption. Thus, this work first carries out a sensitivity study on those control param-

eters to choose the ones that are most sensitive to fuel consumption. In this section, the

fundamentals of parameter sensitivity analysis are introduced.

Bayesian definition of sensitivity. For a system represented by input X and output

Y , sensitivity in the Bayesian sense can be expressed as

Γ =
varX [E(Y |X)]

var(Y )
. (2.6)

In this work, Y is the fuel consumption and X is the powertrain control parameters inside

the hybrid controller, the variance varX is taken over all the possible values of X, and

E(Y |X) is the expectation of Y that is conditional on an observed value on X.

In this work, the first-order sensitivity index to the total fuel consumption is calculated

using the Fast Bayesian method [64]. Table 2.1 shows the selected control parameters, which

are most sensitive to fuel consumption changes. One control parameter was chosen for the



18

Figure 2.6: Exhaust system validation results

battery charging controller; two were chosen for the generator speed controller of the first

motor/generator set (MG1), denoted as θ1, θ2, θ3, respectively. Other control parameters

are sensitive to fuel consumption changes. However, to simplify the scale of calculation

in the optimization problem, only these three parameters, which are most sensitive to fuel

consumption, are tuned in this study.

The purpose is, therefore, to establish an optimal tuning rule for {θ1, θ2, θ3} using

V2V/V2I information so that the fuel consumption is minimized with satisfactory exhaust

emission.

Battery charging controller. The battery charging controller uses saturated propor-
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Figure 2.7: Parameter co-optimization scheme structure.

Table 2.1: Three control parameters selected for parameter tuning

Parameter Name Physical Meaning Nominal Value Range

θ1 MG1 controller proportional gain 0.9 [0.5,1]
θ2 MG1 controller integral gain 0.005 [0.0001,0.05]
θ3 Battery charging controller gain 0.005 [13000,17000]

tional control. The objective of the battery charging controller is to have the SOC track a

given optimal SOC as follows:

up(t) = min(Kp(SOC
∗(t)− SOC(t)), upmax), (2.7)

where the control input up = Pb is the battery charging power, upmax is the upper bound

of charging power, and SOC∗ is the reference optimal state of charge. For this part of

the system, Kp = θ1 is the proportional gain of the controller that is to be tuned by the

co-optimization algorithm.

MG1 generator speed controller. The MG1 speed controller uses a classic proportional-

integral controller to have the generator speed track an optimal reference speed as follows

uMG1(t) =Kp1(ω∗(t)− ωMG1(t))

+Ki1

∫ t

0
(ω∗( τ)− ωMG1(τ))dτ, (2.8)

where the control input uMG1 = TMG1 is the generator torque, ω∗ is the referenced optimal



20

generator speed, ωMG1 is the actual generator speed, Kp1 = θ2, Ki1 = 0.05θ3 are the

proportional and integral gains of the controller that are selected as two key parameters to

be tuned by the co-optimization algorithm.

2.2.3 Use of V2V/V2I Information

To utilize traffic information for the optimization framework for the tuning of {θ1, θ2, θ3},

we need to characterize V2V/V2I information. The goal is to use V2V/V2I information as

extra tuning optimization input and to solve for desired controller parameter tuning with

given traffic information represented by V2V/V2I to achieve optimal fuel-saving (i.e., to

find the cost function with controller parameter tuning and traffic information being the

inputs). Thus, we need to characterize V2V/V2I information in mathematical terms. The

components of V2V information are the speed and acceleration of the preceding vehicle and

the left/right front vehicles, denoted as vp, ap, vl, al, vr, and ar respectively. To capture V2I

information, we assume the signal light to be the primary infrastructure that is commu-

nicating with the vehicle. As a result, we use the traffic light signal ST to represent V2I

information. In this work, we assume that with the V2V/V2I information given, one can

accurately predict the vehicle future speed vf with

vf (t) = W (ST , vp, ap, vl, al, vr, ar), t ∈ [tp, tp + tmax], (2.9)

where tp is the present time, and tmax is the maximum prediction length, W represents the

future speed prediction function [65, 66]. With given V2V/V2I information, one can make

tmax seconds of future vehicle speed prediction.

For this study, we assume that the future traffic prediction is available for the control

design. That is, the V2V/V2I information is used for optimization. In simulation tests,

we can obtain the driving cycle information. Adding some white noise to the driving cycle

information, one can be used to mimic the prediction of the future driving information.



21

2.2.4 Co-Optimization Problem Formulation

To design parameter co-optimization schemes, one can see that it is difficult to directly

formulate an optimization problem based on the dynamic system in (2.1) - (2.5) and the

controllers in (2.7) - (2.8). Thus, it is necessary to directly formulate input-output model

for optimization study.

Cost function. The following cost function defined for the co-optimization problem

indicates the relationship between the fuel consumption of the HEV with the selected three

control parameters and the future driving information obtained using V2V/V2I, which can

be derived in the discrete time as

J = fuel(nT ) =

n∑
k=1

∆f(θ(k), cyc(k)), (2.10)

where J is the fuel consumption, θ = [θ1, θ2, θ3]T are the three chosen powertrain control

parameters, cyc(k) = [vf (k+1), vf (k+2) . . . , vf (k+kmax)]T indicates kmax steps of available

future vehicle speed prediction, T is the step size, n is the number of total step, and ∆f

is the fuel consumption in one time step T , which is a measurable signal from simulation

experiments. This cost function indicates the total fuel consumption function with the

change of system parameter and future driving information.

State constraints. The HEV dynamics are considered as a constraint to the co-

optimization problem to guarantee the correctness of optimization results. The discrete-

time state constraint is defined as

x(k + 1) = g(x(k), θ(k), cyc(k)), (2.11)

where x = [Te, Tg, Tm, ωe, ωg, ωm]T indicates the engine, generator, motor torques, and

engine, generator, motor speeds respectively. Function g(x(k), θ(k), cyc(k)) represents the

discrete-time dynamics of the powertrain control system in (2.1) - (2.5) and (2.7) - (2.8).

Exhaust constraints. To reduce harmful emissions, the effect of the exhaust system



22

should also be considered as an additional constraint for fuel optimization. In this work,

the catalyst temperature dynamics are considered to be the exhaust constraint because the

emission rates of NOx, HC, and CO are significantly reduced when the catalyst tempera-

ture reaches the light-off temperature. In this case, the discrete-time catalyst temperature

dynamics can be expressed as

∆Tcat(k + 1) = h(Tcat(k), z(k), θ(k), cyc(k)), (2.12)

where ∆Tcat(k + 1) = Tcat(k + 1) − Tcat(k) is the finite difference, Tcat is the catalyst

temperature, and z = [Te, ωe, Con, rair, Tcool]
T indicates the engine torque, engine speed,

vehicle on/off command, exhaust airflow rate and coolant temperature, respectively. Func-

tion h(Tcat(k), z(k), θ(k), cyc(k)) is the dynamics of the catalyst temperature. The purpose

of imposing an exhaust constraint is to guarantee that the speed for catalyst temperature

to reach the light-off temperature with optimal parameters is faster than the speed with

nominal parameters, which is given by

∆Tcat(i) ≥ ∆Tnom(i), i = 1, . . . , io, (2.13)

where io is the time step needed for the catalyst temperature to exceed the light-off temper-

ature and ∆Tnom(k) indicates the catalyst temperature difference with nominal controller

parameters.

From the discussion above, one can see that there exists a relationship between the

controller parameters and fuel efficiency. Moreover, as mentioned in the previous section,

V2V/V2I information can be characterized to predict future vehicle speed. It is a natural

approach to use this information to pre-organize power management. Thus, in this study,

we propose the following co-optimization problem.

Co-optimization problem. Minimize the fuel consumption represented by the cost

function J in (2.10) of the HEV with the selected controller parameters {θ1, θ2, θ3} as a

set of decision variables and the future driving speed cyc as an additional input to the
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cost function (2.10). At the same time, consider the catalyst temperature described in

(2.12) - (2.13) and the HEV dynamics in (2.11) as optimization constraints to guarantee

the emission reduction and proper HEV operation.

Trade-off between fuel saving and emission reduction. As mentioned in Section

I, most methods to minimize fuel consumption will result in the increase of harmful gas

emissions. It is difficult to reduce fuel consumption and harmful gas emission at the same

time. In this work, our primary goal is to achieve fuel saving. In the mean time, the effect

of the exhaust system is considered as an additional constraint to the fuel optimization

problem.

2.3 Co-Optimization Scheme Design

In this section, the equivalent optimization model using an NN is derived first. Then

the optimization problem is solved to obtain the optimal parameter tuning strategy.

2.3.1 Equivalent NN Models

For the optimization problem formulated in (2.10) - (2.13), the relationship between fuel

consumption and powertrain control parameters is highly nonlinear as it can be seen from

(2.1) - (2.5) and (2.7) - (2.8). Although one can solve the co-optimization problem directly

from these first-principles models, the calculation is significant because these three param-

eters must be tuned simultaneously. Thus, this work develops a simplified yet equivalent

NN model to represent the optimization framework. This allows the optimization problem

to be much more simply solvable based on the equivalent NN model [1, 67].

Artificial Neural Networks (ANN) have been successfully used in nonlinear complex

function approximations and many areas of artificial intelligence studies [68]. There have

been many neural network structures for learning algorithms. Multi-layer feed-forward

(MLF) neural networks are the most commonly used neural networks, and they have been

applied to a wide variety of scientific problems [69]. Fig. 2.8 is an example of an MLF neural

network. A neural network consists of many neurons in each layer, where every neuron has
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a bias, weight coefficient and activation function. Each neuron receives signals from other

connected neurons and sends signals to the next layer by passing through its activation

function. The neural network is trained using back-propagation training algorithms.

inputs x

input layer
hidden layer

output layer

outputs yNN

Figure 2.8: Neural network example.

NN approximation for nonlinear systems. Consider the nonlinear system given as

y(k) = f(x(k)) (2.14)

where x(k) is the system input and y(k) is the system output. the above nonlinear system

can be approximated with a neural network model as

yNN (k) = w2φ(k) + b2 (2.15)

φ(k) = L(ψ(k)) (2.16)

ψ(k) = w1x(k) + b1 (2.17)

where, x(k) ∈ Rn are the neural network inputs, y(k) ∈ Rm are the neural network outputs,

w1 ∈ Rn×m, w2 ∈ Rm are the weights, b1 ∈ Rn, b2 ∈ R are the bias, φ(k) corresponds to

the output of the hidden layer, L is the activation function (such as ’Relu’ function) of

the hidden layer, ψ(k) corresponds to the output of the input layer. The weight and bias

update rule for the neural network is a gradient based adaptation given by:

wi+1
N = wiN + ∆wiN (2.18)
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bi+1
N = biN + ∆biN (2.19)

∆wiN = −α∂E(k)

∂wiN
(2.20)

∆biN = −α∂E(k)

∂biN
, N = 1, 2 (2.21)

where α > 0 is the learning rate of the neural network, i is the iteration number, ε(k) is

the loss function to be minimized by updating the weights. The loss function for the NN

training is defined as

E(k) =
1

2
ε2(k) (2.22)

ε(k) = yNN (k)− y(k), (2.23)

where y(k) is the output obtained from the original system, ε(k) is the estimation error

between the actual output and the predicted output. With the use of neural network,

one can represent the co-optimization problem formulated in (2.10) - (2.13) with neural

networks.

Training procedure One can use the following procedure to train the NN model

described above: (a) use random sampling methods to generate N different choices of

controller parameter dynamics; (b) run the simulation model with different choices of con-

troller parameter dynamics and different driving cycles; (c) collect the time-series-based

input/output data for the training of the equivalent NN-based cost function model, state

dynamic model, and catalyst temperature dynamic model; (d) train the NN model based

on the input/output data collected from the simulation. Using this training procedure, one

can obtain the equivalent NN model for the co-optimization problem as follows.

Cost function approximation. The NN equivalent expression of the cost function

(2.10) is given by

Ĵ =
n∑
k=1

∆f̂(θ(k), cyc(k)), (2.24)
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where ∆f̂ is expressed by the NN as

∆f̂(k) = wc2L1(wc1yf (k) + bc1) + bc2, (2.25)

which is an NN with one input layer: yf (k) = [θT , cycT ]T ∈ R3+kmax . The inputs in yf (k)

are the controller parameters (i.e., θ = [θ1, θ2, θ3]T ) and the number of available future speed

steps, one hidden layer with twenty neurons, one output layer with the output as the fuel

consumption; wc1 ∈ R20×(3+kmax), wc2 ∈ R20×1 are the weights; bc1 ∈ R20×1, bc2 ∈ R are

the biases; and L1 is the activation function, which is a ‘ReLU’ function in this case. The

prediction results with NN in (2.24)-(2.25) are shown in Fig. 2.9, where the blue curves are

the actual fuel consumption and the red curves are the fuel consumption from NN model.

Based on the prediction results, one can conclude that the NN model in (2.24) - (2.25) is a

good equivalent expression of the cost function (2.10).

State constraint function approximation. The NN equivalent model of the state

constraints (2.11) is

ĝ = ws2L2(ws1ys(k) + bs1) + bs2, (2.26)

which is an NN with one input layer: ys = [xT , θT , cycT ]T ∈ R9+kmax , one hidden layer

with twenty neurons, and one output layer; ĝ is the equivalent expression of g in (2.11);

ws1 ∈ R20×(9+kmax), ws2 ∈ R20×6 are the weights; bs1 ∈ R20×1, bs2 ∈ R6×1 are the biases;

and L2 is the ‘ReLU’ activation function. The state prediction results from NN are shown

in Fig. 2.11. Based on the prediction results, one can conclude that the NN model in (2.26)

is a good equivalent expression of the state constraints (2.11).

Exhaust constraint function approximation. Similarly, the NN equivalent model

for the exhaust constraint (2.12) is given by

∆T̂cat(k + 1) = wt2(L3(wt1yt(k) + bt1) + bt2, (2.27)

which indicates an NN with one input layer yt = [T Tcat, z
T , θT , cycT ]T ∈ R9+kmax , one hidden

layer again with twenty neurons, one output layer with its output representing the catalyst
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(a) error histogram (b) cycle 1 prediction

(c) cycle 2 prediction (d) cycle 3 prediction

Figure 2.9: Neural network fuel prediction results.

temperature difference. In equation (2.27), wt1 ∈ R20×(9+kmax), wt2 ∈ R1×20 are the weights;

bt1 ∈ R20×1, bt2 ∈ R1×1 are the biases; and L3 is the ‘ReLU’ activation function. The results

of prediction are displayed in Fig. 2.11. It can be concluded that the NN represented by

(2.27) is a good equivalent expression of the exhaust constraints (2.12).
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Figure 2.10: Neural network training performances for fuel consumption predictions.

2.3.2 Equivalent Optimization Problem Description

Once all the equivalent NN models are obtained, the equivalent optimization problem

is to solve the tuning of θ to minimize fuel consumption using the equivalent cost function

Ĵ =

n∑
k=1

∆f̂(θ(k), cyc(k)), (2.28)

and satisfy the following equivalent NN represented constraints:

x(k + 1) = ĝ(x(k), θ(k), cyc(k)) + ε1 (2.29)

∆Tnom ≤ ĥ(Tcat(i), z(i), θ(i), cyc(i)) + ε2, (2.30)

where ε1 and ε2 are bounded constants that indicate the estimation error upper bound for

the state constraint and exhaust constraint respectively, i = 1, . . . , io indicates the time step

required for the catalyst temperature to exceed the light-off temperature, and ∆Tnom(k)

indicates the catalyst temperature difference between step k and k − 1. Equation (2.30)

guarantees that with the choice of optimal controller parameters, the catalyst temperature

reaches the light-off temperature no more slowly than the system with a nominal controller

parameters.
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Figure 2.11: Neural network state constraint prediction results.
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Figure 2.12: Neural network training performances for state constraint predictions.

2.3.3 Co-Optimization Based Parameter Tuning Strategy

To derive the parameter tuning law, we need to solve the equivalent co-optimization

problem described in (2.28) - (2.30) to obtain tuning of optimal controller parameter θ(k)

as a function of {x(k), z(k), cyc(k)}. Since cyc(k) is obtained using V2V/V2I information,

such an optimal tuning of θ(k) will actually depend on V2V/V2I information.

Parameter tuning law. The purpose of solving the optimization problem (2.28) -

(2.30) is to find out the optimal relationship between θ(k) and V2V and V2I information

embedded in cyc(k) so that the fuel consumption J is minimized.

Since the cost function is in the accumulation form, we only need to solve θ for Ĵk =

∆f̂(k) at each time frame (k − 1)T, kT ], which is equivalent to solving ∂Ĵk/∂θ = 0. With

the expression of ∆f̂(k) in (2.25), the optimization problem is summarized to solve θ for

∂Ĵk
∂θ

= 0 (2.31)

∆Tnom ≤ ĥ(Tcat(i), z(i), θ(i), cyc(i)) + ε2 (2.32)

x(k + 1) = ĝ(x(k), θ(k), cyc(k)) + ε1, i = 1, . . . , io, (2.33)

where wc1 = [wθ, wcyc] is the corresponding weights with controller parameter vector θ(k)

and the future driving information cyc(k). Equations (2.31) - (2.33) can be solved using
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(a) error histogram (b) cycle 1 prediction

(c) cycle 2 prediction (d) cycle 3 prediction

Figure 2.13: NN catalyst temperature prediction results.

the Matlab build-in optimizer “fmincon.” The solution to (2.31) - (2.33) can be written in

the following form:

θ(k) = Ψ(x(k), z(k), cyc(k)). (2.34)

This optimal parameter tuning law for {θ1, θ2, θ3} indicates that the dynamics of power-

train parameters depend on powertrain states, exhaust states, and future driving conditions

represented by V2V/V2I information.

Co-optimization control scheme. With the parameter tuning strategy obtained in

(2.34), the co-optimization control scheme designed in this study can be summarized in the

following steps:
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Step 1: Use the data generated from the system in (2.1) - (2.5) and (2.7) - (2.8) to train the

NN for the co-optimization problem in (2.25) - (2.27) to obtain the equivalent cost function

and constraints;

Step 2: Solve the equivalent co-optimization problem described in (2.28) - (2.30) for θ(k),

and obtain the parameter tuning law (2.34) for θ(k) = Ψ(x(k), z(k), cyc(k));

Step 3: Since at each time step k, x(k), z(k), cyc(k) are known, we can calculate the optimal

controller parameter vector θ(k) according to the parameter update law. Thus, one can set

the controller parameter values in the controller (2.7) and (2.8) to achieve fuel consumption

minimization.

The implementation on the actual vehicle of the above optimization requires minor

changes to the HEV powertrain control because only a little tuning is required for the

control parameters embedded in the hybrid controller functional block in Fig. 2.1.

2.4 Simulation Study

This simulation study is based on the integrated Matlab/Simulink model for the HEV

powertrain and exhaust system described in Section 2.1.2. The co-optimization problem is

to solve the tuning of θ in line with V2V and V2I information to minimize fuel consumption.

The simulation results are shown in this section. First, the optimization result for

fuel saving is given, and then the optimal parameter trajectory is calculated based on

the optimization result. Then, the algorithm was tested under conditions in which the

availability of future driving information in terms of V2V/V2I varied. The purpose of such

tests is to analyze the effect of V2V/V2I on fuel savings. Finally, we tested our algorithm

on different driving cycles to obtain the average fuel saving for the proposed method.

Optimization results. The co-optimization scheme has been first tested with two steps

of future driving information (cyc(k) = [v(k), v(k + 1), v(k + 2)]) with step size T = 2s.

Fig. ?? shows the optimization results, where the blue curves are the nominal system

performance with a nominal optimal choices of controller parameters, and the red curves

are the optimal system performance with parameter tuning. Fig. ?? shows the responses of
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the fuel saving, catalyst temperature, battery SOC and the driving cycle information. One

can see that a 9.8% fuel saving has been achieved on this driving cycle, and the speed for

catalyst temperature to reach the light-off temperature (200°C) is similar for both nominal

and optimal cases. The battery SOC plots show that both cases will have similar battery

charging performance, indicating that the fuel saving is not from the increased use of the

battery. The optimal parameter tuning trajectory is shown in Fig. ??. The blue curves

are the optimal parameter trajectories, the red curves are the nominal optimal controller

parameter values, and, the green curves are the driving cycles. From this figure, one can

see that the parameter tuning is sensitive to change in vehicle speed, indicating the effect

of V2V/V2I embedded in the future driving information on fuel saving.

1

0 100 200 300 400
0

0.05

0.1

0.15

0.2

time (s)

fu
e

l 
c
o

m
s
u

m
p

ti
o

n
 (

k
g

)

Fuel consumption plot

 

 

0 100 200 300 400
0

100

200

300

400

500

600

time (s)

te
m

p
e

ra
tu

re
 (

C
)

Catalyst temperature plot

 

 

nominal parameter

optimized parameter

0 100 200 300 400

0.58

0.6

0.62

0.64

0.66

time (s)

S
O

C
 p

o
w

e
r

SOC plot

 

 

0 100 200 300 400
0

5

10

15

20

25

30

35

40

time (s)

s
p

e
e

d
 (

m
p

h
)

drive cycle plot

Figure 2.14: Optimal system performance.

Influence of V2V/V2I information. The availability of V2V/V2I embedded in fu-

ture driving information will change the co-optimization model. This might influence the

fuel saving results. To test the influence of future driving cycle information to parameter
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Figure 2.15: Optimal parameter trajectory.

tuning strategy and fuel savings, we tested our algorithm with different numbers of available

future steps used in the optimization. For this purpose, we did this test for several different

driving cycles. Fig. 2.16(a) shows the relationship between future driving cycle information

availability and fuel saving. We chose step size T = 2s. In this simulation study, when the

future driving information is unavailable, we still apply our co-optimization algorithm to

generate optimal parameter trajectory instead of directly using the nominal optimal con-

troller parameter. Based on our result, one can observe that without V2V/V2I information,

less fuel saving can be achieved with our co-optimization algorithm. Moreover, a maximum

fuel saving is reached when 8 seconds (4 steps) of future driving information is available.

What is interesting is that longer future driving prediction does not necessarily improve

fuel saving.

(a) Fuel saving with different future driving informa-
tion

(b) Fuel saving in 10 driving cycles

Figure 2.16: Fuel saving results.
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Fuel saving summary. To test the fuel-saving ability of the proposed parameter co-

optimization strategy, we used our algorithm to test fuel saving for 10 different driving

cycles, with future speed information fixed to 4 steps ahead. An average of 9.22% of fuel

saving is achieved. Fig. 2.16(b) shows the fuel saving of the individual driving cycle tested.

Discussion. Based on the simulation results, we can see that our co-optimization

design can achieve an average fuel saving of 9.22% for the 2017 Toyota Prius hybrid. From

the optimization results, it can be seen that there exists a relationship between V2V/V2I

information and optimal control parameter value, which can be derived by solving the

optimization problem.

2.5 Conclusions and Future Work

In this work, a parameter co-optimization scheme for the HEV powertrain and exhaust

system designed to minimize fuel consumption by using V2V/V2I information is described.

An optimization framework was formulated, and an equivalent NN optimization model

(including both the equivalent cost function model and the equivalent constraints model)

was built. Then the optimization problem was solved, and the parameter tuning strategy

was obtained. The simulation study described in this study verified the parameter co-

optimization design. From the simulation result, it can be concluded that a significant fuel

saving can be achieved.

The significance of this work is to take future driving conditions and the effect of the

exhaust system into consideration in fuel consumption minimization design. This method

can be easily applied for vehicles on the market to save fuel. However, the work is based

on the simulation using real-system data, and the goal of future work would be to test the

effect on the fuel savings on actual vehicles.



Chapter 3

System Identification and Traffic

Signal Control for Large Traffic

Networks in Urban Areas

This chapter developed a system identification scheme and an LQR traffic signal con-

troller for large traffic networks in urban areas. Compared with conventional signal control

methods, the proposed research is a novel approach to implement on-line parameter esti-

mation based LQR control in traffic signal controls for large traffic networks.

Although the methods addressed in the literature in Section 1.2.2 are widely used, the

aforementioned traffic-responsive control systems have several limitations and challenges:

• Relying on off-line traffic-network models: Although using real-time traffic data

as an input, the network models used by SCOOT and OPAC are built based on his-

torical data and are not updated during their real-time operations. Because historical

data may not accurately reflect current traffic conditions [43], these control strategies

may potentially result in poor performance.

• Exponential complexity for global minimization: Similar to OPAC, because of

the presence of discrete variables that require exponential-complexity algorithms for a

36
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global minimization, the control strategies may not be real-time feasible for large-scale

traffic networks [70].

• Ignoring interactions between intersections: In TUC, traffic systems are mod-

eled at intersection level, and the impacts of the traffic states in neighborhood inter-

section and control inputs on the travel delays of investigated intersection are ignored.

To address these limitations, this study proposes a new multi-input and multi-output

(MIMO) traffic signal control method that can not only improve network-wide traffic oper-

ations in terms of reduced delay and energy consumption, but also is more computationally

feasible than existing centralized signal control methods. Considering intersection interac-

tions, a linear dynamic traffic system model was built and updated online to reflect how

signal control inputs at each intersection would affect network-wide vehicle delays. Based

on the system model, an LQR was built to minimize both traffic delay and control-input

changes [71]. We select LQR because it has the following advantages over other control

strategies from the control design perspectives: 1) LQR is a simple optimal control that

can be made adaptive in combination with system parameter estimation; 2) LQR is robust

with respect to model uncertainties and errors as well as unexpected disturbances; and

3) LQR is easy to be implemented as a MIMO control strategy that produces a feedback

control for a large networked intersection whilst automatically takes care of the handling of

intersection interactions. Indeed, compared with the existing methods, the proposed adap-

tive LQR traffic control algorithm does not rely on large historic datasets to identify the

unknown traffic model. Moreover, using LQR control with a MIMO linearized model can

achieve minimal traffic delay while considering neighboring intersection interactions. The

proposed control method was implemented and evaluated in a microscopic traffic simula-

tion environment with a 35-intersection network of Bellevue City, Washington. Simulation

results show that the proposed method had shorter average travel delays in the network

when compared with the delays controlled by the methods proposed in the state-of-the-

art max-pressure [41], self-organizing traffic lights (SOTL, [42]), and independent deep Q

network (IDQN) controls, [72].
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The major contributions of this chapter include:

• Proposed a globalized modeling framework for network-wide traffic signal control using

calibrated VISSIM model via real traffic flow data. In this framework, intersection

interactions were explicitly modeled by a MIMO linear time-varying traffic system

model that reflects how the signal control input at each intersection affects network-

wide vehicle delay measurements.

• Established an adaptive LQR based traffic signal control method for traffic networks.

The method can identify unknown system dynamics online, thus being able to handle

system uncertainties caused by traffic and environmental randomness.

• Cross-compared the performances of several traffic signal control methods based on a

real-world data-based microscopic traffic simulation model.

3.1 Urban Traffic Network and Simulation Model

3.1.1 Traffic Network

This study focuses on urban road networks with signalized intersections. Specifically,

a grid road network from downtown Bellevue, Washington was selected as the area of the

networked intersections in this study. The study area covered from Main Street (the south

end) to NE 12th Street (the north end) and from Bellevue Way NE (the west end) to 112th

Ave NE (the east end). It included 35 intersections and 57 major bi-directional road links,

with the average link length being 664.4 ft.

To replicate real-world traffic conditions, traffic count data by movement were collected

for each intersection in the midday off-peak period (i.e., 1-2 p.m.). Fig. 3.1a shows the

traffic counts of the northwest corner intersection (i.e., NE 12th Street and Bellevue Way

NE) of the study area as an example. Link traffic volumes were calculated by aggregating

traffic movement counts in the same direction as shown in Fig. 3.1b [2].
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Figure 3.1: Illustration of (a) traffic count by movement data (left) and (b) traffic volume
data in the road network [2].

3.1.2 Microscopic Traffic Simulation Model

In this study, PTV VISSIM [73], a commonly used microscopic software for traffic sim-

ulation and signal controls, was used to facilitate the development and testing of different

traffic signal control methods [6,7,9,10]. VISSIM uses Wiedemann car-following and lane-

changing models [74,75] to model the movements and interactions of vehicles. The VISSIM

traffic model shown in Fig. 3.2 was developed based on actual road geometries of the study

area. This microscopic simulation model has been calibrated by the City of Bellevue with

actual traffic data and has been used for planning and management purposes in down-

town Bellevue [2]. The calibration process involved adjusting parameters including vehicle

composition, speed distributions, conflict areas, priority rules, reduced speed areas, and

car-following and lane-change behaviors to ensure that the simulation was consistent with

the traffic characteristics of the real-world.
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Figure 3.2: Illustration of the VISSIM simulation model for the investigated urban traffic
network [2].

3.2 Traffic Signal Controller Design

3.2.1 Traffic System Modeling

The subject traffic network comprises 35 intersections, and the green time for each

intersection could affect the traffic flow performance of the whole system. In this study,

we assume a fixed signal cycle length (90 s) with two phases: the east and west (E-W)

approaches share one phase, and the north and south (N-S) approaches share the other

phase so as to simplify the control algorithm formulation. As shown in Fig. 3.3, the N-S

direction green time of intersection i is denoted as vi with i = 1, 2, ..., 35. In practice, both

the signal cycle length and the initial green time can be derived based on the widely used

Webster’s method [76], which considers both the saturation flow rate and the flow ratio for
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each lane group. It is assumed that each intersection had two delay measurements: one for

the N-S direction and the other for the E-W direction. Therefore, there are a total of 70

delay measurements for the 35 intersections. Mathematically, the traffic network described

in Section 3.1.1 can be expressed as a discrete-time input-output and real-data calibrated

model in VISSIM [73] as:

z(k + 1) = F (z(k), v(k)) (3.1)

z(k) = [z1, z2, ..., z70]T (3.2)

where z(k) ∈ R70 are the system outputs, which are the measurable traffic delays of N-S

and E-W direction vehicle flows at each node; v ∈ [vmin, vmax] ∈ R35 are the system control

inputs comprised of all vi, indicating the N-S direction green times of the intersections; and

k denotes the time step (i.e., the cycle number). F stands for the nonlinear relationship

between traffic delays and the green signal period of the N-S direction as represented by

VISSIM simulation [73].

Assuming that the nonlinearity of the traffic system is linearizable, one can linearize the

system (3.1) to the state-space form as

∆z(k + 1) = A∆z(k) +B∆v(k) + w(k), (3.3)

where

A =


a1,1 . . . a1,70

...
. . .

a70,1 . . . a70,70

 ∈ R70×70, B =


b1,1 . . . b1,35

...
. . .

b70,1 . . . b70,35

 ∈ R70×35, (3.4)

are the system parameters, and ∆z(k) = z(k) − z(k − 1), ∆v(k) = v(k) − v(k − 1) are

the increment of z and v at time step k. w(k) is the bounded linearization error, which

satisfies ||w(k)||2 ≤ wb for k = 1, 2, . . . , and wb is the bound for the error w(k). Based upon

our comprehensive linearization around all the possible operating points of model (3.1),
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Figure 3.3: Illustration of the notations for signal control inputs and traffic delay measure-
ments.

the value of wb = 4.5 s in terms of travel delay. This will be used as a threshold in the

normalized least squares algorithm to be described for estimating A and B matrices. To

simplify notation, we denote ∆z = y and ∆v = u, and rewrite the linearized state-space

form as

y(k + 1) = Ay(k) +Bu(k) + w(k). (3.5)

Because the direct mathematical relationship between traffic delay and green signal period

is unknown, the linearized parameter matrices A and B are unknown and possibly time-

varying, and we need to design a parameter estimation scheme to estimate the system

parameter matrices A and B online.

Control Objectives. The control objective is to design an online estimation based

LQR controller with unknown system parameter matrices A and B to minimize the traffic
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delay characterized by y(k) with low control energy. This constitutes the minimization of

the following cost function by selecting an optimal signal timing strategy u(k):

J =
∞∑
k=0

[yT (k)Qy(k) + uT (k)Ru(k)], (3.6)

where Q = QT > 0 and R = RT > 0 are positive definite matrices with relevant dimensions.

They denote the pre-specified state-cost weighting matrix and input-cost weighting matrix,

respectively. This is the standard LQR cost function widely used in the literature [77].

3.2.2 Online Parameter Estimation Scheme

Before starting the LQR controller design, one needs to identify the system parameter

matrices A and B using system identification techniques [13, 78–80]. To this end, the

linearized system (3.5) can be parameterized as follows:

y(k + 1) = ΘΦ(k) + w(k), (3.7)

where

Θ =

[
A B

]
=


a1,1 . . . a1,70 b1,1 . . . b1,35

...
. . .

...
. . .

a70,1 . . . a70,70 b70,1 . . . b70,35

 ∈ R70×105 (3.8)

Φ =

[
yT uT

]T
=

[
y1 y2 . . . y70 u1 u2 . . . u35

]T
∈ R105, (3.9)

where Φ groups all the measurable inputs and outputs and is the information vector

used in the estimation of Θ.

Estimation Error. To estimate the system parameter matrices A and B, we denote

Θ(k) ∈ R70×105 as the estimate of Θ at cycle k. Then the estimation error is defined as

ε(k) = Θ(k − 1)Φ(k − 1)− y(k) (3.10)
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= Θ(k − 1)Φ(k − 1)−ΘΦ(k − 1)− w(k − 1) (3.11)

In this work, we assume that the bound for the linearization error term w(k) is small, and

the effect of the term w(k) can be neglected in the control design due to the inherent strong

robustness property of LQR control strategy and the use of the following normalized least

squares estimation algorithm, [81].

Parameter Update Law. As it has been shown that the normalized least squares

identification is robust to possible modeling uncertainties such as the linearization errors in

(6) [81], it is used here to provide the required estimates for parameter matrices A and B.

The estimation updating rule for k = 0, 1, 2, ... is therefore given by:

Θ(k + 1) =


Θ(k)− P (k−1)Φ(k)ε(k)

m2(k)
||ε(k)|| > wb

Θ(k) ||ε(k)|| ≤ wb
(3.12)

P (k) = P (k − 1)− P (k − 1)Φ(k)ΦT (k)P (k − 1)

m2(k)
(3.13)

m(k) =
√
κ+ ΦT (k)P (k − 1)Φ(k), (3.14)

where κ > 0 is the pre-specified design parameter normally less than 0.05. P (k) is a positive

definite variance matrix and its initial value is P (0) = I with I being an identity matrix.

Θ(0) = Θ0 is the chosen initial estimates of the parameter matrices A and B. The above

parameter estimation can be regarded as an online learning process where the parameter

matrices A and B are learned using input and output data grouped in Φ when the cycle

number k increases.

It can be seen that (3.12) has a switching function, when the error ε(k) is smaller than

or equal to the lower bound of w(k), the parameter updating is stopped and the k+ 1 cycle

estimate is its estimate at k. This functionality enhances the robustness of the estimation

algorithm so as to make it robust with respect to linearization error w(k) [81].
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3.2.3 LQR Controller Design

When system parameter matrices A and B are known, one can choose the following

LQR state feedback control law as

u(k) = −Ky(k), (3.15)

where the state feedback gain matrix K is obtained by solving the following Riccati equation

for matrices S = ST > 0 and K simultaneously [77]:

ATSA− S −ATSBK +Q = 0 (3.16)

K = (BTSB +R)−1BTSA. (3.17)

Adaptive LQR Controller. Because system parameter matrices A and B are esti-

mated according to the parameter update law (3.12)-(3.14), one can obtain A(k) and B(k)

from Θ(k) = [A(k), B(k)] and (3.12) at each cycle k. Therefore, the adaptive LQR con-

troller can be obtained by replacing A and B in (3.16) and (3.17) with their estimates at

each cycle k. This leads to the following adaptive LQR control law

u(k) = −K(k)y(k) (3.18)

where adaptive gain matrix K(k) is obtained by solving the Riccati equation for matrices

S(k) = ST (k) > 0 and K(k) at each cycle k as follows:

0 = AT (k)S(k)A(k)− S(k)−AT (k)S(k)B(k)K(k) +Q (3.19)

K(k) = (BT (k)S(k)B(k) +R)−1BT (k)S(k)A(k). (3.20)

3.2.4 Adaptive LQR Algorithm Summary

With the real-data calibrated system model (3.1), the above adaptive LQR control

algorithm is realized in the following steps:
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1. Calibrate VISSIM model (1) using real traffic data so that system model (1) gives a

desired reflection of the actual system dynamics;

2. At time k, use input and output data from VISSIM nonlinear system (3.1) to estimate

parameters {A(k), B(k)} by (3.12) – (3.14);

3. For the estimated {A(k), B(k)}, solve the Riccati equation (3.19) – (3.20) for adaptive

control gain K(k);

4. Apply control input (3.18) to the signal timing to all intersections in Figs. 3.1 and

3.3 as represented by system nonlinear model (3.1); and

5. Set k = k + 1 and go to Step 2.

Fig. 3.4 shows the closed-loop control structure and the information flow chart of the

above adaptive LQR control algorithm.

Actual 35 intersection 
network (Fig. 1)

VISSIM nonlinear 
system model (1) 

calibrated with real data

Estimation to model (6) 
via (13) - (17)

Adaptive LQR design 
(19) - (20) using   

{A(k), B(k)}

u(k) = - K(k)y(k)

y(k)

y(k)^

u(k) ε(k)

+

-

Real data

A
da

pt
iv

e 
LQ

R
 

co
nt

ro
l l

oo
p

Calibrated data

A(k), B(k)

Figure 3.4: The adaptive LQR closed loop control structure and the information flow chart.



47

The above algorithm shows that as travel delay state vector y(k) is assumed measurable,

it is used as a state feedback information in the construction of the closed loop control.

3.2.5 Robustness of the Proposed Algorithm

It is worth noting that the control signal calculated from (3.18) is directly applied to the

nonlinear system (3.1) which had been calibrated using real-traffic flow data, rather than

to linearized system (3.5). The simulation results in the following sections would show the

desired robustness of the proposed algorithm with respect to the linearization error w(k) in

(3.5). Indeed, as it has been shown that LQR has a good robustness with respect to model

uncertainties in terms of providing infinite gain margin [77], the proposed control algorithm

is also robust with regard to the model uncertainties. In addition, the normalized least

squares with switching functionality as shown in (3.12) is robust with respect to modelling

error w(k) of the system. As a result, the proposed algorithm is robust because of the use of

LQR. together with the normalized least squares algorithm for the estimation of parameter

matrices {A(k), B(k)}.

Moreover, looking at the system model (3.1), it can be seen that adding more signal

phases at each intersection will not constitute difficulties in the control design as this would

just increase the dimensionality of input u(k) and y(k) in (3.5), while the control design

methods remains the same as those in (3.18) – (3.20).

3.2.6 Coordination and Scalability Issues

Since the proposed adaptive LQR control is obtained using the MIMO model in (3.5),

it is a multivariable control that automatically takes into account of the interactions among

all the intersections as the off-diagonal elements in matrix A are normally non-zeros, where

the coupling feature among intersections are taken care of when control input vector (3.18)

is applied to the system (3.1). This is the advantage of using multivariable control to deal

with the signal timing for the networked intersection area as shown in Fig. 3.1.

Moreover, if more intersections in the traffic network need to be added, instead of
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rebuilding the entire traffic model (3.5), we can build subsystems relating only to the neigh-

boring intersections and use our MIMO control algorithm in a decentralized way, which

does not alter the core LQR design as represented in (3.18) – (3.20). In this context, our

adaptive LQR control algorithm can be made scalable in practice. Indeed, the same method

can also be made decentralized by using sub-blocks in matrices A and B, which leads to

de-centralized design equations of the same form as expressed in LQR control gain solution

(see (3.15) – (3.20)).

3.3 Baseline Methods and Ablation Study

The performance of the proposed method (adaptive LQR control) was compared with

that of three baseline methods: max-pressure, SOTL, and independent deep Q network

(IDQN) control methods. Additionally, an ablation study was conducted to test the effec-

tiveness of the proposed method in modeling the system (compared with linear feedback

control) and updating system parameters online (compared with offline LQR control). All

of these signal control methods were implemented using the VISSIM COM interface.

3.3.1 Baseline Methods

Max Pressure. The max-pressure traffic signal control method was inspired by the max

pressure algorithm [82] in the field of communication network, which considers the routing

and scheduling of packet transmission in a wireless network. Specifically, the max-pressure

traffic signal control method models traffic flows as substances in a pipe and optimizes traffic

signals to maximize the relief of pressure between incoming and outgoing lanes [83]. The

pressure for a certain phase p is defined as:

Pressure(p) =
∑

l∈Lp,inc

|ql| −
∑

l∈Lp,out

|ql| (3.21)

where l stands for traffic lanes; ql is the average vehicle queue length in lane l during the last

updating time interval; Lp,inc is the set of incoming lanes that have green lights in phase p;
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and Lp,out is the set of outgoing lanes from all incoming lanes in Lp,inc.

The max-pressure method does not have a fixed cycle length. Instead, the algorithm

predefines an updating time interval (40 s in this study). At the beginning of each time

interval, the algorithm examines the pressures of all signal phases and chooses phases with

the maximum pressure as green phases in the incoming time interval. According to an open-

source evaluation conducted by [83], the max-pressure method has the best performance

compared with Webster’s method [76], SOTL [84], DQN [72] and deep deterministic policy

gradient (DDPG) [85].

SOTL. Similar to the max-pressure method, SOTL [42] does not have a fixed cycle

length. Each red-light phase counts the cumulative number of vehicles that arrived during

its red light period (ki). When ki is greater than a predefined threshold, the current green-

light phase switches to red with ki = 0, while the red light that counted turns green. During

implementation, minimum green phase duration is applied.

IDQN. The DQN-based traffic signal control has a predefined updating time interval,

similar to that of max-pressure control. At the beginning of each time interval, the DQN

agent outputs an action based on the current state. This action determines which phase

will turn green for the upcoming time interval. We have implemented the independent

DQN-based traffic signal control using the algorithm in [83], where each intersection had a

local DQN agent that took local state as input and determined actions for that intersection.

The Q networks for these agents were updated independently. The state, action, reward,

and Q network architecture were defined as follows.

• State: queue and delay of incoming lanes, and the most recent green phase at each

intersection. The queue and delay are continuous variables, while the most recent

green phase is encoded as a one-hot vector;

• Action: which phase should turn green for the upcoming time interval? In this study,

two phases (N-S and E-W) were considered;

• Reward: global reward was used, i.e., the negative average vehicle delay for the whole
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traffic network was used. Since the reward function is used only during offline training,

we can assume that the average network delay is available;

• Q network: two hidden layers of 3|S| fully connected neurons with the ReLU activation

function, where |S| = 6 is the dimension of the state. The output layer has two neurons

corresponding to the two phases.

3.3.2 Ablation Study

An ablation study was conducted to further assess the performance of the proposed

adaptive LQR control method. Two variants of the proposed method were considered in

this ablation study: 1) a linear feedback control, which models the network system in a

simple linearization form between delay and green time; and 2) an offline LQR method that

uses the same initial A,B matrices as those used in the proposed method. Considering the

performance difference between the proposed method and the offline LQR method might be

insignificant under normal off-peak volumes since the A,B matrices were estimated based

on off-peak traffic conditions, the ablation study was conducted using 150% of the off-peak

traffic volumes in VISSIM.

Linear Feedback Control. For the linear feedback control [86], system model (3.1) is

linearized to a simple form:

∆z(k) = H∆v(k), (3.22)

where z ∈ R70 are the traffic delays of N-S and E-W direction vehicle flows at each node,

v ∈ [vmin, vmax] ∈ R35 are N-S direction green times of the intersections, and H is the

input-output gain matrix. The feedback control strategy is designed as:

∆z(k) = −Γz(k), (3.23)

where Γ > 0 is a design parameter. Applying (3.23) to (3.22), one can obtain the controller

as:

∆v(k) = −(HTH)−1HTΓz(k). (3.24)



51

This variant uses a simplified system modeling approach and can be used to determine how

system modeling contributes to the performance of the proposed method.

Offline LQR. For the offline LQR method, the system matrices A and B defined in (??)

and (3.4) were estimated from historical data and were not updated during the control. This

variant will help show how much gain the adaptive parameter updating design provides.

3.4 Results

This simulation study is in collaboration with Professor Yinhai Wang’s group from the

University of Washington. The proposed method was evaluated in the VISSIM simulation

environment with the 35-intersection network of Bellevue, Washington, as mentioned in Sec-

tion 5.1. VISSIM traffic simulation software is a widely used simulation tool especially in the

transportation engineering field. VISSIM uses Wiedemann car-following and lane-changing

models to model the dynamic movements and interactions of vehicles. Each simulation test

lasted for 5,000 seconds, and multiple (around 30) runs with different random seeds were

conducted for each test case. The parameter initial estimates Θ(0) are chosen within the

range [−10, 10] based upon the linearization tests. The random seed initialized a random

number generator. With various random seeds, different value sequences were assigned to

the stochastic functions in VISSIM, and the simulation of stochastic variations of vehicle

arrivals in the network was achieved [71]. This will affect the following aspect of traffic

simulation.

• Traffic volume: Given an input traffic volume, the actual traffic volume will be a

stochastic variable with its expectation being the set one.

• Vehicle arrival: Vehicles arrive with their time headways following a Poisson distribu-

tion. With different random seeds, vehicle arrival sequences will be different.

• Turn movements: With turn ratio predefined, random seeds will affect which vehicles

will turn right, go straight, or left at an intersection.
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• Driving behavior: The car-following and lane-change behavioral models used in VIS-

SIM contain several random parts (e.g., at steady-state car following, drivers will have

stochastic accelerations around zero).

The average vehicle delays across the whole simulation period were used as the primary

evaluation metric. To investigate how the proposed method can handle various initial traffic

states, different initial N-S green times (20 s, 40 s, and 60 s) were chosen. The idea is that

an unbalanced initial green time (e.g., 60 s) will result in a congested initial traffic state,

whereas a balanced initial green time (e.g., 40 s) may lead to a less congested initial traffic

state. In practice, both the signal cycle length and the initial green time can be derived

based on Webster’s method [35], which considers both the saturation flow rate and the flow

ratio for each lane group. For max-pressure, SOTL, and IDQN controls, there is no initial

green time because they do not have a fixed cycle length.

3.4.1 Comparison with Baseline Methods

TABLE 3.1 presents the performance of the proposed method against the baseline meth-

ods. Given different initial green times, it can be seen that the LQR method outperformed

max-pressure, SOTL, and IDQN methods, especially when the initial N-S green time was

40 s. The performance of the IDQN method was much worse than the other methods, and

this result is consistent with the results presented in [49]. The poor performance of IDQN

might be caused by the independence of the reinforcement learning (RL) agents in different

traffic intersections, where the control algorithm tries to optimize local traffic situations but

fail to cooperate with each other.

Fig. 3.5 presents the changing of average vehicle delay along with the progression of

the simulation time, with initial green time = 20 s, 40 s, and 60 s. With any initial green

times, the proposed LQR method outperformed other baseline methods.

Fig. 3.6 shows the distribution (violin plot) of average vehicle delays across the whole

simulation period. The violin plot shows the probability density of the data at different

values. Based on the interquartile range (IQR) inside the violin plots, it can be observed
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Table 3.1: Travel delays with different initial green times and control methods, under normal
off-peak traffic volume

Init. Green Time (s) Control Method Avg. Veh. Delay (s) Std. Dev.

20 Adaptive LQR 20.34 5.84
40 Adaptive LQR 13.24 2.16
60 Adaptive LQR 16.01 3.59

N/A SOTL 23.73 8.46
N/A Max pressure 22.24 6.93
N/A IDQN 96.83 107.81

that the LQR method constantly maintained smaller values of lower (25%), median (50%),

and upper (75%) quartiles, indicating that its overall performance was consistently better

than other methods compared.

Fig. 3.7 depicts how the LQR method optimized signal splits at each intersection cycle-

by-cycle over the simulation period. In the beginning, all the intersections shared the same

initial N-S green time (e.g., 20 s, 40 s, or 60 s). As time progressed, the N-S green time at

each intersection was updated every cycle (90 s) to reflect the control output designed to

minimize the average travel delay. It can be observed that, at the end of the simulation, the

N-S green times of many intersections centered around 40 s, which is the balanced green

time between N-S and E-W directions (5 s of yellow and red time between green phases),

indicating that traffic volumes in both N-S and E-W directions at these intersections were

similar. The N-S green time in some other intersections, nevertheless, continued to change

throughout the simulation period. For example, with the initial N-S green time being 20

s, almost all intersections’ N-S green time continued to increase throughout the simulation.

This was caused by insufficient N-S green time from the beginning and, since the control was

adjusted cycle-by-cycle, traffic in the N-S direction was never cleared at those intersections.

As a result, the proposed LQR method continued to increase the N-S green time at these

intersections to help push traffic through and minimize average delays.
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(b) Initial N-S green time = 40 s
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(c) Initial N-S green time = 60 s

Figure 3.5: Changing of average vehicle delay during the simulation with normal off-peak
traffic volume. Solid colored lines represent the mean, and shaded areas represent the
mean ± one standard deviation intervals. Results of the IDQN method were not visualized
because of its large delays.

3.4.2 Ablation Study

Table 3.2 and Fig. 3.8 present the results of the ablation study. For different initial N-S

green times, the proposed adaptive LQR method outperformed both the linear feedback
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(c) Initial N-S green time = 60 s

Figure 3.6: Distribution of average vehicle delays over the simulation test period under
normal off-peak traffic volume for comparison among different initial green times. Results
of IDQN were not visualized due to its much larger delays.

and the offline LQR control methods. The results demonstrate that the system modeling

approach and the online parameter updating strategy of the proposed adaptive LQR method

have resulted in improved control performance.

From the above descriptions, it can be seen that the adaptive LQR control is actually
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Figure 3.7: LQR control and changes of N-S green time of the 35 intersections during the
simulation test period with different initial N-S green time under normal off-peak traffic
volume.

performed for the nonlinear system in an adaptive way. It is used for the large-scale nonlin-

ear model for 35 intersections as given in (3.1). To the best of our knowledge, this type of

adaptive LQR has not been applied to such a large network. In the literature below, they
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Table 3.2: Results of ablation study: travel delays with different initial green times and
control methods, with 150% off-peak traffic volume.

Init. Green Time (s) Control Method Avg. Veh. Delay (s) Std. Dev.

Adaptive LQR 29.99 10.07
20 Linear Feedback 59.69 28.24

Offline LQR 44.35 12.37

Adaptive LQR 25.28 9.38
40 Linear Feedback 52.51 26.33

Offline LQR 44.92 14.97

Adaptive LQR 32.99 11.70
60 Linear Feedback 60.41 26.61

Offline LQR 40.56 14.42

N/A SOTL 32.09 10.11
N/A Max pressure 41.70 27.52
N/A IDQN 138.42 149.86

tested LQR-based perimeter control for 16-intersection network, [87].

3.5 Conclusion and future work

This study proposed an adaptive LQR based signal control method for an urban traf-

fic network. A linear dynamic traffic system model was built and adaptively updated to

reflect how each intersection’s signal control input affects network-wide vehicle delays. A

linear-quadratic regulator was then built to minimize both traffic delays and control-input

changes. With a predefined cycle length, the proposed algorithm adjusted traffic signal

control strategies according to observed vehicle delays. The proposed control method was

evaluated in the VISSIM traffic simulation environment with a 35-intersection network of

Bellevue city, Washington. Traffic counts by approach and turn movement were collected

for each intersection to replicate real-world traffic conditions. Simulation results indicate

that the proposed method yielded shorter average travel delays in the network when com-

pared with the state-of-the-art max-pressure, SOTL, and IDQN methods. Results of the

ablation study also show that the proposed method outperformed the linear feedback con-

trol and the offline LQR control under 150% traffic volumes, indicating that the system
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(c) Initial N-S green time = 60 s

Figure 3.8: Results of ablation study: changing of average vehicle delay during the simula-
tion test period with 150% off-peak traffic volume. Solid colored lines represent the mean
and shaded areas represent the mean ± standard deviation interval.

modeling approach and the online parameter updating strategy of the proposed adaptive

LQR method can effectively improve the performance.

Despite the demonstrated advantages, the proposed LQR method in this study has

potential limitations, and future research in the following areas is needed.
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• Currently, the proposed method only models a speicfic cycle length (90 s) with two

phases to find optimal timing and phasing strategies, different cycle lengths and phas-

ing combinations should be explored. However, looking at system model (3.1) or

(3.5), it can be seen that adding more phases at each intersection will not constitute

difficulties as this would merely increase the dimensionality of input u(k) and y(k) in

(3.5), while the control design method remains the same as those in (3.18) – (3.20).

• The current system model assumes no noise in (3.1). Future work is needed to incor-

porate a stochastic noise term into the dynamic traffic system model to better account

for the variability of the traffic system.

• The proposed model assumes that the system can be linearized as shown in (3.3) or

(3.5). Future work will consider nonlinear traffic system modeling approaches, such

as bi-linear and neural network models, aiming to better represent true characteristics

of the traffic system.

• The proposed method has been tested in a traffic simulation environment. Imple-

menting the proposed algorithm in a real-world traffic corridor/network is needed to

test its effectiveness.



Chapter 4

Network Traffic Signal Control

with Adaptive On-line Learning

Scheme Using Multiple-Model

Neural Networks

In this chapter, a network traffic signal control scheme is developed based on a non-

linear approximation of the original traffic network model. The original traffic network

model is approximated with a set of different neural networks, whose weight parameters are

updated along with system operation. Then, a switching law is defined to find the most

accurate approximation of the original traffic network model at each time step. This work

is considered as an extension of the work in Chapter 3. The main contributions of this

chapter include:

• Represented the unknown traffic network dynamic with a set of neural network ap-

proximation models.

• Derived the system identification scheme to update the weight parameters in the

neural network model. Defined a switching law to find the most accurate neural

60
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network approximation.

• Designed an optimal control scheme based on the neural network approximation model

to minimize traffic delay.

4.1 System Model and Control Objective

In this section, the traffic network model is introduced. Then, the control objective is

given in terms of total fuel consumption minimization.

4.1.1 Traffic Network Model

To model a traffic network with m intersections, we can make the following assumptions

which can represent a majority of situations: 1) we assume that each intersection connects

two roads, one from N-S direction and one from E-W direction; 2) we assume that the

standard traffic signal control at each intersection shares a same a fixed signal length (100

s) with two phases: the E-W approaches share one phase, and the N-S approaches share

the other phase. These assumptions are made to simplify the formulation of the control

algorithm. Figure. 5.5 shows an example of the traffic network system, where Figure 4.1(a)

is the traffic network example, Ni,j is the number of the intersection and l1, l2, l3, l4 are

the distance of Ni,j to its neighboring intersections, and Figure. 4.1(b) is the traffic signal

sequence example, with Tcyc = 100 being the fixed signal length.

The traffic network system described above with m intersection can be modeled with a

discrete-time non-linear system as follows:

∆zo(t+ 1) = f(∆zo(t)) + g(∆zo(t))∆v(t), (4.1)

where zo(t) = [zo1(t), zo2(t), . . . , zo2m(t)]T ∈ R2m is the system state vector which is the

average traffic delay of E-W direction and N-S direction at each intersection in the network,

v(t) = [v1(t), v2(t), . . . , vm(t)]T ∈ Rm is the control input, where the components are the

green signal percentage of the E-W direction at each intersection, vi ∈ [0.2, 0.8], i = 1, . . . ,m
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(a) Traffic network example (b) Traffic signal sequence example

Figure 4.1: Traffic network system

indicates that the green signal length signal length should not be shorter than 20 section and

should not exceed 80 second on each direction at every intersection. ∆zo(t) = zo(t)−zo(t−1),

∆v(t) = v(t)− v(t− 1) are the increment of z and v at time step t. f ∈ R2m, g ∈ R2m×m

are the unknown non-linear function with respect to ∆zo, t+ 1 and t represent kT + T and

kT with T being the sampling interval. For this problem, since the state is the average

traffic delay at each intersection and the control signal v will not change within one signal

cycle. The sampling interval T = 100s is chosen to be the same as the signal cycle length.

To simplify notation, we denote ∆zo = yo and ∆v = u are we can rewrite the original

non-linear model as:

xo(t+ 1) = f(xo(t)) + g(xo(t))u(t). (4.2)

Since the direct mathematical relationship between traffic delay and green signal period is

unknown. f and g are unknown nonlinear functions and are very likely to be time varying.

Thus, we need to design a parametrizable model which can accurately approximate the

unknown non-linear relationship f and g online.



63

4.1.2 Control Objective

The control objective is to design an optimal control input u(t) within the range

[umin, umax] for the system (4.2) to achieve minimal travel delay at t+1 time step. This con-

trol objective can be summarized to solving the optimal control problem with cost function

and constraint as:

Jo(t) = PTxo(t+ 1) (4.3)

uj(t) ∈ [umin, umax], t = 1, 2, . . . , j = 1, 2, . . . ,m (4.4)

where P ∈ R2m with every element greater equal to zero, umin, umax are the lower and

upper bound for the control signal u(t), which indicates the maximum change in green

signal period between signal cycles. This bound is used to improve system robustness. This

cost function will change at each time step t, meaning that the optimal controller u(t) is

calculated based on Jo(t) at each time step t. The cost function represent the weighted

summation of the average traffic delay of all the intersections in the traffic network at the

next time step. At each time step t, one can minimize x(t+1), indicating an minimum traffic

delay operation. Moreover, since the plant is a traffic system, the use of history information

in the cost function is not necessary since the traffic system contains high randomness. In

this work, we will design a one-step optimization scheme.

4.2 Nominal Neural-Network Based Design and Parameter-

ization

In this section, the nominal neural-network based design is presented. First, the nominal

neural network approximation is given. Then the nominal neural network based control law

is derived.
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4.2.1 Nominal Neural Network Approximation

Since the traffic system contains high randomness, it is difficult to capture all the system

dynamics in (4.2) with a linear approximation. To develop an effective traffic signal control

scheme, a better identification of the traffic network system is necessary. As mentioned in

Chapter 2, neural network approximation has been commonly used for nonlinear complex

function approximations and many areas of machine learning studies. More importantly,

nowadays the research on machine learning to time series problem has become a key re-

search focus [88]. This has inspired this research to use neural network structure in the

approximation of the traffic system dynamic model. Using recurrent neural networks, a

nominal approximation model of (4.2) can be constructed as:

x(t+ 1) =Ax(t) +W ∗1 S1(x(t)) +W ∗g Φg(x(t), u(t)), (4.5)

where x(t) ∈ R2m, u(t) ∈ Rm are the neural network approximation of system state,

control input, respectively, A ∈ Rn×n is a chosen stable matrix. W ∗1 , S1, W ∗g and Φg are

the parameterized neural network components:

W ∗g = [W ∗2 ,W
∗
3 , . . . ,W

∗
m+1] (4.6)

Φg(t) = [S2(x(t))u1(t), . . . , Sm+1(x(t))um(t)]T , (4.7)

where W ∗p ∈ Rn×lp , p = 1, 2, . . . ,m+1, lp is the number of layer for the pth neural network.

The neural network structure of the pth neural network is given as

Sp(x(t)) = [Sp1 , S
p
2 , . . . , S

p
lp

] ∈ Rlp (4.8)

Spj (x) =
∏

k=1,...,n

(sp(xk))
dpk(j), j = 1, . . . , lp (4.9)

sp(xk) = k1/(1 + e−xk) + k2 (4.10)
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where with k1, k2 being the design parameters. x is the estimates of the original state xo.

It has been shown in [89] that there exist ideal matrices W ∗1 , . . . ,W
∗
m+1 with appropriate

S1(x), . . . , Sm+1(x) such that (4.5) can approximate (4.1) to any degree of accuracy on any

compact set.

Parameterization of xo(t). With the above neural network approximation, the original

traffic system states xo(t) can be expressed as

xo(t) = x(t) + δ(t), (4.11)

where δ(t) is the approximation error. With (4.5) - (4.7), one can further parameterize the

system output y(t) is follows

xo(t) = θ∗Φ(t− 1) + δ(t), (4.12)

where

θ∗ =[A,W ∗1 ,W
∗
2 , . . . ,W

∗
m+1] (4.13)

Φ(t) =[x(t)T , S1(x(t))T , (S2(x(t))u1(t))T , . . . , (Sm+1(x(t))um(t))T ]T , (4.14)

are the system parameter vector and the regressor vector. It has been shown in [89] that

there exist ideal matrices W ∗1 , . . . ,W
∗
m+1 with appropriate S1(x), . . . , Sm+1(x) such that

(4.5) can approximate (4.1) to any degree of accuracy on any compact set. As a result, one

can make the assumption that is an exponential decay term, whose effect can be ignored.

We assume delta(t) satisfy

|δ(t)| ≤ δ1(t)||Φ(t)||2 + δ2(t) (4.15)
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where δ1(t) ∈ L1+β and δ2(t) ∈ L1+β, 1 ≤ β <∞, i.e.,

∞∑
t=0

|δ1(t)|1+β <∞,
∞∑
t=0

|δ2(t)|1+β <∞ (4.16)

4.2.2 Nominal Control Design

To achieve the control objectives stated in the previous section, we need to solve the

optimization problem defined in (4.3) - (4.4). With the assumption in the previous section

that (4.5) is a good approximation of (4.1), the optimization problem (4.3) - (4.4) can be

reformulated with the neural network approximation model as

J(t) = PTx(t+ 1) (4.17)

u∗j (t) ∈ [umin, umax], t = 1, 2, . . . , j = 1, 2, . . . ,m (4.18)

where x is the neural network approximation of the original traffic delay xo. When the

accurate approximation of the original traffic network system is known, we can design the

nominal optimal controller by solving optimization problem, apply (4.5) to (4.17), one can

obtain

J(t) = PTx(t+ 1) = PTAx(t) + PTW ∗1 S1(x(t)) + PTW ∗g Φg(x(t), u∗(t)). (4.19)

Since at each time step t the traffic delay term x(t) is known, the above equation is linear

with respect to u(t). This optimization problem is a linear programming problem.

Optimal Control Design. To solve for the optimal control signal u∗(t), by taking the

derivative of the cost function with respect to u(t), we have

∂J(t)

∂u(t)
=
∂PTW ∗g Φg(x(t), u(t))

∂u(t)
(4.20)

=
∂PT (W ∗2 S2(x(t))u1(t) + · · ·+W ∗m+1Sm+1(x(t))um(t))

∂u(t)
= d∗(t) (4.21)
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where

d∗(t) = [d∗1(t), d∗2(t) . . . , d∗m(t)]T ∈ Rm (4.22)

d∗j (t) = PW ∗j+1Sj+1(x(t)), j = 1, 2, . . . ,m (4.23)

With x(t) known at time step t, d∗J(t) is a constant at every time step. Based on the sign

of d∗j (t), the control input for minimal cost function J will lies on the boundary of u(t). As

a result, we come up with the following optimal control design:

u∗j (t) =


umax, d∗j (t) < 0

0, d∗j (t) = 0

umin, d∗j (t) > 0

(4.24)

where for d∗j (t) = 0, j = 1, . . . ,m, the solution for uj(t) is trivial. Thus, we manually set

uj(t) = 0 for this situation.

System Robustness. For linear programming problem, the solution for the control signal

u∗(t) will always lies on one of the boundaries. Since the traffic system is operation around

z(t) and v(t) at time step t. To guarantee the system robustness, the maximum increment

for the control signal u∗(t) should be relatively small, i.e., |u∗(t)| < ū, umax = ū, umin = −ū,

and ū < 0.1 is the maximum amount of increment for u∗(t).

4.3 Multiple-Model Neural Network Based Design and Pa-

rameterization

Although there exist ideal matrices W ∗1 , . . . ,W
∗
m+1 with appropriate S1(x), . . . , Sm+1(x)

such that (4.5) can accurately approximate (4.1). In reality, the exact value ofW ∗1 , . . . ,W
∗
m+1

are unavailable, and we need to design appropriate parameter update law to estimate

W ∗1 , . . . ,W
∗
m+1. Moreover, unlike off-line neural network approximation, where we can test

and compare the approximation accuracy with different neural network models, it is diffi-
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cult to fine the ideal approximation model with only one choice of neural network structure

in on-line approximation. Thus, in this section, we propose to use multiple-model based

neural networks to approximate the traffic network system in (4.1).

4.3.1 Multiple-Model based Neural Network Approximation

To accurately approximate (4.1) using neural networks, we propose to use N multiple

neural network structures. Using recurrent neural networks, the approximation models can

be constructed as

x(i)(t+ 1) =A(i)x(i)(t) +W ∗(i)1S(i)1(x(i)(t)) +W ∗(i)gΦ(i)g(x(i)(t), u(i)(t)) (4.25)

where x(i)(t) ∈ R2m, u(i)(t) ∈ Rm are the system state, control input respectively, A(i) ∈

Rn×n is a chosen stable matrix, i = 1, 2, . . . , N , represents the ith neural network structure,

W ∗(i)1, S(i)1, W ∗(i)g and Φ(i)g are the parameterized neural network components:

W ∗(i)g = [W ∗(i)2,W
∗
(i)3, . . . ,W

∗
(i)m+1] (4.26)

Φ(i)g(t) = [S(i)2(x(i)(t))u(i)1(t), . . . , S(i)m+1(x(i)(t))u(i)m(t)]T , (4.27)

where W ∗(i)p ∈ R
n×l(i)p , p = 1, 2, . . . ,m + 1, l(i)p is the number of layer for the pth neural

network, S(i)p(x(t)) = [Sp1 , S
p
2 , . . . , S

p
l(i)p

] ∈ Rl(i)p are the basis functions. W(i)p and S(i)p

are the different neural network structures used to approximate the original traffic network

system. With this multiple model based online approximation design, it is more likely to

find an ideal neural network structure to approximate traffic network system in (4.1).

Parameterization of xo(t). With the multiple-model based neural network approxima-

tion, the original traffic delay vector xo(t) can be expressed as

xo(t) = x(i)(t) + δ(i)(t), (4.28)

where δ(i)(t) is the approximation error of the ith neural network approximation. With
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(4.25) - (4.27), one can further parameterize the system output xo(t) is follows

xo(t) = θ∗(i)Φ(i)(t− 1) + δ(i)(t), (4.29)

where

θ∗(i) =[A(i),W
∗
(i)1,W

∗
(i)2, . . . ,W

∗
(i)m+1] (4.30)

Φ(i)(t) =[x(i)(t)
T , S(i)1(x(i)(t))

T , (S(i)2(x(i)(t))u(i)(t))
T , . . . , (S(i)m+1(x(i)(t))u(i)(t))

T ]T ,

(4.31)

are the system parameter vectors and the regressor vectors.

4.4 Adaptive Control Design

In this section, the adaptive control scheme is designed for the neural network approxi-

mation based traffic network systems. First, the design adaptive control for a single neural

network based traffic network system approximation is presented. Then the multiple-model

neural network based adaptive control design is presented.

4.4.1 Single Neural Network Based Adaptive Control Design

Optimal Control Design. The neural network approximation of the cost function is

defined in (4.17). Since the neural network parameters are unknown, at time step t, assume

that the system is observable, one can only obtain the estimate of x(t+ 1) as x̂(t+ 1). The

estimate optimization problem is defined as:

Ĵ(t) = PT x̂(t+ 1) (4.32)

uj(t) ∈ [umin, umax], t = 1, 2, . . . , j = 1, 2, . . . ,m (4.33)

where Ĵ(t) is the estimate of the cost function J(t). Define dj(t) = PWj+1(t)Sj+1(x(t)),

and based on the derivation on Section 4.2.2, we come up with the following optimal control
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design:

uj(t) =


umax, dj(t) < 0

0, dj(t) = 0

umin, dj(t) > 0

(4.34)

where Wj+1(t) are the estimates of the nominal parameter W ∗j+1.

Parameter Estimation. To obtain the state estimation x̂(t), we define the estimated

model as:

x̂(t+ 1) = θ(t)Φ(t), (4.35)

where θ(t) is the estimate of the system parameter θ∗. To develop the adaptive update laws

for θ(t), we introduce the estimation error

ε(t) = θ(t− 1)Φ(t− 1)− xo(t) (4.36)

≈ θ̃(t− 1)Φ(t− 1), (4.37)

where θ̃ = θ(t)−θ∗, and we assume that the approximation error δ(t) can be ignored. Based

on a gradient algorithm, we choose the following adaptive parameter update laws as:

θ(t+ 1) = θ(t)− ΓΦ(t)ε(t)

m2(t)
, θ(0) = θ0, (4.38)

with Γ = ΓT > 0 is a gain matrix, m(t) =
√

1 + αΦT (t)Φ with α > 0 being a design

parameter, and θ0 is the initial estimate of θ∗.

The adaptive law has the desired properties:

Lemma 1: The adaptive parameter law (4.38) for the system (4.1) ensures that θ(t) ∈

L∞, ε(t)
m(t) ∈ L

2 ∩ L∞, θ(t)− θ(t− 1) ∈ L2.

Proof: Define the positive definite function V (θ̃) = θ̃TΓ−1θ̃, with adaptive law (4.38)

and the estimation definition (4.36), we calculate the increment of V (θ̃) as

V (θ̃(t+ 1))− V (θ̃(t)) (4.39)
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=− (2− ΦT (t)ΓΦ(t)

m2(t)
)
ε2(t)

m2(t)
+ 2

ε(t)δ(t)

m2(t)
(4.40)

≤− α1
ε2(t)

m2(t)
+ 2

ε(t)δ(t)

m2(t)
(4.41)

≤− α1
ε2(t)

m2(t)
− α1

2
(
|ε(t)|
m(t)

− |δ(t)|
α1m(t)

) + 2
δ2(t)

α1m2(t)
(4.42)

for some constant α1 > 0. From (4.36), we have

∞∑
t=0

2
δ2(t)

α1m2(t)
≤ kd (4.43)

for some constant kd > 0. Then, we have

V (θ̃(t)) ≤ V (θ̃(0)) +
∞∑
τ=0

2
δ2(τ)

α1m2(τ)
+ kd, ∀t ≥ 0. (4.44)

Thus, we have θ(t) ∈ L∞, ε(t)
m(t) ∈ L

2 ∩ L∞, θ(t)− θ(t− 1) ∈ L2.

4.4.2 Multiple-Model Neural Network Based Adaptive Control Design

Optimal Control Design. The multiple-model based approximation of the cost function

(4.3) - (4.4) using neural networks in (4.25) is defined as

J(i)(t) = PTx(i)(t+ 1) (4.45)

u(i)j(t) ∈ [umin, umax], t = 1, 2, . . . , j = 1, 2, . . . ,m (4.46)

where J(i), x(i) are the ith neural network approximation of the cost function (4.3) - (4.4)

and traffic delay vector xo. The estimate of the above cost function is

Ĵ(i)(t) = PT x̂(i)(t+ 1) (4.47)

u(i)j(t) ∈ [umin, umax], t = 1, 2, . . . , j = 1, 2, . . . ,m (4.48)



72

where Ĵ(i), x̂(i) are the estimates of the ith neural network approximation the cost function

(4.47) - (4.48) and traffic delay vector x(i). Define d(i)j(t) = PW(i)j+1(t)Sj(i)+1(x(i)(t)), and

based on the derivation on Section 4.2.2, we come up with the following optimal control

design:

u(i)j(t) =


umax, d(i)j(t) < 0

0, d(i)j(t) = 0

umin, d(i)j(t) > 0

(4.49)

where W(i)j+1(t) is the jth estimate of the nominal parameter W ∗j+1.

Parameter Estimation. To obtain the state estimation x̂(i)(t), we define the estimated

model as:

x̂(i)(t+ 1) = θ(i)(t)Φ(i)(t), (4.50)

where θ(i)(t) is the ith NN estimate of the system parameter θ∗. To develop the adaptive

update laws for θ(i)(t), we introduce the estimation error

ε(i)(t) = θ(i)(t− 1)Φ(i)(t− 1)− y(t) (4.51)

≈ θ̃(i)(t− 1)Φ(i)(t− 1), (4.52)

where θ̃(i) = θ(i)(t)−θ∗(i), and we assume that the approximation error δ(i)(t) can be ignored.

Based on a gradient algorithm, we choose the following adaptive parameter update laws as:

θ(i)(t+ 1) = θ(i)(t)−
Γ(i)Φ(i)(t)ε(i)(t)

m2(t)
, θ(i)(0) = θ(i)0, (4.53)

with Γ(i) = ΓT(i) > 0 is a gain matrix, m(t) =
√

1 + αΦT
(i)(t)Φ(i) with α > 0 being a design

parameter, and θ(i)0 is the initial estimate of θ∗(i).

Using the similar derivation as Lemma 1, the adaptive law (4.53) has the desired prop-

erties:

Lemma 2: The adaptive parameter law (4.53) for the system (4.1) ensures that θ(i)(t) ∈

L∞,
ε(i)(t)

m(t) ∈ L
2 ∩ L∞, θ(i)(t)− θ(i)(t− 1) ∈ L2, for i = 1, 2, . . . , N .
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Control Switching Scheme. According to the above design, N adaptive controllers are

obtained, and a control switching scheme is needed to choose the current controller. The

switching scheme in this study is designed based on the estimation cost with different neural

network models. We define the estimation cost as

J(i)2(t) =

t∑
j=1

εT(i)(j)Qε(i)(j), (4.54)

for i = 1, 2, . . . , N , where Q = QT is the constant design parameter matrix. The control

signal u(t) is obtained as

u(t) = u(j)(t), J = arg min
i=1,2,...,N

J(i)2(t). (4.55)

To prevent arbitrarily fast switching, we introduce a non-zero waiting time Tmin > 0 between

two switches.

4.5 Simulation Study

In this section, the simulation study for the proposed multiple-model neural network

based optimal control is presented. First, the simulation system is first introduced. Then the

simulation results are presented. Finally, some discussion is given based on the simulation

results.

4.5.1 Simulation System

In this section, the simulation system is introduced. In this simulation study, we consider

a simple case, which is a two intersection traffic network. First, the traffic network model

is introduced. Then, the neural network models used to approximated the original traffic

network model are given.
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Traffic Network Model

For this study, we consider a two intersection traffic network. The traffic network

structure is shown in Figure. 4.2. The road in this traffic network are ”Road 1”, ”Road

2”, and ”Road 12”. v1 = 12.5m/s, v2 = 12.5m/s, v12 = 16.6m/s are the average speed on

each road, s1 = 0.05vehicle/s, s2 = 0.1vehicle/s, s12 = 1.13vehicle/s are the average traffic

volume on each road, N1 and N2 are the two intersections, u1 and u2 are the traffic control

signals on each intersection, l12 is the distance between N1 and N2. Assume that the vehicle

entrance follows a random distribution. Note that for this traffic network, we assume that

the vehicle average speed and traffic volume on the two directions of each road are the same

for simplicity.

Figure 4.2: Two intersection traffic network example.

Single Neural Network Approximation Model

For the traffic network system described above, it can be approximated with a neural

network based dynamic model

x(t+ 1) = A∗x(t) +W ∗1 S1(x(t)) +W ∗g Φg(x(t), u(t)) = θ∗Φ(t), (4.56)
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where x = [xEW1, xNS1, xEW2, xNS2]T ∈ R4 are the traffic delay of both direction on each

intersection, u = [u1, u2]T are the control signal, which is the green cycle period of the E-W

direction. A∗, W ∗1 , W ∗g are the nominal system parameters, chosen as follows:

A∗ =



0.9884 −0.0467 0.0058 0.0017

−0.0071 0.9643 0.0104 −0.0017

−0.0044 −0.0341 1.0047 −0.0073

−0.0071 −0.02937 0.0122 1.0060


, W ∗1 =



0.9286 0.5130 0.2319 0.3595

0.7592 0.4136 0.7967 0.5036

0.6176 0.4858 0.8501 0.2002

0.5503 0.2894 0.3402 0.9055


,

(4.57)

W ∗g = [W ∗2 ,W
∗
3 ] (4.58)

W ∗2 =



0.1949 0.3273 0.3026 0.0873

0.6075 0.2799 0.9113 0.5158

0.8831 0.3655 0.2541 0.9572

0.4195 0.7796 0.5760 0.1937


, W ∗3 =



0.8512 0.8501 0.1778 0.6718

0.5600 0.0988 0.3279 0.4857

0.4690 0.7370 0.2108 0.4138

0.5000 0.1745 0.0159 0.3580


.

(4.59)

Based on (4.14), we have Φg(t) = [S2(x(t))u1(t), S3(x(t))u2(t)]T . S1(x(t)), S2(x(t)), S3(x(t))

are the activation functions which have the following structures:

sig(x) =
1

1 + e−x
+ 0.5 (4.60)

S1(x(t)) =



sig(xNS1) ∗ sig(xNS2)

sig(xEW1)

sig(xEW2) ∗ sig(xNS2)

sig(xEW1) ∗ sig(xEW2)


, S2(x(t)) =



sig(xNS1)

sig(xNS1) ∗ sig(xEW1)

sig(xNS2)

sig(xEW2) ∗ sig(xNS2)


, (4.61)
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S3(x(t)) =



sig(xNS1) ∗ sig(xEW1)

sig(xEW1)

sig(xEW2) ∗ sig(xNS2)

sig(xEW2)


. (4.62)

4.5.2 Simulation Results

In this section, the simulation results are presented. First, the single neural network

based optimal control design results are shown. Then the multiple-model neural network

based optimal control results are given.

Single Neural Network based Optimal Control Simulation

The single neural network estimate of the model (4.56) is

x̂(t+ 1) = A(t)x̂(t) +W1(t)S1(x̂(t)) +Wg(t)Φg(x̂(t), u(t)) (4.63)

= θ(t)Φ(t) (4.64)

where θ(t) is the estimate of the nominal parameter θ∗.

Estimation Result. First, we tested the estimation of xo(t), which is obtained directly

from the simulation model. With the initial estimate being 0.8θ∗. The estimation results

for average traffic delay increment are shown in Figure. 4.3, and Figure. 4.4 is shows

the estimation error of average traffic delay increment. From which we can see that the

estimation model (4.63) can well approximate the original traffic network model. The

estimation error can become very small after 5 signal cycles. Note that each step is one

signal cycle.

Optimal Control Result. To test out the optimal control result, we compared our

control algorithm with different fixed-time signal control. We choose the weight vector

P = [0.05, 0.13, 0.1, 0.13]T which is determined based on the traffic flow on each road. We
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Figure 4.3: Estimation result for ∆x.

compared our algorithm with the initial green signal on E-W direction being 20s, 50s, and

70s respectively. We ran each case for 20 runs to collect the average traffic delay data.

Table. 4.1 shows the average traffic delay using a different method. From which we can see

that using our optimal control method the average traffic delay is significantly reduced with

all the initial green time options. Figure. 4.5 shows the optimal control result with initial

green time on the E-W direction being 20 section. From which we can see that with our

algorithm, we can make the average traffic delay significantly drop compared to fixed-time

methods.
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Figure 4.4: Estimation error for ∆x.

Multiple-Model Neural Network based Optimal Control Simulation

The multiple-model neural network estimate of the model (4.56) is

x̂(i)(t+ 1) = A(i)(t)x̂(i)(t) +W(i)1(t)S(i)1(x̂(i)(t)) +W(i)g(t)Φ(i)g(x̂(i)(t), u(i)(t)) (4.65)

= θ(i)(t)Φ(t) (4.66)

where θ(i)(t) is the ith neural network estimate of the nominal parameter θ∗, and θ(i)(0) is

chosen to be 0.8θ∗ for i = 1, . . . , N . We set N = 3, and the activation functions S(i)1(x(t)),

S(i)2(x(t)), S(i)3(x(t)) are chosen as follows:

sig(x) =
1

1 + e−x
+ 0.5 (4.67)
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Table 4.1: Travel delays with different initial green times and control methods

Init. Green Time (s) Control Method Avg. Veh. Delay (s) Std. Dev.

20 Fixed-time 67.52 6.25
50 Fixed-time 19.82 3.56
70 Fixed-time 21.28 2.10

20 NN-based Optimal Control 30.16 12.25
50 NN-based Optimal Control 18.01 1.68
70 NN-based Optimal Control 19.33 4.36

S(1)1(x(t)) =



sig(xNS1) ∗ sig(xNS2)

sig(xEW1)

sig(xEW2) ∗ sig(xNS2)

sig(xEW1) ∗ sig(xEW2)


, S(1)2(x(t)) =



sig(xNS1)

sig(xNS1) ∗ sig(xEW1)

sig(xNS2)

sig(xEW2) ∗ sig(xNS2)


, (4.68)

S(1)3(x(t)) =



sig(xNS1) ∗ sig(xEW1)

sig(xEW1)

sig(xEW2) ∗ sig(xNS2)

sig(xEW2)


, (4.69)

S(2)1(x(t)) =



sig(xNS1)

sig(xEW1)

sig(xNS2)

sig(xEW2)


, S(2)2(x(t)) =



sig(xNS1)

sig(xEW1)

sig(xNS2)

sig(xEW2)


, S(2)3(x(t)) =



sig(xNS1)

sig(xEW1)

sig(xNS2)

sig(xEW2)


(4.70)

S(3)1(x(t)) =



sig(xNS1) ∗ sig(xNS2)

sig(xEW1) ∗ sig(xEW2)

sig(xNS1) ∗ sig(xNS2)

sig(xNS2) ∗ sig(xEW2)


, S(3)2(x(t)) =



sig(xEW1) ∗ sig(xEW2)

sig(xNS1) ∗ sig(xNS2)

sig(xNS2) ∗ sig(xEW2)

sig(xNS1) ∗ sig(xEW2)


, (4.71)
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Figure 4.5: Optimization result with single Neural network.

S(3)3(x(t)) =



sig(xNS1) ∗ sig(xNS2)

sig(xNS1) ∗ sig(xNS2)

sig(xEW1) ∗ sig(xNS2)

sig(xNS1) ∗ sig(xEW2)


(4.72)

Estimation Result. First, we tested the estimation of xo(t), which is obtained directly

from the simulation model. With the initial estimate being 0.8θ∗. The estimation results

for average traffic delay increment are shown in Figure. 4.6, and Figure. 4.7 is shows

the estimation error of average traffic delay increment. From which we can see that the

estimation model (4.63) can well approximate the original traffic network model. Compared

with estimation with single NN, multiple NN will give a better estimation of the original
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traffic network system.
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Figure 4.6: Estimation result for ∆x.

Optimal Control Result. To test out the optimal control result, we compared our

control algorithm with different fixed-time signal control. We choose the weight vector

P = [0.05, 0.13, 0.1, 0.13]T which is determined based on the traffic flow on each road. We

compared our algorithm with initial green signal on E-W direction being 20s, 50s, and 70s

respectively. We ran each cases for 20 run to collect the average traffic delay data. Table.

4.2 shows the average traffic delay using different method. From which we can see that

using our optimal control method the average traffic delay is significantly reduced with all

the initial green time options. Figure. 4.8 shows the optimal control result with initial green

time on E-W direction being 20 section. From which we can see that with our algorithm,

we can make the average traffic delay significantly drop compared to fixed-time methods.
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Figure 4.7: Estimation error for ∆x.

Compared with single NN based optimal control scheme, the scheme with multiple neural

network results in a better reduction on average traffic delay.

4.5.3 Discussion

From this simulation study, the effectiveness of the proposed adaptive on-line learning

based optimal control design is verified. Based on the estimation results for the system state

xo, one can see that with both single neural network and multiple neural network model,

a good estimation result can be obtained. However, with multiple neural network models,

one would achieve a slightly better estimation of the original traffic network model. For

the optimization results, one can see that with the proposed optimal control scheme, the

average vehicle delay is significantly reduced compared with fixed-time traffic signal control.
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Table 4.2: Travel delays with different initial green times and control methods

Init. Green Time (s) Control Method Avg. Veh. Delay (s) Std. Dev.

20 Fixed-time 67.52 6.25
50 Fixed-time 19.82 3.56
70 Fixed-time 21.28 2.10

20 NN-based Optimal Control 26.06 13.25
50 NN-based Optimal Control 17.15 1.74
70 NN-based Optimal Control 16.61 2.39

4.6 Conclusions

In this chapter, a network traffic signal control scheme is designed with the use of an

adaptive on-line learning scheme using multiple-model neural networks. First, NN based

traffic network model is presented for both single NN and multiple NN. Then, the adaptive

optimal control scheme is designed with an on-line learning scheme used to identify the

traffic network model. Finally, a simulation study is presented to show the effectiveness of

the proposed scheme. Based on the simulation results, one can conclude that the proposed

multiple-model NN based on-line estimation scheme can well identify the original traffic

network system. Moreover, the optimal control scheme designed based on the estimated

traffic network model can achieve traffic delay minimization compared to fixed-time traffic

signal control.
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Figure 4.8: Optimization result with multiple Neural network.



Chapter 5

Stochastic Traffic Signal Control

Design for Traffic Networks

Using a dynamic traffic network model as the control plant is a popular approach to

solve traffic signal control problems. The traffic dynamic model is easy to obtain and the

control design for the dynamic traffic network model is usually a direct solution to reduce

vehicle travel time. Despite using a dynamic model to represent the traffic network, we

come up with a statistic approach, which aimed at managing the traffic flow distribution

to achieve smooth traffic. Since it is well known that the traffic flow in the network is

randomly distributed in both space and time, and the randomness with traffic flow could

be a challenge to traffic control with the dynamic traffic network model. Thus, one natural

approach is to use a static model to represent the traffic network and solve the traffic control

problem with stochastic control, which is a novel approach in the field of transportation

research.

Unlike optimal traffic signal control using a dynamic traffic network model whose ob-

jective is to minimize traffic delay directly, the objective for stochastic traffic control is to

achieve ”smooth” traffic. The definition of smooth traffic in terms of stochastic control

is to have every traffic intersection achieve balanced and low wait-time. Figure 5.1 gives

an illustration of the unbalanced intersection, intersection with high traffic congestion, and

85
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balanced low wait-time intersection.

Figure 5.1: (a) unbalanced intersection; (b) highly congested intersection; (c) balanced and
low wait-time intersection.

Figure 5.2: Single intersection example.

As a result, this study introduces a traffic signal control algorithm for traffic networks

using stochastic control. We model the traffic network with a static model, where the

relationship between the system output vehicle travel delay and the control input green

signal period is represented by a probability density function (PDF). The objective is to

have the travel time PDF track a given target PDF. With this objective achieved, we can
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have the traffic flow follow a certain distribution, which can lead us closer to the goal of

”smooth traffic”. The main contributions of this study are given as follows:

1. Build a static traffic network model using B-spline functions to approximate the PDF

and formulate such a model as the controlled plant;

2. Design a stochastic control scheme for a four intersection traffic network to move the

actual travel time PDF to match a given PDF as much as possible;

3. Verify the control design with a simulation study.

5.1 Problem Statement

Before establishing the control design, the traffic control problem is stated in this section.

The traffic delay time, which is used to represent the traffic flow, is first modeled based on

the traffic queue modeling. Then the traffic system model is derived. Finally, the control

objectives for stochastic traffic signal control is given.

5.1.1 Traffic Flow Modeling

For a single intersection shown in Figure 5.2, it is a combination of four one-way single-

lane corridors with inter-dependency in each direction. A traffic delay model is used to

represent the traffic flow in this study, which is directly equivalent to the traffic queue

model. For each intersection, the total queue length q(k) is used to calculate the total

travel delay, where the total queue length q(k) is the summation of queue length for all the

directions in this intersection at time step k. To model the traffic queue, first, the traffic

signal definition is introduced.

Traffic control signal. In this study, we ignore the left turn and right turn situation.

The signal control for one intersection only contains one degree of freedom, denote as

TgreenEW or TgEW in brief, which is the green cycle period of E-W direction. The traffic
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control signal at node Ni,j is denoted as:

σ(k) = [σEW (k), σNS(k)] (5.1)

σEW (k) =


green kT mod Tcyc ∈ [0, TgEW ]

yellow kT mod Tcyc ∈ [TgEW , TgEW + Ty]

red kT mod Tcyc ∈ [Tcyc − TrEW , Tcyc]

(5.2)

σNS(k) =


red kT mod Tcyc ∈ [0, TrNS ]

green kT mod Tcyc ∈ [TrNS , Tcyc − Ty]

yellow kT mod Tcyc ∈ [Tcyc − Ty, Tcyc]

(5.3)

where σ(k) is the traffic signal of both E-W and N-S direction, which decides the current

signal light. Tcyc is the signal cycle length. In this work, we assume the signal cycle length

is fixed for simplicity. TrEW , TrNS , TgEW , TgNS are the red signal length and green signal

length of the E-W and N-S directions respectively. Ty is the fixed yellow signal period.

Figure 5.3 shows the traffic control signal at one intersection. Since at one intersection, the

signal length on E-W direction and N-S direction depend on each other, there only exists

one degree of freedom for the green cycle length. Assuming that the green signal length of

E-W direction TgreenEW is an independent variable, we can derive the following relationship:

TgSN = Tcyc − TgEW − Ty (5.4)

For a single direction, the red signal period can be calculated from

Tr = Tcyc − Tg − Ty. (5.5)

Traffic queue modeling. To model the traffic queue for one intersection, we can first

consider a single direction queue model [90]. We denote the vehicle detection counters for

loop detectors N and M shown in Figure 5.2 by n and m respectively. n(k) and m(k)
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Figure 5.3: Traffic control signal.

indicates the n(k)th and m(k)th vehicle detected at loop detector N and M at time step

k during the current signal light. The average vehicle length is denoted by lv. The traffic

queue model of an one-way single-lane corridor is given by:

qi(k) =


ri(k) σi(k) = red

gi(k) σi(k) = green

yi(k) σi(k) = yellow

(5.6)

ri(k) =


yi(ky) + ni(k)lv σi(k) = red

ri(kr) σi(k) 6= red

(5.7)

gi(k) =


ri(kr) + (ni(k)−mi(k))lv σi(k) = green

gi(kg) σi(k) 6= green

(5.8)

yi(k) =


gi(kg) + (ni(k)−mi(k))lv σi(k) = yellow

gi(kg) σi(k) 6= yellow

(5.9)

q(k) =

nd∑
j=1

qj(k) (5.10)

where qi(k), i = 1, 2, . . . , nd is the queue length of ith direction at the intersection, kr, kg

and ky are the last time step of the previous red, green and yellow signal, respectively. The
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expression of red signal queue length ri(k) indicates that the red queue length increases

based on the vehicle entering the intersection n(k) when the signal σi =’red’, and it will

remain the value ri(kr) (which is the red queue length at the time step before signal changes

to green) for the coming green and yellow signal until the next red signal comes. Similar

explanations hold for green signal queue gi(k) and yellow signal queue yi(k). The total queue

length at the intersection is represented by q(k), which is the sum of the queue length at

all directions in the intersection. In general, nd = 4 indicating the E-W-N-S four directions

of the intersection. Figure 5.4 shows the simulation results for the traffic queue in different

directions using the above traffic queue model. Figure. 5.9(b) is the queue traffic queue

simulation of a two intersection network shown in Figure. 5.2, the red curves are the traffic

queue length during the red signal, the green curves are the traffic queue length during the

greed signal, the yellow curves are the traffic queue length during the yellow signal. Figure.

5.9(c) shows the histogram and kernel density estimation (KDE) of the average vehicle

travel time during the red signal period, green signal period and yellow signal period. The

three rows represent the result for intersection Ti,j S direction, intersection Ti,j W direction

and intersection Ti,j+1 W direction.

(a) Traffic queue simulation (b) Average travel time histogram and KDE

Figure 5.4: Traffic queue simulation results

Traffic delay modeling. To achieve the objective of reducing traffic delay, it is a nat-
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ural approach to model the traffic delay model as well. With traffic queue model obtained,

one can calculate the total traffic delay with the simplified equation

D(k) =

q(k)/lv∑
i=1

(i ∗ lv/vdelay + tiwait) (5.11)

where vdelay is the average delayed vehicle speed exiting the intersection, tiwait is the wait

time till the green signal for the ith vehicle. The above equation indicates the total traffic

delay is the summation of all the speed delay caused by the queue plus the total wait time

till the green signal, which can be obtained from the previous signal cycle.

5.1.2 Traffic Network Modeling

This study is focused on the traffic networks in an urban area. Figure 5.5 gives an

example of a simple traffic network. The traffic node Ni,j can be represented with a traffic

system Gi,j . The traffic flow at each intersection is represented by yi,j = D̄i,j , which is

the average travel delay of all vehicles from all directions on Ni,j node. For a single node

Figure 5.5: Traffic network example.

in the above traffic network, if the influence of neighboring intersections are neglected, the
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discrete-time input-output model is:

yi,j(k) = Hi,j(z)[ui,j(k)] (5.12)

where we have the notation Z−1(Hi,j(z)Ui,j(z)) , Hi,j(z)[ui,j(k)], Hi,j(z) is the transfer

function between the control input Ui,j(z) and the system output Yi,j(z) in z-transform. To

deal with the effect of the neighboring intersections as shown in Figure 5.5, one can build

a discrete-time input-output model as:

yi,j(k) =Gi,j(z)[u(k)] (5.13)

Gi,j(z) =[Hi,j(z), z
−λ1Hi+1,j(z), z

−λ2Hi,j+1(z),

z−λ3Hi−1,j(z), z
−λ4Hi,j−1(z)] (5.14)

ui,j(k) =[σi,j(k), σi+1,j(k), σi,j+1(k), σi−1,j(k), σi,j−1(k)]T (5.15)

Hi,j(z) =
tssi,j/τi,j

1− eT/τi,jz−1
(5.16)

where λm = blm/v̄T c, m = 1, 2, 3, 4 are the delay step between the node with its neighbors,

calculated by the average time to travel between two nodes, is the traffic control signal

at Ni,j , T is the sampling time. σi,j(k) is the traffic signal at the node Ni,j , tssi,j is the

steady state time delay, and τi,j is the time constant, and these two parameter indicate the

transient response of the Node Ni,j .

Four-Node Traffic System. In this study, a traffic network with four intersections

will be considered as the testbed. The traffic system structure is shown in Figure 5.6. the

input-output model is given by:

y(k) = G(z)[u(k)] (5.17)

y(k) = [yT1,1(k), yT1,2(k), yT2,1(k), yT2,2(k)]T (5.18)

u(k) = [uT1,1(k), uT1,2(k), uT2,1(k), uT2,2(k)]T (5.19)
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G(z) =

 H1,1(z) z−λ1H1,2(z) z−λ2H2,1(z) 0

z−λ1H1,1(z) H1,2(z) 0 z−λ3H2,2(z)

z−λ2H1,1(z) 0 H2,1(z) z−λ4H2,2(z)

0 z−λ3H1,2(z) z−λ4H2,1(z) H2,2(z)

 (5.20)

where λm is the average travel time step between different nodes associates with the distance

between intersections lm, m = 1, 2, 3, 4.

Figure 5.6: Traffic network with four intersections.

5.1.3 Static Model

Probability Density Function. To find the static model for the traffic network system,

we assume that v(k) represent the output of a stochastic system. u(k) is the control input

vector which controls the distribution of v(k). At any time step k, v(t) can be characterized

by its cumulative distribution function defined as

F (y, u(k)) = P (v(k) < y, u(k)) (5.21)

where P (v(k) < y, u(k)) stands for the probability of variable v(k) less than the traffic

network output y when the control signal u(k) is applied to the stochastic system. The
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probability density function γ(y, u(k)) = γk(y, u) can be obtained from

γk(y, u) =
dF (y, u(k))

y
(5.22)

where the control signal u(k) is a set of measurable inputs which controls the shape of the

probability density function γk(y, u).

Static Model for Traffic Network System. For the traffic network model in (5.17),

there exist a static relationship between the system input u and the system output y. This

static relationship can be represented with a probability density function of the output

traffic delay γk(y, u), which is

γk(y, u) = [γk11(y11, u), γk12(y12, u), γk21(y21, u), γk22(y22, u)]T (5.23)

where each row of (5.17) is considered as a multi-input single-output stochastic system.

Since the PDF between traffic delay y(k) and the signal control u(k), B-spline is used to

approximate the PDF and it will be introduced in Section 5.2.

5.1.4 Control Objective

The control objective is to design a control law for u(k) to have all the actual PDF

γi,j(y, u) can approach to the target PDF γ∗i,j(y), shown in Figure 5.7, where Figure 5.7(a)

is the actual PDF of the average vehicle travel delay of an intersection, and Figure 5.7(b) is

the target PDF for average vehicle travel delay, which indicates that we want the average

vehicle travel delay distribution to follow the target distribution with a mean of 60 second

average travel delay.

Remark 1. Since the traffic flow contains a certain pattern and it contains high randomness

and there will always be a red signal which effects the actual vehicle delay PDF, it is difficult

to have the actual PDF totally matches the target PDF. What we can do is to have the

actual PDF to approach the target PDF as much as possible.
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(a) Actual PDF

(b) Target PDF

Figure 5.7: Actual PDF vs target PDF.

5.2 Static Traffic System Modeling

In this section, the static model of the traffic network is built. First, basic information

about B-splines artificial neural networks is given. Then the static traffic network model is

derived using B-splines approximation.

5.2.1 B-splines Artificial Neural Networks

B-spline artificial neural networks are examples of associative memory networks (AMNs)

[91]. It is a commonly used approximation algorithm that can approximate unknown func-

tions with a linear combination of the B-splines [92].

A mth order spline is a piecewise polynomial with degree n − 1 in input variable y.

The input axes are divided in to several intervals by the values called knots, denoted as

λ−m+1, . . . , λ0, λ1, λ2, . . . , λr, . . . , λr+m in a non-decreasing order. The knot vector contains
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r interior knots and m exterior knots, satisfying

λ0 < ymin < λ1 (5.24)

λr < ymax < λr+1 (5.25)

where ymin and ymax are the upper bound and lower bound of the input variable y. These

knots are used in the generation of basis functions of width m, which are close to the ends

of the input space. The modeling performance of a B-spline network depends on the orders

of the univariate B-splines. The order of a univariate B-spline determines the shape of the

B-spline and the width of its support. The support is defined as the region of the input space

for which the output of the B-spline is non-zero. Thus a univariate B-spline of order m has a

support which is also m intervals wide. Each input is mapped to m non-zero B-splines, and

the output becomes smoother as the order increases. The univariate B-splines are defined

based on the recursive relationship:

B1,j(y) =


1 if λj < y < λj+1

0 otherwise

(5.26)

Bm,j(y) = (
y − λj−m

λj−1 − λj−m
)Bm−1,j−1(y)

+ (
λj−y

λj − λj−m+1
)Bm−1,j(y) (5.27)

It has been shown in [] that the B-splines neural networks can be used to approximate any

continuous functions defined on a compact set, they will be used to represent the coupled

links between the control input u(k) and the output probability density function (5.23).

5.2.2 Traffic Network Static Modeling

The probability density function (PDF) between the the system output traffic delay y(k)

and the signal control u(k) it difficult to calculate directly. With the order of the B-spline

m chosen, we can denote Bm,j as Bj . Since the PDF γ(y, u) is a continuous function with
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respect to y ∈ [0, qmax] with any fixed control input u(k), the following inequality holds

|γ(y, u)−
n∑
i=1

wiBi(y)| ≤ δ (5.28)

where δ is a prespecified arbitrarily small positive number, wi are the weights, Bi(y) are

the pre-specified the basic functions on the interval y ∈ [0, qmax].

Since the basis functions are fixed, a different value of u will result in different sets of

weights wi. As a result, one can further approximate the traffic delay PDF at time step k

with

γk(y, u) =

n∑
i=1

wi(u)Bi(y) + e0(y, u), (5.29)

where e0 is the approximation error which satisfies |e0| ≤ δ. Figure 5.8 shows an example

of approximated travel delay PDF using B-spline approximation.

(a) actual and approximated PDF (b) Basis splines

Figure 5.8: travel queue PDF using B-spline approximation

Parametrization of the Static Model. Since the static model γ(y, u) in (5.29) is a

probability density function defined on [0, qmax], it satisfies the flowing constraint:

∫ qmax

0
γ(y, u)dy =

n∑
i=1

wi(u)bi = 1 (5.30)

where

bi =

∫ qmax

0
Bi(y)dy (5.31)
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are positive constants with selected basis functions. In most systems, there may exist a

dynamic relationship between wi and u. By solving the dynamic equation between wi and

u, one can reduce the number of independent weights in 5.29 to n − 1 [16, 93]. The new

stochastic system with n− 1 degree of freedom is given by:

f(y, k) = C(y)V (k) + e(y, u(k)) (5.32)

where

f(y, k) =γ(y, u(k))− Bn(y)

bn
(5.33)

bi =

∫ qmax

0
Bi(y)dy (5.34)

V (k) =[w1(k), w2(k), . . . , wn−1(k)]T ∈ Rn−1 (5.35)

C(y) =[B1(y)− Bn(y)b1
bn

, B2(y)− Bn(y)b2
bn

,

. . . , Bn−1(y)− Bn(y)bn−1

bn
] ∈ R1×(n−1) (5.36)

e(y, u(k)) =
eI(u(k))

bn
Bn(y) + e0(y, u) (5.37)

eI(u(k)) =

∫ qmax

0
ei(y, u(k))dy (5.38)

With the above derivation, one can separate the coupled y and u(k) in the PDF γk(y, u) and

reduce the dimension of (5.29) to n− 1, which is needed for the stochastic control design.

5.3 Stochastic Control Design for Four Intersection Traffic

Network

In this section, the stochastic control law is first derived. Then the simulation result is

presented to verify the control design.
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5.3.1 Stochastic Control Design

Cost Function. To achieve the control objective stated in Section 5.1.4, we choose the

following performance function

J =

∫ qmax

0
(γ(y, u(k))− γ∗(y))2dy (5.39)

where γ∗(y) is the target PDF function, and u(k) is chosen to minimize J . From (5.34)-

(5.38), one can obtain that

J =

∫ qmax

0
(C(y)V (u(k)) + L(y)− γ∗(y))2dy (5.40)

where L(y) = Bn(y)
bn

, assuming

Σ =

∫ qmax

0
C(y)TC(y)dy ∈ R(n−1)×(n−1) (5.41)

η =

∫ qmax

0
(γ∗(y)− L(y))C(y)Tdy ∈ R1×(n−1) (5.42)

γ0 =

∫ qmax

0
(γ∗(y)− L(y))2dy (5.43)

then, one can further obtain

J = V T (u(k))ΣV (u(k))− 2ηV (u(k)) + γ0 (5.44)

Control Law. To minimize J , u(k) is calculated from ∂J
∂u(k) = 0. This leads to solving the

following equation

(V T (u(k)Σ− η)
∂V (u(k))

u(k)
= 0 (5.45)

The above equation can be solved use the following gradient approach

ui+1
k = uik − 2µ(V T (u)Σ− η)

V (u)

u
|u=iik

(5.46)
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where µ > 0 is the pre-specified optimization step size, and i = 1, 2, . . . ,K.

5.3.2 Simulation Results

We tested the stochastic control design on a four intersection traffic network shown

in Figure 5.6. Assume random number of vehicle entering the four two-direction road

with averages of 500, 460, 200, 100 vehicles entering the road l1, l2, l3 and l4 per hour

respectively, and the average speeds are 50, 50, 35, 35 miles per hour, respectively. The

signal cycle length is chosen as 100 seconds. We choose number of B-spline n = 14, the

iteration number K = 30, and optimization step size µ = 1. The simulation results are

shown in Figure 5.9. From the simulation results, one can see that with our control design,

we can move the PDF closer to the target PDF.

5.4 Conclusion

In this chapter, we first developed an input-output model for the traffic queue. Then we

designed a stochastic control algorithm to move the actual traffic flow distribution towards

a target distribution, and this result potentially indicates smooth traffic with minimized

energy consumption. The significance of this work proposed a stochastic approach to solving

the traffic congestion problem, which can effectively handle the randomness of traffic flow.

The potential future work of this study is to quantify the energy-saving and implement the

algorithm to more extensive traffic networks.
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(a) Actual PDF variation in different iterations - 3D

(b) Actual PDF variation in different iterations

(c) Target PDF

Figure 5.9: Actual PDF vs target PDF.



Chapter 6

Conclusions and Future Work

In this chapter, we give concluding remarks to this dissertation and suggest some re-

search topics for future study in this area.

Conclusions. Based on this dissertation, the use of adaptive learning and optimization

schemes in intelligent transportation systems development can result in a better understand-

ing of the unknown transportation systems and yet lead to energy consumption minimization

with better identification of the system.

In Chapter 2, a co-optimization scheme is proposed to optimize fuel efficiency for HEVs.

The proposed optimization scheme uses vehicle to vehicle (V2V) and vehicle to infrastruc-

ture (V2I) information as the basis to optimally tune control parameters for the existing

powertrain control system. Moreover, the speed of catalyst temperature to reach its light-

off level in the exhaust emission system is also considered as an additional optimization

constraint to reduce emission. It has been shown that a further 9.22% fuel savings can be

achieved on average for a Toyota Prius test model.

In Chapter 3 to Chapter 5, three different approaches for traffic networks are developed.

In Chapter 3, an adaptive linear-quadratic regulator (LQR) is designed to minimize both

traffic delay and incremental changes in the control input, which is based on linear system

approximation. In Chapter 4, a traffic signal optimal control scheme with an adaptive

on-line learning scheme using multiple-model neural networks is designed to achieve traffic

102
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delay minimization. In this work, a non-linear neural network model is used to represent

the unknown traffic dynamics. In Chapter 5, the above problem is solved from another

aspect, where the goal is to have the distributions of every intersection follows a target

distribution. To this end, a stochastic traffic signal control algorithm is designed. The

above three methods are not only practically meaningful for traffic signal control design but

also have some theoretic contributions to the field of adaptive learning techniques.

The detailed research topics are summarized as follows:

• System identification and fuel optimization for HEV systems (Chapter 2).

• System identification and traffic signal control for large traffic networks in urban areas

(Chapter 3).

• Network traffic signal control with adaptive on-line learning scheme using multiple-

model neural networks (Chapter 4).

• Stochastic traffic signal control design for traffic networks (Chapter 5).

Future Work. The studies in this dissertation give some encouraging results in using

adaptive learning and optimal control scheme in transportation systems. For future study,

the following research topics are listed as some possible directions in this area:

• Use adaptive on-line learning strategy to identify the HEV system and design fuel

consumption minimization scheme based on on-line estimation model;

• Design on-line learning strategy in stochastic traffic signal control design to achieve

the identification of the static model on-line.
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[18] A. Boyali, L. Güvenç et al., “Real-time controller design for a parallel hybrid electric

vehicle using neuro-dynamic programming method,” 2010.

[19] Q. Gong, Y. Li, and Z.-R. Peng, “Trip-based optimal power management of plug-in

hybrid electric vehicles,” IEEE Transactions on vehicular technology, vol. 57, no. 6,

pp. 3393–3401, 2008.

[20] B. Chen, S. A. Evangelou, and R. Lot, “Fuel efficiency optimization methodologies for

series hybrid electric vehicles,” 2018 IEEE Vehicle Power and Propulsion Conference,

VPPC 2018 - Proceedings, vol. 1, pp. 1–6, 2019.

[21] P. G. Anselma, A. Biswas, J. Roeleveld, G. Belingardi, and A. Emadi, “Multi-Fidelity

Near-Optimal on-Line Control of a Parallel Hybrid Electric Vehicle Powertrain,” ITEC

2019 - 2019 IEEE Transportation Electrification Conference and Expo, pp. 2–7, 2019.

[22] P. G. Anselma, Y. Huo, J. Roeleveld, G. Belingardi, and A. Emadi, “Integration of

On-Line Control in Optimal Design of Multimode Power-Split Hybrid Electric Vehicle

Powertrains,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3436–

3445, 2019.

[23] S. Uebel, N. Murgovski, C. Tempelhahn, and B. Baker, “Optimal Energy Management

and Velocity Control of Hybrid Electric Vehicles,” IEEE Transactions on Vehicular

Technology, vol. 67, no. 1, pp. 327–337, 2018.

[24] F. Xu and T. Shen, “Look-Ahead Prediction-Based Real-Time Optimal Energy Man-

agement for Connected HEVs,” IEEE Transactions on Vehicular Technology, vol. 69,

no. 3, pp. 2537–2551, 2020.

[25] X. Shen, J. Zhang, and T. Shen, “Real-time scenario-based stochastic optimal energy

management strategy for HEVs,” 2016 European Control Conference, ECC 2016, pp.

631–636, 2016.

[26] T. J. Boehme, M. Schori, B. Frank, M. Schuitalbers, and B. Lampe, “Solution of

a hybrid optimal control problem for parallel hybrid vehicles subject to thermal con-



107

straints,” Proceedings of the IEEE Conference on Decision and Control, pp. 2220–2226,

2013.
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